CALDERON INVERSE PROBLEM WITH PARTIAL DATA ON RIEMANN
SURFACES

COLIN GUILLARMOU AND LEO TZOU

ABSTRACT. On a fixed smooth compact Riemann surface with boundary (Mo, g), we show
that for the Schrodinger operator A 4+ V' with potential V' € C1*(My) for some o > 0,
the Dirichlet-to-Neumann map N|r measured on an open set I' C 9My determines uniquely
the potential V. We also discuss briefly the corresponding consequences for potential scat-
tering at 0 frequency on Riemann surfaces with asymptotically Euclidean or asymptotically
hyperbolic ends.

1. INTRODUCTION

The problem of determining the potential in the Schrédinger operator by boundary mea-
surement goes back to Calderdn [8]. Mathematically, it amounts to ask if one can detect some
data from boundary measurement in a domain (or manifold) € with boundary. The typical
model to have in mind is the Schrodinger operator P := A, 4V where g is a metric and V' a
potential, then we define the Cauchy data space by

€ == {(ulaq, dvuloq); u € H(Q), u € ker P}

where J, is the interior pointing normal vector field to 0f2.

The first natural question is the following full data inverse problem: does the Cauchy data
space determine uniquely the metric g and/or the potential V7 In a sense, the most satisfying
known results are when the domain 2 C R" is already known and g is the Euclidean metric,
then the recovery of V' has been proved in dimension n > 2 by Sylvester-Uhlmann [28], and
very recently in dimension 2 by Bukgheim [6] when the domain is simply connected. A re-
lated question is the conductivity problem which consists in taking V' = 0 and replacing A,
by —diveV where ¢ is a definite positive symmetric tensor. An elementary observation shows
that the problem of recovering an sufficiently smooth isotropic conductivity (i.e. o = opld for
a function og) is contained in the problem above of recovering a potential V. For domain of
R?, Nachman [26] used the d techniques to show that the Cauchy data space determines the
conductivity. Recently a new approach developed by Astala and Péivérinta in [2] improved
this result to assuming that the conductivity is only a L°° scalar function. This was later
generalized to L anisotropic conductivities by Astala-Lassas-Péaivérinta in [3]. We notice
that there still are rather few results in the direction of recovering the Riemannian manifold
(©,g) when V = 0, for instance the surface case by Lassas-Uhlmann [21] (see also [4, 15]),
the real-analytic manifold case by Lassas-Taylor-Uhlmann [20] (see also [14] for the Einstein
case), the case of manifolds admitting limiting Carleman weights and in a same conformal
class by Dos Santos Ferreira-Kenig-Salo-Uhlmann [9].
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The second natural, but harder, problem is the partial data inverse problem: if I'y and I'y
are open subsets of 9€), does the partial Cauchy data space for P

Cr,.ry = {(ulr,, dpulr,) ; u € HY(OMp), Pu =0, u=0in 0Q\ T}

determine the domain €2, the metric, the potential? For a fixed domain of R", the recovery of
the potential if n > 2 with partial data measurements was initiated by Bukhgeim-Uhlmann
[7] and later improved by Kenig-Sjostrand-Uhlmann [18] to the case where I'y and I'y are
respectively open subsets of the ”front” and ”"back” ends of the domain. We refer the reader
to the references for a more precise formulation of the problem. In dimension 2, the recent
works of Imanuvilov-Uhlmann-Yamamoto [16] solves the problem for fixed domains Q of R?
in the case when 'y = I's and when the potential are in C*%(Q) for some a > 0.

In this work, we address the same question when the background domain is a fixed Riemann
surface with boundary. We prove the following recovery result:

Theorem 1.1. Let (My, g) be a smooth compact Riemann surface with boundary and let A,
be its positive Laplacian. For a € (0,1), let V4, Vo € C1®(My) be two real potentials and, for
1=1,2, let

(1) el =: {(ulr,dpulr); u € H'(Mp), (Ay + Vi)u =0, u=0on dM \ T}
be the respective Cauchy partial data spaces. If L = Gg then Vi = V.

Here the space C1®(Mp) is the usual Holder space for a € (0,1). Notice that when A, +V;
do not have L? eigenvalues for the Dirichlet condition, the statement above can be given in
terms of Dirichlet-to-Neumann operators. Since Ay = e 2?A, when § = €2#g for some func-
tion ¢, it is clear that in the statement in Theorem 1.1, we only need to fix the conformal class
of g instead of the metric g (or equivalently to fix the complex structure on Mjy). In particu-
lar, the smoothness assumption of the Riemann surface with boundary is not really essential
since we can change it conformally to make it smooth and for the Cauchy data space, this just
has the effect of changing the potential conformally (we only need this new potential to be
C1@). Observe also that Theorem 1.1 implies that, for a fixed Riemann surface with boundary
(Mo, g), the Dirichlet-to-Neumann map on I' for the operator © — —divy(yV9u) determines
the isotropic conductivity «y if v € C*%(Mp) in the sense that two conductivities giving rise
to the same Dirichlet-to-Neumann are equal. This is a standard observation by transforming
the conductivity problem to a potential problem with potential V' := (Ag'y%) /V% So our
result also extends that of Henkin-Michel [15] in the case of isotropic conductivities.

The method to reconstruct the potential follows [6, 16] and is based on the construction
of a large set of special complex geometric optic solutions of (Ag, + V)u = 0, more precisely
if 'o = OMp \ T is the set where we do not know the Dirichlet-to-Neumann operator, we
construct solutions of the form u = Re(e®/"(a + r(h)) + eRe@)/Ps(h) with ulp, = 0 where
h > 0 is a small parameter, ® and a are holomorphic functions on (Mp, g), independent of h,
|[7(R)||z2 = O(h) while ||s(h)||2 = O(h*?|logh|) as h — 0. The idea of [6] to reconstruct
V(p) for p € My is to take ® with a non-degenerate critical point at p and then use stationary
phase as h — 0. In our setting, the function ® needs to be purely real on I'g an Morse with
a prescribed critical point at p. One of our main contribution is a geometric construction of
the holomorphic Carleman weights ® satisfying such conditions. We should point out that
we use a quite different method than in [16] to construct this weight, and we believe that our
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method simplifies their construction even in their case. A Carleman estimate on the surface
for this degenerate weight needs to be proved, and we follows ideas of [16]. We manage to
improve the regularity of the potential to C1® instead of C%® in [16]. We finally notice
that we provide a proof, in an Appendix, of the fact that the partial Cauchy data space CT
determines a potential V € C%%(My) on T (for a > 0).

In Section 6, we obtain two inverse scattering results as corollary of Theorem 1.1: first
for partial data scattering at 0 frequency for A + V on asymptotically hyperbolic surfaces
with potential decaying at the conformal infinity, and secondly for full data scattering at 0
frequenncy for A 4+ V with V compactly supported on an asymptotically Euclidean surface.

Another straightforward corollary in the asymptotically Euclidean case full data setting is
the recovery of a compactly supported potential from the scattering operator at a positive
frequency. The proof is essentially the same as for the operator Arn + V once we know
Theorem 1.1, so we omit it.

2. HARMONIC AND HOLOMORPHIC MORSE FUNCTIONS ON A RIEMANN SURFACE

2.1. Riemann surfaces. We start by recalling few elementary definitions and results about
Riemann surfaces, see for instance [10] for more details. Let (M, go) be a compact connected
smooth Riemannian surface with boundary dMy. The surface My can be considered as a
subset of a compact Riemannian surface (M, g), for instance by taking the double of M
and extending smoothly the metric gg to M. The conformal class of g on the closed surface
M induces a structure of closed Riemann surface, i.e. a closed surface equipped with a
complex structure via holomorphic charts z, : U, — C. The Hodge star operator * acts on
the cotangent bundle 7™M, its eigenvalues are +i and the respective eigenspace 17 M :=
ker(x + ild) and Tj; M := ker(x — ild) are sub-bundle of the complexified cotangent bundle
CT™M and the splitting CT"M = T7 (M & Tj;, M holds as complex vector spaces. Since * is
conformally invariant on 1-forms on M, the complex structure depends only on the conformal
class of g. In holomorphic coordinates z = x + iy in a chart U,, one has x(udx + vdy) =
—vdz + udy and

Ty oMy, =~ Cdz, T5,M|y, ~Cdz

where dz = dx + idy and dz = dx — idy. We define the natural projections induced by the
splitting of CT*M

T10 " CT*M — TI*,OM’ 0,1 * CT*"M — T(ak,lM‘

The exterior derivative d defines the De Rham complex 0 — A? — Al — A% — 0 where AF :=
AFT*M denotes the real bundle of k-forms on M. Let us denote CAF the complexification of
AF, then the @ and 0 operators can be defined as differential operators 0 : CA? — T 1oM and

0:CAy — 15, M by

(2) Of := m odf, 0= mo,14f,
they satisfy d = 0 + 0 and are expressed in holomorphic coordinates by
Of =0.fdz, Of =0:fdz.
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with 0. := (9, —i9y) and 05 := (9, +i0,). Similarly, one can define the 0 and 0 operators
from CA' to CA? by setting

O(w1,0 +wo,1) :==dwo1, O(wio+wo1):=dwip
if wo,1 € Tg1 M and wy o € T (M. In coordinates this is simply
O(udz +vdz) = Ov Adz, O(udz + vdz) = Ou A dz.
There is a natural operator, the Laplacian acting on functions and defined by
Af = —2i%00f = d*d

where d* is the adjoint of d through the metric ¢ and x is the Hodge star operator mapping
A? to A° and induced by g as well.

2.2. Maslov Index and Boundary value problem for the 9 Operator. In this subsec-
tion we consider the setting where M is an oriented Riemann surface with boundary My and
' € OMj is an open subset and we let 'y = dMy \ T be its complement in OMj. Following
[22], we adopt the following notations: let E — My be a complex line bundle with complex
structure J : £ — E and let D : C°°(My, E) — C°°(Mo, 15, ® E) be a Cauchy-Riemann
operator with smooth coefficients on My, acting on sections of the bundle E. Observe that
in the case when ¥ = My x C is the trivial line bundle with the natural complex structure
on My, then D can be taken as the operator d introduced in (2). For ¢ > 1, we define

Dp : Wg(Mo, E) — W (Mo, Tgf My ® E)

where F' C E |gp, is a totally real subbundle (i.e. a subbundle such that JF N F is the zero
section) and Dp is the restriction of D to the L9-based Sobolev space will ¢ derivatives and
boundary condition F'

Wit (Mo, E) := {€ € W“(My, E) | £(0Mp) C F}.
In this setting, we have the following boundary value Riemann-Roch theorem stated in [22]:

Theorem 2.1. Let E — My be a complex line bundle over an oriented compact Riemann
surface with boundary and F C E |gpr, be a totally real subbundle. Let D be a smooth Cauchy-
Riemann operator on E acting on W5(My, E) for some ¢ > 1 and £ € N. Then

1) The following operators are Fredholm

Dp : Wgi(Mo, E) — W LMo, Ty, My ® E)

Dy : Wgl(Mo, Ty, My ® E) — W (M, E).
2) The real Fredholm index of Dp is given by
Ind(Dr) = x(Mo) + u(E, F)

where x(Moy) is the Euler characteristic of My and p(E, F) is the boundary Maslov index of
the subbundle F'.

3) If n(E,F) < 0, then Dp is injective, while if u(E, F) + 2x(Mp) > 0 the operator Dp is
surjective.
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In the case of a trivial bundle £ = My x C and dMy = I_I;-”Zlf)iMo is a disjoint union of
m circles, the Maslov index can be defined (see [22, p.554-555]) to be the degree of the map
poA:0My— OMy where

Ao,y St~ 9; My — GL(1,C)/GL(1,R)

is the natural map given by the totally real subbundle (the space GL(1,C)/GL(1,R) being
the space of totally real subbundles of C over a circle) and

p:GL(1,C)/GL(1,R) — S',  p(A.GL(1,R)) := det(A?)/ det(A* A).
As an application, we obtain the following (here and in what follows, H™ (M) := W™2(Mj)):

Corollary 2.2. (i) For ¢ > 1 and k € Ny, let w € Wk’q(Mo,Tg’lMo), then there exists
u € WL (My) holomorphic on My, real valued on Ty, such that Ou = w.

(ii) For m > 1/2, let f € H™(0My) be a real valued function, then there exists a holomorphic
function v € Hm+%(M0) such that Re(v)|r, = f.

(i4i) For k € N and q > 1, the space of W"4(My) holomorphic functions on My which are
real valued on g is infinite dimensional.

Proof. (i) Let L € N be arbitrary large and let us identify the boundary as a disjoint union
of circles My = [}~ 9;My where each 9; My ~ S L. Since I" will be the piece of the bound-
ary where we know the Cauchy data space, it is sufficient to assume that I' is a connected
non-empty open segment of 9y My = S, and which can thus be defined in a coordinate 6
(respecting the orientation of the boundary) by I' = {# € S! | 0 < 6 < 27 /k} for some integer
k. Define the totally real subbundle of F' C E|sp, = H;Zl(ajMo x C) by the following: on
D1 My ~ S' parametrized by 6 € [0, 27, define Fy = '*®R. Where a : [0,27] — R is a smooth
nondecreasing function such that a(f) = 0 in a neighbourhood [0, €] of 0, a(27/k) = 2Lz for
some L € N, and a(f) = 2Lz for all § > 27 /k. For the rest of oMy, .., 0 My, we just let
Flo,m, = S* x R. The Maslov index p(E, F) is then given by 2L and so, by theorem 2.1, Dp
is surjective if 2x(My) + 2L > 0. Since L can be taken as large as we want this achieves the
proof of (i).

(ii) Let w € H™Fs (Mp) be a real function with boundary value f on 9Mjy, then by (i) there
exists R € H™'/2(My) such that iR = —0w and R purely real on I'g, thus v := iR + w is
holomorphic such that Re(v) = f on T'.

(iii) Taking the subbundle F' as in the proof of (i), we have that dimker Dp = x(Mj) + 2L
if L satisfies 2x(Mp) + 2L > 0, and since L can be taken as large as we like-, this concludes
the proof. O

Lemma 2.3. Let {po,p1,.,0n} C My be a set of n+ 1 disjoint points. Let c1,...,cx € C,
N € N, and let z be a complex coordinate near py such that po = {z = 0}. Then if py €
int(My), there exists a holomorphic function f on My with zeros of order at least N at each
pj, such that f is real on Tg and f(z) = co + c12 + ... + ez + O(|2|5*1) in the coordinate
z. If po € OMy, the same is true except that f is not necessarily real on I'y.

Proof. First, using linear combinations and induction on K, it suffices to prove the Lemma
for any K and ¢g = --- = c¢x_1 = 0, which we now show. Consider the subbundle F' as in the
proof of (i) in Corollary 2.2. The Maslov index u(E, F') is given by 2L and so for each N € N,
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one can take L large enough to have u(F, E) + 2x(Mp) > 2N(1 4+ n). Therefore by Theorem
2.1 the dimension of the kernel of dp will be greater than 2(n + 1)N. Now, since for each
p; and complex coordinate z; near pj, the map u — (u(p;), 0z u(p;), - - -, 8g_lu(pj)) e CNis
linear, this implies that there exists a non-zero element u € ker Dp which has zeros of order
at least IV at all p;.

First, assume that py € int(My) and we want the desired Taylor expansion at pg in the
coordinate z. In the coordinate z, one has u(z) = az™ + O(|z|*1) for some a # 0 and
M > N. Define the function rx(z) = x(2) %2z~ M+5 where x(2) is a smooth cut-off function
supported near py and which is 1 near pg = {z = 0}. Since M > N > 1, this function
has a pole at py and trivially extends smoothly to My\{po}, which we still call rx. Observe
that the function is holomorphic in a neighbourhood of pg but not at pg where it is only
meromorphic, so that in My \ {po}, Ork is a smooth and compactly supported section of
15 1Mo and therefore trivially extends smoothly to My (by setting its value to be 0 at po) to
a one form denoted wg. By the surjectivity assertion in Corollary 2.2, there exists a smooth
function Rk satisfying ORx = —wg and that Ri|r, € R. We now have that Rx + i is
a holomorphic function on M\{pg} meromorphic with a pole of order M — K at pg, and in
coordinate z one has zM ~K(Rg(2) + 7k (2)) = cx + O(|z]). Setting fx = u(Rk + ri), we
have the desired holomorphic function. Note that f also vanish to order N at all p1,...,p,
since u does. This achieves the proof.

Now, if pg € OMy, we can consider a slightly larger smooth domain of M containing M
and we apply the the result above. ]

2.3. Morse holomorphic functions with prescribed critical points. The main result
of this section is the following

Proposition 2.1. Let p be an interior point of My and € > 0 small. Then there exists a
holomorphic function ® on My which is Morse on My (up to the boundary) and real valued on
Ty, which has a critical point p' at distance less than € from p and such that Tm(®(p")) # 0.

Let O be a connected open set of M such that O is a smooth surface with boundary,
with My € O and Ty € 90. Fix k > 2 a large integer, we denote by C*(O) the Banach
space of C* real valued functions on O. Then the set of harmonic functions on © which
are in the Banach space C*(0) (and smooth in O by elliptic regularity) is the kernel of the
continuous map A : C*(0) — C*72(0), and so it is a Banach subspace of C¥(0). The set
H C C*(0) of harmonic functions u in C*(O) such there exists v € C*(0) harmonic with
u 4 iv holomorphic on O is a Banach subspace of C*(0) of finite codimension. Indeed, let
{71, ..,7n} be a homology basis for O, then

T

_ 1
H =ker L, with L : ker AN C*¥(O) — CV defined by L(u) := (/ 0u> e
Y =L

For all I'{; C M, such that the complement of I'{j contains an open subset, we define
}Cpé = {U € :}f,u‘ra = 0}
We now show

Lemma 2.4. The set of functions u € 9{% which are Morse in O is residual (i.e. a countable

intersection of open dense sets) in Hyy with respect to the C*(0) topology.
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Proof. We use an argument very similar to those used by Uhlenbeck [30]. We start by
defining m : O x Hyy — T*0 by (p,u) = (p,du(p)) € T;0. This is clearly a smooth map,
linear in the second variable, moreover m,, := m(.,u) = (-, du(-)) is Fredholm since O is finite
dimensional. The map u is a Morse function if and only if m,, is transverse to the zero section,
denoted T50, of T*0O, ie. if

Image(D,m,,) + T (p) (150) = T, (» (T*0), Vp € O such that my(p) = (p,0),

which is equivalent to the fact that the Hessian of u at critical points is non-degenerate (see
for instance Lemma 2.8 of [30]). We recall the following transversality theorem ([30, Th.2]):

Theorem 2.5. Let m : X X %Fé — W be a C* map, where X, }CFE}, and W are separable
Banach manifolds with W and X of finite dimension. Let W' C W be a submanifold such
that k > max(1,dim X — dim W + dim W’). If m is transverse to W' then the set {u €
j'CF6§ my, is transverse to W'} is dense in J{I“G, more precisely it is a residual set.

We want to apply it with X := O, W := T*0 and W' := T;0, and the map m is defined
above. We have thus proved Lemma 2.4 if one can show that m is transverse to W’. Let
(p,u) such that m(p,u) = (p,0) € W’. Then identifying T{, o)(7*0) with T,0 & T;0, one has

Dpym(z,v) = (2, dv(p) + Hessp(u)z)

where Hesspu is the Hessian of u at the point p, viewed as a linear map from 7,0 to T;0.
To prove that m is transverse to W’ we need to show that (z,v) — (z,dv(p) + Hessp(u)z) is
onto from 7,0 ® :HFE) to 1,0 ® T, O, which is realized for instance if the map v — dv(p) from
Hr; to 1750 is onto. But from Lemma 2.3, we know that there exist holomorphic functions
v and 0 on O such that v and o are purely real on I'j,. Clearly the imaginary parts of v and
v belong to Hy;. Furthermore, for a given complex coordinate z near p = {z = 0}, we can
arrange them to have series expansion v(z) = z + O(|z|?) and 9(z) = iz + O(|z|?) around the
point p. We see, by coordinate computation of the exterior derivative of Im(v) and Im(v),
that dIm(v)(p) and dIm(?)(p) are linearly independent at the point p. This shows our claim
and ends the proof of Lemma 2.4 by using Theorem 2.5. U

We now proceed to show that the set of all functions u € 9{% such that u has no degenerate
critical points on I is also residual.

Lemma 2.6. For all p € T}, and k € N, there exists a holomorphic function u € C*(0), such
that Im(u)|ry =0 and du(p) # 0.

Proof. The proof is quite similar to that of Lemma 2.3. By Lemma 2.3, we can choose a
holomorphic function v € C*(0) such that v(p) = 0 and Im(v)|r; = 0, then either dv(p) # 0
and we are done, or Jv(p) = 0. Assume now the second case and let M € N be the order
of p as a zero of v. By Riemann mapping theorem, there is a conformal mapping from
a neighbourhood U, of p in O to a neighbourhood {|z| < €,Im(z) > 0} of the real line
Im(z) = 0 in C, and one can assume that p = {z = 0} in these complex coordinates.
Take 7(z) = x(2)z=™*! where x € C§°(|2] < ¢€) is a real valued function with y(z) = 1
in {|z| < €/2}. Then Or vanishes in the pointed disc 0 < |z| < €/2 and it is a compactly
supported smooth section of T1*70(_9 outside, it can thus be extended trivially to a smooth
section of T} 1*70@ denoted by w. We can then use (i) of Corollary 2.2: there is a function R
such that R = —w and Im(R)[r; =0, and so O(R+7)=0in O\ {p} and R+r is real valued
on I'y (remark that r is real valued on I'y) and has a pole at p of order exactly M — 1. We
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conclude that u := v(R+r) satisfies the desired properties, it vanishes at p but with non zero
complex derivative at p. O

Lemma 2.7. Let 'y C 00 be an open set of the boundary. Let ¢ : O — R be a harmonic
function with ¢|F6 = 0. Let p € Ty be a critical point of ¢, then it is nondegenerate if and
only if 0-0,u # 0 where 0, and 0, denote respectively the tangential and normal derivatives
along the boundary.

Proof. By Riemman mapping theorem, there is a conformal transformation mapping a
neighbourhood of p in O to a half-disc D := {|z| < ¢,Im(z) > 0} and 90 = {Im(z) = 0}
near p. Denoting z = z + iy, one has (92 + 83)(1) =0in D and 92¢|y—¢ = 0, which implies
85(1)(])) = 0. Since 9, = /9, and 9, = e/ 9, for some smooth function f, and since d¢(p) = 0,
the conclusion is then straightforward. O

Let N*00 be the conormal-bundle of O and N*T') be the restriction of this bundle to T'.
Denote the zero sections of these bundles respectively by NjoO and N;T{. We now define
the map

b:T§ x Hry, — N*Ty,  b(p,u) := (p,0yu).

For a fixed u € Hyy, we also define by(-) := b(-, u). Simple computations yield the

Lemma 2.8. Suppose that p € T is such that O,u(p) = 0, then 9;0,u(p) # 0 if and only if
Image(Dpby) + T(p70)(NST6) =T (N*T).

Proof. This can be seen by the fact that for all p € I') such that b,(p) = (p,0),
Dypby : Tyl — Tip0)(N'Tg) = TpI' & NpT

is given by w — (w, 00, u(p)w). O

At a point (p,u) such that b(p,u) = 0, a simple computation yields that the differential
Db T,I} % }(F{) — T(p,auu(p))(N*FIO) is given by (w,u') — (w,0;0,u(p)w + dyu'(p)).
This observation combined with Lemma 2.6 shows that for all (p,u) € I'{j x %F{] such that

b(p,u) = (p,0), b is transverse to NjI(, at (p,0). Now we can apply Theorem 2.5 with
X =T, W= N*T{ and W' = NgT|, we see that the set {u € Hyy; b, is transverse to NIy}
is residual in J’CF{). In view of Lemmas 2.7, we deduce the

Lemma 2.9. The set of functions u € :Hrg) such that u has no degenerate critical point on
Iy is residual in Hry .

Observing the general fact that finite intersection of residual sets remains residual, the
combination of Lemma 2.9 and Lemma 2.4 yields

Corollary 2.10. The set of functions u € 9{% which are Morse in O and have no degenerate

critical points on Ty is residual in U{F{) with respect to the C*(O) topology. In particular, it
is dense.

We are now in a position to give a proof of the main proposition of this section.

Proof of Proposition 2.1. As explained above, choose O in such a way that g is a smooth
surface with boundary, containing My, that Iy C 90 and O contains dMy\Iy. Let I, be
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an open subset of the boundary of O such that the closure of Ty is contained in Iy and
O0\I') # 0. Let p be an interior point of My. By lemma 2.3, there exists a holomorphic
function f = w + v on O such that f is purely real on I',, v(p) = 1, and df(p) = 0 (thus
NS j’CF/ )

0

By Corollary 2.10, there exist a sequence (v;); of Morse functions v; € J—C% such that

v; — v in C*(My) for any fixed k large. By Cauchy integral formula, there exist harmonic
conjugates u; of v; such that f; := u; +iv; — f in C*(Mp). Let € > 0 be small and let
U C O be a neighbourhood containing p and no other critical points of f, and with boundary
a smooth circle of radius €. In complex local coordinates near p, we can identify 0f and 0f;
to holomorphic functions on an open set of C. Then by Rouche’s theorem, it is clear that Jf;
has precisely one zero in U and v; never vanishes in U if j is large enough.

Fix ® to be one of the f; for j large enough. By construction, ® is Morse in O and has
no degenerate critical points on Ty C I'j. We notice that, since the imaginary part of ®
vanishes on all of T'j,, it is clear from the reflection principle applied after using the Riemann
mapping theorem (as in the proof of Lemma 2.7) that no point on Ty C T} can be an accu-
mulation point for critical points. Now dMg\I'g is contained in the interior of O and therefore
no points on dMy\['y can be an accumulation point of critical points. Since ® is Morse in
the interior of O, there are no degenerate critical points on dMg\I'g. This ends the proof. [J

3. CARLEMAN ESTIMATE FOR HARMONIC WEIGHTS WITH CRITICAL POINTS

In this section, we prove a Carleman estimate using harmonic weight with non-degenerate
critical points, in way similar to [16]. Let us define T'y := {p € OMy;dp(p) = 0} and let
I':= 0Mp \ Ty its complement.

Proposition 3.1. Let (My, g) be a smooth Riemann surface with boundary, and let ¢ : My —
R be a C*(My) harmonic Morse function for k large. Then for all V € L>®(My) there exists
an hg > 0 such that for all h € (0, ho) and u € C>°(M) with u|gr, = 0, we have

1 1

(3) alelzeam) + galleldellzenm + Idullz ) + 10llzew,)
- 1

< C(He w/h(Ag + V)e‘p/huH%z(Mo) + EH&/UH%Z(F))

where 0, is the exterior unit normal vector field to OMy.

Proof. We start by modifying the weight as follows: if ¢g := ¢ : My — R is a real val-
ued harmonic Morse function with critical points {pi,...,pny} in the interior of My, we let
@; : My — R be harmonic functions such that p; is not a critical point of ¢; for j =1,..., N,
their existence is insured by Lemma 2.3. For all ¢ > 0, we define the convexified weight

N
e = — 5 (S50 lesl).

To prove the estimate, we shall localize in charts €}; covering the surfaces. These charts
will be taken so that if Q; MMy # 0, then Q;NOMy ~ St is a connected component of dMj.
Moreover, by Riemann mapping theorem (e.g. Lemma 3.2 of [23]), this chart can be taken to
be a neighbourhood of |z| =1 in {z € C;|z| < 1} and such that the metric g is conformal to
the Euclidean metric |dz|2.
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Lemma 3.1. Let Q) be a chart of My as above and . : 8 — R be as above. Then there are
constants C,C" > 0 such that for all w € C®°(M) supported in Q and h > 0 small enough,
the following estimate holds:

? !

ClBaqaag + €'~ I(@rios ) aona) + 5 [ oPOuspedvy) < 7o M

€ h My

where 0, and O, denote respectively the exterior pointing normal vector fields and its rotation
by an angle +7/2.

Proof. We use complex coordinates z = x + iy in the chart Q where u is supported. Observe
that the Lebesgue measure dxdy is bounded below and above by dvg, g is conformal to |dz|?
and the boundary terms in (4) depend only on the conformal class, it suffices to prove the
estimates with respect to dzdy and the Euclidean metric. We thus integrate by parts with
respect to dxdy

Al e/ men )2 =) (0, + 2o+ (10, + L0y

h h
10, Pe . 81806
100+ DE g2 4 19, + 222

2 1 , 1
+ 7 | (Bdul = G0upcdulul? = 500.0,0ul?)

+ 7 /BMO (9u90e‘u]2 — 2/Mo ((%Re(u).aylm(u) — 6$Im(u).8yRe(u)>

i0), Pe . :(:906
=10+ 2l + 100, + 2l + 5 [ Agilul

1
+ - / Dype|ul® + 2 0-Re(u).Im(u).
h Jom, OMo

where A := —(92 + 83), 0, is the exterior pointing normal vector field to the boundary and
0- is the tangent vector field to the boundary (i.e. 0, rotated with an angle 7/2) for the
Euclidean metric |dz|?. Then (uApe,u) = 2(|dpo|? + |dp1|? + .. + |dpn|?)|ul?, since ¢; are
harmonic, so the proof follows from the fact that |deo|? + |de1|? + .. + |den|? is uniformly
bounded away from zero. O

The main step to go from (4) to (3) is the following lemma which is a slight modification
of the proof in [16]:

Lemma 3.2. With the same assumptions as in Proposition 3.1, and if Q) is either an interior
chart of (M, g) or a chart containing a whole boundary connected component, then there are
positive constants ¢ and C' such that for all e > 0 small, all 0 < h < € and all smooth function
u supported in  with ulgr, = 0, we have

_ 1
6 O (e g Mullaguryy + 31000l o ) =
(6) crly o 1 2 1 2 2 2
g(ﬁHUHm(M) + oglluldellizan + salluldee 72 + ||dUHL2(M)) +110vullz2(o01,)

where 0, denote the unit normal vector field to OMjy.
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Proof. Since the norms induced by the metric g in the chart are conformal to FKuclidean
norms, and there is f smooth such that A, = —e?/ (8§+8§) = €2/ A in the complex coordinate
chart, it suffices to get the estimate (6) for Euclidean norms and Laplacian. Clearly, we can
assume u € Hg (M) to be real valued without loss of generality. Now let Q(2) be a holomorphic
function in © which has no zeros, then by (5) we have

Qe Ae¥</My||? = 16| e~ %</hBe?</ P Qe %</ M dePe/ Mu||? >

e 19 - 4 2
ul|® — 4Im / Orw.w ) + / lw]“0ype

with w 1= Qe~¥</"de?</"y, and here everything is measured with respect to Euclidean metric
dz? + dy? and measure dzdy. Since u|gpg, = 0, one has w|gp, = (A+iB)d,u where A+iB =
Q({0y,0z) — i(Dy,0y)) and —Im(0;w.w) = (0;A.B — A9, B)|0,u|* we deduce that for some
c>0

C
—||0u +
€

| Qe e/ Aee a2 >
c 1 2 2
™) < (lldull? + 5 lluldpel 2 + (0t udaspe) + 3Oy, udyee)

+4/ (AaTB—aTAB)\8Vu12+4/ Q118,420 p..
aMo h Jom,

Using the fact that u is real valued, that ¢ is harmonic and that Z;V: o lde;)?
bounded away from 0, we see that
2
h
for some C' > 0 and therefore,

is uniformly

C
(u,ubpe) = [ul?

2 1
(Opu, udyppe) + E((?yu, udype) = 7

1 C
(8) Qe e P At/ ul 2 L(ldull + g lluldgd | + Zull®) + boundary terms.
€ €

Now if the diameter of the support of w is chosen small (with size depending only on
|Hesspo|(p)) with a unique critical point p of ¢ inside, one can use integration by parts
and the fact that the critical point is non-degenerate to obtain

/ 9=(u*) D podady / u? 02¢p dudy

for some C’ > 0. Clearly the same estimate holds trivially if Q does not contain critical point
of ¢o. Using a partition of unity (6;); in Q and absorbing terms of the form ||ud8;||? into
the right hand side, one obtains (9) for any function u supported in Q and vanishing at the
boundary. Thus, combining with (8), there are positive constants ¢, ', C” such that for h
small enough

= 1 1 1 '’
24 = 2> - P > ||ul|?

c 1 C 1 c”
€ laul® + 5 luldgcll? + S ul) 2 SQlaul® + 25 luldgoll? - Sy ulP)

c
€ €
/
¢ 2 1 o L, o
> < (Jaull® + g lldiool | + ).
Combining now with (8) and using that |@Q| is bounded below gives

/ 1 1
Jee/nAeee/ 2 > S (ldull® + o5 l[uldgll + 7 lull?) + boundary terms,
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Let us now discuss the boundary terms in (7). If ¢; are taken so that d,¢; = 0 on I'g, then
Oype =0 on I'g and d,p. = Oy + O(h/e) on I' and thus

1 C
1 / QP00 < & / 10,uf?
h Jan, h Jp

for some constant C7. We finally claim that there exist () with no zeros in €2 such that
A0;B — BO;A is bounded below by a positive constant on dMy N €2. Indeed, since the
chart near a connected component can be taken to be an interior neighbourhood of the circle
|z| = 1 in C, one can take A +iB = €' where t € S' parametrize the boundary compo-
nent, so that A0,B — BJ;A = 1 since 9, = 9, for the Euclidean metric. Since moreover
(0, 05) —i(0y,0y) = A—iB = e we deduce that on the boundary Q(t) = €*! and so it
suffices to take Q(z) = 22. This achieves the proof. O

Proof of Proposition 3.1. Using triangular inequality and absorbing the term ||Vu||? into
the left hand side of (3), it suffices to prove (3) with Ay instead of Ay + V. Let v € C5°(M),
we have by Lemma 3.2 that there exist constants ¢, ¢/, C,C’ > 0 such that

C

1, _ 1., _ _ _ _
€ (Fllee /ol + s lle™#/Moldgl? + —lle~#/ oldpd P + lle= du]2) + e "D, 0],

1
=l
sl 1 _ L.
< 3 (Glle gl 4 e ldgl |2 + S llem Pxgelded I
J

Hlem# M d(0) 12) + e/ 0,0,

< (32 e/ g (0P + e 7/ a0
J

< C'(lle=# /" ago]? + e /0|2 + [le=# av] + []e=#/0,0]%.)

where (x;); is a partition of unity associated to the complex charts €2; on M. Since constants
on both sides are independent of € and h, we can take € small enough so that C’|le=%</Pv||2 +
C'||e=%</"dv||? can be absorbed to the left side. Now set v = e®</hw with w|gp, = 0, then
we have

1 1 1
2wl + 5llwldell* + o5 lwlded I + ldw]* + [0,w]F,

< C(Jlem# M ages Ml + 0,0}
Finally, fix e > 0 and set u := et Z5=019i" and use the fact that ec 2i=0 [#il* js independent
of h and bounded uniformly away from zero and above, we then obtain the desired estimate
for 0 < h < e O

4. CoMPLEX GEOMETRIC OPTICS ON A RIEMANN SURFACE

As explained in the Introduction, the method for identifying the potential at a point p is
to construct complex geometric optic solutions depending on a small parameter A > 0, with
phase a Carleman weight (here a Morse holomorphic function), and such that the phase has
a non-degenerate critical point at p, in order to apply the stationary phase method. In this
section, the potential V has the regularity V € C1®(My) for some a > 0.
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Choose p € int(My) such that there exists a holomorphic function ® = ¢ + 1) which is
Morse on My, C* in My for large k € N and such that 0®(p) = 0 and ® has only finitely
many critical points in M. Furthermore we ask that ® is purely real on I'g. By Proposition
2.1 such points p form a dense subset of My. Given such a holomorphic function, the purpose
of this section is to construct solutions u on My of (A + V)u = 0 of the form

(10) uw=e®"(a+ hag+r1) + e®/P(a + hag + 1) + €?/"ry with ulp, =0

for h > 0 small, where a is holomorphic and u € C¥(My) for large k € N, ag € H?(Mp)
is holomorphic, moreover a(p) # 0 and a vanishes to high order at all other critical points
p' € My of ®. Furthermore, we ask that the holomorphic function a is purely imaginary on
I['g. The existence of such a holomorphic function is a consequence of Lemma 2.3. Given
such a holomorphic function on My we consider a compactly supported extension to M, still
denoted a.

The remainder terms 71,2 will be controlled as h — 0 and have particular properties near
the critical points of ®. More precisely, 7, will be a Oy2(h%/?|logh|) and r; will be of the
form h7ia + oL?(h) where 715 is independent of h, which can be used to obtain sufficient
informations from the stationary phase method in the identification process.

4.1. Construction of r;. We shall construct r; to satisfy

e (A +V)e® M (a+71) = Op2(h|log b))
and r1 = r11 + hria. We let G be the Green operator of the Laplacian on the smooth surface
with boundary My with Dirichlet condition, so that A;G = 1d on L?(My). In particular this
implies that 00G = %*_1 where x~! is the inverse of * mapping functions to 2-forms. We

extend a to be a compactly supported C* function on M, and we will search for r € H? (Mp)
satisfying ||r1]|z2 = O(h) and

(11) e 2WIh2i Iy — —9G(aV) + w + Opp (h]log b))

where w is a smooth holomorphic 1-form on Mj. Indeed, using the fact that ® is holomorphic
we have

efq)/hAgeq)/h — 2 x 0 2he®/M = _2i % Je= (@B G (PP — 9 4 e—2W/hge2iv/h
and applying —2i %9 to (11), we obtain (note that dG(aV) € C*%(Mjy) by elliptic regularity)
e_q>/h(Ag +V)e® ) = —aV + O2(h|log h)).
We will choose w to be a smooth holomorphic 1-form on My such that at all critical point p’
of ® in My, the form b := 0G(aV) — w with value in T7jMy vanish to the highest possible
order. Writing b = b(z)dz in local complex coordinates, b(z) is C2* by elliptic regularity
and we have —2id;b(z) = aV, therefore 0,0:b(p') = 02b(p') = 0 at each critical point p’ # p
by construction of the function a. Therefore, we deduce that at each critical point p’ # p,

0G(aV') has Taylor series expansion Z?:O cjz7 +O(|z]|?T®). That is, all the lower order terms
of the Taylor expansion of OG(aV') around p’ are polynomials of z only.

Lemma 4.1. Let {po,...,pn} be finitely many points on My and let § be a C** section of
17 oMo. Then there exists a C* holomorphic function f on M with k € N large, such that f
vanishes to high order at the points {p1,...,pn} andw = Of satisfies the following: in complex
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local coordinates z near pg , one has 020(py) = w(po) for £ =0,1,2, where 0 = 0(z)dz and
w=w(z)dz.

Proof. This is a direct consequence of Lemma 2.3. ([

Applying this to the form 0G(aV') and using the observation we made above, we can construct
a C* holomorphic form w such that in local coordinates z centered at a critical point p’ of ®
(i.e p' = {z = 0} in this coordinate), we have for b = —9G(aV) + w = b(z)dz

07 0Lb(z)| = O o™), for t+m <2, ifp #p
b(z)| = O(2]), iy =p.

Now, we let x1 € C5°(Mp) be a cutoff function supported in a small neighbourhood U, of
the critical point p and identically 1 near p, and x € C§°(My) is defined similarly with y =1
on the support of x1. We will construct r; = r11 + hr1s in two steps : first, we will construct
r11 to solve equation (11) locally near the critical point p of ® and then we will construct the
global correction term 712 away from p by using the extra vanishing of b in (12) at the other
critical points.

We define locally in complex coordinates centered at p and containing the support of x

—in/hR(ezw/h

(12)

T11 1= Xe€ x10)
where Rf(z) := —(2mi)~! Jre E%S—fdf/\ d¢ for f € L compactly supported is the classical
Cauchy-Riemann operator inverting locally 0, (711 is extended by 0 outside the neighbourhood
of p). The function 717 is in C3+%(Mj) and we have

e 22/ ) = x1 (G (aV) + w) + 7
with 7 := e 2Y/PR(2 /P 1b)dy.

We then construct 12 by observing that b vanishes to order 2+ « at critical points of ® other
than p (from (12)), and dx = 0 in a neighbourhood of any critical point of ¢, so we can find
r19 satisfying

(13)

2i7’1281/) = (1 - Xl)b'
This is possible since both 9¢» and the right hand side are valued in 77 My, 0¢ has finitely
many isolated zeroes on My: rio is then a function which is in C?%(My \ P) where P :=
{p1,...,pn} is the set of critical points other than p, it extends to a C1%(Mp) and it satisfies
in local complex coordinates z near each p;

10207r12(2)| < Clz —pj| TP, B4+~ <2

by using also the fact that di can be locally be considered as holomorphic function with a
zero of order 1 at each p;. This implies that r, € H?(Mp) and we have

e_2iw/h8(62iw/hr1) =b+ horia+n=-0G(aV) —w+ horia + 1.

Now the first error term [|0r12|| g1 (ar) is bounded by

(1 —x1)b(2) ’
Oria|l g Vo) ¢
10712112 (asg) < (H 0:1(2) H2(Up)> -

for some constant C', where we used the fact that (18%1()3)(2) is in H%(U,) and independent of

h. To deal with the 7 term, we need the following



CALDERON PROBLEM WITH PARTIAL DATA ON RIEMANN SURFACES 15

Lemma 4.2. The following estimates hold true
[Illz2 = O([loghl), Inllg < O(hlloghl), |[ril[rz = O(h), |lr1 — hir2[|z2 = o(h)
where 112 solves 2ir120¢ = b.

Proof. We start by observing that

—2i/h p( 2/ h X1b
xe R(e X1b) — h228z¢

|lr1 — hira||p2 =

L2(Up)
(14) )
_in/hR(ein/hxlb) hgx(; ;

xe

71l]2 < + hl[712]| L2 (ago)

L2
The first term is estimated in Proposition 2.7 of [16], it is a o(h), while the ||712]|72 is inde-

pendent of h. Now are going to estimate the H? norms of 7. Locally in complex coordinates
z centered at p (ie. p = {z = 0}), we have

 2ip(2) 2ip(e) 1 déid .
19 ) =—o@e [ @™, = avie
C z-¢ ™
Since b is C2* in U, we decompose b(&) = (Vb(0), €) + b(€) using Taylor formula, so we have
b(0) = (9511( ) = 0 and we split the integral (15) with (Vb(0), &) and b(&). Since the integrand

with the (Vb(0), &) is smooth and compactly supported in £ (recall that x; = 0 on the support
of 9.x), we can apply stationary phase to get that

o) [ o), o F

uniformly in z. Now set b.(£) = 0,x(2)x1(£)b(€)/(z — €) which is C%* in ¢ and smooth in z.
Let 6 € C§°(]0,1)) be a cutoff function which is equal to 1 near 0 and set 6,(&) := 6(|¢|/h),
then we have by integrating by parts

2000 .o 208 1—6n(8) b,(¢)
/@ ¢ D (€)d6rdgs =h /Supp(me ag( oy 3g<22.8£ w))d&d&

2iv(€) b.(€)
_ ]
h /Supp(me W(€)0 (2 - w) € dé».

Using polar coordinates with the fact that BZ(O) = 0, it is easy to check that the second
term in (16) is bounded uniformy in z by Ch?. To deal with the first term, we use b,(0) =

< Ch?

(16)

8552 (0) = 65:52 (0) = 0 and a straightforward computation in polar coordinates shows that the
first term of (16) is bounded uniformly in z by Ch?|log(h)|. We conclude that

17llz2 < Cllnllze < Ch?|loghl.
It is also direct to see that the same estimates holds with a loss of h~2 for any derivatives in
2, Z of order less or equal to 2, since they only hit the x(z) factor, the (Z —&)~! factor or the
oscillating term e~2%(*)/" S0 we deduce that
[1nllr2 = O([log hl).
and this ends the proof. O

We summarize the result of this section with the following
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Lemma 4.3. Let k € N be large and ® € C*(My) be a holomorphic function on My which is
Morse in My with a critical point at p € int(Mp). Let a € C*(My) be a holomorphic function

on My vanishing to high order at every critical point of ® other than p. Then there exists
r1 € H*(My) such that ||r1]|2 = O(h) and

e ®M(A +V)e®M(a+r1) = Opa(h|loghl).

4.2. Construction of ag. We have constructed the correction terms r; which solves the
Schrédinger equation to order h as stated in Lemma 4.3. In this subsection, we will construct
a holomorphic function ag which annihilates the boundary value of the solution on I'g. In
particular, we have the following

Lemma 4.4. There exists a holomorphic function ag € H*(My) independent of h such that
e M(A +V)e®M(a + 11 + hag) = Opz2(h|logh|)

and

(€™ (a+ 11 + hag) + ¥/ (a + 1 + hao)r, = 0.

Proof. First, notice that h='r1|an, = F12lon, € H*?(0Mp) is independent of h. Since ®
is purely real on I'y and a is purely imaginary on I'g, we see that this Lemma amounts to
construct a holomorphic function ag € H?(My) with the boundary condition

Re(712) + Re(ag) =0 on T.

To construct ag, it suffices to use (ii) in Corollary 2.2. O

4.3. Construction of ry. The goal of this section is to complete the construction of the
complex geometric optic solutions by the following proposition:

Proposition 4.1. There exist solutions to (A + V)u = 0 with boundary condition u|p, = 0
of the form (10) with r1, ag constructed in the previous sections and ro satisfying ||ra|| 2z =
O(h3/?|log h|).

This is a consequence of the following Lemma (which follows from the Carleman estimate
obtained above):

Lemma 4.5. If V € L>(My) and f € L*(My), then for all h > 0 small enough, there exists
a solution v € L? to the boundary value problem

ePM(A, + V)e ?hy = f, wlp, =0,
satisfying the estimate

1
|v]|z2 < Ch2| fl|L2-

Proof. The proof is the same as Proposition 2.2 of [16], we repeat the argument for the
convenience of the reader. Define for all h > 0 the real vector space A := {u € H}(My); (Ay+
V)u € L?(My), 0,u |[r= 0} equipped with the real scalar product

(u,w) 4 := /M e_QW/h(Agu + Vu)(Agw + Vw) dvy.
0

Observe that since 1 is constant along I'g, d, = 0 on I'y. Therefore, we may apply the
Carleman estimate of Proposition (3.1) to the weight ¢ to assert that the space A is a
Hilbert space equipped with the scalar product above. By using the same estimate, the linear

functional L : w — fMo e~#/" fw dvy on A is continuous and its norm is bounded by h3 || fllz2-
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By Riesz theorem, there is an element u € A such that (.,u) 4 = L and with norm bounded by
the norm of L. Tt remains to take v := e~#/"(Aju+Vu) which solves (A, +V)e v = e %/ f
and which in addition satisfies the desired norm estimate. Furthermore, since

/ e~ My(Ay + V)wdv, = / e~%/M fw dv,g
M(] MO

for all w € A, we have by Green’s theorem

/ e_so/hvaywdvg =0= / e_“o/hval,wdvg
8M0 1—‘O

for all w € A. This implies v = 0 on ['g. ([l

Proof of Proposition 4.1. We note that

(A + V) (e®M(a+ 71 + hag) + €2/ (a + 71 + hag) 4 e#/"ry) = 0
if and only if
e PIMA +V)e? hry = —e /(A + V) (e2M(a + 11 + hag) + /M (a + 11 + hap)).

By Lemma 4.4, the right hand side of the above equation is Or2(h|logh|). Therefore, using
Lemma 4.5 one can find such ro which satisfies

|72l 2 < Ch3/2|log hl, 72 o= 0.

Since the ansatz e®"(a + 1 + hag) + e®/"(a 4+ r1 + hag) is arranged to vanish on I'y, the
solution

U= eq’/h(a + 71 + hag) + e®/"(a +r1 + hag) + e?/Mpy
vanishes on I'y as well. O

5. IDENTIFYING THE POTENTIAL

We now assume that Vi, Vo € C1¥(Mjp) are two real valued potentials, with a > 0, such
that the respective Cauchy data spaces €}, Cg for the operators Ay + Vi and Ay + V3 on
I' € OMy are equal. Let I'o = dMp \ T' be the complement of I" in 9Mj, and possibly by
taking I' slightly smaller, we may assume that I'g contains an open set. Let p € My be an
interior point of My such that, using Proposition 2.1, we can choose a holomorphic Morse
function ® = ¢ + 1) on My with ® purely real on I'g, C* in My for some large k € N, with
a critical point at p. Note that Proposition 2.1 states that we can choose ® such that none
of its critical points on the boundary are degenerate and such that critical points do not
accumulate on the boundary.

Proposition 5.1. If the Cauchy data spaces agree, i.e. if C; = C5 | then Vi(p) = Va(p).

Proof. Let a be a holomorphic function on My which is purely imaginary on I’y with a(p) # 0
and a(p’) = 0 to large order for all other critical point p’ of ®. The existence of a is insured
by Lemma 2.3. Let u; and us be H? solutions on Mj to

(B +Vi)u; =0

constructed in Section 4 with ® = ¢ 4 it for Carleman weight for u; and —® for us, thus of
the form

uy = e®M(a+ hag + 1) + e®/(a + hag + 1) + €#/Mry
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up = e~ M (a+ hby + s1) + e /M (a+ hby + s1) + e /M5y

and with boundary value uj|gr, = fj, where f; vanishes on I'g. We can write by Green
formula

/ ur (Vi = Va)uadvy = —/ (Agui.ug — u1.Agug)dvy
My

Mo
= —/ (&,ul.fg — fl.&,ug)dvg.

OMy
Since the Cauchy data for Ay + Vi agrees on I' with that of A, + V5, there exists a solution
v of the boundary value problem

(Ag+‘/v2)1):07 v’aMo :fl7

satisfying d,v = d,u; on I'. Since f; = 0 on Iy, this implies that
(17)

/ ul(Vl — ‘/Q)UQdVg = —/ (Agul.uQ - ul.Aguz)dvg = —/ (6yu1.f2 - fl.aVUQ)dVg
My My OMo

= / (Opv.fo —v.0pug)dvy = / (Agv.ug —v.Agug)dvy =0
aMo MO

since Ay + Vo annihilates both v and uz. We substitute in the full expansion for u; and us
and, setting V := V; — V5, and using the estimates in Lemmas 4.2, 4.1 and 4.4 and, we obtain

(18) OZII+I2+O(h),

where

(19) I = / V(a? +a@)dv, + 2Re/ WM a2 dv,,
M() MO

(20) L= QhRe/ av(em/’l(ﬁ +bo) + 2 M ag + ) 4 by + ag + T ”)dvg.
e h h 3

Remark 5.1. We observe from the last identity in Lemma 4.2 that r1/h in the expression Iy
can be replaced by the term 112 satisfying 2im120% = b up to an error which can go in the o(h)
in (18), and similarly for the term si1/h which can be replaced by a term S12 independent of
h.

We will apply the stationary phase to these two terms in the following two Lemmas.

Lemma 5.2. The following estimates holds true

I, = 2h Re(/ Va(bo + ap + S12 + 7712)dvg) + o(h).
M

0

where r12, S12, 712 and S12 are independent of h.
Proof. We start by the following
Lemma 5.3. Let f € L'(My), then as h — 0

/ 2/ fdv, = o(1).
My
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Proof. Since C*(My) is dense in L'(My) for all k € N, it suffices to prove the Lemma for
f € C¥(My). Let € > 0 be small, and choose cut off function y which is identically equal to
1 on the boundary such that
/ x| fldvg <e.
Mo

Then, splitting the integral and using stationary phase for the 1 — y term, we obtain
)/ ew/hfdvg) < ‘ / (1- X)em/hfdvg’ + )/ Xezw/hfdvg < e+ Oc(h)
My Mo My

which concludes the proof by taking h small enough depending on e. (|

The proof of Lemma 5.2 is a direct consequence of Lemma 5.3 and Remark 5.1. O

The second Lemma will be proved in the end of this section.

Lemma 5.4. The following estimate holds true
L= / V(a? +@)dv, + hC,V (p)]a(p) *Re(e*®/™) 4 o(h)
My

with Cp, # 0 and independent of h.

With these two Lemmas, we can write (18) as
0= / V(a? +@)dv, + O(h)
My
and thus we can conclude that
0= / V(a? +a?)dv,.
My
Therefore, (18) becomes, with Lemma 5.2

0= GV (9)alp)PRe(2V 7" + 2Re( |

Va(bo + 812 +ag + ’F12)dvg) + o(1).
Mo

Since ¥ (p) # 0 we may choose a sequence of h; — 0 such that Re(e?¥®)/"i) = 1 and another

sequence h; — 0 such that Re(e2¥(p)/ EJ') = —1 for all j. Adding the expansion with h = h;
and h = hj, we deduce that

0 =2C,V (p)la(p)|* + o(1)

as j — oo, and since C)p # 0, a(p) # 0, we conclude that V(p) = 0. The set of p € M for
which we can conclude this is dense in My by Proposition 2.1. Therefore we can conclude
that V(p) = 0 for all p € M. O

We now prove Lemma 5.4.
Proof of Lemma 5.4. Let x be a smooth cutoff function on My which is identically 1
everywhere except outside a small ball containing p and no other critical point of ®, and
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x = 0 near p. We split the oscillatory integral in two parts:

@ ey, = [ @ ey,
My

Mo

—i—/ (1 — x)(e2¥/h 4 72/ Y |g2dv,
My

The phase ¥ has nondegenerate critical points, therefore, a standard application of the sta-
tionary phase at p gives

/ (1= x) (/" + e 2W/M)V (p)|al*dvy = hCpla(p) PV (p)Re(e*¥P)V/™) + o(h)
Mo

where C), is a non-zero number which depends on the Hessian of ¢ at the point p. Define the
potential V (-) := V() — V(p) € C1*(My), then we show that

(21) / (1= x) (/" + e 2¥/M)V]aPdvy = o(h).
My
Indeed, first by integration by parts and using Ayt = 0 one has

~ . . ~ _— 2
/ (1 - X)(BQiz/J/h + 672i¢/h)v‘a|2dvg :ﬁ (d(Gsz/h _ eszzp/h)7dw>V(1 X)2|(Z| dVg
Mo 2t g |d|

_n it iy g (L= Xlal’V
_Qi/MO(62 | e ), du)dv,

but we can see that (d((1 — x)|a|2V/|d|?),dv) € L'(My): this follows directly from the
fact that V is in the Holder space C1(Mp) and 17(]9) = 0, and from the non degeneracy
of Hess(v). It then suffice to use Lemma 5.3 to conclude that (21) holds. Using similar
argument, we now show that

/ (T 4 =2 a2y, = o(h).
Mo

Indeed, since a vanishes to large order at all boundary critical points of ¢, we may write

2
/ X(e2w/h—{—eiZiw/h)V\adeg :ﬁ (d(e%d)/h . 672izp/h)7dw>VX|a‘ dVg
Mo

21 My |d¢’2
h . i 1 xlal®
- /M (e2i/h _ =2 w/h)dwg (V|d¢|2vg1/;)dvg
0
N h/ (c2iv/h _ =2t/ s o
% Jons, 27

For the interior integral we use Lemma 5.3 to conclude that

—h/ (e2W/h _ =2/ h)diy (VX‘G‘QVng)dV = o(h)
20 Jm, I\ Jdyf? !

and for the boundary integral, we write My = I'g U T" and observe that on I'g, ¢ = 0 so
(e2/h — ¢=21/hy — 0 while on I we have V = 0 from the boundary determinacy proved in
Proposition 7.1 of the Appendix. Therefore

[ (et e mviaav, = ot
My
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and the proof is complete. O

6. INVERSE SCATTERING

We first obtain, as a trivial consequence of Theorem 1.1, a result about inverse scattering
for asymptotically hyperbolic surface (AH in short). Recall that an AH surface is an open
complete Riemannian surface (X, g) such that X is the interior of a smooth compact surface
with boundary X, and for any smooth boundary defining function = of 0X, g := x2g extends
as a smooth metric to X, with curvature tending to —1 at X. If V. € C®(X) and V =
O(z?), then we can define a scattering map as follows (see for instance [17, 12] or [13]): first
the L? kernel kerj2(A, + V) is a finite dimensional subspace of C*(X) and in one-to-one
correspondence with E := {(9,¢)|5x;¢ € kerp2(Ag + V)} where 9, := V92 is the normal
vector field to X for g, then for f € C°°(0X), there exists a function v € C*°(X), unique
modulo ker;2(A, 4+ V), such that (A; + V)u = 0 and u|55 = f. Then one can see that the

scattering map 8§ : C®°(0X) — C*°(0X)/E is defined by 8f := d,uls5. We thus obtain

Corollary 6.1. Let (X, g) be an asymptotically hyperbolic manifold and let V1,V € 22C°(X)
be two potentials and I' C X an open subset of the conformal boundary. Assume that

{0zulgg;u € kerp2(Ag + V1)) = {0sulyg;u € kerp2 (Ag + Vo) }
and let 8; be the scattering map for the operator Ay +Vj for j =1,2. If §1f = 8af on T for
all f € CF°(T") then Vi = V.
Proof. Let z be a smooth boundary defining function of X, and let § = g be the

compactified metric and define V; := V;/2? € C*(X). By conformal invariance of the
Laplacian in dimension 2, one has

Ag+V= xz(Ag +7)
and so if kerp2(Ag + V1) = kerp2(Ay + V2) and 81 = 83 on I', then the Cauchy data spaces
C!' for the operator Ag+V; are the same. Then it suffices to apply the result in Theorem 1.1. [

Next we consider the asymptotically Euclidean scattering at 0 frequency. An asymptotically
Euclidean surface is a non-compact Riemann surface (X, g), which compactifies into X and
such that the metric in a collar (0, €), x 0X near the boundary is of the form

_da? | h(x)
ot g2
where h(x) is a smooth one-parameter family of metrics on §X with h(0) = d6%, is the metric
with length 27 on each copy of S' that forms the connected components of X . Notice that
using the coordinates r := 1/z, g is asymptotic to dr? + TQdH?ql near r — oo. A particular
case is given by the surfaces with Euclidean ends, ie. ends isometric to R? \ B(0, R) where
B(0, R) = {z € R%;|z| > R}. Note that g is conformal to an asymptotically cylindrical metric,
or 'b-metric’ in the sense of Melrose [24],
dz?

gy =29 = —5 + h(x)
and the Laplacian satisfies A, = 22A,. Each end of X is of the form (0,€), x S} and the
operator Ay, has the expression in the ends

Ay, = —(20:)* + Apx + 2 P(x,0; 20, 0p)
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for some smooth differential operator P(x,6;x0,,0yp) in the vector fields z0,,0y down to
x = 0. Let us define V}, := 272V, which is compactly supported and

HP™ = {u e LI*(X, dvoly, ); Agiu € L*(X,dvoly,)}, m € No.
We also define the following spaces for a € R
Fo = kerpap(Ag, + Vp).

Since the eigenvalues of Agi are {j2;7 € Ny}, the relative Index theorem of Melrose [24,
Section 6.2] shows that Ay, + V, is Fredholm from x®H? to *H{ if a ¢ Z. Moreover,
from subsection 2.2.4 of [24], we have that any solution of (A, 4+ Vi)u = 0 in 2*H} has an
asymptotic expansion of the form

4
U~ Z Z 2 (log z)’uj (), asz—0

J>a,jEZ £=0

for some sequence (¢;); of non negative integers and some smooth function u;, on S'. In
particular, it is easy to check that kerpz(x dvol,)(Ag + V) = Fi4e for e € (0,1).

Theorem 6.2. Let (X, g) be an asymptotically Euclidean surface and Vi, Vs be two compactly
supported smooth potentials and x be a boundary defining function. Let € € (0,1) and assume
that for any j € Z and any function 1) € kerxj_gHg(Ag-i—Vl) there is a ¢ € kerxj_eHg(Ag +Vs)
such that ¢ — ¢ = O(x>), and conversely. Then Vi = V3.

Proof. The idea is to reduce the problem to the compact case. First we notice that by
unique continuation, ¢» = ¢ where V; = V3 = 0. Now it remains to prove that, if R, denote
the restriction of smooth functions on X to {z > n} and V is a smooth compactly supported
potential in {z > n}, then the set U2 (R, (F_;_) is dense in the set Ny of H2({z > 1n})
solutions of (Ay 4+ V)u = 0. The proof is well known for positive frequency scattering (see
for instance Lemma 3.2 in [25]), here it is very similar so we do not give much details. The
main argument is to show that it converges in L? sense and then use elliptic regularity; the
L? convergence can be shows as follows: let f € Ny such that

/ fbdvoly =0, Vo) € U2 Fj,
>N

then we want to show that f = 0. By Proposition 5.64 in [24], there exists £k € N and a
generalized right inverse Gy, for P, = Ay, + Vj (here, as before, 22V, = V) in x_k_eHg, such
that P,Gp = Id. This holds in x*k*Hg for k large enough since the cokernel of P, on this
space becomes 0 for k large. Let w = Gy f so that (Ag, + Vp)w = f, and in particular this
function is 0 in {# < n}. The asymptotic behaviour of the integral kernel Gy(z,2’) of Gy as
z — o0 is given in Proposition 5.64 of [24] uniformly in 2z’ € {z > n}, we have for all J € N
and using the radial coordinates (z,6) € (0,¢) x S! for z in the ends
J A
Gy(z,72) = Z ij(log 2)%;(0,2") + o(x”)
j=—k £=0
for some functions 1;, € :ck*j*GHl? and some sequence (¢;); of non-negative integers. But
the fact that (Ag, + V3)Gy(2,2') = 0(z — 2/) as distributions implies directly that (Ag, +
Vu)¥j(6,.) = 0. Using our assumption on f, we deduce that [ 1;(0,2") f(2")dvoly, = 0 for
all j € Ny and so the function w vanish faster than all power of x at infinity. Then by unique
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continuation, we deduce that w = 0 in {z < €}. Since now w € H?, its Cauchy data at x = 7
are 0 and Ay + Vj, is self adjoint for the measure dvoly,, we can use the Green formula to
obtain

/ | f|*dvoly, = / w(Ag, + V3) fdvolg, = 0.
x2n x>n

The H? density is easy using elliptic regularity. O

7. APPENDIX : BOUNDARY DETERMINATION

In this appendix, we give a short proof of the fact that the partial Cauchy data space on
[' C OM determines the potential on I when the potential is in C%%(M) for some « € (0,1).
This result is shown for the conductivity problem on a domain of R™ in [19] under the
assumption that the conductivity has roughly n/2-derivatives, it is also shown in [29] for
continuous potentials on a smooth domain of R” by using a limiting argument from the smooth
case (which they analyze using micolocal analysis near the boundary). Alessandrini [1] also
proved such a result under the assumption that the domain is Lipschitz and the coefficients
of the operator are in W' for p > n, while Brown [5] studied the case of Lipschitz domains
with a continuous conductivity. Since the result in our setting is not explicitly written down,
but certainly known from specialists, we provide a short proof without too many details, and
using the approach of [5]. We shall prove

Proposition 7.1. Let I' C OMy be an non-empty open subset of the boundary. If Vi,Va €
C%(M) for some a > 0 and their associated Cauchy data spaces C,CL defined in (1) are
equal, then Vi|r = Valp.

The key to proving this proposition is the existence of solutions to (Ay + V;)u = 0 which
concentrate near a point p € I'. First we need a solvability result for the equation (Ay+V;)u =
f, which is an easy consequence of the Carleman estimate of Proposition 3.1, and follows the
method of Salo-Tzou [27, Section 6]. If we fix h > 0 small and take ¢ = 1 in the Carleman
estimate of Proposition 3.1, we obtain easily that there is a constant C' such that for all
functions in H2(My) satisfying u|gn, = 0

(22) lullFrz + 10vullf2ry) < CUIA + Vi)ullZe + 100ul 72 )
As a consequence, we deduce the following solvability result: let
B = {w € H*(My) N Hy (M) | dw|r = 0}
be the closed subspace of H?(Mj) under the H? norm and let B* be its dual space then

Corollary 7.1. Let i = 1,2, then for all f € L*(My) there exists u € H?(My) solving the
equation

(Ag+Vi)u=f
with boundary condition u|r, =0, and ||ul|2 < C|| f]|s=-

Proof. Set A := {w € H}(My) | (Ay + Vi)w € L% d,w|r = 0} equipped with the inner
product

(0, W) g = / (Ay+ Vi)u(A, + Vi) dv,.
My
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Thanks to (22), A is a Hilbert space and A = B. For each f € L?(My), let us define the
linear functional on B

By (22), we have that for all w € B

[Ly(w)] < [ flls-[[wl]le <[[flls-]w].a-
Therefore, by Riesz Theorem, there exists vy € A such that

/ (Ay +V)Tr(Ay + Vi)wdvy = / wfdvy
My

My

B*

for all w € B. Furthermore, ||(Ag+ Vi)ve|lp2 < || fl|s+. Setting u := (Ay+ V;)vy we have that
(Ag+ Vi)u = f and |lul[z2 < ||f]s+. To obtain the boundary condition for u, observe that
since

/ uw(Ag + Vi)wdvy = fwdvy
Mo MO

for all w € B, by Green’s theorem

/ ud,wdvy =0 = / udy,wdvy
M() F()

for all w € B. This implies u = 0 on ['y. U

Clearly, it suffices to assume that I' is a small piece of the boundary which is contained
in a single coordinate chart with complex coordinates z = x + iy where |z| < 1, Im(z) > 0
and the boundary is given by {y = 0}. Moreover the metric is of the form e?’|dz|? for some
smooth function p. Let p € I" and possibly by translating the coordinates, we can assume
that p = {z = 0}. Let n € C*°(Mj) be a cutoff function supported in a small neighbourhood
of p. For h > 0 small, we define the the smooth function v;, € C*°(M)j) supported near p via
the coordinate chart Z = (x,7y) € R? by
(23) on(Z) = n(Z/VR)er?
where o := (i, —1) € C? is chosen such that - v = 0. We thus get (92 +92)e*Z = 0 and thus
Agea'z = 0 by conformal covariance of the Laplacian. Therefore, we have in local coordinates

1 1oz Z 2 Loz Z
I Oy = —),a.dZ),.
(24) Ag”h(Z) heh (Agn)(\/ﬁ) + h3/2€h <d77(\/ﬁ)7 a.d >9

Lemma 7.2. If V € C%%*(My) for g > 2, then there exists a solution uy, € H? to (Ag+V)u =
0 of the form
up, = vp + Ry,

with vy, defined in (23) and ||Rp|| 2 < Ch®/4, satisfying supp(Rulang) C T
Proof of Lemma 7.2. We need to find Ry, satisfying ||Rp,|| ;2 < Ch%* and solving

(Ag + V)Rh = —(Ag + V)’Uh =: My,
Thanks to Corollary 7.1, it suffices to show that || M|+ < Ch5/%. Thus, let w € B, then we
have by (24)

/ ’thdngll—FIQ—FIg
My
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where 1 7
1
I = / wVivpe?Pdz, I := — weﬁa'zm(*)@Z’)dZ,
Zl<vh h Jiz1<vi Vh

2 Z 1
I3 = / wya(—=)en % dz
37 32 \ZI<Vh 2(\/5)

and x1 = Agn, X2 = 10,7 —0yn. In the above equation the third term I3 has the worst growth
when h — 0. We will analyze its behavior and the preceding terms can be treated in similar
fashion. One has

Z .
I :—h1/2/ wys(—=) (0, — i0,) e %dZ
3 Py 2(\/5)( y)

7 1
— / O, — i0,)? BT,
|leﬂ( idy) (sz)(\/E))e

Notice that the boundary term in the integration by parts vanishes because w € H& and
Oywl|anr, vanishes on the support of . The term (9, — iay)Q(wxg(%)) has derivatives hitting
NG
which case a h~! factor would come out. Combined with the h!/2 term in front of the integral
this gives a total of a h~1/2 in front. By this observation we have improved the growth from
h=3/2 to h=1/2. Repeating this line of argument and using Cauchy-Schwarz inequality, we can

see that |I3] < ChS/*|lw| g2 (an elementary computation shows that functions of the form

X(Z/\/E)e%a'z have L? norm bounded by C'h*/*). Therefore, ][hs—%xg(%)e%a'z\\gf < Chb/4

and we are done. O

both X2(%) and w. The worst growth in h would occur when both derivatives hit x2(-%) in

Proof of Proposition 7.1. It suffices to plug the solutions u,ll, u% from Proposition 7.2 into
the boundary integral identity (17). A simple calculation using the fact that V3 — V3 is in
C9%7(My) yields that

0= / uh (Vi — Ve dvy = Ch¥2(Vi(p) — Va(p)) + o(h*?)
Mo
and we are done. O
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