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The aim of this note is to clarify the proof of the camel problem from [V1]
p.706. I wish to thank David Théret for pointing out some shortcomings in
the proof.

In this note we extend the notion of G.F.Q.I. by allowing functions 5 :
N x (F' x R¥) — R coinciding with a nondegenerate quadratic form near
infinity. Note that F'is assumed to be compact. In this note the parentheses
indicate the fibre variables.

Then

L = 1l o 0 €) | G000 = 05 5. 6) = 0)

Note that L has a G.F.Q.I. in this generalized sense if and only if it is the
reduction of a submanifold of T*(N x F'), which has a G.F.Q.L. in the former
sense, by Cp = T*N x Op = {(z,y, X,Y) | Y = 0} This is a coisotropic
subspace and (Cp)* = {(z,y, X,Y) | =0,X =0,Y = 0}. It follows from
this remark that a number of proofs go through, from our familiar setting,
corresponding to F' = {pt}, to the general case. In particular existence of
a G.F.Q.L is invariant by Hamiltonian isotopy as we see by extending the
isotopy from T*N to T*(N x F'). On the other hand, uniqueness is unclear,
since we need to extend our notion of stable equivalence (see [Th] for the
standard case).

Also we define ¢(a, S) to be the critical value obtained by minimax from
the image by the Thom class of o € H*(N x F'). Note that H*(N x F) =
H*(N)® H*(F), so o can be decomposed as p @ o. Then we define v(5) =
c(p@p,S)—c(l®1,9).

We may also apply proposition 5.1 from [V1]:
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Proposition 0.1. For a € H*(N x F') we have

cla®1,5) <infe(a, S,) <

sup e(a, $,) < e(a ® i, )

w

Definition. Let Lg, L; be Lagrange submanifolds. We say that Lo and L,
are gf-homotopic if and only if there exists a continuous family 5; of functions
quadratic at infinity, such that Ly = Ls,, L2 = Lsg,

Remarks:

1. The homotopy can be made generic, so that for each ¢t except a finite
number of them, S; is the generating function of some manifold (i.e.
satisfies the transversality condition) we have that S; generates a sub-
manifold L;. Thus Lo and L; can be connected by a regular homotopy,
modulo a finite number of singularities. We still will denote by L; the
set of points defined by S;.

2. Note that the quadratic form is assumed to be nondegenerate for all
t. We could also have assumed that S; is a fixed quadratic form (inde-
pendent from t) outside a compact set.

3. Note also that we only assume that Ly and Ly have a G.F.Q.I. , we do
not require that it should be unique. So Ly and L; need not be isotopic
to the zero section.

4. Finally we remark that this property is invariant by symplectic reduc-
tion.

Let W be an open set in T* N, we define an invariant by setting

Definition.
E(av W; ON) =

sup{c(a, S) | Ls is gf-homotopic to Ox by a homotopy supported in W}
Remarks:

1. The support of the isotopy, supp(L;), is defined as the closure of | Jy<,«; Li—
On. o
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Figure 1:

2. Clearly we have that ¢é(a, W;0x) is invariant by symplectic isotopies
preserving the zero section.

3. For U an open set in R*", we have the inequality c¢(U) < é(pu, U x U; A).
Indeed the graphs of a symplectic map ¢; supported in U will be in
U x U. We denote by é(a,U) = éa,U x U;A). By the previous

remark, this is a symplectic invariant.

Theorem 0.2. Let S; be a G.F.Q.1I. for L;, R be the G.F.Q.I. of V in T*N
such that V Nsupp(L;) = 0. Then c(a, S1) < ¢(a, R) — ¢(1, R).

Proof. We look as usual at ¢(a, R — S¢). This is independent of ¢, since
critical points of R — S; correspond to points in V' N L;. Thus the number
c(a, R — S;) must be independent of ¢, and we have:

c(a, R) = ¢(a, R — Sp) = ¢(a, R—51) > ¢(1, R) 4 ¢(ar, —51)

Thus
C(Oz, Sl) < c(oz, R) - C(l, R)

We may now state

Proposition 0.3. Let R be the G.F.Q.I. of N with NNW = (). Then
&, W;0n) < 7(R).



In particular since for N, graph of ¢ with o (U)NU = 0, and L, supported
in U x U, we have L; N N = (), we get:

Proposition 0.4. If (U)NU =0 then

&, U) <y(¥)

Now we consider the following situation. Let U be a domain in R*" x R?™.
The coordinates are denoted by z,q,p, with = € R* g € R™ p € (R™)*. Let
r € R™ and set

Uy = (UN (R x {z} x R™)/({0} x {z} x R™)

We now make the following compactifications: R?* x R?™ x R2» x R2m
can be identified to T*Apgzn X T*Apg2m, where A denotes the diagonal. The
identification on the factor R?™ x R?™ being given through (¢,p,Q, P) =
(¢+ Q, #, %, @ — q) and we compactify Agzs to S*" and Agzm to T2,

We may then define ¢(p @ o,U) for p € H*(S**) and o € H*(T*™).
Theorem 0.5.

c(p @ 1L U) <infy(Us)

Proof. Let S : (5?" x T*™) x R* be a G.F.Q.I. for L € T*S* x T*T*"
with L = Og2nyr2m outside U x U. More precisely we assume there is a gf-
homotopy connecting I with the zero section, having this property. Let us
consider S, the restriction of S to S?* x ({22} x T™ x R¥). Note that the
"base” was S*" x T*™ and is now S?". Thus the factor ({z} x T™) that we
expect to be in the base, is now in the fibre.

The submanifold Ly, is the reduction of L by T*5%" x v*({2z} x T™) =
T*S%" x ({22} x T™) x (R™x {0}). This is the set {(z, Z,q,p,Q, P) | ¢+Q =
2¢,q—Q =0} orelse {(2,7,¢,p,Q,P) | ¢ = Q = x}. Now we claim that if
L coincides with the zero section outside U x U, then Ls, coincides with the
zero section outside U, x U,, and there is a gf-homotopy connecting Lo, with
the zero section. Indeed we have that (z,7) € Lq, — (U, x Uy), if and only if
there exist qo, po, Qo, Po such that (z, Z, qo, po, Qo, Fo) € L with go = Qo = «
and for all p, P we have that (z, Z, x,p,x, P) ¢ U x U}. This last assumption
implies that z = Z, hence (z,7) € 0g2n. We just proved that Lg, coincides
with the zero section away from U, x U,. Thus ¢(a, S;) < &(a, U,), hence

cla®1,9) <infé(a,U,) <infry(a,Uy,)
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As a result

c(p @ 1,U) <infA(U,).
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