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Abstract. We study Eisenstein functions and scattering operator on geometrically finite hy-
perbolic manifolds with infinite volume and rational non-maximal rank cusps. For both we
prove the meromorphic extension and we show that the scattering operator belongs to a cer-
tain class of pseudo-differential operators on the conformal infinity which is a manifold with
fibred boundaries. Then we obtain results relating Q-curvature of the boundary, scattering
operator at energy n and renormalized volume.

On montre le prolongement méromorphe des fonctions d’Eisenstein et de l’opérateur de
diffusion sur les variétés hyperboliques géométriquement finie, de volume infini, dont les cusps
de rang non-maximal sont rationnels. Dans ce cas, l’opérateur de diffusion appartient à
une certaine classe d’opérateur pseudo-differentiel sur l’infini conforme, qui est une variété
avec bord fibré. Enfin on obtient quelques résultats reliant Q-courbure de l’infini conforme,
operateur de diffusion à energie n et volume renormalisé.

1. Introduction and results

The purpose of this work is to study the Eisenstein functions and scattering operator on a
class of geometrically finite hyperbolic quotients Γ\Hn+1 with non-maximal rank cusps. As a
consequence, we investigate relations between the conformal geometry of the boundary (which
is non-compact) and the scattering operator, in the spirit of Graham-Zworski’s work on asymp-
totically Einstein manifolds [7].

Such problems involving spectral and scattering theory on geometrically finite hyperbolic quo-
tients have been studied probably since Selberg and lead to many important results. However,
most of the results known are obtained when the group has no parabolic elements of non-maximal
rank, in other words when the quotient X = Γ\Hn+1 has no cusps of non-maximal rank. As far
as we know, the only results concerning meromorphic extension of the resolvent or scattering
operator for this cases were due, until recently, to Froese-Hislop-Perry [3] in dimension 3. How-
ever, Bunke and Olbrich [1] deal in a preprint with the meromorphic extension of the scattering
operator in all generality using a very different approach; in particular they do not study the
(pseudo-differential) structure of this operator. We lead the reader to the introduction of [8] for
a more detailed review of works touching meromorphic extension of the resolvent for the Lapla-
cian through the essential spectrum, resonances (i.e. the poles of this extension), meromorphic
continuation of Eisenstein functions and scattering operator for geometrically finite hyperbolic
manifolds, though we do not claim to be complete about references therein.

We consider an infinite volume hyperbolic quotient X := Γ\Hn+1 where Γ is a discrete group
of isometries of Hn+1 which admits a fundamental domain with finitely many sides, X is said
geometrically finite, and such that each parabolic subgroup of Γ does not contain irrational
rotation. For exemple, this last condition is always satisfied in dimension n + 1 = 3 and, in
general, can be reduced to the case where each parabolic subgroup is conjugate to a lattice of
translations in Rn (in the model Hn+1 = (0,∞)×Rn), possibly by passing to a finite cover, thus
resolvent, scattering operator and Eisenberg functions are obtained as a finite sum on the cover.
Similarly, elliptic elements of Γ can also be excluded by passing to a finite cover, X is then a
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smooth manifold, and since the presence of maximal-rank cusps do not add difficulties, we will
avoid them for simplicity of exposition. The Laplacian on such manifolds have been studied by
Froese-Hislop-Perry [3] in dimension 3 and by Perry [23] in higher dimension. The manifold X
equipped with the hyperbolic metric is complete and the spectrum of the Laplacian ∆X splits

into continuous spectrum [n2

4 ,∞) and a finite number of L2 eigenvalues included in (0, n2

4 ) which
form the point spectrum σpp(∆X) (see Lax-Phillips [14]). In [8] we proved that the modified
resolvent

R(λ) := (∆X − λ(n− λ))
−1

extends from {ℜ(λ) > n
2 } to C meromorphically with poles of finite multiplicity (i.e. the rank of

the polar part in the Laurent expansion at each pole is finite) from L2
comp(X) to L2

loc(X), these
poles are called resonances.

In the present work, we define a Poisson operator, Eisenstein functions, a scattering operator
and we show that they extend meromorphically to C. To explain the main Theorems, we recall
briefly the structure at infinity of the manifold X but in any case, we lead to reader to Section 2
of Mazzeo-Phillips [19] for a comprehensive description of geometrically finite quotients Γ\Hn+1

(see also [2, 23, 8]). The first approach is to see X as the interior of a smooth compact manifold
with boundary X̄. If ρ is a boundary defining function of the boundary ∂X̄ and if g is the
hyperbolic metric onX , then ρ2g extends as a smooth non-negative tensor on X̄ which is a metric
outside some submanifolds of the boundary ∂X̄ where it becomes degenerate. Each one of these
submanifolds arises from a cusp point of X , i.e. a fixed point at infinity of Hn+1 for a parabolic
subgroup of Γ, and is diffeomorphic to a k-dimensional torus T k if the parabolic subgroup has
rank k. If we note c the union of these submanifolds, B = ∂X̄ \ c is a non-compact manifold
which can be thought as the infinity of X ; actually B = Γ\Ω where Ω ⊂ Sn is the domain
of discontinuity of Γ. By blowing-up these submanifolds in X̄, this gives a manifold X̄c with
corners of codimension 2 which is the compactification ofX defined by Mazzeo-Phillips [19] in the
general case. The topological boundary of X̄c splits into two kind of smooth hypersurfaces with
boundaries, the regular ones whose union is a compactification B̄ of B and the cusp ones which
are diffeomorphic to Sn−k

+ × T k, Sn−k
+ being an n − k dimensional half-sphere with boundary.

It turns out that B has ends diffeomorphic to (Rn−k
y \ {|y| < 1}) × T k, each end arising from

a rank-k parabolic subgroup of Γ fixing a point at infinity of H
n+1. The compactification B̄ of

B corresponds to the radial compactification in the y variable in each end thus B̄ is a fibred
boundary manifold in the sense of Mazzeo-Melrose [18], the fibrations being the projections

Sn−k−1 × T k → Sn−k−1.

When equipped with the metric h0 := ρ2g|B, (B, h0) is conformal to an ‘exact Φ-type metric’
near its infinity as defined in [18], the conformal factor decreasing enough to make the volume
of B finite - the vanishing rate is even stronger than the fibred cusp metrics (see Figure 1 for
illustration).

We construct Poisson and scattering operators P(λ), S(λ) by solving a Poisson problem in a
way similar to that introduced on Euclidean manifolds by Melrose and on many other settings by
various authors (see [21] for review). However, in view of the sensible structure of the metric near
the cusps c, it appears that P(λ), S(λ) do not act naturally on C∞(∂X̄) but much on subspaces
related to this structure. We then define the subalgebra C∞

acc(X̄) of C∞(X̄) of functions which
are asymptotically constant in the cusps, these are the f ∈ C∞(X̄) such that

Z(f |c) = 0, Z((X1 . . . XNf)|c) = 0

for all smooth vector fields X1, . . . , XN on X̄ (∀N ∈ N) and all smooth vector fields Z on c.
In other words, these are the functions whose restrictions at the cusp submanifolds are locally
constant and similarly for all derivatives. It is actually possible to find a boundary defining
function ρ in this subalgebra. Then the volume form dvolg of g can be expressed by ρ−n−1R2

cµX̄
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for a function Rc which is smooth positive in X̄ \ c with R2
c ∈ C∞

acc(X̄) vanishing at order
2k at each k-dimensional component of c and where µX̄ is a smooth volume density on X̄.
The functions Rc and ρ are not uniquely determined but we show that the set R−1

c C∞
acc(X̄) is

independent of the choice of R2
c , ρ in C∞

acc(X̄) (but it certainly depends on the metric). Then
we define C∞

acc(∂X̄) and R−1
c C∞

acc(∂X̄) by restriction of C∞
acc(X̄) and R−1

c C∞
acc(X̄) at ∂X̄ and

B = ∂X̄ \ c (here we use the same notation for Rc and its restriction Rc|∂X̄). For any boundary
defining function ρ ∈ C∞

acc(X̄), one can define the Poisson operator P(λ) by showing that if
ℜ(λ) ≥ n

2 and λ /∈ n
2 + N, then for all f ∈ R−1

c C∞
acc(∂X̄) there exists a unique solution P(λ)f of

the following Poisson problem




(∆X − λ(n− λ))P(λ)f = 0
P(λ)f = ρn−λF (λ, f) + ρλG(λ, f)
F (λ, f), G(λ, f) ∈ R−1

c C∞
acc(X̄)

F (λ, f)|ρ=0 = f

.

The construction of the solution is a consequence of an indicial equation for ∆X and the precise
mapping property of the extended resolvent

R(λ) : Ċ∞(X̄)→ ρλR−1
c C∞

acc(X̄).

where Ċ∞(X̄) is the set of functions in C∞(X̄) vanishing at all order at ∂X̄.
Next we analyze Eisenstein functions. The metric h0 induces an L2(B) Hilbert space on B

and we prove

Theorem 1.1. If R(λ;w;w′) denotes the Schwartz kernel of the modified resolvent, the Eisen-
stein function

E(λ; b;w′) := lim
w→b

[ρ(w)−λR(λ;w;w′)], b ∈ B,w′ ∈ X

is a smooth function on B × X if λ is not a resonance. There exists C > 1 such that for all
N > 0 it is the Schwartz kernel of a meromorphic operator

E(λ) : ρNL2(X)→ L2(B)

in ℜ(λ) > n
2 − C−1N with poles of finite multiplicity, satisfying P(λ) = (2λ − n)tE(λ) on

R−1
c C∞

acc
(∂X̄). Except possibly at {λ;ℜ(λ) < n

2 , λ(n − λ) ∈ σpp(∆X)}, the set of poles of E(λ)
coincide with the set of resonances.

Using the asymptotic expression of P(λ)f , the scattering operator is then defined (with the
same notations) by

S(λ) :

{
R−1

c C∞
acc(∂X̄) → R−1

c C∞
acc(∂X̄)

f → F (λ, f)|ρ=0
.

For ℜ(λ) = n
2 , S(λ) can be extended to L2(B) as a unitary operator and it gives, in a sense,

a parametrization of the absolutely continuous spectrum of ∆X . Then, we prove the follow-
ing result which is expressed in more details in Theorem 6.5, Lemma 6.1, Corollary 6.3 and
Proposition 7.1:

Theorem 1.2. The scattering operator S(λ) extends meromorphically to C as a family of
pseudo-differential operators in the full Φ-calculus on the manifold with fibred boundary B̄ in
the sense of Mazzeo-Melrose [18]. In {ℜ(λ) ≤ n

2 , λ(n − λ) /∈ σpp(∆X)}, λ0 is a pole of S(λ) if
and only if λ0 is a resonance and it has finite multiplicity. In {ℜ(λ) > n

2 }, S(λ) has only first
order poles whose residue is

Resλ0
S(λ) =

{
− (−1)j+12−2j

j!(j−1)! Pj + Πλ0
if λ0 = n

2 + j, j ∈ N

Πλ0
if λ0 /∈

n
2 + N

where Pj is the j-th GJMS conformal Laplacian of [6] on (B, h0) and Πλ0
is an operator with

rank dim kerL2(∆X − λ0(n− λ0)).
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Note that the GJMS conformal Laplacians Pj in [6] are well-defined for all j if n ≥ 3 (resp.
for j ≤ 1 if n = 2) if the manifold is locally conformally flat (it is actually done in the compact
setting but they can be extended for non-compact manifolds by using the same local expression
in the curvature tensor), which is the case for B.

In last part, we prove some results similar to Graham-Zworski theorems in [7] for this class of
manifolds. By changing the boundary defining function ρ̂ = eωρ ∈ C∞

acc(X̄) (with ω ∈ C∞
acc(X̄))

we obtain a metric ĥ0 := ρ2g|B = e2ω0h0 on B conformal to h0 (where ω0 = ω|B), this induces a
subconformal class [h0]acc of h0 on the boundary B. If we replace ρ by ρ̂ in Poisson problem, this

defines different Poisson and scattering operators P̂(λ), Ŝ(λ) and by uniqueness, Ŝ(λ) is related to

S(λ) by the covariant rule Ŝ(λ) = e−λω0S(λ)e(n−λ)ω0 , thus Ŝ(λ) depends only on the conformal

representative ĥ0 and S(λ), this makes the scattering operator a conformally covariant operator

with respect to the subconformal class [h0]acc. Similarly P̂j is related to Pj by the covariant rule

P̂j = e−( n
2
+j)ω0Pje

( n
2
−j)ω0 .

If n is even, one can use the operators Pj to define Branson’s Q-curvature of h0 on B and we
show

Theorem 1.3. Let n be even, then for any choice of ρ, the Q-curvature of h0 = ρ2g|B on the
boundary B satisfies

Q =
(−1)

n
2 2−n

n
2 !(n

2 − 1)!
S(n)1.

Moreover it has a conormal behaviour of order −n at ∂B̄, is in L1(B, dvolh0
) and

(−1)
n
2 21−n

n
2 !(n

2 − 1)!

∫

B

Q dvolh0
= L

where L is the log term, independent of ρ, appearing in the expansion of the volume

volX({ρ > ǫ}) ∼ c0ǫ
−n + · · ·+ cn−2ǫ

−2 + L log(ǫ−1) + V + o(1).

To conclude, we deduce from Theorem 1.3 and the fact that every geometrically finite 3-
manifolds satisfy our assumptions (since there is no rotational part in this case by lack of di-
mension),

Corollary 1.4. If X = Γ\H3 is a geometrically finite hyperbolic manifold, its renormalized
volume is

L = −πχ(B̄) = −πχ(∂X̄) = −2πχ(X̄)

where χ(•) means Euler characteristic.

This gives a generalization in dimension 3 of Epstein’s formula [22] for the renormalized vol-
ume of a convex co-compact hyperbolic manifold. These results show a certain continuity when
a convex co-compact group degenerates to a cusp case.

The case of irrational cusps is more technically involved and it is not clear if such precise
results can be obtained, at least the meromorphic extension of the resolvent will probably be
carried out in a following paper. It is also important to add that this analysis could be used to
study the divisors of Selberg’s zeta function as Patterson-Perry [22] did for convex co-compact
hyperbolic manifolds.

The paper is organized as follows: we first introduce in section 2 the geometric setting, discuss
the compactification X̄ of the manifold X and analyze its infinity B; then in section 3 we de-
fine the class of pseudo-differential operator on B which contains the scattering operator and in
section 4 we study the mapping properties and the structure of the resolvent for the Laplacian.
In section 5, we construct the Poisson operator and Eisenstein functions using section 4 and in
section 6 we define and describe the scattering operator. To conclude we investigate the relation
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between the conformal geometry of B and the scattering theory on X .

Along the paper, we will identify operators with their Schwartz kernel and we consider opera-
tors acting on functions for simplicity of exposition though the correct approach would be to use
half-densities. Consequently the kernels of pseudo-differential operators have to be understood
as tensorized by appropriate half-densities.

Aknowledgements: We thank Rafe Mazzeo, Robin Graham and Jared Wunsch for helpful
discussions. This work was written at Purdue University but we are also grateful to the Mathe-
matics Department of Nantes where it was completed. Research is partially supported by NSF
grant DMS0500788.

2. Geometry of the manifold

2.1. Assumptions on the group. We describe here with more details the assumptions about
the cusps discussed roughly in the introduction; we strongly use Section 2 of Mazzeo-Phillips
[19]. Let Γ a discrete subgroup of orientation preserving isometries of the hyperbolic space Hn+1.
Recall that Γ acts also on the natural compactification H̄n+1 = {m ∈ Rn+1; ||m|| ≤ 1} of Hn+1

and on its boundary Sn; an element γ is called hyperbolic if it fixes exactly two points on Sn

and no point in Hn+1, parabolic if it fixes one point on Sn and no point in Hn+1, then γ is
elliptic if it fixes a point of Hn+1. If Γ contains elliptic elements, there exists a subgroup Γ0

of finite index of Γ without elliptic elements thus X is finitely covered by Γ0\H
n+1, the latter

being a smooth manifold. Since we study resolvent of the Laplacian and other related objects,
we can always pass to a finite cover without difficulties: objects on X can indeed be obtained by
summing on a finite set objects on the finite cover. Thus we exclude elliptic elements in Γ. We
suppose that Γ is geometrically finite, which means here that it admits a fundamental domain
F with finitely many sides. Each fixed point p ∈ Sn of a parabolic element of Γ is called a cusp
point, and for each cusp point p, let Γp be the subgoup of Γ fixing p. Actually Γp contains only
parabolic elements and it can be shown that there is a Γp invariant neighbourhood Up of p such
that Γ\(F ∩ Up) is isometric to a neighbourhood of p in Γp\(F ∩ Up). The subgroup Γp has a
maximal free abelian subgoup Γa with rank k, the rank of the cusp p is defined to be the integer
k. We suppose that k ≤ n − 1 for each p since this case is well known in term of scattering
theory. Using now conjugation, it suffices to look at the case where p = ∞ in the upper half
model Hn+1 = R+ × Rn. Section 2 of [19] (the arguments come from Thurston’s lecture notes)
shows that there is an affine subspace Rk ⊂ Rn globally fixed by Γ∞ on which Γa acts as a group
of k translations. This allows to see that every γ ∈ Γ∞ acts as

γ(y, z) = (Ry,Az + b) on R
n−k−1
y ⊕ R

k
z

for some A ∈ O(k), R ∈ O(n − k − 1) and b ∈ R
k; elements in Γa have A = Id. There is

a flat compact manifold N = Γ∞\Rk such that Γ∞\Rn is a flat vector bundle with basis N
and T k := Γa\Rk such that Γa\Rn is a flat bundle over T k. We assume that the holonomy
representation of these bundles Γ → O(n − k − 1) has finite image, so that all rotations R
have rational angle pπ/q for some p, q ∈ N. Then there is a finite cover of this bundle which is
T k × Rn−k, T k being a flat torus, and it suffices to study the case where each rotation R is the
identity.

2.2. Neighbourhoods of infinity, models. From previous discussions and assumptions on
the cusps and using [2, 23, 8] we obtain a covering of the manifold X by model charts. There
exists a compact K of X such that X \K is covered by a finite number of charts isometric to
either a regular neighbourhood (Mr, gr) or a rank-k cusp neighbourhood (Mk, gk) where

Mr := {(x, y) ∈ (0,∞)× R
n;x2 + |y|2 < 1, }, gr = x−2(dx2 + dy2),

Mk := {(x, y, z) ∈ (0,∞)× R
n−k × T k;x2 + |y|2 > 1}, gk = x−2(dx2 + dy2 + dz2)

for k = 1, . . . , n− 1 with (T k, dz2) a k-dimensional flat torus.
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Note that we could allow maximal rank cusps as in [8] without difficulties but since these
cases are well-known, we restrict ourselves to the non-maximal rank cusps cases for simplicity
of exposition. We will make as if there was only one neighbourhood of each type to simplify the
notations, we then note Ir , (Ik)k the corresponding chart isometries. One can also choose the
covering such that I−1

k (Mk)∩I−1
j (Mj) = ∅ for k 6= j, possibly by adding regular neighbourhoods.

The model Mk can be considered as a subset of the quotient Xk = Γk\Hn+1 of Hn+1 by a
rank-k parabolic subgroup Γk of Γ which fixes a single point at infinity of H

n+1. Indeed, modulo
conjugation by an isometry, one can suppose that the fixed point is the point at infinity of Hn+1

in the half-space model (0,∞) × Rn. Γk can then be considered as a lattice of k independent
translations acting on Rn, therefore it is the image of the lattice Zk by a map Ak ∈ GLk(R) and
the flat torus T k := Γk\Rk is well defined. Then Xk is isometric to R+

x × Rn−k
y × T k

z equipped
with the metric

gk =
dx2 + dy2 + dz2

x2

dz2 being the flat metric on a k-dimensional torus T k. Therefore Mk is the subset of Xk with
x2 + |y|2 > 1. As a matter of fact it will be often useful to consider R+×Rn−k as the n− k+ 1-
dimensional hyperbolic space Hn−k+1. Hence Xk can be compactified into the compact manifold
with boundary X̄k = H̄n−k+1 × T k where H̄n−k+1 is the ball {|w| ≤ 1} in Rn−k+1. Then

ρk(x, y, z) :=
x

|y|2 + x2 + 1
= (2 cosh(dHn−k+1(x, y; 1, 0)))−1

is a natural boundary defining function in X̄k (∂X̄k = {ρk = 0} and dρk 6= 0 on ∂X̄k). Let us
define the new coordinates

(2.1) t :=
x

x2 + |y|2
, u :=

−y

x2 + |y|2

which induce an isometry from (Mk, gk) to

{(t, u, z) ∈ (0,∞)× R
n−k × T k; t2 + |u|2 < 1}

equipped with the metric

(2.2)
dt2 + du2 + (t2 + |u|2)2dz2

t2

and ρk(t, u) = ρk(x, y). These coordinates can be thought as compactification coordinates for
Mk, since t and u extend smoothly to X̄k \ {x = y = 0}. The infinity of X in the chart Mk

is then given by {ρk = 0} or equivalently {t = 0}. Also we will call cusp submanifold the
submanifold {t = u = 0} of X̄k it will be noted ck and we remark that ck ≃ ∞ × T

k ≃ T k

in X̄k where ∞ is the point at infinity in the half-space model of Hn−k+1. We also have
Mk = {w ∈ Xk; t(w)2 + |u(w)|2 < 1} which is a subset of X̄k and we will denote

M̄k := {w ∈ X̄k; t2(w) + |u(w)|2 < 1}.

At last we define the manifold

Yk := R
n−k × T k

which can be viewed as (X̄k \ ck) ∩ {x = 0}.

The model Mr is simpler and can be considered as a subset of Hn+1. We define as before
M̄r := {(x, y) ∈ [0,∞)× Rn;x2 + |y|2 < 1}.

There exist some smooth functions χ, χr, χ1, . . . , χn−1 on respectively X,Mr,M1, . . . ,Mn−1

which, through the isometric charts Ir , I1, . . . , In, satisfy

I∗rχ
r +

n−1∑

k=1

I∗kχ
k + χ = 1
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with χ having compact support in X . Note that it is possible to choose χk which does not
depend on the variable z ∈ T k.

For what follows we will consider Mk,Mr, M̄k, M̄r as neighbourhoods in X̄ instead of using
the notations I−1

k (Mk), I−1
r (Mr)...

2.3. Compactification, volume densities. Using the previous discussion, one obtains a com-
pactification of X as a smooth compact manifold with boundary X̄. Moreover, with no loss of
generality one can choose a boundary defining function ρ which is equal to the function t in each
neighbourhood M̄k. The boundary ∂X̄ is covered by some charts B1, . . . , Bn−1, Br induced by
M1, . . . ,Mn−1,Mr by taking

Bk := M̄k ∩ ∂X̄ ≃ {(u, z) ∈ R
n−k × T k; |u|2 < 1}

Br := M̄r ∩ ∂X̄ ≃ {y ∈ R
n; |y|2 < 1}.

From the discussion above, we see that the metric on X can be expressed by

g =
H

ρ2

with H a smooth non-negative symmetric 2-tensor on X̄ which degenerates at the cusps sub-
manifolds (ck)k=1,...,n−1. Let us define c := (∪kck) ⊂ ∂X̄ ⊂ X̄ , and B := ∂X̄ \ c, then the
restriction

(2.3) h0 := H |B = (ρ2g)|B

is a smooth metric on the non-compact manifold B.
We will also need to use functions representing the distance to the cusps submanifolds as

follows: for k = 1, . . . , n − 1, let rck
be a continuous non-negative function in X̄, smooth and

positive in X̄ \ ck which satisfies

Ik∗(rck
) =

√
t2 + |u|2

in M̄k and is equal to 1 in Mj when j 6= k. Then we define the functions

(2.4) rc :=

n−1∏

k=1

rck
, Rc :=

n−1∏

k=1

(rck
)k

on X̄ and we will also denote by rck
, rc and Rc their restriction to ∂X̄. It can easily be checked

that B equipped with the metric h0 of (2.3) has a volume density dvolh0
which is of the form

(2.5) dvolh0
= R2

cµ∂X̄

with µ∂X̄ a smooth non-vanishing density (volume density) on ∂X̄. Similarly the volume density
dvolg on X can be expressed by

(2.6) dvolg = ρ−n−1R2
cµX̄

for a smooth volume density µX̄ on X̄ . In what follows, we will write L2(X) and L2(B) for the
Hilbert spaces of square integrable functions on X and B with respect to the volume densities
dvolg and dvolh0

.

2.4. Class of functions. For a compact manifold M̄ with boundary ∂M̄ , we denote by Ċ∞(M̄)
the set of smooth functions on M̄ which vanish at all orders at ∂M̄ . Its topological dual is the set
of extendible distribution on M̄ , denoted C−∞(M̄) (note that a correct definition would include
density bundles).

There will be a special set of smooth functions on X̄, ∂X̄ which will play an important role for
what follows, these are the functions which are “asymptotically constant in the cusp variables”.
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To give a precise definition we begin by introducing the sets C(T X̄), C(T∂X̄) and C(Tc) of
smooth vector fields on X̄, ∂X̄, c. Then we set

C∞
acc(X̄) := {f ∈ C∞(X̄); ∀X1, . . . , XN ∈ C(T X̄), ∀Z ∈ C(Tc), Z(f |c) = 0, Z(X1 . . . XNf |c) = 0}

and C∞
acc(∂X̄), C∞

acc(X̄k), C∞
acc(∂X̄k) are defined similarly by replacing X̄ by ∂X̄, X̄k, ∂X̄k. These

functions are constant on each cusp submanifold ck and their derivatives too. In local coordinates
(t, u, z) near the cusp ck = {t = u = 0}, one can check by a Taylor expansion at (0, 0, z) ∈ ck
and Borel Lemma that a function f ∈ C∞

acc(X̄) can be decomposed locally as a sum

(2.7) f(t, u, z) = f0(t, u) +O((t2 + |u|2)∞) = f0(t, u) +O(r∞c )

for some f0 smooth. We remark the following properties, the proofs of which are straightforward:

Lemma 2.1. The set C∞
acc

(X̄) is a subalgebra of C∞(X̄) which is stable under the action of
C(T X̄), and stable by composition with smooth real functions.

Observe also that r2c and R2
c defined by (2.4) are in C∞

acc(X̄). Actually this implies that if

ρ̂ ∈ C∞
acc(X̄) is a boundary defining function of ∂X̄ and R̂2

c ∈ C
∞
acc(X̄) is a non-negative function

vanihing at order 2k at each ck such that dvolg = ρ̂−n−1R̂2
c µ̂X̄ for a smooth volume form on X̄,

then

ρ̂ = F1ρ, R̂2
c = F2R

2
c , µ̂X̄ = F3µX̄

for some functions F1, F2 ∈ C∞
acc(X̄) and F3 ∈ C∞(X̄) satisfying F−n−1

1 F2F3 = 1 and F1 > 0,
F3 > 0. Then necessarily F3 ∈ C∞

acc(X̄) and F2 > 0 which shows that R−1
c C∞

acc(X̄) =

R̂−1
c C∞

acc(X̄) and this space does not depend on the choices of ρ,R2
c in C∞

acc(X̄). Actually

the map f → f |dvolg|
1
2 naturally identifies R−1

c C∞(X̄) with the space of smooth half-densities

C∞(X̄,Γ
1
2

0 ) defined in the 0-calculus of Mazzeo-Melrose [17] (depending only on the C∞ struc-

ture of X̄) and the space R−1
c C∞

acc(X̄) could then be considered as a subspace of C∞(X̄,Γ
1
2

0 )
(depending on the metric) if we worked with densities.

We also define the set of smooth functions on X̄k (resp. X̄) vanishing at all order at the cusps

Ċ∞
c (X̄) := {f ∈ C∞(X̄); ∀X1, . . . , XN ∈ C(T X̄), f |c = 0, (X1 . . . XNf)|c = 0}

and Ċ∞
c (∂X̄), Ċ∞

c (∂X̄k), Ċ∞
c (∂X̄k) similarly. Remark that there is a natural identification

Ċ∞
c (∂X̄)←→ Ċ∞(B̄)

if B̄ is defined as the blow-up of ∂X̄ around c. By similar arguments, the spaces C∞
acc(∂X̄),

Ċ∞
c (∂X̄), R−1

c C∞
acc(∂X̄) can be defined (here we note again Rc instead of Rc|B) an they coincide

with the restriction of C∞
acc(X̄), Ċ∞

c (X̄), and R−1
c C∞

acc(X̄) at B = ∂X̄ \ c.
To conclude this part, remark the following inclusions

Ċ∞(X̄) ⊂ Ċ∞
c (X̄) ⊂ C∞

acc(X̄).

and the same for their restriction at B.

2.5. Model form for the metric. To use the same ideas than for asymptotically hyperbolic
manifolds, we need to choose boundary defining functions of ∂X̄ in X̄ which induce product
decompositions of the metric near infinity. The different choices of boundary defining functions
induce a conformal class of smooth tensors on ∂X̄ which are metrics on B, this is the conformal
class [h0] of h0 := ρ2g|∂X̄ . However, in view of the presence of the cusps, we need to consider
the following smaller class of conformal metrics on B

[h0]acc := {fh0; f > 0 ∈ C∞
acc(∂X̄)}.

Lemma 2.2. For all ĥ0 ∈ [h0]acc, there exists a boundary defining function ρ̂ ∈ C∞
acc

(X̄) of ∂X̄

in X̄ such that |dρ̂|ρ̂2g−1 ∈ Ċ∞(X̄) in a collar neighbourhood of ∂X̄ and ρ̂2g|B = ĥ0. Moreover,

ρ̂ is uniquely determined modulo Ċ∞(X̄) by ĥ0.
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Proof : for ĥ0 ∈ [h0], the construction of a boundary defining function ρ̂ = ρeω which satisfies
|dρ̂|ρ̂2g = 1 and ρ̂2g|B = h0 is equivalent to solving the PDE

(2.8) 2(∇ρ2gρ)(ω) + ρ|dω|2ρ2g =
1− |dρ|2ρ2g

ρ

with initial condition ω|∂X̄ = ω0 where ĥ0 = e2ω0h0 (see [4, Lem. 2.1]). The construction of
a solution is possible in regular neighbourhoods M̄r and is unique since the equation is non-
characteristic there. In M̄k, we write the equation in coordinates and this gives

2∂tω + t
(
(∂tω)2 + |∂uω|

2 + (t2 + |u|2)−2|∂zω|
2
)

= 0

in view of the form of the metric (2.2) there (recall that ρ = t in M̄k). Taking this equation at
t = 0, we see that ∂tω|t=0 = 0 and by differentiating it N times with respect to t and setting

t = 0 we see by induction that all the values ∂j
tω|t=0 in {u 6= 0} are determined by ω|t=0 for

j ≤ N + 1. In particular when j is odd this is 0 (see again [4] for a similar study). Since
w0 ∈ C∞

acc(∂X̄), we can write it locally under the form (2.7) which shows by induction that

∂j
tω|t=0 ∈ C∞

acc(∂X̄); the essential arguments to use are that the singular term in the equation is
killed by |∂zω| = O((t2 + |u|2)∞) and the properties of C∞

acc(∂X̄) discussed previously. By using
Borel lemma, we can construct a smooth function ω in a neighbourhood of ∂X̄ in X with those
derivatives, thus ω satisfies (2.8) modulo O(ρ∞) and this proves that there exists a function ρ̂
which satisfies the Lemma, the uniqueness of its Taylor expansion with respect to ρ at ∂X̄ is
clear from the construction. �

We will now use this function to obtain a certain model form of the metric near ∂X̄. Using
again the same arguments than [4, 9], it suffices to consider the collar neighbourhood [0, ǫ)s×∂X̄
of ∂X̄ induced by the flow ϕs(m) of the gradient ∇ρ̂2g ρ̂ with initial condition ϕ0(m) = m for
m ∈ ∂X̄, that is the diffeomorphism

ϕ : (s,m)→ ϕs(m)

from [0, ǫ)× ∂X̄ to its image. We consider the function ω constructed in the proof of previous
Lemma (thus ρ̂ = ρeω) and since ∂sρ̂(ϕs(m)) = 1 +O(ρ∞) = 1 +O(s∞), we deduce

ρ = se−ω +O(s∞).

Now, we remark that the identity |∇ρ̂2g ρ̂|ρ̂2g = 1 +O(s∞) implies that s2g can be expressed by

s2ϕ∗g = ds2 + ĥ(s) +O(s∞)

in [0, ǫ) × ∂X̄ where ĥ(s) is a smooth family of tensors on ∂X̄ which are positive for s > 0,

with ĥ(0) = ĥ0 positive on B. We have seen in the proof of last Lemma that, in M̄k, ω is
an even function of ρ = t, thus s is an odd function of t and t is an odd function of s. Let
(v, ζ) ∈ Rn−k × T k some coordinates on ∂X̄ near ck. We have ϕ0(v, ζ) = (v, ζ) and using the
form (2.2) of g

∂sϕs(v, ζ) = ∇ρ̂2g ρ̂ = e−ω(1 + t∂tω)∂t + te−ω∂uω.∂u +
te−ω

(t2 + |u|2)2
∂zω.∂z

then the function ϕ(s, v, ζ) = ϕs(v, ζ) can be locally written near ck (in coordinates (t, u, z))

(2.9) ϕ(s, v, ζ) =
(
t = se−ω + t1, u = v + su1, z = ζ + sz1

)

t1 ∈ Ċ
∞(X̄), u1 ∈ C

∞
acc(X̄), z1 ∈ Ċ

∞
c (X̄).

Using that ω is even in s and t odd in s, it is straightforward to verify that u, z are even in s.
We deduce that locally

(2.10) dt = l1(s, v, ds, dv) +O(r∞c ), du = l2(s, v, ds, dv) +O(r∞c ), dz = dζ +O(r∞c ).
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for some smooth tensors l1, l2, even in s. We want now to write the metric g in these coordinates
(s, v, ζ). By looking at the expression (2.2) and using (2.9), (2.10) with the properties of C∞

acc(X̄)
discussed in previous section, we obtain that

(2.11) ĥ(s) = h1(s, v, dv) + h2(s, v, z, dv, dζ) + e2ωr4cdζ
2 +O(s∞)

where h1, h2 are smooth tensors, even in s, such that h2 = O(r∞c ). Since ρ̂ − s = O(ρ̂∞), we
can replace s by ρ̂ in (2.11) and we have the same expression for the metric. Now in a regular
neighbourhood Mr, there exists coordinates (x, y) ∈ (0, ǫ)× R

n such that g = x−2(dx2 + dy2),
thus by writing ρ̂ = xeθ for some θ smooth, we have by mimicking last Lemma that (from (2.8))

2∂xθ + x((∂xθ)
2 + |∂yθ|

2) = O(x∞)

with θ|x=0 = θ0 satisfying ĥ0 = e2θ0dy2. Exactly as before for Mk, this gives that ρ̂ is odd in x,

thus x is odd in s and y even in s, which easily implies that ĥ(s) has an even Taylor expansion
in s at s = 0.

This discussion proves that there exists a collar neighbourhood (0, ǫ)ρ̂× ∂X̄ of ∂X̄ in X̄ such
that

(2.12) g =
dρ̂2 + ĥ(ρ̂)

ρ̂2
+O(ρ̂∞)

for a smooth family of symmetric tensors ĥ(ρ̂) on ∂X̄ with an even Taylor expansion in ρ̂ at

ρ̂ = 0, positive for ρ̂ > 0, ĥ(0) = ĥ0 being positive on B and with the local expression (2.11)
near the cusps ck. Actually, the evenness of the metric in ρ̂ is a consequence of the constant
curvature of X and is studied in detail in [9] for asymptotically hyperbolic manifolds.

Is is quite direct and similar to a result of Graham [4] to check that for two functions ρ̂1, ρ̂2

satisfying Lemma 2.2, then for all j ∈ N

∂2j
ρ̂1
ρ̂2|∂X̄ = 0, ∂2j

ρ̂2
ρ̂1|∂X̄ = 0

which will be useful to define renormalized volume in an invariant way.

There is however a very special case of boundary defining function ρ̂ which can be chosen to
put the metric into a simpler form. It is obtained by taking ρ̂ = t in the neighbourhood M̄k of
the cusp ck and extending it to a neighbourhood of ∂X̄ so that it satisfies |dρ̂|ρ̂2g = 1 in this
neighbourhood and ρ̂2g|∂X̄ = h0. To prove the existence of such an extension, it suffices to go
back to the proof of Lemma 2.2 and we see that this amounts to solve the PDE (2.8) without the
error term O(ρ∞) and with initial condition ω|∂X̄ = 0. Since the equation is non-characteristic
out of the cusp c, there exists a unique solution ω in some neighbourhood {ρ < ǫ, δ < rc} (for
some δ, ǫ > 0) of the boundary ∂X̄ avoiding the cusp c, and it is clear that ω = 0 satisfies the
equation in M̄k.

For what follows, we will often work with this boundary defining functions ρ̂ and by convention
we will note it ρ, forgetting the previous choice of function ρ. Then we have in some collar
neighbourhood (0, ǫ)ρ × ∂X̄ of ∂X̄

(2.13) g =
dρ2 + h(ρ)

ρ2

for some smooth family of symmetric tensors h(ρ) on ∂X̄, depending smoothly on ρ, positive for
ρ > 0, with h(0) = h0 positive on B and satisfying

h(ρ) = du2 + (ρ2 + |u|2)2dz2

in each M̄k.
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2.6. Geometry of B. To study the scattering operator and to define the class of pseudo-
differential operators which contains it, we can consider the manifold B as the union of a compact
manifold Er (covered by the charts Br) and n− 1 ends E1, . . . ,Ek with Ek diffeomorphic to

{(y, z) ∈ R
n−k × T k; |y| > 1} ⊂ Yk = R

n−k × T k.

For simplicity, we will consider Ek as this last subset of Yk. By using the radial compactification
in the y variable in each end Ek we see that the manifold B compactifies in a smooth compact
manifold with boundary B̄, the boundary ∂B̄ being a disjoint union on k = 1, . . . , n − 1 of
products ∂Ek := Sn−k−1 × T k. A boundary defining function of ∂Ek is given by v = rck

= rc =
|y|−1 and rc is a boundary defining function of ∂B̄. Note that ∂B̄ 6= ∂X̄ but ∂B̄ is actually the
blow-up of ∂X̄ around the cusps submanifolds c1, . . . , cn−1. The structure of the compactified
manifold B̄ near ∂Ek is [0, 1)v × ∂Ek and ∂Ek is a fibred boundary in the sense that there is a
fibration (this is the projection here)

(2.14) φk : Sn−k−1 × Tk → Sn−k−1.

The metric h0 on B is not exactly a fibred cusp metric since too much decreasing at infinity

h0 = dv2 + v2dω2 + v4dz2.

For following purposes, it is also quite natural to consider B with the metric h̃0 := r−4
c h0

conformal to h0 since this is the flat metric dy2 + dz2 on each end Ek. Note that h̃0 in (0, 1)v ×
Sn−k−1

ω × T k
z is

h̃0 =
dv2

v4
+
dω2

v2
+ dz2

which is an “exact Φ-metric” in the sense of Mazzeo-Melrose [18]. The volume induced by the

metric h0 on B is finite whereas the volume of B with the metric h̃0 is not finite.

3. Pseudo-differential operators at infinity

There is a natural way to define pseudo-differential operators on B using the euclidean struc-
ture of each end Ek. Recall first from Schwartz theorem that for any continuous linear operator
A : Ċ∞(B̄) → C−∞(B̄) there exists a unique extendible distribution a ∈ C∞(B̄ × B̄) (we
dropped the density factor for simplicty), called Schwartz kernel, such that

〈Aφ,ψ〉 = 〈a, ψ ⊗ φ〉, ∀φ, ψ ∈ Ċ∞(B̄).

Thus we will identify Schwartz kernel with its associated operator. We can define the space
Ψm,l(B) of pseudo-differential operators of order (m, l) ∈ R2 as the set of linear operators

(3.1) A : Ċ∞(B̄)→ C−∞(B̄)

such that in each compact coordinate patch on B (those are the Br of previous section), A has
a distributional Schwartz kernel of the type

(3.2) A(w;w′) =

∫

Rn

eiξ.(w−w′)a(w, ξ)dξ

with a(w, ξ) a symbol in the coordinate patch, i.e. a(w, ξ) is smooth and

|∂α
w∂

β
ξ a(w, ξ)| ≤ Cα,β(1 + |ξ|)m−|β|,

whereas on the end Ek with coordinates w = (y, z) ∈ Rn−k × T k, the distributional kernel of A
is of the form (3.2) but with a(w; ξ) smooth and satisfying

|∂α
y ∂

β
z ∂

γ
ξ a(y, z, ξ)| ≤ Cα,β,γ(1 + |y|)−l−|α|(1 + |ξ|)m−|γ|.

It is not hard to check the mapping property (3.1). One can also define classical (or polyhomo-
geneous) pseudo-differential operators of order m, l ∈ C as operators in Ψℜ(m),ℜ(l)(B) with the
symbol in (3.2) satisfying (for all k)

a(y, z, ξ) = |y|−l|ξ|mã(|y|−1, y/|y|, z, |ξ|−1, ξ/|ξ|) for |ξ| > 1
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the cusp c = S1

B with the metric h0

The manifold B̄

The manifold ∂X̄

D1

D2

D4

D3

Figure 1. The infinity B of the quotient X = Γ\H3 where Γ is a Schottky
group gluing D3 ←→ D4 and D1 ←→ D2; B̄ is a manifold with fibred boundary.

for some ã ∈ C∞([0, 1)× Sn−k−1 × T k × [0, 1)× Sn−k−1), we will use the notation Ψm,l
cl (B). In

each end Ek, this corresponds in a sense to the class of pseudo-differential treated by Hörmander
in the y ∈ Rn−k variable (or the Scattering Calculus of Melrose [21]) but with the additional
compact variable z ∈ T k. In particular, an operator A ∈ Ψm,l(B) can be defined in term of its
distributional kernel lifted from B̄× B̄ to a blown-up version of this product. This is a standard
way due to Melrose to describe in details the various singularities of the kernel: we always have
the usual conormal singularity at the diagonal of X̄×X̄ (like in the compact setting) but for non-
compact manifolds, it is important to include informations in the symbol about the behaviour
at infinity, these can be interpreted as conormal singularities for the kernel on the boundaries
of the compactification X̄ × X̄ (boundary of the compactification = infinity of the manifold).
Since singularities with different nature intesects at the diagonal of the corner ∂X̄ × ∂X̄, it is
convenient to define a bigger manifold, the blow-up, where the kernel is more readable.

The blow-up here is slightly different from that of Scattering Calculus, it is in a sense the
scattering blow-up defined in [21] but only in y variable. This blow-up corresponding to manifolds
with fibred boundaries is explained in generality by Mazzeo-Melrose in [18], it is achieved in
two essential steps. The principle is to start with the manifold with corners X̄ × X̄ and to
construct a larger manifold with corners where the phase of (3.2) defines a smooth submanifold
(“the diagonal”) intersecting transversally the boundary of this larger manifold at only one
hypersurface.



SCATTERING THEORY ON GEOMETRICALLY FINITE QUOTIENTS 13

For what follows, we will use part of the notations of [18]. The manifold B̄ × B̄ has 2n− 2
boundary hypersurfaces Lk := ∂Ek × B̄, Rk = B̄ × ∂Ek for k = 1, . . . , n − 1 and we have
Lk ∩ Lj = ∅ if j 6= k, the same with Rk and finally Lk ∩ Rj = ∂Ek × ∂Ej is a corner of
codimension 2. We need to define the first blow-up of B̄ × B̄ by taking the “b”blow-up

B̄ ×b B̄ := [B̄ × B̄; ∂E1 × ∂E1; . . . ; ∂En−1 × ∂En−1]

which means that we blow-up successively each corner ∂Ek × ∂Ek of Ek × Ek ⊂ B̄ × B̄. This is
done by replacing in B̄× B̄ the submanifold ∂Ek × ∂Ek by its spherical normal interior pointing
bundle in B̄ × B̄. The blow-down map is denoted

βb : B̄ ×b B̄ → B̄ × B̄.

The manifold B̄×b B̄ has 3n−3 boundary hypersurfaces, the first 2n−2 are the top and bottom
faces

B
′
k := β−1

b (B × ∂Ek), T
′
k := β−1

b (∂Ek ×B), k = 1, . . . , n− 1.

The new ones are called front faces (F′
k)k=1,...,n−1 for the b blow-up and F′

k is the spherical
normal interior pointing bundle of ∂Ek×∂Ek in B̄× B̄ and is mapped by βb on ∂Ek×∂Ek. Note

that F′
k is diffeomorphic to [−1, 1]τ × ∂Ek × ∂Ek using the function τ = v−v′

v+v′
(see Melrose [20]),

thus we will identify them.

The closure Db := β−1
b (DB) of the diagonal DB of B×B meets the boundary of B̄×b B̄ only

at the (interior of the) hypersurfaces F′
k and it does transversally at a submanifold denoted ∂Db.

The blow-up of B̄×b B̄ along ∂Db would give the blow-up associated to the Scattering Calculus
but it turns out that the second kind of blow-up we need for our purpose are the successive
blow-ups of B̄ ×b B̄ along the submanifolds

Φk = {(0,m,m′) ∈ F
′
k = [−1, 1]τ × ∂Ek × ∂Ek;φk(m) = φk(m′)},

with φk the fibration of (2.14), this gives the manifold with corners

B̄ ×Φ B̄ := [B̄ ×b B̄; Φ1; . . . ; Φn−1].

The blow-down maps are

B̄ ×Φ B̄
βΦ−b

−→ B̄ ×b B̄
βb−→ B̄ × B̄, βΦ := βb ◦ βΦ−b.

The boundaries of B̄ ×Φ B̄ are the top and bottom faces

Bk = β−1
Φ (B × ∂B′

k), Tk = β−1
Φ (∂B′

k ×B)

the front faces of the b blow-up

Fk := β−1
Φ−b(F

′
k \ Φk)

and the front face of the Φ blow-up is the normal spherical interior pointing bundle of Φk in
B̄ ×b B̄

Ik := SN+(Φk; B̄ ×b B̄).

We will denote by ρTk
, ρBk

, ρFk
, ρIk

some functions which define the respective hypersurfaces:

{ρTk
= 0} = Tk, {ρBk

= 0} = Bk, {ρFk
= 0} = Fk, {ρIk

= 0} = Ik.

The closure DΦ := β−1
Φ (DB) meets the topological boundary of B̄×Φ B̄ only at (the interior of)

the hypersurfaces Ik and it does transversally. One can thus define (using extension through the
boundary hypersurface) the set Im(B̄ ×Φ B̄;DΦ) of distributions classically conormal of order
m to the submanifold DΦ.

The important point is that β∗
Φ is a one-to-one map between Ċ∞(B̄×B̄) and Ċ∞(B̄×ΦB̄), this

induces a one-to-one map between their respective duals, which allows to indentify continuous
operators (3.1) with their Schwartz kernel lifted to B̄ ×Φ B̄. With this identification, we define
the space

Ψm,l
Φ (B̄) := {K ∈ ρl

Ik
Im(B̄ ×Φ B̄;DΦ); ∀k,K ≡ 0 at Fk,Tk,Bk}

for m, l ∈ C, where ≡ means equality of Taylor series. This forms the (classical) “small Φ-

calculus” and it is not difficult to check that Ψm,l
cl (B) = Ψm,l

Φ (B̄) with the notations introduced
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Tk

Bk

DΦ

z − z′Ik

Fk

Figure 2. The blow-up of Φk in B̄ ×b B̄

before for the standard pseudo-differential operators on B. We sketch the proof of the sense

Ψm,l
cl (B) ⊂ Ψm,l(B̄). Recall that

v = |y|−1, ω =
y

|y|
, v′ = |y|′, ω′ =

y′

|y′|
, z, z′

give some local coordinates near the corner ∂Ek × ∂Ek on B̄ × B̄ and

s =
v

v′
, v′, ω, ω′, z, z′ with |ω| = |ω′| = 1

give some coordinates on B̄ ×b B̄ near the front face F
′
k (valid out of B

′
k), in particular Φk =

{v′ = 0; s = 1;ω = ω′}. If A ∈ Ψm,l
cl (B), the expression (3.2) with w = (y, z), w′ = (y′, z′) can

be put in these coordinates

(3.3) A(w;w′) =

∫
ei( 1

v′
( ω

s
−ω′).ξ1+(z−z′).ξ2)a

( ω

v′s
, z; ξ1, ξ2

)
dξ1dξ2.

It can be checked that ωi

s −ω
′
i, ω

′
i, v

′, z, z′ for i = 1, . . . , n−k give some coordinates near F′
k ∩Φk

and Φk = {ω
s − ω

′ = 0}. The functions (ωi − sω′
i)/(sv

′) lift under βΦ−b to some functions Wi

which are smooth near Ik \ (Ik ∩ Fk) and we have near DΦ ∩ Ik

DΦ = {W1 = · · · = Wn−k = 0; z = z′}, Ik = {v′ = 0}

in coordinates W := (W1, . . . ,Wn−k), ω′, v′, z, z′ with
∑

i ω
′
i
2

= 1. This gives in (3.3)

A(w;w′) =

∫
ei(W.ξ1+(z−z′).ξ2)a

(
W +

ω′

v′
, z; ξ1, ξ2

)
dξ1dξ2

with {W = 0} = DΦ. This last expression shows that A(w;w′) has a classical conormal singu-

larity at DΦ of order m. Near the front face Ik, that is when v′ → 0, then v′
−l
a(W+ω′

v′
, z; ξ) is a

smooth function near DΦ∩Ik. Using other systems of coordinates covering Ik∩Fk one easily see
that β∗

Φ(A) vanishes at all order at Fk (using integration by parts in oscillating integrals and the

“polynomial growth” of a(w, ξ) in |w|) and that ρ−l
Ik
β∗

Φ(A) ∈ Im(B̄ ×Φ B̄;DΦ). The vanishing

of (3.3) at {v′ = 0; |ω − sω′| > ǫ; 1 > s} comes by integration by parts and shows the vanishing
of β∗

Φ(A) at all order at the boundaries near Fk ∩ Tk and the behaviour near Fk ∩Bk is similar.
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Finally the vanishing at Tk and Bk far from Fk is again a consequence of non-stationary phase
(3.2).

The converse Ψm,l
Φ (B̄) ⊂ Ψm,l

cl (B) is essentially similar.

Now one can define the “full Φ-calculus” by considering the set of operators (identifying lifted
kernels and operators)

(3.4) Ψm,l,E
Φ (B̄) := Ψm,l

Φ (B̄) +
∏

F=F,I,T,B
k=1,...,n−1

(ρFk
)E(Fk)C∞(B̄ ×Φ B̄)

E = {E(T1), E(B1), E(F1), E(I1), . . . , E(Tn−1), E(Bn−1), E(Fn−1), E(In−1)}, E(Fk) ∈ C

i.e. we allow some classically conormal singularities at all faces. For operators we deal with,
the conormal singularity at the front faces Ik will be of the same order for both terms, that

is l = E(I1) = · · · = E(In−1), hence we will write Ψm,E
Φ (B̄) instead of Ψm,l,E

Φ (B̄). Finally, a
subclass with much more regularity will appear as error terms in the expression of the scattering
operator, those are operators with kernels of the form

∏

k

(rck
)ak(r′ck

)bkC∞(∂X̄ × ∂X̄).

where ak, bk ∈ C and rck
(w,w′) := rck

(w), r′ck
(w,w′) := rck

(w′). Recall again that ∂X̄ can be

viewed as the smooth compact manifold without boundary obtained from B̄ by collapsing each
∂Ek ≃ Sn−k−1 × T k to φk(∂Ek) = ck ≃ T k.

Actually, since we forgot the density factors for the kernels, the orders of such pseudo-
differential operators depend on the density we use to pair two fonctions in Ċ∞(B̄), thus it
will be necessary to precise it.

4. Resolvent

In this section we analyze the meromorphic extension of the modified resolvent

R(λ) := (∆X − λ(n− λ))
−1

and more precisely the necessary informations we shall need to define Eisenstein functions,
Poisson operator and scattering operator. The meromorphic extension of the resolvent is proved
in [8] by parametrix construction. Using also spectral theorem, this can be summarized as
follows:

Theorem 4.1. There exists C > 1 such that for all N > 0, the modified resolvent R(λ) on X
extends meromorphically with poles of finite multiplicity from {ℜ(λ) > n

2 } to {ℜ(λ) > n
2 −CN}

with values in the bounded operators from ρNL2(X) to ρ−NL2(X). The only poles of R(λ) in
{ℜ(λ) > n

2 } are first order poles at each λ0 such that λ0(n− λ0) ∈ σpp(∆X) and with residue

Resλ0
R(λ) = (2λ0 − n)−1

r∑

j=1

φj ⊗ φj , φj ∈ ρ
λ0R−1

c C∞
acc(X̄) ⊂ L2(X)

where (φj)j=1,...,r is an orthonormal basis of kerL2(∆X − λ0(n− λ0)).

Actually the form of φj is a consequence of (4.20) which will be proved in this section.

To construct the Poisson operator, we need more precise information about the mapping
properties of R(λ) and about its Schwartz kernel structure near infinity. One of the main points
is to analyze the Schwartz kernel of the meromorphic extension of the resolvent

RXk
(λ) = (∆Xk

− λ(n− λ))−1

for the Laplacian ∆Xk
on the model spaces Xk = Γk\Hn+1, and its mapping properties.



16 COLIN GUILLARMOU

Recall that X̄ is a compact manifold with boundary ∂X̄, hence X̄ × X̄ is a manifold with
corners on which we define the functions

(4.1) ρ(w,w′) := ρ(w), ρ′(w,w′) := ρ(w′), Rc(w,w
′) := Rc(w), R′

c(w,w
′) := Rc(w

′).

Since ρ,Rc are well defined on M̄k via Ik, the functions (4.1) can also be defined on M̄k × M̄k.

Lemma 4.2. Let θ, θ′ ∈ C∞(X̄k) be functions with support in M̄k and constant near ck, then
the extended resolvent RXk

(λ) satisfies

(4.2) θRXk
(λ)θ′ : Ċ∞(X̄k)→ ρλR−1

c C∞
acc(X̄k)

for λ /∈ (k
2 − N0) if n − k + 1 is odd and for λ ∈ C otherwise. If moreover θ, θ′ are chosen

satisfying supp(θ) ∩ ck = ∅ and θθ′ = 0 then

(4.3) θ′RXk
(λ)θ ∈ ρλρ′

λ
R−1

c C∞(X̄k × X̄k), θRXk
(λ)θ′ ∈ ρλρ′

λ
R′

c
−1
C∞(X̄k × X̄k)

Proof : clearly, it is enough to show the lemma with θ, θ′ which are independent of the variable
z ∈ T k. We recall from [8] that the explicit formula for the resolvent on Xk can be obtained by
Fourier analysis on the z ∈ T k variable, RXk

(λ) admits a meromorphic continuation to C and
its Schwartz kernel can be written

(4.4) RXk
(λ) =

∑

m∈Zk

eiωm.(z−z′)Rm(λ)

for λ /∈ (k
2 − N0) if n− k + 1 is odd and for λ ∈ C otherwise, with

(4.5) Rm(λ;x, y;x′, y′) := Ck

∫

Rk

eiωm.zRHn+1(λ;x, y, z;x′, y′, 0)dz

where Ck is a constant, RHn+1(λ) is the kernel of the resolvent of the Laplacian on Hn+1 and
ωm := 2πt(A−1

k )m. Note that Rm(λ) can be considered as an operator -a resolvent- on Hn−k+1.
We have seen in [8] that if

τ :=
xx′

r2 + |z|2
, r2 := |y − y′|2 + x2 + x′

2
, d :=

xx′

r2

then for all N ∈ N ∪∞ there exists a function FN (λ, τ) smooth in τ ∈ [0, 1
2 ) with a conormal

singularity at τ = 1
2 such that

RHn+1(λ;x, y, z;x′, y′, 0) = τλ
N−1∑

j=0

αj(λ)τ
2j + τλ+2NFN (λ, τ)

for some αj(λ) meromorphic in λ (with only poles at −N0 if n + 1 is even) and if N = ∞,
F∞(λ, τ) = 0 and the sum converges locally uniformly if τ 6= 1

2 (see also [12] and [23, Appendix
A]). Thus by a change of variable w = z/r in (4.5), one has as in [8, Sect. 3.1]

(4.6) Rm(λ) = dλrk
N−1∑

j=0

d2jFj,λ(r|ωm|) + dλ+2N rk

∫

Rk

e−irωm.z FN (λ, d(1 + |z|2)−1)

(1 + |z|2)λ+2N
dz

with

Fj,λ(u) := Ck,j(λ)|u|
λ− k

2
+2jK−λ+ k

2
−2j(|u|), Fj,λ(0) := Dk,j(λ)

Ks(z) =
∫∞

0 cosh(st)e−z cosh(t)dt being modified Bessel function, Ck,j(λ) some holomorphic func-

tions andDk,j(λ) some meromorphic functions in C with only first order poles at k
2−N0 if n−k+1

is even (in fact we have R0(λ) = (xx′)
k
2RHn−k+1(λ− k

2 )). The sum (4.6) with N =∞ is locally

uniformly convergent in {d < 1
2 , 0 < r}.
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We first show (4.3) using these explicit formulae. We will better use the compactification
coordinates (t, u) on Mk, the functions r and d become

(4.7) d =
tt′

|u− u′|2 + t2 + t′2
, r2 =

t2 + t′
2

+ |u− u′|2

(t2 + |u|2)(t′2 + |u′|2)
.

On the support of θRXk
(λ)θ′ we have t2 + t′

2
+ |u− u′|2 > ǫ and d ≤ 1

2 − ǫ for some ǫ > 0 since

θθ′ = 0, thus (4.6) with N =∞ is absolutely convergent there and r→ +∞ when t2 + |u|2 → 0,
that is when we approach the cusp submanifold ck with respect to variables (t, u). Since Bessel’s
function Ks(x) = K−s(x) and all its derivatives with respect to x vanish exponentially when
x→∞, the kernel ∑

m 6=0

θRm(λ)eiωm.(z−z′)θ′

is in ρλρ′
λ
Rc

−1C∞({X̄k \ ck} × X̄k) and can be extended to X̄k × X̄k with
∑

m 6=0

θRm(λ)θ′eiωm.(z−z′) ∈ ρλρ′
λ
C∞(X̄k × X̄k)

vanishing at all order at (ck × X̄k) ∪ (X̄k × ck). Note that we have used that ρ = t in Mk. For
the term R0(λ), it is clear, using (4.6) and (4.7) that

θR0(λ)θ
′ ∈ ρλρ′

λ
R′

c
−1
C∞(X̄k × X̄k)

which concludes the proof of (4.3) using the symmetry of the resolvent kernel.

The property (4.2) is more technical since it involves the singularity of RXk
(λ) near the

diagonal. Let f ∈ Ċ∞(X̄k), with support in M̄k. We first study for m 6= 0 the function
θRm(λ)θ′fm in M̄k where fm = 〈f, eiωm.z〉Tk

is the m-th Fourier mode on T k of f . We clearly

have fm ∈ Ċ∞(H̄n−k+1) with

∀l ∈ N, |∂αfm| ≤ Cα,l|ωm|
−l

with Cα,l uniform in m. For simplicity, we consider (4.6) with N = 0 and decompose

F0(λ, τ) = χ(τ)F0(λ, τ) + (1− χ(τ))F0(λ, τ) =: F0,1(λ, τ) + F0,2(λ, τ)

with χ a C∞
0 ([0, 1/4)) which is equal to 1 near τ = 0. The integral

θ(t, u)θ′(t′, u′)rkdλ

∫

Rn−k

e−irωm.z(1 + |z|2)−λF0,1(λ, d(1 + |z|2)−1)dz

is well defined for ℜ(λ) > k
2 and is equal by integration by parts to

(4.8) κ1 := θ(t, u)θ′(t′, u′)(r|ωm|)
−2Nrkdλ

∫

Rn−k

e−irωm.z∆N
z

(
F0,1(λ, d(1 + |z|2)−1)

(1 + |z|2)λ

)
dz

for all N > 0. In view of the smoothness of F0,1(λ, τ) for τ ∈ R+, it is straightforward to see
that the integrand in (4.8) satisfies

∣∣∣∣∆
N
z

(
F0,1(λ, d(1 + |z|2)−1)

(1 + |z|2)λ

)∣∣∣∣ ≤ CN (1 + |z|2)−ℜ(λ)−N

and is a smooth function of d for λ ∈ C \ −N0, now integrable with respect to z ∈ Rk if
ℜ(λ) +N > k

2 . Now since fm(t′, u′) = O(t′
∞

), we have in H̄n−k+1 × H̄n−k+1

|∂α
t,u(d/t)∂βfm| ≤ Cα,β,l|ωm|

−l, |∂α
t,ud∂

βfm| ≤ Cα,β,l|ωm|
−l

|∂α
t,ur∂

βfm| ≤ Cα,β,l(t
2 + |u|2)−(1+|α|)/2|ωm|

−l, |∂α
t,u(r

√
t2 + |u|2)∂βfm| ≤ Cα,β,l|ωm|

−l

by looking at the expression of d, r in (4.7). For λ /∈ −N0 fixed, we take N ≫ 2|ℜ(λ)|, this
proves that

t−λ(t2 + |u|2)−M

∫

Hn−k+1

dλκ1fm(t′, u′)t′
−n+k−1

(t′
2
+ |u′|2)

k
2 dt′du′
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is CN in (t, u) ∈ H̄n−k+1 for 2M ≪ N and all its derivatives of order α with |α| < N are
bounded by Cl,N |ωm|−l for all l, N,m. Thus for M fixed, by taking N → ∞ we see that this
function is smooth in H̄n−k+1 and its derivatives are rapidly decreasing in |ωm|.

We now have to deal with the integral kernel

κ2 := θ(t, u)θ′(t′, u′)rkdλ

∫

Rn−k

e−irωm.z(1 + |z|2)−λF0,2(λ, d(1 + |z|2)−1)dz

and we will show that

f ′
m(t, u) :=

∫

Hn−k+1

κ2fm(t′, u′)t′
−n+k−1

(t′
2

+ |u′|2)
k
2 dt′du′

satisfies

(4.9) f ′
m ∈ Ċ(H̄n−k+1), |∂α

t,uf
′
m| ≤ Cα,l|ωm|

−l.

First remark that, since d < 1
2 , we have 1 − χ(d(1 + |z|2)−1) = 0 if |z| > C for some C > 0

depending on χ. We use the change of variables s = t/t′, v = (u− u′)/t′ in this last integral. By
elementary computations, it turns out that

d = (2 cosh(dHn−k+1(t, u; t′, u′)))−1 = (2 cosh(dHn−k+1(1, 0Rn−k ; s, v)))−1

but F0,2(λ, d(1 + |z|2)−1) is supported in {d > ǫ} for some ǫ > 0 depending on χ thus it is
supported in {(s, v) ∈ K} where K is a euclidean ball included in Hn−k+1 (thus a compact of
Hn−k+1). Moreover in the variables (t, u, s, v),

κ2 = θ(t, u)θ′
( t
s
, u−

t

s
v
)
rkdλ

∫

|z|<C

e−irωm.z(1 + |z|2)−λF0,2(λ, d(1 + |z|2)−1)dzRk

and all its derivatives with respect to (t, u) are in L1(K, s−1dsdz), this fact is proved by Perry
[23, Appendix] and is a direct consequence of the conormal singularity of F0(λ, τ) at τ = 1

2 . And

from the expression of r, we see that the derivatives of r or order α are bounded by Cαt
−1−|α|

for (t, u, s, v) ∈ Hn−k+1 ×K. We deduce that

∫

K

κ2fm

(
t

s
, u−

t

s
v

)(
t

s

)n−k+1
((

t

s

)2

+

∣∣∣∣u−
t

s
v

∣∣∣∣
2
)k

2

s−1dsdv

is in Ċ∞(Hn−k+1) since fm(t, u) = O(t∞) and K is compact. In addition, its derivatives of order
α are clearly bounded by Cα,l|ωm|−l for all α, l. We have thus proved (4.9) and that

∑

m 6=0

Rm(λ)eiωm.(z−z′)f ∈ ρλC∞
c (X̄k).

It remains now to study θR0(λ)θ
′f0 where f0 := 〈f, 1〉T k is the zeroth Fourier term of f . But

recall from [8] that R0(λ) acting on Hn−k+1 is nothing more than the hyperbolic resolvent

R0(λ; t, u; t
′u′) =

(
tt′

(t2 + |u|2)(t′2 + |u′|2)

) k
2

RHn−k+1

(
λ−

k

2
; t, u; t′, u′

)
.

for λ /∈ (k
2 − N0) if n − k + 1 is odd and for λ ∈ C otherwise. Using the analysis of [17], we

directly obtain that

θR0(λ)θ
′f0 ∈ ρ

λR−1
c C∞(H̄n−k+1) ⊂ ρλR−1

c C∞
acc(X̄k)

where the inclusion means: consider the function on Xk as constant with respect to z ∈ T k. As
a conclusion (4.2) is proved and the proof of the lemma is achieved too, at least for λ /∈ −N0.
The points at −N0 can in fact be treated by taking N > 0 large in (4.6) and essentially the same
arguments than for N = 0. �

Now we briefly review the construction of a parametrix for R(λ) in [8, Prop 3.1 and 3.5] which
can be continued to infinite order (at least formally, the problem of convergence will be discussed
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later). This is obtained by localizing in the neighbourhoods near infinity Mk and Mr. One can
construct some operators Ek

∞(λ) on Mk (k = 1, . . . , n− 1) and Er
∞(λ) on Mr such that

(∆Mk
− λ(n− λ))Ek

∞(λ) = χk + K
k
∞(λ),

(∆Mr
− λ(n− λ))Er

∞(λ) = χr + K
r
∞(λ)

with Kk
∞(λ), Kr

∞(λ) having smooth Schwartz kernels Kk
∞(λ;w,w′) and Kr

∞(λ;w,w′)) which
vanish at all order when ρ(w)→ 0.

The first step of the parametrix construction of Ek
∞(λ) is to take a smooth function χk

L with
support in Mk which is equal to 1 in {x2 + |y|2 > 4} such that χk

Lχ
k = χk and 1 − χk

L can be
chosen as a product (see the construction in [8])

(4.10) 1− χk
L(x, y, z) = ψk

L(y)φL(x)

independent of the variable on T k; then set

Ek
0 (λ) := χk

LRXk
(λ)χk, Kk

0 (λ) = [∆Xk
, χk

L]RXk
(λ)χk

and we obtain (∆Mk
−λ(n−λ))Ek

0 (λ) = χk +Kk
0 (λ) as a first parametrix in the neighbourhood

Mk of ∂X̄ in X̄. The next steps of the construction in [8, Prop.3.1] involve only some operators
with Schwartz kernels of the same type than Kk

0 (λ) but with additional decay at ∂X̄ × X̄ in
X̄ × X̄. The part of the parametrix on Mr is done as in the work of Guillopé-Zworski [12] (and
more generally [17]) by using at first step

Er
0(λ) := χr

LRHn+1(λ)χr , Kr
0(λ) = [∆Hn+1 , χr

L]RHn+1(λ)χr

with a function χr
L which is equal to 1 on the support of χr and which can be expressed as a

product χr
L(x, y) = φr

L(x)ϕr
L(y) in Mr. The other steps of the construction in Mr do not make

more singular kernels than Kr
0(λ) appear.

The previous lemma allows to deduce the following

Proposition 4.3. Let θ, θ′ ∈ C∞(X̄) constant near c and such that supp(θ′)∩c = ∅ and θθ′ = 0.
Then for λ not a resonance we have

θR(λ)θ′ ∈ Rc
−1ρ′

λ
ρλC∞(X̄ × X̄), θ′R(λ)θ ∈ R′

c
−1
ρλρ′

λ
C∞(X̄ × X̄)

and R(λ) has the mapping property

(4.11) R(λ) : Ċ∞(X̄)→ R−1
c ρλC∞

acc(X̄).

Proof : if we carefully look at the expression of K∞(λ) following [8, Prop. 3.1 and 3.5] and
we use previous lemma, it is not difficult to check that

(4.12) (Ik)∗Kk
∞(λ)(Ik)∗ ∈ ρ

∞ρ′
λ
R′

c
−1
C∞(X̄ × X̄),

(4.13) (Ik)∗Kr
∞(λ)(Ir)∗ ∈ ρ

∞ρ′
λ
C∞(X̄ × X̄).

The second statement is essentially well-known (see [8, 12] for instance) and is a direct conse-
quence of the explicit formula of RHn+1(λ). To prove the first one, we essentially use Lemma 4.2.
It is not difficult to check (see again [8]) that [∆Xk

, χk
L] is a first order operator with smooth

coefficients supported in {1 < x2 + |y|2 ≤ 4, 0 ≤ x} and vanishing at second order at x = 0.
Using the compactification coordinates (t, u) of (2.1), it is also a first order operator with smooth
coefficients supported in {ǫ < t2 + |y|2 ≤ 1, 0 ≤ t} for some ǫ > 0 and vanishing at second order
at t = 0, moreover its support does not intersect the support of χk. Therefore, using (4.3) in
Lemma 4.2 we easily deduce that

(4.14) (Ik)∗[∆Xk
, χk

L]RXk
(λ)χk(Ik)∗ ∈ ρ

λ+2ρ′
λ
R′

c
−1
C∞(X̄ × X̄).

Now the iterative construction of [8, Prop. 3.1] corresponds to capture the Taylor expansion of
this term at ρ = 0 and the remaining error terms at each step are like (4.14) but with more decay
in ρ; this finally implies (4.12). The terms appearing in the expression of Ek

∞(λ) in [8, Prop. 3.1],

are thus χk
LRXk

χk plus some operators whose Schwartz kernels are in ρλ+2ρ′
λ
R′

c
−1
C∞(X̄k×X̄k).

Therefore Ek
∞(λ) satisfies exactly the same properties than RXk

(λ) described in Lemma 4.2.
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By standard pseudo-differential calculus on compact manifolds we can obtain the compact
part of the parametrix Ei

∞(λ) so that

(∆X − λ(n− λ))E
i
∞(λ) = χ+ K

i
∞(λ)

with Ki
∞(λ) having a smooth kernel with compact support in X×X and Ei

∞(λ) being a pseudo-
differential operator of order −2 supported in a compact set of X ×X .

Thus we obtain

(∆X − λ(n− λ))E∞(λ) = 1 + K∞(λ)

with

E∞(λ) := E
i
∞(λ) +

∑

α=1,...,n−1,r

(Iα)∗Eα
∞(λ)(Iα)∗,

K∞(λ) := K
i
∞ +

∑

α=1,...,n−1,r

(Iα)∗Kα
∞(λ)(Iα)∗.

Using Lemma 4.2, (4.12), (4.13) and the explicit formulae of the regular terms in Er
∞(λ) in [8, 12]

it is straightforward to see that

(4.15) K∞(λ) ∈ ρ∞ρ′
λ
R′

c
−1
C∞(X̄ × X̄)

(4.16) θE∞(λ)θ′ ∈ Rc
−1ρλρ′

λ
C∞(X̄ × X̄), θ′E∞(λ)θ ∈ ρλρ′

λ
R′

c
−1
C∞(X̄ × X̄).

Moreover using Lemma 4.2 for the mapping properties of the cusps terms and [7, Prop. 3.1] for
the mapping properties of the regular terms, we have

(4.17) E∞(λ) : Ċ∞(X̄)→ ρλR−1
c C∞

acc(X̄).

We can then write

(4.18) R(λ) = E∞(λ)− E∞(λ)K∞(λ) + E∞(λ)K∞(λ)(1 + K∞(λ))−1
K∞(λ)

and (1 + K∞(λ))−1 = 1 + F (λ) with

F (λ) = −K∞(λ)−K∞(λ)F (λ).

This proves that F (λ) is Hilbert-Schmidt on ρNL2(X) for ℜ(λ) > n−1
2 and N large, since K∞(λ)

is. Using that ρ′
n
R′

c
−1

is bounded, the composition K∞(λ)F (λ)K∞(λ) has a Schwartz kernel in
the same class than K∞(λ) (and K∞(λ)2 too). In view of its construction, we see that the range
of K∞(λ) is composed of functions with support in X̄ \ c, thus we can find a smooth function
θ′ ∈ C∞(X̄) with supp(θ′) ∩ c = ∅ such that θ′K∞(λ) = K∞(λ). Thus if θ is a function in
C∞(X̄) such that θ = 1 near c and θθ′ = 0 we have from (4.16), (4.15) that

(4.19) θE∞(λ)K∞(λ) ∈ ρλρ′
λ
R−1

c R′
c
−1
C∞(X̄ × X̄).

Now we can for example use Mazzeo’s composition results in [15] to deal with the regular terms

(Ei
∞(λ) + (Ir)

∗
E

r
∞(λ)(Ir)∗)K∞(λ) ∈ ρλρ′

λ
C∞(X̄ × X̄).

Then (1− θ)(Ik)∗Ek
∞(λ)(Ik)∗K∞(λ) can be studied exactly with the same method than for the

proof of (4.2) in Lemma 4.2 and we see that

(1− θ)(Ik)∗Ek
∞(λ)(Ik)∗K∞(λ) ∈ ρλρ′

λ
R′

c
−1
C∞(X̄ × X̄)

and we conclude, using (4.19), that

E∞(λ)K∞(λ) ∈ ρλρ′
λ
R−1

c R′
c
−1
C∞(X̄ × X̄)

and the same holds for E∞(λ)K∞(λ)(1 +F (λ))K∞(λ). We have completed the proof in view of
(4.18) and the symmetry of the resolvent kernel.

Moreover we have also proved that

(4.20) R(λ)− E∞(λ) ∈ (ρρ′)λ(RcR
′
c)

−1C∞(X̄ × X̄).
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The mapping property of R(λ) is then easily deduced from (4.18) and (4.17) since K(λ) maps

ρNL2(X) to Ċ∞(X̄) if N ≫ |ℜ(λ)| in view of the form (4.15) of its kernel. �

Remark: we did not study the convergence problem of the infinite order parametrix E∞(λ)
but to avoid this problem, it suffices to take the parametrix EN (λ) of [8] for large N and the
same proof actually would show the same results for R(λ) but with CM regularity for some
M > N − C|ℜ(λ)| (with C > 0) instead of C∞ regularity. Since it is true for all N , we get the
same results.

5. Poisson operator, Eisenstein function

5.1. Poisson operator. Using the product decomposition of the metric in Lemma 2.2, an in-
dicial equation for the Laplacian and the mapping property of the resolvent, we can construct a
Poisson operator following the method of Graham-Zworski [7].

Actually, we now work with the special boundary defining function ρ but every other choice
of boundary defining function ρ̂ ∈ C∞

acc(X̄) defined in Lemma 2.2 would induce an equivalent
(but not the same) construction for the Poisson operator. We will simply add the necessary
arguments when the generalization is not transparent.

With the metric under the form (2.13), the Laplacian is

(5.1) ∆X = −(ρ∂ρ)
2 + nρ∂ρ −

1

2
Tr(h−1(ρ).∂ρh(ρ))ρ

2∂ρ + ρ2∆h(ρ).

In the neighbourhood Mk of the cusp ck this gives

∆X = −(ρ∂ρ)
2 + nρ∂ρ − 2k(ρ2 + |u|2)−1ρ3∂ρ + ρ2∆h(ρ)

with h(ρ) = du2 + (ρ2 + |u|2)2dz2 a metric on {0 < |u| < 1} × T k
z , and by an elementary

computation we obtain

(5.2) Rc∆XR
−1
c = −(ρ∂ρ)

2 + nρ∂ρ + ρ2(∆u + (ρ2 + |u|2)−2∆z)

where ∆u,∆z are the flat Laplacians on R
n−k
u , T k

z . Similarly with a function ρ̂ of Lemma 2.2 we
have

∆X = −(ρ̂∂ρ̂)
2 + nρ̂∂ρ̂ −

1

2
Tr(ĥ−1(ρ̂).∂ρ̂ĥ(ρ̂))ρ̂

2∂ρ̂ + ρ̂2∆h(ρ̂) + O(ρ̂∞).

and in coordinates (ρ̂, v, ζ) near ck, we see from (2.11) that

Rc∆XR
−1
c = −(ρ̂∂ρ̂)

2 + nρ̂∂ρ̂ + P1 + P2 + ρ̂2e−2ωr−4
c ∆ζ +O(ρ̂∞)

for some differential operators

P1 = P1(ρ̂, v, ρ̂
2∂ρ̂, ρ̂∂v), P2 = P2(ρ̂, v, ζ, ρ̂∂v, ρ̂∂ζ) = O(r∞c )

of order 2, with P2 (resp. P1) having smooth coefficents on X̄ (resp. smooth outside ck). By
making the same change of coordinates (2.9) in (5.2), it would give some differential operators
with smooth coefficients at ck except the term with ∆ζ thus P1 has to be smooth at ck.

We now use Graham-Zworski’s construction [7] and we refer the reader to their paper for
additional details. If f ∈ C∞

acc(∂X̄) we deduce from (5.1) and (5.2) the indicial equation in
{ρ < ǫ}

(5.3) (∆X − λ(n− λ))ρ
n−λ+jR−1

c f − j(2λ− n− j)ρn−λ+jR−1
c f ∈ ρn−λ+j+1R−1

c C∞
acc(X̄).

Here, the key fact is that the singular term r−4
c ∆z applied to f ∈ C∞

acc(∂X̄) gives a functions in

Ċ∞
c (X̄) by (2.7). Therefore for all f ∈ R−1

c C∞
acc(∂X̄) one can construct by induction and Borel

lemma (see again [7]) a function Φ(λ)f ∈ ρn−λR−1
c C∞

acc(X̄) for λ ∈ C \ 1
2 (n+ N) such that

(∆X − λ(n− λ))Φ(λ)f ∈ Ċ∞(X̄), ρλ−nΦ(λ)f |ρ=0 = f.
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By construction, we have the formal Taylor expansion

(5.4) Φ(λ)f = ρn−λ
∞∑

j=0

ρ2jcj,λPj,λf, ∀f ∈ C∞
acc(∂X̄)

where Pj,λ is a differential operator on B which is polynomial in λ and

cj,λ := (−1)j Γ(λ− n
2 − j)

22jj!Γ(λ− n
2 )
.

Now we can set for λ /∈ 1
2 (n+ N) and λ not a resonance

(5.5) P(λ)f = Φ(λ)f −R(λ)(∆X − λ(n− λ))Φ(λ)f

which satisfies

(5.6)





(∆X − λ(n− λ))P(λ)f = 0
P(λ)f = ρn−λF (λ, f) + ρλG(λ, f)
F (λ, f), G(λ, f) ∈ R−1

c C∞
acc(X̄)

F (λ, f)|ρ=0 = f

using Proposition 4.3. We have defined a family of operators

P(λ) : R−1
c C∞

acc(∂X̄)→ ρn−λR−1
c C∞

acc(X̄) + ρλR−1
c C∞

acc(X̄)

and we will now prove the uniqueness of an operator satisfying (5.6) in {ℜ(λ) ≥ n
2 }. The principle

is the same than in [7]: if ℜ(λ) > n
2 , λ not a resonance and P1(λ)f,P2(λ)f are two solutions

of (5.6), then the previous indicial equation shows that P1(λ)f − P2(λ)f ∈ ρλR−1
c C∞(X̄) but

this function is in L2(X) using (2.6) so this must be 0; to treat the case ℜ(λ) = n
2 , we use a

boundary pairing Lemma like Proposition 3.2 of [7]:

Lemma 5.1. For i = 1, 2, let ui = ρn−λFi + ρλGi some functions satisfying

(∆X − λ(n− λ))ui = ri ∈ Ċ
∞(X̄)

with Fi, Gi ∈ R−1
c C∞(X̄), then we have for ℜ(λ) = n

2 and λ 6= n
2∫

X

(u1r2 − r1u2) dvolg = (2λ− n)

∫

B

(F1|BF2|B −G1|BG2|B) dvolh0

Proof : we apply Green Lemma in Xǫ = {ρ ≥ ǫ}

(5.7)

∫

Xǫ

(u1r̄2 − u2r̄1) dvolg = ǫ−n+1

∫

ρ=ǫ

(u1∂ρū2 − ū2∂ρu1) dvolh(ǫ)

and we will take the limit as ǫ→ 0. Using the asymptotics of u1, u2 we get

u1∂ρū2 − ū2∂ρu1 = (2λ− n)ρn−1(F1F2 −G1G2) + ρn(G1∂ρG2 −G2∂ρG1 + F1∂ρF2 − F2∂ρF1).

Recall from (2.5) that dvolh(ǫ) = Rc(ǫ)
2µ∂X̄ with Rc(ǫ) = (|u|2 + ǫ2)

1
2 in the neighbourhood Bk

of the cusp submanifold ck, so the only terms in the right hand side of (5.7) for which the limit
are not apparent are

ǫ

∫

ρ=ǫ

(G1∂ρG2 −G2∂ρG1) dvolh(ǫ), ǫ

∫

ρ=ǫ

(F1∂ρF2 − F2∂ρF1) dvolh(ǫ).

The study of both terms when ǫ→ 0 is the same and can be clearly reduced to the limit of

(5.8)

∫

T k

∫

|u|≤1

G1(ǫ, u, z)ǫ∂ǫG2(ǫ, u, z)(|u|
2 + ǫ2)kduRn−kdzT k

when ǫ→ 0, Gi(ρ, u, z) being the function Gi in the coordinates of the neighbourhood Bk of ck.
Using that on Gi ∈ R−1

c C∞(X̄), it suffices to show that the limit of
∫

|u|≤1

ǫ∂ǫ[(|u|
2 + ǫ2)−

k
2 ](|u|2 + ǫ2)

k
2 duRn−k
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is 0 when ǫ→ 0 to prove that the limit of (5.8) is 0. Now this last integral is equal to

C

∫ 1

0

ǫ2(r2 + ǫ2)−1rn−k−1dr ≤ Cǫ

∫ ∞

0

(1 + r2)−1dr

for a constant C, this finally proves the lemma. �

Now using this lemma with u2 = R(n− λ)ϕ for ϕ ∈ Ċ∞(X̄) and u1 = P1(λ)f − P2(λ)f this

proves that 〈u1, ϕ〉 = 0 for all ϕ ∈ Ċ∞(X̄), thus u1 = 0. As a conclusion, we have

Proposition 5.2. For ℜ(λ) ≥ n
2 , λ /∈ 1

2 (n + N0), λ(n − λ) /∈ σpp(∆X) there exists a unique
linear operator

P(λ) : R−1
c C∞

acc(∂X̄)→ ρn−λR−1
c C∞

acc(X̄) + ρλR−1
c C∞

acc(X̄)

analytic in λ and solution of the Poisson problem (5.6). It is given by (5.5) and called Poisson
operator.

By (5.5) it admits a meromorphic continuation with poles of finite multiplicity to C\ 1
2 (n+N0).

5.2. Eisenstein functions. In this part, we define Eisenstein functions as a weighted restric-
tion of the Schwartz kernel of the resolvent at B ×X and we prove that they are the Schwartz
kernel of the transpose of the Poisson operator.

As a consequence of Proposition 4.3 and (4.20) we first obtain the

Corollary 5.3. The Eisenstein function E(λ) := (ρ−λR(λ))|B×X is well defined, meromorphic
in λ ∈ C and satisfies

(5.9) E(λ) ∈ Rc
−1C∞(∂X̄ ×X).

Moreover, if Emod(λ) is the ‘model Eisenstein function’ defined by

Emod(λ) := (ρ−λ
E∞(λ))|B×X

then

(5.10) E(λ) − Emod(λ) ∈ ρ
′λ(RcR

′
c)

−1C∞(∂X̄ × X̄).

Let EXk
(λ) be the Eisenstein function for the model space Xk obtained from (4.4) and (4.6)

(recall that ρ = t = x
x2+|y|2 with our choice in Lemma 2.2)

EXk
(λ; y, z;x′, y′, z′) = |y|2λx′

λ
r−2λ+k

∑

m∈Zk

eiωm.(z−z′)F0,λ(r|ωm|)

for y 6= 0, where by convention r = (|y − y′|2 + x′
2
)

1
2 denotes here the restriction of r to x = 0.

In the compactification coordinates (t, u) of (2.1) this gives

(5.11) EXk
(λ;u, z; t′, u′, z′) = t′

λ
r−2λ+k|u|−2λ(t′

2
+ |u′|2)−λ

∑

m∈Zk

eiωm.(z−z′)F0,λ(r|ωm|)

and r is expressed in these coordinates by

(5.12) r2 =
t′

2
+ |u− u′|2

|u|2(t′2 + |u′|2)
.

Similarly let EHn+1(λ) be the Eisenstein function on Hn+1

(5.13) EHn+1(λ; y;x′, y′) =
π− n

2 Γ(λ)

(2λ− n)Γ(λ − n
2 )

x′
λ

(|y − y′|2 + x′2)λ
.

Using the construction of the parametrix for the resolvent, we can deduce an expression for
the model Eisenstein function

(5.14) Emod(λ) =
∑

α=1,...,n−1,r

(ια)∗Eα
mod(λ)(Iα)∗
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with ια := Iα|ρ=0 and in Mk,Mr

Ek
mod(λ; y, z;w

′) := ψk
L(y)EXk

(λ; y, z;w′)χk(w′),

(5.15) Er
mod(λ; y;w

′) := ψr
L(y)γr(y)

−λEHn+1(λ; y;w′)χr(w′).

with ρ(x, y) = xγr(y) +O(x) in Mr for some positive smooth function γr in Br and ψα
L defined

in (4.10).
We show that the Eisenstein functions can be viewed as a Schwartz distributional kernel of

an operator, that we also denote E(λ), mapping Ċ∞(X̄) to C−∞(B̄), actually with weighted L2

continuity results.

Lemma 5.4. There exists C > 1 such that for |ℜ(λ)− n
2 | ≤ C

−1N ,

E(λ) : ρNL2(X)→ L2(B)

is a meromorphic family of Hilbert-Schmidt operators with poles of finite multiplicity, included in
the set of resonances. Moreover for ℜ(λ) < 0 and λ not a resonance, (b, w)→ ρ(w)−λE(λ; b;w)
is a continuous function on B × (X̄ \ c).

Proof : the terms E(λ) − Emod(λ) and (ιr)
∗Er

mod(λ)(Ir)∗ in E(λ) clearly satisfy those two
properties, we thus only have to deal with Ek

mod(λ) in Xk. From (5.11) and (5.12) we have

|t′
N
EXk

(λ;u, z; t′, u′, z′)| ≤
t′
ℜ(λ)+N

(|u− u′|2 + t′
2
)

k
2
−ℜ(λ)

|u|k|u′|k

∑

m∈Zk

|F0,λ(r|ωm|)|.

When r|ωm| > 1, the classical estimate |Ks(z)| ≤ Ce−Cℜ(z) for ℜ(z) > 1 (with C > 0 depending
on s) on Mac Donald’s function shows that |F0,λ(r|ωm|)| ≤ e−Cr|ωm| thus

∑

|ωm|>1/r

|F0,λ(r|ωm|)| ≤ Cr
−k ≤ Ct′

−k

where C depends on λ. Therefore we get for N > 4|ℜ(λ)|

(5.16) |t′
N
EXk

(λ)| ≤ Ct′
N
2 |u|−k|u′|−k +

t′
ℜ(λ)+N

(|u− u′|2 + t′
2
)

k
2
−ℜ(λ)

|u|k|u′|k

∑

|ωm|≤1/r

|F0,λ(r|ωm|)|.

Now for r|ωm| ≤ 1 we use the definition (6.4) of Mac Donald function Ks(z) to decompose
F0,λ(r|ωm|) under the form

F0,λ(r|ωm|) = c(λ)(ϕ−λ+ k
2
(r2|ωm|

2) + r2λ−k|ωm|
2λ−kϕλ− k

2
(r2|ωm|

2))

with ϕs(x) smooth on x ∈ [0,∞) and c(λ) constant depending on λ. The term coming from
ϕ−λ+ k

2
is treated exactly as before (the part with r|ωm| > 1) and for the term coming from

ϕλ− k
2

we have

∑

|ωm|<1/r

(r|ωm|)
2ℜ(λ)−k|ϕλ− k

2
(r2|ωm|

2)| ≤

{
C(r−k + r2ℜ(λ)−2k) if ℜ(λ)− k

2 ≤ 0
Cr−k if ℜ(λ)− k

2 > 0

for some C > 0 depending on |λ|. In view of (5.16), we conclude that for N > 4|ℜ(λ)|+ 2k

|(ιk)∗t′
N
EXk

(λ)(Ik)∗| ≤ Cρ
′

N
2 R−1

c R′
c
−1

and this function is in L2(B×X) if N is large enough using (2.6) (here Rc denotes the restriction
of Rc to B ×X). The meromorphic property and the finiteness of the poles multiplicity comes
from the discussion before the Lemma, using the formulae for the model Eisenstein functions
and the fact that the poles of the resolvent have finite multiplicity.

The second statement of the Lemma is essentially treated in the same way. Using that for
ℜ(λ) < 0

r−2λ+kF0,λ(r|ωm|) = c(λ)(r−2λ+kϕ−λ+ k
2
(r2|ωm|

2) + |ωm|
2λ−kϕλ− k

2
(r2|ωm|

2))
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is continuous in (u, t′, u′) ∈ {u 6= 0, u′ 6= 0, t′
2

+ |u′|2 < 1, |u| < 1} (the power in r−2λ+k being
negative) and that the sum

∑
m r−2λ+kF0,λ(r|ωm|) is locally uniformly convergent in the same

set by previous estimates, we deduce that t′
−λ
EXk

(λ;u, z; t′, u′, z′) is also continous there and
this achieves the proof. �

The transpose tE(λ) is then well-defined from from L2(B) to ρ−NL2(X) for some N depending

on λ and its kernel is E(λ;w, b). Let ϕ ∈ Ċ∞(X̄) and f ∈ Ċ∞
c (∂X̄) ≃ Ċ∞(B̄), then for ℜ(λ) = n

2

we use Lemma 5.1, identity R(λ) = tR(λ) = R(n− λ)∗ and Lemma 5.4 to deduce
∫

X

ϕ̄(P(λ)f) dvolg = (2λ− n)

∫

B

f(ρλ−nR(n− λ)ϕ)|B dvolh0

= (2λ− n)

∫

B

f(ρ−λR(λ)ϕ̄)|B dvolh0

= (2λ− n)

∫

B

f(E(λ)ϕ̄) dvolh0

which proves

Lemma 5.5. The Schwartz kernel of P(λ) is (2λ− n)E(λ;w; b) ∈ C∞(X ×B).

This also implies that P(λ) admits a meromorphic continuation to C with poles of finite
multiplicity, and in particular it is analytic in {ℜ(λ) > n

2 } except a finite number of poles at
points λ0 such that λ0(n−λ0) ∈ σpp(∆X). By mimicking the proof of Graham-Zworski [7, Prop.
3.5] it is straightforward to see that, for f ∈ R−1

c C∞
acc(∂X̄), P(n

2 + k)f has log(ρ) terms in the
asymptotic expansion and it is the unique solution of the problem

(5.17)






(∆X −
n2

4 + k2)P(n
2 + k)f = 0

P(n
2 + k)f = ρ

n
2
−kFk(f) + ρ

n
2
+k log(ρ)Gk(f)

Fk(f), Gk(f) ∈ R−1
c C∞

acc(X̄)
Fk(f)|ρ=0 = f

The Eisenstein functions are linked to the spectral projectors (via Stone’s formula) of ∆X in
the following sense

Proposition 5.6. If ℜ(λ) = n
2 and λ 6= n

2 then

(5.18) R(λ;w;w′)−R(n− λ;w;w′) = (n− 2λ)

∫

B

E(λ; b;w′)E(n− λ; b;w) dvolh(b)

where h = (ρ2g)|B. Moreover there exists C > 1 such that for N large, we have

R(λ)−R(n− λ) = (2λ− n)tE(n− λ)E(λ)

in the strip |ℜ(λ)| ≤ C−1N as operators from ρNL2(X) to ρ−NL2(X).

Proof : the proof of (5.18) contains nothing more than the proof of Theorem 1.3 of [3] or
Proposition 2.1 of [11] in a simpler case. Note that the convergence of the integral in (5.18) is
insured by (5.9) and (2.5). The second part of the Proposition is a consequence of the mapping
properties of R(λ), E(λ) proved before. �

Combined with Lemma 5.4, this relation implies that E(λ) and R(λ) have same poles, except
possibly at the points λ such that λ(n− λ) ∈ σpp(∆X).

6. Scattering operator

Using notations of (5.6), we can define the scattering operator as the linear operator

(6.1) S(λ) :

{
R−1

c C∞
acc(∂X̄) → R−1

c C∞
acc(∂X̄)

f → G(λ, f)|B
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for ℜ(λ) ≥ n
2 , λ /∈ 1

2 (n + N) and λ not a resonance. With (5.5), one obtains a meromorphic
continuation of S(λ) to C. Like P(λ), the scattering operator certainly depends on the choice
of boundary defining function (here ρ), but any other choice ρ̂ = eωρ ∈ C∞

acc(X̄) of Lemma 2.2

induces an equivalent construction and two corresponding scattering operators S(λ) and Ŝ(λ)
are related by the covariant rule

Ŝ(λ) = e−λω0S(λ)e(n−λ)ω0 , ω0 = ω|∂X̄ ,

this is a trivial consequence of uniqueness of solution of Poisson problem. Therefore it suffices
in this section to deal with the special boundary defining function ρ.

From Lemma 5.5, (5.5) and (6.1), we deduce that for f ∈ Ċ∞
c (∂X̄) ≃ Ċ∞(B̄) and ℜ(λ) < 0

(6.2) S(λ)f = lim
ρ→0

[ρ−λ((2λ− n)tE(λ)f − Φ(λ)f)] = (2λ− n) lim
ρ→0

[ρ−λ(tE(λ)f)]

which is well defined in view of the continuity of E(λ; b;w′) proved in Lemma 5.4. As a conse-
quence the distributional kernel of S(λ) on B is

S(λ; b; b′) = (2λ− n) lim
w′→b′

(ρ(w′)−λE(λ; b;w′))

which can be rewritten using the symmetry of the resolvent kernel as the restriction

(6.3) S(λ) = (2λ− n)(ρ−λρ′
−λ
R(λ))|ρ=ρ′=0

for ℜ(λ) < 0 and λ not resonance. Moreover we deduce from (4.20) that

S(λ)− (ρ−λρ′
−λ

E∞(λ))|ρ=ρ′=0 ∈ R
−1
c R′

c
−1
C∞(∂X̄ × ∂X̄)

which is easily seen to be compact on L2(B) in view of (2.5), and this term extends meromor-
phically to C with poles of finite multiplicity.

We want to study the structure of the extendible distribution (6.3) on B̄× B̄, which continues

meromorphically to C; it suffices actually to describe the singular part (ρ−λρ′
−λ

E∞(λ))|ρ=ρ′=0

of S(λ). To analyze this singular part of S(λ) in the neighbourhood of the cusp submanifolds, it
turns out to be more convenient to work in the neighbourhood Mk with the coordinates (x, y, z)
than in their compactified version (t, u, z). Indeed we will see that, up to conformal factors, the

scattering operator for the model Xk = Γk\Hn+1 is ∆
λ− n

2

Yk
where again Yk = Rn−k × T k with

the flat metric. This is what Froese-Hislop-Perry used in [3] in dimension 3.
Using Fourier transform in the (y, z) variable on Xk we see that the Laplacian on Xk is

transformed into the one dimensional operator

Pξm
= −x2∂2

x + (n− 1)x∂x + x2|ξm|
2

with ξm = (ξ, ωm). We easily deduce that the resolvent can be expressed by

RXk
(λ;w,w′) = −(xx′)

n
2

∑

m∈Z

∫

Rn−k

eiξm.(y−y′,z−z′)Gξm
(λ;x, x′)dξ

Gξm
(λ;x, x′) := Kλ−n

2
(|ξm|x)Iλ− n

2
(|ξm|x

′)H(x− x′) +Kλ−n
2
(|ξm|x

′)Iλ− n
2
(|ξm|x)H(x′ − x)

with H the Heaviside function, (w;w′) = (x, y, z;x′, y′, z′) the coordinates on Xk × Xk and
Iν(z),Kν(z) the modified Bessel functions. Therefore using that ρ = x

x2+|y|2 and

(6.4) Iν(z) =
2−νzν

νΓ(ν)
+O(zℜ(ν+2)), Kν(z) = −

ν

2
Γ(ν)Γ(−ν)(Iν (z)− I−ν(z))

as z → 0, we obtain for ℜ(λ) < 0 (using {ρ = 0} = {x = 0} on B)

(6.5) EXk
(λ; y′, z′;w) =

−|y′|2λ2
n
2
−λ

Γ(λ− n
2 + 1)

x
n
2

∑

m∈Z

∫

Rn−k

eiξm.(y−y′,z−z′)|ξm|
λ−n

2 Kλ−n
2
(|ξm|x)dξ



SCATTERING THEORY ON GEOMETRICALLY FINITE QUOTIENTS 27

and

SXk
(λ; y, z; y′, z′) := (2λ− n)[ρ(x, y)−λEXk

(λ; y′, z′;x, y, z)]|x=0

= 2n−2λ Γ(n
2 − λ)

Γ(λ − n
2 )
|y|2λ|y′|2λ

∑

m∈Z

∫

Rn−k

eiξm.(y−y′,z−z′)|ξm|
2λ−ndξ

where this last sum-integral is understood (by splitting the term with ωm = 0 and the terms

with ωm 6= 0) as the function on Rn−k
y × T k

z × R
n−k
y′ × T k

z′

22λ−nπ−n−k
2 Γ(λ− k

2 )

Γ(n
2 − λ)

|y − y′|−2λ+k +
∑

m 6=0

∫

Rn−k

eiξm.(y−y′,z−z′)|ξm|
2λ−ndξ

which is continuous on {y 6= 0, y′ 6= 0}. This last function continues meromorphically to λ ∈ C

in the distribution sense thus
(6.6)

Sk
mod(λ; y, z; y

′, z′) := [ρ(x′, y′)
−λ
Ek

mod(λ; y, z;x
′, y′, z′)]|x=0 = ψk

L(y)SXk
(λ; y, z; y′, z′)ψk(y′)

continues meromorphically to C as a distribution. Note that the measure dvolh0
on Yk is

dvolh0
= |y|−2ndydz.

To work on Yk = Rn−k
y ×T k

z with the natural measure dydz corresponding to the flat metric h̃0,

we have to multiply the kernel of SXk
(λ) by |y|−n|y′|−n, thus (6.6) can be rewritten, acting on

L2(Yk, dydz)

(6.7) Sk
mod(λ) = c(λ)ψk

L|y|
2λ−n∆

λ− n
2

Yk
|y|2λ−nψk with c(λ) := 2n−2λ Γ(n

2 − λ)

Γ(λ− n
2 )
.

Note that it has poles at λ = n
2 + j (with j ∈ N) with residue the differential operator on Yk

Resn
2
+j(S

k
mod(λ)) =

(−1)j+12−2j

j!(j − 1)!
ψk

L|y|
2j∆j

Yk
|y|2jψk on L2(Yk, dydz).

For the singularity of the kernel of S(λ) in the regular neighbourhood Br on L2(Br, dvolh0
)

(to see it acting on L2(Br, dvoleh0
) it suffices to multiply the kernel by (rcr

′
c)

n) we define the

model scattering operator using (5.13)

SHn+1(λ; y; y′) := (2λ− n)[x′
−λ
EHn+1(λ; y;x′, y′)]|x′=0 =

π− n
2 Γ(λ)

Γ(λ − n
2 )
|y − y′|−2λ

and we get from (5.15)

(6.8) Sr
mod(λ; y; y

′) := [ρ(x′, y′)
−λ
Er

mod(λ; y;x
′, y′)]|x′=0 =

ψr
L(y)ψr(y′)

γr(y)λγr(y′)λ
SHn+1(λ; y; y′),

which continues meromorphically to C with poles at n
2 + j (with j integers) and residue

Resn
2
+j(S

r
mod(λ)) =

(−1)j+12−2j

j!(j − 1)!
ψr

Lγ
−n

2
−j

r ∆j
Rnγ

−n
2
−j

r ψr.

With notations of (6.8), (6.6) we can now define the model scattering operator

(6.9) Smod(λ) :=
∑

α=1,...,n−1,r

(ια)∗Sα
mod(λ)(ια)∗

and we have

S(λ)− Sk
mod(λ) ∈ R

−1
c R′

c
−1
C∞(∂X̄ × ∂X̄)

which is a compact operator on L2(B). From this study, it is straightforward to check that S(λ)
is a bounded operators on L2(B) in {ℜ(λ) ≤ n

2 } (and λ not resonance).

We summarize this discussion in the following
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Lemma 6.1. S(λ) is meromorphic in C as an operator acting on R−1
c C∞

acc(∂X̄), with Schwartz
kernel the meromorphic continuation from {ℜ(λ) < 0} to C of the distribution

(2λ− n)(ρ−λρ′
−λ
R(λ))|B×B ∈ C

−∞(X̄ × X̄).

Its poles in {ℜ(λ) ≤ n
2 } are included in the set of resonances and have finite multiplicity, whereas

the poles in {ℜ(λ) > n
2 } are first order poles with residue

Resλ0
S(λ) =

{
− (−1)j+12−2j

j!(j−1)! Pj + Πλ0
if λ0 = n

2 + j, j ∈ N

Πλ0
if λ0 /∈

n
2 + N

where Pj is the differential operator on (B, h0) with principal symbol σ0(Pj) = |ξ|2j
h0

, defined by

[Resn
2
+jρ

−λΦ(λ)]|ρ=0 =
(−1)j2−2j

j!(j − 1)!
Pj

and Πλ0
is a finite-rank operator with Schwartz kernel 2j

(
(ρρ′)−λ0Resλ0

R(λ)
)
|B×B satisfying

rank Πλ0
= dim kerL2(∆X − λ0(n− λ0)).

Proof : the meromorphic property of S(λ) and its Schwartz kernel have been discussed, the
statement about the poles outside {ℜ(λ) ≤ n

2 } is also clear by (5.5) . For the case of a pole λ0

with ℜ(λ0) >
n
2 , the proof is the same than [7, Prop 3.6]. The fact about the rank of Πλ0

is
quite straightforward by mimicking the proof of [10, Th. 1.1]: we only need the indicial equation

(5.3) and that there is no solution of (∆X − λ0(n − λ0))u = 0 with u ∈ Ċ∞(X), this last fact
being already proved by Mazzeo [16]. �

Note that this Lemma also holds for any boundary defining function ρ̂ ∈ C∞
acc(X̄). The oper-

ators Pj will be discussed in next section.

We now give functional relations for Eisenstein functions and scattering operator:

Proposition 6.2. If ℜ(λ) < 0, we have for w ∈ X, b′ ∈ B,

E(λ; b′;w) = −

∫

B

S(λ; b′; b)E(n− λ; b;w) dvolh0
(b)

and there exists C > 1 such that for N large the meromorphic identity

(6.10) E(λ) = −S(λ)E(n− λ)

holds true in the strip −C−1N < ℜ(λ) ≤ n
2 as operators from ρNL2(X) to L2(B).

Proof : if for w ∈ X fixed and ℜ(λ) < 0 we multiply (5.18) by ρ(w′)−λ and take the limit
w′ → b′ ∈ B, then we obtain the first result using the symmetry of the resolvent kernel (which
also induces the symmetry of the kernel of S(λ)). The next part is just a meromorphic continu-
ation using mapping properties of E(λ) and S(λ). �

We deduce easily from this Proposition and Proposition 5.6 the

Corollary 6.3. If λ0 is such that ℜ(λ0) ≤
n
2 , λ0(n − λ0) /∈ σpp(∆X) and S(λ) holomorphic at

λ0, then λ0 is not a resonance.

Here is another inmportant property of S(λ):

Proposition 6.4. For ℜ(λ) = n
2 , S(λ) is invertible on L2(B) and we have

S(λ)−1 = S(n− λ) = S(λ)∗

Proof : the unitarity of S(λ) on the critical line comes directly from the density of Ċ∞(B̄) ⊂
C∞

acc(∂X̄) in L2(B) and Lemma 5.1 whereas the equation S(λ)−1 = S(n − λ) is a consequence
of the definition of S(λ) and again the density of C∞

acc(∂X̄) in L2(B). �
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We give a description of the scattering operator as a pseudo differential in the class defined
in Section 3 and characterized by the type of singularity of its Schwartz kernel on the blown-up
manifold B̄ ×Φ B̄.

Theorem 6.5. Let λ 6∈ n
2 + N and λ not a resonance, then with definition (3.4), the scattering

operator S(λ) is a Φ-pseudo-differential operator on B̄ of order

S(λ) ∈ Ψ2λ−n,Eλ

Φ (B̄) + (RcR
′
c)

−1C∞(∂X̄ × ∂X̄)

with respect to volume density dvolh0
, where for k = 1, . . . , n− 1

Eλ(Fk) = −2λ− k, Eλ(Ik) = −4λ, Eλ(Tk) = Eλ(Bk) = −k.

Proof : for technical reasons, we begin by working with the density dvoleh0
and it will suffice

to multiply by the correct factors at the end. If η ∈ C∞
0 ([0,∞)) is a function which is equal to

1 in a small neighbourhood of 0, we can decompose (6.7) as

Sk
mod(λ) = c(λ)ψk

L|y|
2λ−n

(
η(∆y)∆

λ−n
2

y + (1 − η(∆Yk
))∆

λ− n
2

Yk

)
ψk|y|2λ−n

on L2(Yk, dydz). The first term has a kernel

ψk
L(y)ψk(y′)|y|2λ−n|y′|2λ−n

∫

Rn−k

eiξ.(y−y′)|ξ|2λ−nη(|ξ|)dξ

which is smooth for y, y′ in Rn−k and since it is the Fourier transform of a distribution classically
conormal to 0, it is straightforward to check that it can be expressed by

(6.11) ψk
L(y)ψk(y′)|y|2λ−n|y′|2λ−nFλ(

√
1 + |y − y′|2)

with Fλ(x) smooth on [0,∞) and having an expansion

(6.12) Fλ(x) ∼ x−2λ+k
∞∑

j=0

aj(λ)x
−j

when x→∞. To describe the singularity of this kernel on the manifold B̄, we use near infinity

the polar coordinates v = |y|−1, ω = y/|y|, v′ = |y′|−1, ω′ = y′/|y′|. Since |y − y′| = | ωv′
− ω′

v | we
deduce that the kernel (6.11)

ψk
L(
ω

v
)ψk(

ω′

v′
)v−2λ+nv′

−2λ+n
Fλ




√

1 +

∣∣∣∣
ω

v′
−
ω′

v

∣∣∣∣
2


 .

First, it is clearly smooth in B ×B. By lifting | ωv′
− ω′

v |, v, v
′ on B̄ ×Φ B̄ we have that

(6.13) βΦ
∗




√

1 +

∣∣∣∣
ω

v′
−
ω′

v

∣∣∣∣
2


 ρTk
ρBk

ρFk
∈ C∞(B̄ ×Φ B̄)

does not vanish on Fk,Bk,Tk and

(6.14) βΦ
∗(vv′)ρ−1

Tk
ρ−1

Bk
ρ−2

Fk
ρ−2

Ik
∈ C∞(B̄ ×Φ B̄)

does not vanish on Tk,Bk,Fk, Ik. From this and (6.12) it is straightforward to check that

(6.15) ψk
L|y|

2λ−nη(∆y)∆
λ−n

2
y ψk|y|2λ−n ∈ (ρTk

ρBk
)n−kρ2n−2λ−k

Fk
ρ−4λ+2n

Ik
C∞(B̄ ×Φ B̄).

To deal with the term ψk
L|y|

2λ−n(1− η(∆Yk
))∆

λ− n
2

Yk
ψk|y|2λ−n, we first analyze the operator

A(λ) := ψk
L|y|

2λ−n(1 + ∆Yk
)λ− n

2 ψk|y|2λ−n.

For that we can begin to use a partition of unity (θi)i associated to a covering by some euclidian
ball on T k and some functions θ′i ∈ C

∞
0 (T k) such that θ′i = 1 on the support of θi, then it is

standard to see that for s ∈ C \ [0,∞)

(6.16) (∆Y k + 1− s)−1 =
∑

i

θ′i(∆Rn + 1− s)−1θi + κ(s)
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κ(s) := (∆Y k + 1− s)−1
∑

i

[∆z, θ
′
i](∆Rn + 1− s)−1θi.

The kernel κ(s; y, z; y′, z′) of κ(s) can be written as the composition

(6.17) κ(s; y, z; y′′, z′′) = (∆Yk
+ 1− s)p

∫

Yk

κ1(s; y − y
′, z − z′)κ2(s; y

′ − y′′, z′, z′′)dy′dz′

with

κ1(s;Y, Z) :=
∑

m∈Z

∫

Rn−k

ei(ξ.Y +ωm.Z)(1 + |ξ|2 + |ωm|
2)−1−pdξ

κ2(s; y
′ − y′′, z′, z′′) :=

∑

i

[∆z′ , θ′i(z
′)](∆Rn + 1− s)−1(y′, z′; y′′, z′′)θi(z

′′).

Since for some ǫ > 0 we have [∆z′ , θ′i(z
′)]θi(z

′′) = 0 for |z− z′′| < ǫ, it suffices to use the explicit
formula of the resolvent kernel of ∆Rn with Bessel functions to see that κ2(s) is smooth and
satisfies the estimate

|∂α
Y,z′,z′′κ2(s;Y, z

′, z′′)| ≤ Cα exp(−Cα

√
ℜ(s)(1 + |Y |2))

for ℜ(s) ≥ 1
2 and some constant Cα > 0. The kernel κ1(s) is continuous and uniformly bounded

if p is large enough, moreover it satisfies for all N > 0 the estimate

|∂α
Y κ2(s;Y, Z)| ≤ Cα,N (1 + |Y |)−N

for some constant Cα,N > 0. Therefore, using all these estimates and change of variables
y′ = u + y in (6.17), it is straightforward to check that κ(s;w;w′) is smooth and satisfies the
estimate for all N > 0

(6.18) |∂α
w,w′κ(s;w;w′)| ≤ Cα,Ne

−C′

αℜ(s)(1 + |y − y′|)−N .

for some constant Cα,N , C
′
α > 0 and using the notation w = (y, z), w′ = (y′, z′).

Let Γ be the oriented contour in C defined by

Γ = {
1

2
+ rei π

4 ;∞ > r > 0} ∪ {
1

2
re−i π

4 ; 0 < r <∞}.

As a consequence of (6.16) and using Cauchy formula, the kernel of A(λ) is (with the notation
w = (y, z), w′ = (y′, z′))

A(λ;w;w′) = A1(λ;w,w
′) +A2(λ;w;w′),

A1(λ;w;w′) := ψk
L(y)|y|2λ−nψk(y′)|y′|2λ−n

∑

i

θ′i(z)θi(z
′)

∫

Rn

eiξ.(w−w′)(1 + |ξ|2)λ−n
2 dξ,

A2(λ;w;w′) := ψk
L(y)|y|2λ−nψk(y′)|y′|2λ−n

∫

Γ

sλ−n
2 κ(s;w;w′)ds.

To analyze A1(λ), we use the polar coordinates v = |y|−1, ω = y/|y|, v′ = |y′|−1, ω′ = y′/|y′| in

the y, y′ variables and we have w−w′ = ( ω
v′
− ω′

v , z− z
′) which vanishes only (and at first order)

on the lifted interior diagonal DΦ of B̄ ×Φ B̄. From the Fourier representation of A1(s;w;w′),
we deduce that A1(s;w;w′) is a distribution which is polyhomogeneous conormal to DΦ of order
2λ−n, vanishes at all order on the boundaries Tk,Bk,Fk of B̄×ΦB̄ and has a conormal singularity
of order −4λ+ 2n at Ik (this last one coming from the term |y|2λ−n|y′|2λ−n as before):

β∗
ΦA1(λ) ∈ ρ

−4λ+2n
Ik

I2λ−n(B̄ ×Φ B̄;DΦ).

The behaviour of A2(λ) comes directly from (6.18) using the polar coordinates and (6.13) and
(6.14) as before: we see that

β∗
ΦA2(λ) ∈ ρ

∞
Tk
ρ∞Bk

ρ∞Fk
ρ−4λ+2n

Ik
C∞(B̄ ×Φ B̄)

thus

(6.19) β∗
ΦA(λ) ∈ ρ−4λ+2n

Ik
I2λ−n(B̄ ×Φ B̄;DΦ).
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For N > ℜ(λ)− n
2 , we have

Sk
mod(λ) = c(λ)ψk

L|y|
2λ−n

(
η(∆y)∆

λ− n
2

y + (1 + ∆YK
)λ−n

2 + (1 + ∆Yk
)Nϕ(1 + ∆Yk

)
)
ψk|y|2λ−n

2

with

ϕ(x) = x−N
(
(1− η(x − 1))(x− 1)λ−n

2 − (1− η(x))xλ− n
2

)

which is a symbol in (0,∞) of order λ − n
2 −N − 1 in the sense that it has a support in [ǫ,∞)

for some ǫ > 0, it is smooth and satisfies

|∂l
xϕ(x)| ≤ Cl(1 + x)ℜ(λ)− n

2
−1−N−l.

Hence following the method of Helffer-Robert [13], we have

ϕ(1 + ∆Yk
) =

1

2πi

∫ i∞

−i∞

M [ϕ](s)(1 + ∆Yk
)−sds

where M [ϕ](s) is the Mellin transform of ϕ defined by

M [ϕ](s) :=

∫ ∞

0

ts−1ϕ(t)dt

and which is rapidly decreasing on iR. From the previous study of (1 + ∆YK
)λ− n

2 and using
Mellin’s transform, we deduce that if B(λ) is the operator

B(λ) := ψk
L|y|

2λ−n(1 + ∆Yk
)Nϕ(1 + ∆YK

)ψk|y|2λ−n

then its kernel satisfies

B(λ;w;w′) = B1(λ;w;w′) +B2(λ;w;w′)

B1(λ;w,w
′) := ψk

L(y)|y|2λ−nψk(y′)|y′|2λ−n
∑

i

θ′i(z)θi(z
′)

∫

Rn

eiξ.(w−w′)(1 + |ξ|2)Nϕ(1 + |ξ|2)dξ

B2(λ;w;w′) := ψk
L(y)|y|2λ−nψk(y′)|y′|2λ−n (1 + ∆w)N

2πi

∫ i∞

−i∞

M [ϕ](s)

∫

Γ

τs− n
2 κ(τ ;w,w′)dτds.

In view of the estimate (6.18) on κ(τ ;w;w′) and its smoothness, we easily obtain that the kernel
B2(λ;w;w′), when lifted on B̄×Φ B̄, has exactly the same properties than A2(λ;w,w

′). For the
term B1(λ;w;w′) we can proceed as for A1(λ;w,w

′) and it finally shows that

βΦ
∗B(λ) ∈ ρ−4λ+2n

Ik
I2λ−n−1(B̄ ×Φ B̄;DΦ).

Combined with (6.15), (6.19), this proves the Theorem after multiplying by the lift of (rcr
′
c)

−n

to return with the correct density. �

Remark: As a consequence, we can obtain quite general mapping properties for S(λ) (i.e. the
actions of S(λ) on extendible distributions on B̄ conormal to ∂B̄) using general theory for those
operators, see for exemple Vaillant [26, Section 2.2].

7. Conformal theory on the boundary

As explained by Graham-Zworski [7], there is a strong connection between scattering theory
on Einstein conformally compact manifolds (in particular convex co-compact hyperbolic quo-
tients) and conformal theory of its boundary. We check here that similar results hold in this
degenerate case.

First recall from Lemma 2.2 that for any ĥ0 := e2ω0h0 ∈ [h0]acc, there exists a boundary

defining function ρ̂ = eωρ ∈ C∞
acc(X̄), unique up to Ċ∞(X̄), such that ω|∂X̄ = ω0 and which put

the metric under the almost product form (2.12). This gives a way to identify special boundary
defining functions of Lemma 2.2 with representatives of the subconformal class [h0]acc. Moreover
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we saw that the scattering operators S(λ), Ŝ(λ) obtained by solving Poisson problem respectively

with ρ and ρ̂ (i.e. for conformal representatives h0 and ĥ0) are related by

(7.1) Ŝ(λ)f = e−λω0S(λ)e(n−λ)ω0f.

In this sense, S(λ) is a conformally covariant operator and by looking at the residues we have
the rule

P̂j = e(−
n
2
−j)ω0Pje

( n
2
−j)ω0

which also makes this differential operator being conformally covariant.

Let us now give a few words about conformal GJMS Laplacians. In [6], Graham-Jenne-
Manson-sparling defined, on any n-th dimensional Riemannian compact manifold (M,h0), a

family of “natural” conformally covariant differential operators (Pj)j with principal symbol ∆j
h0

.
We call Pj the j-th GJMS Laplacian. They are defined for j ∈ N if n is odd and for j ≤ n/2
integer if n is even and natural in the sense that they can be written in terms of covariant
derivatives and curvature of h0 and conformally covariant in the sense that the operator P̂j

obtained with the same expression than Pj but with a conformal metric ĥ0 = e2ω0h0 is related
to Pj by the identity

P̂j = e−( n
2
+j)ω0Pje

( n
2
−j)ω0 .

Moreover P1 is Yamabe’s Laplacian and P2 is Paneitz operator. If h0 is locally conformally flat
and n > 2 is even, it is also proved in [6] that the Pj can be constructed without obstruction for
any j ∈ N, this is the case in particular of the conformal infinity of a convex co-compact hyper-
bolic quotients. Note that, since the expression of Pj is local with respect to the metric, these
operators can also be defined on non-compact Riemannian manifolds. Graham and Zworski [7]
show that on asymptotically Einstein manifolds (X, g) of dimension n+1 (with X̄ the conformal
closure), the residue Resn

2
+jS(λ) of the scattering operator obtained by solving Poisson problem

with boundary defining function x is Pj on the conformal infinity (∂X̄, x2g|T∂X̄) for any j integer
if n is odd (resp. for j ≤ n

2 if n is even). Actually, we learnt from Robin Graham that this also
holds for any j if n > 2 is even and if (X, g) has negative constant curvature outside a compact
set, where in this case the conformal infinity is locally conformally flat. The reason, given in [5],
which makes this special case working is that there is no obstruction to construct a hyperbolic
conformally compact metric g on (0, ǫ]x ×M with conformal infinity (M ≃ {x = 0}, h0) for any
(M,h0) locally conformally flat compact manifold, and actually g is necessary given by

(7.2) g = x−2(dx2 + h0 − x
2P + x4(

1

4
Ph−1

0 P ))

where P = (n− 2)−1(Ric− (2n− 2)−1Kh0) is the Schouten tensor of h0, with K,Ric the scalar
and Ricci curvatures of h0. This is a consequence of the constant curvature equation.

Since in our case the metric on X = Γ\Hn+1 is also hyperbolic, the curvature equation (which

is local!) implies again that the tensor ĥ(ρ̂) in (2.12) has all its Taylor expansion with respect

to ρ̂ at ρ̂ = 0 determined by ĥ0 = ĥ(0) if n > 2: the expression of ĥ(ρ̂) is explicit and, like (7.2),

ĥ(ρ̂) = ĥ0 − ρ̂
2P + ρ̂4(

1

4
P ĥ−1

0 P )

with P is the Schouten tensor of ĥ0.
If n > 2, we saw that the expression of Resn

2
+jS(λ) is obtained from the construction of Φ(λ)

exactly like in the convex co-compact case (the construction is local in term of ĥ(ρ̂) thus in term

of ĥ0). By equivalence of the construction of Φ(λ) in [7] and in our case, we obtain the

Proposition 7.1. The operator Pj of Lemma 6.1 is the j-th conformal GJMS Laplacian defined
in [6] on locally conformally flat compact manifolds in the sense that it has the same local
expression in term of the metric h0.
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As in the work of Graham-Zworski [7], there is a way to recover the Q-curvature from the
scattering operator when n is even. Indeed the construction of the function Φ(λ) being entirely
local, the arguments of Graham-Zworski show that, with Pj,λ defined in (5.4), then Pj,λ1 can
be defined as a smooth function on B and satisfies

Pj,λ1 = (n− λ)Qj,λ

with Qj,λ a smooth function on B depending polynomially on λ. Then one can define

(7.3) Q := Qn
2

,n

and this function on B can be expressed in a natural way in function of the Riemannian tensor h0

and its covariant derivatives, with the same local expression Branson’s Q-curvature on compact

manifold and for n = 2 it is the scalar curvature of h0. Moreover if ĥ0 = e2ω0h0 conformal to
h0, it is well-known (see for instance [7]) that its associated Q-curvature is

(7.4) Q̂ = e−nω0(Q+ Pn
2
ω0).

We would like to show, like [7], that Q can be expressed by a constant time S(n)1 where S(n)1
has to be defined. It turns out from our previous analysis that if all cusps have even rank,
then Rc ∈ C∞

acc(X̄) and thus S(λ)1 ∈ R−1
c C∞

acc(X̄). When a cusp has odd rank, we can use the
Schwartz kernel of P(λ) and S(λ) to define P(λ)1 and S(λ)1.

Theorem 7.2. For λ in a neighbourhood of n then S(λ)1 is an extendible distribution on B̄
depending holomorphically on λ and satisfying

S(λ)1 ∈
∏

k odd

rn−2λ
ck

C∞(B̄) +R−1
c C∞

acc(∂X̄).

Moreover the Q-curvature defined in (7.3) satisfies

(7.5) Q =
(−1)

n
2 2−n

n
2 !(n

2 − 1)!
S(n)1.

Proof : the fact that S(λ)1 can be meromorphically defined is an easy consequence of the
expression of S(λ) near the cusp submanifolds in (6.7) since only the zeroth-Fourier term plays
a role in Sk

mod(λ)1. The function 1 on L2(B) = L2(B, dvolh0
) becomes rn

c in L2(B, dvoleh0
) then

Sk
mod(λ)1 is the function

c(λ)ψk
L(y)|y|2λ−n∆

λ− n
2

y (|y|2λ−2nψk(y))

which, by using the variable u = −y/|y|2, can be seen to be

(7.6) c(λ)|u|−kψk
L(−u/|u|2)∆

λ− n
2

u (|u|kψk(−u/|u|2)).

This is clearly an element of R−1
c C∞(∂X̄) if k is even since |u|kψ(−u/|u|2) is a smooth compactly

supported function in Rn−k. Now if k is odd, this last function has a classical conormal singularity
at u = 0 of order k thus it is straigthforward to see via Fourier transform that (7.6) has an
expansion of the form

|u|n−2λ
∞∑

i=0

fi(u/|u|)|u|
i

for some fi smooth. Moreover S(λ)1 is holomorphic near λ = n since the residue Pn
2

of S(λ)
at n is a differential operator with no constant term (see [7]). We have proved first part of the
Proposition since the other terms in the expression of S(λ)1 are clearly functions in R−1

c C∞(X̄).

To prove (7.5), we will use the same kind of arguments than [7, Th. 2]. We will show that

for λ 6= n near n and φ ∈ Ċ∞
c (∂X̄)

(7.7)

∫

∂X̄

(P(λ)1)(ρ,m)φ(m) dvolh0
(m) =
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ρn−λ

n
2∑

j=0

ρ2jcj,λ

∫

∂X̄

(Pj,λ1)φdvolh0
+ ρλ

∫

∂X̄

(S(λ)1)φ dvolh0
+O(ρn+ 1

2 )

with O(ρn+ 1
2 ) holomorphic at λ = n and c0,nP0,n = 1, and we will show that P(n)1 = 1. This

implies (7.5) in the extendible distribution sense on B̄ by taking the limit λ→ n in (7.7), cj,λPj,λ

being holomorphic at λ = n.

Let ǫ0 > 0 and for all ǫ ∈ (0, ǫ0] we define fǫ ∈ Ċ∞
c (∂X̄) which is equal to 1 in {rc ≥ 2ǫ} and

0 in some small neighbourhood {rc < ǫ} of c. We can also suppose that fǫ does not depend on
z ∈ T k by taking ǫ > 0 small and we define f0 := 1 which is the pointwise limit of fǫ as ǫ → 0.
Then we know from (5.4), (5.5) and the definition of S(λ) that for λ near n

(7.8) P(λ)fǫ = ρn−λ

n
2∑

j=0

ρ2jcj,λPj,λfǫ + ρλS(λ)fǫ +O(ρn+ 1
2 )

for all ǫ ∈ (0, ǫ0] (but not ǫ = 0) and the O(ρn+ 1
2 ) is holomorphic in λ = n since (cj,λ)j<n/2, P(λ)

are holomorphic and ResnS(λ) = Resn(cn/2,λPn/2,λ). One way to compute P(λ)f for f = fǫ

with ǫ ∈ [0, ǫ0] is to use

P(λ)fǫ(w) = (2λ− n)

∫

B

E(λ; b;w)fǫ(b) dvolh0
(b)

with the local representations (5.10). The terms involving Er
mod(λ) are standard and we have

an expansion for λ 6= n but near n

(7.9)

∫

B

Er
mod(λ; b;w)fǫ(b) dvolh0

(b) ∈ ρn−λ

n
2∑

j=0

ρjĊ∞
c (∂X̄) + ρλĊ∞

c (∂X̄) +O(ρn+ 1
2 )

continuous in ǫ ∈ [0, ǫ0] and the O(ρn+ 1
2 ) holomorphic in λ = n. Now to deal with the term

∫

B

Ek
mod(λ; b;w)fǫ(b) dvolh0

(b)

we use the fact that fǫ are independent of z ∈ T k thus only the zeroth-Fourier coefficient in
EXk

(λ) play a role and, using the formula of EXk
(λ) in (5.11) or (6.5), we are lead to study the

function

Hǫ : (t, u)→ |u|ktλ
∫

Rn−k

(t2 + |u− u′|2)−λ+ k
2ψk

L(−u′/|u′|)fǫ(u
′)|u′|kdu′

in {t2 + |u|2 < 1}. Let Fǫ(u
′) = ψk

L(−u′/|u′|)fǫ(u
′)|u′|k and φ ∈ Ċ∞

c (∂X̄) with support in
{|u|2 < 1}. Then for t > 0, ǫ > 0 we use Fourier transform in u ∈ Rn−k to get
(7.10)∫

Rn−k

∫

T k

Hǫ(t, u)φ(u, z)dudz = d(λ)

∫

Rn−k

∫

T k

|ξ|λ−
n
2 t

n
2Kλ−n

2
(t|ξ|)F(Fǫ)(ξ)F(φ|u|k)(ξ, z)dξdz

where Ks(z) is the modified Bessel function, d(λ) is analytic and F means Fourier transform
in variable u. If ǫ > 0 or k even, then Fǫ is a smooth compactly supported function in R

n−k

whereas if ǫ = 0, F0 has a classical conormal singularity of order k at u = 0 thus its Fourier
transform in u is a polyhomogeneous symbol of order −n in ξ ∈ Rn−k:

(7.11) F(F0)(ξ) ∼ |ξ|
−n

∞∑

j=0

|ξ|−jθj(ξ/|ξ|), θj ∈ C
∞(Sn−k−1)

and we deduce that (7.10) extends continuously to ǫ ∈ [0, ǫ0]. In any case, we can use (6.4) and
the definition

Iλ(z) = (
z

2
)λ

∞∑

j=0

( z2

4 )j

j!Γ(λ+ j + 1)
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to prove that (7.10) has an asymptotic expansion of the form

(7.12) tn−λ

n
2∑

j=0

aj(λ)t
2j

∫
φ|u|−k(∆j

uFǫ) dvolh0
+ tλb(λ)

∫
φ|u|−k(∆

λ− n
2

u Fǫ) dvolh0
+O(tn+ 1

2 )

for λ 6= n near n and where (aj(λ))j< n
2

and O(tn+ 1
2 ) are holomorphic at n and an/2(λ), b(λ)

have a first order pole at n. This proves with (7.9) that for λ 6= n but near n, ǫ ∈ [0, ǫ0] and

φ ∈ Ċ∞
c (∂X̄), the function

ρ→

∫

∂X̄

(P(λ)fǫ)(ρ,m)φ(m) dvolh0
(m)

has an expansion of the form

ρn−λ

n
2∑

j=0

ρ2j

∫

∂X̄

f ǫ
j,λφ dvolh0

+ ρλ

∫

∂X̄

gǫ
λφ dvolh0

+O(ρn+ 1
2 )

where f ǫ
j,λ, g

ǫ
λ are some smooth functions in B and extendible distributions on B̄ and the O(ρn+ 1

2 )
is holomorphic at λ = n. Moreover it is important to note that all terms are continuous in
ǫ ∈ [0, ǫ0] in view of the rapid decreasing of φ in the cusp. For ǫ > 0, the expansion in (7.8)
shows that, in the distribution sense,

f ǫ
j,λ = cj,λPj,λfǫ gǫ

λ = S(λ)fǫ.

Thus for λ 6= n fixed near n, we can take the limit as ǫ→ 0 in the distribution sense and using
the continuity of P(λ), Pj,λ and the fact that S(λ)1 is the limit in the extendible distribution
topology of S(λ)fǫ, we get (7.7) since we also have c0,nP0,n = 1 by construction of Φ(λ).

It remains to check that P(n)1 = 1. It clearly suffices to show that

(7.13) (P(n)1)− 1 ∈ L2(X)

since P(n)1 and 1 are both solutions of ∆Xu = 0 and 0 is not an L2 eigenvalue of ∆X . Let

J = [n
2 ] be the integer part of n

2 . Then it is easy to check that there exist f r
j ∈ Ċ

∞
c (∂X̄) such

that ∫

B

Er
mod(n; b;w) dvolh0

(b)−
J∑

j=0

f r
j ρ

j ∈ L2(X).

We now consider (7.10) with λ = n and we split the integral in two parts I1, I2 corresponding to
{t|ξ| < 1} and {t|ξ| > 1}. Setting ξ = rω with r = |ξ|, changing the variable R = tr and using
(7.11) and |Kn/2(z)| ≤ e

−Cz for z > 1 in I2 yields

|I2| ≤ tk
∫ ∞

1

∫

Sn−k−1

∫

T k

R
n
2 e−CR|F(φ|u|k)(

R

t
ω, z)|Rn−k−1dRdωdz

≤ Ct
n+k

2 ||φ||L2(B).

To deal with I1 we use for z ∈ (0, 1)

z
n
2Kn/2(z) =

J∑

j=0

ajz
j +M(z) with M(z) = O(zJ+1)

and the change of variables R = rt to deduce the expansion

I1 =

J∑

j=0

tj
∫
φ|u|−kfk

j dvolh0
+R1 − R2

for some fk
j ∈ C

∞(B) and

R1 := t−n+k

∫ 1

0

∫

Sn−k−1

∫

T k

M(R)F(F0)(
R

t
ω)F(φ|u|k)(

R

t
ω, z)Rn−k−1dRdωdz,
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R2 := t−n+k
J∑

j=0

ajt
j

∫ ∞

1

∫

Sn−k−1

∫

T k

Rj
F(F0)(

R

t
ω)F(φ|u|k)(

R

t
ω, z)Rn−k−1dRdωdz

Since M(R) ∈ L2((0, 1), Rn−k−1dR) and Rj−n ∈ L2((1,∞), Rn−k−1dR) for j ≤ J we can use
(7.11) to obtain

|R1|+ |R2| ≤ Ct
n+k

2 ||φ||L2(B).

We deduce from these estimates that there exist some fj ∈ C∞(B) such that

P(n)1 −
J∑

j=0

fjρ
j ∈ L2(X).

To get (7.13) and conclude the proof of the Proposition, is suffices to remark that f0 = 1 by
taking the limit λ→ n in (7.7) and to check that fj = 0 for j = 2, . . . , J . But this last identity
is an easy consequence of the indicial equation ∆X(ρjfj)− j(n− j)ρjfj ∈ ρj+1C∞(B). �

If we change the conformal representative ĥ0 = e2ω0h0 ∈ [h0]acc, let ρ̂ = eωρ be the associated

boundary defining function obtained by Lemma 2.2 (unique modulo Ċ∞(X̄)) with ω|∂X̄ = ω0,

then the related scattering operator Ŝ(λ) satisfies

Ŝ(n)1 = e−nω0

(
S(n)1 +

n
2 !(n

2 − 1)!

(−1)
n
2 2−n

Pn
2
ω0

)

in view of (7.1). Thus with (7.4) we deduce that identity (7.5) still holds with a different choice
of conformal representative for the associated scattering operator.

On X one can define a renormalized volume when n is even, like for asymptotically Einstein

manifolds [4, 7]. Let ĥ0 be a conformal representative in [h0]acc and let ρ̂ ∈ C∞
acc(X̄) be the

boundary defining function of Lemma 2.2 uniquely defined modulo Ċ∞(X̄), which puts the
metric under the form

g =
dρ̂2 + ĥ(ρ̂)

ρ̂2
+O(ρ̂∞), ĥ(0) = ĥ0,

ĥ(ρ) is a smooth family of metrics on B, with an even Taylor expansion at ρ̂ = 0. Let us consider

I(ǫ) :=

∫

ρ̂>ǫ

dvolg

for ǫ > 0 small.

Lemma 7.3. As ǫ→ 0, we have the expansion

I(ǫ) ∼

n
2∑

j=1

αjǫ
−n+2j−2 + L log(ǫ−1) + V + o(1)

for some aj , L, V ∈ R where L (resp. V ) does not depend on the choice of representative

ĥ0 ∈ [h0]acc if n is even (resp. n is odd).

Proof : the existence of the expansion for ρ̂ = ρ (i.e. ĥ0 = h0) is quite direct and the general
case is relatively similar using expression (2.11). Define the density

dv(ρ̂) :=

(
det(ĥ(ρ̂))

det(ĥ0)

) 1
2

dρ̂ dvolĥ0

on [0, ǫ]× ∂X̄, then dv(ρ) has a Taylor expansion at ρ̂ = 0 (and out of c) of the form

dv(ρ̂) = dρ̂ dvolĥ0
(1 +

n
2∑

i=1

ρ̂2iv2i +O(ρ̂n+2))
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where v2i are smooth functions on B = ∂X̄ \ c. We return to the expression of ĥ(ρ̂) near ck,
detailed in (2.11) and (2.9):

ĥ(s) = h1(s, v, dv) + h2(s, v, z, dv, dζ) + e2ω(s2e−2ω + |u|2)2dζ2 +O(r∞c )

where u, ω ∈ C∞
acc(X̄) even in s, u|s=0 = v and h2 = O(r∞c ) = O((s2 + |v|2)∞). We see that near

ck there exists α(s, v, ζ) smooth, even in s, such that α(0, v, ζ) = 1 and

dv(s)

dvolĥ0

= α(s, v, ζ)
(s2e−2ω + |u|2)k

|v|2k
ds = 1 + |v|−2k

∑

i

f2is
2i

for some f2i ∈ C∞(∂X̄), where we used that k is integer. Thus we have the expansion

(7.14) dv(ρ̂) = (1 +

n
2∑

i=1

ρ̂2iv2i)dρ̂ dvolĥ0
+O(R−2

c ρ̂n+2)dρ̂ dvolĥ0
,

with v2i ∈ R−2
c C∞(∂X̄). Integrating dv(ρ̂) on {ǫ0 > ρ̂ > ǫ} gives the searched expansion for

I(ǫ) since each v2i is in L1(∂X̄, dvolĥ0
). We also clearly have

L =

∫

∂X̄

vn dvolĥ0
.

To prove independence of L if n is even (and V if n is odd) with respect to the choice of boundary
defining function (or conformal representative) considered in Lemma (2.2), it suffices to mimick
the same proof than in [4, Th. 3.1], the essential argument being that for any choice of boundary
defining function ρ̂ of Lemma 2.2, ρ̂ is an odd function of ρ in the sense that ∂2j

ρ ρ̂ = 0. �

We conclude by a result similar to Graham-Zworski’s Theorem relating integral of Q with
renormalized volume L

Theorem 7.4. The Q curvature on B is in L1(B, dvolh0
) and we have

(−1)
n
2 21−n

n
2 !(n

2 − 1)!

∫

B

Q dvolh0
= L

Proof : the proof is essentially similar to the proof of [7, Th. 2] but the expansions have to

be done “again some function φ ∈ Ċ∞
c (∂X̄)” in the spirit of the proof of Proposition 7.2. Let

ǫ0 > 0, χ ∈ C∞
0 ([0, ǫ0)) which is equal to 1 on [0, ǫ0/2] and let φ ∈ Ċ∞

c (∂X̄). We now define the
function ψ(ρ, b) = χ(ρ)φ(b) in the collar neighbourhood of the boundary (0, ǫ0)ρ × ∂X̄, we set
uλ := P(λ)1 and we will use the notation “pf” for “finite part as ǫ→ 0”. Using Green Formula
as in [7, Prop. 3.3] we check that for λ 6= n but near n

(7.15) pf

∫

ρ>ǫ

(|duλ|
2−λ(n−λ)u2

λ)ψ dvolg = −n

∫

B

(S(λ)1)φ dvolh0
−

1

2
pf

∫

ρ>ǫ

u2
λ∆X(ψ) dvolg.

But following line by line the proof of [7, Th. 2] and using the expansion (7.14) of the volume
form as ρ→ 0, it is straightforward to see that

pf

∫

ρ>ǫ

(|duλ|
2 − λ(n− λ)u2

λ)ψ dvolg =

∫

B

Hλφ dvolh0

for some function Hλ ∈ C∞(B) depending continuously of λ in a complex ball containing n, and
such that Hn = −n

2 vn with vn defined in (7.14). Since vn ∈ L
1(B, dvolh0

), this gives

lim
φ→1

lim
λ→n

pf

∫

ρ>ǫ

(|duλ|
2 − λ(n− λ)u2

λ)ψ dvolg = −
n

2
L.

But from 7.5, we have

lim
φ→1

lim
λ→n

∫

B

(S(λ)1)φ dvolh0
=

(−1)
n
2 2−n

n
2 !(n

2 − 1)!

∫

B

Q dvolh0
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thus it remains to deal with the last term in (7.15). First observe that ∆X(χφ) = φ∆X(χ) +
χ∆X(φ) and that ∆X(χ) has compact support in X thus

pf

∫

ρ>ǫ

u2
λφ∆X(χ) dvolg =

∫

X

u2
λφ∆X(χ) dvolg.

Using that uλ → 1 when λ→ n and Green formula, we deduce that

lim
φ→1

lim
λ→n

∫

X

u2
λφ∆X(χ) dvolg = lim

φ→1

∫

X

φ∆X(χ) dvolg = 0.

Now from (5.1) we have ∆X(φ) = ρ2∆h(ρ)(φ) and let us take for some small δ > 0, φ = φδ

depending only on rc and which is equal to 1 in {rc > 2δ} and 0 in {rc < δ}. Recall that rc is
a function which is equal to |u| in the neighbourhood Bk = {(u, z) ∈ Rn−k × T k; |u| < 1} of ck
in ∂X̄ and we will write, by abuse of notation, rc for the function |u| on (0, ǫ0)ρ ×Bk. We will
show that

(7.16) lim
δ→0

lim
λ→n

pf

∫ ǫ0

ǫ

∫

B

u2
λχρ

−n+1∆h(ρ)(φδ) dvolh(ρ)dρ = 0

and the Theorem will be proved. Since χ = 1 near ρ = 0, we can suppose, using again Green
formula, that χ = 1 in (7.16). In view of the assumptions on φδ it suffices the work in neigh-
bourhoods (0, ǫ0)ρ × {|u| < 2δ} × T k

z ⊂Mk of ck where the metric h(ρ) on B has the form

(7.17) h(ρ) = dr2c + r2cdθ
2 + (r2c + ρ2)2dz2, with rc = |u|, θ := u/|u|.

Again from the proof of Theorem 2 in [7], we have for λ 6= n

(7.18) u2
λ = ρ2n−2λ(1 +

n
2
−1∑

p=1

(n− λ)up,λρ
2p + un

2
,λρ

n) + ρnS(λ)1 +O((n− λ)ρn+ 1
2 )

with up,λ holomorphic in λ and smooth in B, un
2

,n = −S(n)1 and the big O depends on δ.

Moreover using (7.12) with ǫ = 0 (F0 = |u|k = rk
c near ck), we see that in {rc < 2δ}

(7.19) up,λ = dp,λr
−2p
c

for some constants dp,λ holomorphic in λ. Since φδ has compact support, observe by Green
formula that

(7.20)

∫

B

∆h(ρ)(φδ) dvolh(ρ) = 0.

Thus it remains to compute the finite part of
∫ ǫ0

ǫ (u2
λ − ρ

2n−2λ)ρ−n+1∆h(ρ)(φδ) dvolh(ρ)dρ. For
that we use (7.17) and (7.14) to see that near ck

(7.21) ∆h(ρ)(φδ)
dvolh(ρ)

dvolh0

=
∑

j,l,m∈N0

cj,l,m,kρ
2(j+l+m)r−k−n+1−2j−2m

c ∂rc
(rn+k−2l−1

c ∂rc
(φδ))

for some constants cj,l,m,k. Then we multiply the expansion (7.18) of u2
λ− ρ

2n−2λ by (7.21) and
obtain

(u2
λ − ρ

2n−2λ)∆h(ρ)(φδ) dvolh(ρ) = O((n− λ)ρn) dvolh0
+

(n− λ)
∑

j,l,m,p
p≤n

2
−1

ρ2(m+l+p+j+n−λ)up,λcj,m,l,kr
−k−n+1−2j−2m
c ∂rc

(rn+k−2l−1
c ∂rc

(φδ)) dvolh0
.

Multiplying this by ρ−n+1, integrating on ρ ∈ (ǫ, ǫ0) and computing the finite part as ǫ→ 0, it
is straightforward to check that we obtain near

pf

∫ ǫ0

ǫ

∫

B

(u2
λ − ρ

2n−2λ)∆h(ρ)(φδ) dvolh(ρ) = O(n− λ)+

∑

m+l+p+j= n
2
−1

k=1,...,n−1

cj,m,l,kdp,λ

∫

B

r−k−n+1−2j−2m−2p
c ∂rc

(rn+k−2l−1
c ∂rc

(φδ)) dvolh0
.
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where we have also used (7.19). We thus take λ = n and we have to prove that

lim
δ→0

∫

B

r−k−n+1−2j−2m−2p
c ∂rc

(rn+k−2l−1
c ∂rc

(φδ)) dvolh0
= 0

when m+ l + p+ j = n
2 − 1. But writing dvolh0

= rn+k−1
c drcdθ near ck and choosing φδ(rc) =

φ(rc/δ) for some φ such that supp(∂rc
φ) ⊂ [1, 2], this is reduced to the limit of

∫ 2δ

δ

(rk+1
c δ−2 + rk

c δ
−1)drc

when δ → 0 and this is 0. The proof is achieved. �

Note that the result still holds by changing the conformal representative ĥ0 = e2ω0h0 since
by (7.4), the self-adjointness of Pn/2 and Pn/21 = 0, we have

∫

B

Q̂ dvolĥ0
=

∫

B

(Q+ Pn
2
ω0) dvolh0

=

∫

B

Q dvolh0
.

As a corollary of this theorem we prove that the renormalized volume of X is the Euler char-
acteristic of X̄.

Proof of Corollary 1.4: in this case where n+ 1 = 3, the Q curvature is Gauss curvature on
the boundary B. Thus it suffices to use Gauss-Bonnet theorem on the manifold with boundary
{rc ≥ δ} in B, with the fact that B is a finite volume manifold with ends isometric to

(
(0, ǫ)rc

× S1
θ ; dr2c + r4cdθ

2
)

and we easily obtain the result when δ → 0 since the integral of the geodesic curvature on
{rc = δ} tends to 0. This gives that

∫
B
Q dvolh0

= 2πχ(B̄) and the result L = πχ(B̄) is de-

duced from Theorem 7.4. It is easy to check that ∂X̄ is obtained from B̄ by gluing two by
two the circles of the boundary of B̄, thus χ(B̄) = χ(∂X̄) and since n + 1 is odd, we have
2χ(X̄) = χ(∂X̄). �

With Figure 1, there is an intuitive interpretation of this result since by taking D3 and D4 not
tangent but ǫ-close, we are in the convex co-compact case and we know from Graham-Zworski
[7] that the integral of the curvature Qǫ is the renormalized volume, thus by Epstein formula
this is −πχ(Bǫ) where Bǫ is the boundary (compact) of the convex co-compact manifold. The
curvature Qǫ and the measure µǫ on the boundary depend continuously on ǫ ∈ [0, ǫ0), one could
use Lebesgue theorem after checking a uniform bound of the integral of Qǫµǫ. At last we see
that Bǫ is a 1-genus torus, like the compactification B̄ of the limit B = limǫ→0Bǫ.
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