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Abstract. For odd dimensional Poincaré-Einstein manifolds (Xn+1, g), we study the

set of harmonic k-forms (for k < n
2

) which are Cm (with m ∈ N) on the conformal

compactification X̄ of X. This is infinite dimensional for small m but it becomes

finite dimensional if m is large enough, and in one-to-one correspondence with the
direct sum of the relative cohomology Hk(X̄, ∂X̄) and the kernel of the Branson-

Gover [3] differential operators (Lk, Gk) on the conformal infinity (∂X̄, [h0]). In a

second time we relate the set of Cn−2k+1(Λk(X̄)) forms in the kernel of d + δg to
the conformal harmonics on the boundary in the sense of [3], providing some sort

of long exact sequence adapted to this setting. This study also provides another

construction of Branson-Gover differential operators, including a parallel construction
of the generalization of Q curvature for forms.

1. Introduction

Let (M, [h0]) be an n-dimensional compact manifold equipped with a conformal class
[h0]. The k-th cohomology group Hk(M) can be identified with ker(d+δh) for any h ∈ [h0]
by usual Hodge-De Rham Theory. However, the choice of harmonic representatives in
Hk(M) is not conformally invariant with respect to [h0], except when n is even and k = n

2 .
Recently, Branson and Gover [3] defined new complexes, new conformally invariant spaces
of forms and new operators to somehow generalize this k = n

2 case. More precisely, they
introduce conformally covariant differential operators LBG,`

k of order 2` on the bundle
Λk(M) of k-forms, for ` ∈ N (resp. ` ∈ {1, . . . , n2 }) if n is odd (resp. n is even). A
particularly interesting case is the critical one in even dimension, this is

(1.1) LBG
k := L

BG,n2−k
k .

The main features of this operator are that it factorizes under the form LBG
k = GBG

k+1d for
some operator

(1.2) GBG
k+1 : C∞(M,Λk+1(M))→ C∞(M,Λk(M))

and that GBG
k factorizes under the form GBG

k = δh0Q
BG
k for some differential operator

(1.3) QBG
k : C∞(M,Λk(M)) ∩ ker d→ C∞(M,Λk(M))

where δh0 is the adjoint of d with respect to h0. This gives rise to an elliptic complex

. . .
d−→ Λk−1(M) d−→ Λk(M)

LBG
k−−−→ Λk(M)

δh0−−→ Λk−1(M)
δh0−−→ . . .

named the detour complex, whose cohomology is conformally invariant. Moreover, the
pairs (LBG

k , GBG
k ) and (d,GBG

k ) on Λk(M) ⊕ Λk(M) are graded injectively elliptic in the
sense that δh0d+ dGBG

k and LBG
k + dGBG

k are elliptic. Their finite dimensional kernel

(1.4) Hk
L(M) := ker(LBG

k , GBG
k ), Hk(M) := ker(d,GBG

k )

are conformally invariant, the elements of Hk(M) are named conformal harmonics, provid-
ing a type of Hodge theory for conformal structure. The operator QBG

k above generalizes
Branson Q-curvature in the sense that it satisfies, as operators on closed k-forms,

Q̂BG
k = eµ(2k−n)(QBG

k + LBG
k µ)

1
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if ĥ0 = e2µh0 is another conformal representative.

The general approach of Fefferman-Graham [4] for dealing with conformal invariants is
related to Poincaré-Einstein manifolds, roughly speaking it provides a correspondence be-
tween Riemannian invariants in the bulk (X, g) and conformal invariants on the conformal
infinity (∂X̄, [h0]) of (X, g), inspired by the identification of the conformal group of the
sphere Sn with the isometry group of the hyperbolic space Hn+1. A smooth Riemann-
ian manifold (X, g) is said to be a Poincaré-Einstein manifold with conformal infinity
(M, [h0]) if the space X compactifies smoothly to X̄ with boundary ∂X̄ = M , and if there
is a boundary defining function of X̄ and some collar neighbourhood (0, ε)x × ∂X̄ of the
boundary such that

(1.5) g =
dx2 + hx

x2

(1.6) Ric(g) = −ng +O(x∞)

where hx is a one-parameter family of smooth metrics on ∂X̄ such that there exist some
family of smooth tensors hjx (j ∈ N0) on ∂X̄, depending smoothly on x ∈ [0, ε) with

(1.7)
{
hx ∼

∑∞
j=0 h

j
x(xn log x)j as x→ 0 if n+ 1 is odd

hx is smooth in x ∈ [0, ε) if n+ 1 is even

(1.8) hx|x=0 ∈ [h0].

The tensor h1
0 is called obstruction tensor of h0, it is defined in [4] and studied further

in [9]. We shall say that (X, g) is a smooth Poincaré-Einstein manifold if x2g extends
smoothly on X̄, i.e. either if n+ 1 is even or n+ 1 is odd and hjx = 0 for all j > 0. It is
proved in [6] that h1

0 = 0 implies that (X, g) is a smooth Poincaré-Einstein manifold.

The boundary ∂X̄ = {x = 0} inherits naturally from g the conformal class [h0] of
hx|x=0 since the boundary defining function x satisfying such conditions are not unique.
A fundamental result of Fefferman-Graham [4], which we do not state in full generality, is
that for any (M, [h0]) compact that can be realized as the boundary of smooth compact
manifold with boundary X̄, there is a Poincaré-Einstein manifold (X, g) for (M, [h0]), and
hx in (1.7) is uniquely determined by h0 up to order O(xn) and up to diffeomorphism
which restricts to the Identity on M . The most basic example is the hyperbolic space
Hn+1 which is a smooth Poincaré-Einstein manifold for the canonical conformal structure
of the sphere Sn, as well as quotients of Hn+1 by convex co-compact groups of isometries.

It has been proved by Mazzeo [16] that1 for a Poincaré-Einstein manifold (X, g), the
relative cohomology Hk(X̄, ∂X̄) is canonically isomorphic to the L2 kernel kerL2(∆k) of
the Laplacian ∆k = (d + δg)2 with respect to the metric g, acting on the bundle Λk(X̄)
of k-forms if k < n

2 . In other terms the relative cohomology has a basis of L2 harmonic
representatives. In this work, we give an interpretation of the spaces Hk,Hk

L in terms of
harmonic forms on the bulk X with a certain regularity on the compactification X̄.

Theorem 1.1. Let (Xn+1, g) be an odd dimensional Poincaré-Einstein manifold with
conformal infinity (M, [h0]) and let ∆k = (d + δg)2 be the induced Laplacian on k-forms
on X where 0 ≤ k < n

2 − 1. For m ∈ N and 0 < k < n
2 − 1, define

Kk
m(X̄) := {ω ∈ Cm(X̄; Λk(X̄)); ∆kω = 0},

1The class of manifold considered by Mazzeo is actually larger and does not require the asymptotic
Einstein condition (1.6)
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then Kk
m(X̄) is infinite dimensional for m < n− 2k + 1 while it is finite dimensional for

m ∈ [n− 2k + 1, n− 1] and there is a canonical short exact sequence

(1.9) 0 −→ Hk(X̄, ∂X̄) i−→ Kk
m(X̄) r−→ Hk

L(M) −→ 0

where Hk
L is defined in (1.4) and Hk(X̄, ∂X̄) is the relative cohomology space of degree k

of X̄, i denotes inclusion and r denotes pull back by the natural inclusion ∂X̄ → X̄. If in
addition the Fefferman-Graham obstruction tensor of (M, [h0]) vanishes, i.e. if (X, g) is
a smooth Poincaré-Einstein manifold, then Kk

n−2k+1(X̄) = Kk
∞(X̄).

When k = n
2 − 1, the same results hold by replacing Kk

n−2k+1(X̄) by the set of harmonic
forms in Cn−2k+1,α(X̄,Λk(X̄)) for some α ∈ (0, 1).
When k = 0, K0

m(X̄) is infinite dimensional for m < n while K0
n(X̄) is finite dimensional

and the exact sequence (1.9) holds.

In establishing this Theorem, we show that we can recover the Branson-Gover operators
LBG
k , GBG

k , QBG
k from harmonic forms on a Poincaré-Einstein manifold with conformal

infinity (M, [h0]). Let us recall quickly and informally how the GJMS and Branson-
Gover operators are defined in [11, 3]. The ambient metric is a Lorentzian metric on
Q̃ := M × (0,∞)t× (−1, 1)ρ, homogeneous of degree 2 in the t variable, which extends the
tautological tensor t2h0 at the cone Q = {ρ = 0} and with Ricci curvature vanishing to
n/2−1 order (resp. infinite order) at Q when n is even (resp. n odd). The GJMS operators
Pk are defined in two ways in [11]: for f a (k − n/2)-homogeneous function on Q, take a
homogeneous extension f̃ on Q̃ and define Pkf := [∆̃kf̃ ]|Q where ∆̃ is the Laplacian for the
ambient metric; the second equivalent way is to consider an extension f̃ of f to Q̃ which
satisfies ∆̃f̃ = O(ρk−1) and, up to mutliplicative constant, Pkf = [(ρt2)1−k∆̃f ]Q. The
second definition gives Pk as an obstruction to extend smoothly from the cone a harmonic
homogeneous function f . The Branson-Gover operators defined in [3] are constructed
following the first method in [11] but with many complications due to the fact that one
works with bundle valued objects. Our approach is more closely related to the harmonic
extension approach of GJMS [11]. We say that a k-form ω is polyhomogeneous on X̄ if it
is smooth on X and with an expansion at the boundary M = {x = 0}

ω ∼
∞∑
j=0

`(j)∑
`=0

xj log(x)`(ω(t)
j,` + ω

(n)
j,` ∧ dx)

for some forms ω(t)
j,` ∈ C∞(M,Λk(M)) and ω

(n)
j,` ∈ C∞(M,Λk−1(M)) and some sequence

j ∈ N0 → `(j) ∈ N0. We show that the Branson-Gover operators appear naturally in the
resolution of the absolute or relative Dirichlet type problems for the Laplacian on forms
on X̄.

Theorem 1.2. Let (Xn+1, g) be an odd-dimensional Poincaré-Einstein manifold with
conformal infinity (M, [h0]), let k < n

2 and α ∈ (0, 1).
(i) For any ω0 ∈ C∞(M,Λk(M)), harmonic forms ω ∈ C n

2−k,α(X̄,Λk(X̄)) with boundary
value ω|M = ω0 exist, are unique modulo kerL2(∆k) and are actually polyhomogeneous with
an expansion at M at order O(xn−2k+1) given by

ω = ω0 +

n
2−k∑
j=1

x2j(ω(t)
j + ω

(n)
j ∧ dx

x
) + xn−2k log(x)Lkω0

+xn−2k+1 log(x)(Gkω0) ∧ dx+O(xn−2k+1)

where Lk, Gk are, up to a normalization constant, the Branson-Gover operators in (1.1),
(1.2) and ω(·)

j are forms on M .
(ii) For any closed form ω0 ∈ C∞(M,Λk−1(M)), harmonic forms ω such that xω ∈
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C
n
2−k+1,α(X̄,Λk(X̄)) and ω = x−1(ω0 ∧ dx) + O(x) exist, are unique modulo kerL2(∆k)

and xω is polyhomogeneous with expansion at M given by

ω = ω0 ∧
dx

x
+

n
2−k∑
j=1

x2j(ω′j
(t) + ω′j

(n) ∧ dx
x

) + xn−2k+1 log(x)(Qk−1ω0) ∧ dx+O(xn−2k+1)

where Qk−1 is, up to a normalization constant, the operator (1.3) of Branson-Gover and
ω′j

(·) are smooth forms on M .

The Dirichlet problem for functions in this geometric setting is studied by Graham-
Zworski [12] and Joshi-Sa Barreto [15]. In a more general setting (but again for functions),
it was analyzed by Anderson [1] and Sullivan [20].

We also prove in Subsection 4.6 that, with Q0 defined by the Theorem above,

Q01 =
n(−1)

n
2 +1

2n−1 n
2 !(n2 − 1)!

Q

where Q is Branson Q-curvature. So Q can be seen as an obstruction to find a harmonic
1-form ω with xω having a high regularity at the boundary and value dx at the boundary.

In addition, this method allows to obtain the conformal change law of Lk, Gk, Qk, the
relations between these operators, and some of their analytic properties (e.g. symmetry
of Lk and Qk) see Subsection 4.4 and Section 4.6.

Next, we analyze the set of regular closed and coclosed forms on X̄. Recall that on
a compact manifold X̄ with boundary, equipped with a smooth metric ḡ, there is an
isomorphism

Hk(X̄) ' {ω ∈ C∞(X̄,Λk(X̄)); dω = δḡω = 0, i∂nω|∂X̄ = 0}

where ∂n is a unit normal vector field to the boundary, and the absolute cohomology
Hk(X̄) is ker d/Im d where d acts on smooth forms. Moreover, one has the long exact
sequence in cohomology

(1.10) . . . −→ Hk−1(∂X̄) −→ Hk(X̄, ∂X̄) −→ Hk(X̄) −→ Hk(∂X̄) −→ Hk+1(X̄, ∂X̄) −→ . . .

and all these spaces are represented by forms which are closed and coclosed, the maps
in the sequence are canonical with respect to ḡ. In our Poincaré-Einstein case (X, g),
say when k < n

2 , only the space Hk(X̄, ∂X̄) in the long exact sequence has a canonical
basis of closed and coclosed representatives with respect to g (the L2 harmonic forms), in
particular there is no canonical metric on the boundary induced by g but only a canonical
conformal class. We prove

Theorem 1.3. Let (Xn+1, g) be an odd dimensional Poincaré-Einstein manifold with
conformal infinity (M, [h0]) and let k ≤ n

2 . Then the spaces

Zk(X̄) := {ω ∈ Cn−2k+1(X̄,Λk(X̄)); dω = δgω = 0}

are finite dimensional and, if the obstruction tensor of [h0] vanishes, they are equal to
{ω ∈ C∞(X̄,Λk(X̄)); dω = δgω = 0}. Then, we have
(i) For k < n

2 there is a canonical exact sequence

0 −→ Hk(X̄,M) −→ Zk(X̄) −→ Hk(M) −→ Hk+1(X̄,M)

where Hk(M) is the set of conformal harmonics defined in (1.4).
(ii) Let [Zk(X̄)] and [Hk(M)] be respectively the image of Zk(X̄) and Hk(M) by the
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natural cohomology maps Zk(X̄) → Hk(X̄) and Hk(M) → Hk(M). Then there exists a
canonical complex with respect to g
(1.11)

0 −→ . . .
ιk−→ [Zk(X̄)] rk−→ [Hk(M)]

dke−→ Hk+1(X̄,M) ιk+1

−−−→ [Zk+1(X̄)] −→ . . . −→ H
n
2 (X̄,M)

whose cohomology vanishes except possibly the spaces ker ιk/Im dk−1
e . Here ιk, rk and

dke denote respectively inclusion, restriction to the boundary and composition of d with
harmonic extension (see Section 7).
(iii) [Hk(M)] = Hk(M) if and only if [Zk(X̄)] = Hk(X̄) and ker ιk+1 = Im dke . If this
holds for all k ≤ n

2 this is a canonical realization of (half of) the long exact sequence
(1.10) with respect to g.

The surjectivity of the natural map Hk(M)→ Hk(M) is named (k − 1)-regularity by
Branson and Gover, while (k−1)-strong regularity means that the map is an isomorphism,
or equivalently kerLk−1 = ker d (see [3, Th.2.6]). Thus, (k − 1) regularity means that
the cohomology group can be represented by conformally invariant representatives. If
Hk+1(X,M) = 0, our result implies that (k − 1)-regularity means that the absolute
cohomology group Hk(X̄) can be represented by Cn−2k+1(X̄,Λk(X̄)) forms in ker d+ δg.
We give a criteria for (k − 1)-regularity:

Proposition 1.4. Let (M, [h0]) be a compact conformal manifold. If Qk is a positive
operator on closed forms in the sense that 〈Qkω, ω〉L2 ≥ 0 for all ω ∈ C∞(M,Λk(M)) ∩
ker d, then Hk(M)→ Hk(M) is surjective.

We should also remark that (k − 1)-regularity holds for all k = 1, . . . , n2 if for instance
(M, [h0]) contains an Einstein metric in [h0], this is a result of Gover and Silhan [7]. If
n = 4, Ln

2−2 = L0 is the Paneitz operator (up to a constant factor) and using a result of
Gursky [14], we deduce that if the Yamabe invariant Y (M, [h0]) is positive and∫

M

Qdvolh0 +
1
6
Y (M, [h0])2 > 0

then H1(M) ' H1(M) and there is a basis of conformal harmonics of H1(M).

Ackowledgements. This work is dedicated to the memory of Tom Branson; unfortu-
nately we could not finish it before the special volume of SIGMA in his honour appeared.
We thank Rafe Mazzeo for suggesting to find canonical representatives in Hk(X̄) with
respect to g, and Rod Gover for discussions about his paper with Branson. Finally we
are really grateful to the anonymous referee for his very careful reading and his sug-
gestions. C.G. was supported partially by NSF grant DMS0500788, and ANR grants
ANR-05-JCJC-0107091 and 05-JCJCJ-0087-01.

2. Poincaré-Einstein manifolds and Laplacian on forms

2.1. Poincaré-Einstein manifolds. Let (X, g) be a Poincaré-Einstein manifold with
conformal infinity (M, [h]). Graham-Lee and Graham [10, 8] proved that for any conformal
representative h0 ∈ [h], there exists a boundary defining function x of M = ∂X̄ in X̄ such
that

|dx|2x2g = 1 near ∂X̄, x2g|TM = h0,

moreover x is the unique defining function near M satisfying these conditions. Such a
function is called a geodesic boundary defining function and if ψ is the map ψ : [0, ε]×M →
X̄ defined by ψ(t, y) := ψt(y) where ψt is the flow of the gradient ∇x2gx, then ψ pulls the
metric g back to

ψ∗g =
dt2 + ht

t2
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for some one-parameter family of metrics on M with h0 = x2g|TM . In other words the
special form (1.5) of the metric near infinity is not unique and corresponds canonically
to a geodesic boundary defining function, or equivalently to a conformal representative of
[h0].

We now discuss the structure of the metric near the boundary, the reader can refer to
Fefferman-Graham [6, Th 4.8] for proofs and details. Let us define the endomorphism Ax
on TM corresponding to ∂xhx with respect to hx, i.e. as matrices

Ax = h−1
x ∂xhx.

Then the Einstein condition Ric(g) = −ng is equivalent to the following differential equa-
tions on Ax

x∂xAx + (1− n+
x

2
Tr(Ax))Ax = 2xh−1

x Ric(hx) + Tr(Ax)Id

δhx(∂xhx) = dTr(Ax)

∂xTr(Ax) +
1
2
|Ax|2 =

1
x

Tr(Ax)

A consequence of these equations and (1.7) is that if Ric(g) = −ng + O(xn−2), then hx
has an expansion at x = 0 of the form

hx =

{
h0 +

∑n
2−1
j=1 x2jh2j + hn,1x

n log x+O(xn) if n is even
h0 +

∑(n−1)/2
j=1 x2jh2j +O(xn) if n is odd

for some tensors h2j and hn,1 on M , depending in a natural way on h0 and covariant
derivatives of its Ricci tensor. When n is even, the tensor hn,1 is the obstruction tensor
of h0 in the terminology of Fefferman-Graham [6], it is trace free (with respect to h0) and
so the first log term in Ax is nh−1

0 hn,1x
n−1 log(x). A smooth Poincaré-Einstein manifold

such that hx has only even powers of x in the Taylor expansion at x = 0 is called an
smooth even Poincaré-Einstein manifold. If n is even and hn,1 = 0, the metric hx is a
smooth even Poincaré-Einstein manifold. When n is odd, the term ∂nxhx|x=0 is trace free
with respect to h0, which implies that Ax has an even Taylor expansion at x = 0 to order
O(xn−1). If ∂nxhx|x=0 = 0, then hx has an even Taylor expansion in powers of x at x = 0
with all coefficients formally determined by h0. The equations satisfied by Ax easily give
(see [4]) the first terms in the expansion

(2.1) hx = h0 − x2P0

2
+O(x4), where P0 =

1
n− 2

(
2 Ric0 −

Scal0
n− 1

h0

)
,

P0 is the Schouten tensor of h0, Ric0 and Scal0 are the Ricci and scalar curvature of h0.

2.2. The Laplacian, d and δ. Let Λk(X̄) be the bundle of k-forms on X̄. Since for
the problem we consider it is somehow quite natural, we will also use along the paper
the b-bundle of k-forms on X̄ in the sense of [19], it will be denoted Λkb (X̄). This is
the exterior product of the b cotangent bundle T ∗b X̄, which is canonically isomorphic
to T ∗X̄ over the interior X and whose local basis near a point of the boundary ∂X̄ is
given by dy1, . . . , dyn, dx/x where y1, . . . , yn are local coordinates on ∂X̄ near this point.
We refer the reader to Chapter 2 of [19] for a complete analysis about b-structures. Of
course one can pass from Λk(X̄) to Λkb (X̄) obviously when considering forms on X. The
restriction Λkb (Uε) of Λk(X̄) to the collar neighbourhood Uε := [0, ε]×M of M in X̄ can
be decomposed as the direct sum

Λkb (Uε) = Λk(M)⊕ (Λk−1(M) ∧ dx
x

) =: Λkt ⊕ Λkn.
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In this splitting, the exterior derivative d and its adjoint δg with respect to g have the
form

(2.2) d =
(

d 0
(−1)kx∂x d

)
, δ =

(
x2δx (−1)k ?−1

x x−2k+n+3∂xx
2k−n−2?x

0 x2δx

)
and the Hodge Laplace operator is given by

(2.3)

∆k =
(
−(x∂x)2 + (n− 2k)x∂x 2(−1)k+1d

0 −(x∂x)2 + (n− 2k + 2)x∂x

)
+
(
x2∆x − x ?−1

x [∂x, ?x]x∂x (−1)kx
[
d, ?−1

x [∂x, ?x]
]

(−1)k+1[x∂x, x2δx] x2∆x − x∂xx ?−1
x [∂x, ?x]

)
= P + P ′.

where here, the subscript ·x means “with respect to the metric hx on M” and d in the
matrices is the exterior derivative on M . Note that P is the indicial operator of ∆k in
the terminology of [19].

If H is an endomorphism of TM , we denote J(H) the operator on Λk(M)

(2.4) J(H)(α1 ∧ · · · ∧ αk) :=
k∑
i=1

α1 ∧ · · · ∧ αi(H) ∧ · · · ∧ αk.

When H is symmetric, a straightforward computation gives ?0J(H) +J(H)?0 = Tr(H)?0

and so

(2.5) [?0, J(H)] = 2 ?0 J(H)− Tr(H)?0

Let us define the following operators on k-forms on M

(2.6) E1 = J(h−1
0 P0)− Tr(h−1

0 P0)
2

Id =
2J(h−1

0 Ric0)
n− 2

− n+ 2k − 2
2(n− 1)(n− 2)

Scal0Id.

Using the approximate Einstein equation for g, we obtain

Lemma 2.1. The operator ∆k has a polyhomogeneous expansion at x = 0 and the first
terms in the expansion are given by

(2.7)
∆k = P +

[n2 ]∑
i=1

x2i

(
Ri + Pix∂x Si

S′i R′i + P ′ix∂x

)
+nxn log(x)

(
J(h−1

0 hn,1)x∂x (−1)k+1[d, J(h−1
0 hn,1)]

0 J(h−1
0 hn,1)(n+ x∂x)

)
+O(xn)

where the operators Pi, P ′i , Si, S
′
i, Ri and R′i are universal differential operators on Λ(M)

that can be expressed in terms of covariant derivatives of the Ricci tensor of h0. Moreover
the operators Ri and R′i are of order at most 2, the Si, S′i are of order at most 1 and the
Pi, P

′
i are of order 0. For instance, we have

(2.8)
(
R1 + P1x∂x S1

S′1 R′1 + P ′1x∂x

)
=
(

∆0 − E1x∂x (−1)k[d,E1]
2(−1)k+1δ0 ∆0 − E1(2 + x∂x)

)
where A is defined in (2.6). If k = 0, the xn log(x) coefficient vanishes. Finally, if (X, g)
is smooth Poincaré-Einstein, then ∆k is a smooth differential operator on X̄, and if (X, g)
is smooth even Poincaré-Einstein, then ∆k has an even expansion.

Proof : The polyhomogeneity comes from that of the metric g. It is moreover a smooth
expansion if x2g is smooth on X̄. A priori, by (2.3) the first log x term in the expansion
of ∆ at x = 0 appear at order (at least) xn log x and it comes from the diagonal terms
in P ′ in (2.3). Let us define p = [n2 ] so that the metric hx has even powers in its
expansion at x = 0 up to order x2p+1. We set D the Levi-Civita connection of the metric
x2g = dx2 +hx. Since D∂x∂x = 0 and D∂x∂yi = 1

2

∑
jk ∂xhijh

kj∂yk , the matrix Ox of the
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parallel transport along the geodesic x 7→ (x, y) (with respect to the basis (∂yi)) satisfies
D∂xOx(∂yi) = 0, hence ∂xOx = − 1

2Ax × Ox where Ax is the endomorphism h−1
x ∂xhx.

Note that Ax has a Taylor expansion with only odd powers of x up to x2p and the first
log term is nh−1

0 hn,1x
n−1 log(x). We infer that Ox is polyhomogeneous in the x variable

and has only even powers of x in its Taylor expansion up to x2p, the first log term is
−h

−1
0 hn,1

2 xn log(x). By (2.1), we have ∂2
xh|x=0 = −P0, hence

Ax = −xh−1
0 P0 +O(x2), Ox = Id +

1
4
x2h−1

0 P0 +O(x3).

We note also Ox the parallel transport map. Now the operator Ix(α1∧· · ·∧αk) = α1(Ox)∧
· · · ∧ αk(Ox) is an isometry from Λk(M,hx) to Λk(M,h0). So we have ?x = I−1

x ?0 Ix
and we infer that ?x itself is an operator with a polyhomogeneous expansion in x and
with only even powers of x in its taylor expansion up to x2p, the first log term being
1
2x

n log(x)[J(h−1
0 hn,1), ?0] = −xn log(x) ?0 J(h−1

0 hn,1) by (2.5). Since we have

[∂x, ?x] = ∂x(?x), ∂x(?x)|x=0 = [?0, ∂xIx|x=0] = 0 and ∂2
x(?x)|x=0 = [?0, ∂

2
xIx|x=0]

we get that [∂x, ?x] is polyhomogeneous with only odd powers of x up to order x2p, with
first log term −nxn−1 log(x) ?0 J(h−1

0 hn,1), and that

[∂x, ?x] = ∂x(?x) = x ?0

(
J(h−1

0 P0)− Scal0
2(n− 1)

Id
)

+O(x2).

Since δx = (−1)k ?−1
x d?x, the operators xδx and x2[?−1[∂x, ?x], δx] are odd in x up to

O(x2p+2). By the same way, x2[d, ?−1[∂x, ?x]] is odd up to order x2p+2 and the operators
?−1
x [∂x, ?x]x(k−x∂x), x2∆x and (k−∂xx)x?−1 [?x, ∂x] are even in x up to O(x2p+1). This

achieves the proof by gathering all these facts. �

2.3. Indicial equations. We give the indicial equations satisfied by ∆k, which are es-
sential to the construction of formal power series solutions of ∆kω = 0.

Notation: If f is a function on X̄ and ω a k-form defined near the boundary, we will
say that ω is a On(f) (resp. Ot(f)) if its Λkn (resp. Λkt ) components are O(f).

For λ ∈ C, the operator x−λ∆kx
λ can be considered near the boundary as a family of

operators on Λkt ⊕ Λkn depending on (x, λ), and for any ω ∈ C∞(Uε,Λkt ⊕ Λkn) one has

(2.9) x−λ∆k(xλω) = Pλ

(
ω

(t)
0 + ω

(n)
0 ∧ dx

x

)
+O(x)

where Pλ := x−λPxλ, ω(t)
0 = (ix∂x(ω ∧ dx

x ))|x=0 and ω
(n)
0 := (ix∂xω)|x=0. The operator

Pλ is named indicial family and is a one-parameter family of operators on Λkn⊕Λkt viewed
as a bundle over M , its expression is

(2.10) Pλ =
(
−λ2 + (n− 2k)λ 2(−1)k+1d

0 −λ2 + (n− 2k + 2)λ

)
The indicial roots of ∆k are the λ ∈ C such that Pλ is not invertible on the set of smooth
sections of Λkt ⊕ Λkn over M , i.e. on C∞(M,Λk(M) ⊕ Λk−1(M)). In our case, a simple
computation shows that these are given by 0, n− 2k, 0, n− 2k+ 2. The first two roots are
roots in the Λkt component and the last two are roots in the Λkn component. In particular,
this proves that for j not a root, and (ω(t)

0 , ω
(n)
0 ) ∈ Λk(M) ⊕ Λk−1(M), there exists a

unique pair (α(t)
0 , α

(n)
0 ) ∈ Λk(M)⊕ Λk−1(M) such that near M

∆k

(
xjα

(t)
0 + xjα

(n)
0 ∧ dx

x

)
= xj

(
ω

(t)
0 + ω

(n)
0 ∧ dx

x

)
+O(xj+1)
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More precisely, and including coefficients with log terms, we have for l ∈ N∗ (resp. l = 0)

(2.11)
∆kx

j logl(x)

(
ω

(t)
0

ω
(n)
0

)
= xj logl(x)

(
j(n− 2k − j)ω(t)

0 + 2(−1)k+1dω
(n)
0

j(n− 2k + 2− j)ω(n)
0

)
+O(xj logl−1(x))

(
resp. +O(xj+1)

)
if ω(t)

0 , ω
(n)
0 ∈ C∞(M,Λk(M)⊕Λk−1(M)), and in the critical cases, for any l ∈ N0 = {0}∪N

(2.12)
∆k(logl(x)ω(t)

0 ) = l(n− 2k) logl−1(x)ω(t)
0 − l(l − 1) logl−2(x)ω(t)

0 +O(x2 log x)

∆k(xn−2k logl(x)ω(t)
0 ) = l(2k − n)xn−2k logl−1(x)ω(t)

0 − l(l − 1)xn−2k logl−2(x)ω(t)
0

+O(xn−2k+2 logl(x))

∆k

(
xn−2k+2 logl(x)ω(n) ∧ dx

x

)
= l(2k − 2− n)xn−2k+2 logl−1(x)ω(n) ∧ dx

x

−l(l − 1)xn−2k+2 logl−2(x)ω(n) ∧ dx
x

+O(xn−2k+3 logl(x)).

3. Absolute and relative Dirichlet problems

The goal of this section is to solve the Dirichlet type problems for ∆k when k < n
2 for

the two natural boundary conditions. Note that the vector field x∂x can be seen as the
unit, normal, inward vector field to M in X̄. A k-form ω ∈ Λkb (X̄) is said to satisfy the
absolute (resp. the relative) boundary condition if

lim
x→0

ix∂xω = 0 (resp. lim
x→0

ix∂x(
dx

x
∧ ω) = 0).

We denote Cp,α(X̄,Λkb (X̄)) the sections of Λkb (X̄) which are Cp,α, equivalently ix∂xω

and ix∂x
(
dx
x ∧ ω) are Cp,α on X̄.

3.1. Absolute boundary condition.

Proposition 3.1. Let k < n/2, α ∈ (0, 1) and ω0 ∈ C∞(M,Λk(M)).
(i) There exists a solution ω to the following absolute Dirichlet problem:

(3.1)


ω ∈ Cn−2k−1,α(X̄,Λk(X̄)),
∆kω = 0 on X,
ω|M = ω0, lim

x→0
ix∂xω = 0.

Moreover, this solution is unique modulo the L2 kernel of ∆k.
(ii) The solution ω is smooth in X̄ when n is odd, while it is polyhomogeneous when n is
even with an expansion at order xn of the form

ω =
n−1∑
j=0

xjω
(t)
j +

n−1∑
j=2

xjω
(n)
j ∧ dx

x
+ log x

( n−1∑
j=n−2k

xjω
(t)
j,1 +

n∑
j=n−2k+2

xjω
(n)
j,1 ∧

dx

x

)
+
{
Ot(xn log x) +On(xn+1 log x) if k > 0
O(xn) if k = 0

(3.2)

as x→ 0, where ω(·)
j , ω

(·)
j,1 are smooth forms on M . Moreover, we have

ω
(t)
j = P

(t)
j ω0 for j < n− 2k, ω

(n)
j = P

(n)
j ω0 for j < n− 2k + 2

ω
(t)
n−2k,1 = P

(t)
n−2k,1ω0

where P (t)
j , P

(n)
j , P

(t)
n−2k,1 are universal smooth differential operators on Λ(M) depending

naturally on covariant derivatives of the curvature tensor of h0.
(iii) If n is even and (X, g) is a smooth Poincaré-Einstein manifold, then we have ω =
ω1 +xn−2k log(x)ω2 for some forms ω1, ω2 ∈ C∞(X̄,Λkb (X̄)) with ω2 = O(x∞) if and only
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if ω(t)
n−2k,1 = ω

(n)
n−2k+2,1 = 0.

(iv) ω satisfies δgω = 0. If in addition ω0 is closed, then dω ∈ kerL2(∆k+1) (and dω = 0
when k = n−1

2 ).

3.1.1. Proof of Proposition 3.1. To prove this Proposition, we first need a result of Mazzeo
[16] (note that the ambiant manifold has dimension n in [16] and n+ 1 in this paper):

Theorem 3.2 (Mazzeo). For k < n/2, the operator ∆k is Fredholm and there exists a
pseudodifferential inverse E, bounded on L2(X), such that ∆kE = I − Π0 where Π0 is
the projection on the finite dimensional space kerL2(∆k). This implies an isomorphism
between kerL2(∆k) and the relative cohomology Hk(X̄, ∂X̄) of X̄. Moreover any L2 har-
monic form α is polyhomogeneous with an expansion near ∂X̄ of the form

(3.3) α ∼ xn−2k
∞∑
j=0

l(j)∑
l=0

(α(t)
j,lx

j log(x)l + xj+2 log(x)lα(n)
j,l ∧

dx

x
)

for some α(t)
j,l ∈ C∞(M,Λk(M)), α(n)

j,l ∈ C∞(M,Λk−1(M)) and some sequence l : N0 →
N0. In addition E maps the space {ω ∈ C∞(X̄,Λk(X̄));ω = O(x∞)} into polyhomoge-
neous forms on X̄ with a behaviour like (3.3) near M .

Remark: By using duality through the Hodge star operator ?g, one obtains trivially a
corresponding result for the case k > n

2 + 1. In particular, this gives kerL2(∆k) ' Hk(X̄)
for k > n

2 +1. It sould be noticed that in the case k = n/2, (n+1)/2 and n/2+1, [16] does
not give a bounded pseudodifferential inverse and actually the Laplacian is not Fredholm
in these cases: for k = n/2 or k = n/2 + 1 the range is not closed while for k = (n+ 1)/2
it has infinite dimensional kernel.

We can make the second part of this theorem more precise thanks to the indicial
identities obtained by (2.3).

Corollary 3.3. For k < n/2, any L2 harmonic k-form α on (X, g) is polyhomogeneous
and has an expansion at order xn log x of the form

α = xn−2k+2
(n−1∑
j=0

xjα
(t)
j +

n−1∑
j=0

xjα
(n)
j ∧ dx

x
+O(xn log x)

)
where α(·)

j are smooth forms on M . If in addition the metric (X, g) is a smooth Poincaré-
Einstein manifold, then α ∈ xn−2k+2C∞(X̄,Λk(X̄)) and E maps

E : {ω ∈ C∞(X̄,Λk(X̄));ω = O(x∞),Π0ω = 0} −→ xn−2kC∞(X̄,Λk(X̄)).

Proof : Note that if

α ∼ xn−2k
∞∑
j=0

l(j)∑
l=0

(
α

(t)
j,lx

j log(x)l + xj+2 log(x)lα(n)
j,l ∧

dx

x

)
and ∆kα = O(x∞),

then the indicial equations in Subsection 2.3 and Lemma 2.1 imply that l(0) = 0 and
l(j) ≤ 1 for all j = 1, . . . , n − 1 (and for all j > 0 if hx is smooth in x). Moreover
since dα = 0 for any α ∈ kerL2(∆k), we first obtain from (2.2) that α(t)

0,0 = 0 and so,
by (2.12) that l(j) = 0 for all j = 0, . . . , n − 1 (and for all j > 0 if hx is smooth). The
mapping property of E is straightforward by the same type of arguments and the fact
that ∆kEω = O(x∞) for ω = O(x∞) such that Π0ω = 0.

We will now use the relations (2.9), (2.11) and (2.12) to show that the jet of a so-
lution ω to the Dirichlet problem in Proposition 3.1 is partly determined. Let ω0 ∈
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C∞(M,Λk(M)). Using (2.9) and the form (2.7) of ∆, we can construct a smooth form
ωF1 on X̄, solution to the problem

(3.4)
{

∆kωF1 = Ot(xn−2k) +On(xn−2k+2)
ωF1 |M = ω0

it can be taken as a polynomial in x

(3.5) ωF1 =
n−2k−1∑

2j=0

x2jω
(t)
2j +

n−2k+1∑
2l=2

x2lω
(n)
2l ∧

dx

x

and it is the unique solution of (3.4) modulo Ot(xn−2k) + On(xn−2k+2). Moreover, by
(2.7) and parity arguments, we see that when n is odd, the remaining term in (3.4) can
be repaced by Ot(xn−2k+1) + On(xn−2k+3) (recall also that hx is smooth in that case).
By construction, the ω(t)

j , ω
(n)
n are forms on M which can be expressed as a differential

operators P (t)
j , P

(n)
j on M acting on ω0, determined by the expansion of P given in (2.7),

i.e. by h0 and the covariant derivatives of its curvature tensor.
The indicial factor in (2.9) vanishes if and only if j = n − 2k, l = n − 2k + 2 and n is

even. Therefore, if n is odd, we can continue the construction and there is a formal series

ω∞ =
∞∑
j=0

xj(ω(t)
j + ω

(n)
j ∧ dx)

such that ∆kω∞ = O(x∞). The formal form ω∞ can be realized by Borel’s Lemma2,
in the sense that there exists a form ω′∞ ∈ C∞(X̄,Λk(X̄)) with the same asymptotic
expansion than ω∞ at all order and then ∆kω

′
∞ = O(x∞).

Now for n even, we need to add log terms to continue the parametrix: by (2.12) one
can modify ωF1 to

(3.6) ωF2 = ωF1 + xn−2k log(x)ω(t)
n−2k,1, ω

(t)
n−2k,1 =

1
n− 2k

[
x−n+2k∆kωF1

]
|x=0

such that ∆kωF2 = O(xn−2k+2 log x). Actually, using (2.7) and parity arguments once
more, we see that
(3.7)

∆kωF2 = 2(−1)k+1xn−2k+2 log x(δ0ω
(t)
n−2k,1) ∧ dx

x
+Ot(xn−2k+2 log x) +On(xn−2k+2).

Now we want to show

Lemma 3.4. The k-form ω
(t)
n−2k,1 on M satisfies δ0ω

(t)
n−2k,1 = 0.

Proof : From (3.7), and the expression of δ, we obtain

δg∆kωF2 = −2xn−2k+2 δ0ω
(t)
n−2k,1 +O(xn−2k+3 log x).

But δg∆kωF2 = ∆k−1δgωF2 and

δgωF2 =
n−2k+2∑
j=2

xjω
′(t)
j +

n−2k+3∑
l=3

xlω
′(n)
l ∧ dx

x
+xn−2k+2 log(x) δ0ω

(t)
n−2k,1+O(xn−2k+3 log x)

for some forms ω′(.)j on M , so by uniqueness of (3.4) and the fact that δgωF2 = O(x2) we
deduce that

δgωF2 = xn−2k+2ω
′(t)
n−2k+2 + xn−2k+2 log(x) δ0ω

(t)
n−2k,1 +O(xn−2k+3 log x).

2Borel’s Lemma states that if (fk,l)l,k∈N0 is a given sequence of smooth functions on ∂X̄ such that,
for each k, fk,l(y) = 0 for all but finitely many l, then there exists a smooth function f in X with an

asymptotic expansion at ∂X̄ = {x = 0} of the form f(x, y) ∼
P∞

k=0

P∞
l=0 fk,l(y)xk(log x)l.
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Using now (2.9) and (2.12), we obtain ∆k−1δgωF2 = (2k − n − 2)xn−2k+2δ0ω
(t)
n−2k,1 +

O(xn−2k+3 log x), and since k < n
2 this implies δ0ω

(t)
n−2k,1 = 0. �

We infer that there is no term of order xn−2k+2 log x in the Λkn part of ∆kωF2 and we
can continue to solve the problem modulo O(x∞) using formal power series with log terms
using the indicial equations. The formal solution when n is even will be given by

(3.8)

ω∞ =

n
2−1∑
j=0

x2jω
(t)
2j +

n
2∑
j=1

x2jω
(n)
2j ∧

dx

x
+

n
2−1∑

j=n
2−k

x2j log(x)ω(t)
2j,1

+

n
2∑

j=n
2−k+1

x2j log(x)ω(n)
2j,1 ∧

dx

x
+ xn

∞∑
j=0

j+1∑
l=0

(ω(t)
n+j,l + xω

(n)
n+j,l ∧

dx

x
)xj(log x)l

which again is realized through Borel’s Lemma to have ∆kω∞ = O(x∞). Notice that
when the metric hx is smooth, the second line in (3.8) has ω(t)

j,l = ω
(n)
j,l = 0 for l > 1 since

these terms come from the log terms of the expansion of hx in (1.7) (and thus of ∆k).
The terms (ω(t)

j )j<n−2k, (ω(n)
j )j<n−2k+2 and ω

(t)
n−2k,1 are formally determined by ω0 and

are expressed as a differential operator on M acting on ω0, the terms ω(t)
n−2k, ω

(n)
n−2k+2 are

formally undetermined, the remaining terms are formally determined by ω0, ω
(t)
n−2k and

ω
(n)
n−2k+2.

So we have proved

Proposition 3.5 (Formal solution). Let ω0, v
(t), v(n) ∈ C∞(M,Λ(M)), then there

exists a form ω∞ ∈ Cn−2k−1,α(X̄,Λkb (X̄)) with α ∈ [0, 1), unique modulo O(x∞), which
is smooth on X̄ when n is odd and with a polyhomogeneous expansion at ∂X̄ of the
form (3.8) when n is even, such that ∆kω∞ = O(x∞), ω∞|∂X̄ = ω0, ω(t)

n−2k = v(t) and

ω
(n)
n−2k+2 = v(n) in the expansion (3.8).

To correct the approximate solution and obtain a true harmonic form, we add−E∆k(ω∞)
to ω∞ and so

∆k(ω∞ − E∆kω∞) = Π0∆kω∞.

We want to prove that Π0∆kω∞ = 0 or equivalently that 〈∆kω∞, α〉 = 0 for any α ∈
kerL2(∆k). For that, we use Green’s formula on {x ≥ ε} and let ε→ 0, together with the
asymptotic α = O(xn−2k+1) obtained from Theorem 3.2, dα = 0 and δα = 0:∫

x≥ε
〈∆ω∞, α〉dvolg = (−1)n

∫
x=ε

(?gdω∞) ∧ α− (?gα) ∧ δω∞ = O(ε)→ε→0 0.

In view of the mapping properties of E from Theorem 3.2, we have thus proved that
ω = ω∞−E∆kω∞ is a harmonic k-form of X such that ω|M = ω0, with an asymptotic of
the form (3.8) when n is even and smooth on X̄ when n is odd, such that

ω − ωF2 = Ot(xn−2k) +On(xn−2k+2)

and with Cn−2k−1,α(X̄,Λk(X̄)) regularity.

Let us now consider the problem of uniqueness. If one assumes polyhomogeneity of the
solution of ∆kω = 0 with boundary condition ω = ω0 + o(x), the construction above with
formal series arguments and indicial equations shows that ω is unique up to Ot(xn−2k) +
On(xn−2k+2), i.e. the first positive indicial roots, then of course two such solutions would
differ by an L2 harmonic form if k < n

2 . Indeed, an easy computation shows that

Remark 3.6. A polyhomeogeneous k-form in Ot(x
n
2−k+ε)+On(x

n
2−k+1+ε) for some ε > 0

is in L2(X).
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This gives

Lemma 3.7. Polyhomogeneous forms satisfying ∆kω and ω = ω0 + o(x) are unique
modulo the L2 kernel of ∆k.

Here, since we want a sharp condition on regularity for uniqueness, i.e. we do not
assume polyhomogeneity but Cn−2k−1,α regularity, we first need a preliminary result.
Let Hs(Λk(M)) be the Sobolev space of order s ∈ Z with k-forms values, which we
will also denote by Hs(M) to simplify. The sections of the bundle Λkt ⊕ Λkn over M are
equipped with the natural Sobolev norm ||.||Hs(M) induced by Hs(Λk(M) ⊕ Λk−1(M)).
The following property is proved by Mazzeo [18, Th. 7.3]3

Lemma 3.8 (Mazzeo). Let k < n/2 and let ω ∈ xαL2(Λk(X), dvolg) with α < −n2
such that ∆kω = 0, then for all N ∈ N, there exist some forms ω(t)

j,l , ω
(n)
j,l ∈ H−N (M) for

j, l ∈ N0 and some sequence l : N0 → N0 such that

(3.9)
∣∣∣∣∣∣ω − N−3∑

j=0

l(j)∑
l=0

xj(log x)l(ω(t)
j,l − ω

(n)
j,l ∧

dx

x
)
∣∣∣∣∣∣
H−N (M)

= O(xN−2−ε)

for all ε > 0.

Let ω, ω′ be two harmonic forms which are Cn−2k−1,α(X̄,Λk(X̄)) and which coincide
on the boundary, we want to show that their Taylor expansions at x = 0 coincide to
order n − 2k − 1. Using Lemma 3.8 with N large enough, we see that the arguments
used above on formal series (based on the indicial equations) also apply by considering
norms || · ||H−N (M) on Λkt ⊕ Λkn, in particular that l(j) = 0 for j = 0, . . . , n − 2k − 1 in
(3.9) for both ω and ω′, and that their coefficients of xj for j = 0, . . . , n − 2k − 1 in the
weak expansion (3.9) are the same for ω and ω′, these are given by ωtj,0 = P

(t)
j ω0 and

ω
(n)
j = P

(n)
j ω0 (and are then continuous on M since ω ∈ Cn−2k+1(X̄,Λk(X̄))). But by

uniqueness of the expansion (3.9) and the regularity assumption on ω, ω′, this implies that
ω

(t)
j , ω

(n)
j are the coefficients in the Taylor expansion of both ω and ω′ to order n−2k−1.

The extra Hölder regularity then gives that ||ω − ω′||L∞(M) = O(xn−2k−1+α), but then
this implies that ω−ω′ ∈ kerL2(∆k) thus it is in the L2 kernel of ∆k, so our construction
is unique modulo kerL2(∆k). This ends the proof of the solution of (3.1).

Now to deal with (iv), we notice that dω is solution of the problem (3.1) for (k + 1)-
forms with the additional condition that the boundary value is dω0 = 0. When k + 1 <
n
2 , we can then apply Proposition 3.1 (i), when k ≥ n

2 − 1, we have dω = O(x2) and
∆k+1dω = 0. However, the discussion below in Subsections 3.1.2 and 3.1.3 about the
solutions of ∆k+1ω = O(x∞) gives the same result, namely that dω ∈ kerL2(∆k+1) if ω is
a solution of (3.1) with k = n

2 − 1 or k = n−1
2 .

We conclude the proof of (iv) Proposition 3.1 using

Proposition 3.9. The forms ωF1 of (3.4) and ω of Proposition 3.1 satisfy

δgω = 0, δgωF1 = Ot(xn−2k+2) +On(xn−2k+4).

Proof : Let ω be the exact solution of ∆kω = 0, ω|x=0 = ω0 in Proposition 3.1. Since
δg∆k = ∆k−1δg, we deduce that ω′ := δgω is solution of ∆kω

′ = 0 with ω′|x=0 = 0
and moreover it is polyhomogeneous since ω is polyhomogeneous, so Proposition 3.1 and
Lemma 3.8 imply that δgω ∈ kerL2(∆k−1) and thus δgω = O(xn−2k+3) by Corollary

3Notice that the result of Mazzeo is stated for 0-elliptic operators with smooth coefficients and acting
on functions, but it is straightforward to check that it applies on bundles and with polyhomogeneous
coefficients like this is the case for even-dimensionnal Poincaré-Einstein manifolds.
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3.3. Since an L2 harmonic form is closed, then δgω is closed and integration by parts on
{x ≥ ε} shows, by letting ε→ 0 in∫

x≤ε
|δgω|2dvolg = −

∫
x=ε

〈ιx∂xω, δgω〉dvolg = O(ε)

that 〈δgω, δgω〉 = 0. The part with ωF1 is also based on δg∆k = ∆k−1δg and the uniqueness
of the solution of (3.4) up to Ot(xn−2k+2) +On(xn−2k+4) on (k − 1)-forms. �

3.1.2. The case k = n
2 . In this case one only intends to solve the equation ∆kω = O(x∞),

say in the set of almost bounded forms (log x times bounded). The indicial equation
tells us that 0 is a double indicial root for the Λkt part, while 0, 2 are the two simple
roots for the Λn part. By a double root, we mean a root λ = λ0 of order 2 of one of
the eigenvalues of Pλ in (2.10). In this case, a straightforward inspection shows that an
additional power of log(x) must come in the formal expansion of solutions. Since the
discussion of this case is not fundamental in our analysis, we prefer to give the result
without details. For ω0, ω1 ∈ Λ

n
2 (M) and ω2 ∈ Λ

n
2−1(M) one can construct, using (2.11)

and (2.12), a polyhomogeneous form

ωF =ω2 ∧
dx

x
+ ω1 log(x) + ω0

+ x2 log x
(
−(log x)2 δ0dω2

3
+ log x

(δ0dω2

2
+

(−1)
n
2 +1

2
δ0ω1

)
+ (−1)

n
2 +1δ0ω0

+ (−1)
n
2

1
2
δ0ω1 −

1
2
dδ0ω2 −A(ω2)

)
∧ dx
x

+Ot(x2(log x)2) +On(x2)

such that ∆kωF = O(x∞) and it is unique modulo O(x∞) if the order x2 coefficient in
the Λn component is assumed to be 0.

3.1.3. The case k = (n+1)/2. The indicial equation tells us that −1, 0 are the roots for the
Λkt part, while 0, 1 are the roots for the Λn part. For ω0 ∈ Λk(M) and ω1, ω2 ∈ Λk−1(M),
one can construct, using (2.11) and (2.12), a polyhomogeneous form such that

ωF = ω1 ∧
dx

x
+ ω0 + xω2 ∧

dx

x
+O(x2) and ∆kωF = O(x∞)

and it is unique modulo O(x∞). So if ω is a solution of Problem 3.1 with k = n−1
2 and

boundary value ω0 closed, then dω = O(x2) and ∆n+1
2
dω = 0 so dω = O(x∞). But the

unique continuation theorem of Mazzeo [17] implies that dω = 0.

We also recall a result proved by Yeganefar [21, Corollary 3.10].

Proposition 3.10. For an odd dimensional Poincaré-Einstein manifold (Xn+1, g), there
is an isomorphism between kerL2(∆n

2
) and H

n
2 (X̄, ∂X̄) and between kerL2(∆n

2 +1) and
H

n
2 +1(X̄).

3.2. Relative boundary condition.

Proposition 3.11. Let 0 < k < n
2 , x be a geodesic boundary defining function and

ω0 ∈ C∞(M,Λk−1(M)) be a closed form. Then there exists a unique, modulo kerL2(∆k),
form ω such that, for all α ∈ [0, 1),

(3.10)


ω ∈ Cn−2k,α(X̄,Λkb (X̄)),
∆kω = 0 on X,
ω|M = 0, lim

x→0
ix∂xω = ω0.
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Moreover ω is closed, smooth on X̄ when n is odd, while it is polyhomogeneous when n is
even with an expansion at order O(xn−1 log x) of the form

ω =
( n−1∑
j=0

xjω
(n)
j ∧ dx

x
+
n−2∑
j=1

xjω
(t)
j

)

+ log x
( n−1∑
j=n−2k+2

xjω
(n)
j,1 ∧

dx

x
+

n−2∑
j=n−2k+2

xjω
(t)
j,1

)
+O(xn−1 log x)

(3.11)

for some forms ω(.)
j , ω

(.)
j,1 on M .

Proof : the proof is similar to that of Proposition 3.1, so we do not give the full details
but we shall use the same notations. We search a formal solution ω′∞ of ∆kω

′
∞ = 0 with

ω′∞ = ω0 ∧ dx
x +O(x). Using the indicial equations in Subsection 2.3 and the form of ∆k

in Lemma 2.1, we can construct the exponents in the formal series as long as the exponent
is not a solution of the indicial equation. Since dω0 = 0 by assumption, we have

∆k(ω0 ∧
dx

x
) = 2(−1)k+1dω0 +O(x2) = O(x2)

and so we can continue the construction of ω′∞ until the power xn−2k in the tangential part
Λkt and xn−2k+2 in the Λkn part. At that point, since xn−2k and xn−2k+2 are solutions of the
indical equation of ∆k in respectively the Λkt and Λkn components, there is a xn−2k log x
term to include in the Λkt part. Using in addition that ∆k begins with a sum of even
powers of x, we see like in Proposition 3.1 that when n is odd, a formal series ω′∞ with
no log terms can be constructed to solve ∆kω

′
∞ = O(x∞), while when n is even we can

first construct

(3.12) ω′F2
=
n−2k∑
2j=0

x2jω
(n)
2j ∧

dx

x
+
n−2k−2∑

2j=2

x2jω
(t)
2j + xn−2k log(x)ω(t)

n−2k,1

with ω
(n)
0 = ω0 so that ∆kω

′
F2

= O(xn−2k+2 log x), and the coefficients are uniquely de-
termined by ω0. First observe that dω′F2

= O(x2) satisfies ∆k+1dω
′
F2

= O(xn−2k+2 log x)
and since the indicial root in [1, n − 2k] for ∆k+1 are n − 2k − 2 in the Λk+1

t part and
n− 2k in the Λk+1

n part, we deduce that dω′F2
= Ot(xn−2k−2) +On(xn−2k) and so

dω′F2
=

n−2k−2∑
2j=2

dω
(t)
2j x

2j +
n−2k−2∑

2j=2

x2j((−1)k2jω(t)
2j + dω

(n)
2j ) ∧ dx

x
+ xn−2kdω

(n)
n−2k ∧

dx

x

+ xn−2k log(x)
(
dω

(t)
n−2k,1 + (−1)k(n− 2k)ω(t)

n−2k,1 ∧
dx

x

)
+ xn−2k(−1)kω(t)

n−2k,1 ∧
dx

x

=xn−2k log(x)
(
dω

(t)
n−2k,1 + (−1)k(n− 2k)ω(t)

n−2k,1 ∧
dx

x

)
+ xn−2k

(
dω

(n)
n−2k + (−1)kω(t)

n−2k,1

)
∧ dx
x
.

(3.13)

Note that we have used that (−1)k(n − 2k − 2)ω(t)
n−2k−2 = −dω(n)

n−2k−2. With these
simplifications, we get

∆k+1dω
′
F2

= (n−2k)xn−2k
(
(−1)k+1(n−2k)ω(t)

n−2k,1∧
dx

x
+log(x)dω(t)

n−2k,1

)
+O(xn−2k+1).

But since d∆kω
′
F2

= O(xn−2k+2 log(x)), we infer that ω(t)
n−2k,1 must vanish, and we obtain

∆kω
′
F2

= O(xn−2k+2)

Since the order xn−2k+2 is a solution of the indicial equation in the normal part Λkn, we
need to add a xn−2k+2 log(x) normal term to continue the construction of the formal



16 ERWANN AUBRY AND COLIN GUILLARMOU

solution. Since all the subsequent orders are not solution of the indicial equation for
∆k, we can construct, using Borel lemma, a polyhomogeneous k-form on X with expan-
sion to order xn−1 log(x) of the form given by (3.11), which coincides with ωF2 at order
On(xn−2k+2 log x) +Ot(xn−2k). To obtain an exact solution of (3.10), we can correct ω′∞
by setting ω = ω′∞ − E∆kω

′
∞ where E is defined in Proposition 3.2.

The argument for the uniqueness modulo kerL2 ∆g is similar to that used in the proof
of Proposition 3.1.

To prove that ω is closed, it suffices to observe that ω = ωF2 + On(xn−2k+2 log x) +
Ot(xn−2k) and so dω = xn−2kdω

(n)
n−2k ∧

dx
x + O(xn−2k). By remark 3.6, we have dω ∈

kerL2(∆k+1). Then δgdω = 0 and, considering the decay of dω and ω at the boundary,
we see by integration by parts that dω = 0. �

Remarks: it is important to remark that the solution ω of the problem (3.10) depends
on ω0 but also on the choice of x. Note also that the form ω solution of (3.10) satisfies
xω ∈ Cn−2k+1,α(X̄,Λk(X̄)) for all α ∈ (0, 1).

4. Lk, Gk and Qk operators

In this section we suppose that M has an even dimension n.

4.1. Definitions. The operators Lk, Gk derive from the solution of the absolute Dirichlet
problem:

Definition 4.1. For k < n
2 , the operators Lk : C∞(M,Λk(M)) → C∞(M,Λk(M)) and

Gk : C∞(M,Λk(M)) → C∞(M,Λk−1(M)) are defined by Lkω0 =: ω(t)
n−2k,1 and Gkω0 :=

ω
(n)
n−2k+2,1 where ω

(t)
n−2k,1, ω

(n)
n−2k+2,1 are given in the expansion (3.2). When k = n

2 , we
define Gn

2
:= (−1)

n
2 +1δ0.

The operator Qk derives from the solution of the relative Dirichlet problem:

Definition 4.2. Let n be even and k < n
2 , the operator Qk−1 : (C∞(M,Λk−1(M)) ∩

ker d) → C∞(M,Λk−1(M)) is defined by Qk−1ω0 := ω
(n)
n−2k+2,1 where ω(n)

n−2k+2,1 is given
in the expansion (3.11).

By Corollary 3.3, Lk, Gk and Qk do not depend on the choice of the solution ω in
Propositions 3.1 or 3.11, though Lk depends only on the boundary (M, [h0]), the oper-
ators Gk and Qk may well depend on the whole manifold (X, g) and not only on the
conformal boundary. We will see that they actually depend only on (M, [h0]) and that
they are differential operators.

4.2. A formal construction. We show that the definition of Lk, Gk, Qk can be done
using only the formal series solutions. Let us first define

Definition 4.3. For k < n
2 , the operators Bk, Ck : C∞(M,Λk(M))→ C∞(M,Λk−1(M))

and Dk : C∞(M,Λk(M)) ∩ ker d→ C∞(M,Λk(M)) are defined by

(4.1)

Bkω0 :=
(
x−n+2k−2ix∂x∆kωF1

)
|x=0,

Ckω0 :=
(
x−n+2k−2ix∂x(

dx

x
∧ δgωF1)

)
|x=0

Dkω0 :=
(
x−n+2kix∂xdωF1)

)
|x=0

where ωF1 solves (3.4).
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Remark: from the indicial equations and Lemma 3.4, Bkω0 is (−1)k(n−2k+2) times the
xn−2k+2 log(x) coefficient in the Λkn part of ω′∞ defined in Proposition 3.5 when v(t) = 0,
this is a differential operator on M of order n−2k+ 1 since by construction, ωF1 contains
only derivatives of order at most n− 2k − 1 with respect to ω0. The operator Ck is well
defined thanks to Proposition 3.9, and it is a differential operator of order n−2k. As they
come from the expansion of ∆k, δg, they are natural differential operators depending only
on h0 and the covariant derivatives of its curvature tensor.

4.2.1. The case of Lk. It is clear from the proof of Proposition 3.1 that Lkω0 is also the
coefficient of the xn−2k log x term in the expansion of ωF2 defined in (3.6) and of the
formal solution ω∞ defined in Proposition 3.8. The indicial equation shows that

(4.2) Lkω0 :=
1

n− 2k

(
x2k−nix∂x(

dx

x
∧∆kωF1)

)
|x=0

where ωF1 solves (3.4).

4.2.2. The case of Gk. Let us return to the construction of the formal series solution in
the proof of Proposition 3.1. Now let ωF2 defined in (3.6) and

ωF2 := ωF1 + xn−2kv(t) + xn−2k log(x)ω(t)
n−2k,1

where v(t) ∈ C∞(M,Λk(M)) is an arbitrary form. By construction of ωF1 , ωF2 , the fact
that n− 2k is an indicial root in the Λkt component and Lemma 2.1, we have

∆kωF2 = (−1)k+1xn−2k+2(Bkω0 + 2δ0v(t))∧ dx
x

+Ot(xn−2k+2 log x) +On(xn−2k+4 log x)

to solve away the xn−2k−2 term in Λkn we need to define

(4.3) ωF3 := ωF2 +
(−1)k+1

n+ 2− 2k
xn−2k log(x)(Bkω0 + 2δ0v(t)) ∧ dx

x

so that ∆kωF3 = On(xn−2k+4 log(x)) + Ot(xn−2k+2 log(x)). Since v(t) can be chosen
arbitrarily, the coefficient of xn−2k+4 log(x) in the Λkn component of the formal solution
ωF3 does not determine a natural operator in term of the initial data ω0, contrary to the
xn−2k log(x) coefficient in Λkt . In the definition of Gk above, we used an exact solution
on X to fix the v(t) term through the Green function, which a priori makes Gk depend
on (X, g) and not only on (M, [h0]). However there is an equivalent way of fixing δ0v(t)

without solving a global Dirichlet problem but by adding an additional condition:

Proposition 4.4. Let ω0 ∈ C∞(M,Λk(M)), then there is a polyhomogeneous k-form ωF
such that

(4.4)

 ∆kωF = Ot(xn−2k+1) +On(xn−2k+3)
δgωF = O(xn−2k+3)
ω = ω0 +O(x)

.

It is unique modulo Ot(xn−2k) +On(xn−2k+2) and has an expansion of the form

ωF =

n
2−k−1∑
j=0

x2jω
(t)
2j +

n
2−k∑
j=1

x2jω
(n)
2j ∧

dx

x

+ xn−2k log(x)
(
Lkω0 + x2 (−1)k+1

n− 2k
(Bkω0 − 2Ckω0) ∧ dx

x

)
.

(4.5)

Proof : First consider the uniqueness. By the discussion above, the condition on ∆kωF
implies that ωF is necessary of the form ωF = ωF3 defined in (4.3) for some v(t). Now we
notice that δgωF3 = O(x2) satisfies in particular ∆k−1δgωF3 = δg∆kωF3 = O(xn−2k+3),
and again by the indicial equation this implies that δgωF3 = O(xn−2k+2) since the first
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positive indicial root for ∆k−1 is n − 2k + 2. Using that δ0Lkω0 = 0 and the form of δg
we obtain

δgωF3 = δgωF1 + xn−2k+2
(
δ0v

(t) − 1
n+ 2− 2k

(Bkω0 + 2δ0v(t))
)

+O(xn−2k+3).

By Proposition 3.9, δgωF1 = Ot(xn−2k+2) + On(xn−2k+4) and from the definition of Ck,
a necessary condition to have δgωF = O(xn−2k+3) is

(n− 2k)δ0v(t) = Bkω0 − (n− 2k + 2)Ckω0.

Writing now δ0v
(t) in terms of Bk, Ck in (4.3) proves the uniqueness and the form of the

expansion. Now for the existence, one can take the form in Proposition (3.1). Another
way, which again is formal, is first to construct a polyhomogeneous (k + 1)-form ω′F such
that {

∆k+1ω
′
F = Ot(xn−2k−1) +On(xn−2k+1)

ω′F = 2(−1)k+1

n−2k log(x)dω0 + ω0 ∧ dx
x +O(x),

which can be done as in Proposition 3.11 by using the indicial equations, and then to set
ωF := δgω

′
F . It is easy to see that this form is a polyhomogeneous solution of (4.4). �

Since the exact solution in Proposition 3.1 is coclosed, we deduce from Proposition 4.4
the

Corollary 4.5. The operator Gk is a natural differential operator of order n − 2k + 1
which is given by

Gk = (−1)k+1Bk − 2Ck
n− 2k

and depends only on h0 and the covariant derivatives of its curvature tensor.

Remark 4.6. Problem (4.4) and Corollary 4.5 allow to define Lk and Gk on any even
manifold M2m with no need of cobordism assumption (as in Proposition 3.1). We just
have to work on X = M × [0, ε[.

4.2.3. The operator Qk. Following the ideas used above for Gk, we shall show how to
construct Qk from a formal solution ωF1 . We start by

Definition 4.7. For 1 ≤ k ≤ n
2 , define the operators B′k−1 : C∞(M,Λk−1(M))∩ ker d→

C∞(M,Λk−1(M)) and D′k−1 : C∞(M,Λk−1(M)) ∩ ker d→ C∞(M,Λk(M)) by

(4.6)
B′k−1ω0 :=

(
x−n+2k−2ix∂x∆kω

′
F1

)
|x=0,

D′k−1ω0 :=
(
x−n+2kix∂xdω

′
F1

)
|x=0

where ω′F1
is the form in (3.12) such that ∆kω

′
F1

= O(xn−2k+2) and ω′F1
= ω0∧ dxx +O(x2).

Let us now set ω′F2
:= ω′F1

+ v(t)xn−2k for some arbitrary smooth form v(t) on M , we
obtain

∆kω
′
F2

= (−1)k+1xn−2k+2(B′k−1ω0 + 2δ0v(t)) ∧ dx
x

+Ot(xn−2k+2) +On(xn−2k+3).

so to solve away the xn−2k+2 normal coefficient, we need to define

(4.7) ω′F3
:= ω′F2

+
(−1)k+1

n− 2k + 2
xn−2k+2 log(x)

(
B′k−1ω0 + 2δ0v(t)

)
∧ dx
x

which satisfies ∆kω
′
F3

= Ot(xn−2k+2 log(x)) +On(xn−2k+3). Like for Gk, the term v(t) is
arbitrary and so we have to impose an additional condition to fix this term (or at least to
fix δ0v(t)).
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Proposition 4.8. Let ω0 ∈ C∞(M,Λk−1(M)) be closed, then there is a polyhomogeneous
k-form ω′F which satisfies

(4.8)


∆kω

′
F = Ot(xn−2k+1) +On(xn−2k+3)

dω′F = O(xn−2k+1)
ω′F = ω0 ∧ dx

x +O(x2)
,

which is unique modulo Ot(xn−2k) +On(xn−2k+2) and has an expansion of the form

ω′F =

n
2−k−1∑
j=1

x2jω
(t)
2j +

n
2−k∑
j=0

x2jω
(n)
2j ∧

dx

x
− xn−2k 1

n− 2k
D′k−1ω0

+
(−1)k+1

n− 2k + 2
xn−2k+2 log(x)

(
B′k−1ω0 −

2δ0D′k−1ω0

n− 2k

)
∧ dx
x
.

(4.9)

Proof : (i) Take ω′F = ω′F3
defined in (4.7), then ∆kω

′
F = Ot(xn−2k+1) +On(xn−2k+3)

by construction. Moreover, since ω0 is closed, one has dω′F = O(x2) and ∆k+1dω
′
F =

O(xn−2k+1). Since the indicial roots for ∆k+1 in [2, n− 2k+ 1] are n− 2k− 2 in the Λk+1
t

part and n − 2k in the Λk+1
n part, this implies that dω′F = Ot(xn−2k−2) + On(xn−2k).

Then, using (3.13), we obtain

dω′F =xn−2k
(
dv(t) +

(
(−1)k(n− 2k)v(t) + dω

(n)
n−2k

)
∧ dx
x

)
+O(xn−2k+1)

=xn−2k
(
dv(t) +

(
(−1)k(n− 2k)v(t) + (−1)kD′k−1ω0

)
∧ dx
x

)
+O(xn−2k+1).

So dω′F = O(xn−2k+1) if and only if v(t) = −D′k−1ω0/(n− 2k). �

The first corollary is

Corollary 4.9. For k < n
2 , the operator Qk is a natural differential operator of order

n− 2k which is given by

Qk =
(−1)k

n− 2k

(
B′k −

δ0D
′
k

n
2 − k − 1

)
and it depends only on h0 and the covariant derivatives of its curvature tensor.

Remark 4.10. Here also this corollary allows to define the operator Qk on any even
manifold by considering Problem (4.8).

As a corollary of Propositions 4.4 and 4.8, we also have

Corollary 4.11. If ω0 is a closed k-form on M , then there is a polyhomogeneous k-form
ωF on X̄ such that  dωF = O(xn−2k+1)

δgωF = O(xn−2k+3)
ωF = ω0 +O(x)

(4.10)

It is unique modulo Ot(xn−2k+1) +On(xn−2k+2) and it has an expansion

ωF =

n
2−k−1∑
j=0

x2jω
(t)
2j +

n
2−k∑
j=1

x2jω
(n)
2j ∧

dx

x
− 1
n− 2k

Dkω0x
n−2k

+ xn−2k+2 log(x)
( (−1)k+1

n− 2k
(Bkω0 − 2Ckω0) ∧ dx

x

)
.

Proof : for the existence, take ω′F in Proposition 4.8 (ω′F is k + 1 form now since
ω0 ∈ Λk(M)) and consider ωF := (−1)k+1/(2k − n)δgω′F . It is easy to see that ωF =
ω0 + O(x2) and that ∆kωF = Ot(xn−2k+1) + On(xn−2k+3). Since dδgω′F = −δgdω′F +



20 ERWANN AUBRY AND COLIN GUILLARMOU

Ot(xn−2k−1) + On(xn−2k+1), we deduce that dωF = Ot(xn−2k−1) + On(xn−2k+1). But
from the Proposition 4.4, ωF = ωF1 + v(t)xn−2k + O(xn−2k+1) (note that Lkω0 = 0 by
Proposition 4.12) for some k-form v(t) on M and so we conclude that

dωF =
n−2k−2∑

2j=2

dω
(t)
2j x

2j +
n−2k−2∑

2j=2

x2j((−1)k2jω(t)
2j + dω

(n)
2j ) ∧ dx

x

+ xn−2k(dω(n)
n−2k + (−1)k(n− 2k)v(t)) ∧ dx

x
+ xn−2kdv(t) +O(xn−2k+1)

=O(xn−2k+1)

so v(t) has to be (−1)k+1dω
(n)
n−2k/(n− 2k) to get dωF = Ot(xn−2k−1) +On(xn−2k+1). But

clearly this argument also implies that dωF1 = xn−2kdω
(n)
n−2k ∧

dx
x and the expansion of

ωF is then a consequence of this fact together with the expansion (4.5) in Proposition 4.4
and the definition of Dk. �

Remark: in Proposition 4.4, 4.8 and Corollary 4.11, we do not really need to take
ω0 ∈ C∞(M,Λ(M)). Indeed, for an ω0 in L2(Λ(M)), the arguments would work in a
similar fashion except that the expansion in power of x and log(x) have coefficients in
some H−N (Λ(M)) with N large enough, as we discussed in the proof of Proposition 3.1.

4.3. Factorizations.

Proposition 4.12. For any k < n
2 − 1, the following identities hold

Gk =(−1)k
δh0Qk
n− 2k

on closed forms,

Lk =
(−1)k

(n− 2k)
Gk+1d = − δh0Qk+1d

(n− 2k)(n− 2k − 2)
.

(4.11)

while for k = n
2 − 1

(4.12) Ln
2−1 =

1
2
δh0d.

Proof : Let ω be a solution of Problem (4.8) with initial data ω0 closed. Then its
first log term is xn−2k+2 log(x)Qk−1ω0 ∧ dx

x and thus the first normal log term of δgω is
xn−2k+4 log(x)(δ0Qk−1ω0) ∧ dx

x . But δgω is a solution of Problem (4.4) with boundary
term δgω = (−1)k(2k − n − 2)ω0 + O(x) . Thus, the form δgω has for first normal log
term (−1)k(2k − n− 2)xn−2k+4(Gk−1ω0) ∧ dx

x .
Let ω be a solution of 3.1 with initial data ω0. Since ∆k+1d = d∆k and δgdω =

∆k+1dω − dδgω, the form ω′ := dω is a solution Problem (4.4) with initial data dω0 and
first log term (−1)k(n− 2k)xn−2k log(x)Lkω0 ∧ dx

x , which gives (4.11).
To compute Ln

2−1 we use Equation (4.2). Using Relations (2.9), we get ωF1 = ω0 −

x (−1)
n
2

2 δ0ω0 ∧ dx, therefore ∆n
2−1ωF1 = x2δ0dω0 + o(x2). �

Remark: Note that this implies that Lk is zero on closed forms and Gk has its range
in co-closed forms.

4.4. Conformal properties. A priori our construction of Lk, Gk, Qk depends on the
choice of geodesic boundary defining function x, i.e. on the choice of conformal represen-
tative in [h0]. In order to study the conformal properties of these operators, we need to
compare the splittings of the differential forms associated to different conformal represen-
tatives.
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A system of coordinates y = (yi)i=1,...,n on M near a point p ∈ M give rise to a
system of coordinates (x, y) in X̄ near the boundary point p through the diffeomorphism
ψ : (x, y) → ψx(y) where ψt is the flow of the gradient ∇x2gx of x with respect to x2g.
Such a system (x, y) is called a system of geodesic normal coordinates associated to h0.

Lemma 4.13. Let (x, y) and (x̂, ŷ) be two systems of geodesic normal coordinates associ-
ated respectively to h0 and ĥ0 = e2ϕ0h0. If ω̂ (resp. ω̂ ∧ dx̂) is a k-form tangential (resp.
normal) in the coordinates (x̂, ŷ) with ω̂|x̂=0 = ω0, then we have

ω̂ = ω0 + (−1)k+1x2(i∇ϕ0ω0) ∧ dx
x

+Ot(x2) +On(x3),

ω̂ ∧ dx̂
x̂

= ω0 ∧
dx

x
+ ω0 ∧ dϕ0 +Ot(x) +On(x2).

Proof : By the proof of Lemma 2.1 in [13], if ĥ0 = e2ϕ0h0 is another conformal rep-
resentative, a geodesic boundary defining function x̂ associated to ĥ0 satisifies x̂ = eϕx

with ϕ = ϕ0 +O(x2) at least Cn−1 and ŷi(x, y) = yi + x2

2

∑n
j=1 h

ij∂yjϕ0 +O(x3). Hence
dŷi = dyi+x

∑
j h

ij∂yjϕ0dx and dx̂ = xeϕ0dϕ0 +eϕ0dx+O(x2), which gives the relations
above. �

This implies the following corollary:

Corollary 4.14. Under a conformal change ĥ0 = e2ϕ0h0, the associated operators L̂k,
Ĥk and Q̂k are given by

(4.13)
L̂k = e(2k−n)ϕ0Lk, Ĝk = e(2k−2−n)ϕ0

(
Gk + (−1)ki∇ϕ0Lk

)
Q̂kω0 = eϕ0(2k−n)

(
Qkω0 + (n− 2k)Lk(ϕ0ω0)

)
where ω0 ∈ C∞(M,Λk(M)) is any closed form. Thus Lk is conformally covariant and Gk
is conformally covariant on the kernel of Lk (hence on closed forms).

Proof : Let ω be a solution of Problem (4.4) with respect to (x, y) a system associated
to h0. Then by Lemma 4.13, ω is also a solution of Problem (4.4) with respect to (x̂, ŷ)
a system associated to ĥ0. Now, when we change x to x̂ the first log x term (i.e. the
xn−2k log x term) in the expansion of ω changes by a multiplication by e(2k−n)ϕ0 . As for
the xn−2k+2 log x term in the normal part, we have a similar effect but the tangential
xn−2k log x term gives rise to a x̂n−2k+2 log x̂ normal term which gives the term i∇ϕ0Lk.

Let ω be a solution of Problem (4.8) in the variable x with initial data ω0∧ dx
x , ω̂1 be a

solution of Problem (4.8) in the variable x̂ with initial data ω0 ∧ dx̂
x̂ and ω̂2 be a solution

of Problem (4.10) in the variable x̂ with initial data −ω0 ∧ dϕ0. Using Lemma 4.13 get
that ω̂1 + ω̂2 satisifies Problem 4.8 in the variable x with initial data ω0. So ω = ω̂1 + ω̂2

modulo Ot(xn−2k) +On(xn−2k+2) and the xn−2k+2 log x normal terms must be the same.
Using 4.13, we get

Qk−1ω0 ∧
dx

x
= eϕ0(n−2k+2)

(
Q̂k−1ω0 − Ĝk(ω0 ∧ dϕ0)

)
∧ dx
x
.

Now we use the transformation formula of Ĝk and (4.11) with dω0 = 0 to see that

eϕ0(n−2k+2)Ĝk(ω0 ∧ dϕ0) =(−1)k+1Gkd(ϕ0ω0) + (−1)ki∇ϕ0Lkd(ϕ0ω0)

=(n− 2k + 2)Lk−1(ϕ0ω0)

This ends the proof of the transformation law of Qk−1 by conformal change. �

Remark: while Qk on ker d is not conformally invariant (by Proposition 4.14), the pairing
〈Qku, u〉L2(dvolh0 ) for the metric h0 is conformally invariant for u ∈ ker d. Indeed, using
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(4.13), a conformal change of metric ĥ0 = e2ϕ0h0 gives∫
M

〈Q̂ku, u〉ĥ0
dvolh0 =

∫
M

〈Qku, u〉h0 +
〈δ0Qk+1d(ϕ0u), u〉h0

2k + 2− n
dvolh0

which by integration by parts and du = 0 gives the 〈Q̂ku, u〉L2(dvolĥ0
) = 〈Qku, u〉L2(dvolh0 ).

Of course, when we restrict this form to exact forms, this is given by

〈Qkdu, du〉 = 〈Lk−1u, u〉

which is real and conformally invariant.

4.5. Analytical properties.

Proposition 4.15. For any k < n
2 we have

Qk =
(−1)

n
2 +k+1(n− 2k)(∆0)

n
2−k

2n−2k[(n2 − k)!]2
+ lower order terms in ∂jyi

Lk =
(−1)

n
2 +k+1(n− 2k)(δ0d)

n
2−k

2n−2k[(n2 − k)!]2
+ lower order terms in ∂jyi

Gk =
(−1)

n
2 +1(δ0d)

n
2−kδ0

2n−2k[(n2 − k)!]2
+ lower order terms in ∂jyi

Proof : We first review the computation of ωF1 which solves (3.4). By Lemma 2.1, ωF1

has the form ωF1 =
∑n

2−k−1
i=0 x2iω

(t)
2i +

∑n
2−k
i=1 x2iω

(n)
2i ∧ dx

x , where the ω(∗)
i are images of

ω0 by differential operators on M . We compute the principal part of these operators by
recurrence.

The decomposition (2.7) of ∆k and the identity ∆kωF1 = Ot(xn−2k) + On(xn−2k+1)
give

n
2−k∑
i=1

x2i
(
− 4i(k + i− n

2
− 1)ω(n)

2i +
i∑

j=1

S′jω
(t)
2i−2j +

i−1∑
j=1

(
R′j + 2(i− j)P ′j

)
ω

(n)
2i−2j

)
∧ dx
x

+

n
2−k−1∑
i=1

x2i
(
−4i(k+i−n

2
)ω(t)

2i −(−1)kdω(n)
2i +

i∑
j=1

(
Rj+2(i−j)Pj

)
ω

(t)
2i−2j+

i−1∑
j=1

Sjω
(n)
2i−2j

)
= 0

This determines uniquely the ω(∗)
i .

Let us write LOT for lower order term operators on M . Then we get

ω
(n)
2 =

(−1)k+1

2k − n
δ0ω0, ω

(t)
2 =

( dδ0
2(2k − n)

+
δ0d

2(2k + 2− n)

)
ω0

and given the order in ∂yi of the Ri, R′i, R̄i, R̄
′
i, Qi and Q′i, we have

ω
(t)
2i =

1
2i(2k + 2i− n)

(
2(−1)k+1dω

(n)
2i + ∆0ω

(t)
2i−2

)
+ LOT(ω0)

ω
(n)
2i+2 =

1
2(i+ 1)(2k + 2i− n)

(
2(−1)k+1δ0ω

(t)
2i + ∆0ω

(n)
2i

)
+ LOT(ω0)

So we have

ω
(t)
2i =

(
a2i(δ0d)i + b2i(dδ0)i + LOT

)
ω0

ω
(n)
2i+2 =

(
a2i+1(δ0d)lδ0 + LOT

)
ω0
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where the sequences (ai) and (b2i) satisfy the relations

a2i =
a2i−2

2i(2k + 2i− n)
, a2i+1 =

2(−1)k+1b2i
2(i+ 1)(2k + 2i− n)

+
a2i−1

2(i+ 1)(2k + 2i− n)

b2i =
2(−1)k+1a2i−1

2i(2k + 2i− n)
+

b2i−2

2i(2k + 2i− n)

and a1 = (−1)k+1

2k−n , a2 = 1
2(2k+2−n) , b2 = 1

2(2k−n) . By uniqueness of the solution of this
equation we find

a2i =
1

2ii!
∏i
j=1(2k + 2j − n)

, a2i+1 =
(−1)k+1

2ii!
∏i
j=0(2k + 2j − n)

,

b2i =
1

2ii!
∏i−1
j=0(2k + 2j − n)

for all i ≤ n
2 − k − 1. We infer the equality

∆kωF1 =xn−2k
(
an−2k−2(δ0d)

n
2−k + (bn−2k−2 + 2(−1)k+1an−2k−1)(dδ0)

n
2−k + LOT

)
ω0

+ x2k−n+2
(
an−2k−1(δ0d)

n
2−kδ0 + LOT

)
ω0 ∧

dx

x
+ o(xn−2k+1)

=xn−2k
( (δ0d)

n
2−k

2
n
2−k−1(n2 − k − 1)!

∏n
2−k−1
j=1 (2k + 2j − n)

+ LOT
)
ω0

+ x2k−n+2
( (−1)k+1(δ0d)

n
2−kδ0

2
n
2−k−1(n2 − k − 1)!

∏n
2−k−1
j=0 (2k + 2j − n)

+ LOT
)
ω0 ∧

dx

x

+ o(xn−2k+1)

(4.14)

so we have

Lk =
−(δ0d)

n
2−k

2
n
2−k−1(n2 − k − 1)!

∏n
2−k−1
j=0 (2k + 2j − n)

+ LOT

Bk =
(δ0d)

n
2−kδ0

2
n
2−k−1(n2 − k − 1)!

∏n
2−k−1
j=0 (2k + 2j − n)

+ LOT

Note also that δg is of order 1 so Ck has no contribution to the principal part of Gk and
we get

Gk =
(−1)k+1(δ0d)

n
2−kδ0

2
n
2−k(n2 − k)!

∏n
2−k−1
j=0 (2k + 2j − n)

+ LOT.

The proof is the same (and even easier) for Qk. We could have deduced the principal
parts of Lk and Gk from the one of Qk, but a slight generalization of the proof above will
allow to compute the principal part of the non-critical Llk in the next section. �

We finally prove that the operators Lk and Qk are symmetric on C∞(M,Λ(M)):

Proposition 4.16. For k ≤ n
2 − 1, the operators Lk are symmetric on C∞(M,Λk(M))

while for k < n
2 − 1, the operators Qk are symmetric on C∞(M,Λk(M)) ∩ ker d.

Proof : The proof for Lk is done in Proposition 5.4 which covers the non-critical cases.
The proof for Qk is quite similar, we let ω0, ω

′
0 be two closed k-forms on M and ω, ω′ the

forms constructed in the proof of Proposition 3.11 with respective initial conditions ω0
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and ω′0. Then integration by part and the fact that dω = dω′ = 0 gives

0 =
∫
x≥ε

(〈∆kω, ω
′〉g − 〈∆kω

′, ω〉g)dvolg =∫
x=ε

(
〈ix∂xω, δgω′〉hx − 〈ix∂xω′, δgω〉hx

)
x−ndvolhx .

But a straightforward analysis and the fact that Lk(ω0) = Lk(ω′k) = 0 give that the
second line has an expansion of the form

a−2`ε
−2` + · · ·+ a−2ε

−2 + L log(ε) +O(1)

with L := (−1)k+1(2k − n)
(
〈Qkω0, ω

′
0〉L2(dvolh0 ) − 〈ω0, Qkω

′
0〉L2(dvolh0 )

)
This achieves the proof. �

4.6. Branson Q-curvature. We conclude this section by the observation that Q0 is the
Q-curvature of Branson.

Proposition 4.17. The operator Q0 of Definition 4.2 satisfies

Q01 =
n(−1)

n
2 +1

2n−1 n
2 !(n2 − 1)!

Q

where Q is Branson Q-curvature defined in [2].

Proof : Since the operator Q0 and the function Q are local on (M, [h0]) and do not
depend on the chosen Poincaré-Einstein manifold with conformal infinity (M, [h0]), it
suffices to consider the cylinder X = (−1, 1) × M equipped with a Poincaré-Einstein
metric with conformal metric [h0] on the boundary M tM . In [5], Fefferman and Graham
showed that the Q-curvature of Branson is the function Q on M such that if U ∈ C∞(X)
is a solution of  ∆gU = n

U = log(x) +A+ xnB log(x) with A,B ∈ C∞(X̄)
A|x=0 = 0

then B|x=0 = (−1)
n
2 +1(2n−1 n

2 !(n2 −1)!)−1Q. Consider dU , clearly it is a harmonic 1-form
and it is given by

dU =
dx

x
+ dA+ nxnB log(x)

dx

x
+O(xn)

and by uniqueness of the solution in Proposition 3.11 and the decay of L2 harmonic 1-
forms (of order xn), we deduce that Q01 = nB|x=0, this proves the claim (note that the
log term in the development of ∆k does not interfer since it acts trivially on normal zero
forms). �

5. The non-critical case

Let (X, g) be a Poincaré-Einstein manifold with conformal infinity (M, [h0]). We as-
sume k ≤ (n+ 1)/2 and n may be odd or even in this section, and we let ` be an integer
in [1, n2 − k] in general, and ` ∈ N if n is odd and (X, g) is an even Poincaré-Einstein
manifold. We want to construct the operators L`k of [3] by solving the following equation

(5.1)

(
∆k − (

n

2
− k + `)(

n

2
− k − `)

)
ω = Ot(x

n
2−k+`) +On(x

n
2−k+`+1)

with ω = x
n
2−k−`ω0 + o(x

n
2−k−`) as x→ 0.

where On, Ot are defined in the proof of Proposition 3.1 and where ω0 ∈ C∞(M,Λk(M)).
This can be done essentially like in the critical case, using the indicial equations of Sub-
section 2.3. Indeed, the indicial roots of ∆k − (n2 − k + `)(n2 − k − `) can be computed
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rather easily, these are
n

2
− k ± ` in the Λkt component

n

2
− k + 1±

√
`2 + n+ 1− 2k in the Λkn component.

Notice that there are no indicial roots in (n2 − k − `,
n
2 − k + `) when ` ≤ n/2 − k, but

there is one root in this interval when ` > n/2− k and n odd, it is given by

(5.2)
n

2
− k + 1−

√
`2 + n+ 1− 2k ∈ (

n

2
− k − `, n

2
− k − `+ 1]

and thus is not in n/2− k − `+ 2N0. We obtain

Lemma 5.1. For ω0 ∈ C∞(M,Λk(M)) fixed, there exists a series

(5.3) ωF1 = x
n
2−k−`

( 2l−2∑
2j=0

x2jω
(t)
2j +

2l∑
2j=2

x2j(ω(n)
2j ∧

dx

x
)
)

such that ω(t)
0 = ω0 and

(5.4)
(

∆k − (
n

2
− k + `)(

n

2
− k − `)

)
ωF1 = Ot(x

n
2−k+`) +On(x

n
2−k+`+2)

where the forms ω(.)
j on M are uniquely determined by ω0 and the expansion of ∆k in

powers of x given by Lemma 2.1.

Note that the condition ` ≤ n
2 when n is even insures that that the first log(x) coefficient

coming from the metric does not show up in (5.1). Remark that when ` > n/2− k and n
odd, the fact that the indicial root (5.2) is not in n/2 − k − ` + 2N0 does not affect the
construction. Since (n2 −k+`) is an indicial root in the Λkt component, we can then define

(5.5)
ωF2 = ωF1 + x

n
2−k+` log(x)ω(t)

n−k+`,1,

with ω
(t)
n−k−`,1 =

1
2`

[
x−

n
2 +k−`

(
∆k − (

n

2
− k + `)(

n

2
− k − `)

)
ωF1

]
|x=0

which satisfies

(5.6)
(

∆k − (
n

2
− k + `)(

n

2
− k − `)

)
ωF2 = O(x

n
2−k+`+2 log x).

Remark: we could continue the construction to get a solution ω of

(∆k − (
n

2
− k − `)(n

2
− k + `))ω = O(x∞)

and even an exact solution (with no O(x∞)) using the resolvent of ∆k. However, since
the mapping properties of (∆k − (n2 − k − `)(

n
2 − k + l))−1 is not explicitly available in

the literature when ` 6= n
2 − k, we do not discuss this case further.

Like we did for Lk, we can then define an operator on M as follows:

Definition 5.2. For k ≤ (n + 1)/2, we let ` be an integer in [1, n2 − k] if n is even and
in N if n is odd. The operator L`k : C∞(M,Λk(M)) → C∞(M,Λk(M)) is defined by
L`kω0 := ω

(t)
n−k−`,1 where ω(t)

n−k−`,1 is given in (5.5).

Remark: clearly, we have L
n
2−k
k = Lk when n is even.

Lemma 5.3. The form ωF1 of (5.3) satisfies δgωF1 = O(x
n
2−k+`+2).

Proof : by (5.4) and δg∆k = ∆k−1δg, the form δgωF1 solves

(5.7)
(

∆k−1 − (
n

2
− k + `)(

n

2
− k − `)

)
δgωF1 = O(x

n
2−k+`+2)
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and with δgωF1 = O(x
n
2−k−`+2). The Taylor series T of x−

n
2 +k+`δgωF1 to order O(x2`+2)

is such that x
n
2−k−`T solves (5.7), and moreover T is even by Lemma 2.1. A short

computation shows that the indicial roots of (∆k−1 − (n2 − k + `)(n2 − k − `)) are

n

2
− k + 1±

√
`2 + n+ 1− 2k in Λk−1

t component ,
n

2
− k + 2±

√
`2 + 2(n− 2k + 2) in Λk−1

n component .

Thus if ` ≤ n/2− k, the indicial roots are not contained in [n2 − k − `+ 2, n2 − k + `+ 2]
except when 2k = n+1 where n

2 −k+`+1 is a root in the Λt component, this implies that
the Taylor series of δgωF1 vanishes to order O(x

n
2−k+`+1) except maybe when 2k = n+ 1.

However in the last case, by parity of T , we see that there is no n
2 − k+ `+ 1 term in the

expansion of δgωF1 , this ends the proof for n even. When n is odd and ` > n/2− k, the
only indicial root in the interval of interest is n/2− k + 1 +

√
`2 + n+ 1− 2k and it is in

(n2 − k+ `+ 1, n2 − k+ `+ 2) thus not in n/2− k− `+ N0, which shows that the argument
used for ` ≤ n/2− k applies similarly. �

By an obvious integration by part, we have the

Proposition 5.4. The operators L`k are symmetric on C∞(M,Λk(M)).

Proof : Consider ω1
F2

and ω2
F2

like in (5.5) with respective boundary values ω1
0 and ω2

0 ,
they are well defined form in some collar neighbourhood X1 := (0, ε0)x ×M of M in X̄.
Let ϕ ∈ C∞0 ((−ε0, ε0)) be a cut-off function which equals 1 near 0 and ω̃i := ϕ(x)ωiF2

for i = 1, 2. Then using Lemma 5.3 we have δgω̃i = O(x
n
2−k+`+1), but since ix∂x ω̃

i =
O(x

n
2−k−`+2), the Green formula gives for small ε > 0∫

x≥ε
(〈∆kω̃

1, ω̃2〉g − 〈∆kω̃
2, ω̃1〉g)dvolg = (−1)n

∫
x=ε

(?gdω̃1) ∧ ω̃2 − (?gdω̃2) ∧ ω̃1 +O(ε).

But the first line is a O(1) as ε → 0 by (5.6), and a straightforward analysis gives that
the second line has an expansion of the form

a−2`−1ε
−2`−1 + · · ·+ a−1ε

−1 + L log(ε) +O(1)

with L := (−1)n(
n

2
− k + `)

∫
M

(?0L
`
kω

1
0) ∧ ω2

0 − (?0L
`
kω

2
0) ∧ ω1

0

and this implies L = 0 by comparing the log(ε) terms. �

Proposition 5.5. We have Llk = (−1)l+1l
22l−1(l!)2

[
(δ0d)l + n−2k−2l

n−2k+2l (dδ0)l
]

+ LOT.

Proof : We define T by ωF1 = x
n
2−k−lT , λ = (n2 −k+ l)(n2 −k− l) and P = xk+l−n2 (∆−

λ)x
n
2−k−l.

Then we have T =
∑l−1
i=0 x

2iω
(t)
2i +

∑l
i=1 x

2iω
(n)
2i ∧ dx

x and P admits the same decom-
position as ∆k in Lemma 2.1 but with indicial operator equal to(

2lx∂x − (x∂x)2 2(−1)k+1d
0 −(x∂x)2 + 2(l + 1)x∂x + n− 2k − 2l

)
The equation PT = Ot(x2l) +On(x2l+1) gives then

ω
(n)
2i+2 =

(
a2i+1(δ0d)iδ0 + LOT

)
ω0 ω

(t)
2i =

(
a2i(δ0d)i + b2i(dδ0)i + LOT

)
ω0

with

a1 =
(−1)k

n
2 − k + l

, a2 =
−1

4(l − 1)
, b2 =

−(n2 − k + l − 2)
4(l − 1)(n2 − k + l)
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and

a2i+2 =
a2i

4(i+ 1)(i+ 1− l)
, a2i+1 =

2(−1)k+1b2i + a2i−1

4(i+ 1)(i− l) + 2k − n+ 2l
,

b2i+2 =
b2i + 2(−1)k+1a2i+1

4(i+ 1)(i+ 1− l)
.

The solutions of these equations are

b2i =
(−1)i(n− 2k + 2l − 4i)(l − i− 1)!

4ii!(l − 1)!(n− 2k + 2l)
a2i+1 =

(−1)k+i(l − i− 1)!
22i−1i!(l − 1)!(n− 2k + 2l)

a2i =
(−1)i(l − i− 1)!

4ii!(l − 1)!

Since the equation (5.5) reads

Llk =
[x−2l

2l
ix∂x

(dx
x
∧ PT

)]
|x=0

we get the result. �

6. Relation with Branson-Gover operators

First we recall a few fact on the ambient metric of Fefferman-Graham, see [4, 6] for
details. If (M, [h0]) is a compact manifold equipped with a conformal class, we call

Q = {t2h0(m); t > 0,m ∈M} ⊂ S2T ∗M

the conformal bundle, it is identified with (0,∞)t × M . Let Q̃ = (−1, 1) × Q be the
ambient space with the inclusion ι : Q → Q̃ defined by z → (0, z). There are dilations
δs : (t,m) → (st,m) of Q which extends naturally to Q̃. The functions on Q which are
w-homogeneous in the sense

f(st,m) = swf(t,m)

are the section of a bundle denoted E[w], they extend naturally on Q̃. We denote by h̃

the ambient metric of Fefferman-Graham [4] on Q̃. This is a smooth Lorentzian metric on
Q such that

(1) δ∗s h̃ = s2h̃,∀s > 0,
(2) ι∗h̃ is the tautological tensor t2h0 on Q,

(3∗) Ric(h̃) vanishes to infinite order at Q if n is odd,
(3∗∗) Ric(h̃) vanishes to order n

2 − 1 at Q if n is even.

We let T be the vector field which generates the dilations δs, and let

Q = h̃(T, T ), ρ := −t−2Q/2, x =
√

2ρ, u = xt

so that Q is homegeneous of degree 2 with respect to δs, u and t are homogeneous of
degree 1 and x of degree 0, moreover Q, ρ are smooth defining function of Q, x, u are
defining function of Q in {Q ≤ 0} for some finer smooth structure on {Q ≤ 0}. Let us
define C := {Q = −1, ρ < ε} for some small fixed ε, then C can be identified with a collar
(0, ε)ρ ×M and there is a system of coordinates (u,m) ∈ (0, 1] × C that covers the part
{0 > Q ≤ −1, ε > ρ > 0} which is a neighbourhood of the cone Q near t =∞. The metric
h̃ has the model form (see [4]) in this neighbourhood

h̃ = −du2 + u2g

where g = (dx2 + hx)/x2 is a Poincaré-Einstein metric on the collar C.
The space Tk[s] is the space of k-form tractors which are homogeneous of degree s,

i.e. these are restrictions to the null cone Q of k-forms on Q̃ and such that ∇̃TF = sF
where T = t∂t = u∂u is the generator of dilations in the cone fibers, ∇̃ is the Levi-Civita
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connection on Q̃. Since ∇̃T ∗ = ∗ for ∗ = T, ∂x, ∂mi , we have LT = ∇̃T + k, on Tk[s],
where L denotes Lie derivative. The bundle Ek[s] is the bundle which consists of the
s-homogeneous k forms on M , in the sense that they are the sections of ΛkT ∗M ⊗ E[s]
and thus satisfy LTω = sω. We can view Ek[s] as a subspace of Tk[s − k]. We let Gk[s]
be the subundle of Tk[s+ k− n] consisting of forms which are annihilated by the interior
product iT . It has a conformally invariant projection onto Ek[s+ 2k − n] denoted by qk,
this is given for instance by i∂ρdρ∧.

If ∆̃ is the ambient Laplacian on Q̃ associated to h̃, if ω0 ∈ Ek[k + `− n
2 ] and ω̃0 is an

homogeneous extension of ω0 to Q̃, then it is proved in [3, Prop. 4.3] that the operator
defined by the formula

(6.1) L`kω0 =
[
ιT

(
d̃(n+ 2∇̃T − 2) +

1
2
d̃Q ∧ ∆̃

)
∆̃`ω̃0

]
|Q

=
[
ιT d̃(n+ 2∇̃T − 2)∆̃`ω̃0

]
|Q

can be viewed as a conformally invariant operator L`k : Ek[k+`− n
2 ]→ Gk[n2 −k−`]. Here

d̃ denotes the exterior differential on Q̃. They also define the operators (see Proposition
4.4 and Theorem 4.5 in [3])

LBG,`
k := qkL`k : Ek[k + `− n

2
]→ Ek[k − n

2
− `],

(6.2) GBG
k := qk−1iY L

n
2−k
k : Ek[0]→ Ek−1[2k − 2− n]

where Y = −∂ρt2 is a vector field dual to d̃t/t via h̃, it satisfies in particular d̃Q(Y ) = 2.
Finally the operator QBG

k acting on a closed k-form ω0 is defined as follows

QBG
k ω0 := −2(

n

2
− k + 1)qk

[
iY iT ∆̃

n
2−k(

dQ

2
∧ d̃t
t
∧ ω̃0)

]
|Q.

where ω̃0 is any homogeneous extension of ω0 to Q̃.
We now prove a Lemma whose proof is essentially the same as the for functions in [11].

Lemma 6.1. Let ω ∈ Tk
′
[−α] and j ∈ N, then we have

∆̃(Qjω) = 4j(α− n

2
− j)Qj−1ω +Qj∆̃ω.

Proof : Using ∇̃Q = 2T , we have [∆̃, Q] = −2(2∇̃T + n+ 2) and so we can compute

∆̃(QjLω0) =
j−1∑
m=0

Qm[∆̃, Q]Qj−1−mω +Qj∆̃ω

= − 2Qj−1

j−1∑
m=0

(
2(−2m+ 2j − 2− α) + n+ 2

)
ω +Qj∆̃ω

= 4Qj−1j(α− n

2
− j)ω +Qj∆̃ω

which achieves the proof. �

As a consequence, and using Lemma 6.1, we get the

Theorem 6.2. (i) Let L`k, Lk and Gk be the operators of Definition 5.2 and 4.1, and let
c`k := (−4)`(`− 1)!(`+ 1)!(k − n

2 − `). Then the following identity holds

LBG,`
k = c`kL

`
k.

In the critical case ` = n
2 − k, if GBG

k is the Branson-Gover operator of (6.2) we have

LBG
k = ckLk, GBG

k = (−1)kckGk
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with ck := (−1)
n
2−k−12n−2k+1((n2 − k)!)2(n2 − k + 1) = c

n
2−k
k .

(ii) Let Qk be the operator of Definition 4.2, then

QBG
k = (2k − n− 2)ck+1Qk.

Proof : (i) For ω0 ∈ Λk(M), we consider the form ωF1 of Lemma 5.1 of the previous
section and we extend it homogeneously in a smooth k-form of degree k − n

2 + ` by

ω̃F = uk−
n
2 +`ωF1 = uk−

n
2 +`x

n
2−k−`

∑̀
i=0

x2i
(
ω

(t)
i + x2ω

(n)
i ∧ dx

x

)
= tk−

n
2 +`

∑̀
i=0

(−Q)it−2i
(
ω

(t)
i + ω

(n)
i ∧ dρ

)
.

In the coordinates u, x, y representing a neighbourhood {−1 ≤ Q < 0, ρ < ε} and in
the k-form bundle decomposition Λk(C) ⊕ Λk−1(C) ∧ du

u , the exterior derivative, its dual
and the form Laplacian of h̃ are given by

(6.3) d̃ =
(

d 0
(−1)ku∂u d

)
, δ̃ = u−2

(
δg (−1)k+1(n+ 2− 2k + u∂u)
0 δg

)
and

(6.4) ∆̃ = u−2

(
(u∂u)(u∂u + n− 2k) + ∆k 2(−1)k+1d

2(−1)kδg (u∂u − 2)(u∂u + n− 2k + 2) + ∆k−1

)
.

So, using the properties of ωF1 in Lemma 5.1 and Lemma 5.3, we have (where s = k− n
2 +`)

∆̃ω̃F =us−2
(
∆k + s(s+ n− 2k)

)
ωF1 + 2(−1)kus−3δgωF1 ∧ du

= 2`us−2x`−k+n
2
(
L`kω0 +Ot(x2)

)
+ us−2x`−k+n

2 +2
(
B ∧ dx

x
+On(x2)

)
+ 2(−1)kus−3x`−k+n

2 +2
(
C +O(x2)

)
∧ du

= (−Q)`−1tk−`−
n
2
(
2`L`kω0 + (B + 2(−1)kC) ∧ dρ

)
+O(Q`)

for some (k − 1)-forms B,C on M . We can now apply `− 1 times Lemma 6.1 and get

∆̃`ω̃F = ∆̃`−1∆̃ωF = (−4)`−1[(`− 1)!]2tk−`−
n
2
(
2`L`kω0 + (B + 2(−1)kC) ∧ dρ

)
+O(Q).

Since (n+ 2∇̃T − 2) acts on homogeneous k-forms of degree k−`−n2 by multiplication by
−2(`+ 1) and iT d̃ = LT on Gk[n2 − k − `], we get

L`k = (`+ 1)(k − `− n

2
)(−4)`[(`− 1)!]2tk−`−

n
2
(
`L`kω0 + (

B

2
+ (−1)kC) ∧ dρ

)
Note that by definition of Bk, Ck, Gk we have, in the case ` = n

2 − k,

B

2
+ (−1)kC = (−1)k−1

(Bk
2
− Ck

)
ω0 = `Gkω0.

(ii) Similarly, for ω0 ∈ Λk(M) closed, we set ω̃F := ω′F1
∧ 1

2 d̃Q in {Q < 0, ρ ≤ ε} where
the form ω′F1

is the 0-homogeneous expansion of ω′F1
∈ Λk+1(C) given by (3.12). SinceedQ

2 = −t2dρ+Qdt
t , we have

ω̃F =

n
2−k∑
j=0

x2j
(
ω

(n)
2j ∧

dx

x
+ x2ω

(t)
2j

)
∧ d̃Q

2

=

n
2−k∑
j=0

−(−Q)jt−2(j−1)ω
(n)
2j ∧ dρ ∧

dt

t
+ (−Q)j+1t−2j−2ω

(t)
2j ∧ (−t2dρ+Q

dt

t
)
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and so ω̃F is a smooth (k + 2) form. By (6.4) and the definition of B′k, D
′
k we have

∆̃ω̃F = ∆̃(−u2ω′F1
∧ du
u

) = 2(−1)kdω′F1
− (∆k+1ω

′
F1

) ∧ du
u

= − xn−2k−22D′kω0 ∧
dx

x
+ (−1)k+1xn−2k

(
B′kω0 ∧

dx

x
+ ω1

)
∧ du
u

+O(Q
n
2−k)

= (−1)
n
2−k−12Q

n
2−k−2t2k−n+4D′kω0 ∧ dρ

+ (−1)
n
2 +1Q

n
2−k−1t2k−n+2

(
B′kω0 ∧

dt

t
+ (−1)kω1

)
∧ dρ+O(Q

n
2−k)

for some form ω1 on M , the value of which is not important for our purpose. By Lemma
6.1, we have

∆̃2ω̃F = (−1)
n
2−k−12Q

n
2−k−2t2k−n+4∆̃(D′kω0 ∧ dρ)

+ 4(
n

2
− k − 1)(−1)

n
2 +1Q

n
2−k−2t2k−n+2

(
B′kω0 ∧

dt

t
+ (−1)kω1

)
∧ dρ+O(Q

n
2−k−1)

and by (6.4), we have

∆̃(D′kω0 ∧ dρ) = ∆̃(x2D′kω0 ∧
dx

x
)

=u−2∆k+2(x2D′kω0 ∧
dx

x
) + 2u−2(−1)kδg(x2D′kω0 ∧

dx

x
) ∧ du

u

= 2(−1)kt−2δ0D
′
kω0 ∧ dρ ∧

dt

t
+ 2(2k − n− 4)t−2D′kω0 ∧

dt

t

where we have used (2.2), (2.3) and dD′kω0 = 0. We thus have

∆̃2ω̃F =Q
n
2−k−2t2k−n+2

[
4(−1)

n
2−1

(
δ0D

′
kω0 − (

n

2
− k − 1)B′kω0

)
∧ dρ ∧ dt

t
+ ω′1 ∧

dt

t

+ ω′2 ∧ dρ
]

+O(Q
n
2−k−1)

=Q
n
2−k−2t2k−n+2

[
4(n− 2k)(

n

2
− k − 1)(−1)

n
2 +kQkω0 ∧ dρ ∧

dt

t
+ ω′1 ∧

dt

t

+ ω′2 ∧ dρ
]

+O(Q
n
2−k−1)

by Corollary 4.9, and where ω′1, ω
′
2 are forms in Λk+1(M). By iterative use of Lemma 6.1,

we get

∆̃
n
2−kω̃F = ∆̃

n
2−k−2∆̃2ω̃F

= t2k−n+2
[
2n−2k−1(

n

2
− k)[(

n

2
− k − 1)!]2(−1)

n
2 +kQkω0 ∧ dρ ∧

dt

t

+ ω′1 ∧
dt

t
+ ω′2 ∧ dρ

]
+O(Q)

we infer from the definition of QBG
k that

QBGk = (−1)
n
2 +k+12n−2k(

n

2
− k + 1)!(

n

2
− k − 1)!Qk

�

7. Proof of the main results

We start with the proof of Theorem 1.2.
Proof of Theorem 1.2: the existence of ω in (i) is proved in Proposition 3.1. The

fact that the log terms Lk, Qk coincide with the Branson-Gover operators follows from
Theorem 6.2. The uniqueness of the solution is rather clear by construction: using the
arguments used in the proof of Proposition 3.1, a solution in C

n
2−k,α(X̄,Λk(X̄)) would

have its first n
2 − k Taylor coefficients uniquely (and locally) determined by the boundary
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value ω0 and then two such solutions with same boundary data would have a difference
in Ot(x

n
2−k+α) + On(x

n
2−k+1+α) and would then be in kerL2(∆k) (see Remark 3.6). We

conclude that any C
n
2−k,α solution is in fact a solution of Proposition 3.1. The proof of

(ii) is similar and follows from Proposition 3.11 and Theorem 6.2. �

Proof of Theorem 1.1: The infinite dimensionality of Kk
m(X̄) for m < n−2k+1 follows

from Proposition 3.1. Indeed for m < n− 2k this is clear since the solutions of (3.1) are
parametrized by C∞(M,Λk(M)). If m = n − 2k, one can use that there is an infinite
set of ω0 ∈ C∞(M,Λk(M)) such that Gkω0 6= 0 and Lkω0 = 0 since kerLk is infinite
dimensional and kerGk ∩ kerLk is finite dimensional by ellipticity of dGk +Lk. Solutions
of (3.1) are then in Cn−2k(X̄,Λk(X̄)).

The finite dimensionality for m = n − 2k + 1 is a little more involved. Let ω be a
harmonic form in Cn−2k+1(X̄,Λk(X̄)), then Taylor expanding, there exist some forms
ω

(n)
j , ω

(t)
j ∈ Cn−2k+1−j(M,Λ(M)) so that

ω −
n−2k∑
j=0

xj(ω(t)
j + ω

(n)
j ∧ dx) ∈ xn−2k+1L∞(Λk(X̄)),

and Lkω0 = 0. Now by Lemma 3.8 we know that ω has a weak expansion to order xN with
values in H−N (M) like in (3.9) for any N > 0 large. Moreover δgω is also a harmonic form
in Cn−2k(X̄,Λk−1(M)), moreover using (2.2) after decomposing the form in Λk−1

t ⊕Λk−1
n ,

we see that it is aO(x) and has an expansion to order xN with values inH−N−1(M) for any
N . Now, using the indicial equation like in the proof of Proposition 3.1, the weak expansion
of δgω vanishes to order xn−2k+2, so in particular we obtain δgω ∈ xn−2kL∞(Λk−1(X̄))
from the regularity of ω. Then δgω ∈ L2(Λk−1(X)) for k < n

2 − 1, while for k = n
2 − 1 it

is in L2 if we assume in addition that ω ∈ Cn−2k+1,α(X̄,Λk(X̄)) for some α > 0 (since
then δgω ∈ xn−2k+αL∞(Λk(X̄))). But as shown in Corollary 3.3, δgω is then smooth and
vanishing to order xn−2k+3. Then, like in the proof of Proposition 3.9, an integration by
part on ||δgω||2L2 shows that δgω = 0. Now we can apply the result of Proposition 4.4
(see the Remark below Corollary 4.11), which gives Gkω0 = 0. Since dGk +Lk is elliptic,
kerLk ∩ kerGk is finite dimensional and contains only smooth forms, so ω0 is smooth.
Then ω is polyhomogeneous and is the solution of Proposition 3.1, up to an element of
kerL2(∆k), it is then in Cn−1(X̄,Λk(X̄)) in general and in C∞(X̄,Λk(X̄)) if (X, g) smooth
Poincaré-Einstein manifold.

Let m ∈ [n−2k+1, n−1] be an integer. The exact sequence (1.9) is defined by inclusion
of ι : Hk(X̄, ∂X̄)→ Kk

m(X̄) and restriction to the boundary r : Kk
m(X̄)→ Hk

L(M), here
of course we use the identification Hk(X̄, ∂X̄) ' kerL2(∆k) and the regularity of harmonic
L2 forms in Theorem 3.2. The injectivity of ι is clear, the surjectivity of r comes from
Proposition 3.1, the definition of Hk

L and Theorem 6.2. The kernel of r is composed of
those forms of Kk

m(X̄) which vanish at M , but by Proposition 3.1, these are L2, and thus
in the image of Hk(X̄, ∂X̄) by the map ι. �

Proof of Theorem 1.3: First note that the space Zk(X̄) in Theorem 1.3 is included
in Kk

n−2k+1(X̄), and thus of finite dimension and composed of forms in Cn−1(X̄,Λk(X̄))
(even in the case k = n

2 by the arguments above).
(i) the maps in the complex

0 −→ Hk(X̄, ∂X̄) ι−→ Zk(X̄) r−→ Hk(∂X̄) de−→ Hk+1(X̄, ∂X̄)

are defined as follows: ι is given by inclusion where Hk(X̄, ∂X̄) ' kerL2(∆k), this is well
defined since L2 harmonic forms are closed, coclosed and in Cn−2k+1(X̄,Λk(X̄)); r is
defined as restriction at the boundary and it maps in Hk(M) since r(ω) ∈ kerLk ∩kerGk
by the discussion above and dω = 0 implies dr(ω) = 0; the last map de is the composition
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de = d ◦Φ where Φ : C∞(M,Λk(M))→ C∞(X,Λk(X))/ kerL2(∆k) is defined by Φ(ω0) =
ω where ω is the solution of (3.1) in Proposition 3.1. Note that Φ is only defined modulo
kerL2(∆k) and is linear by uniqueness of the solution in (3.1) modulo kerL2(∆k). Applying
d kills the indeterminacy with respect to kerL2(∆k) since L2 harmonic forms are closed.
Then dΦ(ω0) is harmonic and since the boundary value of Φ(ω0) is closed, then dΦ(ω0) =
O(x), and by Proposition 3.1 it is in L2. For the exactness of the sequence, first note
that ker r is composed of closed and coclosed forms which are O(x), this implies that
those forms are L2 by Proposition 3.1, so Im ι = ker r since also L2 harmonic forms
vanish at the boundary. Now ω0 ∈ ker de if Φ(ω0) is closed, but it is also coclosed
and in Cn−2k+1(X̄,Λk(X̄)) by Proposition 3.1 and the fact that ω0 ∈ ker d ∩ kerGk ⊂
kerLk ∩ kerGk, therefore Φ(ω0) ∈ Zk(X̄) and ω0 ∈ Im r. Moreover by Proposition 3.1
we have Φ(r(ω))− ω ∈ kerL2(∆k), this implies Im r ⊂ ker de, this proves exactness of the
sequence.

(ii) the map in the complex (1.11) are defined similarly: first ι : Hk(X̄, ∂X̄)→ [Zk(X̄)]
is the composition of the inclusion kerL2(∆k) → Zk(X̄) with the natural map Zk(X̄) →
[Zk(X̄)] obtained by taking cohomology class. The map r : [Zk(X̄)] → [Hk(∂X̄)] is the
map induced by the restriction map Zk(X̄) → Hk(∂X̄) used in (i). This is well defined
since if dα ∈ Zk(X̄), then r(dα) = dα0 where α0 = α|∂X̄ , and so [r(dα)] = 0 if [ · ] denotes
cohomology class in Hk(∂X̄). The last map de : [Zk(∂X̄)] → Hk+1(X̄, ∂X̄) is the map
induced by de defined in (i), i.e. de = d ◦ Φ where Φ maps ω0 to the solution of (3.1).
Note that it is well defined since for dα0 ∈ Hk(∂X̄), we have de(dα0) = dΦ(dα0) and, by
uniqueness of the solution of (3.1), Φ(dα0)− dΦ(α0) ∈ kerL2(∆k+1) thus dΦ(dα0) = 0.

To show that ker r = Im ι, we need to show that if ω ∈ Zk(X̄) is a representative in
[Zk(X̄)] such that r(ω) = dα0 for some smooth α0, then there is ω′ ∈ kerL2(∆k) such that
ω−ω′ is exact. But as said above, we have Φ(dα0)−dΦ(α0) ∈ kerL2(∆k) and Φ(r(ω))−ω ∈
kerL2(∆k) thus ω− dΦ(α0) ∈ kerL2(∆k) and we are done. To show that ker de = Imr, we
need to prove that for ω0 ∈ Hk(∂X̄) a representative in [Hk(∂X̄)] then Φ(ω0) is closed if
and only if there exists ω ∈ Zk(X̄) so that r(ω) − ω0 is exact. But Φ(ω0) is in Zk(X̄) if
dΦ(ω0) = 0, thus ker de ⊂ Im r; conversely if there is ω ∈ Zk(X̄) with ω = ω0+dα0+O(x),
then ω−Φ(ω0 +dα0) ∈ kerL2(∆k) and so dΦ(ω0) = 0 since Φ(dα0)−dΦ(α0) ∈ kerL2(∆k).
To conclude, we need to prove that Im de ⊂ ker ι. But this is clear since deω0 = dΦ(ω0)
is an exact (k + 1)-form in L2 with Φ(ω0) ∈ Cn−2k+1(X̄,Λk(X̄)). Note that in the case
k = n

2 , we make use of Proposition 3.10.
(iii) Suppose that [Hk(∂X̄)] = Hk(∂X̄). If ω ∈ ker ι, it is a k-form in kerL2(∆k) which

can be written ω = dα with α smooth. Moreover if α0 = α|∂X̄ , then d(Φ(α0) − α) ∈
kerL2(∆k) and Φ(α0)−α = O(x), an easy integration by parts shows that dΦ(α0) = dα =
ω. Here α0 is closed since ω = O(x), but by assumption there is a α′0 ∈ Hk(∂X̄) such that
α0 − α′0 = dβ for some smooth β. Since now dΦ(dβ) = d[Φ, d]β = 0, we have deα′0 = ω
and ω ∈ Im de, which gives ker ι = Im de. Eventually, the equality [Zk(X̄)] = Hk(X̄) is
clear from the discussion above since [Zk(X̄)] ⊂ Hk(X̄) and

Hk(X̄, ∂X̄) ι−→ [Zk(X̄)] r−→ Hk(∂X̄) de−→ Hk+1(X̄, ∂X̄)

Hk(X̄, ∂X̄) ι−→ Hk(X̄) r−→ Hk(∂X̄) de−→ Hk+1(X̄, ∂X̄)

are both exact sequences.
As for the converse, if ker ιk+1 = Im dke and [Zk(X̄)] = Hk(X̄), then we have the exact

sequences

Hk(X̄) r−→ [Hk(M)] de−→ Hk+1(X̄,M) ι−→ [Zk+1(X̄)]

Hk(X̄) r−→ Hk(M) de−→ Hk+1(X̄,M) ι′−→ Hk+1(X̄)
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and since [Zk+1(X̄)] ⊂ Hk+1(X̄), we obviously have ker ι = ker ι′ = Im de and so
[Hk(M)] = Hk(M) (recall [Hk(M)] ⊂ Hk(M)). �

Proof of Proposition 1.4: Assume 〈Qkv, v〉 ≥ 0. To show surjectivity of Hk(M) →
Hk(M), we need to prove that for all ω0 ∈ C∞(M,Λk(M)) closed, there exists an exact
form dα (with α ∈ C∞(M,Λk(M))) such that Gk(ω0 + dα) = 0. Consider 2 := δ0Qkd+
(dδ0)

n
2−k+1 which is elliptic, self-adjoint and non-negative if Qk ≥ 0. Its kernel is finite

dimensional (containing ker(d + δ0)) and all v ∈ ker 2 are smooth by elliptic regularity,
and satisfy 〈δ0Qkdv, v〉L2 = 0, which implies 〈Qkdv, dv〉L2 = 0. Let H ⊂ L2(Λk(M))
be the L2 completion of the set C∞(M,Λk(M)) ∩ ker d of smooth closed forms and let
us define Q the symmetric form Q(v, v) := 〈Qkv, v〉L2 on H, it is a non-negative form
induced by ΠHQk on H where ΠH denotes orthogonal projection from L2(Λk(M)) to H.
The form has a domain D(Q) and Friedrichs extension theorem implies that there exists a
self adjoint operator QFr

k : H→ H with domain D(QFr) such that 〈QFr
k u, u〉 = Q(u, u) for

u ∈ D(Q)∩D(QFr). But clearly d(C∞(M,Λk−1(M))) ⊂ D(QFr
k ) and so ΠHQkdv = QFr

k dv
for v smooth. Using now the spectral theorem for QFr

k , we see that QFr
k dv = 0 with v

smooth if and only if 〈Qkdv, dv〉 = 0 and v is smooth, thus in particular if v ∈ ker 2. Thus
Qkdv ⊥ ω for all ω ∈ H if v ∈ ker 2. Now this implies that, with ω closed and smooth, we
have 〈v,Gkω〉 = 〈Qkdv, ω〉 = 0 for v ∈ ker 2 since Qk is symmetric on closed forms, and so
Gkω is in the range of 2 and there exists α such that 2α = −Gkω, but since ImGk ⊂ Im δ0
which is orthogonal to Im d, we deduce that (dδ0)

n
2−k+1α = 0 and this achieves the proof.

Note in particular that in this case {dϕ;Lk−1ϕ = 0} = {dϕ;Qkdϕ ∈ Im δ0}, see Corollaries
2.12 and 2.13 of [3] for discussions about these spaces. �

8. Computations in some special cases

In this section we compute the operator Lk, Gk and Qk in dimension 4 and 6.

Proposition 8.1. Let (M4, h) a four dimensional Riemannian manifold and define for
any symmetric 2-tensor H the map j(H) := J(h−1H) where J is defined in (2.4). Then
we have

L1 =
1
2
δd, G1 = −1

4
δ
(

∆− 2j(Ric) +
2
3

Scal
)
, Q1 =

1
2

(
∆− 2j(Ric) +

2
3

Scal
)
,

L0 = − 1
16
δ
(

∆− 2j(Ric) +
2
3

Scal
)
d, G0 = 0, Q0 = − 1

24

(
∆Scal− 3|Ric|2 + Scal2

)
where Ric is the Ricci tensor of h and Scal its scalar curvature

Remark: If n = 4, Ln
2−2 is the Paneitz operator (up to a constant factor). The result

of Gursky and Viaclovsky [14] says that if the Yamabe invariant Y (M, [h0]) is positive
and ∫

M

Qdvolh0 +
1
6
Y (M, [h0])2 > 0

then L0 is a non-negative operator with kernel reduced to constants. Combining with The-
orem 2.6 of Branson-Gover[3], we have that H1(M) ' H1(M) and there is a conformally
invariant basis of H1(M) with respect to [h0] made of conformal harmonics.

Corollary 8.2. Let M4 be a four dimensional manifold and λ1(x) ≥ · · · ≥ λ4(x) the
eigenvalues of its Ricci curvature at x. If λ2(x) + λ3(x) + λ4(x) ≥ 0 for all x ∈ M then
H1(M)→ H1(M) is surjective.

Proof : Let D be the Levi-Civita connection of the metric h and ω be a closed 1-form.
By decomposing orthogonally the bilinear tensor Dα in antisymmetric part dα

2 , symmetric
trace free part S0 and trace part −δα4 h, we get (recall that ω is closed)

|Dα|2 =
|dα|2

2
+ |S0|2 +

(δα)2

4
≥ (δα)2

4
.
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Now, by the Bochner formula, we get

〈∆ω, ω〉 = ‖Dω‖22 + Ric(ω, ω) ≥ ‖δω‖2/4 +
∫
M

Ric(ω, ω) =
〈∆ω, ω〉

4
+
∫
M

Ric(ω, ω),

and so 〈∆ω, ω〉 ≥ 4
3

∫
M

Ric(ω, ω). Therefore,

〈Q1ω, ω〉 =
1
2
〈∆ω, ω〉 −

∫
M

Ric(ω, ω) +
Scal

3
|ω|2 ≥ 1

3

∫
M

Scal|ω|2 − Ric(ω, ω),∫
M

(λ1 + λ2 + λ3 + λ4)|ω|2 − λ1|ω|2 ≥
∫
M

(λ2 + λ3 + λ4)|ω|2 ≥ 0,

and we conclude by using Proposition 1.4. �

Proposition 8.3. Let (M6, h) be a six dimensional manifold. Let j be defined like in
Lemma 8.1 and tr(H) denotes the trace of a symmetric tensor H with respect to h, then
we have

L2 =
1
2
δd, G2 =

1
4
δ
(

∆− j(Ric) +
2
5

Scal
)
, Q2 =

1
2

(
∆− j(Ric) +

2
5

Scal
)
,

L1 = − 1
16
δ
(

∆− j(Ric) +
2
5

Scal
)
d,

G1 =
(δd)2δ

64
+
δdE1δ

32
− δE1δd

16
− δE1dδ

16
− δdδE1

16
+
δE2

16
+
δE2

1

8
,

Q1 = −∆2

16
+
dδE1

4
+
δdE1

4
− dE1δ

8
+
E1dδ

4
− 2E2

1 + E2

4
,

L0 =
1

384
(δd)3 +

δdE1δd

192
− δE1dδd

96
− δdδE1d

96
+
δE2d

96
+
δE2

1d

48
,

Q01 = − 1
1920

∆2Scal− h0(Ric,Hess Scal)
320

+
∆|Ric|2

768
− 29

38400
∆Scal2 − |dScal|2

640

− 51
64000

Scal3 − 1
256

tr
(
(h−1

0 Ric)3
)

+
9

2560
|Ric|2Scal− 1

32
h0(Ric, B),

where E2 := J(P 2 + 2B)− |P |2/2 and E1 := J(P )− tr(P )/2, B denotes the Bach tensor
of h, P the Schouten tensor, Ric the Ricci tensor and Scal the scalar curvature.

Proposition 8.4. For any n ≥ 4, we have the identities

Gn
2−1 = (−1)

n
2 +1
(δdδ

4
− δj(P )

2
+ δ

Tr(P )Id
4

)
= (−1)

n
2 +1
(δdδ

4
− δ
(j(Ric)
n− 2

− ScalId
2(n− 1)

))
,

Qn
2−1 =

(∆
2
− 2j(Ric)

n− 2
+

Scal Id
n− 1

)
,

Ln
2−2 = −δ

(dδ
16
− j(Ric)

4(n− 2)
+

Scal Id
8(n− 1)

)
d,

Gn
2−2 = (−1)

n
2 +1
( (δd)2δ

64
+
δdE1δ

32
− δE1δd

16
− δE1dδ

16
− δdδE1

16
+
δE2

16
+
δE2

1

8

)
,

Qn
2−2 = −∆2

16
+
dδE1

4
+
δdE1

4
− dE1δ

8
+
E1dδ

4
− 2E2

1 + E2

4
,

Ln
2−3 =

(δd)3

384
+
δdE1δd

192
− δE1dδd

96
− δdδE1d

96
+
δE2d

96
+
δE2

1d

48
,

where E2 := J(P 2 + 4B
n−4 )−|P |2/2 and E1 := J(P )− tr(P )/2, B denotes the Bach tensor

of h, P the Schouten tensor, Ric the Ricci tensor and Scal the scalar curvature.

For the non critical case, we have

Proposition 8.5. We set j](H) = 2j(H)− tr(H) Id. For any n ≥ 3, we have

L1
k =

δd

2
+

(n− 2k − 2)dδ
2(n− 2k + 2)

+
(n+ k − 2)(n− 2k − 2)

8(n− 1)(n− 2)
Scal− (n− 2k − 2)j(Ric)

2(n− 2)
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which generalizes the conformal Laplacian on functions,

L2
k = −n− 2k − 4

16

( (dδ)2

n− 2k + 4
+

(δd)2

n− 2k − 4
+

2dj](P )δ
n− 2k + 4

− 2δj](P )d
n− 2k − 4

−j(P )∆ + ∆j](P )
2

+ j](P 2 +
B

n− 4
) +

(n− 2k)j](P )2

4

)
which generalizes the Paneitz-Branson operator on functions.

Proofs of Propositions 8.1, 8.3, 8.4 and 8.5: This is a quite tedious computation, therefore
we do not give the full details. By [6, Eq. (3.18)], we have

h−1
0 hx =

(
I − x2P

2
+ x4h2

8
− x6h3

48
+ o(x6)

)
,

whith P = 1
n−2

(
2h−1

0 Ric − Scal
n−1I

)
, h2 = P 2

2 for n = 4 and h2 = − 2h−1
0 B
n−4 + P 2

2 and

tr(h3) = − 8tr
(
P (h−1

0 B)
)

n−4 for n = 6 (where B is the Bach tensor); note that we have ignored
the first log term in the metric expansion (i.e. the obstruction tensor) in dimension 4
and 6 since, as it is clear from Lemma 2.1, they do not show up in the construction the
L`k, Gk, Qk. We set B′ = 0 for n = 4 and B′ = 2h−1

0 B
n−4 for n = 6. Using the relations

L−1 = I −A1x
2 − (A2 −A2

1)x4 − (A3 +A3
1 −A1A2 −A2A1)x6 + o(x6),

L−1QL = I+A′1x
2 +(A′2 +[A′1, A1])x4 +(A′3 +[A′1, A2]+ [A′2, A1]+A1[A1, A

′
1])x6 +o(x6),

for L =
(
I +A1x

2 +A2x
4 +A3x

6 + o(x6)
)

and Q =
(
I +A′1x

2 +A′2x
4 +A′3x

6 + o(x6)
)
,

and the notations of the proof of Lemma 2.1, we get

h−1
x h0 = I + x2P

2
+ x4 3P 2 + 2B′

16
+ x6h3 + 6P 2 + 3B′P + 3PB′

48
+ o(x6),

Ax = −Px− P 2 + 2B′

4
x3 − 2h3 + P 3 + 4PB′ + 2B′P

16
+ o(x6),

Ox = I + x2P

4
+ x4P

2 +B′

16
+ x6 2h3 + 3P 3 + 5PB′ + 4B′P

192
+ o(x6),

Ix = I + x2 J(P )
4

+ x4 J(P 2 + 2B′) + J(P )2

32
,

+x6
(J(4h3 + 2P 3 + 10PB′ + 2B′P ) + 3J(2B′ + P 2)J(P ) + J(P )3

384
)

+ o(x6),

I−1
x = I − x2 J(P )

4
+ x4−J(P 2 + 2B′) + J(P )2

32
,

+x6
(−J(4h3 + 2P 3 + 10PB′ + 2B′P ) + 3J(P )J(2B′ + P 2)− J(P )3

384
)

+ o(x6).

Then we obtain

?x = ?0 − x2 [J(P ), ?0]
4

+ x4
([J(P ), [J(P ), ?0]

]
− [J(P 2 + 2B′), ?0]
32

)
+x6

(
−
[
J(P )3 + J(4h3 + 2P 3 + 10PB′ + 2B′P ), ?0

]
384

+
J(P )[J(P ), ?0]J(P ) +

[
J(P ), [J(2B′ + P 2), ?0]

]
128

)
+ o(x6)

from which we infer that

?−1
x

[
∂x, ?x

]
= x

?−1
0 [?0, J(P )]

2
+ x3 ?

−1
0 [?0, J(P 2 + 2B′)] + [J(P ), ?−1

0 J(P )?0]
8

+ x5 C

64



36 ERWANN AUBRY AND COLIN GUILLARMOU

where

C := −2 ?−1
0

[
J(P )3 + J(2h3 + P 3 + 5PB′ +B′P ), ?0

]
−
[
J(P ), [J(P ), ?−1

0 J(P )?0]
]

+2[?−1
0 J(P ) ?0 +2J(P ), ?−1

0 J(2B′ + P 2) ?0 −J(2B′ + P 2)]

using the relations ?0J(H) + J(H)?0 = tr(H)?0 and [J(H), J(H ′)] = J([H,H ′]), we get

?−1
x

[
∂x, ?x

]
= xE1 + x3E2

4
+ x5C

′

32
with

C ′ := − ?−1
0

[
J(P )3 + J(2h3 + P 3 + 3PB′ + 3B′P ), ?0

]
, E2 := J(P 2 + 2B′)− tr(P 2)

2
,

δx = δ0 + x2 [δ0, E1]
2

+ x4 D

16
, where D := [δ0, E2] + 2

[
[δ0, E1], E1

]
.

Therefore,

∆k =
(
−(x∂x)2 + (n− 2k)x∂x 2(−1)k+1d

0 −(x∂x)2 + (n− 2k + 2)x∂x

)
+x2

(
∆0 − E1x∂x (−1)k[d,E1]
2(−1)k+1δ0 ∆0 − E1(2 + x∂x)

)
+x4

(
A1 −A2x∂x (−1)k[d,A2]

2(−1)k+1[δ0, E1] A1 −A2(4 + x∂x)

)
+x6

(
A3 A4

A5 A6

)
+ o(x6)

where A1 := d[δ0,E1]+[δ0,E1]d
2 , A2 := E2

4 (since the Bach tensor is trace-free), A5 :=
−(−1)k 3D

8 and, when k = 1, A61 := − 3
8A1 = 3

2000 (Scal)3 + 3
16 tr(P 3) + 3

8h0(h0P,B).

For n = 6 and k = 1 we follow the formal method of Subection 4.2.3. We first have

ω′F1
=
dx

x
− x2(

dScal
80

+
Scaldx

40x
) + x4(

∆Scal
160

+
Scal2

800
− |P |

2

16
)
dx

x

and so, by computing dωF1 and ∆kωF1 , one finds

D′01 = −d∆Scal
160

− dScal2

800
+
d|P |2

16
= −d∆Scal

160
− 11dScal2

3200
+
d|Ric|2

64

−B′01 = A61 +
[E1, δ0]dScal

40
− (A1 − 6A2)Scal

40
+
(
∆0 − 6E1

)(∆Scal
160

+
Scal2

800
− |P |

2

16
)

=
3

2000
Scal3 +

3
16

tr(P 3) +
3
8
h0(h0P,B) +

3[E1, δ0]
80

dScal− 3
160
|P |2Scal

+
∆2Scal

160
+

∆Scal2

800
− ∆|P |2

16
+

3Scal∆Scal
800

+
3Scal3

4000
− 3Scal|P |2

80

=
153

32000
Scal3 +

3
128

tr
(
(h−1

0 Ric)3
)
− 27

1280
|Ric|2Scal +

3
16
h0(Ric, B) +

1
160

∆Scal2

+
∆2Scal

160
− ∆|Ric|2

64
+

3|dScal|2

320
+

3h0(Ric,Hess Scal)
160

where, by the second Bianchi identity, we have that δ(J(P )dScal) = − |dScal|2
4 −h0(Ric,Hess Scal)

2 −
∆Scal2

40 . Hence we get

−Q0 =
1

1920
∆2Scal +

h0(Ric,Hess Scal)
320

− ∆|Ric|2

768
+

29
38400

∆Scal2 +
|dScal|2

640

+
51

64000
Scal3 +

1
256

tr
(
(h−1

0 Ric)3
)
− 9

2560
|Ric|2Scal +

1
32
h0(Ric, B)
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The other computations are made similarly. For instance, for k = n/2− 1,

∆ωF1 = x2δ0dω0 + x3(−1)
n
2 +1
(δ0dδ0ω0

2
− 2δ0E1ω0

)
∧ dx+O(x4),

and so

Bn
2−1ω0 = −δ0dδ0ω0

2
+ 2δ0E1ω0.

We have δωF1 = x4

2 δ0E1ω0 +O(x5), and so Cn
2−1 = δ0E1

2 . By Proposition 4.5,

Gn
2−1 = (−1)

n
2 +1
(δ0dδ0

4
− δ0E1

2

)
,

which implies the expression for Ln
2−2 by (4.11). For k = n

2 − 2, we have

ωF1 = ω0 + x2
(
−dδω0

8
− δdω0

4
+

(−1)
n
2 δω0

4
∧ dx
x

)
+(−1)

n
2 x4
(δE1ω0

4
− δdδω0

16
− E1δω0

8
)
∧ dx
x

δ =
(

0 (−1)
n
2 (x∂x − 6)

0 0

)
+ x2

(
δ0 (−1)

n
2E1

0 δ0

)
+ x4

(
[δ0,E1]

2 (−1)
n
2A2

0 [δ0,E1]
2

)

+x6

(
2[δ0,A2]+

[
[δ0,E1],E1

]
8 ∗
0 ∗

)
and so

Cn
2−2 =

δ0A2

4
+
δ0E

2
1

8
− δ0E1dδ0

16
− δ0E1δ0d

8
,

Bn
2−2 =

3δ0A2

2
− δE1δd

2
− 3δE1dδ

8
− δdδE1

4
+

(δd)2δ

16
+
δdE1δ

8
+

3δE2
1

4
,

Gn
2−2 = (−1)

n
2 +1
( (δd)2δ

64
+
δdE1δ

32
− δE1δd

16
− δE1dδ

16
− δdδE1

16
+
δE2

16
+
δE2

1

8

)
.

In the case k = n
2 − 1, we have ω′F1

= ω0 ∧ dx
x + x2

(
−dδ4 + E1

2

)
∧dxx , D′n

2−2 = (−1)
n
2 +1 dE1

2

and B′n
2−2 = (−1)

n
2 dδE1 − dE1δ

2 − E2 − (dδ)2

4 + δdE1 + E1dδ − 2E2
1 + δdE1

2 . So we get

Qn
2−2 = −∆2

16
+
dδE1

4
+
δdE1

4
− dE1δ

8
+
E1dδ

4
− 2E2

1 + E2

4
.

�
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Lab. Dieudonné, Univ. de Nice Sophia-Antipolis, Parc Valrose, 06108 Nice, FRANCE

E-mail address: eaubry@math.unice.fr

E-mail address: cguillar@math.unice.fr


