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AND DIRICHLET PROBLEM AT INFINITY.

ERWANN AUBRY AND COLIN GUILLARMOU

ABSTRACT. For odd dimensional Poincaré-Einstein manifolds (X", g), we study the
set of harmonic k-forms (for k¥ < T) which are C™ (with m € N) on the conformal
compactification X of X. This is infinite dimensional for small m but it becomes
finite dimensional if m is large enough, and in one-to-one correspondence with the
direct sum of the relative cohomology H*(X,0X) and the kernel of the Branson-
Gover [3] differential operators (Ly,G}) on the conformal infinity (80X, [ho]). In a
second time we relate the set of C?~2F+1(A*(X)) forms in the kernel of d + §,4 to
the conformal harmonics on the boundary in the sense of [3], providing some sort
of long exact sequence adapted to this setting. This study also provides another
construction of Branson-Gover differential operators, including a parallel construction
of the generalization of ) curvature for forms.

1. INTRODUCTION

Let (M, [ho]) be an n-dimensional compact manifold equipped with a conformal class
[ho]. The k-th cohomology group H*(M) can be identified with ker(d+6y,) for any h € [hg]
by usual Hodge-De Rham Theory. However, the choice of harmonic representatives in
H*(M) is not conformally invariant with respect to [ho], except when n is even and k = 2.
Recently, Branson and Gover [3] defined new complexes, new conformally invariant spaces

of forms and new operators to somehow generalize this k = 7 case. More precisely, they

introduce conformally covariant differential operators LEG’Z of order 2¢ on the bundle
A*(M) of k-forms, for £ € N (resp. ¢ € {1,...,%}) if n is odd (resp. n is even). A
particularly interesting case is the critical one in even dimension, this is

(1.1) LBC =% ",

The main features of this operator are that it factorizes under the form LJ = GPF d for
some operator

(1.2) Gty : O (M, AP (M) — O (M, A" (M)
and that GEG factorizes under the form GEG = Op, QEG for some differential operator
(1.3) BG . oo (M, AF(M)) Nkerd — C>=(M,A*(M))

where &y, is the adjoint of d with respect to hg. This gives rise to an elliptic complex

ho

BG K K

L ARLr) ARy B AR () 2 AR-L(ar) 2o,
named the detour complex, whose cohomology is conformally invariant. Moreover, the
pairs (LB GBY) and (d, GBY) on A*(M) & A¥(M) are graded injectively elliptic in the
sense that d5,d + dGBS and LP¢ + dGEC are elliptic. Their finite dimensional kernel
(1.4) HE (M) :=ker(LBC, GBY),  H*(M) := ker(d, GE®)
are conformally invariant, the elements of 3* (M) are named conformal harmonics, provid-
ing a type of Hodge theory for conformal structure. The operator QEG above generalizes
Branson @Q-curvature in the sense that it satisfies, as operators on closed k-forms,

QEG — eﬂ(Zk—ﬂ)(Q]kBG + LIkSGN)
1
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if hg = e2#hy is another conformal representative.

The general approach of Fefferman-Graham [4] for dealing with conformal invariants is
related to Poincaré-Einstein manifolds, roughly speaking it provides a correspondence be-
tween Riemannian invariants in the bulk (X, g) and conformal invariants on the conformal
infinity (90X, [ho]) of (X, g), inspired by the identification of the conformal group of the
sphere S™ with the isometry group of the hyperbolic space H"t!. A smooth Riemann-
ian manifold (X, g) is said to be a Poincaré-Einstein manifold with conformal infinity
(M, [ho]) if the space X compactifies smoothly to X with boundary X = M, and if there
is a boundary defining function of X and some collar neighbourhood (0, €), x X of the
boundary such that

(15) g= e
(1.6) Ric(g) = —ng + O(z™)

where h; is a one-parameter family of smooth metrics on 0X such that there exist some
family of smooth tensors hZ (j € Ng) on 90X, depending smoothly on z € [0, €) with

(17) hy ~ 3202 W (™ log )’ as x — 0 if n 41 is odd
' hy is smooth in z € [0,€) if n+ 1 is even

(18) hw|z:0 € [hO}

The tensor h} is called obstruction tensor of hg, it is defined in [4] and studied further
in [9]. We shall say that (X,g) is a smooth Poincaré-Einstein manifold if z2g extends
smoothly on X, i.e. either if n + 1 is even or n + 1 is odd and hJ = 0 for all j > 0. It is
proved in [6] that h} = 0 implies that (X, g) is a smooth Poincaré-Einstein manifold.

The boundary X = {z = 0} inherits naturally from g the conformal class [ho] of
hz|z=0 since the boundary defining function x satisfying such conditions are not unique.
A fundamental result of Fefferman-Graham [4], which we do not state in full generality, is
that for any (M, [ho]) compact that can be realized as the boundary of smooth compact
manifold with boundary X, there is a Poincaré-Einstein manifold (X, g) for (M, [ho]), and
hg in (1.7) is uniquely determined by hg up to order O(z™) and up to diffeomorphism
which restricts to the Identity on M. The most basic example is the hyperbolic space
H"*+! which is a smooth Poincaré-Einstein manifold for the canonical conformal structure
of the sphere S™, as well as quotients of H"*! by convex co-compact groups of isometries.

It has been proved by Mazzeo [16] that! for a Poincaré-Einstein manifold (X, g), the
relative cohomology H*(X,0X) is canonically isomorphic to the L? kernel kery2(Ag) of
the Laplacian A, = (d + d,4)? with respect to the metric g, acting on the bundle A*(X)
of k-forms if £ < 5. In other terms the relative cohomology has a basis of L? harmonic
representatives. In this work, we give an interpretation of the spaces H*, H% in terms of
harmonic forms on the bulk X with a certain regularity on the compactification X.

Theorem 1.1. Let (X"t g) be an odd dimensional Poincaré-Einstein manifold with
conformal infinity (M, [ho]) and let Ay = (d + §4)* be the induced Laplacian on k-forms
on X wher60§k<%—1. FormeNand0<k<%—1, define

K*(X) = {w e C™(X; AF(X)); Agw = 0},

LThe class of manifold considered by Mazzeo is actually larger and does not require the asymptotic
Einstein condition (1.6)
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then KF (X) is infinite dimensional for m < n — 2k + 1 while it is finite dimensional for
m € [n— 2k + 1,n — 1] and there is a canonical short exact sequence

(1.9) 0— H¥X,0X) 5 KF(X) 5 Hh (M) — 0

where H% is defined in (1.4) and H*(X,0X) is the relative cohomology space of degree k
of X, i denotes inclusion and r denotes pull back by the natural inclusion 0X — X. If in
addition the Fefferman-Graham obstruction tensor of (M, [ho]) vanishes, i.e. if (X,g) is
a smooth Pomcare Einstein manifold, then K* 2k+1(X) Kk (X).

When k = 2 — 1, the same results hold by replacing K 2k+1(X) by the set of harmonic
forms in C" 21, (X, A*(X)) for some a € (0,1).

When k =0, KO (X) is infinite dimensional for m < n while K°(X) is finite dimensional
and the exact sequence (1.9) holds.

In establishing this Theorem, we show that we can recover the Branson-Gover operators
LEG,GEG,QEG from harmonic forms on a Poincaré-Einstein manifold with conformal
infinity (M, [ho]). Let us recall quickly and informally how the GJMS and Branson-
Gover operators are defined in [11, 3]. The ambient metric is a Lorentzian metric on
Q:= M x (0,00)¢ x (—1,1),, homogeneous of degree 2 in the ¢ variable, which extends the
tautological tensor t2hg at the cone Q = {p = 0} and with Ricci curvature vanishing to
n/2—1 order (resp. infinite order) at Q when n is even (resp. n odd). The GJMS operators
P are defined in two ways in [11]: for f a (k —n/2)-homogeneous function on Q, take a
homogeneous extension fon Q and define P.f = [Ak f] |o where A is the Lapla(:lan for the
ambient metric; the second equivalent way is to consider an extension f of f to Q which
satisfies Af = O(pF~1) and, up to mutliplicative constant, Pf = [(pt2)'"*Af]o. The
second definition gives P}, as an obstruction to extend smoothly from the cone a harmonic
homogeneous function f. The Branson-Gover operators defined in [3] are constructed
following the first method in [11] but with many complications due to the fact that one
works with bundle valued objects. Our approach is more closely related to the harmonic
extension approach of GJMS [11]. We say that a k-form w is polyhomogeneous on X if it
is smooth on X and with an expansion at the boundary M = {z = 0}

oo £(j5)

waijlog ()—&—w](é)/\dx)

7j=0¢=0

for some forms w 6 C>(M,A¥(M)) and wﬁ) € C>°(M,A*=1(M)) and some sequence
jEeNg—L(j) € NO. We show that the Branson-Gover operators appear naturally in the

resolution of the absolute or relative Dirichlet type problems for the Laplacian on forms
on X.

Theorem 1.2. Let (X"*! g) be an odd-dimensional Poincaré-Einstein manifold with
conformal infinity (M, [ho)), let k < & and o € (0, 1).

(i) For any wy € C® (M, A*(M)), harmonic forms w € C= =% (X A*(X)) with boundary
value w|y = wy exist, are unique modulo kerpz(Ay) and are actually polyhomogeneous with

an expansion at M at order O(z" 21 given by
i dz
w=wy+ Z 22 (w4 W™ A —) + 2" % log(z) Lywo
x
j=1

42" 2k og (1) (Grwo) A da + O(x™ 2k +)

where Ly, Gy, are, up to a normalization constant, the Branson-Gover operators in (1.1),
(1.2) and w§') are forms on M.
(i3) For any closed form wy € C*(M,A*~Y(M)), harmonic forms w such that zw €
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Cs—ktha(X AF(X)) and w = 27 (wo A dx) + O(x) emist, are unique modulo kerz2(Ay)
and xw is polyhomogeneous with expansion at M given by

n d — —
w=uwy A 7_1_ Z /(t) ( )/\ %)—Fl‘n 2k+1 log(x)(Qk_lwo)/\dm—i—O(x” 2k+1)

where Qr—1 18, up to a normalization constant, the operator (1.3) of Branson-Gover and

WAS,

" are smooth forms on M.

The Dirichlet problem for functions in this geometric setting is studied by Graham-
Zworski [12] and Joshi-Sa Barreto [15]. In a more general setting (but again for functions),
it was analyzed by Anderson [1] and Sullivan [20].

We also prove in Subsection 4.6 that, with Q)¢ defined by the Theorem above,

n(—1)3+!

Qol = on_ini/n 1\l
n—1nI(Z 1)l

Q
where () is Branson @Q-curvature. So () can be seen as an obstruction to find a harmonic
1-form w with zw having a high regularity at the boundary and value dz at the boundary.

In addition, this method allows to obtain the conformal change law of Ly, Gk, Qk, the
relations between these operators, and some of their analytic properties (e.g. symmetry
of L and Q) see Subsection 4.4 and Section 4.6.

Next, we analyze the set of regular closed and coclosed forms on X. Recall that on
a compact manifold X with boundary, equipped with a smooth metric g, there is an
isomorphism

H*(X) ~{w e C®(X,A*(X));dw = dqw = 0,ip,w|yg = 0}

where 9, is a unit normal vector field to the boundary, and the absolute cohomology
HF(X) is kerd/Imd where d acts on smooth forms. Moreover, one has the long exact
sequence in cohomology

(1.10) ...— H*Y(0X) — H*(X,0X) — H*(X) — H*(0X) — H*'(X,0X) —

and all these spaces are represented by forms which are closed and coclosed, the maps
in the sequence are canonical with respect to g. In our Poincaré-Einstein case (X, g),
say when k < 7, only the space H ¥(X,0X) in the long exact sequence has a canonical
basis of closed and coclosed representatives with respect to g (the L? harmonic forms), in
particular there is no canonical metric on the boundary induced by g but only a canonical
conformal class. We prove

Theorem 1.3. Let (X"t g) be an odd dimensional Poincaré-Einstein manifold with
conformal infinity (M, [ho]) and let k < 5. Then the spaces

ZM(X) = {w € "X, AY(X)); dw = 60 = 0}

are finite dimensional and, if the obstruction tensor of [ho] vanishes, they are equal to
{we C=(X,A*(X));dw = d,w = 0}. Then, we have
(i) For k < % there is a canonical exact sequence

0— H*¥X, M) — Z¥(X) - H*(M) — H*(X, M)

where H*(M) is the set of conformal harmonics defined in (1.4). B
(ii) Let [Z*(X)] and [H*(M)] be respectively the image of Z*(X) and H*(M) by the
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natural cohomology maps Z*(X) — H*(X) and H*(M) — H*(M). Then there exists a
canonical complex with respect to g
(1.11)

0= . 2R (X)) 25 [k ()] 2 R, M) L (25 (R)] = . HE (X, M)

whose cohomology vanishes except possibly the spaces ker* /Imds=1. Here (*,r* and

d¥ denote respectively inclusion, restriction to the boundary and composition of d with
harmonic extension (see Section 7).

(iii) [H*(M)] = H*(M) if and only if [Z*(X)] = H*(X) and ker **! = Imd¥. If this
holds for all k < 2 this is a canonical realization of (half of) the long exact sequence

2
(1.10) with respect to g.

The surjectivity of the natural map H*(M) — HF¥(M) is named (k — 1)-regularity by
Branson and Gover, while (k—1)-strong regularity means that the map is an isomorphism,
or equivalently ker Ly_; = kerd (see [3, Th.2.6]). Thus, (k — 1) regularity means that
the cohomology group can be represented by conformally invariant representatives. If
H¥Y(X,M) = 0, our result implies that (k — 1)-regularity means that the absolute
cohomology group H*(X) can be represented by C"~2*+1(X, A*¥(X)) forms in ker d + §,,.
We give a criteria for (k — 1)-regularity:

Proposition 1.4. Let (M, [ho]) be a compact conformal manifold. If Qy is a positive
operator on closed forms in the sense that (Quw,w)r> > 0 for all w € C=(M,A¥(M)) N
kerd, then H*(M) — H¥(M) is surjective.

We should also remark that (k — 1)-regularity holds for all £ = 1,..., % if for instance
(M, [ho]) contains an Einstein metric in [ho], this is a result of Gover and Silhan [7]. If
n =4, Ln_o = Lo is the Paneitz operator (up to a constant factor) and using a result of
Gursky [14], we deduce that if the Yamabe invariant Y (M, [hg]) is positive and

1
/ Qdvoln, + ~Y (M, [ho])® > 0
M 6

then H*(M) ~ H'(M) and there is a basis of conformal harmonics of H!(M).
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are really grateful to the anonymous referee for his very careful reading and his sug-
gestions. C.G. was supported partially by NSF grant DMS0500788, and ANR grants
ANR-05-JCJC-0107091 and 05-JCJCJ-0087-01.

2. POINCARE-EINSTEIN MANIFOLDS AND LAPLACIAN ON FORMS

2.1. Poincaré-Einstein manifolds. Let (X,g) be a Poincaré-Einstein manifold with
conformal infinity (M, [h]). Graham-Lee and Graham [10, 8] proved that for any conformal
representative hg € [h], there exists a boundary defining function z of M = X in X such
that

|dx\§2g = 1 near 90X, x%g|lram = ho,
moreover z is the unique defining function near M satisfying these conditions. Such a
function is called a geodesic boundary defining function and if ¢ is the map ¢ : [0, €] x M —
X defined by 1(t,y) := 1:(y) where v, is the flow of the gradient Vx291:, then 4 pulls the
metric g back to
At + Ry

Y*g 2
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for some one-parameter family of metrics on M with hy = x2g|TM. In other words the
special form (1.5) of the metric near infinity is not unique and corresponds canonically
to a geodesic boundary defining function, or equivalently to a conformal representative of

[ho]-

We now discuss the structure of the metric near the boundary, the reader can refer to
Fefferman-Graham [6, Th 4.8] for proofs and details. Let us define the endomorphism A,
on T'M corresponding to d,h, with respect to h,, i.e. as matrices

Ay = h; 0,h,.

Then the Einstein condition Ric(g) = —ng is equivalent to the following differential equa-
tions on A,

20p Ay + (1 —n+ gTr(Ax))Ax = 22h; 'Ric(hy) + Tr(A,)Id
Sn, (shy) = dTr(A,)
8, Tr(A,) + %|Am|2 ~Lray
X

A consequence of these equations and (1.7) is that if Ric(g) = —ng + O(x"2), then h,
has an expansion at x = 0 of the form

_ ) ho+ E?:}l 2% haj + hyp12™logz + O(x™) if n is even
O ho+ XY 2% gy + O(a) if o is odd

for some tensors hp; and h, 1 on M, depending in a natural way on ho and covariant
derivatives of its Ricci tensor. When n is even, the tensor h, i is the obstruction tensor
of hg in the terminology of Fefferman-Graham [6], it is trace free (with respect to hg) and
so the first log term in A, is nhy 'h, 12" log(x). A smooth Poincaré-Einstein manifold
such that h, has only even powers of = in the Taylor expansion at x = 0 is called an
smooth even Poincaré-Einstein manifold. If n is even and h,; = 0, the metric h, is a
smooth even Poincaré-Einstein manifold. When n is odd, the term 07 h,|,—¢ is trace free
with respect to hg, which implies that A, has an even Taylor expansion at x = 0 to order
O(z™1). If O%hy|y—0 = 0, then h, has an even Taylor expansion in powers of z at x = 0
with all coefficients formally determined by hy. The equations satisfied by A, easily give
(see [4]) the first terms in the expansion

P, 1
= — 270 4 =
(2.1) hy =ho—x 5 + O(z*), where P —

(2 Rico — 220 h0)7

n—1

Py is the Schouten tensor of hg, Ricg and Scaly are the Ricci and scalar curvature of hyg.

2.2. The Laplacian, d and §. Let A¥(X) be the bundle of k-forms on X. Since for
the problem we consider it is somehow quite natural, we will also use along the paper
the b-bundle of k-forms on X in the sense of [19], it will be denoted A¥(X). This is
the exterior product of the b cotangent bundle Tb*X , which is canonically isomorphic
to T*X over the interior X and whose local basis near a point of the boundary X is
given by dyi, ..., dy,,dr/x where y1,...,y, are local coordinates on X near this point.
We refer the reader to Chapter 2 of [19] for a complete analysis about b-structures. Of
course one can pass from A¥(X) to A¥(X) obviously when considering forms on X. The
restriction AF(U.) of A*(X) to the collar neighbourhood U, := [0,¢] x M of M in X can
be decomposed as the direct sum

ARUL) = AF(M) @ (AR (M) A iﬁ) _ AP e AR,
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In this splitting, the exterior derivative d and its adjoint J, with respect to g have the
form

2 _1\k o—1 . —2k+n+39 .2k—n—2
(2.2) d— ((_1d o)’ 5 (x 5 (“1)F sl 9,1 *x)

)kxaw d 0 1‘261:
and the Hodge Laplace operator is given by
A, — —(20)* + (n — 2k)z0, 2(—1)k+1d
k= 0 —(202)* + (n — 2k + 2)20,
(2.3) N 20y — xxg [0p, k|20 (—1)Fa[d, x5 0h, %4
(=120, 26,] 22 Ay — 10,1 %1 [0, %2)
=P+ P.

where here, the subscript -, means “with respect to the metric h, on M” and d in the
matrices is the exterior derivative on M. Note that P is the indicial operator of Ay in
the terminology of [19].

If H is an endomorphism of TM, we denote J(H) the operator on A¥(M)

k
(2.4) J(H)(on A Aag) =D ar A= Aa(H) A=+ Aoy,
=1

When H is symmetric, a straightforward computation gives xoJ(H) + J(H )xo = Tr(H )*o
and so

(2.5) [x0, J(H)] = 2 %o J(H) — Tr(H)*o
Let us define the following operators on k-forms on M
N Tr(hg ' Pp) 2.J (hg 'Ricg) n+ 2k —2
2. E, = 'Ry — 0 —2°1d = 0 — lpId.
( 6) 1 J(ho 0) 9 d n—9 Q(nil)(n72)sca0d

Using the approximate Einstein equation for g, we obtain

Lemma 2.1. The operator Ay has a polyhomogeneous expansion at x = 0 and the first
terms in the expansion are given by

(5]
_ 2 (Ri + Px0, S;

Me=P+d o ( s R;+P;x6x)

(2.7) i=1

n J(halhn,l)xar (_1)k+1[da J(halhn,l)] n

+nx log(x)< 0 T(hs ) (n + 20 +O0(z")

where the operators P;, P!, S;, S, R; and R} are universal differential operators on A(M)
that can be expressed in terms of covariant derivatives of the Ricci tensor of hg. Moreover
the operators R; and R} are of order at most 2, the S;, S} are of order at most 1 and the
P;, P! are of order 0. For instance, we have

Rl + Pla:@w Sl o AO — Elxax (—1)k[d, El}
Si Rll + P{x@r - 2(—1)k+1(50 AO — E1 (2 + x@w)
where A is defined in (2.6). If k =0, the 2™ log(z) coefficient vanishes. Finally, if (X, g)

is smooth Poincaré-Einstein, then Ay is a smooth differential operator on X, and if (X, g)
18 smooth even Poincaré-Einstein, then Ay has an even expansion.

(2.8)

Proof: The polyhomogeneity comes from that of the metric g. It is moreover a smooth
expansion if 22¢g is smooth on X. A priori, by (2.3) the first log x term in the expansion

of A at x = 0 appear at order (at least) z™logx and it comes from the diagonal terms

in P’ in (2.3). Let us define p = [§] so that the metric h, has even powers in its

expansion at 2 = 0 up to order 2??*1. We set D the Levi-Civita connection of the metric
229 = dx? + h,. Since Dy, 0, = 0 and Dor0y, = % ij azhijhkﬂ Oy, » the matrix O, of the
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parallel transport along the geodesic z — (z,y) (with respect to the basis (9,,)) satisfies
Dy, 0,(9y,) = 0, hence 0,0, = —%AI x O, where A, is the endomorphism h;10,h,.
Note that A, has a Taylor expansion with only odd powers of = up to 22 and the first
log term is nhy lhn’lm"_l log(x). We infer that O, is polyhomogeneous in the x variable

and has only even powers of x in its Taylor expansion up to z??, the first log term is

—%x” log(z). By (2.1), we have §2h|,—o = — Py, hence

1
Ay = —xhg Py +O(2?), O, =1d+ szhalPo +O(?).

We note also O, the parallel transport map. Now the operator I, (a1 A+ -Aag) = a1(Og)A
-+ A ag(0,) is an isometry from A*(M, h,) to A¥(M, hg). So we have %, = I % I,
and we infer that %, itself is an operator with a polyhomogeneous expansion in = and
with only even powers of z in its taylor expansion up to 2%, the first log term being
12 log(2)[J (hg "hn,1), %0 = —z™ log(z) *o J(hg 'hn,1) by (2.5). Since we have

[6.'1)7*.'12] = aL(*L)) 8.L(*L)|l:0 = [*078w1w|1‘:0] =0 and 65(*‘L)|1,:0 = [*0;8§Iw|x20]

we get that [0, *,] is polyhomogeneous with only odd powers of z up to order z?P, with
first log term —naz" "' log(z) xo J(hg "hn1), and that

Scalg

92 %2) = Ba0) = 7 x0 (T (o Po) — 5=y

Id) + O(2?).

Since d, = (—1)F %, dx,, the operators 26, and 2%[x~1[0,,%.],d,] are odd in = up to
O(x?P*2). By the same way, 22[d, x [0y, *,]] is odd up to order x?P*2 and the operators
x5 0w, xp]x(k—20,), 22 A, and (k—Op2)x %~ [*4, 0,] are even in z up to O(z?*+1). This
achieves the proof by gathering all these facts. O

2.3. Indicial equations. We give the indicial equations satisfied by Ay, which are es-
sential to the construction of formal power series solutions of Ayw = 0.

Notation: If f is a function on X and w a k-form defined near the boundary, we will
say that w is a O, (f) (resp. Oy(f)) if its AX (resp. A¥) components are O(f).

For A € C, the operator z~*A2* can be considered near the boundary as a family of
operators on A¥ @ A¥ depending on (x,\), and for any w € C*°(U,, A¥ @ A%) one has

o d
(2.9) T Ag(2 w) = Py (w(()t) + w(() A f) +O(x)

where Py := 2~ *Pz?, w(()t) = (izo, (W A L))|;—0 and w((]n) := (izo,w)|z=0. The operator
Py, is named indicial family and is a one-parameter family of operators on A¥ @ AF viewed
as a bundle over M, its expression is

(=22 + (n—2k)A 2(—1)k*+1q
(2.10) P= ( 0 ~A2 4 (n—2k+ 2)/\>
The indicial roots of Ay, are the A € C such that P, is not invertible on the set of smooth
sections of AF @ AF over M, i.e. on C°°(M,A*(M) @ A*=1(M)). In our case, a simple
computation shows that these are given by 0,n — 2k, 0,n — 2k + 2. The first two roots are
roots in the A¥ component and the last two are roots in the A¥ component. In particular,
this proves that for j not a root, and (wét),wén)) € A*(M) @ A*~1(M), there exists a
unique pair (o, o) € A*(M) ® A*=1(M) such that near M

— C(n dx . ¢ n dx ;
Ak<x3aé) —i—x]aé A ?) :x](wé) —|—w(() )A ?) +O0(27 )
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More precisely, and including coefficients with log terms, we have for [ € N* (resp. [ = 0)
_ (t) _ o1 () k+1 g, (1)
Ay log!(z) w(()n) = 27 log! (x) 3(n =2k = j)w (n)( ) dwg
wy jn—2k+2— jluwg
+0(27 log' () (resp. 4+ O(z'™))

if w(()t),wo € C°(M, A*(M)®A*=1(M)), and in the critical cases, for any I € Ny = {0}UN
(2.12)

Ag(log! (@)w?) = 1(n — 2k) log"  (@)wl? — 1(1 — 1) log' 2 (2)w” + O(2? log z)
Ap(" P logh (2)w) = 1(2k — n)2" * log' (@)wl? — 1(1 — 1)a™ 2 log! 2 (2)w
+0(z" 2 log' (x))

(2.11)

dx

d
Ay (zn 22 log! (z)w™ A —x) = 1(2k — 2 — n)z" " #* 2 og! T (2)w™ A
x x

d
1 — 1)a" 22 1og! 2 (2)w™ A ZE 4+ 0@ +3 10g! (2)).
X

3. ABSOLUTE AND RELATIVE DIRICHLET PROBLEMS

The goal of this section is to solve the Dirichlet type problems for Ay when k < 7 for
the two natural boundary conditions. Note that the vector field 0, can be seen as the
unit, normal, inward vector field to M in X. A k-form w € A’g()_( ) is said to satisfy the
absolute (resp. the relative) boundary condition if

d
lim 7,9, w = 0 (resp. lim iz9, (—x Aw) = 0).
z—0 z—0 x

We denote CP*(X, AF(X)) the sections of AF(X) which are CP*, equivalently i,o,w
and iz, (42 Aw) are CP* on X.

3.1. Absolute boundary condition.

Proposition 3.1. Let k <n/2, a € (0,1) and wy € C(M, A*(M)).
(i) There ezists a solution w to the following absolute Dirichlet problem:
w e Cnh-ba( X AR (X)),
(3.1) Apw =0 on X,
Wl = wo, lirr%)imgzw =0.
Tr—

Moreover, this solution is unique modulo the L? kernel of Ay.
(ii) The solution w is smooth in X when n is odd, while it is polyhomogeneous when n is
even with an ewpansion at order x™ of the form

n

n—1
w*Z:EJ (t)JrZ:EJ (n)/\ +logx( Z xjwj(fiJr Z ()/\d—x)

(3.2) j=0 j=n—2k j=n—2k+2
n Oy (a™ 1og x) 4+ Op(x"logx) if k>0
O™ ifk=0

as x — 0, where w;

() )
J

;.1 are smooth forms on M. Moreover, we have

wj(-t) = Pj wo for j <n — 2k, w§n) = Pj(n)wo forj<n—2k+2

w® (t)

Wpok1 = 4ok, 190
where Pj(t), Pj(n), Pr(lt_)%’1 are universal smooth differential operators on A(M) depending
naturally on covariant derivatives of the curvature tensor of hg.
(i) If n is even and (X, g) is a smooth Poincaré-Einstein manifold, then we have w =
w1 +3" 2k log(x)wy for some forms wi,wy € C(X, AF(X)) with wy = O(x™) if and only
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() — ., —

if Wy, lop1 = Wy ogyoq = 0-

(iv) w satisfies dqw = 0. If in addition wy is closed, then dw € kerp2(Ag41) (and dw =10
when k = 251).

3.1.1. Proof of Proposition 3.1. To prove this Proposition, we first need a result of Mazzeo
[16] (note that the ambiant manifold has dimension n in [16] and n + 1 in this paper):

Theorem 3.2 (Mazzeo). For k < n/2, the operator Ay is Fredholm and there exists a
pseudodifferential inverse E, bounded on L*(X), such that ALE = I — Iy where g is
the projection on the finite dimensional space kerp2(Ay). This implies an isomorphism
between kery2(Ay) and the relative cohomology H*(X,0X) of X. Moreover any L* har-
monic form o is polyhomogeneous with an expansion near OX of the form

00 l(])

—2k j 1 (), da

(3.3) an~ g2 Z; 2 x] log(x) + 2712 log () ;A ;)
J=0 1=

for some agfl) € C=(M,A*(M)), al l € C®(M,A*=1(M)) and some sequence | : Ny —
No. In addition E maps the space {w € C=®(X,N*(X));w = O(z>)} into polyhomoge-
neous forms on X with a behaviour like (3.3) near M.

Remark: By using duality through the Hodge star operator x4, one obtains trivially a
corresponding result for the case k > § + 1. In particular, this gives kerz2(Ay) ~ HF(X)
for k > & 41. It sould be noticed that in the case k = n/2, (n+1)/2 and n/2+1, [16] does
not give a bounded pseudodifferential inverse and actually the Laplacian is not Fredholm
in these cases: for k =n/2 or k =n/2 + 1 the range is not closed while for k = (n+1)/2
it has infinite dimensional kernel.

We can make the second part of this theorem more precise thanks to the indicial
identities obtained by (2.3).

Corollary 3.3. For k < n/2, any L? harmonic k-form a on (X,g) is polyhomogeneous
and has an expansion at order x™logx of the form

n—1 n—1
, o d
a= x”_%”( E x]a;t) + E x]aé A % +O(z" logx))
Jj=0 Jj=0

where ozgf) are smooth forms on M. If in addition the metric (X, g) is a smooth Poincaré-

Einstein manifold, then o € 2"~ 2¥+20°°(X, A¥(X)) and E maps
E:{we C®(X,A*X));w=0(x>),Iw =0} — 2" 2*C>(X, A*(X)).

Proof: Note that if

oo 1(4)
, ny d
~ g2k Z Z a] le log(z Ly gi+2 10g($)la§-,l) A ?x) and Aga = O(x™),
7=01=0

then the indicial equations in Subsection 2.3 and Lemma 2.1 imply that {(0) = 0 and
I(j) < 1lforall j =1,...,n—1 (and for all j > 0 if h, is smooth in z). Moreover
since da = 0 for any « € kerp2(Ayg), we first obtain from (2.2) that ozé% = 0 and so,
by (2.12) that I(j) = 0 for all j = 0,...,n — 1 (and for all j > 0 if h, is smooth). The
mapping property of E is straightforward by the same type of arguments and the fact
that ApEw = O(2*) for w = O(z*) such that IIow = 0.

We will now use the relations (2.9), (2.11) and (2.12) to show that the jet of a so-
lution w to the Dirichlet problem in Proposition 3.1 is partly determined. Let wy €
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C>(M, j_Xk(M)) Using (2.9) and the form (2.7) of A, we can construct a smooth form
wp, on X, solution to the problem
Akal — Ot(l‘n_Qk) 4 On(l‘n_2k+2)
(3.4)
wr M = wo

it can be taken as a polynomial in x

n—2k—1 n—2k+1
(3.5) Z x2]w2 + Z x? wzl /\—
2j=0 21=2

and it is the unique solution of (3.4) modulo O;(z"~2%) 4+ O,,(z"~2¥*+2). Moreover, by
(2.7) and parity arguments, we see that when n is odd, the remaining term in (3.4) can
be repaced by O;(z"~2**1) + O,, (2" 2k+3) (recall also that h, is smooth in that case).
By construction, the w](-t),w,(f ) are forms on M which can be expressed as a differential

operators Pj(t), Pj(”) on M acting on wq, determined by the expansion of P given in (2.7),

i.e. by hg and the covariant derivatives of its curvature tensor.
The indicial factor in (2.9) vanishes if and only if j =n — 2k,l =n — 2k + 2 and n is
even. Therefore, if n is odd, we can continue the construction and there is a formal series

Woo = Z:cj (wét) + wﬁyl) A dz)
j=0

such that Agweo = O(z*). The formal form ws can be realized by Borel’s Lemma?,

in the sense that there exists a form w/, € C*(X,A*(X)) with the same asymptotic
expansion than we at all order and then Agwl, = O(z*).

Now for n even, we need to add log terms to continue the parametrix: by (2.12) one
can modify wg, to

_ 1 n
(3.6) wr, = wp, + 2" log(:c)w,(fl%’l, wr(fl%,l le— [x +2kAka1]

z=0

such that Aywr, = O(z" ?**2logz). Actually, using (2.7) and parity arguments once
more, we see that

(3.7)
, d .
Apwp, = 2(—1)kFlgn=2k+2 109 x(éown ok1) A\ —x + Oy (2" 2 2 log x) + O, ("2 F2).

Now we want to show
Lemma 3.4. The k-form w!* )Qk 1 on M satisfies (50w ok = 0

Proof: From (3.7), and the expression of J, we obtain

Sy Apwp, = —22" k2 50,1 okt + 0" log ).
But 59Aka2 = Ak_1§ WE, and
n—2k+2 n—2k+3

Sqwp, = Z I w t)—l— Z zlw; n)/\ —l—x” k2 Jog (x )5Ow7(32k$1—|—0(x"_2k+310gm)

/(.
for some forms wj( )

deduce that

Sqwr, = x”’zk”w:ft_)%w + 2" 22 og(x) 500-’7(2%71 + O(z" 3 log x).

on M, so by uniqueness of (3.4) and the fact that S,wp, = O(x?) we

2Borel’s Lemma states that if (fr,0)1,ken, is a given sequence of smooth functions on 08X such that,
for each k, fi ;(y) = 0 for all but finitely many I, then there exists a smooth function f in X with an
asymptotic expansion at 0X = {x = 0} of the form f(z,y) ~ 352 302 fr,1(y)zF (log z)!.
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Using now (2.9) and (2.12), we obtain Ag_1d,wp, = 2k —n — 2)z"~ 2h+2 60! 12,6 1+
O(z" =23 ]ogx), and since k < % this implies 50‘”7(3% . =0. O

We infer that there is no term of order 2"~ 2**2logz in the A part of Apwr, and we
can continue to solve the problem modulo O(z*°) using formal power series with log terms
using the indicial equations. The formal solution when n is even will be given by

21
= Z :czjw(t) + szjw(n) A — + Z e log(x wg?l
j=nk

7=0 7j=1
(3.8) " o i .
n t j
+ Z 2% log(x wéj)l/\——k ZZ flj_]l—kan_g”/\?):rj(logz)l
=2 k1 §=0 1=0

which again is realized through Borel’s Lemma to have Ajws = O(xz*). Notice that

when the metric h, is smooth, the second line in (3.8) has wj( l) = wj(.z) =0 for [ > 1 since

these terms come from the log terms of the expansion of h, in (1.7) (and thus of Ag).

The terms (w§t))j<n 2%k, (w§n))j<n ok12 and ws) oK1 are formally determined by wy and

(t

are expressed as a differential operator on M acting on wq, the terms w )Qk, 5 are

(n)
n 2k+
formally undetermined, the remaining terms are formally determined by wq,w 7(2% and
(n)
n—2k+2"

So we have proved

w

Proposition 3.5 (Formal solution). Let wy,v®, v € C(M,A(M)), then there
exists a form we, € CM~2k=Le(X AK(X)) with a € [0,1), unique modulo O(z>°), which
is smooth on X when n is odd and with a polyhomogeneous expansion at OX of the
form (3.8) when n is even, such that Agweo = O(2™), weolgx = wo, wﬁl% = v® and

w(n_)gk_m = v in the expansion (3.8).

To correct the approximate solution and obtain a true harmonic form, we add —EAg(wso)
to weo and so
Ak(woo - EAkwoo) = HOAkwoo-
We want to prove that IlgArws = 0 or equivalently that (Ajws,a) = 0 for any o €
kery2(Ay). For that, we use Green’s formula on {z > ¢} and let £ — 0, together with the
asymptotic a = O(z"~2F+1) obtained from Theorem 3.2, da = 0 and da = 0:

/> (Awoo, aydvoly = (—1)" /7 (kgdwoo) N @ — (xgt) A dwoo = O(g) —es0 0.

In view of the mapping properties of E from Theorem 3.2, we have thus proved that
W = Weo — EApws is a harmonic k-form of X such that wjy; = wo, with an asymptotic of
the form (3.8) when n is even and smooth on X when n is odd, such that

w — UJF2 = Ot(l'n72k) + O7L($n72k+2)
and with C"~2k=La(X AF(X)) regularity.

Let us now consider the problem of uniqueness. If one assumes polyhomogeneity of the
solution of Agw = 0 with boundary condition w = wg + o(z), the construction above with
formal series arguments and indicial equations shows that w is unique up to Oy (z"~2%) 4+
O,,(z"~2F+2) i.e. the first positive indicial roots, then of course two such solutions would
differ by an L? harmonic form if k < 5. Indeed, an easy computation shows that

Remark 3.6. A polyhomeogeneous k-form in Oy (z= ~*+€)+ 0, (x3 ~F1+€) for some e > 0
is in L*(X).
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This gives

Lemma 3.7. Polyhomogeneous forms satisfying Agw and w = wg + o(x) are unique
modulo the L? kernel of Ay.

Here, since we want a sharp condition on regularity for uniqueness, i.e. we do not
assume polyhomogeneity but C™~2F~1La regularity, we first need a preliminary result.
Let H*(A¥(M)) be the Sobolev space of order s € Z with k-forms values, which we
will also denote by H*(M) to simplify. The sections of the bundle A¥ @ A* over M are
equipped with the natural Sobolev norm ||.|[g=(ar) induced by H*(A*(M) & A*=1(M)).
The following property is proved by Mazzeo [18, Th. 7.3]3

Lemma 3.8 (Mazzeo). Let k < n/2 and let w € z*L?(A*(X), dvoly) with o < —%

such that Agw = 0, then for all N € N, there exist some forms wj(tl), (") € H-N(M) for
7,1 € Ng and some sequence | : Ny — Nq such that

pSgc W) — W dx
3.9 wa I ( log:c i "IN H =0(N 2=
(39) >3 oy = 0@ )

for alle > 0.

Let w,w’ be two harmonic forms which are C"~2¥~1L.¢(X A*(X)) and which coincide
on the boundary, we want to show that their Taylor expansions at z = 0 coincide to
order n — 2k — 1. Using Lemma 3.8 with N large enough, we see that the arguments
used above on formal series (based on the indicial equations) also apply by considering
norms || - ||z~ on Af @ AL, in particular that I(j) = 0 for j = 0,...,n — 2k — 1 in

(3.9) for both w and w’, and that their coefficients of 27 for j = 0,...,n — 2k — 1 in the

weak expansion (3.9) are the same for w and w’, these are given by wio = Pj(t)wo and

wj(-") = Pj(”)wo (and are then continuous on M since w € C"~2¢*+1(X A*(X))). But by

uniqueness of the expansion (3.9) and the regularity assumption on w,w’, this implies that
(t) ( )
_7 7

The extra Hélder regularity then gives that [|w — w'|[f(ar) = O(z"2F7179) but then
this implies that w — w’ € kery2(Ag) thus it is in the L? kernel of Ay, so our construction

is unique modulo kery2(Ag). This ends the proof of the solution of (3.1).

w3 are the coefficients in the Taylor expansion of both w and w’ to order n — 2k — 1.

Now to deal with (iv), we notice that dw is solution of the problem (3.1) for (k + 1)-
forms with the additional condition that the boundary value is dwy = 0. When k + 1 <
2, we can then apply Proposition 3.1 (i), when & > % — 1, we have dw = O(z?) and
Api1dw = 0. However, the discussion below in Subsections 3.1.2 and 3.1.3 about the
solutions of Agyiw = O(z>) gives the same result, namely that dw € kerp2(Agyq) if w is
a solution of (3.1) with k=2 — 1 or k = 251,

We conclude the proof of (iv) Proposition 3.1 using

Proposition 3.9. The forms wgr, of (3.4) and w of Proposition 3.1 satisfy
Sgw =0, dgwr, = Oy(x"2F¥2) 1 O, (" 2k 1),

Proof: Let w be the exact solution of Ayw = 0, w|,—¢ = wp in Proposition 3.1. Since
dgAr = Ap_104, we deduce that v’ := dyw is solution of Arw’ = 0 with W'|;—9 = 0
and moreover it is polyhomogeneous since w is polyhomogeneous, so Proposition 3.1 and
Lemma 3.8 imply that §yw € kerpz(Ag_1) and thus Syw = O(z"~2*+3) by Corollary

3Notice that the result of Mazzeo is stated for 0-elliptic operators with smooth coefficients and acting
on functions, but it is straightforward to check that it applies on bundles and with polyhomogeneous
coefficients like this is the case for even-dimensionnal Poincaré-Einstein manifolds.
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3.3. Since an L? harmonic form is closed, then 04w is closed and integration by parts on
{z > €} shows, by letting ¢ — 0 in

/ |6,w[*dvol, = 7/ (tza,w, dgw)dvoly = O(e)
x<e r=€
that (d,w, dgw) = 0. The part with wp, is also based on ;A = Ag_1d, and the uniqueness
of the solution of (3.4) up to Oy(x"~2¢*+2) + O,,(z"2k*4) on (k — 1)-forms. O

3.1.2. The case k = 5. In this case one only intends to solve the equation Ayw = O(x*°),
say in the set of almost bounded forms (logz times bounded). The indicial equation
tells us that 0 is a double indicial root for the A¥ part, while 0,2 are the two simple
roots for the A, part. By a double root, we mean a root A = Xy of order 2 of one of
the eigenvalues of Py in (2.10). In this case, a straightforward inspection shows that an
additional power of log(z) must come in the formal expansion of solutions. Since the
discussion of this case is not fundamental in our analysis, we prefer to give the result
without details. For wg,w; € A% (M) and wy € A2 (M) one can construct, using (2.11)

and (2.12), a polyhomogeneous form

dx
WE =wy A ~ + w log(z) + wo

Sod 1)zt
+ 22 loggc<—(logac)2 —Hogac( 02w2 + ( ;
Q].

1 d
+ (—1)F J0wn — Fddgwn — A(w2)) A =+ Oy(a?(log 2)?) + On(a?)

(SO dw2

50w1) + (—1)%+150WO

such that Aywr = O(z*) and it is unique modulo O(z>) if the order 22 coefficient in
the A,, component is assumed to be 0.

3.1.3. The case k = (n+1)/2. The indicial equation tells us that —1, 0 are the roots for the
A¥ part, while 0, 1 are the roots for the A,, part. For wy € A¥(M) and wy,ws € A¥~1(M),
one can construct, using (2.11) and (2.12), a polyhomogeneous form such that

d d
Wp = w1 A @ +wy +Twy A a +0(2?) and Apwr = O(z™)
x x

and it is unique modulo O(z>). So if w is a solution of Problem 3.1 with k = 2%

- and
boundary value wy closed, then dw = O(z?) and A%dw =0 s0 dw = O(z*°). But the

unique continuation theorem of Mazzeo [17] implies that dw = 0.

We also recall a result proved by Yeganefar [21, Corollary 3.10].

Proposition 3.10. For an odd dimensional Poincaré-Einstein manifold (X", g), there
is an isomorphism between kerpz(Az) and H%(X,0X) and between kerp2(Aniq) and
H>H(X).

3.2. Relative boundary condition.

Proposition 3.11. Let 0 < k < 3, x be a geodesic boundary defining function and
wo € O (M, A*=Y(M)) be a closed form. Then there exists a unique, modulo kery2(Ay),

form w such that, for all a € [0,1),

w € Cn2ka (X AR (X)),
(3.10) Arw =0 on X,
wlp =0, lin})iwazw = wp.
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Moreover w is closed, smooth on X when n is odd, while it is polyhomogeneous when n is
even with an expansion at order O(z™ *logx) of the form

n—1 n—2
wz( g Q:]wj(m/\?Jr E zjw§t)>
=0 i=1

(3.11)
n—1 da n—2
+logx< Z (")/\——&- 2w >+O( "loga)
j=n—2k+2 j=n—2k+2

for some forms w( ) J(% on M.

Proof: the proof is similar to that of Proposition 3.1, so we do not give the full details
but we shall use the same notations. We search a formal solution w/_ of Agw., = 0 with
wly =wo A % + O(z). Using the indicial equations in Subsection 2.3 and the form of Ay
in Lemma 2.1, we can construct the exponents in the formal series as long as the exponent
is not a solution of the indicial equation. Since dwy = 0 by assumption, we have

Ag(wo A d?x) =2(—1)"dwy + O(2?) = O(z?)

and so we can continue the construction of w’_ until the power 2" ~2¥ in the tangential part
AF and x"~2%+2 in the AF part. At that point, since 2" ~2* and 2" ~2k*2 are solutions of the
indical equation of Ay in respectively the A¥ and A* components, there is a 2" 2! log
term to include in the A¥ part. Using in addition that Aj begins with a sum of even
powers of x, we see like in Proposition 3.1 that when n is odd, a formal series w’_ with
no log terms can be constructed to solve Agw! = O(z*°), while when n is even we can
first construct

n—2k dx n—2k—2
(312)  wh= > aul) AT 2wf) + 2" M log(w) w
25=0 2j=2
with w(()n) = wp so that Apwh = O(z"~2?**2]og z), and the coefficients are uniquely de-

termined by wy. First observe that dw}, = O(2?) satisfies Apj1dwh, = O(z" "+ 2log )
and since the indicial root in [1,n — 2k] for Ay are n — 2k — 2 in the AF! part and
n — 2k in the A%+ part, we deduce that dwp, = Op(2"~?72) + O, (z"?*) and so

(3.13)
n—2k—2 n—2k—2

() ,2i TG NN e e (O R
dopy = > dwla¥ + > @ V¥ 2wy + dwy)’) A 2 T2 dw,” ok N
2j=2 2j=2
d d
+ 2" log () (dw( )Qk L+ (DR — 2]‘?)%(22/@,1 A %) + 2" PR (1) fzt) 2k N f
e dz
=2 log(w) (duy gy + (~1)F(n = 2k)wy Ly, A )
n d
+an (dWT(L—)% + (—1)kw7(22k71) A ;x
Note that we have used that (—1)¥(n — 2k — 2)“’52%72 = —dwgi)%f? With these

simplifications, we get

dz
App1dw, = (n—2k)z" 2 ((~1)*+ (n—2k)w Qk N +10g(:v)dw£f12k71) +O(z" 2k,
But since dAwh, = O(z"~?**2log(z)), we infer that wfﬁ%’l must vanish, and we obtain

Akw%‘ _ O(xn—2k+2)

Since the order x is a solution of the indicial equation in the normal part A%,
need to add a x"~2*2]og(z) normal term to continue the construction of the formal

n—2k+2
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solution. Since all the subsequent orders are not solution of the indicial equation for
Ay, we can construct, using Borel lemma, a polyhomogeneous k-form on X with expan-
sion to order 2" ! log(z) of the form given by (3.11), which coincides with wg, at order
O, (2"~ 2+21og ) + Oy (2"~ 2*). To obtain an exact solution of (3.10), we can correct w’,_
by setting w = w/, — EAyw!_ where E is defined in Proposition 3.2.

The argument for the uniqueness modulo kery2 A, is similar to that used in the proof
of Proposition 3.1.

To prove that w is closed, it suffices to observe that w = wp, + O, (2" 2*+2logx) +
O(z"2%) and so dw = x"*2kdw7(l"_)2k A 92 4+ O(2"2F). By remark 3.6, we have dw €
kery2(Ag41). Then d;dw = 0 and, considering the decay of dw and w at the boundary,
we see by integration by parts that dw = 0. O

Remarks: it is important to remark that the solution w of the problem (3.10) depends
on wp but also on the choice of . Note also that the form w solution of (3.10) satisfies
Tw € Cn2ktha(X AF(X)) for all a € (0,1).

4. Ly, Gx AND Qx OPERATORS

In this section we suppose that M has an even dimension n.

4.1. Definitions. The operators Ly, G derive from the solution of the absolute Dirichlet
problem:

Definition 4.1. For k < Z, the operators Ly, : C>(M,A*(M)) — C>(M,A*(M)) and
G : C®(M,A*(M)) — O (M, A*=1(M)) are defined by Lywy =: wg)

wT(LnJ%HJ where w522k717wr(:22k+2,1 are given in the expansion (3.2). When k =

define Gy := (=1)214;.

2k 1 and Grwgy :=
n
5, We

The operator () derives from the solution of the relative Dirichlet problem:

Definition 4.2. Let n be even and k < %, the operator Qp—1 : (C*(M,AF=1(M)) N
kerd) — O (M,A*=1(M)) is defined by Qp_1wo = wflnf)%ﬁ’l where wf:i)%ﬁ’l is given

in the expansion (3.11).

By Corollary 3.3, Ly, G and @ do not depend on the choice of the solution w in
Propositions 3.1 or 3.11, though Lj; depends only on the boundary (M, [ho]), the oper-
ators G and @ may well depend on the whole manifold (X, g) and not only on the
conformal boundary. We will see that they actually depend only on (M, [ho]) and that
they are differential operators.

4.2. A formal construction. We show that the definition of Ly, Gk, @ can be done
using only the formal series solutions. Let us first define

Definition 4.3. For k < %, the operators By, Cy, : C*°(M, A*(M)) — C>(M, A\F=1(M))
and Dy : C° (M, A*(M)) Nkerd — C(M,A*(M)) are defined by

Brwy = (ff_n+2k_2izax AkWF1> le=0,
_ 5. dx
(4.1) Crwo = (m n2k %xaz(? /\5ng1))|¢:0
Dywy = <xin+2kimazdwF‘l)) ‘m:O

where wg, solves (3.4).
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Remark: from the indicial equations and Lemma 3.4, Bjwy is (—1)*(n—2k+2) times the
2"~ 22 Jog(x) coefficient in the AX part of w/_ defined in Proposition 3.5 when v = 0,
this is a differential operator on M of order n — 2k + 1 since by construction, wp, contains
only derivatives of order at most n — 2k — 1 with respect to wy. The operator C} is well
defined thanks to Proposition 3.9, and it is a differential operator of order n — 2k. As they
come from the expansion of Ay, d,, they are natural differential operators depending only
on hg and the covariant derivatives of its curvature tensor.

4.2.1. The case of Ly. It is clear from the proof of Proposition 3.1 that Liwy is also the
coefficient of the 2" ~2¥logz term in the expansion of wp, defined in (3.6) and of the
formal solution w., defined in Proposition 3.8. The indicial equation shows that

. dx
(4.2) Liwo := (Z‘Qk nlwaw(? N Aka1)) |a;:0

n — 2k

where wp, solves (3.4).

4.2.2. The case of Gy. Let us return to the construction of the formal series solution in
the proof of Proposition 3.1. Now let wp, defined in (3.6) and

Wpg, 1= wp, + a2yt g2k log(x)wffz% 1

where v(® € C>(M, A¥(M)) is an arbitrary form. By construction of wg, ,wr,, the fact
that n — 2k is an indicial root in the A¥ component and Lemma 2.1, we have

d
Apwp, = (—1)F 122642 (B wg 4+ 26,0M) A % + O(z" ¥ 2 log ) 4+ O, (2" og 2)

to solve away the 2" ~2=2 term in A¥ we need to define
(_1)I~c+1
n+2—2k

so that Agwr, = O, (2" 2+ log(z)) + O (2"~ 2**+2log(x)). Since v(¥) can be chosen
arbitrarily, the coefficient of x"~2**41og(z) in the A*¥ component of the formal solution
wr, does not determine a natural operator in term of the initial data wy, contrary to the
272k log(x) coefficient in AF. In the definition of G}, above, we used an exact solution
on X to fix the v™® term through the Green function, which a priori makes G}, depend
on (X, g) and not only on (M, [hg]). However there is an equivalent way of fixing dov®)
without solving a global Dirichlet problem but by adding an additional condition:

d
(4.3) Wr, = WE, + 22 log(2) (Brwo + 260v™) A
X

Proposition 4.4. Let wy € C(M,AF(M)), then there is a polyhomogeneous k-form wp
such that
Aka — Ot(l,n—2k+1) + On(mn_2k+3)
(4.4) Sqwr = O(zn—2k+3)
w=wy + O(x)
It is unique modulo Oy (x"~2F) + O, (x"~2+2) and has an expansion of the form
2_g—1 2k 4
25 (¢ 2 z
Wp = Z mjwéj)—i-Zx]wé?)/\?
(4.5) =0 =1
(_1)k+1
n — 2k
Proof: First consider the uniqueness. By the discussion above, the condition on Agwpg
implies that wp is necessary of the form wr = wp, defined in (4.3) for some v*). Now we
notice that d,wr, = O(x?) satisfies in particular Ay_16,wr, = 6,Awr, = O(x"2k+3),
and again by the indicial equation this implies that Jywp, = O(2"~2+2) since the first

d
+ 2" log(x) (Lkwo + 2? (Brwo — 2Ckwo) A %)
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positive indicial root for Ay_; is n — 2k 4 2. Using that dgLrwo = 0 and the form of d,
we obtain

1
n+2—2k
By Proposition 3.9, d,wr, = Oy(2"2k+2) + O, (2"~ 2*+4) and from the definition of Cy,
a necessary condition to have Sywp = O(z"~2F+3) is

(n— 2k)5ov(t) = Brwo — (n — 2k + 2)Cyrwy.

dgwry, = Ogwr, + L 2k+2 (50v(t) _ (Brwo + 25ov(t))> + O(z" 2R3y,

Writing now dov® in terms of By, Cy in (4.3) proves the uniqueness and the form of the
expansion. Now for the existence, one can take the form in Proposition (3.1). Another
way, which again is formal, is first to construct a polyhomogeneous (k + 1)-form w’ such
that

wh = Q(Tzi);l:l log(z)dwo + wo A df + O(x),

{ Ak+1w}wZOt($n72k71)+On($n72k+l)

which can be done as in Proposition 3.11 by using the indicial equations, and then to set
wp 1= dgw. It is easy to see that this form is a polyhomogeneous solution of (4.4). O

Since the exact solution in Proposition 3.1 is coclosed, we deduce from Proposition 4.4
the

Corollary 4.5. The operator Gy is a natural differential operator of order n — 2k + 1
which is given by
kil By, — 2C%
n — 2k
and depends only on hy and the covariant derivatives of its curvature tensor.

Gy = (-1)

Remark 4.6. Problem (4.4) and Corollary 4.5 allow to define Ly and Gy on any even
manifold M>™ with no need of cobordism assumption (as in Proposition 3.1). We just
have to work on X = M x [0, €].

4.2.3. The operator Q. Following the ideas used above for Gy, we shall show how to
construct Qi from a formal solution wg,. We start by

Definition 4.7. For 1 <k < %, define the operators Bj,_, : C>(M,A*~*(M)) Nkerd —
C>®(M,A*=1(M)) and D),_, : C°(M,A*=*(M)) Nkerd — C>(M,A*(M)) by

/ o {—nt2k—2, /
By _qwp = (x waAkwpl) le=0,
/ L —n+2k ; /
Dj,_qwo == (x zg;amdwFl)h:o

where wh, is the form in (3.12) such that Agwl, = O(z"~22) and i, = wo AL +0(2?).

(4.6)

Let us now set wi, := wf, + vY2"~2* for some arbitrary smooth form v() on M, we
obtain

d
Akw%z — (_1)k+1xn—2k+2(B]/€71wO +250U(t)) A ?1" +Ot($n_2k+2) +On($n_2k+3).

so to solve away the 2" ~2%+2 normal coefficient, we need to define
(_1)k+1 . dx
(4.7) W, = Wh, + VDL 22 10g () (32710}0 + 250v(t)) N

which satisfies Agwh, = O(a"~%**2log(x)) + Op (2"~ %+3). Like for Gy, the term v(®) is
arbitrary and so we have to impose an additional condition to fix this term (or at least to
fix sov™®).
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Proposition 4.8. Let wy € C° (M, A*=1(M)) be closed, then there is a polyhomogeneous
k-form wl which satisfies

Akw/p — Ot($7L_2k+1) +On($n—2k+3)
(4.8) dwhy = O(zn—2k+1) ,

wh =wo A L 4+ O(z?)

which is unique modulo Oy (z"~2K) + O, (x"~2**2) and has an expansion of the form

n_g-1
A 23 (t 2j ) wr n—2k 1 D!
Wg Wi + Z T Wy /\ T ok E—1%0
(4.9)
( L)kt —2k+2 / 260 Dj,_qwo dx
. (B. DLy
+ n—2k—|—2x 08(2) { Bre—10 n — 2k T

Proof: (i) Take w}, = wf, defined in (4.7), then Aywh = Oy(z™~2F1) + O, (a7 2FF3)
by construction. Moreover, since wy is closed, one has dwf = O(2?) and Ay y1dwf =
O(x"~2k+1), Since the indicial roots for Ay in [2,n — 2k 4 1] are n — 2k — 2 in the AF*!
part and n — 2k in the AF*1 part; this implies that dw} = O (2"~ 2*72) + O, (z" ).
Then, using (3.13), we obtain

dws =2"~ 2k (dv(t) + (( 1)k(n — 2k)v(t) + dwT(Ln_)Qk) A dg) + O(gc”_%“)
=g (dv(t) + ((=1)%(n — 2k)o™ + (=1)* D}, wo) A d?x) +O(z" ),
So dw), = O(z"~2k*1) if and only if v = —Dj_ wo/(n — 2k). O
The first corollary is

Corollary 4.9. For k < 3, the operator Qy is a natural differential operator of order
n — 2k which is given by

Qr =

(_l)k I 5OD;C
B — Tk
n—Qk( F g—k—1)

and it depends only on hg and the covariant derivatives of its curvature tensor.

Remark 4.10. Here also this corollary allows to define the operator QQr on any even
manifold by considering Problem (4.8).

As a corollary of Propositions 4.4 and 4.8, we also have

Corollary 4.11. If wy is a closed k-form on M, then there is a polyhomogeneous k-form
wr on X such that

dwp = O(z"~2k+1)
(4.10) Sqwp = O(zn~2k+3)

wr =wy + O(x)

It is unique modulo Oy(x"~2k*+1) + O,,(z"~2**2) and it has an ezpansion

m\s

1 g—k

—k—
Sy d 1
Z 2](.{) £C2]w§j) A ?IIJ _ — 7 Dk(,d()xn_2k

=0 j:l
_1)k+1

n—2k+21 ((
e og(@) (=35
Proof: for the existence, take wf in Proposition 4.8 (wf is k + 1 form now since
wo € A¥(M)) and consider wr = (—1)kT1/(2k — n)d,wh. It is easy to see that wp =
wo + O(2?) and that Agywr = Oy(z" =2 F1) 4+ O, (2"~ 2+3). Since dd,wp = —dydwl +

dx
(Bkw() - QCkwo) A ?)
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Oy (z"2k=1) + O, (z"~%+1), we deduce that dwr = Oy(z"2k~1) + O, (z"~2+1). But
from the Proposition 4.4, wp = wr, + v 2"~k 4+ O(2"~2F+1) (note that Lywy = 0 by
Proposition 4.12) for some k-form v®) on M and so we conclude that

n—2k—2 n—2k—2 d
(t (t n
g dw )xQJ + g 2]w2) +dw( )) .

27=2 25=2
n d
+ x"‘Qk(dw?ngk + (—1)k(n — 2k:)v(t)) A g + 2" kg 4 O(x"_2k+1)
— O(l’n72k+1)

so v(*) has to be (—1 )k“‘ldwfln)% (n —2k) to get dwp = O(z"~2~1) 4+ O, (2" 2k*1). But

clearly this argument also implies that dwp, = 2™~ dew("_)% A df and the expansion of

wp is then a consequence of this fact together with the expansion (4.5) in Proposition 4.4
and the definition of Dy. O

Remark: in Proposition 4.4, 4.8 and Corollary 4.11, we do not really need to take
wo € C®°(M,A(M)). Indeed, for an wy in L?(A(M)), the arguments would work in a
similar fashion except that the expansion in power of  and log(x) have coefficients in
some H~N(A(M)) with N large enough, as we discussed in the proof of Proposition 3.1.

4.3. Factorizations.

Proposition 4.12. For any k < 5§ — 1, the following identities hold

Gy :(—1)’“% on closed forms,
4.11
( ) L . ( ]‘)k G d — 5hOQk+1d
M= 2k) M (n—2k)(n— 2k —2)
while for k=5 —1
1
(4.12) Ly-1=30n,d.

Proof: Let w be a solution of Problem (4.8) with initial data wy closed. Then its
first log term is 2"~ 22 log(2)Qp_1wo A d"‘ and thus the first normal log term of d4w is
2"~ 4 og () (JoQr—1wo) A L. But dyw is a solution of Problem (4.4) with boundary
term Sow = (—1)*(2k —n — 2)wo + O(a:) . Thus, the form d,w has for first normal log
term (—1)k(2k —n — 2)2a" " 2FH4(Gy_1wp) A df.

Let w be a solution of 3.1 with initial data wg. Since Api1d = dAy and dgdw =
Apq1dw — ddgw, the form w’ := dw is a solution Problem (4.4) with initial data dwy and
first log term (—1)*(n — 2k)2"~?* log(z) Lywo A %%, which gives (4.11).

To compute Lz _; we use Equation (4.2). Using Relations (2.9), we get wr, = wo —

x(_;)j dowo A dx, therefore Az _jwp, = 2280dwg + o(z?). O

Remark: Note that this implies that Ly is zero on closed forms and Gy, has its range
in co-closed forms.

4.4. Conformal properties. A priori our construction of Ly, Gy, Qr depends on the
choice of geodesic boundary defining function x, i.e. on the choice of conformal represen-
tative in [hg]. In order to study the conformal properties of these operators, we need to
compare the splittings of the differential forms associated to different conformal represen-
tatives.
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A system of coordinates y = (y;)i=1,...n on M near a point p € M give rise to a
system of coordinates (z,y) in X near the boundary point p through the diffeomorphism
¥ (x,y) — ¥, (y) where v, is the flow of the gradient V=*9z of z with respect to z2g.
Such a system (z,y) is called a system of geodesic normal coordinates associated to hyg.

Lemma 4.13. Let (x,y) and (&,§) be two systems of geodesic normal coordinates associ-
ated respectively to hg and hg = €2?°hy. If & (resp. & A di) is a k-form tangential (resp.
normal) in the coordinates (I, §) with &lz—g = wo, then we have

0 = wo + (—1)k+1x2(iv¢0w0) A df + Ot(.Z'Q) + On(.’I)3),

w A dgx =wp A C.lxj +wo A dpg + Oy() + O, (22).

Proof: By the proof of Lemma 2.1 in [13], if ho = €2#9hy is another conformal rep-
resentative, a geodesic boundary defining function & associated to hg satisifies & = e¥x
with ¢ = ¢g + O(J:Q) at least C"~1 and ;(z,y) = y; + %2 > h19,, @0 + O(a?). Hence
dy; = dy; +x Zj h* 0, podr and di = ze?°dpg+efodx + O(x?), which gives the relations
above. O

This implies the following corollary:

Corollary 4.14. Under a conformal change ho = e2?ohg, the associated operators ﬁk,
Hy and Qy, are given by

Ek = 6(2]67”)(‘00Lk, Gk = ¢(2k=2=n)wo (Gk + (*1)kiV<p0Lk)
Qrwo = e¥o(F—m) (kao +(n— 2k:)Lk(np0wo))

where wy € O (M, A*(M)) is any closed form. Thus Ly, is conformally covariant and Gy,
is conformally covariant on the kernel of Ly (hence on closed forms).

(4.13)

Proof: Let w be a solution of Problem (4.4) with respect to (z,y) a system associated
to hg. Then by Lemma 4.13, w is also a solution of Problem (4.4) with respect to (&, )
a system associated to ho. Now, when we change x to & the first logx term (i.e. the
2" ?*log x term) in the expansion of w changes by a multiplication by e(?*=™)¥0_ As for
the 2"~ 2*2]ogz term in the normal part, we have a similar effect but the tangential
2" 2k log x term gives rise to a £"~2*T2]og & normal term which gives the term Vo Lk

Let w be a solution of Problem (4.8) in the variable z with initial data wo A 9%, &; be a
solution of Problem (4.8) in the variable & with initial data wy A % and @y be a solution
of Problem (4.10) in the variable & with initial data —wg A dpg. Using Lemma 4.13 get
that @y + @y satisifies Problem 4.8 in the variable 2 with initial data wg. So w = Wy + Wy
modulo Oy (2"~ 2%) + O, (x"2k*2) and the 2"~ 2*2log x normal terms must be the same.
Using 4.13, we get

d A A d
Qr—1wo A f = 02D (O 1wy — Gi(wo A dipo)) A %

Now we use the transformation formula of Gy, and (4.11) with dwy = 0 to see that
e (MG (wo A dipo) =(—1)F Grd(pown) + (—1)Five, Lid(powo)
=(n — 2k 4+ 2)Li_1(wowo)
This ends the proof of the transformation law of Qx_1 by conformal change. O

Remark: while @ on ker d is not conformally invariant (by Proposition 4.14), the pairing
(Qru,u) L2(dvoly,) for the metric hg is conformally invariant for u € kerd. Indeed, using
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(4.13), a conformal change of metric ho = €20 hy gives

1] d(ott), u) hy
/ (@, u)j, dvoly, = /M<Qku7u>ho + < OQ;Z:_(;DO_,)I L dvolp,

which by integration by parts and du = 0 gives the (Qku, u}Lz(dvol’, ) = (Qru, U>L2(dvolh0)~
w0 /
Of course, when we restrict this form to exact forms, this is given by

(Qrdu,du) = (Lip_q1u,u)

which is real and conformally invariant.

4.5. Analytical properties.
Proposition 4.15. For any k < 5 we have

(D) (n = 2k) (Ag)

Qr = S IR(T )P + lower order terms in 85
(—1)FHE+ (n — 2k) (dod) -
Ly = T[T — k)] + lower order terms in 9,
_1\5%+1 22—k .
Gy = ( 21) 5 k[((ao_)k) iz % + lower order terms in 03,

Proof: We first review the computation of wFl which solves (3.4). By Lemma 2.1, wp,
has the form wg, = 170 z¥w (t + Z Yo ‘Uzz) A 22 where the w( ) are images of
wp by differential operators on M We compute the prlnClpal part of these operators by
recurrence.

The decomposition (2.7) of Ay and the identity Agwr, = Oy(z" %) + O, (z"~2F+1)
give

2k
2
n dx
( Lik+i— = — Dl + Zs’wéﬁ) 2+ Z (R, +2(i — §)P))wS 2]) A+
i=1 j=1
k-1
t t n
z? ( 4z(k+z—§)wéz) - de +Z R;j+2(i—j wéz) 21+ZS wéz)%) =

i=1

This determines uniquely the w( )
Let us write LOT for lower order term operators on M. Then we get

n 1)k+1 do dod
Gy (e b,

2% —n 22k-n) T 2@k+2—n)/)"

and given the order in 9,, of the R;, R}, R;, R}, Q; and Q}, we have

(t) ; _ k+1 ('n,) (t)
Y2 = 550k + 2i —n) (2(=151dy? + Agwf) ;) + LOT(wo)
(n) 1 k+1 (t (n)
2 A LOT
Y242 T 50 1) (2k + 20 771)( (=1)"" dows; + Agws, ) + LOT (wp)

So we have
wg;) = (CLZi((S()d)i + by, (d(SO)i + LOT) wo

Wg;)a = (a2¢+1(50d)l5o + LOT)wO
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where the sequences (a;) and (bg;) satisfy the relations

agi—2 2(—1)* by, n agi—1
a T T A e e\ a 7 = . . . .
*72i(2k + 2i —n) PTG+ )2k +2i—n) 200+ 1)(2k + 2i — n)
b — 2(=1)"ag; bai—2
T 202k +2i—n) | 2i(2k +2i —n)

_ (—1)k+1 _ 1 _ 1 . . .
and a1 = ‘55—, ag = SEETI=n) by = SEE=T) By uniqueness of the solution of this
equation we find

1 (71)k+1
ag; = — 7 K 3 a2i41 = 2 , )
204! 5, (2k + 25 —n) 201 [T (2k +2j —n)
1

bo;

2041 [[\Z(2k + 25 — n)
for all i < 3 —k — 1. We infer the equality

(4.14)
Apwp, =2" "2 (an72k72(60d)%_k + (bp—ap—2 + 2(=1)"a, _gp_1)(ddo) 2% + LOT)wo
4%z2k7"+2<an_2k_10%d)%*k604*LCYF)w0ﬁ\%§‘+(ﬁz"*2k+ﬂ
n_g
:xn—Qk( - (6Od) 2,]@71 + LOT) wo
22N (g —k-DIT[L, (2k+25—n)
+ ank_n+2( <_1)k+1(60d>g_k50
- 1 .
227N E k=D  (2k+2j—n)

+ 0($n—2k+1)

d
+L0T)wOAj
X

so we have
—(8od) =k
Ly =— o )z—k—l +LOT
28R — k- DI[[Z,  (2k+2j—n)
B, — (God) 2 *dg

= 2%_k_1(% —k—1) Hj%:_ok_l(% +2j —n)

+LOT

Note also that d, is of order 1 so C}; has no contribution to the principal part of Gy, and
we get
(1) (dod) % ~* o

k-1

Gk = n
25 k(2 — [, 2k + 2 —n)

+ LOT.

The proof is the same (and even easier) for Q. We could have deduced the principal
parts of L and G from the one of @i, but a slight generalization of the proof above will
allow to compute the principal part of the non-critical Lff in the next section. O

We finally prove that the operators Ly and Q are symmetric on C*°(M, A(M)):

Proposition 4.16. For k < % — 1, the operators Ly, are symmetric on C*>°(M,A*(M))
while for k < % — 1, the operators Qy, are symmetric on C*°(M,A*(M)) Nkerd.

Proof: The proof for Ly is done in Proposition 5.4 which covers the non-critical cases.
The proof for Qy, is quite similar, we let wp, w(, be two closed k-forms on M and w,w’ the
forms constructed in the proof of Proposition 3.11 with respective initial conditions wg
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and w),. Then integration by part and the fact that dw = dw’ = 0 gives
0 g y g

0= / ((Apw,w')g — (Apw',w)g)dvoly =
r>€

/ ((iwww,égw'mz — {igo, W', §gw>hz)x_”dvolhw.
r=e€

But a straightforward analysis and the fact that Ly(wo) = Li(wj) = 0 give that the
second line has an expansion of the form

a_ge  + -+ a_se 24 Llog(e) + O(1)
with L := (=1)*"(2k — n)(<QkW07W6>L2(dvolh0) — (wo, QkW6>L2(dvolho)>
This achieves the proof. O

4.6. Branson @Q-curvature. We conclude this section by the observation that Qg is the
Q@-curvature of Branson.

Proposition 4.17. The operator Qg of Definition 4.2 satisfies

 on(-1)zH
ol g -

where @ is Branson Q-curvature defined in [2].

Proof: Since the operator Qo and the function @ are local on (M, [he]) and do not
depend on the chosen Poincaré-Einstein manifold with conformal infinity (M, [he]), it
suffices to consider the cylinder X = (—1,1) x M equipped with a Poincaré-Einstein
metric with conformal metric [hg] on the boundary M U M. In [5], Fefferman and Graham
showed that the Q-curvature of Branson is the function @ on M such that if U € C*(X)
is a solution of

AU =n B
U =log(z) + A+ 2" Blog(z) with A, B € C>*(X)
Alyg=o =0

then Bl,—o = (—1)2 (2" 1 21(% —1)!1)~'Q. Consider dU, clearly it is a harmonic 1-form
and it is given by
d d
dU =" 1A+ naL'"Blog(ac)ij +O(z™)
x x
and by uniqueness of the solution in Proposition 3.11 and the decay of L? harmonic 1-
forms (of order ™), we deduce that Qo1 = nB|.—o, this proves the claim (note that the

log term in the development of Ay does not interfer since it acts trivially on normal zero
forms). O

5. THE NON-CRITICAL CASE

Let (X, g) be a Poincaré-Einstein manifold with conformal infinity (M, [ho]). We as-
sume k < (n+ 1)/2 and n» may be odd or even in this section, and we let £ be an integer
in [1, 5 — k] in general, and ¢ € N if n is odd and (X, g) is an even Poincaré-Einstein
manifold. We want to construct the operators Li of [3] by solving the following equation

(A= G = k40 — b= 0)w = Oy(aF ) + 0, (23 ++4)

(5.1) §
with w = 22 ¥ ‘W + oz

s as 2 — 0.

where O,,, O; are defined in the proof of Proposition 3.1 and where wy € C> (M, A*(M)).
This can be done essentially like in the critical case, using the indicial equations of Sub-
section 2.3. Indeed, the indicial roots of Ay — (5 — k4 £)(§ — k — £) can be computed
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rather easily, these are

" k40 inthe A* component

2
g—k+1:|:\/€2—|—n+1—2k in the A*¥ component.
Notice that there are no indicial roots in (5 — k — ¢, 5 — k + {) when £ < n/2 — k, but

there is one root in this interval when £ > n/2 — k and n odd, it is given by

(5.2) %—k+1—\/€2+n+1—2ke(g—k—ﬁ,g—k—M—l]
and thus is not in n/2 — k — £ + 2Ny. We obtain
Lemma 5.1. For wy € C%®(M,A*(M)) fized, there exists a series

20—2
63) o =t (Pl ¢ 3 el )
2§=0 2j=2

such that w(()t) = wqy and
(54) (Ak - (5 —k+ 6)(* — k- f))wpl = Ot(wgfkj%) + On($%*k+3+2)

where the forms w() on M are uniquely determined by wo and the expansion of Ay in
powers of x given by Lemma 2.1.

Note that the condition ¢ < & when n is even insures that that the first log(z) coefficient
coming from the metric does not show up in (5.1). Remark that when £ > n/2 — k and n
odd, the fact that the indicial root (5.2) is not in n/2 — k — ¢ + 2Ny does not affect the
construction. Since (§ —k+/) is an indicial root in the AF component, we can then define

— k44 (t)
Wp, = Wk gkt 1og(x)wn_k+“,

with wglk%; = %[m‘g*'k_é (Ak (f - k:—l—ﬁ)(f — k- £)>WF1:|

(5.5)

|z=0
which satisfies

(5.6) (Ak - (5 —k+ e)(f - e))% = O(z3~F++2og 7).
Remark: we could continue the construction to get a solution w of

(A — (— —k— 5)(— —k+£0)w=0(x>)

and even an exact solution (with no O(z*°)) using the resolvent of Ay. However, since
the mapping properties of (Ay — (% —k — £)(% — k+1))~! is not explicitly available in
the literature when £ # 5 — k, we do not discuss this case further.

Like we did for L, we can then define an operator on M as follows:
Definition 5.2. For k < (n+1)/2, we let £ be an integer in [1, 5 — k] if n is even and
in N if n is odd. The operator Lt : C®°(M,A*(M)) — C°(M,A*(M)) is defined by
Liwp := wr(:lkim where wr(Ltlkfé,l is given in (5.5).
Remark: clearly, we have Lf_k = Lj when n is even.
Lemma 5.3. The form wr, of (5.3) satisfies Sywp, = O(xs ~kT6+2),

Proof: by (5.4) and §;A = Ap_104, the form d,wr, solves

(5.7) (Ak1 = G = k40 — k= 0)bgwr = O(eF+++2)
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and with §,wp, = O(x2~*=¢*2). The Taylor series T of 2~ 2 "5 wp to order O(z%+2)
is such that 2% ~*=‘T solves (5.7), and moreover T is even by Lemma 2.1. A short
computation shows that the indicial roots of (A1 — (5 —k+€)(5 —k —{)) are

gfk+1:t\/£2+n+1f2k in A*~! component ,

% —k+2+/02+2(n—2k+2) in A7 component .

Thus if £ < n/2 — k, the indicial roots are not contained in [§ —k — £+ 2,5 — &k + £+ 2]
except when 2k = n+1 where 5 —k+/+1is a root in the A; component, this implies that
the Taylor series of d,w, vanishes to order O(z% ~*+*1) except maybe when 2k = n + 1.
However in the last case, by parity of T', we see that there is no § —k +/+1 term in the
expansion of d,wp,, this ends the proof for n even. When n is odd and ¢ > n/2 — k, the
only indicial root in the interval of interest is n/2 — k+ 1+ v¢? + n+ 1 — 2k and it is in
(5 —k+L+1,5 —k+£+2) thus not in n/2 — k — £+ N, which shows that the argument
used for £ < n/2 — k applies similarly. O

By an obvious integration by part, we have the

Proposition 5.4. The operators L} are symmetric on C*° (M, AF(M)).

Proof: Consider w}% and w%z like in (5.5) with respective boundary values w} and w?,

they are well defined form in some collar neighbourhood X; := (0,¢), x M of M in X.
Let ¢ € C§°((—€o,€0)) be a cut-off function which equals 1 near 0 and &' := @(z)wh,
for i = 1,2. Then using Lemma 5.3 we have §,0° = O(z% ~*T+1) but since i,9,0" =
O(x37#=%2) the Green formula gives for small € > 0

/> (ART,52)y — (A2, 5" y)dvol, = (_1)n/ (g d3Y) NG — (xgd?) AT + O(e).

Tr=¢€

But the first line is a O(1) as ¢ — 0 by (5.6), and a straightforward analysis gives that
the second line has an expansion of the form

a—ge—1€ 2 4 +aet + Llog(e) + O(1)

with L := (—1)"(ﬁ —k+ Z)/ (koLbwd) Awd — (xoLbwd) Aw}
M

2
and this implies L = 0 by comparing the log(e) terms. O
Proposition 5.5. We have L} = % {(5od)l + Z:g:;gf (déo)l} + LOT.

Proof: We define T by wp, =22 " 'T, A= (2—k+1)(2—k—1) and P = 2"~ 2 (A—
DY Exantin

Then we have T = Y\~} 22wl 4 PO 22w A 9% and P admits the same decom-
position as Ay in Lemma 2.1 but with indicial operator equal to

2020, — (20,)? 2(—1)k+1q
0 —(20,)* +2(1 + )20, +n — 2k — 21

The equation PT = Oy(z%) + O, (2*1) gives then
wé?lz = (agH_l((Sod)i(So + LOT)OJ() wg) = (agi (50(1)1 + bo; (d&o)l + LOT)OJO

with
_ (D" _ 1 poo —5—k+1-2)
Tal-1y 2Tl -0 —k+D)
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and
ao; 2(=1)F* by + agi—1

PRI+ PP T A D6 -+ 2k —ntal’
baj +2(_1)k+1a2i+1
4+ 1) +1-1)

baiy2 =

The solutions of these equations are

b (=1)(n — 2k + 20 — 4i)(l —i — 1)! s (—=1)F (1 —i—1)!
e 473)(1 — 1) (n — 2k + 21) HHLT 921411 — 1) (n — 2k + 20)
(1)l —i—1)!
(g = ——— 7
4411 - 1)!
Since the equation (5.5) reads
—21
L _ [T dz
L= [ 21 iz, ( x /\PT)Lm:O
we get the result. O

6. RELATION WITH BRANSON-GOVER OPERATORS

First we recall a few fact on the ambient metric of Fefferman-Graham, see [4, 6] for
details. If (M, [ho]) is a compact manifold equipped with a conformal class, we call

Q = {t?ho(m);t > 0,m € M} C S*T*M
the conformal bundle, it is identified with (0,00); x M. Let Q= (—=1,1) x Q be the

ambient space with the inclusion ¢ : Q — @ defined by z — (0,z). There are dilations

ds : (t,m) — (st,m) of Q which extends naturally to Q. The functions on Q which are
w-homogeneous in the sense
f(st,m) = s™ f(t,m)

are the section of a bundle denoted E[w], they extend naturally on Q. We denote by h
the ambient metric of Fefferman-Graham [4] on Q. This is a smooth Lorentzian metric on
Q such that

(1) 5;*71 = $2h,Vs > 0,

(2)  ¢*h is the tautological tensor t>hg on Q,

(

3*)  Ric(h) vanishes to infinite order at Q if n is odd,
(3**) Ric(h) vanishes to order § — 1 at Q if n is even.

We let T be the vector field which generates the dilations d,, and let
Q :E(T7T), pi=—1t72Q/2, x=+/2p, u=uat

so that @ is homegeneous of degree 2 with respect to ds, u and ¢t are homogeneous of
degree 1 and z of degree 0, moreover @, p are smooth defining function of Q, z,u are
defining function of Q in {@ < 0} for some finer smooth structure on {Q < 0}. Let us
define C:= {Q = —1, p < €} for some small fixed ¢, then € can be identified with a collar
(0,€), x M and there is a system of coordinates (u,m) € (0,1] x € that covers the part
{0 > Q@ < —1,e > p > 0} which is a neighbourhood of the cone Q near ¢t = co. The metric
I has the model form (see [4]) in this neighbourhood

h=—du® +u? g
where g = (dx? + h,.)/x? is a Poincaré-Einstein metric on the collar €.
The space T*[s] is the space of k-form tractors which are homogeneous of degree s,
i.e. these are restrictions to the null cone Q of k-forms on Q and such that Vo F = sF
where T' = t0; = u0, is the generator of dilations in the cone fibers, V is the Levi-Civita
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connection on Q. Since Vy* = x for * = T, 0z, Om,, we have Lp = Vr + k, on T[],
where £ denotes Lie derivative. The bundle &¥[s] is the bundle which consists of the
s-homogeneous k forms on M, in the sense that they are the sections of A¥T*M ® E|s]
and thus satisfy Lrw = sw. We can view €¥[s] as a subspace of T%[s — k]. We let G|s]
be the subundle of T%[s 4 k — n] consisting of forms which are annihilated by the interior
product ir. It has a conformally invariant projection onto €¥[s + 2k — n] denoted by ¢*,
this is given for instance by ig,dpA.

If A is the ambient Laplacian on Q associated to &, if wy € EF[k + £ — 5] and Wy is an

homogeneous extension of wy to 6, then it is proved in [3, Prop. 4.3] that the operator
defined by the formula

- - 1~  ~\~ ~ - o

(61) Lf;wo = |:LT (d(n + 2V — 2) + idQ AN A) Aéao}l = [LTd(’I”L + 2V — 2)AZWO |
Q Q

can be viewed as a conformally invariant operator L, : €¥[k+¢— %] — G, [% —k —(]. Here

d denotes the exterior differential on Q. They also define the operators (see Proposition
4.4 and Theorem 4.5 in [3])

LBGC = LE Rk 40 — g] — Eklk — g 1,
(6.2) GBC = ¢ Viy L " eF[0] — €12k — 2 — n]

where Y = —?—5 is a vector field dual to dt/t via h, it satisfies in particular dQ(Y) = 2.

Finally the operator EG acting on a closed k-form wy is defined as follows
dQ dt

n .. X n_ ~
EGwo = —2(5 —k+ 1)qk Ty ip Az k(T A n /\wo)] la.

where & is any homogeneous extension of wy to Q.
We now prove a Lemma whose proof is essentially the same as the for functions in [11].

Lemma 6.1. Let w € T% [—a] and j € N, then we have
A@w) =4jla -5 - HQ'w+ QAw.

Proof: Using VQ = 2T, we have [A, Q] = —2(2V1 4 n + 2) and so we can compute

j—1
AQ Lwo) = Y QA QIQ™"w + Q7 Aw

m=0
Jj—1 _
= —207! Z(2(—2m—|—2j—2—a)+n+2)w+QjAw
m=0

=4Q7 j(a - % —jw+ Q' Aw
which achieves the proof. O

As a consequence, and using Lemma 6.1, we get the

Theorem 6.2. (7) Let Li, Ly and Gy, be the operators of Definition 5.2 and 4.1, and let
ch = () =)+ 1)k — 2 — ). Then the following identity holds

L9t = L.
In the critical case £ = 5 —k, if GEG is the Branson-Gover operator of (6.2) we have

L% =cpLy, GR¢ = (-1)fe,Gy,
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with ¢ = (—1)F K120 2RI (2 — )23 — k1) = ¢f "
(i) Let Qi be the operator of Definition 4.2, then

= (2k —n— 2)Ck+1Qk.
Proof: (i) For wy € A*(M), we consider the form wp, of Lemma 5.1 of the previous
section and we extend it homogeneously in a smooth k-form of degree k — 5 + £ by

14
~ _n _n n_ . i t dx
o = u® 2+le1:uk b+l 5k ezle(wi()+x2wi(n)/\ )
X
i=0

—tk7£+gz )it 2’ t)—i-w(n /\dp)

In the coordinates u, z,y representing a neighbourhood {—1 < Q < 0,p < €} and in
the k-form bundle decomposition A*(C) & A¥~1(€) A 4%, the exterior derivative, its dual

and the form Laplacian of h are given by

S~ d 0 ~ o6, (1) (n+2—2k+udy,)
(6.3) d= ((1)%0“ d) , O=u (0 8,
and

o ((ud) By + 1 — 2K) + A 2(—1)k+1d
(64) A=u ( 2(—1)ks, S Dby L2k 4 2) 4 Ak_1>

So, using the properties of wr, in Lemma 5.1 and Lemma 5.3, we have (where s = k— 4 +/)
Abp =us2 (A + s(s +n—2k))wr, +2(—1) u*"2,wr, Adu

L1 0,)

— 902 R (Liwg + Or(02) + w2 (B A
+2(=1)Fus 322 (O + O(2%)) A du
= (—Q) 3 (2 Lhwo + (B + 2(~1)FC) A dp) +OQY
for some (k — 1)-forms B,C on M. We can now apply £ — 1 times Lemma 6.1 and get
AGp = A Awp = (—4) (0 — DX 5 (20LEwo + (B +2(—1)FC) A dp) +0(Q).

Since (n + 26T — 2) acts on homogeneous k-forms of degree k—¢—% by multiplication by
—2(€+1) and ipd = L1 on Gx[5 — k — /], we get

LY =({+1)(k—0— g)(—4)4[(5— D272 (0L wo + (]23 + (-1)*0) /\dp)

Note that by definition of By, Cy, G we have, in the case £ = § — k,
B By,
2 (CDFC = (—1) (2R
b= G
(i) Similarly, for wy € A¥(M) closed, we set Op = wh, A %JQ in {Q < 0,p < ¢} where
the form w}, is the 0-homogeneous expansion of wy, € A*™1(€) given by (3.12). Since
% = —t2dp + Q%, we have

- C’k)wo = gGkWO-

n_k
- () , dx dQ
Wp = Zﬂc (wQJ /\?—&—x w2j) 5

7=0
iy dt dt
= 0 QPP Adp A 4 (~QYTHTI TR A (—dp + Q)

=0
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and so wp is a smooth (k + 2) form. By (6.4) and the definition of By, D;. we have

Rive = R(—ly, A %) = 2(-1)Fdul, — (D) A

d dx d
= — 2" %22Dlwy A % + (=1)" 12" 2R (Blwy A —+ wi) A —u +0(Q:7k)
_ (_1)%—k—lQQ%—k—?tQk—n+4D;€w0 A dp
dt n
+ (—1)2ttQe Rkt (Blug A -+ (—=1)fwi) Adp+0(QFF)

for some form w; on M, the value of which is not important for our purpose. By Lemma
6.1, we have

KQCT)F :(_1)7—k 12Q5—k 242k~ n+4A( A /\dp)
dt
+ 4(5 — k= 1)(=1)F T QE 222 (B A — +D Fur) Adp+O(QFFL)
and by (6.4), we have

dx
A(Dlwo A dp) = A(x>Dlywy A —)

d de. d
= w2 Ay s (22 Dlwo A i“) +2u~2(=1)k6, (2% Djwo A ﬁ) A ;“

d dt
=2(—1)*t7250Djwo Adp A — +2(2k — n — 4)t "2 Djwo A "
where we have used (2.2), (2.3) and dDjwy = 0. We thus have
dt

N2~ n n dt
A%y = QF k2242 4(-1) 5 (3 Diwo - (5= k- 1)Biao ) Adp A SO AT

+wh Adp| +0(@QF )
dt

n n dt
= Q5 k222 1y { (n — 214:)(7 —k—1)(—=1) 2 *Quwo A dp A -+ Wi A "

+wh A dp} +0(Q=~F 1
by Corollary 4.9, and where w},w) are forms in A¥*1(M). By iterative use of Lemma 6.1,
we get
AT G = AT F 2N,
dt

n n n
=2t Qn_%_l(§ — k(5 — k- DI (=1) % Quuwo Adp A -

dt
+wi/\—+w’2/\d,0} +0(Q)
we infer from the definition of @ kG that

PO = (F)FH Rk DG — k- 1)IQs

7. PROOF OF THE MAIN RESULTS

We start with the proof of Theorem 1.2.

Proof of Theorem 1.2: the existence of w in (i) is proved in Proposition 3.1. The
fact that the log terms Lg, Q) coincide with the Branson-Gover operators follows from
Theorem 6.2. The uniqueness of the solution is rather clear by construction: using the
arguments used in the proof of Proposition 3.1, a solution in C= % (X, A*(X)) would
have its first § — k Taylor coefficients uniquely (and locally) determined by the boundary
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value wy and then two such solutions with same boundary data would have a difference
in Oy(x2 %) + O, (22 ~*+1%*) and would then be in kerz2(Ay) (see Remark 3.6). We
conclude that any Oz~ solution is in fact a solution of Proposition 3.1. The proof of
(ii) is similar and follows from Proposition 3.11 and Theorem 6.2. g

Proof of Theorem 1.1: The infinite dimensionality of K* (X) for m < n—2k+1 follows
from Proposition 3.1. Indeed for m < n — 2k this is clear since the solutions of (3.1) are
parametrized by C°(M,A*(M)). If m = n — 2k, one can use that there is an infinite
set of wg € C°°(M,A*(M)) such that Grwy # 0 and Liwy = 0 since ker Ly, is infinite
dimensional and ker G Nker Ly is finite dimensional by ellipticity of dGy, + L. Solutions
of (3.1) are then in C™ 2% (X A*(X)).

The finite dimensionality for m = n — 2k + 1 is a little more involved. Let w be a
harmonic form in C"~2¥+1(X A¥(X)), then Taylor expanding, there exist some forms

wj(.n),wj(»t) € On=2k+1=J (M, A(M)) so that

n—2k
w— Z ! (w§t> + wén) Adzx) € 2" R (AR (X)),

§=0
and Ljwy = 0. Now by Lemma, 3.8 we know that w has a weak expansion to order zV with
values in H =N (M) like in (3.9) for any N > 0 large. Moreover d,w is also a harmonic form
in C"~2k(X, A¥=1(M)), moreover using (2.2) after decomposing the form in AF~* @ A1,
we see that it is a O(x) and has an expansion to order 2V with values in H~~~1(M) for any
N. Now, using the indicial equation like in the proof of Proposition 3.1, the weak expansion
of 6,w vanishes to order z"~2¥*2 50 in particular we obtain d,w € 2"~ 2*L>°(AF~1(X))
from the regularity of w. Then §,w € L2(A**(X)) for k < % — 1, while for k = 2 — 1 it
is in L2 if we assume in addition that w € C"~2k+1Le(X AF(X)) for some o > 0 (since
then Jyw € 2"~ 2F+2L>(A*(X))). But as shown in Corollary 3.3, d,w is then smooth and
vanishing to order 2" ~2%+3, Then, like in the proof of Proposition 3.9, an integration by
part on ||§yw||?. shows that d,w = 0. Now we can apply the result of Proposition 4.4
(see the Remark below Corollary 4.11), which gives Grwy = 0. Since dGj, + Ly is elliptic,
ker Ly N ker Gy, is finite dimensional and contains only smooth forms, so wy is smooth.
Then w is polyhomogeneous and is the solution of Proposition 3.1, up to an element of
kerz2(Ay), it is then in C"~1(X, A¥(X)) in general and in C*° (X, A¥(X)) if (X, g) smooth
Poincaré-Einstein manifold.

Let m € [n—2k+1,n—1] be an integer. The exact sequence (1.9) is defined by inclusion
of 1 : H*(X,0X) — K (X) and restriction to the boundary r : K¥ (X) — 3% (M), here
of course we use the identification H*(X,0X) ~ ker;2(Ay) and the regularity of harmonic
L? forms in Theorem 3.2. The injectivity of ¢ is clear, the surjectivity of r comes from
Proposition 3.1, the definition of 3¥ and Theorem 6.2. The kernel of r is composed of
those forms of K¥ (X) which vanish at M, but by Proposition 3.1, these are L?, and thus
in the image of H*(X,0X) by the map ¢. O

Proof of Theorem 1.3: First note that the space Z¥(X) in Theorem 1.3 is included
in KF_,..1(X), and thus of finite dimension and composed of forms in C"~!(X, A¥(X))

(even in the case k = § by the arguments above).

(i) the maps in the complex
0— H*X,0X) % Z(X) 5 3 (0X) Lo HF(X,0X

)
are defined as follows: ¢ is given by inclusion where H*(X,0X) ~ kerp2(Ay), this is well
defined since L? harmonic forms are closed, coclosed and in C"~2¢+1(X A*(X)); r is
defined as restriction at the boundary and it maps in 3*(M) since r(w) € ker Ly, Nker G,
by the discussion above and dw = 0 implies dr(w) = 0; the last map d. is the composition
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de = do® where ® : C°(M,A*(M)) — C>®(X,A*(X))/kerz2(Ay) is defined by ®(wp) =
w where w is the solution of (3.1) in Proposition 3.1. Note that ® is only defined modulo
kery2(Ay) and is linear by uniqueness of the solution in (3.1) modulo kery2(Ay). Applying
d kills the indeterminacy with respect to kery2(Aj) since L? harmonic forms are closed.
Then d®(wp) is harmonic and since the boundary value of ®(wy) is closed, then d®(wy) =
O(x), and by Proposition 3.1 it is in L?. For the exactness of the sequence, first note
that kerr is composed of closed and coclosed forms which are O(x), this implies that
those forms are L? by Proposition 3.1, so Im: = kerr since also L? harmonic forms
vanish at the boundary. Now wy € kerd, if ®(wp) is closed, but it is also coclosed
and in C"~2k+1(X A¥(X)) by Proposition 3.1 and the fact that wy € kerd Nker G), C
ker Ly N ker Gy, therefore ®(wy) € Z¥(X) and wy € Imr. Moreover by Proposition 3.1
we have ®(r(w)) —w € kerp2(Ayg), this implies Imr C ker d,, this proves exactness of the
sequence.

(ii) the map in the complex (1.11) are defined similarly: first « : H*(X,0X) — [Z*(X)]
is the composition of the inclusion kery2(Ay) — Z#(X) with the natural map Z*(X) —
[ZF(X)] obtained by taking cohomology class. The map r : [Z¥(X)] — [H*(0X)] is the
map induced by the restriction map Z¥(X) — H*(0X) used in (i). This is well defined
since if da € Z¥(X), then r(da) = day where g = g%, and so [r(da)] = 0 if [ -] denotes
cohomology class in H*(0X). The last map d, : [Z*¥(0X)] — H¥*1(X,0X) is the map
induced by d. defined in (i), i.e. d. = d o ® where ® maps wy to the solution of (3.1).
Note that it is well defined since for day € H*(9X), we have d.(dag) = d®(day) and, by
uniqueness of the solution of (3.1), ®(dag) — dP(ag) € kerp2(Ag41) thus d®(dag) = 0.

To show that kerr = Im, we need to show that if w € Z¥(X) is a representative in
[Zk(X)] such that r(w) = dag for some smooth ag, then there is w’ € kerp2(Ay) such that
w—w' is exact. But as said above, we have ®(dag) —d®(ag) € kerp2(Ay) and &(r(w))—w €
kerp2(Ag) thus w — d®(ap) € kerp2(Ag) and we are done. To show that ker d. = Imr, we
need to prove that for wy € H*(0X) a representative in [H*(9X)] then ®(wp) is closed if
and only if there exists w € Z¥(X) so that r(w) — wp is exact. But ®(wp) is in Z*(X) if
d®(wp) = 0, thus ker d, C Imr; conversely if there is w € Z¥(X) with w = wg+dag+0(x),
then w — (ID(wOerozo) € kerpz (Ak) and so d®(wp) = 0 since ®(dag) —dP(ap) € kerp2(Ag).
To conclude, we need to prove that Imd. C kere. But this is clear since dewy = d®(wy)
is an exact (k + 1)-form in L? with ®(wg) € C"~2*+1(X, A¥(X)). Note that in the case
k = 2, we make use of Proposition 3.10.

(111) Suppose that [H*(0X)] = HX(0X). If w € ker, it is a k-form in kery2(Ay) which
can be written w = da with « smooth. Moreover if ag = |55, then d(®(ag) — a) €
kerp2(Ay) and ®(ag) —a = O(x), an easy integration by parts shows that d®(ag) = da =
w. Here ay is closed since w = O(x), but by assumption there is a af, € 3*(0X) such that
ag — afy = df for some smooth 3. Since now d®(df3) = d[®,d] = 0, we have d.af), = w
and w € Imd,, which gives kert = Imd.. Eventually, the equality [Z*(X)] = H*(X) is
clear from the discussion above since [Z*(X)] ¢ H*(X) and

are both exact sequences. B
As for the converse, if ker /**! = Im d* and [Z*(X)] = H*(X), then we have the exact
sequences

HE(X) 5 [368(M)] 2 HMY(X, M) 5 [250(X)]

H*(X) 5 HY (M) Le, HFY(X, M) v, HF LX)
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and since [ZF1(X)] c HF*(X), we obviously have kers = ker:/ = Imd, and so
[HE(M)] = H¥(M) (recall [F*(M)] C H*(M)). O

Proof of Proposition 1.4: Assume (Qxv,v) > 0. To show surjectivity of 3*(M) —
H*(M), we need to prove that for all wy € C>°(M, A*(M)) closed, there exists an exact
form da (with o € C°°(M, A¥(M))) such that G},(wg + da) = 0. Consider O := §oQrd +
(d6o) 2 ~*+1 which is elliptic, self-adjoint and non-negative if Q) > 0. Its kernel is finite
dimensional (containing ker(d + dg)) and all v € ker O are smooth by elliptic regularity,
and satisfy (0oQrdv,v)r> = 0, which implies (Qrdv,dv)r> = 0. Let H C L?(A¥(M))
be the L? completion of the set C°°(M, A*(M)) N kerd of smooth closed forms and let
us define Q the symmetric form Q(v,v) := (Qgv,v)r2 on H, it is a non-negative form
induced by i@y on H where [Ty denotes orthogonal projection from L2(A*¥(M)) to H.
The form has a domain D(Q) and Friedrichs extension theorem implies that there exists a
self adjoint operator Q' : H — H with domain D(Q) such that (Q¥ u, u) = Q(u,u) for
u € D(Q)ND(QF). But clearly d(C>(M,A*~1(M))) C D(QF") and so HuQrdv = QF dv
for v smooth. Using now the spectral theorem for Q?, we see that Qgrdv = 0 with v
smooth if and only if (Qrdv, dv) = 0 and v is smooth, thus in particular if v € ker O. Thus
Qrdv L w for all w € H if v € ker O. Now this implies that, with w closed and smooth, we
have (v, Grw) = (Qrdv,w) = 0 for v € ker O since Qy, is symmetric on closed forms, and so
Gw is in the range of O and there exists a such that Do = —Gw, but since Im G, C Im dg
which is orthogonal to Im d, we deduce that (ddy)? ~**1a = 0 and this achieves the proof.
Note in particular that in this case {dp; Ly—1¢ = 0} = {dp; Qrde € Im dy}, see Corollaries
2.12 and 2.13 of [3] for discussions about these spaces. O

8. COMPUTATIONS IN SOME SPECIAL CASES
In this section we compute the operator Li, G and () in dimension 4 and 6.

Proposition 8.1. Let (M*, k) a four dimensional Riemannian manifold and define for
any symmetric 2-tensor H the map j(H) := J(h=*H) where J is defined in (2.4). Then
we have

1 1 e 2 1 o 2
L, = §6d7 G = _Zé(A — 2j(Ric) + §Scal), Q1 = B (A — 2j§(Ric) + §Sca1),

1 . 2 . 1 . 9 2
Ly = —1—66(A —2j(Ric) + §Scal) d, Gop=0, Qo= 1 (AScal 3|Ric|* + Scal >
where Ric is the Ricci tensor of h and Scal its scalar curvature

Remark: If n =4, Lz_5 is the Paneitz operator (up to a constant factor). The result
of Gursky and Viaclovsky [14] says that if the Yamabe invariant Y (M, [ho]) is positive
and

1
/ Qdvoly, + =Y (M, [ho])* >0
v 6

then Ly is a non-negative operator with kernel reduced to constants. Combining with The-
orem 2.6 of Branson-Gover[3], we have that H!(M) ~ H'(M) and there is a conformally
invariant basis of H*(M) with respect to [ho] made of conformal harmonics.

Corollary 8.2. Let M* be a four dimensional manifold and \i(z) > --- > M\(z) the
eigenvalues of its Ricci curvature at x. If Ao(x) + Az(x) + Aa(x) > 0 for all x € M then
HY (M) — HY(M) is surjective.

Proof: Let D be the Levi-Civita connection of the metric h and w be a closed 1-form.
By decomposing orthogonally the bilinear tensor Da in antisymmetric part %“, symmetric
trace free part Sy and trace part *T‘Mh, we get (recall that w is closed)

|day? (0a)® _ (0)?

2 2
= e— — > .
|Dal 5+ |So|* + 2 1
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Now, by the Bochner formula, we get

(Aw,w) = [ Dw|2 + Ric(w,w) > [[dw]2/4 + /M Ric(w, w) = <A‘jl’ w) 4 /M Ric(w, ),
and so (Aw,w) > 3 [,, Ric(w,w). Therefore,

(Qrw,w) = %(Aw,w} — /M Ric(w,w) +

1 1
Scal 12> f/ Scallw|? — Ric(w,w),
3 3y

/ ()\1 + /\2 + )\3 + )\4)|w|2 — /\1|w|2 Z / ()\2 + )\3 + )\4)\w|2 Z 0,
M M

and we conclude by using Proposition 1.4. O

Proposition 8.3. Let (M® h) be a siz dimensional manifold. Let j be defined like in
Lemma 8.1 and tr(H) denotes the trace of a symmetric tensor H with respect to h, then
we have

1 1 o 2 1 . 2
Ly = iéd, Gy = 16<A — j(Ric) + gSczﬂ), Q2 = 3 (A — j(Ric) + EScal>,
1 . 2
Ly = _Ed(A — j(Ric) + EScal)d,
(6d)26§ N 6dErS  0Erdd  0E1dS  6dOEy | 0B N SE?

64 \ 32 16 16 16 26 =
O = 7% n d54E1 n 5d4El B dE815 E14d5 B 2E1;E2’
2

; ) .

wi= 7ﬁA28C&1 - hO(RIC’:aPngSS = AE&? B 3824900ASC3“12 B ‘diﬁn

51 3 1 1y 13 9 9 1 )

- 1° — —tr((h — 1— —h B

64000sca 556 r((hg 'Ric)?) + 2560\R1c| Sca 3 o(Ric, B),

where Eq := J(P? +2B) — |P|?/2 and E, := J(P) —tr(P)/2, B denotes the Bach tensor

of h, P the Schouten tensor, Ric the Ricci tensor and Scal the scalar curvature.

Gy =

Proposition 8.4. For any n > 4, we have the identities
nq/0dd  6j(P) Tr(P)Id n4q/0dd j(Ric) Scalld
n —(—1)z (== _ — (1)t ({2 _ _
Gg-1=(-1) ( 4 2 o 4 ) (=1) ( 4 5(7172 Q(nfl)))’
(A 2j(Ric)  Scalld
Q%_l_(Q n—2 +n—1)’
(dd j(Ric) ScalId )d

Lo o=—6(——
272 16 4(n—2)  8(n—1)

(6d)?6 | 0dES OE\6d  SEydS B, | OE, OB} )

Gya=(-)F(

64 32 16 16 16 16 ' 8
A% dSE, 0dE, dE;§ FEyds 2E?+ E,
Cso=—g 0 Y s a1
_ (0d)* | 8dE\0d  0E\ddd  6dOE\d | 6End | OERd
TV 192 96 96 96 48

where By := J(P*+ 22.) — |P|?/2 and Ey := J(P)—tr(P)/2, B denotes the Bach tensor
of h, P the Schouten tensor, Ric the Ricci tensor and Scal the scalar curvature.

For the non critical case, we have
Proposition 8.5. We set j*(H) = 2j(H) — tr(H)Id. For any n > 3, we have
0d  (n—2k—2)dd (n+k—2)(n—2k— 2)SCal _ (n—2k —2)j(Ric)
2 2(n—2k+2) 8(n—1)(n—2) 2(n—2)

L, =
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which generalizes the conformal Laplacian on functions,

12— _n—2k—4< (d6)? N (6d)? N 2454 (P)s 265*(P)d
L 16 n—2k+4 n—-2k—-4 n—-2k+4 n—-2k—4
CJP)ATAEP) |y (n — 2k)j4(P)?

2 TP ) 1 )

which generalizes the Paneitz-Branson operator on functions.

Proofs of Propositions 8.1, 8.3, 8.4 and 8.5: This is a quite tedious computation, therefore
we do not give the full details. By [6, Eq. (3.18)], we have

P h h

1 2 4102 6’3 6

e=U—-2"7 o T g ;

hy they = (I —x 5 T2 5 x48+0(x )

whith P = —L_(2h5'Ric — S217) by = 22 for n = 4 and hy = — 2B 4 P2 gng
str(P(hy ' B)) . :

tr(hs) = —————— for n = 6 (where B is the Bach tensor); note that we have ignored

the first log term in the metric expansion (i.e. the obstruction tensor) in dimension 4
and 6 since, as it is clear from Lemma 2.1, they do not show up in the construction the

Lf;, Gr,Qr. Weset B =0 forn=4and B' = 2hy B for n = 6. Using the relations

n—4

L7V =T—Aj2® — (Ay — A2t — (A3 + A3 — A1 Ay — Ay Ay)a® + o(2®),
LT'QL = I+ Aja® + (A + [A}, A])a® + (A5 + [A], Az] + [A), Ar] + A[Ay, A])2® +o(a®),
for L = (I + A12® 4+ Asa® + A32® + 0(2%)) and Q = (I + Aja® + Ayz" + Aja® + o(29)),

and the notations of the proof of Lemma 2.1, we get

P 3P% + 2B’ hs +6P? + 3B'P + 3PB’
hthg =1+ 2>— +2* + + 28 st + + + o(x%),
2 16 48
P? 2B 2h3 + P3 +4PB' 4+ 2B'P
'Z {E3— 3+ +16 + +0(£L’6)7

P ,P 4+ B  2h3+3P3+5PB +4B'P
+ B o2hs+3P° + + T o(a®),

A, = —Px—

_ 24" 4
Op =T+ 4+ v 192
2 J(P)

J(P? +2B') + J(P)?
4
;T 32 ’
+$6(J(4h3 +2P% + 10PB' + 2B'P) + 3J (2B’ + P?)J(P) + J(P)?
384
— 2 / 2
I :[_xzj(P) g J(P* +2B') + J(P) )
4 32
.6 (—J(4h3 +2P3 + 10PB' + 2B'P) + 3J(P)J(2B' + P?) — J(P)?
384

Then we obtain

2 [J(P), %0] +x4([J(P),[J(P),*O]] - [J(PQJFQB'%*O])
1 32
or [J(P)®+ J(4hs + 2P + 10PB’ + 2B'P), x|

e (_ 384
J(P)[J(P),*o]J(P) + [J(P),[J(2B" 4+ P?), %]
128

I,=1+=x

) + o(z°),

) + o(z°).

*y =*x9 — T

+

from which we infer that

*61[*07J(P)]+x3*61[*07J(P2+2B')]+[J(P)7*61J(P)*o] -
2 8 64

*;1 [81,*1] =z
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where
C = =2x," [J(P)® + J(2h3 + P* + 5PB’ + B'P),%o| — [J(P), [J(P), % " J(P)xo]]
+2[xg LT (P) %o +2J(P), % ' J(2B' + P?) xg —J (2B’ + P?)]
using the relations xoJ (H) + J(H)xq = tr(H)*o and [J(H), J(H')] = J([H, H']), we get

LB c’
-1 _ 32 5
*y  [Opxe] = 2By 2 ST 5
with
/ -1 3 3 / / 2 / tr(P2)
C' = — " [J(P)® + J(2h3 + P* + 3PB' + 3B'P), x|, E,:=J(P?>+2B') - 5

E D
[507721] +Z‘4E where D := [50,E2] —|—2[[50,E1],E1].

6x:60+1'2

Therefore,
A — —(20,)? + (n — 2k)20, 2(—1)k+1q
k 0 —(20,)? + (n — 2k + 2)20,
2 Ao — Ey20, (=1)*[d, ]
2(=1)F15y  Ag— Ey(2+ 20,)

af A= Asxdy (—1)*[d, A
+x (2(—1)k+1[50,E1] A — As(4+ x&;))

where A; = w, Ay = % (since the Bach tensor is trace-free), As :=

—(=1)*32 and, when k = 1, Agl := —2A1 = ;35 (Scal)® + Ztr(P3) + 2ho(ho P, B).

For n = 6 and k = 1 we follow the formal method of Subection 4.2.3. We first have
, dx  5,dScal Scaldz 4, AScal  Scal® _ |P|? dx

wr = T (g s T (e T a0 T 160 %

and so, by computing dwr, and Agwr,, one finds

_dAScal _ dScal’ d|P[* __dAScal _1ldScal’ d[Ric|?

Dyl = =
160 800 16 160 3200 64
Ey,00)dScal (A — 6A2)Scal AScal ~ Scal®>  |PJ]?
fB’lel[l’O - Ay —6E -
0 AT 40 (B0 =68 (Hgr" + o0~ 16
3 3[E1, 8] 3
= S 3 e(PY) 4 Sho(hoP, B) + 20 gseal - 3 pp2seal
2000 cal +16 r( )+ o(hoP, B) + ca 160| |*Sca
A?Scal ~ AScal® B A\P|2 3ScalAScal  3Scal® B 3Scal|P|?
160 800 16 800 4000 80
_ 153 3, 3 —1p:3 2 b 2
= 320008 al” + 128tr((h0 Ric)?) — 1280|Rlc\ Scal + 6hO(Rlc B) + 160ASC&1
+AZScal - AlRic|? N 3|dScal|? n 3ho(Ric, Hess Scal)
160 64 320 160
where, by the second Bianchi identity, we have that §(J(P)dScal) = — ‘ds‘fw — h"(RiC’I;eSS Scal) _
%Oalg. Hence we get
ho(Ric, Hess Scal)  A|Ric|? 29 \dScal\2
- ——A’Scal + : - A
Qo= 1920 Sea 320 78 " 38400 Seal” + 510
51
Seal® + —L_tr((hy 'R Ric[?Scal + — ho(Ric, B
0002+ g5 (ha " Rie)”) ~ 2560| el Scal + g5ho(Ric, B)
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The other computations are made similarly. For instance, for k =n/2 — 1,

1, 00dd
Awp, = 2%5pdwy + 2*(—1)2 ! (OTOWO — 250 E1wo) A dx + O(x?),
and so 5 ds
By _jwo = —OTOWO + 200 E1wo.

We have dwp, = w—;éoElwo + O(z"), and so Cz_; = 50%. By Proposition 4.5,

4 2
which implies the expression for Lz _» by (4.11). For k = § — 2, we have

d6w0 (deo ( ) (50.)0

Gy 1= (_1)%+1<M 50E1),

wFlsz+$2(— 8 — 1 + x)
n 6E1w0 (Sd(S(UO E15w0 dx
-1 4 _ _ puind
D Ee (=5 16 s )
0 (=1)% (20, — 6) 5 (00 (=1)5E; g (BBl (1) 4,
0= (o 0 L R S R (R 1S
+$6 2[50,A2]+[8[50,E1]7E1]
0
and so
C o (SOAQ + 50E% _ (SoEld(SO _ (SoEl(Sod
72Ty 8 16 g
_ 300Ay  OE\6d  36EydS  6dOEy | (3d)?5  6dES | 30K}
By2="5 2 8 i 1 s tao
e (0?5 6dE\G  6E\6d  SE\dS  6dSEy | OBy OB}
Gy2=(-1) ( 61 32 16 16 16 16 8 )

In the case k = & — 1, we have w%l =wg A di +m2( T S 4 El)/\dx D' o= (—1)%“%
and BYy , = (~1)¥d0By — 410 — B, — (d‘” + 6dE) + Fyds — 2E2 + Wl . So we get

A% dSEy 6dE, dE,5 FEyds 2E2+ E,
Cs2="g T T s 44
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