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POWER SPECTRUM OF THE GEODESIC FLOW
ON HYPERBOLIC MANIFOLDS

SEMYON DYATLOV, FREDERIC FAURE, AND COLIN GUILLARMOU

ABSTRACT. We describe the complex poles of the power spectrum of correlations
for the geodesic flow on compact hyperbolic manifolds in terms of eigenvalues of the
Laplacian acting on certain natural tensor bundles. These poles are a special case of
Pollicott—Ruelle resonances, which can be defined for general Anosov flows. In our
case, resonances are stratified into bands by decay rates. The proof also gives an
explicit relation between resonant states and eigenstates of the Laplacian.

In this paper, we consider the characteristic frequencies of correlations,

Prg(t) = /SM(fosD-t)-gdu, frg€C>(SM),

for the geodesic flow ¢; on a compact hyperbolic manifold M of dimension n + 1 (that
is, M has constant sectional curvature —1). Here ¢; acts on SM, the unit tangent
bundle of M, and p is the natural smooth probability measure. Such ¢; are classical
examples of Anosov flows; for this family of examples, we are able to prove much more
precise results than in the general Anosov case.

An important question, expanding on the notion of mixing, is the behavior of py ,(t)
as t — +oo. Following [Ru], we take the power spectrum, which in our convention
is the Laplace transform py,(\) of py4 restricted to ¢ > 0. The long time behavior
of ps4(t) is related to the properties of the meromorphic extension of pf () to the
entire complex plane. The poles of this extension, called Pollicott—Ruelle resonances
(see [Po86a, Ru, FaSj] and (1.6) below), are the complex characteristic frequencies of
Pf.g, describing its decay and oscillation and not depending on f, g.

For the case of dimension n + 1 = 2, the following connection between resonances

and the spectrum of the Laplacian was announced in [FaTs13a, Section 4] (see [F1Fo]
for a related result and the remarks below regarding the zeta function techniques).

Theorem 1. Assume that M is a compact hyperbolic surface (n = 1) and the spectrum
of the positive Laplacian on M is (see Figure 1)

1
Spec(A) = {s;(1 —s;)}, s;€[0,1]U (5 + iR).
Then Pollicott-Ruelle resonances for the geodesic flow on SM in C\ (—1 — %NO) are
)\j,m: —m—l—i—sj, mGNo. (11)
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FIGURE 1. An illustration of Theorem 1, with eigenvalues of the Lapla-
cian on the left and the resonances of geodesic flow, on the right. The
red crosses mark exceptional points where the theorem does not apply.

Remark. We use the Laplace transform (which has poles in the left half-plane) rather
than the Fourier transform as in [Ru, FaSj] to simplify the relation to the parameter
s used for Laplacians on hyperbolic manifolds.

Our main result concerns the case of higher dimensions n 4+ 1 > 2. The situation is
considerably more involved than in the case of Theorem 1, featuring the spectrum of
the Laplacian on certain tensor bundles. More precisely, for o € R, denote

Multa (o, m) := dim Eig™ (o),

where Eig™ (o), defined in (5.19), is the space of trace-free divergence-free symmetric
sections of @MT*M satisfying Af = of. Denote by Multg(\) the geometric multi-
plicity of X as a Pollicott—Ruelle resonance of the geodesic flow on M (see Theorem 3
and the remarks preceding it for a definition).

Theorem 2. Let M be a compact hyperbolic manifold of dimension n+1 > 2. Assume
that A € C\ (— 2 — INo). Then for A & —2N, we have (see Figure 2)

2 2
[m/2] a2
Multp()) = mz;o ZZ:; Maulta (= (A+m+ 5) + o m = 20m - 2)  (12)
and for A € —2N, we have
[m/2] a2
Multz()) = ; ; Mult (— ()\+m+ 5) o m =2 2@). (1.3)

m#—X
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F1GURE 2. An illustration of Theorem 2 for n = 3. The red crosses
mark exceptional points where the theorem does not apply. Note that
the points with m = 2,/ = 1 are simply the points with m = 0,/ = 0
shifted by —2 (modulo exceptional points), as illustrated by the arrow.

Remarks. (i) If Multa ( — ()\ +m+ %)2 + "72 +m—20,m— %) > 0, then Lemma 6.1
and the fact that A > 0 on functions imply that either A € —m — § + iR or

Ae[-1—m, —m], ifn=1 m>2¢(
Ae[l—=-n—m, —1—m], ifn>1 m>2( (1.4)
A€ [-n—m, —m]|, if m =20

In particular, we confirm that resonances lie in {Re A < 0} and the only resonance on
the imaginary axis is A = 0 with Multg(0) = 1, corresponding to m = ¢ = 0. We
call the set of resonances corresponding to some m the mth band. This is a special
case of the band structure for general contact Anosov flows established in the work of
Faure-Tsujii [FaTs12, FaTs13a, FaTs13b].

(ii) The case n = 1 fits into Theorem 2 as follows: for m > 2, the spaces Eig™ (o)
are trivial unless o is an exceptional point (since the corresponding spaces Bd™°(\) of
Lemma 5.6 would have to be trace free sections of a one-dimensional vector bundle),
and the spaces Eig'(o + 1) and Eig”(c) are isomorphic as shown in Appendix C.2.

(iii) The band with m = 0 corresponds to the spectrum of the scalar Laplacian; the
band with m = 1 corresponds to the spectrum of the Hodge Laplacian on coclosed
1-forms, see Appendix C.2.

(iv) As seen from (1.2), (1.3), for m > 2 the m-th band of resonances contains shifted
copies of bands m — 2, m — 4, ... The special case (1.3) means that the resonance 0 of
the m = 0 band is not copied to other bands.
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(v) A Weyl law holds for the spaces Eig™ (), see Appendix C.1. It implies the following
Weyl law for resonances in the m-th band:

27" (m4n—1)!
Mul = : 1(M)R™! m). (1.
n}:' ultp(\) Tl )] Vol(M)R™! + O(R™). (1.5)
Ae—2Z —m+i[-R,R] 2

The power R"™™ agrees with the Weyl law of [FaTs13a, (5.3)] and with the earlier
upper bound of [DDZ]. We also see that if n > 1, then each m and ¢ € [0, %] produce
(:J!J(r:__ll))!! is the dimension

of the space of homogeneous polynomials of order m in n variables; it is natural in light

a nontrivial contribution to the set of resonances. The factor

of [FaTs12, Proposition 5.11], which locally reduces resonances to such polynomials.

The proof of Theorem 2 is outlined in Section 2. We use in particular the microlocal
method of Faure-Sjostrand [FaSj], defining Pollicott—Ruelle resonances as the points
A € C for which the (unbounded nonselfadjoint) operator

X+A:H = H, r>-CyRel, (1.6)

is not invertible. Here X is the vector field on SM generating the geodesic flow, so
that ¢, = e, H" is a certain anisotropic Sobolev space, and Cj is a fixed constant
independent of r, see Section 5.1 for details. Resonances do not depend on the choice
of r. Theorem 4 below relates this definition to the behavior of correlations.

We stress that our method provides an explicit relation between classical and quan-
tum states, that is between Pollicott—Ruelle resonant states (elements of the kernel
of (1.6)) and eigenstates of the Laplacian; that is, in addition to the poles of py,(N),
we describe its residues. For instance for the m = 0 band, if u(x,§), v € M, € S, M,
is a resonant state, then the corresponding eigenstate of the Laplacian, f(z), is ob-
tained by integration of u along the fibers S, M, see (2.3). On the other hand, to obtain
u from f one needs to take the boundary distribution w of f, which is a distribution
on the conformal boundary S™ of the hyperbolic space H"*! appearing as the leading
coefficient of a weak asymptotic expansion at S™ of the lift of f to H"*!. Then u is
described by w via an explicit formula, see (2.4); this formula features the Poisson
kernel P and the map B_ : SH"™ — S" mapping a tangent vector to the endpoint in
negative infinite time of the corresponding geodesic of H"*!. The explicit relation can
be schematically described as follows:

resonant U f Se b ¥ d§ | eigenstates
states of X of A
w P (wo B_) asymptotics at S”

boundary distributions
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For m > 0, one needs to also use horocyclic differential operators, see Section 2.

Theorem 2 used the notion of geometric multiplicity of a resonance \, that is, the
dimension of the kernel of X + X on H". For nonselfadjoint problems, it is often more
natural to consider the algebraic multiplicity, that is, the dimension of the space of
elements of H" which are killed by some power of X + \.

Theorem 3. If A\ ¢ —2% — —NO, then the algebraic and geometric multiplicities of A as
a Pollicott—Ruelle resonance coincide.

Theorem 3 relies on a pairing formula (Lemma 5.10), which states that

(u, u*>L2(SM) = me()\) <f, f*>L2(M;®m*25T*M)a

where u is a resonant state at some resonance A corresponding to some m, ¢ in The-
orem 2, u* is a coresonant state (that is, an element of the kernel of the adjoint of
(X + X)), f, f* are the corresponding eigenstates of the Laplacian, and F), ¢()) is an
explicit function. Here (u,u*)z> refers to the integral [wwu*, which is well-defined
despite the fact that neither u nor u* lie in L2 see (5.6). This pairing formula is
of independent interest as a step towards understanding the high frequency behavior
of resonant states and attempting to prove quantum ergodicity of resonant states in
the present setting. Anantharaman-Zelditch [AnZe07] obtained the pairing formula in
dimension 2 and studied concentration of Patterson—Sullivan distributions, which are
directly related to resonant states; see also [HHS].

To motivate the study of Pollicott—Ruelle resonances, we also apply to our set-
ting the following resonance expansion proved by Tsujii [Ts10, Corollary 1.2] and
Nonnenmacher-Zworski [NoZw13, Theorem 5]:

Theorem 4. Fixz ¢ > 0. Then for N large enough and f,qg in the Sobolev space
HY(SM),
Mult g ()

prolt) = / fdu / gdut S e (s g)ra+Opg(e-E ) (17)

Ae(=3,0) k=1

where uyy is any basis of the space of resonant states associated to A and uy, is the
dual basis of the space of coresonant states (so that ), uxy ®r2 uy, is the spectral
projector of —X at \).

Here we use Theorem 3 to see that there are no powers of ¢ in the expansion and
that there exists the dual basis of coresonant states to a basis of resonant states.

Combined with Theorem 2, the expansion (1.7) in particular gives the optimal ex-
ponent in the decay of correlations in terms of the small eigenvalues of the Laplacian;
more precisely, the difference between py4(t) and the product of the integrals of f and
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g is O(e™""), where

Vo = Ognin min{v +m |v € (0,5 —m), v(n —v) +m € Spec™(A)},
<m<Z

2

or O(e~(279)) for each £ > 0 if the set above is empty. Here Spec™(A) denotes the
spectrum of the Laplacian on trace-free divergence-free symmetric tensors of order m.
Using (1.4), we see that in fact one has v € [1, 5 —m) for m > 0.

In order to go beyond the O(e~(279)%) remainder in (1.7), one would need to handle
the infinitely many resonances in the m = 0 band. This is thought to be impossible
in the general context of scattering theory, as the scattering resolvent can grow expo-
nentially near the bands; however, there exist cases such as Kerr—de Sitter black holes
where a resonance expansion with infinitely many terms holds, see [BoHa, Dy12]. The
case of black holes is somewhat similar to the one considered here because in both cases
the trapped set is normally hyperbolic, see [Dy13] and [FaTs13b]. What is more, one
can try to prove a resonance expansion with remainder O(e~(3+1=9)) where the sum
over resonances in the first band is replaced by ((Ilof) o™, ¢) and Il is the projector
onto the space of resonant states with m = 0, having the microlocal structure of a
Fourier integral operator — see [Dy13] for a similar result in the context of black holes.

Previous results. In the constant curvature setting in dimension n+1 = 2, the spec-
trum of the geodesic flow on L? was studied by Fomin-Gelfand using representation
theory [FoGe]. An exponential rate of mixing was proved by Ratner [Ra] and it was ex-
tended to higher dimensions by Moore [Mo]. In variable negative curvature for surfaces
and more generally for Anosov flows with stable/unstable jointly non-integrable folia-
tions, exponential decay of correlations was first shown by Dolgopyat [Do] and then by
Liverani for contact flows [Li]. The work of Tsujii [Ts10, Ts12] established the asymp-
totic size of the resonance free strip and the work of Nonnenmacher—Zworski [NoZw13]
extended this result to general normally hyperbolic trapped sets. Faure—Tsujii [FaTs12,
FaTsl3a, FaTs13b] established the band structure for general smooth contact Anosov
flows and proved an asymptotic for the number of resonances in the first band.

In dimension 2, the study of resonant states in the first band (m = 0), that is
distributions which lie in the spectrum of X and are annihilated by the horocylic vector
field U_ appears already in the works of Guillemin [Gu, Lecture 3] and Zelditch [Ze],
both using the representation theory of PSL(2; R), albeit without explicitly interpreting
them as Pollicott—Ruelle resonant states. A more general study of the elements in the
kernel of U_ was performed by Flaminio—Forni [F1Fo].

A description of resonances in the case n = 1 (Theorem 1) can also be obtained us-
ing techniques involving the Selberg and Ruelle zeta functions. The singularities (zeros
and poles) of the Ruelle zeta function (or rather one of its components) correspond to
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Pollicott—Ruelle resonances (see [Fr86, Fr95], [GLP], and [DyZw]), while the singulari-
ties of the Selberg zeta function correspond to eigenvalues of the Laplacian. The Ruelle
and Selberg zeta functions are closely related, see [Fr86], [Le, Section 5.1, Figure 1],
and [DyZw, (1.2)], which makes it possible to derive the correspondence (1.1).

It is possible that the zeta function approach can be extended to higher dimensions,
even though the authors were unable to find in the literature a description featur-
ing the spectrum of the Laplacian on trace-free divergence-free symmetric tensors as
in (1.2), (1.3). We however use a direct spectral approach instead of zeta function tech-
niques as it gives an explicit relation between resonant states and eigenstates of the
Laplacian (see the remarks following (1.6)) and is a step towards a more quantitative
understanding of decay of correlations.

There is a wealth of research on the singularities of zeta functions on hyperbolic
manifolds (and more general symmetric spaces); we in particular note the book of
Juhl [Ju] and the works of Bunke-Olbrich [BuO195, BuOI196, BuO199, BuOIl01]. This
research in particular addresses the question of what happens at the exceptional points
(which in our case are contained in —% — iNj), relating the behavior of the zeta
functions at these points to topological invariants. It is interesting to note that [Ju,
Theorem 3.7] describes the spectral singularities of the Ruelle zeta function for n = 3
in terms of the spectrum of the Laplacian on functions and 1-forms, which is much
smaller than the set obtained in Theorem 2; this indicates that the contributions from
other terms in the Ruelle zeta function have to annihilate the terms coming from
m > 2 in our result, and that the Ruelle zeta function does not in fact describe all

Pollicott—Ruelle resonances.

An essential component of our work is the analysis of the correspondence between
eigenstates of the Laplacian on H"™! and distributions on the conformal infinity S*. In
the scalar case, such correspondence for hyperfunctions on S™ is due to Helgason [He70,
He74] (see also Minemura [Mi]); the correspondence between tempered eigenfunctions
of A and distributions (instead of hyperfunctions) was shown by Oshima—Sekiguchi [OsSe]
and Van Der Ban—Schlichtkrull [VdBSc] (see also Grellier—Otal [GrOt]). The ques-
tion of regularity of equivariant distributions on S™ by certain Kleinian groups of
isometries of H"! (geometrically finite groups) is interesting since it tells the regu-
larity of resonant states for the flow; precise regularity was studied by Otal [Ot] in
the 2-dimensional co-compact case, Grellier-Otal [GrOt] in higher dimensions, and
Bunke-Olbrich [BuO199] for geometrically finite groups. In dimension 2, the corre-
spondence between the eigenfunctions of the Laplacian on the hyperbolic plane and
distributions on the conformal boundary S' appeared in Pollicott [Po86b] and Bunke-
Olbrich [BuO196], it is also an important tool in the theory developed by Bunke-Olbrich
[BuOl01] to study Selberg zeta functions on convex co-compact hyperbolic manifolds
(see also the book of Juhl [Ju] in the compact setting). These distributions on the
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conformal boundary S™, of Patterson—Sullivan type, are also the central object of the
recent work of Anantharaman—Zelditch [AnZe07, AnZel2] studying quantum ergodic-
ity on hyperbolic compact surfaces; a generalization to higher rank locally symmetric
spaces was provided by Hansen—Hilgert—Schroder [HHS].

2. OUTLINE AND STRUCTURE

In this section, we give the ideas of the proof of Theorem 2, first in dimension 2 and
then in higher dimensions, and describe the structure of the paper.

2.1. Dimension 2. We start by using the following criterion (Lemma 5.1): A € C is
a Pollicott-Ruelle resonance if and only if the space

Resx(\) :={u e D'(SM) | (X +Nu=0, WF(u) C E}}

is nontrivial. Here D'(SM) denotes the space of distributions on M (see [HOI]),
WF(u) C T*(SM) is the wavefront set of u (see [Hol, Chapter 8]), and EX C T*(SM)
is the dual unstable foliation described in (3.15). It is more convenient to use the
condition WF(u) C E? rather than u € H" because this condition is invariant under
differential operators of any order.

The key tools for the proof are the horocyclic vector fields Uy on SM, pictured on
Figure 3(a) below. To define them, we represent M = I'\H?, where H? = {z € C |
Im z > 0} is the hyperbolic plane and T" C PSL(2;R) is a co-compact Fuchsian group
of isometries acting by M&bius transformations. (See Appendix B for the relation of
the notation we use in dimension 2, based on the half-plane model of the hyperbolic
space, to the notation used elsewhere in the paper which is based on the hyperboloid
model.) Then SM is covered by SH?, which is isomorphic to the group G := PSL(2; R)
by the map v € G — (y(7),dv(i) - i). Consider the left invariant vector fields on G
corresponding to the following elements of its Lie algebra:

A A T

then X, U, descend to vector fields on SM, with X becoming the generator of the
geodesic flow. We have the commutation relations

{Xv U:I:] - :l:Uztv [U-i-? U—] =2X. (22)
For each A and m € Ny, define the spaces

Vie(A) :={ueD'(SM) | (X +Nu=0, Uu=0, WF(u) C E},
Res (\) := Vi(\).
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By (2.2), U™(Resx(A)) C Resx(A+m). Since there are no Pollicott—Ruelle resonances
in the right half-plane, we conclude that

Resx(A) = V,,(A) for m > —Re .

We now use the diagram (writing Id = UY, Uy = UL for uniformity of notation)

0=V ——— Vi(\) ———— Vh(\) ————— V3(\) ———— ...
G
Res% (\) Res% (A + 1) Res (A +2)

where ¢ denotes the inclusion maps and unless A € —1 — %NO, we have
Vi1 (A) = Voo (A) @ UT(Res (A + m)),

and U is one-to-one on Res% (A +m); indeed, using (2.2) we calculate

umnuy =m) (H(Q)\ +m —i—j)) Id on Res%(\+m)

j=1
and the coefficient above is nonzero when A ¢ —1 — %No. We then see that
Resx(\) = @ U™ (Resk (A +m)).
m>0

It remains to describe the space of resonant states in the first band,
ResY(A\) = {u € D'(SM) | (X + Nu =0, U_.u=0, WF(u) C E’}.

We can remove the condition WF(u) C E? as it follows from the other two, see the
remark following Lemma 5.6. We claim that the pushforward map
u € Res} (\) — f(x) := / u(z,€)dS(€) (2.3)
SeM
is an isomorphism from Res% ()\) onto Eig(—A(1 + \)), where Eig(o) = {u € C(M) |
Au = ou}; this would finish the proof. In other words, the eigenstate of the Laplacian
corresponding to u is obtained by integrating u over the fibers of SM.

To show that (2.3) is an isomorphism, we reduce the elements of Res% ()\) to the
conformal boundary S* of the ball model B? of the hyperbolic space as follows:

Res'y () = {P(y, B-(y,€)) w(B-(y,€)) | w € Bd(\)}, (2.4)
where P(y,v) is the Poisson kernel: P(y,v) = ﬁy:'g‘;, yecB2 veSt B_:SB? — St

maps (y, &) to the limiting point of the geodesic ¢;(y, &) as t — —oo, see Figure 3(a);
and Bd(\) C D'(S') is the space of distributions satisfying certain equivariance prop-
erty with respect to I. Here we lifted Res% (\) to distributions on SH? and used the
fact that the map B_ is invariant under both X and U_; see Lemma 5.6 for details.
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It remains to show that the map w — f defined via (2.3) and (2.4) is an isomorphism
from Bd(\) to Eig(—A(n + A)). This map is given by (see Lemma 6.6)

f(y) = Pruly) = / Py, )" () dS(v) (2.5)

St
and is the Poisson operator for the (scalar) Laplacian corresponding to the eigenvalue
s(1—s), s = 14+A. This Poisson operator is known to be an isomorphism for A ¢ —1—N,
see the remark following Theorem 6 in Section 5.2, finishing the proof.

2.2. Higher dimensions. In higher dimensions, the situation is made considerably
more difficult by the fact we can no longer define the vector fields Uy on SM. To
get around this problem, we remark that in dimension 2, U_u is the derivative of u
along a certain canonical vector in the one-dimensional unstable foliation E, C T(SM)
and similarly U, u is the derivative along an element of the stable foliation Fg. (See
Section 4.2.) In dimension n + 1 > 2, the foliations E,, F are n-dimensional and one
cannot trivialize them. However, each of these foliations is canonically parametrized
by the following vector bundle £ over SM:

E, &) ={neT,M|nL} (x,8€SM
This makes it possible to define horocyclic operators
Up :D'(SM) — D'(SM; RFEY),

where ®7¢' stands for the m-th symmetric tensor power, and we have the diagram

0=V(\) ——Vi(\) ———— Vb(\) ————> V3(\) ——— ...
VRHMO Viﬂul viﬂzﬁ
Res% (A) Resy (A + 1) Res% (A + 2)

where V7' = (=1)™(UT")* and we put for a certain extension & of X to ®ZE*
Vie(A) i ={u e D' (SM) | (X +Nu=0, U"u=0, WF(u) C E'},
Resy(\) :={v e D'(SM;Q%E) | (X +Nv =0, U_v=0, WF(v) C E}}.

Similarly to dimension 2, we reduce the problem to understanding the spaces Res’y (),
and an operator similar to (2.3) maps these spaces to eigenspaces of the Laplacian on
divergence-free symmetric tensors. However, to make this statement precise, we have
to further decompose Res(A) into terms coming from traceless tensors of degrees
m,m — 2,m — 4,..., explaining the appearance of the parameter ¢ in the theorem.
(Here the trace of a symmetric tensor of order m is the result of contracting two of its
indices with the metric, yielding a tensor of order m — 2.) The procedure of reducing
elements of Res’y(A) to the conformal boundary S™ is also made more difficult since
the boundary distributions w are now sections of @' (7*S").
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A significant part of the paper is dedicated to proving that the higher-dimensional
analog of (2.5) on symmetric tensors is indeed an isomorphism between appropriate
spaces. To show that the Poisson operator & is injective, we prove a weak expansion
of f(y) € C®(B™*!) in powers of 1—|y| as y € B"™! approaches the conformal boundary
S™; since w appears as the coefficient in one of the terms of the expansion, &, w =0
implies w = 0. To show the surjectivity of &2}, we prove that the lift to H"*! of every
trace-free divergence-free eigenstate f of the Laplacian admits a weak expansion at
the conformal boundary (this requires a fine analysis of the Laplacian and divergence
operators on symmetric tensors); putting w to be the coefficient next to one of the
terms of this expansion, we can prove that f = 2, w.

2.3. Structure of the paper.

e In Section 3, we study in detail the geometry of the hyperbolic space H"*!,
which is the covering space of M;

e in Section 4, we introduce and study the horocyclic operators;

e in Section 5, we prove Theorems 2 and 3, modulo properties of the Poisson
operator;

e in Sections 6 and 7, we show the injectivity and the surjectivity of the Poisson
operator;

e Appendix A contains several technical lemmas;

e Appendix B shows how the discussion of Section 2.1 fits into the framework of
the remainder of the paper;

e Appendix C shows a Weyl law for divergence free symmetric tensors and relates
the m =1 case to the Hodge Laplacian.

3. GEOMETRY OF THE HYPERBOLIC SPACE

In this section, we review the structure of the hyperbolic space and its geodesic flow
and introduce various objects to be used later, including;:

e the isometry group G of the hyperbolic space and its Lie algebra, including the
horocyclic vector fields U (Section 3.2);

e the stable/unstable foliations Ej, £, (Section 3.3);

e the conformal compactification of the hyperbolic space, the maps B, the co-
efficients @, and the Poisson kernel (Section 3.4);

e parallel transport to conformal infinity and the maps AL (Section 3.6).

3.1. Models of the hyperbolic space. Consider the Minkowski space R ™! with

the Lorentzian metric
n+1

g = dxj — de?
j=1
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The corresponding scalar product is denoted (-,-)y;. We denote by eg,...,e,.1 the
canonical basis of RV,

The hyperbolic space of dimension n+1 is defined to be one sheet of the two-sheeted
hyperboloid
H" = {z e RY"™ | (z,2) 0 = 1, 39 >0}

equipped with the Riemannian metric
gm = —gu|TEn+r.
We denote the unit tangent bundle of H" ™! by
SH'™ = {(z,€) [z € ", £ € R™™, (£, m = —1, (z.§)m =0} (3.1)

Another model of the hyperbolic space is the unit ball B"* = {y € R"™!:|y| < 1},
which is identified with H"** C R'"*! via the map (here x = (zg,2') € R x R"™)

.T,

- H — B r) = . T (y) = 1+ |yl? 2y). 3.2
(0 U(z) e L (v) 1_|y|2( lyl*, 2y) (32)
and the metric gy pulls back to the following metric on B"*!:
4 dyy?
Vg = s 3.3
W = e 33
We will also use the upper half-space model U™ = R x R? with the metric
I dzg + dz2?
(,QD 1¢1 1) gH = 022 5 (34)
0

where the diffeomorphism 1) : B"™! — U™ is given by (here y = (y1,7') € R x R")

(]' B |y|272y/) (Zg + |Z|2 - 1a 22)

Diyy) = 5=, U (20,2) = 1+ 20)2 + |22

- ) 35
L+ [yl — 2y (3:5)

3.2. Isometry group. We consider the group
G =PSO(1,n+1) C SL(n + 2;R)

of all linear transformations of RY"*! preserving the Minkowski metric, the orientation,
and the sign of xy on timelike vectors. For x € R'"™! and v € G, denote by v - x
the result of multiplying x by the matrix . The group G is exactly the group of
orientation preserving isometries of H"™!: under the identification (3.2), it corresponds
to the group of direct Mobius transformations of R™™! preserving the unit ball.

The Lie algebra of GG is spanned by the matrices
X =Fo1+FEio, Ax=EFEox+ Ero, Rij=Ei;—Ej; (3.6)
for i,j > 1 and k > 2, where E; ; is the elementary matrix if 0 <4, j < n+ 1 (that is,
E; jer, = d;1e;). Denote fori =1,...,n

U :=—Ais1 — Ry, U7 = =4+ Ruin (3.7)

(2 K3



POWER SPECTRUM OF HYPERBOLIC MANIFOLDS 13

By (x,6)

exp(U3)(@,€)

(a) (b)

FIGURE 3. (a) The horocyclic flows exp(+U;") in dimension n + 1 = 2,
pulled back to the ball model by the map ¢ from (3.2). The thick lines
are geodesics and the dashed lines are horocycles. (b) The map A, and
the parallel transport of an element of £ along a geodesic.

and observe that X, U;“, U7, Rit14+1 (for 1 <14 < j < n) also form a basis. Henceforth
we identify elements of the Lie algebra of G with left invariant vector fields on G.

We have the commutator relations (for 1 < 4,7,k < n and i # j)
[X’ Uz:t] = :l:Ui:t7 [Uii7 U]i] =0, [Ui+v Uz_] =2X, [Uiiv U]?F] = 2Ri+17j+17

3.8
[Riy141, X] =0, [Rit141, Uzit] = 5ﬂfUii - 5ikUJ'lL‘ &

The Lie algebra elements UijE are very important in our argument since they generate
horocylic flows, see Section 4.2. The flows of Ul in the case n = 1 are shown in
Figure 3(a); for n > 1, the flows of U7 do not descend to SH™**.

The group G acts on H"*! transitively, with the isotropy group of ¢y € H"*! iso-
morphic to SO(n + 1). It also acts transitively on the unit tangent bundle SH"!, by
the rule v.(z, &) = (v -z, - £), with the isotropy group of (e, e;) € H*"™ being

H={yeG|v-e=ey, 7 €1 =e1} ~S0(n). (3.9)

Note that H is the connected Lie subgroup of G with Lie algebra spanned by R; 1 ;41
for 1 <4,57 < n. We can then write SH""! ~ G/H, where the projection 7g : G —
SH"*! is given by

ms(7) = (7 e, e1) € SH™, 7 €G. (3.10)

3.3. Geodesic flow. The geodesic flow,
@y SH™™ — SH™,  t € R,
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is given in the parametrization (3.1) by
i(x, &) = (xcosht + {sinht, zsinht + € cosh t). (3.11)

We note that, with the projection 7g : G — SH"*! defined in (3.10),

©i(ms(7)) = ms (v exp(tX)),

where X is defined in (3.6). This means that the generator of the geodesic flow can
be obtained by pushing forward the left invariant field on G generated by X by the
map 7g (which is possible since X is invariant under right multiplications by elements
of the subgroup H defined in (3.9)). By abuse of notation, we then denote by X also
the generator of the geodesic flow on SH"™*i:

X =¢0p+z- 0. (3.12)

We now provide the stable/unstable decomposition for the geodesic flow, demonstrat-
ing that it is hyperbolic (and thus the flow on a compact quotient by a discrete group
will be Anosov). For p = (z,§) € SH"!, the tangent space T,(SH"™) can be written
as

T,(SH™ ) = {(va, ve) € (RM™)? | (2, 0,) = (€, ve)mr = (2, ve)m + (€, va)ur = 0}
The differential of the geodesic flow acts by
dei(p) - (v, ve) = (v, cosht + ve sinh ¢, v, sinh ¢ + ve cosh ).

We have T,(SH™) = E%(p) @ T,(SH™'), where E°(p) := RX is the flow direction
and

Tp(SH™) = {(vs,v¢) € RV | (w,0)ar = (2, ve)ar = (€, v)ar = (€, v) s = 0},
and this splitting is invariant under dg,. A natural norm on 7,(SH"*!) is given by the
formula

|(Uxavf>|2 = _<Umyvx>M - <U§7U§>M7 (313)

using the fact that v,,ve are Minkowski orthogonal to the timelike vector x and thus
must be spacelike or zero. Note that this norm is invariant under the action of G.

We now define the stable/unstable decomposition T;,(SH"“) = Ei(p)® Eu(p), where
Eq(p) :=A{(v, —v) [ (z,v)ar = (§, v)m = O},
Eu(p) = {(v,v) | {z, v} = (§,v)m = 0}

Then T,(SH™™') = Ey(p) @ Es(p) @ E.(p), this splitting is invariant under ¢, and
under the action of G, and, using the norm from (3.13),

(3.14)

[dei(p) - w| = e Mw|, w e Ey(p); |dei(p) - w| = e'lw|, we Ey(p).
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Finally, we remark that the vector subbundles E, and F, are spanned by the left-
invariant vector fields U;", ..., U and Uy, ..., U, from (3.7) in the sense that

meEs = span(U;", ..., UM @by, wtE,=span(U;,...,U,)®b.

Here 7n5E; := {(v,w) € TG | (ms(7),dns(y) - w) € Es} and 75 E, is defined similarly;
b is the left translation of the Lie algebra of H, or equivalently the kernel of drmg.
Note that while the individual vector fields Ui, ..., U¥ are not invariant under right
multiplications by elements of H in dimensions n+ 1 > 2 (and thus do not descend to
vector fields on SH™™! by the map 7g), their spans are invariant under H by (3.8).

The dual decomposition, used in the construction of Pollicott—Ruelle resonances, is
T;(SH™™) = Ej(p) © E;(p) & E;(p), (3.15)

where Ej(p), EX(p), EX(p) are dual to Ey(p), Eu(p), Es(p) in the original decomposition
(that is, for instance EZ(p) consists of all covectors annihilating Fy(p) & Es(p)). The
switching of the roles of F, and FE, is due to the fact that the flow on the cotangent
bundle is (dp; *)*.

3.4. Conformal infinity. The metric (3.3) in the ball model B"*! is conformally
compact; namely the metric (1 — |y|?)%(¢¥"!)*gn continues smoothly to the closure
Bn+1, which we call the conformal compactification of H"'': note that H"' embeds
into the interior of B"+! by the map (3.2). The boundary S* = dB"+!, endowed with
the standard metric on the sphere, is called conformal infinity. On the hyperboloid
model, it is natural to associate to a point at conformal infinity v € S™ the lightlike ray
{(s,sv) | s > 0} C RV note that this ray is asymptotic to the curve {(v/1 + s2, sv) |
s > 0} C H""! which converges to v in B+,

Take (z,€) € SH™™. Then (z + & x4+ &)y = 0 and zg + & > 0, therefore we can
write

T+ 5 = q):t(l',f)<1, Bi(l’,f)),
for some maps
o, : SH"™ — R, By:SH"™ —S" (3.16)

Then By (x,§) is the limit as t — +oo of the z-projection of the geodesic p;(x,&) in
Brtl:

Bi($a€> = tlg:nooﬂ-(got(xaf))a ™ SHnJrl — HnJrl-

Note that this implies that for X defined in (3.12), dBy - X = 0 since Bi(ps(z,§)) =
By(z,€) for all s € R. Moreover, since ®.(¢4(z,£)) = e (o + &) = €'®r(z,&) from
(3.11), we find

X, = +0,. (3.17)
For (z,v) € H"™ x S" (in the hyperboloid model), define the function

Pz, v) = (vo— 2’ -v)' = ({z,(L,v))a)"Y,  if 2 = (wg,2") € H"'. (3.18)
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Note that P(z,v) > 0 everywhere, and in the Poincaré ball model B"*!, we have

. -yl
P~ (y),v) = 75,
W = 2
which is the usual Poisson kernel. Here 9 is defined in (3.2).

For (x,v) € H""! x S", there exist unique {4 € S,H"™! such that By(z,&y) = vt
these are given by

y € B" (3.19)

Ex(z,v) = Fo £ P(x,v)(1,v) (3.20)

and the following formula holds
Oy (z,&s(x,v)) = P(x,v). (3.21)

Notice that the equation By(z,&4(z,v)) = v implies that By are submersions. The
map v — &4 (x, V) is conformal with the standard choice of metrics on S™ and S, H"*;
in fact, for (;,(, € T, S™,

(0us(z,v) - (1, 08x(x,v) - @)m = —P(2,v)*(C1, ) pnsr. (3.22)
Using that (x + &,z — &) = 2, we see that

Oy (2, 8)P (2, ) (1 = By(z,§) - B_(2,§)) = 2. (3.23)

One can parametrize SH**! by

1 P
(V—a Vi, 8) = (B_((I,’7 5)7 B+(I’7 6)7 5 IOg %) < (STL X Sn)A X R? (324)
where (S"xS™)a is S" xS minus the diagonal. In fact, the geodesic v(t) = ¢y(x, §) goes
from v_ to vy in B"t! and ~(—s) is the point of 7 closest to ey € H"™! (corresponding
to 0 € B"™!). In the parametrization (3.24), the geodesic flow ¢; is simply

(Vfaer?S) = (V*7V+7S+t)'

We finally remark that the stable/unstable subspaces of the cotangent bundle E*, E¥ C

T*(SH"™), defined in (3.15), are in fact the conormal bundles of the fibers of the maps
Bii

Ei(p) = N*(B;'(B:+(p))), Ei(p) = N*(BZN(B_(p))), peSH'.  (3.25)

This is equivalent to saying that the fibers of B, integrate (i.e. are tangent to) the
subbundle Ey®E, C T(SH™), while the fibers of B_ integrate the subbundle Ey® E,,.
To see the latter statement, for say B,, it is enough to note that dB, - X = 0 and
differentiation along vectors in F annihilates the function x + £ and thus the map
B, ; therefore, the kernel of dB, contains Ej @ Ey, and this containment is an equality
since the dimensions of both spaces are equal to n + 1.
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3.5. Action of G on the conformal infinity. For v € G and v € §", v - (1,v)

is a lightlike vector with positive zeroth component. We can then define N, (v) > 0,
L,(v) € S* by

7 (L) = N, ()L, Ly (1)), (3.26)
The map L. gives the action of G on the conformal infinity S = 9B»+!. This action
is transitive and the isotropy groups of +e; € S™ are given by

Hy={yeG|3s>0:7 (egte1) =s(egter)} (3.27)

The isotropy groups H. are the connected subgroups of G with the Lie algebras gen-
erated by R;y1 ;41 for 1 <i < j <n, X, and Ul-i for 1 <7 < n. To see that Hy are
connected, for n = 1 we can check directly that every v € Hi can be written as a
product e!XesUi for some ¢,s € R, and for n > 1 we can use the fact that S" ~ G/H.
is simply connected and G is connected, and the homotopy long exact sequence of a
fibration.

The differentials of N, and L, (in ) can be written as

_ 7 (0,9) = ([dN,(v) - (1, Ly (v))
N, (v) 7

here ¢ € T,S". We see that the map v — L,(v) is conformal with respect to the
standard metric on S", in fact for (y,(; € T,S™,

(dLy(v) - 1, ALy (V) - G)rmwir = Ny (v) (G, Go)roen.

The maps By : SH"™ — S" are equivariant under the action of G:

Bﬂ:(’Y(;aé)) = L'Y<B:|:<'r7£))

Moreover, the functions ®,(x, ) and P(x,v) enjoy the following properties:

O (7.(2,€)) = Ny(Bx(, )@ (2,6),  Ply-x,Ly(v) = Ny(v)P(x,v). (3.28)

dNW(V)'C: <dI077'(07C)>7 (OadLv(V)C)

3.6. The bundle £ and parallel transport to the conformal infinity. Consider
the vector bundle £ over SH"*! defined as follows:

E={(z,¢,v) € SH"™ x T,H"™ | g (&,v) =0},

i.e. the fibers £(z,&) consist of all tangent vectors in T,H"! orthogonal to &; equiva-
lently, &(z, £) consists of all vectors in R1™*! orthogonal to z and £ with respect to the
Minkowski inner product. Note that G naturally acts on £, by putting v.(x, &, v) :=
(v @y &)

The bundle £ is invariant under parallel transport along geodesics. Therefore, one
can consider the first order differential operator

X2 CO(SH™ €) — C(SH™; €) (3.29)
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which is the generator of parallel transport, namely if v is a section of £ and (z,§) €
SH™ ! then Xv(z,&) is the covariant derivative at ¢ = 0 of the vector field v(t) :=
v(pi(z,€)) on the geodesic ¢y(x,&). Note that E(pi(x,€)) is independent of t as a
subspace of RY*!1 and under this embedding, X just acts as X on each coordinate
of v in R¥*! The operator %X is a symmetric operator with respect to the standard
volume form on SH"*! and the inner product on £ inherited from TH"*!.

We now consider parallel transport of vectors along geodesics going off to infinity.
Let (z,€) € SH"™ and v € T,H" . We let (z(t),£(t)) = iz, £) be the corresponding
geodesic and v(t) € T,u»H"*! be the parallel transport of v along this geodesic. We
embed v(f) into the unit ball model B"*! by defining

w(t) = d(a(t)) - v(t) € R™,
where 1 is defined in (3.2). Then w(t) converges to 0 as t — +oo, but the limits
limy 400 Zo(t)w(t) are nonzero for nonzero v; we call the transformation mapping v to
these limits the transport to conformal infinity as t — +oo. More precisely, if
v=cl+u, ucé(xl),

then we calculate

lim zo(t)w(t) = £eBy(z, &) + u' — ugB+(z,§), (3.30)

t—+o0

where By(z,£) € S" is defined in Section 3.4. We will in particular use the inverse
of the map &£(z,§) 3 u — u — uyBy(2,§) € Tp,(xeS™: for (x,§) € SH"' and
¢ € T (z¢)S", define (see Figure 3(b))

_ _ 0@ Ba(r.9)
A €)C = (0.0) = (0.0), ahurle £6) = £ P E s

Here &4 is defined in (3.20). Note that by (3.22), AL is an isometry:

€ &(x,6). (3.31)

|"4‘Z|:(:L‘7§>C|QH = |C|R"> C € TBi($y§)Sn’ (332)
Also, A, is equivariant under the action of G:
As(y 2,7 -€) - dLy(Be(w,€)) - ¢ = No(B(2,€)) " v - (Ax(2, §)0). (3.33)

We now write the limits (3.30) in terms of the 0-tangent bundle of Mazzeo—Melrose [MaMe].
Consider the boundary defining function pgy := 2(1 — |y|)/(1 + |y|) on B"*1; note that
in the hyperboloid model, with the map 1 defined in (3.2),

\/CL’O +1— \/ZL‘O —1
=2

Vag+ 1+ ag—1
The hyperbolic metric can be written near the boundary as gy = (dpg + h,,)/p3 with
h,, a smooth family of metrics on S™ and hy = d#? is the canonical metric on the
sphere (with curvature 1).

po(¥(z)) =25+ O(zp?)  as zp — oo (3.34)
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Define the O-tangent bundle °TB"*+! to be the smooth bundle over B"+! whose
smooth sections are the elements of the Lie algebra Vy(B"1) of smooth vectors fields
vanishing at S" = Br+1 N {po = 0}; near the boundary, this algebra is locally spanned
over C=(Bn*1) by the vector fields pyd,,, P00a,, - - - , pode, if 0; are local coordinates on
S". Note that °TB»+! naturally embeds into TB"*+! and this embedding is an isomor-
phism when restricted to the interior B"*'. We denote by °7*B"+! the dual bundle
to OTB"+1, generated locally near py = 0 by the covectors dpy/po, df1/po, - - . , by / po.
Note that 7*B»+! naturally embeds into °7*Bn+! and this embedding is an isomor-
phism in the interior. The metric gy is a smooth non-degenerate positive definite
quadratic form on °TB*1 that is gy € C=(Bn+1; @%(°T*Bn+1)), where ®% denotes
the space of symmetric 2-tensors.

We can then interpret (3.30) as follows: for each (y,n) € SB"™ and each w €
T,B"!, the parallel transport w(t) of w along the geodesic ¢;(y,n) (this geodesic
extends smoothly to a curve on B""!, as it is part of a line or a circle) has limits
as t — +oo in the O-tangent bundle °TB"*!. In fact (see [GMP, Appendix A]), the
parallel transport

7_(y/7 y> . OTan+1 N OTy/BnJrl
from y to 3y’ € B"*! along the geodesic starting at y and ending at 3 extends smoothly
to the boundary (y,y') € B*+1 x Bn+1\ diag(S" x S") as an endomorphism 7, B"+! —

0T, Br+1, where diag(S™ x S") denotes the diagonal in the boundary; this parallel
transport is an isometry with respect to gg. Same properties hold for parallel transport

of covectors in T*B"+!, using the duality provided by the metric gy. An explicit
relation to the maps AL is given by the following formula:

Ax(z,€) - ¢ = di(x) " 7((x), Be(,€)) - (poC), (3.35)

where po¢ € "Tp, (»e)B"! is tangent to the conformal boundary S™.

4. HOROCYCLIC OPERATORS

In this section, we build on the results of Section 3 to construct horocyclic operators
Uy : D'(SH" Y @IE*) — D/(SH™; @/ T1EX).

4.1. Symmetric tensors. In this subsection, we assume that E is a vector space of
finite dimension N, equipped with an inner product gg, and let E* denote the dual
space, which has a scalar product induced by gg (also denoted gg). (In what follows,
we shall take either £ = £(x,€) or E = T,H" for some (z,£) € SH"™, and the
scalar product gg in both case is given by the hyperbolic metric gy on those vector
spaces.) In this section, we will work with tensor powers of E*, but the constructions
apply to tensor powers of F by swapping F with E*.
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We introduce some notation for finite sequences to simplify the calculations below.
Denote by /™ the space of all sequences K = ky...k, with 1 < k, < N. For
kv...ky, €™ j1...5. € &7, and a sequence of distinct numbers 1 < ¢q,.... ¢, < m,
denote by

{1 =41, b = § ) K € /™
the result of replacing the ¢,th element of K by j,, for all p. We can also replace some

of j, by blank space, which means that the corresponding indices are removed from
K.

For m > 0 denote by @™ E* the mth tensor power of £* and by ®¢ E* the subset of
those tensors which are symmetric, i.e. u € ®§E* if u(vyqy, .. Vom)) = w(ve, ..., vp)
forallo € II,, and all vy, ..., v, € E, where II,, is the permutation group of {1,...,m}.
There is a natural linear projection S : " E* — QT E* defined by

* * 1 * * * *
S @ @m)=— Y oy ® @y, T EE (4.1)

’ o€ll,

The metric gg induces a scalar product on ®™E* as follows

m
W@ @, wi @ @wh)ge = [[(v),w))gs, w0} € B,
j=1
The operator S is self-adjoint and thus an orthogonal projection with respect to this
scalar product.

Using the metric gg, one can decompose the vector space @7 as follows. Let (e;)Y;
be an orthonormal basis of F for the metric gr and (e}) be the dual basis. First of
all, introduce the trace map 7 : "2 E* — ®@™E* contracting the first two indices by
the metric: for v; € E, define

N
T(u)(vy, ..., Up_g) = Zu(ei, €, U1, .., Up_2) (4.2)
i=1
(the result is independent of the choice of the basis). For m < 2, we define T to be
zero on ®™E*. Note that T maps ®§T2E* onto @7 E*. Set

e =€, ®--- e, €Q'E, K=k . ke

T( > fKe*K> = > > fuxei

Kegmt2 Kedg™ qedf

Then

The adjoint of T : @42 E* — @7 E* with respect to the scalar product g is given by
the map u — S(gr ® u). To simplify computations, we define a scaled version of it:
let 7 : @UE* — @%T?E* be defined by

(m+2)(m+1)
2

(m+2)(m+1)

Z(u) = 5

S(gp®@u) = T (u). (4.3)
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Then
m—+2
I( Z fKe}) = Z Z gk fo= sy €
Kedgm™ Keg/m+2 f ot
Note that for u € QT E*,
T(Zu) = 2m + N)u +Z(Tu). (4.4)

By (4.3) and (4.4), the homomorphism 77 : ¥ E* — Q¥ E* is positive definite and
thus an isomorphism. Therefore, for v € ®¥E*, we can decompose u = uy + Z(us),
where u; € ®TE* satisfies T(u;) = 0 and uy = (TZ)"'Tu € ®%?E*. Tterating this
process, we can decompose any u € @ E* into

Lm/2]
u = Z 7' (u,), u, €RLTE* T(u,) =0, (4.5)

with u, determined uniquely by u.

Another operation on tensors which wil be used is the interior product: if v € F
and u € @2 E*, we denote by 1,(u) € ®% ' E* the interior product of u by v given by

Low(V1, ooy Ume1) = w(V, V1, Uyt ).

If v* € E*, we denote t,+u for the tensor v,u with gg(v, ) = v*.

We conclude this section with a correspondence which will be useful in certain cal-
culations later. There is a linear isomorphism between ®%'E* and the space Pol™(E)
of homogeneous polynomials of degree m on E: to a tensor u € ®§ E* we associate
the function on F given by z — P,(z) := u(x, ..., z). If we write z = 3. z;e; in a
given orthonormal basis then

x):kaj, K=k.. k,ecad™.

The flat Laplacian associated to gg is given by Ap = — ZZ 1 83 in the coordinates
induced by the basis (e;). Then it is direct to see that

ApP,(x) = —m(m — 1)Pry(z), we ¢E". (4.6)

which means that the trace corresponds to applying the Laplacian (see [DaSh, Lemma
2.4]). In particular, trace-free symmetric tensors of order m correspond to homoge-
neous harmonic polynomials, and thus restrict to spherical harmonics on the sphere
|z|4, = 1 of E. We also have

(m+2)(m+1

Pry(z) = 5 )|x|2Pu(x), u € QILE" (4.7)
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4.2. Horocyclic operators. We now consider the left-invariant vector fields X, U,
Ri11 41 on the isometry group G, identified with the elements of the Lie algebra of G
introduced in (3.6), (3.7). Recall that G acts on SH™"! transitively with the isotropy
group H ~ SO(n) and this action gives rise to the projection 75 : G — SH"*! —
see (3.10). Note that, with the maps ® : SH*™ — R* By : SH"™ — S" defined
in (3.16), we have

Bi(ms(7)) = Ly(Fer),  Pxlms(7)) = Ny(Fer),  v€G,

where N, : S* — R* L, : S* — S" are defined in (3.26). Since Hy, the isotropy
group of +e; under the action L., contains X, U;" in its Lie algebra (see (3.27) and
Figure 3(a)), we find

d(Biomg) -Uf =0, d(Bioms)-X =0. (4.8)
We also calculate
d(®soms) - UF = 0. (4.9)
Define the differential operator on G
Ue=Up ..U, K=ki. kypeod™

Note that the order in which &y, ..., k,, are listed does not matter by (3.8). Moreover,
by (3.8)

[Ri+17j+1v Ulj(:] - Z(éjkéU{ﬂz—n’}K - 5isz«{:‘z—>j}K)' (410)
=1
Since H is generated by the vector fields R; 1 41, we see that in dimensions n+1 > 2
the horocyclic vector fields U:", and more generally the operators U ;, are not invariant
under right multiplication by elements of H and therefore do not descend to differential
operators on SH™! — in other words, if u € D'(SH"'), then Uz (r%u) € D'(G) is not
in the image of 7.

However, in this section we will show how to differentiate distributions on SH"*!
along the horocyclic vector fields, resulting in sections of the vector bundle £ introduced
in Section 3.6 and its tensor powers. First of all, we note that by (3.14), the stable
and unstable bundles F(z,§) and E,(x,&) are canonically isomorphic to £(z, &) by
the maps

0, :E(x, &) = Es(x,8), 0_:E(x,&) = Eu(x,§), 0+(v) =(—v,tv).

For v € D'(SH"™), we then define the horocyclic derivatives Usu € D'(SH™; £) by
restricting the differential du € D'(SH™; T*(SH"™!)) to the stable/unstable foliations
and pulling it back by 60

Usu(z, &) == du(x,&) 00y € E*(z,§). (4.11)
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To relate Uy to the vector fields Uii on the group G, consider the orthonormal frame
e, ...,ej of the bundle 75€ over G defined by

e;(v) =7 "(ej1) € E(ms(7))-

where the e = dx; form the dual basis to the canonical basis (€;) -0, n+1 of RV and

.....

i
v = (v (REPH* — (RYT)*. More generally, we can define the orthonormal
frame ej; of 75(®™E*) by

ey =e€, ®---®e, , K=k. k,ecad™

We compute for v € D'(SH"), du(ms(7)) - 0+(v(ej11)) = Uji(ﬂgu)('y) and thus

m

m5(Usu) = Y Ui (msu)el. (4.12)

j=1
We next use the formula (4.12) to define Uy as an operator

Uy : D'(SH", @"E*) — D'(SH™ M @™ H1e™) (4.13)
as follows: for u € D'(SH"™'; @™E*), define Uru by

Ts(Usu) = Z Z U UK )€, Teu = Z U€. (4.14)

j=1 Kegm™ Keagm™

This definition makes sense (that is, the right-hand side of the first formula in (4.14)
lies in the image of 7%) since a section

f= > frei € D'(SH";75(&"E")), fx € D'(G)
Kegm
lies in the image of 7§ if and only if R; 11 j41f = 0for 1 < i < j < n (the differentiation
is well-defined since the fibers of 7§(®™E*) are the same along each integral curve of
R;+1+41), and this translates to

m

Rij1jnfx = Z(éjkgf{éﬁi}l( — Ok Je—jyx), 1<i<j<n, Kea™;, (4.15)
=1

it remains to use (4.10).

To interpret the operator (4.13) in terms of the stable/unstable foliations in a man-
ner similar to (4.11), consider the connection V* on the bundle £ over SH"™! defined
as follows: for (z,&) € SH"™, (v,w) € Tiue(SH™™M), and u € D'(SH"™;E), let
V(Sv’w)u(x,&) be the orthogonal projection of V]ﬁiglu(:ﬂ,f) onto &(x,&) C R
where VE""™" is the canonical connection on the trivial bundle SH™ x R over
SH"™*! (corresponding to differentiating the coordinates of u in R¥"*1). Then V¥ nat-
urally induces a connection on ®™E*, also denoted V7, and we have for v, vy, ..., v, €
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E(z,€) and u € D/ (SH™; @™mE*),
u:l:“(‘r’ g)(vv U1y .- 7vm) = (vgﬂ:(v)u)<vlv s 7Um)' (416)

Indeed, if y(t) = 7(0)6“]1i is an integral curve of UjjE on G, then y(t)es,...,v(t)ent1
form a parallel frame of £ over the curve (z(t),£&(t)) = ms(y(t)) with respect to V¥,
since the covariant derivative of y(t)ex in t with respect to VR s simply v(t)Ujiek;
by (3.7) this is a linear combination of z(t) = v(t)ep and &(t) = v(t)e; and thus
Vi(v(t)er) = 0.

Note also that the operator X' defined in (3.29) can be interpreted as the covariant
derivative on &€ along the generator X of the geodesic flow by the connection V. One
can naturally generalize X’ to a first order differential operator

X D(SH" @) — D/(SH" ! @™E*) (4.17)

and %X is still symmetric with respect to the natural measure on SH"*! and the inner
product on ®™E* induced by the Minkowski metric. A characterization of X in terms
of the frame ej; is given by

Te(Xu) = Z (Xug)ey, mou= Z U €. (4.18)
Kegm™ Keg™
It follows from (3.8) that for v € D'(SH"™; @™mE*),
Xuiu - L{ié’(u = j:uiu (419)

We also observe that, since [UF, U ji] = 0, for each scalar distribution u € D’(SH"*!)
and m € N, we have U'u € D'(SH"!; @7'E*), where 'E* C ™E* denotes the space
of all symmetric cotensors of order m. Inversion of the operator U}" is the topic of the
next subsection. We conclude with the following lemma describing how the operator
U acts on distributions invariant under the left action of an element of G:

Lemma 4.1. Let v € G and v € D'(SH"™!). Assume also that u is invariant under
left multiplications by v, namely u(vy.(z,€)) = u(x, &) for all' (x,€) € SH" . Then
v =UTu is equivariant under left multiplication by v in the following sense:

U(7.<JZ,§)) = 7‘”(‘%5)7 (420)

where the action of v on KTE* is naturally induced by its action on &, which in turn
comes from the action of v on RLHL,

Proof. We have for v/ € G,
Ulu(rs(v)) = Y (Uig(uoms)(v))e(7)-

Kegm™

IStrictly speaking, this statement should be formulated in terms of the pullback of the distribution
u by the map (z,£) — v.(x,§).
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Therefore, since U ]i are left invariant vector fields on G,

UTu(yms(y)) = UTu(ms(1) = D (U(uoms)(7)ek(vy).

It remains to note that e (vy') = v.ex (7). O

4.3. Inverting horocyclic operators. In this subsection, we will show that distribu-
tions v € D'(SH"™; @7'E*) satisfying certain conditions are in fact in the image of U7’
acting on D'(SH™*!). This is an important step in our construction of Pollicott—Ruelle
resonances, as it will make it possible to recover a scalar resonant state corresponding
to a resonance in the mth band. More precisely, we prove

Lemma 4.2. Assume that v € D'(SH"; @7E*) satisfies Urv = 0, and Xv = +\v for
A & 1Z. Then there exists u € D'(SH™™) such that UTu = v and Xu = £(\ — m)u.
Moreover, if v is equivariant under left multiplication by some v € G in the sense
of (4.20), then u is invariant under left multiplication by ~y.

The proof of Lemma 4.2 is modeled on the following well-known formula recovering
a homogeneous polynomial of degree m from its coefficients: given constants a, for
each multiindex « of length m, we have

1
o Z —x%aq = ag, |8 = m. (4.21)
a!

laj=m

The formula recovering u from v in Lemma 4.2 is morally similar to (4.21), with U ji
taking the role of 0., the condition Urv = 0 corresponding to a, being constants,
and U ;F taking the role of the multiplication operators x;. However, the commutation
structure of Uji, given by (3.8), is more involved than that of J,, and x; and in
particular it involves the vector field X, explaining the need for the condition Xv =
+\v (which is satisfied by resonant states).

To prove Lemma 4.2, we define the operator
Vi D(SH' @™ e*) — DI(SH M, @™EY), Vi = TlUs,

where T is defined in Section 4.1. Then by (4.14)

c(Vyiu) = Z Z U Ugk )€, U= Z UK€

Kedg™ qcof Kegmtl

For later use, we record the following fact:

Lemma 4.3. U} = =V, where the adjoint is understood in the formal sense.
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Proof. If w € C°(SH"™; @™E*), v € C®°(SH"; @™ *H1E*) and uy, vy are the coor-
dinates of m{u and w5v in the bases (€} )kexm and (€%)jcym+1, then by (4.14), we
compute the following pointwise identity on SH"*!:

(U, ) + (u,Viv) = Vow, w e CP(SH™LEY), mhw= > uxtre;.

Keag™
qE A

It remains to show that for each w, the integral of Viw is equal to zero. Since V. is a
differential operator of order 1, we must have

/ V:I:w = / <w7 77:|:>
SH7L+1 SHn+1

for all w and some ny € C*®°(SH";£*) independent of w. Then 74 is equivariant
under the action of the isometry group G and in particular, |74| is a constant function
on SH"™'. Moreover, using that [ X f = 0 for all f € C°(SH"™) and Vi (Xw) =
(X F1)Viw, we get for all w € C§°,

- / (w,n2) = / Vy(Xw) = — / (w, Xipa).
SHn+1 SHn+1 SHn+1

This implies that Xny = +n4 and in particular

X|nel? = 2(Xne,ne) = £2|n %

Since |n+|? is a constant function, this implies . = 0, finishing the proof. O

To construct u from v in Lemma 4.2, we first handle the case when T (v) = 0; this
condition is automatically satisfied when m < 1.

Lemma 4.4. Assume that v € D'(SH"™; @27E*) and Urv = 0, T(v) = 0. Define
u=VZv € D'(SH""). Then

Uy = 2™ (nﬁ_Q(e + X)) . (4.22)

l=n—1
Proof. Assume that
Tv= Y [fxei, fxeD(G).

Keam
Then

ru= Y Uffx, msUiu)= > UFUE[fxe).
Keam K.Jeam
For 0 <r<m,J € & 17" and p € &/, we have by (3.8)
Z U, URUR fares = £2X Z Uk forcs +2 Z Ryi1,411UE forcs-

Keg™ Keco/r Kea™
qE o =4
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To compute the second term on the right-hand side, we commute R, 441 with UF
by (4.10) and use (4.15) to get

r

Z Rp+1,q+1UIj§quJ = Z (Z((quZUﬁ%p}KfQKJ - 5pk£UE'ZHq}KquJ)

KedT KedT /=1
qe A qE oA

+UF forcs = OpqUit farcs + > (Oa, UE Fattempy )7 — ok U fat—ay))
/=1

m—1—r
+ Y (Ogi,UF farc(tspys) — 5pjeU§§qu<{eﬁq}J>))-
=1
Since v is symmetric and 7 (v) = 0, the expressions > yc v seo Oak Uy refarcs,

quﬂ fa(@t—qy i), and Zq@{ fak ({t—q}s) are zero. Further using the symmetry of v,
we find

Z RpvrgniUf faks = (n+m—r—2) Z Uk forcr-

KedT Kedgr
qEof

and thus

SN U UFAUE facs =2 ) UF(EX +n+m—2r —2) fox. (4.23)

KeoT Kegd™

qe
Then, using that U v = 0, we find

r4+1
Z UpiU;fKJ - Z ZUE'Z...MU;'E’ USNUR, ko Jarc
Kedr+! Kedr (=1
= - (4.24)
=2 Y > UF(EX +n+m—20)fox,
Kedr (=1
=20r+1) > UF(EX+n+m—r—2)fox,.
Ked”
By iterating (4.24) we obtain (using also that v is symmetric) for J € &/™,
UF Y Ufife=2mU . Y UFEX +n—1)fxj,
Kedm Keagm—1
=dm(m - VUL ;Y UF(EX +n)(EX +n— 1) frjp_ i
Keagm—2
n+m—2
=2"m!l [ (X +0f,
l=n—1

which achieves the proof. U
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To handle the case T (v) # 0, define also the horocyclic Laplacians
Ay = —=TUZ = =Villy : D'(SH™) — D'(SH™),

so that for v € D'(SH"1),

TeAiu = — Z U;EU;E(W:QU).

q=1

Note that, by the commutation relation (3.8),

[X,AL] = £2A,. (4.25)
Also, by Lemma 4.3, AL are symmetric operators.
Lemma 4.5. Assume that u € D'(SH"Y) and UT'u = 0. Then

UM Azu = —4(X Fm)(2X £ (n — 2)IUTu) — AT (T UTw)).

Proof. We have
TSUPPARu) = — Y UkUFUFuej.

Keagm+2
qe A

Using (3.8), we compute for K € @™ and ¢ € &,

m-+42

U, US =Y U, UE URUE

kZJrl km+2
(=1

m—+2

=2 (Oge Uy (EX +m =L+ 2) + Uk Rips1gn1Us
/=1

041 km+2)

m—+2 m—+2
- Z (U{jzﬁ}K (Oge (EX +m — £+ 2) + Riyy1,941) + Z (6qkrUf‘;_>}K — 5kgk,nU{:§_> g K

£=1 r=0(+1
m—+2 m—+2
=23 (Ul (X ) i) = 3 B0
r=»+1

Since Uy u = 0, for K € @™ and q € & we have Ugu = [Uy, UF]u = 0 and thus
UEUFUF U = [UE, UF), UFlu.
We calculate

> gk (EX +m+1) + Rypir g1, U] = (n — U

qeA

)
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and thus for K € &/™*2,

m+2

S vityUiu=23) ( ¢ URIEX dmtn— 1)
qeA
m—+2
5 e S V)
r=0+1 qeA

Now, for K € &/™*2,

m—+2 m+2
Y Wiy USIEX +m+n—Du=2) (5keksU§H,H}K(iX +m)

/=1 l,s=1
L#s

m+2

B Z 5k kr {sﬁrﬁ}K)(j:X_‘_m_Fn_l)u

r=s+1
r#L

m—+2

=2 Ok, Uy (£2X +m)(£X +m+n — Du.
L, r=1
L<r

Furthermore, we have for K € &/™,

Z[U;ﬂK, Ugflu= 2Uj ((m +n)(£X +m) Ju—2 Z Z Ok qq{s—>p—>}Ku

qeA qeA SP 1

We finally compute

m+2
S URUFUFu =4 e, U,y X (2X £ (n +2m — 2))u
qEA 2[51
m+2 m+2
+4 Z Z Z Ok, Ol qu{fﬁ r—,55ps} K U
167 20 amominteny=0
which finishes the proof. U

Arguing by induction using (4.4) and applying Lemma 4.5 to ALu, we get

Lemma 4.6. Assume that u € D'(SH™™) and UP ™ u = 0, T(UTu) = 0. Then for
each r >0,

T

Uy A <—1>T22T(7ﬁ;<x =m0 ) (TT £ (0 - 200 ) Tz

=1
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Moreover, forr > 1

TUI A u) = (=1)"2%r(n + 2m + 2r — 2)

-(ﬁ(m ) (f[mi (=20 )T )

J=0 Jj=1

We are now ready to finish the proof of Lemma 4.2. Following (4.5), we decompose
vas v = ZL:SQJ Z"(v,) with v, € D/(SH";®@%7*€*) and T(v,) = 0. Since X
commutes with 7 and Z, we find Xv, = +Av,. Moreover, since Urv = 0, we have
Uiv, = 0. Put

up = (—=Az)" VI, € D'(SH™).

By Lemma 4.4 (applied to v,) and Lemma 4.6 (applied to V;”_QTUT and m replaced by
m — 2r),

UM, = 22"<ﬁ()\ — (m—2r+ j))> (ﬁ(m +n— 2j))IT(u;”2TV$2%T)

§=0 j=1
n+m—2r—2 m—r—1 T
:2m(m—2r)!( H ()\+j)> ( H ()\—j))(H(2)\+n—2j))lr(w).
j=n—1 j=m—2r j=1
Since \ &€ %Z, we see that v = U'u, where u is a linear combination of ug, ..., u|m/2|-

The relation Xu = (A — m)u follows immediately from (4.19) and (4.25). Finally,
the equivariance property under G follows similarly to Lemma 4.1.

4.4. Reduction to the conformal boundary. We now describe the tensors v €
D'(SH"™; @@ E*) that satisfy Uyv = 0 and Xv = 0 via symmetric tensors on the
conformal boundary S™. For that we define the operators

+ DS @™(T*S™)) — D/ (SH"T; @™E*)
by the following formula: if w € C*(S™; @™ (T*S")), we set for n; € E(z,§)

Quiw(x,&)(m, - .., 1m) = (wo Bu(x, &) (AL (z,E)my, ..., AL (@, E)mm)  (4.26)

where Ay (z,€) : Tp, (2,0)S" — E(,€) is the parallel transport defined in (3.31), and
we see that the operator (4.26) extends continuously to D'(S"; @ (T*S™)) since the
map By : SH"™ — S™ defined in (3.16) is a submersion, see [HoI, Theorem 6.1.2]; the
result can be written as Qiw = (@™ (A;")T).w o By where T means transpose.

Lemma 4.7. The operator Q4 is a linear isomorphism from D'(S"; % (T*S™)) onto
the space

{v e D'(SH", QUEY) | Usv = 0, Xv = 0}. (4.27)
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Proof. 1t is clear that Q4 is injective. Next, we show that the image of Q. is con-
tained in (4.27). For that it suffices to show that for w € C>*(S™; @ (T*S")), we have
UL (Q1v) = 0 and X(Q+v) = 0. We prove the first statement, the second one is es-
tablished similarly. Let v € G, wy, ..., w, € C®(S™;TS"), and w} = (w;, -) 4. be the
duals through the metric. Then

Qu(wi ® - @wy,)(7s(7)) =

gsn

n

2 (Hw ° By oms( ))(Af(m(v))v-ekﬁl))e}@):

E

k1,..., km=1 j=
0 (TTU Ay 0 Ba) o ms(1),7 - exy ) ) e (3)
ki,km=1 j=1

where we have used (3.32) in the second identity. Now we have from (3.31)

A (ms(7))¢ = (0,¢) = ((0,¢), 7 - eo)arv(eo + €1)
thus

Qs(wi@--@up)rs() = > (TTHO0 ~wy(Belas().7 - exsia)ar Jekc ).

o~
2
E
3
[
—_
<
I
—

Since d(By o mg) - U;” = 0 by (4.8) and U;" (v - ep,41) = 7 - U;" - ex;41 is a multiple of
v (egter) =Pu(ms())(1, Be(ms(7))), we see that Uy (Q1rw) = 0 for all w.

It remains to show that for v in (4.27), we have v = Q(w) for some w. For that,

define
b= (@mAL) v € D'(SH" L BL(QuT*S"))

where A% denotes the tranpose of A.. Then Uyv = 0, Xv = 0 imply that U (7%0) = 0
and Xo = 0 (where to define differentiation we embed T*S™ into R™*1). Additionally,
Rt j41(m§0) = 0, therefore 750 is constant on the right cosets of the subgroup Hy C G
defined in (3.27). Since (By omg) (B oms(y)) = vyH, we see that o is the pull-back
under By of some w € D'(S™; @TT*S"), and it follows that v = Q4 (w). O

In fact, using (3.31) and the expression of {i(z,r) in (3.20) in terms of Poisson
kernel, it is not difficult to show that Qi (w) belongs to a smaller space of tempered
distributions: in the ball model, this can be described as the dual space to the Frechet
space of smooth sections of @™ (°SBn+1) over Bn+! which vanish to infinite order at
the conformal boundary S" = oBn+1,

We finally give a useful criterion for invariance of Q. (w) under the left action of an
element of G

Lemma 4.8. Take v € G and let w € D' (S™;&@F(T*S")). Take s € C and define
= ®.9.(w). Then v is equivariant under left multiplication by v, in the sense
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of (4.20), if and only if w satisfies the condition

Liw(v) = N,(v)"* "w(v), veS" (4.28)
Here L,(v) € S™ and N,(v) > 0 are defined in (3.26).

Proof. The lemma follows by a direct calculation from (3.28) and (3.33). O

5. RUELLE RESONANCES

In this section, we first recall the results of Butterley—Liverani [BulLi] and Faure—
Sjostrand [FaSj] on the Pollicott—Ruelle resonances for Anosov flows. We next state
several useful microlocal properties of these resonances and prove Theorem 2, modulo
properties of Poisson kernels (Lemma 5.8 and Theorem 6) which will be proved in
Sections 6 and 7. Finally, we prove a pairing formula for resonances and Theorem 3.

5.1. Definition and properties. We follow the presentation of [FaSj|; a more recent
treatment using different technical tools is also given in [DyZw]. We refer the reader
to these two papers for the necessary notions of microlocal analysis.

Let M be a smooth compact manifold of dimension 2n + 1 and ¢, = X be an
Anosov flow on M, generated by a smooth vector field X. (In our case, M = SM,
M =T\H""', and ¢; is the geodesic flow — see Section 5.2.) The Anosov property is
defined as follows: there exists a continuous splitting

T, M= Ey(y) @ E.(y) ® Es(y), yeM; Eyy) :=RX(y), (5.1)

invariant under dp; and such that the stable/unstable subbundles E, F,, C T'M satisfy
for some fixed smooth norm |- | on the fibers of TM and some constants C' and 6 > 0,

|dei(y)v] < Ce o], v € Ey(y);

5.2
[do_i(y)v] < Ce™v], v € E,(y). 52)

We make an additional assumption that M is equipped with a smooth measure pu
which is invariant under ¢y, that is, Lxp = 0.

We will use the dual decomposition to (5.1), given by
TyM = Ey(y) © E;(y) © E(y), yeM, (5.3)

where Ef, Ef E¥ are dual to Ey, E, F, respectively (note that E,, Es are switched
places), so for example E’(y) consists of covectors annihilating Ey(y) @ E,.(y).

Following [FaSj, (1.24)], we now consider for each r > 0 an anisotropic Sobolev space

H'(M), C*(M)CH'(M)CD(M).
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Here we put uw := —r,s := r in [FaSj, Lemma 1.2]. Microlocally near E*, the space
‘H" is equivalent to the Sobolev space H™", in the sense that for each pseudodifferen-
tial operator A of order 0 whose wavefront set is contained in a small enough conic
neighborhood of E?, the operator A is bounded H" — H~" and H~" — H". Similarly,
microlocally near E, the space H" is equivalent to the Sobolev space H". We also
have H® = L?. The operator P admits a unique closed unbounded extension from C*
to H', see [FaSj, Lemma A.1].

The following theorem, defining Pollicott—Ruelle resonances associated to ¢y, is due
to Faure and Sjostrand [FaSj, Theorems 1.4 and 1.5]; see also [DyZw, Section 3.2].

Theorem 5. Fix r > 0. Then the closed unbounded operator
_X H(M) = H(M)

has discrete spectrum in the region {Re X > —r/Cy}, for some constant Cy indepen-
dent of r. The eigenvalues of —X on H", called Ruelle resonances, and taken with
multiplicities, do not depend on the choice of r as long as they lie in the appropriate
TEGION.

We have the following criterion for Pollicott—Ruelle resonances which does not use
the H" spaces explicitly:

Lemma 5.1. A number A € C is a Pollicott—Ruelle resonance of X if and only the
space

Resx(\) :={u e D'M) | (X +Nu=0, WF(u) C E} (5.4)

is nontrivial. Here WF denotes the wavefront set, see for instance [FaSj, Definition 1.6].
The elements of Resx(\) are called resonant states associated to \ and the dimen-
sion of this space is called geometric multiplicity of .

Proof. Assume first that A is a Pollicott—Ruelle resonance. Take r > 0 such that
Re A > —r/Cy. Then A is an eigenvalue of —X on H", which implies that there exists
nonzero u € H" such that (X+\)u = 0. By [FaSj, Theorem 1.7], we have WF(u) C E,
thus u lies in (5.4).

Assume now that u € D'(M) is a nonzero element of (5.4). For large enough r, we
have Re A > —r/Cy and v € H™"(M). Since WF(u) C Ef and H" is equivalent to
H~" microlocally near E¥, we have u € H". Together with the identity (X + \)u, this
shows that A is an eigenvalue of —X on H" and thus a Pollicott—Ruelle resonance. [J

For each A with Re A > —r/Cj, the operator X + A : H" — H" is Fredholm of index
zero on its domain; this follows from the proof of Theorem 5. Therefore, dim Resx ()
is equal to the dimension of the kernel of the adjoint operator X* + X\ on the L? dual
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of ", which we denote by %" Since X is symmetric on L?, we see that Resy(\)
has the same dimension as the following space of coresonant states at A:

Resx«(A) :i={u € D'(M) | (X — Nu =0, WF(u) C E*}. (5.5)

The main difference of (5.5) from (5.4) is that the subbundle E¥ is used instead of E;
this can be justified by applying Lemma 5.1 to the vector field —X instead of X, since
the roles of the stable/unstable spaces for the corresponding flow ¢_; are reversed.

Note also that for any A\, A* € C, one can define an inner product
(u,u*) € C, u € Resx(A), u* € Resx«(\"). (5.6)

One way of doing that is using the fact that wavefront sets of u, u* intersect only at the
zero section, and applying [HOI, Theorem 8.2.10]. An equivalent definition is noting
that v € H" and u* € H™" for r > 0 large enough and using the duality of H" and H™".
Note that for A # A\*, we have (u, u*) = 0; indeed, X (uu*) = (A* — A\)uu* integrates to
0. The question of computing the product (u,u*) for A = A* is much more subtle and

«

related to algebraic multiplicities, see Section 5.3

Since 1 X is self-adjoint on L? = H° (see [FaSj, Appendix A.1]), it has no eigenvalues
on this space away from the real line; this implies that there are no Pollicott—Ruelle
resonances in the right half-plane. In other words, we have

Lemma 5.2. The spaces Resx(\) and Resx+(\) are trivial for Re A > 0.

Finally, we note that the results above apply to certain operators on vector bundles.
More precisely, let & be a smooth vector bundle over M and assume that X" is a first
order differential operator on D'(M; &) whose principal part is given by X, namely

X(fu)=fX(u)+ (Xf)X(u), feD (M), uel>M;&). (5.7)

Assume moreover that & is endowed with an inner product (-, )¢ and 1 X is symmetric
on L? with respect to this inner product and the measure p. By an easy adaptation of
the results of [FaSj] (see [FaTs13b] and [DyZw]), one can construct anisotropic Sobolev
spaces H"(M; &) and Theorem 5 and Lemmas 5.1, 5.2 apply to X on these spaces.

5.2. Proof of the main theorem. We now concentrate on the case
M =SM =T\(SH"™), M =T\H"",

with ¢; the geodesic flow. Here I' C G = PSO(1,n + 1) is a co-compact discrete
subgroup with no fixed points, so that M is a compact smooth manifold. Henceforth
we identify functions on the sphere bundle SM with functions on SH"*! invariant
under I', and similar identifications will be used for other geometric objects. It is
important to note that the constructions of the previous sections, except those involving
the conformal infinity, are invariant under left multiplication by elements of G and thus
descend naturally to SM .
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The lift of the geodesic flow on SM is the generator of the geodesic flow on SH"'!
(see Section 3.3); both are denoted X. The lifts of the stable/unstable spaces F, E,,
to SH™™! are given in (3.14), and we see that (5.1) holds with = 1. The invariant
measure g on SM is just the product of the volume measure on M and the standard
measure on the fibers of SM induced by the metric.

Consider the bundle £ on SM defined in Section 3.6. Then for each m, the operator
X :D(SM;R%¥E") — D' (SM; R%LEY)

defined in (4.17) satisfies (5.7) and +X is symmetric. The results of Section 5.1 apply
both to X and X.

Recall the operator U_ introduced in Section 4.2 and its powers, for m > 0,
U™ :D'(SM) — D'(SM; % E").
The significance of U™ for Pollicott—Ruelle resonances is explained by the following

Lemma 5.3. Assume that A € C is a Pollicott-Ruelle resonance of X and u € Resx ()
is a corresponding resonant state as defined in (5.4). Then

U"u =0 form > —Rel.
Proof. By (4.19),
(X +A+m)U"u = 0.

Note also that WF(U™u) C E} since WF(u) C Ef and U™ is a differential operator.
Since A + m lies in the right half-plane, it remains to apply Lemma 5.2 to U"u. [

We can then use the operators U™ to split the resonance spectrum into bands:

Lemma 5.4. Assume that A € C\ 1Z. Then

dim Resx(\) = Z dim Res'y (A + m), (5.8)

m>0

where
Resh(A) :={v € D'(SM;Q%E") | (X +Nv=0, U_v=0, WF(v) C Ei}. (5.9)
The space Res’y () is trivial for ReA > 0 (by Lemma 5.2). If X € %Z, then we have

dim Resx(\) < Z dim Res’y (A + m). (5.10)

m>0
Proof. Denote for m > 1,

Vie(A\) = {u € D'(SM) | (X + Nu =0, U™u =0, WF(u) C E*}.
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Clearly, V,,(\) C Vii1(N). Moreover, by Lemma 5.3 we have Resy (\) = V;,,(A\) for m
large enough depending on A. By (4.19), the operator U™ acts

U™ : Vir1(A) = Resh (A +m), (5.11)
and the kernel of (5.11) is exactly V;,,(A), with the convention that V4 (\) = 0. Therefore
dim V.11 () < dim V;,,(A) 4 dim Res’y (A + m)

and (5.10) follows.

To show (5.8), it remains to prove that the operator (5.11) is onto; this follows from
Lemma 4.2 (which does not enlarge the wavefront set of the resulting distribution since
it only employs differential operators in the proof). 0

The space Resy (A +m) is called the space of resonant states at A associated to mth
band; later we see that most of the corresponding Pollicott—Ruelle resonances satisfy
Re A = —n/2 — m. Similarly, we can describe Resx«(\) via the spaces Resy. (A + m),
where

Resh.(\) == {v € D'(SM; QLE*) | (X = ANv =0, Uyv =0, WF(v) C E*}; (5.12)

note that here U, is used in place of U_.

We further decompose Res'’y () using trace free tensors:

Lemma 5.5. Recall the homomorphisms T : @UE* — QT 2E*, T : QUE* — QT 2E*
defined in Section 4.1 (we put T =0 for m = 0,1). Define the space

Res7’(\) := {v € Res(\) | T(v) = 0}. (5.13)
Then for all m > 0 and A,

2]
dimResT(A) = Y  dim Resp 2*°()). (5.14)

S

In fact,

Resy’(\) = @D T (Resy >*(\)). (5.15)
/=0

Proof. The identity (5.15) follows immediately from (4.5); it is straightforward to
see that the defining properties of Res’y () are preserved by the canonical tensorial
operations involved. The identity (5.14) then follows since Z is one to one by the
paragraph following (4.4). O

The elements of Res")}’o()\) can be expressed via distributions on the conformal
boundary S™:
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Lemma 5.6. Let Q_ be the operator defined in (4.26); recall that it is injective. If
7 o SH Y — SM is the natural projection map, then

m Resp?(\) = @ Q_(BA™0())),

where BA™Y(\) € D'(S™; @3(T*S™)) consists of all distributions w such that T (w) = 0
and

Liw(v) = N,(v) ™ "™w(v), ves", yerT, (5.16)
where L., N, are defined in (3.26). Similarly

i Resi’(A) = @1 Q. (Bd™(V), Bd™(\) = Bd™"()).

Proof. Assume first that w € Bd™°(\) and put o = ®* Q_(w). Then by Lemma 4.8
and (5.16), 0 is invariant under I" and thus descends to a distribution v € D'(SM; ®FE*).
Since X®* = —A®* and U (¥ omg) = 0 by (3.17) and (4.8), and X and Z/_ annihilate
the image of @_ by Lemma 4.7, we have (X+A)v = 0 and Y_v = 0. Moreover, by [H0I,
Theorem 8.2.4] the wavefront set of ¢ is contained in the conormal bundle to the fibers
of the map B_; by (3.25), we see that WF(v) C E?. Finally, T (v) = 0 since the map
A_(z,€) used in the definition of Q_ is an isometry. Therefore, v € Res’p*(\) and we
proved the containment 75 Resp’(\) D ®* Q_(Bd™"()\)). The opposite containment
is proved by reversing this argument. 0

Remark. It follows from the proof of Lemma 5.6 that the condition WF(v) C E?
in (5.9) is unnecessary. This could also be seen by applying [HO6I1I, Theorem 18.1.27]
to the equations (X + A\)v = 0, U_v = 0, since X’ differentiates along the direction Fj,
U_ differentiates along the direction E, (see (4.11) and (4.16)), and the annihilator of
Ey @ E, (that is, the joint critical set of X + \,U_) is exactly EZ.

It now remains to relate the space Bdm’o()\) to an eigenspace of the Laplacian on
symmetric tensors. For that, we introduce the following operator obtained by inte-
grating the corresponding elements of Res’(\) along the fibers of S$™:

Definition 5.7. Take A € C. The Poisson operators
L@):\i: . D/(Sn, ®mT*Sn) - COO(H?L+17 ®mT*Hn+1)
are defined by the formulas

P u(x) = / D (2,6 Q_(w)(x, £) dS(€),
oL (5.17)

P u(a) = / B, (2,6)°Q, (w)(x, ) dS(E).
SeHn+1

Here integration of elements of @™E*(x, €) is performed by embedding them in @™T*H" !
using composition with the orthogonal projection T,H"" — £(x,£).
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The operators @/\i are related by the identity
Piw = PIw. (5.18)

By Lemma 5.6, &, maps Bd™%()\) onto symmetric T-equivariant tensors, which can
thus be considered as elements of C>(M; @TT*M). The relation with the Laplacian
is given by the following fact, proved in Section 6.3:

Lemma 5.8. For each )\, the image of BA™°(\) under P, is contained in the eigenspace
Eig"(—=A(n + X) +m), where

Eig"(0) :={f € C*(M;QQ¥T*M) | Af =of, V'f =0, T(f)=0}. (5.19)

Here the trace T was defined in Section 4.1 and the Laplacian A and the divergence
V* are introduced in Section 0.1. (A similar result for 25 follows from (5.18).)

Furthermore, in Sections 6.3 and 7 we show the following crucial

Theorem 6. Assume that \ ¢ R,,, where

—%—%NO ifn>10rm=20
—%No

Rom = ifn=1and m >0

(5.20)
Then the map 25 : BA™%(\) — Eig™(—A(n + \) +m) is an isomorphism.

Remark. In Theorem 6, the set of exceptional points where we do not show isomor-
phism is not optimal but sufficient for our application (we only need R,,, C m—%—%No);
we expect the exceptional set to be contained in —n 4+ 1 — Ny. This result is known
for functions, that is for m = 0, with the exceptional set being —n — N. This was
proved by Helgason, Minemura in the case of hyperfunctions on S™ and by Oshima—
Sekiguchi [OsSe] and Schlichtkrull-Van Den Ban [VdBSc] for distributions; Grellier—
Otal [GrOt] studied the sharp functional spaces on S™ of the boundary values of
bounded eigenfunctions on H"!. The extension to m > 0 does not seem to be known

in the literature and is not trivial, it takes most of Sections 6 and 7.
We finally provide the following refinement of Lemma 5.4, needed to handle the case
A€ (—n/2,00) N 3Z:
Lemma 5.9. Assume that A € —5 + %N. If A € —2N, then
dimResx (\) = Z dim Res’y (A + m).

m>0
m#—X

If A ¢ —2N, then (5.8) holds.

Proof. We use the proof of Lemma 5.4. We first show that for m odd or \ # —m,
U™ (Vi1 (A)) = ResP (A +m). (5.21)
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Using (5.15), it suffices to prove that for 0 < ¢ < %, the space TH(ResT (A 4+m)) is
contained in U™ (V,,41(A)). This follows from the proof of Lemma 4.2 as long as
AmgZn(20+2—n—m,1—n]U[m—20,m—{—1]),

)\—i-m—i—g ¢ ZN[1,¢;
using that A > —2, it suffices to prove that

A¢ZN[-20,—0—1]. (5.22)
On the other hand by Lemma 5.6, Theorem 6, and Lemma 6.1, if £ < 7 and the space
Res? 2“%(\ 4 m) is nontrivial, then

2

n\2 n
—<A+m+§> +Z+m—2€2m—2€+n—1,

implying
‘/\+m+g’§‘g—1’ (5.23)

and (5.22) follows. For the case ¢ = %, since A > 0 on functions, we have

n\2 n?
ama D) e s
<—|—m+2 —1-4_

which implies that A < —m and thus (5.22) holds unless A = —m.

It remains to consider the case when m = 2/ is even and A = —m. We have
Res’%(0) = IK(ReSS(’O(O));

that is, Res}L—M’O(O) is trivial for ¢/ < %. For n > 1, this follows immediately
from (5.23), and for n = 1, since the bundle £* is one-dimensional we get Resgﬁl’o()\) =0
for m’ > 2. Now, Res}’(0) = Res%.(0) corresponds via Lemma 5.6 and Theorem 6 to
the kernel of the scalar Laplacian, that is, to the space of constant functions. Therefore,
Res?\;O is one-dimensional and it is spanned by the constant function 1 on SM; it follows

that Res’(0) is spanned by Z%(1). However, by Lemma 4.3, for each u € D'(SM),
(ZHL), UMY 2 = (—1)™ (V1) u) g2 = 0.

Since U™ (Vin11(A)) C Res®(0), we have U™ = 0 on V,,11(A), which implies that
);

Vine1(A) = Vi (A), finishing the proof. O

To prove Theorem 2, it now suffices to combine Lemmas 5.4-5.9 with Theorem 6.
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5.3. Resonance pairing and algebraic multiplicity. In this section, we prove
Theorem 3. The key component is a pairing formula which states that the inner
product between a resonant and a coresonant state, defined in (5.6), is determined
by the inner product between the corresponding eigenstates of the Laplacian. The
nondegeneracy of the resulting inner product as a bilinear operator on Resy(\) X
Resx+(A) for A € 37 immediately implies the fact that the algebraic and geometric
multiplicities of A coincide (that is, X + A does not have any nontrivial Jordan cells).

To state the pairing formula, we first need a decomposition of the space Resx()),
which is an effective version of the formulas (5.8) and (5.14). Take m >0, ¢ < |m/2],
w € BA™*%(\). Let T be the operator defined in Section 4.1. Then (5.15) and
Lemma 5.6 show that

lm/2] [m/2]
Resp () = @D Z(Resy > @ THD Q_(BA™#0()\))).

Next, let
VI D(SM;%E*) - D'(SM), AL:D'(SM)— D' (SM)

be the operators introduced in Section 4.3. Then the proofs of Lemma 5.4 and
Lemma 4.2 show that for \ & %Z,

lm/2] Lm/2]
Resx(A\) = @ EB Vine(A),  Resx-(A) = @ @ v,
m>0 (=0 m=>0 (=0

Vmé(/\) = AE Vm—QZ((I))\—i—mQ_ (Bdm—%,O(/\ + m))% (524)

m£(>‘) AZ Vm 2Z<CI)A+mQ ( dm—2€,0(/\+m>>>7

and the operators in the definitions of V,,,(\),V*,(\) are one-to-one on the corre-

sponding spaces. By the proof of Lemma 5.9, the decomposition (5.24) is also valid

for A € (—n/2,00) \ (—2N); for A € (—n/2,00) N (—2N), we have

|m/2) [m/2]
Resx (A @ @ Vie(A),  Resx+( @ GB (5.25)
m>0 = m>0 =
m#E—X m#E—X

We can now state the pairing formula:

Lemma 5.10. Let A ¢ —% — 1Ny and u € Resy()), u* € Resy«(\). Let (u,u*)r2sar)
be defined by (5.6). Then:

1 Ifu € Vig(N),u* € Vi3 (N), and (m, £) # (m/, '), then (u,u*)2sa) = 0.

2. If u € Vie(N), u* € VE,(N\) and w € BA™"° (A 4+ m), w* € BA"**°(\ +m) are

the elements generating u,u* according to (5.24), then

(w, u") 1250y = Cme AP (W), Py (W) 120 (5.26)
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where
n ) n
Cmp(A) = 272115 01— 901 gin <7r<§ n A))

Fm+5 —=OPA+n+2m—=200(=A=OF(=A—m — 5 +{+1)
[(m+ 5 —20)I(=\ — 2¢)

and under the conditions (i) either A & —2N or m # —\ and (ii) Vie(N\) is nontrivial,
we have cpp(N) # 0.

Remarks. (i) The proofs below are rather technical, and it is suggested that the
reader start with the case of resonances in the first band, m = ¢ = 0, which preserves
the essential analytic difficulties of the proof but considerably reduces the amount of
calculations needed (in particular, one can go immediately to Lemma 5.11, and the
proof of this lemma for the case m = ¢ = 0 does not involve the operator €,). We
have

I(n+ )

coo(A) = (47)_n/2m-

(ii) In the special case of n = 1,m = ¢ = 0, Lemma 5.10 is a corollary of [AnZe07, The-
orem 1.2}, where the product uu* € D'(SM) lifts to a Patterson—Sullivan distribution
on SH2. In general, if |[ReA\| < C and Im A — oo, then ¢,,(A\) grows like |A|2 ™.

Lemma 5.10 immediately gives

Proof of Theorem 3. By Theorem 6, we know that
25 BA" (N 4+ m) = Big™ 2 (— (A +m +n/2)* +n?/4+m — 20)

is an isomorphism. Given (5.18), we also get the isomorphism

D5 BA™ 0N 4 m) = Big" (=M 4+ m +n/2)% + n?/4 +m — 20).

Here we used that the target space is invariant under complex conjugation. By
Lemma 5.10, the bilinear product

Resx(A) x Resx«(A) = C,  (u,u”) — (u,u") r2(sm) (5.27)

is nondenegerate, since the L?(M) inner product restricted to Eig™ 2(—(\ + m +
n/2)* + n?/4 +m — 2() is nondegenerate for all m, (.

Assume now that @ € D'(SM) satisfies (X + \)?a = 0 and @ € H" for some 7,
ReA > —r/Cy; we need to show that (X + A\)a = 0. Put w := (X + A)a. Then
u € Resx(\). However, u also lies in the image of X + A on H", therefore we have
(u,u*) = 0 for each u* € Resx+(A). Since the product (5.27) is nondegenerate, we see
that u = 0, finishing the proof. O
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In the remaining part of this section, we prove Lemma 5.10. Take some m,m’, ¢, ¢’ >
0 such that 2¢ < m, 2¢' < m/, and consider u € V,,,s(A), u* € V*,,,(\) given by

_ / I_opt
u= AﬂVT 2y, w = ATy

where for some w € Bd"***(\ + m) and w* € Bd"™ *"*(\ + m/),
v=M"Q (w) € Resp (N +m), v* =" Q, (w) € Resp (A +m).
Using Lemma 4.3 and the fact that A4 are symmetric, we get
<U, u*>L2(SM) = (_1)m <Z/{T - AE_A&V_T_QE’U, /U*>L2(SM;®M’*25'5*)'

By Lemmas 4.4 and 4.6, we have UTHAﬂV_T’%v = 0. Therefore, if m’ > m, we
derive that (u,u*)r2(sa) = 0; by swapping v and u*, one can similarly handle the case
m’ < m. We therefore assume that m = m’. Then by Lemmas 4.4 and 4.6 (see the
proof of Lemma 4.2),

(—I)ZHIUT*%/AZ,,AﬁVT*%v _ TEIUT(—AJF)ZVT*%J
T(A+n+2m—20— (=X — O0(=A—m — 2 + [ +1)
FA+m+n—10(=A =200 (=X —m -5 +1)

If ¢ > ¢, this implies that (u,u*)r2(sa) = 0, and the case ¢/ < ¢ is handled similarly.

(Recall that 7T(v) = 0.) We therefore assume that m = m/,¢ = ¢. In this case,
by (4.4),

= 2™ (i, — 20)! T I .

AT Ui ko

L(m+ 5 —2¢)

which implies that

Fm+5—0OF(A+n+2m—20—1)

Lm+5 —200(A+n+m—1)
L(=A=OP(=A—m -5 +{+1) i
r@x-%ﬁ@x—m—g+n<“”hmwwﬁ%y
Note that under assumptions (i) and (ii) of Lemma 5.10, the coefficient in the formula
above is nonzero, see the proof of Lemma 5.9.

<U,u*>L2(5M) = (—2)m+2z€'(m — 26)'

It then remains to prove the following identity (note that the coefficient there is
nonzero for A\ ¢ Z or Re A > m — 3):

Lemma 5.11. Assume that v € Resy’(\) and v* € Resp’(N). Define

fa) = / o8 dSE), )= / V(@9 ds(E),

where integration of tensors is understood as in Definition 5.7. If X & —(5 +Ny), then
r(3+ )
n+A+m—DCn—-1+A

<f, f*>L2(M;®mT*M) = 2717_‘_% ( ) <U7 U*>L2(SM;®m£*)‘
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B_(z,8)
=B_(yn-)

B+(I7§)
=By (yn+)

(a) (b)

FIGURE 4. (a) The map V¥ : (z,&,n) — (y,n-,n+). (b) The vectors
Ay (z,€)C+ (equal in the case drawn) and A4 (y, n4)Cx.

Proof. We write
(f, ) eeonemrenn) = /S2M<v(y,n),v*(y,n+)>®mT;M dydn_dn (5.28)

where the bundle S?M is given by
S*M = {(y,n-,ns) |y € M, ns € S,M}.

Define also

SAM = {(y,n-,n+) € S*M | n- + ny # 0}.
On the other hand

<U7U*>L2(SM;®"15*) = / <U($,f),U*(x,£)>®mg*($7§) dl‘df (529)

SM
The main idea of the proof is to reduce (5.28) to (5.29) by applying the coarea formula
to a correctly chosen map S3 M — SM. More precisely, consider the following map
U: & — SAH": for (z,€) € SH* and n € &(x,€), define ¥(z,&,n) == (y,n_,11),
with

Yy x VS + 1 0 1
s 1
- =A(nP) (&), Al)=| 7#= VAT
T 7 TVert Ve L
Note that, with || denoting the Riemannian length of n (that is, |n|? = —(n, 7)),
q):l:(‘r7 5) 2

Co(y,nr) = —F———=, Bi(y,nx)=B+(x,§), [Ny +n-|=—F——.
i( :t) \/TW i( :E) i( ) ’Jr ’ \/TW
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Also,
) s+l — 52+1 s2+1
det A(s) = ————, A(s) ' = 0 Vel st
s+ 1 S?H 32 1

—S

w|
M|

The map V¥ is a diffeomorphism; the inverse is given by the formulas

I/ S T _ 20— =) = |ne — -y
ns+n-| et n4 + 01 '

The map ¥~! can be visualized as follows (see Figure 4(a)): given (y,n_,7n,), the

corresponding tangent vector (z,€) is the closest to y point on the geodesic going

from v = B_(y,n-) to vy = By (y,n+) and the vector n measures both the distance

between x and y and the direction of the geodesic from = to y. The exceptional set
{n+ +n- = 0} corresponds to |n| = cc.

A calculation using (3.31) shows that for {1+ € Ts,(2,6)S",
(AsL(z,§)C) - n
L+ n?

Here - stands for the Riemannian inner product on £ which is equal to —(-, ) re-
stricted to €. Then (see Figure 4(b))

(A (y, )¢ - (A-(yn-)¢-) = (A (2, 6)¢) - (A (2, 6)¢-)

2
—TW((J‘H(% ¢ ) (A-(w,€)¢-) - n)

= (€A (2,6)¢4) - (A-(2,€)C),
where €, : £(x,&) — E(x,€) is given by

Ax(y,n+)Ce = Ax(r, ) + (z £8).

Neio 2 (7
Gn) =0 = 35 mn:
We can similarly define 67 : £(z,§)* — E€(z,£)*. Then for (+ € @71}
(@™ (AL (y 04) ") G, @™ (AT (Y, n-) T )G )omymnsa
= ("G, @™ (AT (2,6)")C, @™ (AT (2, €)T ) Damer we)-

The Jacobian of ¥ with respect to naturally arising volume forms on & and SZH"™!
is given by (see Appendix A.2 for the proof)

Jo(x,&m) = 2"(1+ [n*) ™. (5.31)
Now, V¥ is equivariant under GG, therefore it descends to a diffeomorphism
U &y — SAM,  Evi={(z,&n) | (z,§) € SM, n e E(x,6)}.
Using Lemma 5.6 and (5.30), we calculate for (z,&,n) € Ey and (y,n_,ny) = ¥(z, &, n),
(v(y, n—)>m>®mT;M = (L+ [n*) M@ Grv(@,£),v"(2,))gmer(me)-  (5.32)

s

(5.30)
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We would now like to plug this expression into (5.28), make the change of variables from
(y,m—,ns) to (z,&,n), and integrate n out, obtaining a multiple of (5.29). However,
this is not directly possible because (i) the integral in 5 typically diverges (ii) since
the expression integrated in (5.28) is a distribution, one cannot simply replace S?M
by SX M in the integral.

We will instead use the asymptotic behavior of both integrals as one approaches the
set {ny +n- = 0}, and Hadamard regularization in 7 in the (z,£,n) variables. For
that, fix x € C§°(R) such that x = 1 near 0, and define for £ > 0,

Xe(ysn-ne) = x (e Iy, n-,n4)1),
where 7(y,n_,1n,) is the corresponding component of U~!: in fact, we can write
s — 77|>
4 +n-|

Then x. € D'(S?2M). In fact, . is supported inside S% M; by making the change of
variables (y,n_,n:) = ¥(z,£,n) and using (5.31) and (5.32), we get

Xe(Y,n—,n4) = x(e

/SW Xe (Y s ) (0 (Y, 1-)s v* (Y, 1)) @mry v dydn—dn g

(5.33)
= 2”/ X)L+ ) (@G v (w, ), v (2, €)) ame- (n,6) dwdEdn.
Em
By Lemma A .4, (5.33) has the asymptotic expansion
n I'(5+A)

21’L 2 2 * LM Ok

T T AT - Di(n 1) U saezen)
(5.34)

+ E : Cj5n+2)\+2j + 0(1)
0<j<—ReA-2
for some constants Cj-

It remains to prove the following asymptotic expansion as € — 0:

/52 (1 = X = n)) 0y, =), v (Y, 1)) omy r dydn_dns ~ Y ™ (5.35)
M

=0
where ¢} are some constants. Indeed, (f, f*)r2(r,gmr+ar) is equal to the sum of (5.33)
and (5.35); since (5.35) does not have a constant term, (f, f*) is equal to the constant
term in the expansion (5.34).

To show (5.35), we use the dilation vector field 7 - 9, on £, which under ¥ becomes
the following vector field on S3 M extending smoothly to S?M:

_|_

o=y e =nl* me no g e —n-2  n. - -ms
L(y’"’m):( R S T T R T B &
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The vector field L is tangent to the submanifold {n, +n_ = 0}, in fact

e — > |ns +n_J?
5 .

Ly = n-|*) = =L(|n+ +n-*) =
We can then compute (following the identity L|n| = |n|)
L(\m - 77—\) _ne=n ] S2M.
|7+ + 1| |7+ + 1|
Using the (z,&,7n) coordinates and (5.31), we can compute the divergence of L with
respect to the standard volume form on S2M:

Div L =n(ny - n-).
Moreover, B (y,ns) are constant along the trajectories of L, and

2
Ny —n-
L(®y(y,ne)) = —%

We also use (3.31) to calculate for (4 € Tg, (y.)S",

L((As(y:ne)¢s) - (Az(y.m=)¢2)) = ((Ae(y.m)Ce) - =) (A= (y.m=)C2) - m4),
L((As(y.ne)Ce) - nx) = (- n-) ((Ax(y, ne)Cs) - ng).-

Combining these identities and using Lemma 5.6, we get

(I):t(y7 Ui)

A 2 ¥ ML)
(£ 5lne = n ) oly,no), o () hemr (5.36)

= m<L7i+U(ya 77—)7 Lnfv*(ya n+)>®m*1T;M-
Integrating by parts, we find

885 S2M(1 - Xa(ya -, 77+))<U(y, n_)’m>®mT;M dydn_dn+

_ /S L= X 00)) (0l ) 07ty
>\ _—
N Sl = n-1? =nlny - n-) ) (1= xe(y,n-,m4)) 0y, =), v (Y, 04 emyar dydn-dn
S2 M 2 y

=m [ (L= Xy 0 7)) e 0y )5 60 (Y D) v ar dydn-
S2M

Arguing similarly, we see that if for integers 0 < r < m, p > 0, we put

Ip(€) = /SW -0 P (L=x(y, n— ) e, 0y, m-), 6y 04 (Y, 04 ) @m—rs ar dydin—din

then (0. — 2\ —n — 2(r + p))1, () is a finite linear combination of I,+ (), where
" >r,p > p,and (r',p') # (r,p). For example, the calculation above shows that

A+n

(585 — 2\ — n)]070(€) = — B

10’1(8) — TTLILO(ET).
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Moreover, if N is fixed and p is large enough depending on N, then I, ,(c) = O(eV);
to see this, note that I,.,(¢) is bounded by some fixed C*-seminorm of |n_ + 7 [*(1 —
Xe(y,m—,m3)). It follows that if NV is fixed and N is large depending on N, then

N
<H(s@a —2\—n-— 2j)) Ioo(e) = O(eN)
=0
which implies the existence of the decomposition (5.35) and finishes the proof. O

6. PROPERTIES OF THE LAPLACIAN

In this section, we introduce the Laplacian and study its basic properties (Sec-
tion 6.1). We then give formulas for the Laplacian on symmetric tensors in the half-
plane model (Section 6.2) which will be the basis for the analysis of the following
sections. Using these formulas, we study the Poisson kernel and in particular prove
Lemma 5.8 and the injectivity of the Poisson kernel (Section 6.3).

6.1. Definition and Bochner identity. The Levi-Civita connection associated to
the hyperbolic metric gy is the operator
Vo CHM TH ) — C*H, T*H" @ TH")

which induces a natural covariant derivative, still denoted V, on sections of @™ T*H"+!.
We can work in the ball model B"™ and use the O-tangent structure (see Section 3.6)
and nabla can be viewed as a differential operator of order 1

V : ¢ (B, @m T E))  C(B, o™ T E))

and we denote by V* its adjoint with respect to the L? scalar product, V* is called the
divergence: it is given by V*u = —T (Vu) where T denotes the trace, see Section 4.1.
Define the rough Laplacian acting on C*®(B"+1; @™ (T*B"+1)) by

A:=V"V (6.1)

and this operator maps symmetric tensors to symmetric tensors. It also extends to
D' (B @7 (°T*B"*+1)) by duality. The operator A commutes with 7 and Z:

AT (u) =T (Au), AZ(u) =Z(Au) (6.2)
for all u € D'(B"*!; @7 (°T*Bn+1)).
There is another natural operator given by
Ap=D*D
if
D - (B @ CTB)) - ¢ B, g (0T F))
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is defined by D := SoV, where S is the symmetrization defined by (4.1), and D* = V*
is the formal adjoint. There is a Bochner—Weitzenbock formula relating A and Ap,
and using that the curvature is constant, we have on trace-free symmetric tensors of
order m by [DaSh, Lemma 8.2]

1 *

In particular, since |[SVu|? < |Vu|?* pointwise by the fact that S is an orthogonal
projection, we see that for u smooth and compactly supported, ||Dul|3. < ||Vu||3, and
thus for m > 1, u € C*(H"; @ Z(T*H"*')), and Tu = 0,

(Au,u)pe > (m+n—1)||ull (6.4)

Since the Bochner identity is local, the same inequality clearly descends to co-compact
quotients T\H"™! (where A is self-adjoint and has compact resolvent by standard
theory of elliptic operators, as its principal part is given by the scalar Laplacian), and
this implies

Lemma 6.1. The spectrum of A acting on trace-free symmetric tensors of order m > 1
on hyperbolic compact manifolds of dimension n + 1 is bounded below by m +n — 1.

We finally define
E™M = @@ (*T*Br+1) Nker T (6.5)
to be the bundle of trace-free symmetric m-cotensors over the ball model of hyperbolic
space.

6.2. Laplacian in the half-plane model. We now give concrete formulas concerning
the Laplacian on symmetric tensors in the half-space model U™ (see (3.4)). We fix
v € S" and map B"™! to U™ by a composition of a rotation of B"™! and the map (3.5);
the rotation is chosen so that v is mapped to 0 € Un+! and —v is mapped to infinity.

The 0-cotangent and tangent bundles °7*B7+1 and °TB»+1 pull back to the half-
space, we denote them °T*U"*! and U™, The coordinates on U™ are (zg,2) €

RT X R" and z = (21,...,2,). We use the following orthonormal bases of “TU"*! and
OT*UnJrl:
dz; :
Z; = 290, Zf:—z; 0<i<n.
20

Note that in the compactification B»*! this basis is smooth only on B"*!\ {—v}.

Denote & := {1,...,n}. We can decompose the vector bundle @7 (°T"U"*!) into
an orthogonal direct sum

o (TU) = @ B, B = span (S((Z5)*" © Z})) recrm-+)
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and we let ; be the orthogonal projection onto E\™. Now, each tensor u € @7 (°T U™ *1)
can be decomposed as u =Y ", u;, with u; = m;(u) € EZ-(m) which we can write as
u = Zul, w=8((Z)¥ o), u, e B, (6.6)
We can therefore identify E™ with E{" ™ and view E™ as a direct sum E(™ =

D, Eémfk). The trace-free condition 7 (u) = 0 is equivalent to the relations

(r+2)(r+1) y
(m—r)(m—r—1) "

0<r<m-—2. (6.7)

and in particular all u; are determined by ug and u; by iterating the trace map 7.
The u} are related to the elements in the decomposition (4.5) of uy and u; viewed as a
symmetric m-cotensor on the bundle (Zy)* using the metric z5%h = 3. ZF @ Zf. We
see that a nonzero trace-free tensor u on U"*! must have a nonzero ug or u; component.

Koszul formula gives us for 7,7 > 1

inZj - 5ij207 VZOZj - O, inZO - —ZZ', VZOZ() - 0 (68)
which implies
* . * * h * * *
VZ; :—sz ©Zj=—m VL=ZeZ (6.9)

We shall use the following notations: if II,, denotes the set of permutations of
{1,...,m}, we write 0(1) := (lo),---slom)) f 0 € . S =5 ®---®S5is a
tensor in ®‘(°T*U"™), we denote by T;.;(S) the tensor obtained by permuting S;
with S; in S, and by p;v(S) the operation of replacing S; by V' € °T*U™*! in S.

The Laplacian and V* acting on E ) and E( ). We start by computing the
action of A on sections of E(gm), Ef , and we will later deduce from this computation
the action on E,(Cm). Let us consider the tensor Z7 := Z] ® --- ® Z} € Eém) where

I'=(ir,....1n) €™ and Z; ) = Z} " ®@®@ 27 . The symmetrization of Zj is
given by §(Z;) = 5> o Z ~(ry and those elements form a basis of the space E( ™)

when [ ranges over all combinations of m-uplet in & = {1,...,n}.

Lemma 6.2. Let ug =Y, m [1S(Z}) with fr € C(U"*). Then one has

Aug =Y ((A+m)f1)S(Z;) +2mS(Viug @ Z;)
Iea™ (6.10)
+m(m — 1)S(T (ug) @ Zj @ Zj))
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while, denoting d,fr = i, Zi(fr)ZF, the divergence is given by

Vg = — (m— D)S(T(u) ® Z3) — Y ta.f,S (6.11)

Ieagm™

Proof. Using (6.9), we compute

n

V(S(Z3)) = Y (2 (2)2; © S(Z

i=0 : k=1 o€ll,,

Then taking the trace of V(f[S(Z*)) gives

(fI Z Z 5 40<k)pk*1”Zo* (Zi*a(z) Q- ® Zi*a(m))

" k=2 o€ll,,

- Z fo Z 61 20(1) z (2) - ® Z;;(m))

UGHm

We notice that S(T(S(Z5)) ® Z;) is given by

o(1))-

(6.12)

S(T(S8(Z) ® Z%) = _1 > Z(Sm) Tk (3 @ 2] @ @ ZF ),

o(m)
JEHm k=1
which implies (6.11). Let us now compute VZ(f;S(Z})):

VASIS(ZD) = Y ZiZi(f1)Z; © ZF © S(Z7) = Zo( 1)z h © S(Z})

i j—O

+ZZ (f)Z; @ Z; © 8(Z}) + ZZnHmZ ® Z5 ® Z} 1)

Jj=1 'aenk1

+ Z Zigj]) Z 27'1<—>k+2(28 ® 27 @ Zyn)

i=1 T o€l k=1

o€ll,y, k=1

) ® Z Z Trek+1(Z5 @ Zy(p)

k=1 o€ll,,

ZZ*(X) Z ZTlHkJrl Z ®Z*( ))

o€lly, k=1

m  m+1

+_Z Z Tioer1(Zg ® Tiorr1(Zy ® Z5p)-

k=1 (=1
(£k+1
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We then take the trace: the first line has trace —(A f7)S(Z5), the second and fifth lines
have vanishing trace, the sixth line has trace —m f;S(Z;), the last line has trace

2f1 *
Z Z 5 ig<g)Pk—>ng€—>Z{;(Zg([)) (6'13)

JEHm 1<k<t<m

and the sum of the third and fourth lines has trace

Z Z Z Oi,i o (k) Pr—zs ( )) (6.14)

o€l k=1
Computing S(T(S(Z7)) ® Zi ® Z§) gives
S(T(S(Z}) @ Zy @ Z) =

Z Z 6 lo(1)s 1,0(2) Tl(—)k+2T2<—)€+2(Z ® Z* & Z’L* o (3) X ZZ* )

m'm (m — o (m)
1<k<€<m o€ll,,

therefore the term (6.13) can be simplified to

m(m — 1) f1S(T(S(Z7)) ® Z§ @ Z3).
Similarly to simplify (6.14), we compute
S(V*(f18(27)) @ Z§) = —(m = V)S(T (f18(Z7)) ® Z; ® Z)

n 1 " * *
_Z(Ziff)m!m Z Z OiigoyTiork(Zo @ 25, @+ @ ZF )
i=1

k=1 o€l
so that
2 Z Zin(j!}) Z Z Oiiy ey Phs 25 (Zo(1)
i=1 o€l k=1
= 2mS(V'(f18(21)) © Z5) — 2m(m — V)S(T(f15(%1)) ® Zy & Zp).
and this achieves the proof of (6.10). O

A similarly tedious calculation, omitted here, yields

Lemma 6.3. Let uy = S(Z5@u)), vy =37 ;e ym1 9sS(Z5) with g; € C(U™Y), then
the E((]m) & Efm) components of the Laplacian of u; are
Aup= > ((A+n+3(m—1))g)S(Zs & Z3)
Jegm—1

+2 Z S(d.9; ® Z75) + Ker(my + 1)
Jegm—1

(6.15)
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and the ES™ & E™ components of divergence of uy are

V=" 3 (et m—1)gs ~ Zol0:)8(25)
Zedj_ll) (6.16)
_ mm Z S(Z§ @ ta.q,S(Z7)) + Ker(mg + m1).

Jegm—1

General formulas for Laplacian and divergence. Armed with Lemmas 6.2
and 6.3, we can show the following fact which, together with (6.7), determines com-
pletely the Laplacian on trace-free symmetric tensors.

Lemma 6.4. Assume that u € D'(U"T; @2 T*U") satisfies T (u) = 0 and is written
in the form (6.6). Let

Ug = Z f[S(Z}k), uy = Z gJS(ZO X Z;)

Ieagm™ JG,Q{m71

Then the projection of Au onto E((]m) &) Efm) can be written

mo(Au) = > (A+m)f)S(Z))+2 > Sldugs® Z)
Icam Jegm—1 (6.17)

+m(m —1)S8(25°h @ T (up)),

m(Au) = Y (A+n+3(m—1))g)S(Z; ® Z3)

Jeg/m—1

—2m Y S(Z5 @ 4., S(27))
Iea™ (6.18)

+(m—1)(m—2)8(Z; @ z°h @ T (u}))
—2m(m—1) Y S(Z;@d.fi 2 T(S(%)))).

IG%TVL

Proof. First, it is easily seen from (6.9) that Awuy is a section of @522_2 E](-m). From
Lemmas 6.2 and 6.3, we have

To(A(ug +ur)) = Y (A+m)f)S(Z)+2 Y Sldugs ® Z3). (6.19)

ream Jeam1

Then for up, using S((Z5)%? @ uh) = S(gn @ uy) — S(z5°h @ uh) and AL = TA,
mo(Auz) = (S (2 °h @ Au)) — mo(A(S (29 "h @ u3)))

and writing u}, = —m(";l)T(uo) by (6.7), we obtain, using (6.10)

mo(Aug) = m(m — 1)S(z52h @ T (up)) (6.20)
We therefore obtain (6.17).
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Now we consider the projection on Efm) of the equation (A — s)T" = 0. We have
from (6.10)

m(Aug) = —2m Y S(Z; ® ta.;,S(Z}))
Ied™

where ¢4, means » 7, Zj(f1)tz,. Then, from (6.15)
mAu) = > (A+n+3(m—1))gs)S(Z;  Z3).
Jegm—1

Using again S((Z3)%? ® uh) = S(gn @ uh) — S(25°h @ uy) and AZ = TA, (6.10) gives

m(Aug) = =2m(m — 1) Y 8(Z; @ d.f; ® TS(Z})).
Ieam
Finally, we compute 7 (Aus), using the computation (6.15) we get
71 (Auz) =m1(S(25*h @ AS(Z; @ uy)) — T (AS(Z5 @ 25 °h @ uy))
=(m —1)(m —2)8(Z; ® 25 *h @ T (u})).

We conclude that 7 (Aw) is given by (6.18). O

Similarly, we also have

Lemma 6.5. Let u be as in Lemma 0./. Then the projection onto E(()m_l) &) Eﬁm_l) of
the divergence of u is given by

mo(Vou) == Y wn S+ S (b m = Ugs — Zo(gn)S(Z3), (6:21)

legm™ Jeagm—1

m(V'u) =(m—1) Y (Zofr — (m+n—1)f)S(T(S(Z})) ® Zj)

Iea™
(m

T—U N S(Z© 14y, S(Z3)).

Jeg/m—1

(6.22)

Proof. The 7y part follows from (6.11) and (6.16). For the m part, we also use (6.11)
and (6.16) but we need to see the contribution from V*usy as well. For that, we write

as before u), = —m(n;_l) Yorewm F1T(S(Z7)) and a direct calculation shows that

m(Viug) = (m—1) Y (Zofr = (m+n—2)[1)S(T(S(2})) ® Z;)

Ieg™

implying the desired result. U
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6.3. Properties of the Poisson kernel. In this section, we study the Poisson kernel
2, defined by (5.17).

Pairing on the sphere. We start by proving the following formula:

Lemma 6.6. Let A € C and w € D'(S"; @¢(T*S")). Then
Piule) = [ Pl e (A ) e dS()
where the map £_ is defined in (3.20).

Proof. Making the change of variables { = £_(x,v) defined in (3.20), and using (3.21)
and (3.22), we have

Fru) = [ @A @ ) (B (.6 dS (0

= /Sn P, v)" (@™ (A (2, € (2, 1)) w(v) dS(v)

as required. O

Poisson maps to eigenstates. To show that &, w(x) is an eigenstate of the Lapla-
cian, we use the following

Lemma 6.7. Assume that w € D'(S"; @™ (T*S")) is the delta function centered at
e1 = 0y, € S™ with the value €1 ® Qe Ly, where 1 < J1, ..., Jm < n. Then under
the identifications (3.2) and (3.5), we have

Piw(z0,2) =22 @ ® z .

Proof. We first calculate

P(z,e1) = z.
It remains to show the following identity in the half-space model
A" (26 (zv)ei =27, 1<j<n. (6.23)

One can verify (6.23) by a direct computation: since .4_ is an isometry, one can instead
calculate the image of e;;1 under .A_, and then apply to it the differentials of the maps
¢ and ¢ defined in (3.2) and (3.5).

Another way to show (6.23) is to use the interpretation of A_ as parallel transport to
conformal infinity, see (3.35). Note that under the diffeomorphism ¢, : B"*! — U+
v = ey is sent to infinity and geodesics terminating at v, to straight lines parallel to the
2 axis. By (6.9), the covector field Z + is parallel along these geodesics and orthogonal
to their tangent vectors. It remains to verify that the limit of the field pyZ7 along these
geodesics as z — 00, considered as a covector in the ball model, is equal to €},,. [
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Proof of Lemma 5.8. It suffices to show that for each v € S, if w is a delta function
centered at v with value being some symmetric trace-free tensor in ®¢'7,;S", then

(A+An+X)—m)Piw=0, VPw=0, T(Pw)=0.

Since the group of symmetries G' of H"*! acts transitively on S”, we may assume that
v = 0;. Applying Lemma 6.7, we write in the upper half-plane model,

Piw =2y, up € B, T(ug) = 0.

It immediately follows that 7 (%, w) = 0. To see the other two identities, it suffices
to apply Lemma 6.2 together with the formula

Azitr = —X(n + N\)zp ™

Injectivity of Poisson. Notice that &7 is an analytic family of operators in A\. We
define the set
—2_ 1N, ifn>lorm=0
Rom = { —;Noz ifn=1andm>0 (6.24)
and we will prove that if A ¢ R, and w € D'(S"; ®T*S") is trace-free, then &, (w)
has a weak asymptotic expansion at the conformal infinity with the leading term
given by a multiple of w, proving injectivity of &2, . We shall use the 0-cotangent
bundle approach in the ball model and rewrite A5' (2, {4 (, v)) as the parallel transport
7(y',y) in °TB*! with ¢(z) = y and v/ = v, as explained in (3.35). Let p € C>°(B+1)
be a smooth boundary defining function which satisfies p > 0 in B"*, |dp|,2,, = 1
near S” = {p = 0}, where gg is the hyperbolic metric on the ball. We can for example
take the function p = py defined in (3.34) and smooth it near the center y = 0 of
the ball. Such function is called geodesic boundary defining function and induces a

diffeomorphism

6:[0,€) xS" =B N{p<e}, O(tv):=06v) (6.25)
where 6, is the flow at time ¢ of the gradient V**% p of p (denoted also 0,) with respect
to the metric p%gy. For p given in (3.34), we have for ¢ small

2_
0(t,v)= ="

v, veSs

For a fixed geodesic boundary defining function p, one can identify, over the boundary
S™ of Br+1, the bundle 7*S"™ and TS™ with the bundles °T*S™ := T3, B 1 N ker ¢,
simply by the isomorphism v — p~'v (and we identify their duals 7'S™ and °T'S™ as
well). Similarly, over S", E™ N ker Lpo, identifies with ®@gT*S™ Nker T by the map
v — p~™v. We can then view the Poisson operator as an operator

P D'(S" E™ Nkeriyy,) — C(B™ % (T B 1))
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zo} 7(2; 20, 2)Tw(2")

7(20, 23 2)p(2)
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FIGURE 5. The covector w(z’), the vector p(z), and their parallel trans-

ports to (zo, z) viewed in the 0-bundles, for the case m = 1.

Lemma 6.8. Let w € D'(S™; E™ Nker Lpody,) and assume that X & R,,. Then 25 (w)
has a weak asymptotic expansion at S™ as follows: for each v € S", there exists a
neighbourhood V,, C B"+1 of v and a boundary defining function p = p, such that for
any ¢ € C*(V,, N S™; @%(°T'S™)), there exist Fy € C*([0,¢€)) such that for t > 0 small

/n<«@§ (w)(O(t,v)), @™ (7(0(t, v), v)) () dS,(v) =

tAE_(t) + t"TE (), A¢ —n/2+N;
tAF_(t) + " log(t) Fy(t), A€ —n/2+N.

(6.26)

using the product collar neighbourhood (6.25) associated to p, and moreover one has
A+ 3%)
A+n+m—-1)TA+n—-1

F (0)=C ) (eM.w, ) (6.27)

for some f € C(S") satisfying p = 3¢/ py + O(p) near p =0 and C # 0 a constant
depending only on n. Here dS, is the Riemannian measure for the metric (p*gu)|sn
and the distributional pairing on S™ is with respect to this measure.

Proof. First we split w into wy + we where w; is supported near v € S™ and wy is zero
near v. For the case where wy has support at positive distance from the support of ¢,
we have for any geodesic boundary defining function p that

iy 47 / {5 (wa)(0(2,)), @™ (7 (0(t,v), v))-0(1))dS,(v) € C([0,€)).

this is a direct consequence of Lemma 6.6 and the following smoothness properties

(y,v) = log (P(¥™'(y), v)/p(y)) € CX (BT x S"\ diag(S" x §"))
7(-,-) € C®(Bn+! x Brtl \ diag(S™ x S")); °T*Br+! @ °TB+1).

This reduces the consideration of the Lemma to the case where w is w; supported near
v, and to simplify we shall keep the notation w instead of w;. We thus consider now
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w and ¢ to have support near v. For convenience of calculations and as we did before,
we work in the half-space model R, x R? by mapping v to (zo,z) = (0,0) (using the
composition of a rotation on the ball model with the map defined in (3.5)) and we
choose a nighbourhood V,, of v which is mapped to 22 + |z|*> < 1 in U""! and choose
the geodesic defining function p = zy (and thus 0(2¢, 2) = (20, 2)). (See Figure 5.) The

2(11%&') in the ball equals

po(20,2) = 420/(1 4+ 22 + |2]?) (6.28)

geodesic boundary defining function py =

in the half-space model. The metric dS, becomes the Euclidean metric dz on R" near
0 and w has compact support in R”. By (3.5) and (3.19), the Poisson kernel in these
coordinates becomes

20

P(z9,2,2) = e!¥)P(z9, 2, 2') with P(zg,7;2') := e f(") =log(1+ |2]?)
2

24|z —
where z, 2’ € R™ and 2y > 0. One has p = 1e/py + O(p) near p = 0.

In the Appendix of [GMP], the parallel transport 7(zg, 2; 0, 2’) is computed for 2z’ €
R™ is a neighbourhood of 0: in the local orthonormal basis Zy = 2,0,,, Z; = 200,, of
the bundle °TU"™, near v, the matrix of 7(zg, 2; 2') := 7(20, 2; 0, 2) is given by

z =2 P(zy, 27
Too = 1-— 2P(ZO;Z, Z,)u’ Toi = —Ti0 = _220(21 — Z;)M7
20 20
(zi — 2{).(z) — 2})

20

Tij = 51’]’ — QP(ZQ, Z5 ZI)

In particular we see that 7(zo, z; z) is the identity matrix in the basis (Z;); and thus
7(0(20, 2), 2) as well. We denote (Z7); the dual basis to (Z;); as before.

Now, we use the correspondence between symmetric tensors and homogeneous poly-
nomials to facilitate computations, as explained in Section 4.1. To S(Z}), we associate
the polynomial on R" given by

Pr(z) = S(Z;)(inzb e ,ZCUZZI) =
i=1 i=1

where z; = [[, z;, if I = (i1,...,%n). We denote by Pol™(R™) the space of ho-
mogeneous polynomials of degree m on R" and Pol{*'(R"™) those which are harmonic
(thus corresponding to trace free symmetric tensors in E(gm)). Then we can write
w = Y Wapa(z) for some w, € D'(R") supported near 0 and p,(z) € Poly"(R").
Each p,(x) composed with the linear map 7(2'; zg, 2)| z+ becomes the homogeneous

polynomial in x

P(ZO,Z§Z'))
20

palr—2(z = 2')(z — 2, ).
where (-, -) just denotes the Euclidean scalar product. To prove the desired asymptotic
expansion, it suffices to take ¢ € C§°(]0,00),, x R™) and to analyze the following
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homogeneous polynomial in x as zg — 0
/ Z <€(n+)\)fwom SO(ZOa Z)P(ZU7 <3 ‘)n-ﬁ-)\pa (37 - 2(Z - )(Z -5 :U>P(Z+z>>dz (629)

where the bracket (w,, ) means the distributional pairing coming from pairing with
respect to the canonical measure dS on S”, which in R™ becomes the measure 4"~/ dz,
and so the €™/ in (6.29) cancels out if one works with the Euclidean measure dz, which
we do now. We remark a convolution kernel in z and thus apply Fourier transform in
z (denoted F): denoting P(zo; |z — 2'|) for P(zo, 2; '), the integral (6.29) becomes (up
to non-zero multiplicative constant)

1o, w) = > (F eV wa), F ) Feor (Plos ) pa(w = 2452 P23 <) ) ),

«

We can expand p, (z — Q%P(Zg; ¢])) so that

P(20; [C])" P pa (2 = 2492 P (205 C]) = ) QralC, )29 72" P 203 )"
r=0

where @), (¢) is homogeneous of degree m in z and 2r in (. Now we have (for some
C' # 0 independent of A\, 7, «)

ngw"“%o, [ChQralC,2)) =

C272 _A . e
ot @l )G E (€1 et
where K, () is the modified Bessel function (see [AbSt, Chapter 9]) defined by
m (I (2) = I,(2)) - 1 2ty
K, =z if 1,,( - - ‘
B o ; O0(0+v+1) (2) (6.30)

satisfying that |K,(z)| = O(%) as z — 00, and for s ¢ Ny

2_5+1<27T)n/2
['(s)

When A ¢ (=% +Z) U (—n — 1Nj), we have

F((1+21)7)(€) = €157 K gy ([€))-

n

2sin(m(A+ 5 + 1))
)

22 Quali0, ), o ()t =
(6.31)

(i Qm (O D) _ v 5~ B Qalie, )BT
Ar(f-r-g-r+y 7 AT+ A+ 2+ +1)

Here the powers of |£| are homogeneous distributions (note that for A & R,,, the
exceptional powers [£|™"77  j € Ny, do not appear) and the pairing of (6.31) with
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FHeMw,)F(p) makes sense since this distribution is Schwartz as w, has compact
support. We deduce from this expansion that for any w, € D’(R"™) supported near 0
and ¢ € C§°(R"), when A ¢ (—2 4+ Z) U (—n — 3No)

I(20,2) = 20" F_(20,7) + 20 F (20, 1)

for some smooth function Fy € C*([0,¢) x R™) homogeneous of degree m in z. We
need to analyze F_(0,z), which is obtained by computing the term of order 0 in ¢ in
the expansion (6.31) (that is, the terms with ¢ = r in the first sum; note that the terms
with ¢ < r in this sum are zero): we obtain for some universal constant C' # 0

Ty
CZ 'womso R"Tz; T'F()\+n+7">2 Qna(lag,l’)('ﬂ?)

where we have used the inversion formula T'(1—2)T'(z) = 7/ sin(72) and Q.o (i0¢, ) (|£]*")
is constant in ¢. Using Fourier transform, we notice that

Qra(i0, 1) (|E]") = AlQra(C, 2)|c=0 = Af(pa(z — C(¢, 2)))lc=0
We use Lemma A.5 to deduce that

m

DTN +n+m)
C as "Pa !
Z T #)Rnpal)mi )\+n—|—m Z m—r) DA +n—+r)

r=

The sum over r is a non-zero polynomial of order m in A, and using the binomial
formula, we see that its roots are A\ = —n —m + 2,..., —n + 1, therefore we deduce
that

INONES
A+n+m—-—1DI'A+n—-1)
We obtain the claimed result except for A € —5 + N by using that the volume measure
on S" is 47"en .

Now assume that A = —n/2 + j with 7 € N. The Bessel function satisfies for j € N:

F_(0,2) = C{eMw, o)z

I (—1)f 12— — 1) .
€ K(1€) = m(] )|£|2£+|€|2](10g(|€|)Lj(|§|)+Hj(|€|))

=0

for some function L;, H; € C*(R*)NL*(R") with L;(0) # 0. Then we apply the same
arguments as before and this implies the desired statement. 0

We obtain as a corollary:

Corollary 6.9. For m € Ny and A\ ¢ R,,, the operator &2, : D'(S*; @ (T*S") N
ker T) — C®(H"; @ (T*H")) is injective.

This corollary immediately implies the injectivity part of Theorem 6 in Section 5.2.
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7. EXPANSIONS OF EIGENSTATES OF THE LAPLACIAN

In this section, we show the surjectivity of the Poisson operator &2 (see Theorem 6
in Section 5.2). For that, we take an eigenstate u of the Laplacian on M and lift it to
H"*!. The resulting tensor is tempered and thus expected to have a weak asymptotic
expansion at the conformal boundary S"; a precise form of this expansion is obtained
by a careful analysis of both the Laplacian and the divergence-free condition. We then
show that u = 22, w, where w is some constant times the coefficient of p= in the
expansion of u (compare with Lemma 6.8).

7.1. Indicial calculus and general weak expansion. Recall the bundle E™) de-
fined in (6.5). The operator A acting on C*(Bnt+l; E™) is an elliptic differential
operator of order 2 which lies in the 0-calculus of Mazzeo—Melrose [MaMe], which es-
sentially means that it is an elliptic polynomial in elements of the Lie algebra V, (IB%”T)
of smooth vector fields vanishing at the boundary of the closed unit ball B*+1. Let
p € C=(B"*1) be a smooth geodesic boundary defining function (see the paragraph
preceding (6.25)). The theory developped by Mazzeo [Ma] shows that solutions of
Au = su which are in p~NL?*(B"*'; E(™) for some N have weak asymptotic expan-
sions at the boundary S” = dB"+! where p is any geodesic boundary defining function.
To make this more precise, we introduce the indicial family of A: if A € C,v € S”,
then there exists a family I, ,(A) € End(E™)(v)) depending smoothly on v € S* and
holomorphically on A so that for all u € C=(Bn+1; E™),

A (p ) (6(t, v)) = L (A)u(8(0,v)) + O(t)

near S"”, where the remainder is estimated with respect to the metric gy. Notice that
I, (A) is independent of the choice of boundary defining function p.

For o € C, the indicial set spec,(A — o;v) at v € S" of A — ¢ is the set
spec,(A —o;v) :={A € C| I, ,(A) — o ld is not invertible}.
Then [Ma, Theorem 7.3] gives the following”

Lemma 7.1. Fiz 0 and assume that spec,(A — o;v) is independent of v € S™. If
u € pL2(Br+l; E(™) with respect to the Euclidean measure for some 6 € R, and
(A —0o)u =0, then u has a weak asymptotic expansion at S* = {p = 0} of the form

kx.e

, 1

u= ) S > M log p)wns, + O 2
A€specy(A—o0) £eNg, =0

Re(A\)>6—1/2 Re(N\)+£<5—1/2+N

2The full power of [Ma] is not needed for this lemma. In fact, it can be proved in a direct way
by viewing the equation (A — o)u = 0 as an ordinary differential equation in the variable log p. The
indicial operator gives the constant coefficient principal part and the remaining terms are exponentially
decaying; an iterative argument shows the needed asymptotics.
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for all N € N and all e > 0 small, where ky, € No, and wy ¢, are in the Sobolev spaces

Wy € H™ Re(N\)— Z-HS— (Sn m)

Here the weak asymptotic means that for any ¢ € C*(S"), ast — 0

kx,e

RO RS SIS > (0 s

A€specy (A—o) £LeNg
Re()\)>b6—1/2 Re(A)+£<6— 1/2+N (71>

+ O(té-i-N—%—e)

where dS, is measure on S™ induced by the metric (p*gu)|s» and the distributional pair-

1
0+N—5—

ing is with respect to this measure. Moreover the remainder O(t ‘) is conormal

1
S+N—5—

in the sense that it remains an O(t ) after applying any finite number of times

the operator t0;, and it depends on some Sobolev norm of .

Remark. The existence of the expansion (7.1) proved by Mazzeo in [Ma, Theorem 7.3]
is independent of the choice of p, but the coefficients in the expansion depend on the
choice of p. Let Ay € spec,(A — o) with Re(Ag) > 0 — 1/2 be an element in the
indicial set and assume that ky,, = 0, which means that the exponent 0 in the weak
expansion (7.1) has no log term. Assume also that there is no element A\ € spec,(A—o)
with Re(A\g) > Re(A) > § — 1/2 such that A € \g — N. Then it is direct to see from
the weak expansion that for a fixed function x € C®(B"!) equal to 1 near S™ and
supported close to S" and for each ¢ € C>°(B"*!), the Mellin transform

bO) = [ A xWelu)uts) dvoly, (1), Re>nt 5=

(with values in E™) has a meromorphic extension to ( € C with a simple pole at
¢ = n — Ay and residue

Res¢—n-,1(€) = (Wrp00, lsn)- (7.2)

As an application, if p’ is another geodesic boundary defining function, one has p =
elp + O(p) for some f € C*(S") and we deduce that if w) g, is the coefficient of
(p) in the weak expansion of u using p/, then as distribution on S™

W00 = e w00 (7.3)

In particular, under the assumption above for A (this assumption can similarly be seen
to be independent of the choice of p), if one knows the exponents of the asymptotic
expansion, then proving that the coefficient of p* term is nonzero can be done locally
near any point of S” and with any choice of geodesic boundary defining function.
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Finally, if wy, 00 is the coefficient of py° in the weak expansion with boundary
defining function py defined in (3.34) and if v*u = w for some hyperbolic isometry
~v € G, we can use that py o~y = N;l - po + O(p?) near S", together with (7.2) to get

Lrwyg 00 = N2°wxg 00 € D'(S™; Em) (7.4)

as distributions on S" (with respect to the canonical measure on S™) with values in
E() Here N, L. are defined in Section 3.5. If we view wy, 0,0 as a distribution with
values in ®ZT*S", the covariance becomes

Liwng,00 = N3 ™" wpg00 € D' (" @FTS"). (7.5)

Using the calculations of Section 6.2, we will compute the indicial family of the
Laplacian on E(™):

Lemma 7.2. Let A be the Laplacian on sections of EM™ . Then the indicial set
spec,(A — o,v) does not depend on v € S™ and is equal to®

3]
U{)\|—)\2+n)\+m—l—2k(2m+n—2k3—2):a}
k=0

25t
U | {0 =X+ nd+n43(m — 1) + 2k(n +2m — 2k —4) = o},
k=0

Proof. We consider an isometry mapping the ball model B"*! to the half-plane model
U™t which also maps v to 0 and do all the calculations in U™ with the geodesic
boundary defining function z, near 0. By (6.7), each tensor u € E™ is determined

) components, which are denoted ug and wuy; therefore, it

uniquely by its Eém) and Efm
suffices to understand how the corresponding components of I ,(A)u are determined
by ug,u;. We can use the geodesic boundary defining function p = zy; note that
Az} = Xn — \)z) for all X € C.

Assume first that u satisfies u; = 0 and wug is constant in the frame S(Z5). Then by
Lemma 6.4,

mo(z " Alzyu)) = Roug = (A(n — A) +m)ug + m(m — 1)S(z5*h @ T (uo)),
T (25 " A(zgu)) = 0.

30ur argument in the next section does not actually use the precise indicial roots, as long as they
are independent of v and form a discrete set.
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Assume now that u satisfies up = 0 and wu; is constant in the frame S(Z; ® Z%). Then
by Lemma 6.4,

mo(2 " Alzyu)) =0,
(29 A(z0u)) = Riuy = (A(n — A) +n+3(m — 1))y
+(m —1)(m —2)S(Z; @ 2,°h @ T (u})).

We see that the indicial operator does not intertwine the uy and u; components and
it remains to understand for which \ the number s is a root of Ry or R;.

Next, we consider the decomposition (4.5), where for v € E((]m), we define Z(u) =
—(m+2)2(m+1)8(z0_2h ® u):

L5 |t
up =Y IF(@up), w= Y S(Z;eItu),
k=0

k=0

m—2k—1)

where uf € Eémf%), uk e Eé are trace-free tensors. Using (4.4), we calculate

Ro(Z"(ug)) = (M(n — ) +m)Z*(ug) + 2Z(T(Z*(ug)))
= (= X+ nA+m+2k2m +n — 2k — 2))T"(ug),
Ri(S8(Z5 © I*(u})))
= (An =X +n+3(m—1)S(Z; @ T"(u})) + 28(Z @ Z(T(TF(uh))))
= (=M +nA+n+3(m—1)+2k(n+2m — 2k — 4))S(Z; @ TF(u})),

which finishes the proof of the lemma. U

7.2. Weak expansions in the divergence-free case. By Lemma 7.1, we now know
that solutions of Au = ou which are trace-free symmetric tensors of order m in some
weighted L? space have weak asymptotic expansions at the boundary of B"+! with
exponents obtained from the indicial set of Lemma 7.2. In fact we can be more precise
about the exponents which really appear in the weak asymptotic expansion if we ask
that u also be divergence-free:

Lemma 7.3. Let u € p’L?>(B+1; E™) be a trace-free symmetric m-cotensor with
p a geodesic boundary defining function and § € (—oo, %), where the measure s the
Euclidean Lebesque measure on the ball. Assume that u is a nonzero divergence-free

eigentensor for the Laplacian on hyperbolic space:

Au=ou, Vu=0 (7.6)
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for some o = m + "72 — p* with Re(p) € (0,25 —6) and p # 0. Then the following

weak expansion holds: for all r € [0,m]|, N >0, and € > 0 small

n_
(Lpé’p)ru _ Z p2 M+T+£wr—y,f
£eNg
Re(—p)+€<N—e
bt ) (7.7)
+ Z Zp§+u+r+€ log(p)pwz’é’p + O(p§+N+7’76)
£eNg p=0

Re(u)+L<N—e

with w" i € H—g+Re(u)—r—e+5—§(Sn; E(mfr)% w;«h&p c H—g—Re(u)—T—Z—HS—%(Sn; E(mfr))'
Moreover, if i & 3Ny, then k., = 0.

Remarks. (i) If u is the lift to H"! of an eigentensor on a compact quotient M =
D\H"*!, then u € L>®°(B"*!; E(™) and so for all € > 0 the following regularity holds

w_,0 € H—%+Re(u)—e(8n; E(m))’ W00 € H—%—Re(u)—e(gn; E(m))

(ii) The existence of the expansion (7.7) does not depend on the choice of p. For
r = 0, this follows from analysing the Mellin transform of u as in the remark following
Lemma 7.1. For r > 0, we additionally use that if p’ is another geodesic boundary
defining function, then pd, — p'0, € p - *TB*1 (indeed, the dual covector by the
metric is p~ldp — (p')"'dp’ and we have p' = e/p for some smooth function f on
B+1). Therefore, (¢pr9,,)"u is a linear combination of contractions with 0-vector fields
of pr="' (Lpap)r,u for 0 < 7/ < r, which have the desired asymptotic expansion. Moreover,
as follows from (7.3), for each r € [0, m], the condition that wf%O =0 for all 7" € [0, 7]

,,,/

also does not depend on the choice of p, and same can be said about wy, o

n ¢ 3No.

Proof. 1t suffices to describe the weak asymptotic expansion of v near any point v € S™.

o When

For that, we work in the half-space model U"*! by sending —v to oo and v to 0 as
we did before (composing a rotation of the ball model with the map (3.5)). Since the
choice of geodesic boundary defining function does not change the nature of the weak
asymptotic expansion (but only the coefficients), we can take the geodesic boundary
defining function p to be equal to p(zo, z) = 2¢ inside |z| + zo < 1 (which corresponds
to a neighbourhood of v in the ball model). Considering the weak asymptotic (7.1) of
u near 0 amounts to taking ¢ supported near v in S in (7.1): for instance, if we work
in the half-space model we shall consider ¢(z) supported in |z| < 1 in the boundary of
Ut

We decompose u = > " u, with u, € p‘SLQ(U"“;E,(fm)) and we write u; =
S((Z2)®* @ u}) for some u, € p LU ES™M) following what we did in (6.6).
Now, since u € p’L*(Bn1) = pdL*(Bn+1) satisfies Au = ou, we deduce from the
form of the Laplacian near p = 0 that u € pd 2* H?*(Br+1; E(™) for all k € N where
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H* denotes the Sobolev space of order k associated to the Euclidean Laplacian on
the closed unit ball. Then by Sobolev embedding one has that for each ¢ > 0, u,,—
belongs to (1 + |z|)VL*(R?; E(™) for some N € N and we can consider its Fourier
transform in z, as a tempered distribution.” Then Fourier transforming the equation
(mo+m)(Au—ou) = 0 in the z-variable (recall that 7; is the orthogonal projection on
Ei(m)), and writing the Fourier variable & as § = Y | &dz = Y0 20827, with the
notations of Lemma 6.4, we get

> (~(Z0)* +nZo+ 2L +m — o) [1)S(Z]) + 20 Y SR Z))

Ieagm™ Jegm—1

. (7.8)
+m(m — 1) fiS(z h @ T(S(Z;))) = 0.
and
> (—(20) + nZo + 1517 + 0+ 3(m — 1) — 0)§,)S(Z3)

Jegm—1

—2im | freS(Z7) = 2im(m —1) Y fiSE® T(S(2))) (7.9)
Ileag™ Ieagm™

+m—1)(m-2) > 3,8 h@T(S(Z5))) = 0.

Jeam=1
where hat denotes Fourier transform in 2z and ¢ means Z?Zl 2085t z;- Similarly we
Fourier transform in z the equation (7o + 71)(V*u) = 0 using Lemma 6.5 to obtain

S ifueS(Zi) = S0 ((ntm = )iy~ Z(0)S(Z3),

Ieag™ Jeg/m—1

S (Zofi — (ntm -~ DETSZD) = - S ianeS(Z5).

Ieam™ Jetgjmfl

(7.10)

Now, we use the correspondence between symmetric tensors and homogeneous poly-
nomials to facilitate computations, as explained in Section 4.1 and in the proof of
Lemma 6.8; that is, to S(Z7), we associate the polynomial zy on R”. If £ € R" is a
fixed element and u € Pol™(R"), we write dcu = du.£ € Pol™ ' (R") for the derivative
of u in the direction of ¢ and &*u for the element (¢, )gnu € Pol™ ' (R™). The trace

map 7 becomes _mA” We define @y := >, m fropand @y =) ;0 mo1 G525

The elements f1(zo, €), §1(z0, ) belong to the space C*(RY;-7"(R})). We decompose
them as

3

] |5
o= |z|/¥ay, iy = 2% a2 (7.11)

Jj=0

NE
oF
\

<.
Il
o

4Unlike Lemma 6.8, we only use Fourier analysis here for convenience of notation — all the calcu-
lations below could be done with differential operators in z instead.
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for some .7 € Polf "% (R") (harmonic in z, that is trace-free).

Using the homogeneous polynomial description of ug, equation (7.8) becomes
(—(Z0)2 + 7’LZO —+ Zg|€’2 +m — U)'ELO + 22-205*@1 — |$’2Ax’&0 =0. (712)

First, if W is a harmonic homogeneous polynomial in z of degree j, one has A, (§*W) =
—20:W and AZ(&*W) = 0, thus one can write

O W )
w=(ew >| o) + e = (7.13)

for the decomposition (4.5) of 5 Ww. In particular, one can write the decomposition
(4.5) of £*uy as

|25 ] 2] ~2(5—1)
. , 00! Oetiy”
ko E 2]( *n2] (! 2 [ )
't = P& n+2(m—2—2j)|$| +n—|—2(m—2j)

We can write Aty = Z}%QJ \j|@ 220 for Aj = —2j(n+2(m—j —1)). Thus (7.12)
gives for j < |m/2]
(—(Zo)? + nZo+ 2| +m — o — N))ag

D20 (7.14)

o[ 0gty’ > _0
n+2m—2-25) n+2m-25/
Notice that 1(S(Z7)) corresponds to the polynomial 2dwx;.{ = 20..x; if I € ™.
From (7.10) we thus have for ¢,, :=n+m — 1

+2iz (5* 02—

—2.2085’&0 :(ZD — cm)ﬁl,

—1200ey =(Zoy — ¢m) Azlly. (7.15)
Next, (7.9) implies
(—(Z0)* +nZy+ 2)E)* + n+ 3(m — 1) — 0)dy — 2iz00¢0
20206 Ao — |22 Aty = 0.
Using (7.15), this can be rewritten as
(—(Z0)* + (n+2)Zo + 2 |€]* —=n+m — 1 —0)iy (7.16)

+2iZof*Afo0 — |$‘2Ax7j61 =0.
We can write A, t; = ZE("E eV L7207 for N = —24(n + 2(m — j — 2)). We get
from (7.16)
(— (Zo)* + (n+2)Zo+ 2 —n+tm—1—0— A;)a?
(7.17)

~2 1 N
)‘J+1a€ U | ’2 Ajaﬁug _

92 ( *A2(3+1) )_
T2z (A n+2(m—3— 27) n+2(m—1—2j)
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We shall now partially uncouple the system of equations for ﬁ?)j and ﬁ?j . Using
(7.13) and applying the decomposition (4.5), we have
n+2m—j—1)
n+2(m—2j—1)

2j ~2j 2 2] o 125—2 ( xn25 |$|20£A2]
Oel|2¥a) = |af? 0 2l (60— g )

. o 9in+2(m—j—2) 0 12i— 2 ‘xpa&d]
a 25 ~2] — 2]8 2j n 2 2j 2( * 4] )
ellal™a) = el ot =2y =gy T =)

and from (7.15), this implies that for j > 0

(Zo — Cm)a%j =

. +2(m—j—1) ~2(j+1) |$|23 gV (7.18)
iz Det ¥ 2(j + 1) (£7a2Y )
iz0 (0t o 2m 21y T2U D e —2-3))
and for j > 0
(Zo — cm)iiy =
e 1 (7.19)

* ~27 |J]|2(9£ﬂ2j
(2j(n+2(m 27)) * n+2m-—j—1) (€’ - n+2(m — 21j — 2)))

Combining with (7.14) and (7.17) we get for j > 0
(—(20)2 + (n + 4])Z0 + Z§|£|2 +m—o0 — )‘j — 4']Cm)7jb(2]j

n+2(m-—2j—1) <€*A2j |2 [20: 07 ) _ (7.20)

2i -
T = =) & T T am—2—2))

(—(Zo)* + (n+2+4)) 20 + ¢ —n+m —1—0 = X — dje,)i;

L 2(j+1) (7.21)
: a2 |70ty =
+2i20(Aj1 + 4507 +1))<f U n+2(m — 3—2j)> =0
(~(20)" 4 (n+2 = 35) % + ¢ =+ m (e — )i
- (nt2(m —j = 1))(n+2(m = 2j = 2)), o 722
2 § =
+2izp nF2(m—2j —1) Ietiy =0
and for j > 0
(—Z3+ (n— 2)Zo+ ABIE +m— 0 + 2 e — )Y
o — 1 %) 41 (7.23)

—i2p g9~ = 0.

j(n+2(m — 2j))
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To prove the lemma, we will show the following weak asymptotic expansion for
1=0,1:

2 . Fopt2j il i
<U?](207 ), 0) = Z 2 <wz‘2;j—u,ea ©)
Rc(7ﬁ§§2;N75

Do pb 2 +ite G+2j+itN—e
+ Y Z 2 log(20)" (7, 4, ) + Olzg ),

£eNg
Re(u)+€<N €

(7.24)

oy
where w;’

o and @7 0 are distributions in some Sobolev spaces in {|z| < 1} C R"

and for p ¢ NO, we have k, , = 0.
Define for 0 < r < m and ¢ € C§°(R") supported in {|z| < 1},

r (Ug(20,7), 9), r is even;
Fr(p)(z0) o= { 00 2h T
(a7 (20,+), ), 7 isodd.

Since 4} " is the Fourier transform in z of iterated traces of u;, Lemma 7.1 gives that
the function F"(¢)(z) satisfies for all N € N, e > 0

F7(p)(20) = Z Z Z 2 og(20)P (W) 1 ) + O(25) (7.25)

A€specy (A—o) LeNy,
Re(A\)>5—1/2 Re(A)+L<N—e

as zg — 0, and some w} , , in some Sobolev space on {|z| < 1}. We pair (7.20), (7.21)
with ¢, and it is direct to see that we obtain a differential equation in zy of the form

P"(Zo)F" () (20) = =25 F" (Ap)(20) + 20F" Q") (20) (7.26)

for Z() = Z()@ZO,
2

r 2 n 9 n 2 9
P"(A) := =\ +(n+2r))\—r(n+r)—z+g :—()\—§_r> + 12,

and ()" some differential operator of order 1 with values in homomorphisms on the
space of polynomials in z. Here we denote F™*1 = (.

We now show the expansion (7.24) by induction on r = 2j +i =m,m — 1,...,0.
By plugging the expansion (7.25) in the equation (7.26) and using

P"(Zo)7 log(20)" = 25 (Fg (A)(log z0)" + p0rFg () (log z0)" ™"
+0((log 20)"~?))
we see that if for some p, z)(logz)P is featured in the asymptotic expansion of
F(¢)(2), then either A\ € n/2 +7 — pu+ Ny, or A € n/2 +7r + u -+ Ny, or 23 2(log 2)”
is featured in the expansion of F"(Ag)(zp). Moreover, if p > 0 and \ ¢ {n/2 +r+ul,

then either 23 (log z)” is featured in F"(p)(2) for some p' > p, or 23 2(log z)P is
featured in F"(Ap)(z), or 2y *(log z)? is featured in F™(Q"¢)(2). If p > 0 and

(7.27)
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A = n/2+4r =+ u, then (since p # 0 and thus NP (N\) # 0) either z)(logzo)? is
featured in F(¢)(z) for some p' > p, or 2z *(log 20)P~! is featured in F"(Ap)(z),
or 2, (log 2)P~! is featured in F™+'(Q"¢)(2), however the latter two cases are only
possible when A =n/2+r+pand p € 2N0. Together these facts (applied to ¢ as well

as its images under combinations of A and Q") imply that the weak expansion of u?j
has the form (7.24).

The asymptotic expansions (7.7) now follow from (7.24) since pd, = Z, for our choice
of p and for each r € [0,m], by (6.7) and (7.11) we see that (identifying symmetric
tensors with homogeneous polynomials in (zg, x))

s 2|r'/2]|+2s
(20l m) =3 S sy el {2 (7.28)

r'=r 5>0
r +25§m

for some constants c,, ., s; for later use, we also note that ¢, .o 7 0. L]

7.3. Surjectivity of the Poisson operator. In this section, we prove the surjectiv-
ity part of Theorem 6 in Section 5.2 (together with the injectivity part established in
Corollary 6.9, this finishes the proof of that theorem). The remaining essential com-
ponent of the proof is showing that unless © = 0, a certain term in the asymptotic
expansion of Lemma 7.3 is nonzero (in particular we will see that u cannot be vanishing
to infinite order on S" in the weak sense). We start with

Lemma 7.4. Take some u satisfying (7.6). Assume that for all r € [0,m], the coeffi-
cient w’” , o of the weak expansion (7.7) is zero. (By Remark (i) following Lemma 7.3,
this condition is independent of the choice of p.) Thenu =0. If u ¢ %NO, then we can
replace w” , o by wy, oo in the assumption above.

Proof. We choose some v € S™ and transform B! to the half-space model as explained
in the proof of Lemma 7.3, and use the notation of that proof. Define the function
f € C®(B") in the half-space model as follows:

F 25 "MuEm if m is even;
2o Mu" it m is odd.

Here uo , u1 are obtained by taking the inverse Fourier transform of ugj, 11?3 By (7.20),
(7.21) (see also (7.26)) we have

(Agnsr — 0?4+ p?) f = 0. (7.29)

Denote by Cg5,,(B"*!) the set of smooth functions f in B"*' which are tempered in
the sense that there exists N € R such that pf € L*(B"™). Set A\ := —n/2 + y;

it is proved in [VdBSc, OsSe] (see also [GrOt] for a simpler presentation in the case
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|Re(\) + n/2| < n/2) that the Poisson operator acting on distributions on hyperbolic
space is an isomorphism

P D(S") — ker(Agnsr + A(n+ X)) N Cfg’mp(B"“)
for A ¢ —n — No, and if Re(\) > —n/2 with A # 0 any element v € C5, (B"™') with

(Agn+1 + A(n 4+ A))v = 0 and v # 0 satisfies a weak expansion for any N € N

N
v =P (V_pr) Z ( . HMU—M + an/ﬂwz log(po)’vy, e,?) + O(po e HN)
=

with v_, 0 #Z 0; moreover k,, = 0if X\ ¢ —%5 + %NO, and v, 00 # 0 for such A (here
V_p0, Uuep are distributions on S™ as before).”

Next, by (7.28), for some nonzero constant ¢ we have

f = C(Z()_lLZo) U= C( m820>

A calculation using (3.5) shows that in the ball model, using the geodesic boundary
defining function py from (3.34),

(1=l
sy = — 5 v+(1+y-v)y|o, (7.30)

is a C*°(B"+!)-linear combination of 0,, and a 0-vector field. It follows from the form
of the expansion (7.7) and the assumption of this lemma that the coefficient of pZ "
of the weak expansion of f is zero. (If u ¢ 3Ny, then we can also consider instead the

coefficient of ,02 “.)

By (7.29) and the surjectivity of the scalar Poisson kernel discussed above, we now
see that f = 0. Now, for each fixed y € B"*! and each n € T,B"™, we can choose v
such that 7 is a multiple of (7.30) at y; in fact, it suffices to take v so that the geodesic
wi(y,n) converges to —v as t — +oo. Therefore, for each y,n, we have (u, ®™n) =0
at y. Since v is a symmetric tensor, this implies u = 0. U

We now relax the assumptions of Lemma 7.4 to only include the term with r» = 0:

Lemma 7.5. Take some u satisfying (7.6). If n =1 and m > 0, then we additionally
assume that p # % Assume that the coefficient wo_#’o of the weak expansion (7.7) is
zero. (By Remark (ii) followmg Lemma 7.3, this condition is mdependent of the choice
of p.) Thenu=0. If u ¢ NO, then we can replace w® 0 by w 0.0 tn our assumption.

The existence of the weak expansion with known coefficients for elements in the image of P is
directly related to the special case m = 0 of Lemma 6.8 and the existence of a weak expansion for
scalar eigenfunctions of the Laplacian follows from the m = 0 case of Lemma 7.3. However, neither
the surjectivity of the scalar Poisson operator nor the fact that eigenfunctions have nontrivial terms
in their weak expansions follows from these statements.
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Proof. Assume that wl ,, = 0; here we consider the case of w; ; := w) ;, only when
T %NO. By Lemma 7.4, it suffices to prove that w},, = 0 for » = 0,...,m.
This is a local statement and we use the half-plane model and the notation of the
proof of Lemma 7.3. By (7.28), it then suffices to show that if @(,.,, = 0 in the

expansion (7.24), then wfji# o = 0 for all 7, j.

We argue by induction on r = 25+ = 0,...,m. Assume first that : = 0, j > 0,

and wy. iulo) = 0. Then we plug (7.24) into (7.23) and consider the coefficient next

to zg LR J, this gives {Dgfiup = 0if for A = & 4 p + 27, the following constant is

nonzero: \ \
—2? + (n——,j))\—i—m—a—l——,j(cm—j)
J J
=(n+2m—2—4j)(£2u — n —2m + 2 + 4j).

We see immediately that (7.31) is nonzero unless m = 2j. For the case m = 2j, we can
Eu+m

(7.31)

use (7.19) directly; taking the coefficient next to z; , we get @g;ji%o = 0 as long
as § & p1 +m # ¢y, or equivalently + # 5 — 1; the latter inequality is immediately
true unless n = 1, and it is explicitely excluded by the statement of the present lemma
when n = 1.

Similarly, assume that i = 1, 0 < 2j < m, and @ iuo = 0. Then we plus (7.24)

5 Ep+25+1

into (7.22) and consider the coefficient next to z3 ; this gives ﬂ?ijiw = 0 if for

A=15 + pu+2j+1, the following constant is nonzero:
M4+ (n+2- J“))\ n4+m—1—o0+ 2 (¢, — )

A (7.32)
=(n+2m—4—45)(£2u —n —2m + 4 + 4j).

We see immediately that (7.32) is nonzero unless m = 25+ 1. For the case m = 2j +1,

24put+m ~2i
2 J
, we get wyy, o =0

as long as § & j1 +m # ¢, which we have already established is true. 0J

we can use (7.18) directly; taking the coefficient next to z

We finish the section by the following statement, which immediately implies the
surjectivity part of Theorem 6. Note that for the lifts of elements of Eig™(—A(n+\) +
m), we can take any § < 1/2 below. The condition Re A < § — ¢ for m > 0 follows
from Lemma 6.1.

Corollary 7.6. Let u € p5L2(IB%”+1 Em ) be a trace-free symmetric m-cotensor with
p a geodesic boundary defining function and § € (—oo, 2) where the measure is the
Euclidean Lebesque measure on the ball. Assume that u is a nonzero divergence-free
eigentensor for the Laplacian on hyperbolic space:

Au=(=An+A)+m)u, V'u=0 (7.33)

with Re(A) < 3 — 6 and A\ ¢ R, with R, defined in (5.20). Then there exists
w € HRWH0=3(Sm @uT*S") such that u = P5 (w). Moreover if y*u = u for some
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* _ —A—m
v € G, then Liw = N, w.

Proof. For the case Re(\) > —n/2 we set = n/2 + X and apply Lemma 7.3: the
distribution w will be given by C(A)w_, o for some constant C'(\) to be chosen, and
this has the desired covariance with respect to elements of G by using (7.5) from the
Remark after Lemma 7.1.

To see that u = & (w) for a certain C'()), it suffices to use the weak expansion
in Lemma 6.8 and the identity (7.3) from the Remark following Lemma 7.1, to de-
duce that C(\)B(M)w_,o appears as the leading coefficient of the power p,” in the
expansion of u, where B(\) is a non-zero constant times the factor appearing in (6.27);
here pg is defined in (3.34). (The factor B(A) does not depend on the point v € S"
since the Poisson operator is equivariant under rotations of B”T) Then choosing
C(A\) := B(A)™!, we observe that v and 25 (w) both satisfy (7.33) and have the same
asymptotic coefficient of p, A in their weak expansion (7.7); thus from Lemma 7.5 we
have u = & (w). Finally, for Re(\) < —n/2 with A ¢ —2 — 1N, we do the same thing
but setting p := —n/2 — X in Proposition 7.3. U

APPENDIX A. SOME TECHNICAL CALCULATIONS

A.1. Asymptotic expansions for certain integrals. In this subsection, we prove
the following version of Hadamard regularization:

Lemma A.1. Fiz x € C°(R) and define for Rea > 0, B € C, and € > 0,

Fugle) = / (1 4 )P (<t d.
0
If a — B ¢ Ny, then Fog(e) has the following asymptotic expansion as € — +0:

I'(a)l'(f — )

) x(0) + Z ;e 4 0(1), (A1)

0<j<Re(a—p)

Fog(e) =

for some constants c; depending on x.

Proof. We use the following identity obtained by integrating by parts:

CO.F,p(c) = /0 (1 + 1) 20, (x(et)) dt "
= (B8 — a)Fup(e) — BFopia(e).

By using the Taylor expansion of x at zero, we also see that

x(et) = x(0) + O(et);
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given the following formula obtained by the change of variables s = (1+%)~! and using
the beta function,

° I'a)'(B —
/ to‘_l(1+t)_f3dt:M, if Refs > Rea > 0,
0

I'(3)
we see that
Fos(e) = wx(()) +O(e) if Re(f—a)>1.
(3
By applying this asymptotic expansion to [F, gy for large integer M and iterat-
ing (A.2), we derive the expansion (A.1). O

For the next result, we need the following two calculations (see Section 4.1 for some
of the notation used):

Lemma A.2. For each ¢ > 0,

L@ is) = T Psen,
where [ =377, 0; ® 0;.

Proof. Since both sides are symmetric tensors, it suffices to show that for each x € R",

27rn51F(€ + 1)
20 2 20
x-n)TdS(n) = - x|,

Without loss of generality (using homogeneity and rotational invariance), we may
assume that x = 0;. Then using polar coordinates and Fubbini’s theorem, we have

Pie+3) 20 —[n|?,,2¢ = 1
T/Sn_lnl dS(n)—/ne N dn=m F<€+§>

finishing the proof. U

Lemma A.3. For each n € R", define the linear map 6, : R* — R" by

. . 2 _
G =1- 17 W(n - ).
Then for each Ay, Ay € @TR"™ with T(A;) = 'T(Ag) =0, and each r > 0, we have
n — r2 \*

Ay, Ag)d =272 — A, Ay).

én_l<(® Cgﬂi) 1, 2 S ™ ; m Ell—w +€)< 1+’I"2> < 1, 2>
Proof. We have

2r2
Cgrn =1Id— 2 n & n,

1+
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where n* € (R™)* is the dual to n by the standard metric. Then

2

/sm (@Bl A, A2 ) = /S (e (1~ ffﬂ n@n),o(A @A) dS(n).

where o is the operator defined by
oM@ RN @M@ @) =M DN @+ @ N @ 1.

We use Lemma A.2, a binomial expansion, and the fact that A; are symmetric, to
calculate

/S < @ (I -2 e n) yo(Ar @ A2)> ds(n)

1472

1472

=2 e!(mmi 0)! < - )Z /S (@) @ (&™), 0(A1 @ 43)) dS(n)

el e m)! F(ﬁ—l—%) 2r2 \¢ ’ _
— o3 Zm(m—g)!'r(ug)(_ 1+r2> (S(@) @ (@™ 1), 0(A; @ Ay)).

Since T (A;) = T (Ay) = 0, we can compute

(S5(6T) @ (1), 0(4 © A2)) = 2L (4, 43).

Here 2¢(¢!)%/(20)! is the proportion of all permutations 7 of 2¢ elements such that for
each j, 7(25 — 1) + 7(2j) is odd. It remains to calculate

" D+ 1) QZE‘ - Vrml! ’
Z (m — E (€+2) Zm O\ + 2 )<t/2)

=

O

We can now state the following asymptotic formula, used in the proof of Lemma 5.11:
Lemma A.4. Let x € C{°(R) be equal to 1 near 0, and take Ay, Ay € QER™ satisfying
T(A1) =T(Az) =0. Then for A€ C, A & —(5 + Ny), we have as ¢ — +0,

[ el Py (57 A, As)
Rn

L5+ A)
m+A+m—1C(n—1+X)

(Anda) + Y e 4 o(1),

0<j<—ReA—12

n
= T2

for some constants c;.
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Proof. We write, using the change of variables n = /10, § € S, and x(s) = ¥(s?), and
by Lemma A.3

[ el ) (576 A, As)

DN | —

Amx(%ﬂ 14+ (énﬁ@W%%ﬁAbAﬁdSwmt

I
s
Pﬂs

= (m— é IF +g) <A1’A2>/O (2N + ) e

We now apply Lemma A.1 to get the required asymptotic expansion. The constant
term in the expansion is (A;, Ag) times

= (—1)"m!
r

”2<2+A>z:mp4mmn+x+@
= 1y (A.3)

n n —1

— a5 (=1 (2
7 (=1) m.F<2 +)\> ;K!F(n—l—)\—i-m—f)‘
We now use the binomial expansion

(1 . t)n—i—)\-i-m—l _ o (_1)@ té
T(n+A+m) 00+ A+m—1)

and the sum in the last line of (A.3) is the ¢™ coefficient of

(1 B t)—l (1 _ t)n-i-)\-i-m—l B (1 _ t)n+)\+m—2
L(n+A+m)  T(n+A+m)

n+)\+m—1j:0j!F(n+)\+m—j—1) ’
this finishes the proof. 0J

A.2. The Jacobian of ¥. Here we compute the Jacobian of the map ¥ : £ — SZH"*!
appearing in the proof of Lemma 5.11, proving (5.31). By the G-equivariance of ¥

we may assume that © = 0y, & = d1,m = /s 0y for some s > 0. We then consider the
following volume 1 basis of T(, ¢ ,)E:

Xl - (817807())7 X2 = (82707 \/580)7 X3 - (07827 _\/§81)7 X4 = (070782)7
Ou\0c,, 0y 3<j<nt L
We have q’(%&ﬂ?) = (yvn—777+)7 where
:(V8+1707\/§707"'70)7 77i2<:|:

S

1
Ve+1 /s+1

7:!:\/5707"'7(])'



76 SEMYON DYATLOV, FREDERIC FAURE, AND COLIN GUILLARMOU

Then we can consider the following volume 1 basis for T{,,, ,,)SaH"

i\
0o + V 10 —
\/E 0 +Vs+ 25 \/S_f_—]_ya \/S—f——]_y>7

0,0,v/50) + /501 + s+ 10a)
vs+1 ’

= (O )

Oa\/gao - \/gal + \/8+182a0>
Vs+1
Oy D0

V+J7

v !

3<jij<n+1.
Then the differential d¥(x, &, n) maps
Xy = Vs +1Y1 = VY3 — /s,

X2r_>Y27
Xy —/sYi+Vs+1Ys5+ s+ 1Y,
1 1 1

Xy ——=Yo + Y; — Y.

4 A1 2 s sg1d
Moreover, for 3 < j < n + 1, d¥(x,&,n) maps linear combinations of 0,,,0,,dy,
to linear combinations of d,,,0,_,,0,,, by the matrix A(s). The identity (5.31) now
follows by a direct calculation.

A.3. An identity for harmonic polynomials. We give a technical lemma which is
used in the proof of Lemma 6.8 (injectivity of the Poisson kernel).

Lemma A.5. Let P be a harmonic homogeneous polynomial of order m in R™, then
for r < m, we have for all x € R"
m!r!

Proof. By homogeneity, it suffices to choose |z| = 1. We set t = (¢, z) and u = — tx
and P(x — (((,x)) viewed in the (¢,u) coordinates is the homogeneous polynomial
(t,u) = P((1 —t*)x — tu). Now, we write for all u € (Rz)* and ¢ > 0

ALP(x — ¢(C,x))e=0 = 2

P(tz —u) = Ztm*jpjm)

where P; is a homogeneous polynomial of degree j in u € (Rz)*, and since the Lapla-
cian A written in the ¢,u coordinates is —9? + A,, the condition A,P = 0 can be
rewritten

AuPj(u) = (m—j+2)(m—j+1)P2(u), APi(u)=A2,=0,
which gives for all j and ¢ > 1
AL Py(u) =m(m —1) -+ (m — 20+ 1)Py, N Py (t)]ueo = 0.
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We write A = >0 Wik)!(—l)k@kaZ*k and using parity and homogeneity consid-
erations, we have

. T' m rT—
cPla = (¢, 2))|e=0 = Z Rl — )] Z [07((1 — FEI) AT Poj(u)]] =0
(_l)k 2k 2\m—2(r—k) 12(r—k) r—k
— Z m(a (1—1% 20N |i—o AR Py,
max(0,r—m/2)<k<r
B m'r' Z k+r(2k:) _or m!r!
B r/2<k< k:' (r—NRk—r) = (m—r)"°

and Py is the constant given by P(z). Here we used the identity

(C1Fr R " @2kl
DT S TTe s TRl R Gy T T Rl

r/2<k<r 0<k<r/2

which holds since both sides are equal to the t" coefficient of the product

1 14t)"
Loy (1ot = R
(- - = U0
1 _ =~ (j+7)
1-r _ — gr o 1 _ .
=0
the " coefficient of (1 +¢)"/(1 — t) equals the sum of the ¢t} ... ¢" coefficients of
(1+1¢)", or simply (1 +1)" =2". O

APPENDIX B. THE SPECIAL CASE OF DIMENSION 2

We explain how the argument of Section 2.1 fits into the framework of Sections 3
and 4. In dimension 2 it is more standard to use the upper half-plane model

H? .= {weC|Imw >0},
which is related to the half-space model of Section 3.1 by the formula w = —2z1 + 2.

The group of all isometries of H? is PSL(2;R), the quotient of SL(2;R) by the
group generated by the matrix — Id, and the action of PSL(2;R) on H? is by Mobius

transformations:
b b
“ .z:ﬁ7 e H* CC.
c d cz+d

Under the identifications (3.2) and (3.5), this action corresponds to the action of

PSO(1,2) on H? C RY? by the group isomorphism PSL(2;R) — PSO(1,2) defined by
- a2+b2—502+d2 a2—b2-502—d2 —ab—cd

< > — a?+b?—c?—d®> a?-b>—c?4d? cd — ab ) (Bl)

c d 2 2

—ac — bd bd — ac ad + be

k)
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The induced Lie algebra isomorphism maps the vector fields X, U_, U, of (2.1) to the
fields X, U; ,U;" of (3.6), (3.7).

The horocyclic operators Uy : D'(SH?) — D'(SH?; £*) of Section 4.2 (and analo-
gously horocyclic operators of higher orders) then take the following form:

Usu = (Uru)n®,

where n* is the dual to the section n € C*(SH?; £) defined as follows: for (z,¢) € SH?,
n(x,€) is the unique vector in T,H? such that (£,7) is a positively oriented orthonormal
frame. Note also that n(z,§) = £ AL (2,§) - ((Bi(z,§)), where Ay (z,§) is defined in
Section 3.6 and ((v) € T,S', v € S!, is the result of rotating v counterclockwise by
7/2; therefore, if we use n and ( to trivialize the relevant vector bundles, then the
operators Q. of (4.26) are simply the pullback operators by By, up to multiplication
by £1.

APPENDIX C. EIGENVALUE ASYMPTOTICS FOR SYMMETRIC TENSORS

C.1. Weyl law. In this section, we prove the following asymptotic of the counting
function for trace free divergence free tensors (see Sections 4.1 and 6.1 for the notation):

Proposition C.1. If (M, g) is a compact Riemannian manifold of dimension n + 1
and constant sectional curvature —1, and if

Eig"(0) = {u € C*(M;Q%¥T*M) | Au = ou, V'u=0, T(u) =0},
then the following Weyl law holds as R — oo
Z dim Eig™ (o) = co(n)(c1(n,m) — ¢1(n, m — 2)) Vol(M)R"™ + O(R"),
o<R?

m)—n—1 m+n—1)!
where cy(n) = % and ci(n,m) = %

homogeneous polynomials of order m in n variables. (We put ¢1(n,m) := 0 form < 0.)

15 the dimension of the space of

Remark. The constant cy(n,m) := ¢1(n,m) — ¢;(n,m — 2) is the dimension of the
space of harmonic homogeneous polynomials of order m in n variables. We have

c2(n,0) =1, ca(n,1) =n.

For m > 2, we have cy(n,m) > 0 if and only if n > 1.

The proof of Proposition C.1 uses the following two technical lemmas:
Lemma C.2. Takeu € D'(M;QFT*M). Then, denoting D = SoV as in Section 6.1,

A, V9u=(2-2m—n)V'u—2(m—1)D(T (u)), (C.1)
[A, Dlu = (2m + n)Du + 2mS(g ® V*u). (C.2)
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Proof. We have
AV*u = T*(V?u), V*Au=T*(1153Vu).
where 7j,,v denotes the result of swapping jth and kth indices in a cotensor v. We
have
Id =763 = (Id =7162) + T1oo(Id —To03) + TiooTons(Id —T162),
therefore (using that 77y = T)
(A, V= T*(VAd =T162) VU + Taes3(Id —T152) VPu)

Since M has sectional curvature —1, we have for any cotensor v of rank m,

m

(Id —71452) V0 = Z(TIHZ—&-Q — Tocse42)(g @ 0).
=1

Then we compute (using that T (Toc37103) = T (T2e3))

m

A, VSu="T" (7293 —Id+ Z((7—2<—>5+3 — T35043)T1e3 T Toos3(Troes — 7_2<—>£+3))) (9 ® Vu).

=1
Now,

T (9@ Vu) = THTouuTio3(9 @ V) = T2 (TaesTioa(g @ Vu)) = —(n + 1)V,
T?(2es3(9 © V) = T (1304m103(9 © V) = T (aesmed(g © Vu)) = —Viu,
and since u is symmetric, for 1 < ¢ < m,
7'2(7'24—>e+37'1<—>3(g ®@ Vu)) = TQ(T2<—>37'1<—>Z+3(9 ® Vu)) = —V'u,
T2 (T30043T103(0 @ VU)) = THTaosTooers(g @ V) = Tiae 1 V(T (w).

We then compute
m—1
AV 9u=(2-2m—n)V'u—-2) 711./V(T (1)),
=1

finishing the proof of (C.1). The identity (C.2) follows from (C.1) by taking the adjoint
on the space of symmetric tensors. 0

Lemma C.3. Denote by 7, : QTT*M — QTT*M the orthogonal projection onto the
space ker T of trace free tensors. Then for each m, the space

o= {v € C¥(M; 0T M) | T(v) = 0, Fpsr (Do) = 0} (C.3)

1s finite dimensional.

Proof. The space F™ is contained in the kernel of the operator
P, = V*'1,1D

acting on trace free sections of ®¥T*M. By [DaSh, Lemma 5.2], the operator P, is
elliptic; therefore, its kernel is finite dimensional. U
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We now prove Proposition C.1. For each m > 0 and s € R, denote
W™ (o) :={ue D (M;FT*M) | Au=ou, T(u)=0}.

The operator A acting on trace free symmetric tensors is elliptic and in fact, its
principal symbol coincides with that of the scalar Laplacian: p(z,&) = |€ |3 It follows
that W™ (o) are finite dimensional and consist of smooth sections. By the general
argument of Hérmander [HOIII, Section 17.5] (see also [DiSj, Theorem 10.1] and [Zw,
Theorem 6.8]; all of these arguments adapt straightforwardly to the case of operators
with diagonal principal symbols acting on vector bundles), we have the following Weyl
law:

Z dim W™ (o) = co(n)(ci(n+1,m) —ci(n+1,m—2)) Vol(M)R"* + O(R"); (C.4)
o< R2
here ¢1(n+1,m) —c1(n+ 1, m+ 2) is the dimension of the vector bundle on which we
consider the operator A.

By (C.1), for m > 1 the divergence operator acts
V" W™ (o) = W™ o +2—2m —n). (C.5)
This operator is surjective except at finitely many points o:

Lemma C.4. Let C; = dim F™ !, where F™! is defined in (C.3). Then the number
of values o such that (C.5) is not surjective does not exceed C'.

Proof. Assume that (C.5) is not surjective for some o. Then there exists nonzero
v € W™ (o + 2 — 2m — n) which is orthogonal to V*(W™(c)). Since the spaces
W™ 1(g) are mutually orthogonal, we see from (C.5) that v is also orthogonal to
V*(W™ (o)) for all ¢ # o. It follows that for each o and each u € W™(o), we have
(Dv,u)r2 = 0. Since @, W™ (o) is dense in the space of trace free tensors, we see that
for each u € C*®°(M;@TT*M) with T (u) = 0, we have (Dv,u);2 = 0, which implies
that v € F™!. Tt remains to note that F™~! can have a nontrivial intersection with
at most C of the spaces W™ (g +2 — 2m — n). O

Since Eig™ (o) is the kernel of (C.5), we have
dim Eig™ (o) > dim W™ (o) — dim W™ (o + 2 — 2m — n),

and this inequality is an equality if (C.5) is surjective. We then see that for some
constant C5 independent of R,

Z dimW™(o) — Z dim W™ (o) < Z dim Eig™ (o)
o<R? o<R242—-2m—n o<R2

<Cy+ Z dim W™ (o) — Z dim W™ (o)

o<R? o<R2+2-2m—n
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and Proposition C.1 now follows from (C.4) and the identity ¢;(n + 1,m) — ¢;(n +
I,m—1)= ¢ (n,m).

C.2. The case m = 1. In this section, we describe space Eig'(c) in terms of Hodge
theory; see for instance [Pe, Section 7.2] for the notation used. Note that symmetric
cotensors of order 1 are exactly differential 1-forms on M. Since the operator V :
C>®(M) — C>(M;T*M) is equal to the operator d on 0-forms, we have

Eig'(0) = {u € Q'(M) | Au = ou, du = 0}.

Here A = V*V; using that M has sectional curvature —1, we write A in terms of the
Hodge Laplacian Aq := dd+dd on 1-forms using the following Weitzenbock formula [Pe,
Corollary 7.21]:
Au= (Aqg+n)u, ueQ'(M).
We then see that
Eig'(0) = {u € QY(M) | Aqu = (0 — n)u, du = 0}. (C.6)

Finally, let us consider the case n = 1. The Hodge star operator acts from Q'(M) to
itself, and we see that for o # 1,

Eig'(0) = {*u | v e QY(M), Aqu = (¢ — 1)u, du =0}

={x(df) | f €C=(M), Af = (o = 1)f}.

Note that x(df) can be viewed as the Hamiltonian field of f with respect to the natu-
rally induced symplectic form (that is, volume form) on M.

(C.7)
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