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Abstract. We describe the complex poles of the power spectrum of correlations

for the geodesic flow on compact hyperbolic manifolds in terms of eigenvalues of the

Laplacian acting on certain natural tensor bundles. These poles are a special case of

Pollicott–Ruelle resonances, which can be defined for general Anosov flows. In our

case, resonances are stratified into bands by decay rates. The proof also gives an

explicit relation between resonant states and eigenstates of the Laplacian.

In this paper, we consider the characteristic frequencies of correlations,

ρf,g(t) =

∫

SM

(f ◦ ϕ−t) · ḡ dµ, f, g ∈ C∞(SM),

for the geodesic flow ϕt on a compact hyperbolic manifold M of dimension n+ 1 (that

is, M has constant sectional curvature −1). Here ϕt acts on SM , the unit tangent

bundle of M , and µ is the natural smooth probability measure. Such ϕt are classical

examples of Anosov flows ; for this family of examples, we are able to prove much more

precise results than in the general Anosov case.

An important question, expanding on the notion of mixing, is the behavior of ρf,g(t)

as t → +∞. Following [Ru], we take the power spectrum, which in our convention

is the Laplace transform ρ̂f,g(λ) of ρf,g restricted to t > 0. The long time behavior

of ρf,g(t) is related to the properties of the meromorphic extension of ρ̂f,g(λ) to the

entire complex plane. The poles of this extension, called Pollicott–Ruelle resonances

(see [Po86a, Ru, FaSj] and (1.6) below), are the complex characteristic frequencies of

ρf,g, describing its decay and oscillation and not depending on f, g.

For the case of dimension n + 1 = 2, the following connection between resonances

and the spectrum of the Laplacian was announced in [FaTs13a, Section 4] (see [FlFo]

for a related result and the remarks below regarding the zeta function techniques).

Theorem 1. Assume that M is a compact hyperbolic surface (n = 1) and the spectrum

of the positive Laplacian on M is (see Figure 1)

Spec(∆) = {sj(1− sj)}, sj ∈ [0, 1] ∪
(1

2
+ iR

)
.

Then Pollicott–Ruelle resonances for the geodesic flow on SM in C \ (−1− 1
2
N0) are

λj,m = −m− 1 + sj, m ∈ N0. (1.1)
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Figure 1. An illustration of Theorem 1, with eigenvalues of the Lapla-

cian on the left and the resonances of geodesic flow, on the right. The

red crosses mark exceptional points where the theorem does not apply.

Remark. We use the Laplace transform (which has poles in the left half-plane) rather

than the Fourier transform as in [Ru, FaSj] to simplify the relation to the parameter

s used for Laplacians on hyperbolic manifolds.

Our main result concerns the case of higher dimensions n+ 1 > 2. The situation is

considerably more involved than in the case of Theorem 1, featuring the spectrum of

the Laplacian on certain tensor bundles. More precisely, for σ ∈ R, denote

Mult∆(σ,m) := dim Eigm(σ),

where Eigm(σ), defined in (5.19), is the space of trace-free divergence-free symmetric

sections of ⊗mT ∗M satisfying ∆f = σf . Denote by MultR(λ) the geometric multi-

plicity of λ as a Pollicott–Ruelle resonance of the geodesic flow on M (see Theorem 3

and the remarks preceding it for a definition).

Theorem 2. Let M be a compact hyperbolic manifold of dimension n+1 ≥ 2. Assume

that λ ∈ C \
(
− n

2
− 1

2
N0

)
. Then for λ 6∈ −2N, we have (see Figure 2)

MultR(λ) =
∑

m≥0

bm/2c∑

`=0

Mult∆

(
−
(
λ+m+

n

2

)2

+
n2

4
+m− 2`,m− 2`

)
(1.2)

and for λ ∈ −2N, we have

MultR(λ) =
∑

m≥0
m 6=−λ

bm/2c∑

`=0

Mult∆

(
−
(
λ+m+

n

2

)2

+
n2

4
+m− 2`,m− 2`

)
. (1.3)
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Figure 2. An illustration of Theorem 2 for n = 3. The red crosses

mark exceptional points where the theorem does not apply. Note that

the points with m = 2, ` = 1 are simply the points with m = 0, ` = 0

shifted by −2 (modulo exceptional points), as illustrated by the arrow.

Remarks. (i) If Mult∆

(
−
(
λ+m+ n

2

)2
+ n2

4
+m− 2`,m− 2`

)
> 0, then Lemma 6.1

and the fact that ∆ ≥ 0 on functions imply that either λ ∈ −m− n
2

+ iR or

λ ∈ [−1−m, −m], if n = 1, m > 2`;

λ ∈ [1− n−m, −1−m], if n > 1, m > 2`;

λ ∈ [−n−m, −m], if m = 2`.

(1.4)

In particular, we confirm that resonances lie in {Reλ ≤ 0} and the only resonance on

the imaginary axis is λ = 0 with MultR(0) = 1, corresponding to m = ` = 0. We

call the set of resonances corresponding to some m the mth band. This is a special

case of the band structure for general contact Anosov flows established in the work of

Faure–Tsujii [FaTs12, FaTs13a, FaTs13b].

(ii) The case n = 1 fits into Theorem 2 as follows: for m ≥ 2, the spaces Eigm(σ)

are trivial unless σ is an exceptional point (since the corresponding spaces Bdm,0(λ) of

Lemma 5.6 would have to be trace free sections of a one-dimensional vector bundle),

and the spaces Eig1(σ + 1) and Eig0(σ) are isomorphic as shown in Appendix C.2.

(iii) The band with m = 0 corresponds to the spectrum of the scalar Laplacian; the

band with m = 1 corresponds to the spectrum of the Hodge Laplacian on coclosed

1-forms, see Appendix C.2.

(iv) As seen from (1.2), (1.3), for m ≥ 2 the m-th band of resonances contains shifted

copies of bands m− 2,m− 4, . . . The special case (1.3) means that the resonance 0 of

the m = 0 band is not copied to other bands.
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(v) A Weyl law holds for the spaces Eigm(σ), see Appendix C.1. It implies the following

Weyl law for resonances in the m-th band:

∑

λ∈−n
2
−m+i[−R,R]

MultR(λ) =
2−nπ−

n+1
2

Γ(n+3
2

)
· (m+ n− 1)!

m!(n− 1)!
Vol(M)Rn+1 +O(Rn). (1.5)

The power Rn+1 agrees with the Weyl law of [FaTs13a, (5.3)] and with the earlier

upper bound of [DDZ]. We also see that if n > 1, then each m and ` ∈ [0, m
2

] produce

a nontrivial contribution to the set of resonances. The factor (m+n−1)!
m!(n−1)!

is the dimension

of the space of homogeneous polynomials of order m in n variables; it is natural in light

of [FaTs12, Proposition 5.11], which locally reduces resonances to such polynomials.

The proof of Theorem 2 is outlined in Section 2. We use in particular the microlocal

method of Faure–Sjöstrand [FaSj], defining Pollicott–Ruelle resonances as the points

λ ∈ C for which the (unbounded nonselfadjoint) operator

X + λ : Hr → Hr, r > −C0 Reλ, (1.6)

is not invertible. Here X is the vector field on SM generating the geodesic flow, so

that ϕt = etX , Hr is a certain anisotropic Sobolev space, and C0 is a fixed constant

independent of r, see Section 5.1 for details. Resonances do not depend on the choice

of r. Theorem 4 below relates this definition to the behavior of correlations.

We stress that our method provides an explicit relation between classical and quan-

tum states, that is between Pollicott–Ruelle resonant states (elements of the kernel

of (1.6)) and eigenstates of the Laplacian; that is, in addition to the poles of ρ̂f,g(λ),

we describe its residues. For instance for the m = 0 band, if u(x, ξ), x ∈M, ξ ∈ SxM ,

is a resonant state, then the corresponding eigenstate of the Laplacian, f(x), is ob-

tained by integration of u along the fibers SxM , see (2.3). On the other hand, to obtain

u from f one needs to take the boundary distribution w of f , which is a distribution

on the conformal boundary Sn of the hyperbolic space Hn+1 appearing as the leading

coefficient of a weak asymptotic expansion at Sn of the lift of f to Hn+1. Then u is

described by w via an explicit formula, see (2.4); this formula features the Poisson

kernel P and the map B− : SHn+1 → Sn mapping a tangent vector to the endpoint in

negative infinite time of the corresponding geodesic of Hn+1. The explicit relation can

be schematically described as follows:

resonant

states of X

eigenstates

of ∆

boundary distributions

u 7→
∫
SxM

u dξ

w 7→ P λ · (w ◦B−) asymptotics at Sn
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For m > 0, one needs to also use horocyclic differential operators, see Section 2.

Theorem 2 used the notion of geometric multiplicity of a resonance λ, that is, the

dimension of the kernel of X + λ on Hr. For nonselfadjoint problems, it is often more

natural to consider the algebraic multiplicity, that is, the dimension of the space of

elements of Hr which are killed by some power of X + λ.

Theorem 3. If λ 6∈ −n
2
− 1

2
N0, then the algebraic and geometric multiplicities of λ as

a Pollicott–Ruelle resonance coincide.

Theorem 3 relies on a pairing formula (Lemma 5.10), which states that

〈u, u∗〉L2(SM) = Fm,`(λ)〈f, f ∗〉L2(M ;⊗m−2`T ∗M),

where u is a resonant state at some resonance λ corresponding to some m, ` in The-

orem 2, u∗ is a coresonant state (that is, an element of the kernel of the adjoint of

(X + λ)), f, f ∗ are the corresponding eigenstates of the Laplacian, and Fm,`(λ) is an

explicit function. Here 〈u, u∗〉L2 refers to the integral
∫
uu∗, which is well-defined

despite the fact that neither u nor u∗ lie in L2, see (5.6). This pairing formula is

of independent interest as a step towards understanding the high frequency behavior

of resonant states and attempting to prove quantum ergodicity of resonant states in

the present setting. Anantharaman–Zelditch [AnZe07] obtained the pairing formula in

dimension 2 and studied concentration of Patterson–Sullivan distributions, which are

directly related to resonant states; see also [HHS].

To motivate the study of Pollicott–Ruelle resonances, we also apply to our set-

ting the following resonance expansion proved by Tsujii [Ts10, Corollary 1.2] and

Nonnenmacher–Zworski [NoZw13, Theorem 5]:

Theorem 4. Fix ε > 0. Then for N large enough and f, g in the Sobolev space

HN(SM),

ρf,g(t) =

∫
f dµ

∫
g dµ+

∑

λ∈(−n
2
,0)

MultR(λ)∑

k=1

eλt〈f, u∗λ,k〉L2〈uλ,k, g〉L2 +Of,g(e−(n
2
−ε)t) (1.7)

where uλ,k is any basis of the space of resonant states associated to λ and u∗λ,k is the

dual basis of the space of coresonant states (so that
∑

k uλ,k ⊗L2 u∗λ,k is the spectral

projector of −X at λ).

Here we use Theorem 3 to see that there are no powers of t in the expansion and

that there exists the dual basis of coresonant states to a basis of resonant states.

Combined with Theorem 2, the expansion (1.7) in particular gives the optimal ex-

ponent in the decay of correlations in terms of the small eigenvalues of the Laplacian;

more precisely, the difference between ρf,g(t) and the product of the integrals of f and
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g is O(e−ν0t), where

ν0 = min
0≤m<n

2

min{ν +m | ν ∈ (0, n
2
−m), ν(n− ν) +m ∈ Specm(∆)},

or O(e−(n
2
−ε)t) for each ε > 0 if the set above is empty. Here Specm(∆) denotes the

spectrum of the Laplacian on trace-free divergence-free symmetric tensors of order m.

Using (1.4), we see that in fact one has ν ∈ [1, n
2
−m) for m > 0.

In order to go beyond the O(e−(n
2
−ε)t) remainder in (1.7), one would need to handle

the infinitely many resonances in the m = 0 band. This is thought to be impossible

in the general context of scattering theory, as the scattering resolvent can grow expo-

nentially near the bands; however, there exist cases such as Kerr–de Sitter black holes

where a resonance expansion with infinitely many terms holds, see [BoHä, Dy12]. The

case of black holes is somewhat similar to the one considered here because in both cases

the trapped set is normally hyperbolic, see [Dy13] and [FaTs13b]. What is more, one

can try to prove a resonance expansion with remainder O(e−(n
2

+1−ε)t) where the sum

over resonances in the first band is replaced by 〈(Π0f)◦ϕ−t, g〉 and Π0 is the projector

onto the space of resonant states with m = 0, having the microlocal structure of a

Fourier integral operator – see [Dy13] for a similar result in the context of black holes.

Previous results. In the constant curvature setting in dimension n+1 = 2, the spec-

trum of the geodesic flow on L2 was studied by Fomin–Gelfand using representation

theory [FoGe]. An exponential rate of mixing was proved by Ratner [Ra] and it was ex-

tended to higher dimensions by Moore [Mo]. In variable negative curvature for surfaces

and more generally for Anosov flows with stable/unstable jointly non-integrable folia-

tions, exponential decay of correlations was first shown by Dolgopyat [Do] and then by

Liverani for contact flows [Li]. The work of Tsujii [Ts10, Ts12] established the asymp-

totic size of the resonance free strip and the work of Nonnenmacher–Zworski [NoZw13]

extended this result to general normally hyperbolic trapped sets. Faure–Tsujii [FaTs12,

FaTs13a, FaTs13b] established the band structure for general smooth contact Anosov

flows and proved an asymptotic for the number of resonances in the first band.

In dimension 2, the study of resonant states in the first band (m = 0), that is

distributions which lie in the spectrum of X and are annihilated by the horocylic vector

field U− appears already in the works of Guillemin [Gu, Lecture 3] and Zelditch [Ze],

both using the representation theory of PSL(2;R), albeit without explicitly interpreting

them as Pollicott–Ruelle resonant states. A more general study of the elements in the

kernel of U− was performed by Flaminio–Forni [FlFo].

A description of resonances in the case n = 1 (Theorem 1) can also be obtained us-

ing techniques involving the Selberg and Ruelle zeta functions. The singularities (zeros

and poles) of the Ruelle zeta function (or rather one of its components) correspond to
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Pollicott–Ruelle resonances (see [Fr86, Fr95], [GLP], and [DyZw]), while the singulari-

ties of the Selberg zeta function correspond to eigenvalues of the Laplacian. The Ruelle

and Selberg zeta functions are closely related, see [Fr86], [Le, Section 5.1, Figure 1],

and [DyZw, (1.2)], which makes it possible to derive the correspondence (1.1).

It is possible that the zeta function approach can be extended to higher dimensions,

even though the authors were unable to find in the literature a description featur-

ing the spectrum of the Laplacian on trace-free divergence-free symmetric tensors as

in (1.2), (1.3). We however use a direct spectral approach instead of zeta function tech-

niques as it gives an explicit relation between resonant states and eigenstates of the

Laplacian (see the remarks following (1.6)) and is a step towards a more quantitative

understanding of decay of correlations.

There is a wealth of research on the singularities of zeta functions on hyperbolic

manifolds (and more general symmetric spaces); we in particular note the book of

Juhl [Ju] and the works of Bunke–Olbrich [BuOl95, BuOl96, BuOl99, BuOl01]. This

research in particular addresses the question of what happens at the exceptional points

(which in our case are contained in −n
2
− 1

2
N0), relating the behavior of the zeta

functions at these points to topological invariants. It is interesting to note that [Ju,

Theorem 3.7] describes the spectral singularities of the Ruelle zeta function for n = 3

in terms of the spectrum of the Laplacian on functions and 1-forms, which is much

smaller than the set obtained in Theorem 2; this indicates that the contributions from

other terms in the Ruelle zeta function have to annihilate the terms coming from

m ≥ 2 in our result, and that the Ruelle zeta function does not in fact describe all

Pollicott–Ruelle resonances.

An essential component of our work is the analysis of the correspondence between

eigenstates of the Laplacian on Hn+1 and distributions on the conformal infinity Sn. In

the scalar case, such correspondence for hyperfunctions on Sn is due to Helgason [He70,

He74] (see also Minemura [Mi]); the correspondence between tempered eigenfunctions

of ∆ and distributions (instead of hyperfunctions) was shown by Oshima–Sekiguchi [OsSe]

and Van Der Ban–Schlichtkrull [VdBSc] (see also Grellier–Otal [GrOt]). The ques-

tion of regularity of equivariant distributions on Sn by certain Kleinian groups of

isometries of Hn+1 (geometrically finite groups) is interesting since it tells the regu-

larity of resonant states for the flow; precise regularity was studied by Otal [Ot] in

the 2-dimensional co-compact case, Grellier–Otal [GrOt] in higher dimensions, and

Bunke–Olbrich [BuOl99] for geometrically finite groups. In dimension 2, the corre-

spondence between the eigenfunctions of the Laplacian on the hyperbolic plane and

distributions on the conformal boundary S1 appeared in Pollicott [Po86b] and Bunke–

Olbrich [BuOl96], it is also an important tool in the theory developed by Bunke–Olbrich

[BuOl01] to study Selberg zeta functions on convex co-compact hyperbolic manifolds

(see also the book of Juhl [Ju] in the compact setting). These distributions on the
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conformal boundary Sn, of Patterson–Sullivan type, are also the central object of the

recent work of Anantharaman–Zelditch [AnZe07, AnZe12] studying quantum ergodic-

ity on hyperbolic compact surfaces; a generalization to higher rank locally symmetric

spaces was provided by Hansen–Hilgert–Schröder [HHS].

2. Outline and structure

In this section, we give the ideas of the proof of Theorem 2, first in dimension 2 and

then in higher dimensions, and describe the structure of the paper.

2.1. Dimension 2. We start by using the following criterion (Lemma 5.1): λ ∈ C is

a Pollicott–Ruelle resonance if and only if the space

ResX(λ) := {u ∈ D′(SM) | (X + λ)u = 0, WF(u) ⊂ E∗u}

is nontrivial. Here D′(SM) denotes the space of distributions on M (see [HöI]),

WF(u) ⊂ T ∗(SM) is the wavefront set of u (see [HöI, Chapter 8]), and E∗u ⊂ T ∗(SM)

is the dual unstable foliation described in (3.15). It is more convenient to use the

condition WF(u) ⊂ E∗u rather than u ∈ Hr because this condition is invariant under

differential operators of any order.

The key tools for the proof are the horocyclic vector fields U± on SM , pictured on

Figure 3(a) below. To define them, we represent M = Γ\H2, where H2 = {z ∈ C |
Im z > 0} is the hyperbolic plane and Γ ⊂ PSL(2;R) is a co-compact Fuchsian group

of isometries acting by Möbius transformations. (See Appendix B for the relation of

the notation we use in dimension 2, based on the half-plane model of the hyperbolic

space, to the notation used elsewhere in the paper which is based on the hyperboloid

model.) Then SM is covered by SH2, which is isomorphic to the group G := PSL(2;R)

by the map γ ∈ G 7→ (γ(i), dγ(i) · i). Consider the left invariant vector fields on G

corresponding to the following elements of its Lie algebra:

X =

(
1
2

0

0 −1
2

)
, U+ =

(
0 1

0 0

)
, U− =

(
0 0

1 0

)
, (2.1)

then X,U± descend to vector fields on SM , with X becoming the generator of the

geodesic flow. We have the commutation relations

[X,U±] = ±U±, [U+, U−] = 2X. (2.2)

For each λ and m ∈ N0, define the spaces

Vm(λ) := {u ∈ D′(SM) | (X + λ)u = 0, Um
− u = 0, WF(u) ⊂ E∗u},

Res0
X(λ) := V1(λ).
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By (2.2), Um
− (ResX(λ)) ⊂ ResX(λ+m). Since there are no Pollicott–Ruelle resonances

in the right half-plane, we conclude that

ResX(λ) = Vm(λ) for m > −Reλ.

We now use the diagram (writing Id = U0
±, U± = U1

± for uniformity of notation)

0 = V0(λ) V1(λ) V2(λ) V3(λ) . . .

Res0X(λ) Res0X(λ+ 1) Res0X(λ+ 2)

ι ι

U0
−

ι

U1
−

ι

U2
−U0

+ U1
+ U2

+

where ι denotes the inclusion maps and unless λ ∈ −1− 1
2
N0, we have

Vm+1(λ) = Vm(λ)⊕ Um
+ (Res0

X(λ+m)),

and Um
+ is one-to-one on Res0

X(λ+m); indeed, using (2.2) we calculate

Um
− U

m
+ = m!

( m∏

j=1

(2λ+m+ j)

)
Id on Res0

X(λ+m)

and the coefficient above is nonzero when λ /∈ −1− 1
2
N0. We then see that

ResX(λ) =
⊕

m≥0

Um
+ (Res0

X(λ+m)).

It remains to describe the space of resonant states in the first band,

Res0
X(λ) = {u ∈ D′(SM) | (X + λ)u = 0, U−u = 0, WF(u) ⊂ E∗u}.

We can remove the condition WF(u) ⊂ E∗u as it follows from the other two, see the

remark following Lemma 5.6. We claim that the pushforward map

u ∈ Res0
X(λ) 7→ f(x) :=

∫

SxM

u(x, ξ) dS(ξ) (2.3)

is an isomorphism from Res0
X(λ) onto Eig(−λ(1 + λ)), where Eig(σ) = {u ∈ C∞(M) |

∆u = σu}; this would finish the proof. In other words, the eigenstate of the Laplacian

corresponding to u is obtained by integrating u over the fibers of SM .

To show that (2.3) is an isomorphism, we reduce the elements of Res0
X(λ) to the

conformal boundary S1 of the ball model B2 of the hyperbolic space as follows:

Res0
X(λ) = {P (y,B−(y, ξ))λw(B−(y, ξ)) | w ∈ Bd(λ)}, (2.4)

where P (y, ν) is the Poisson kernel: P (y, ν) = 1−|y|2
|y−ν|2 , y ∈ B2, ν ∈ S1; B− : SB2 → S1

maps (y, ξ) to the limiting point of the geodesic ϕt(y, ξ) as t→ −∞, see Figure 3(a);

and Bd(λ) ⊂ D′(S1) is the space of distributions satisfying certain equivariance prop-

erty with respect to Γ. Here we lifted Res0
X(λ) to distributions on SH2 and used the

fact that the map B− is invariant under both X and U−; see Lemma 5.6 for details.
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It remains to show that the map w 7→ f defined via (2.3) and (2.4) is an isomorphism

from Bd(λ) to Eig(−λ(n+ λ)). This map is given by (see Lemma 6.6)

f(y) = P−
λ w(y) :=

∫

S1

P (y, ν)1+λw(ν) dS(ν) (2.5)

and is the Poisson operator for the (scalar) Laplacian corresponding to the eigenvalue

s(1−s), s = 1+λ. This Poisson operator is known to be an isomorphism for λ /∈ −1−N,

see the remark following Theorem 6 in Section 5.2, finishing the proof.

2.2. Higher dimensions. In higher dimensions, the situation is made considerably

more difficult by the fact we can no longer define the vector fields U± on SM . To

get around this problem, we remark that in dimension 2, U−u is the derivative of u

along a certain canonical vector in the one-dimensional unstable foliation Eu ⊂ T (SM)

and similarly U+u is the derivative along an element of the stable foliation Es. (See

Section 4.2.) In dimension n+ 1 > 2, the foliations Eu, Es are n-dimensional and one

cannot trivialize them. However, each of these foliations is canonically parametrized

by the following vector bundle E over SM :

E(x, ξ) = {η ∈ TxM | η ⊥ ξ}, (x, ξ) ∈ SM.

This makes it possible to define horocyclic operators

Um± : D′(SM)→ D′(SM ;⊗mS E∗),
where ⊗mS stands for the m-th symmetric tensor power, and we have the diagram

0 = V0(λ) V1(λ) V2(λ) V3(λ) . . .

Res0X (λ) Res1X (λ+ 1) Res2X (λ+ 2)

ι ι

U0
−

ι

U1
−

ι

U2
−V0

+ V1
+ V2

+

where Vm+ = (−1)m(Um+ )∗ and we put for a certain extension X of X to ⊗mS E∗

Vm(λ) := {u ∈ D′(SM) | (X + λ)u = 0, Um− u = 0, WF(u) ⊂ E∗u},
ResmX (λ) := {v ∈ D′(SM ;⊗mS E∗) | (X + λ)v = 0, U−v = 0, WF(v) ⊂ E∗u}.

Similarly to dimension 2, we reduce the problem to understanding the spaces ResmX (λ),

and an operator similar to (2.3) maps these spaces to eigenspaces of the Laplacian on

divergence-free symmetric tensors. However, to make this statement precise, we have

to further decompose ResmX (λ) into terms coming from traceless tensors of degrees

m,m − 2,m − 4, . . . , explaining the appearance of the parameter ` in the theorem.

(Here the trace of a symmetric tensor of order m is the result of contracting two of its

indices with the metric, yielding a tensor of order m− 2.) The procedure of reducing

elements of ResmX (λ) to the conformal boundary Sn is also made more difficult since

the boundary distributions w are now sections of ⊗mS (T ∗Sn).
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A significant part of the paper is dedicated to proving that the higher-dimensional

analog of (2.5) on symmetric tensors is indeed an isomorphism between appropriate

spaces. To show that the Poisson operator P−
λ is injective, we prove a weak expansion

of f(y) ∈ C∞(Bn+1) in powers of 1−|y| as y ∈ Bn+1 approaches the conformal boundary

Sn; since w appears as the coefficient in one of the terms of the expansion, P−
λ w = 0

implies w = 0. To show the surjectivity of P−
λ , we prove that the lift to Hn+1 of every

trace-free divergence-free eigenstate f of the Laplacian admits a weak expansion at

the conformal boundary (this requires a fine analysis of the Laplacian and divergence

operators on symmetric tensors); putting w to be the coefficient next to one of the

terms of this expansion, we can prove that f = P−
λ w.

2.3. Structure of the paper.

• In Section 3, we study in detail the geometry of the hyperbolic space Hn+1,

which is the covering space of M ;

• in Section 4, we introduce and study the horocyclic operators;

• in Section 5, we prove Theorems 2 and 3, modulo properties of the Poisson

operator;

• in Sections 6 and 7, we show the injectivity and the surjectivity of the Poisson

operator;

• Appendix A contains several technical lemmas;

• Appendix B shows how the discussion of Section 2.1 fits into the framework of

the remainder of the paper;

• Appendix C shows a Weyl law for divergence free symmetric tensors and relates

the m = 1 case to the Hodge Laplacian.

3. Geometry of the hyperbolic space

In this section, we review the structure of the hyperbolic space and its geodesic flow

and introduce various objects to be used later, including:

• the isometry group G of the hyperbolic space and its Lie algebra, including the

horocyclic vector fields U±i (Section 3.2);

• the stable/unstable foliations Es, Eu (Section 3.3);

• the conformal compactification of the hyperbolic space, the maps B±, the co-

efficients Φ±, and the Poisson kernel (Section 3.4);

• parallel transport to conformal infinity and the maps A± (Section 3.6).

3.1. Models of the hyperbolic space. Consider the Minkowski space R1,n+1 with

the Lorentzian metric

gM = dx2
0 −

n+1∑

j=1

dx2
j .
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The corresponding scalar product is denoted 〈·, ·〉M . We denote by e0, . . . , en+1 the

canonical basis of R1,n+1.

The hyperbolic space of dimension n+1 is defined to be one sheet of the two-sheeted

hyperboloid

Hn+1 := {x ∈ R1,n+1 | 〈x, x〉M = 1, x0 > 0}
equipped with the Riemannian metric

gH := −gM |THn+1 .

We denote the unit tangent bundle of Hn+1 by

SHn+1 := {(x, ξ) | x ∈ Hn+1, ξ ∈ R1,n+1, 〈ξ, ξ〉M = −1, 〈x, ξ〉M = 0}. (3.1)

Another model of the hyperbolic space is the unit ball Bn+1 = {y ∈ Rn+1; |y| < 1},
which is identified with Hn+1 ⊂ R1,n+1 via the map (here x = (x0, x

′) ∈ R× Rn+1)

ψ : Hn+1 → Bn+1, ψ(x) =
x′

x0 + 1
, ψ−1(y) =

1

1− |y|2 (1 + |y|2, 2y). (3.2)

and the metric gH pulls back to the following metric on Bn+1:

(ψ−1)∗gH =
4 dy2

(1− |y|2)2
. (3.3)

We will also use the upper half-space model Un+1 = R+
z0
× Rn

z with the metric

(ψ−1ψ−1
1 )∗gH =

dz2
0 + dz2

z2
0

, (3.4)

where the diffeomorphism ψ1 : Bn+1 → Un+1 is given by (here y = (y1, y
′) ∈ R× Rn)

ψ1(y1, y
′) =

(1− |y|2, 2y′)
1 + |y|2 − 2y1

, ψ−1
1 (z0, z) =

(z2
0 + |z|2 − 1, 2z)

(1 + z0)2 + |z|2 . (3.5)

3.2. Isometry group. We consider the group

G = PSO(1, n+ 1) ⊂ SL(n+ 2;R)

of all linear transformations of R1,n+1 preserving the Minkowski metric, the orientation,

and the sign of x0 on timelike vectors. For x ∈ R1,n+1 and γ ∈ G, denote by γ · x
the result of multiplying x by the matrix γ. The group G is exactly the group of

orientation preserving isometries of Hn+1; under the identification (3.2), it corresponds

to the group of direct Möbius transformations of Rn+1 preserving the unit ball.

The Lie algebra of G is spanned by the matrices

X = E0,1 + E1,0, Ak = E0,k + Ek,0, Ri,j = Ei,j − Ej,i (3.6)

for i, j ≥ 1 and k ≥ 2, where Ei,j is the elementary matrix if 0 ≤ i, j ≤ n+ 1 (that is,

Ei,jek = δjkei). Denote for i = 1, . . . , n

U+
i := −Ai+1 −R1,i+1, U−i := −Ai+1 +R1,i+1 (3.7)
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x ξ
B+(x,ξ)B−(x,ξ)

exp(−U1
−)(x,ξ)

exp(U1
+)(x,ξ)

A+(x,ξ)ζ

B+(x,ξ)

x
ξ

ζ

(a) (b)

Figure 3. (a) The horocyclic flows exp(±U±1 ) in dimension n+ 1 = 2,

pulled back to the ball model by the map ψ from (3.2). The thick lines

are geodesics and the dashed lines are horocycles. (b) The map A+ and

the parallel transport of an element of E along a geodesic.

and observe that X,U+
i , U

−
i , Ri+1,j+1 (for 1 ≤ i < j ≤ n) also form a basis. Henceforth

we identify elements of the Lie algebra of G with left invariant vector fields on G.

We have the commutator relations (for 1 ≤ i, j, k ≤ n and i 6= j)

[X,U±i ] = ±U±i , [U±i , U
±
j ] = 0, [U+

i , U
−
i ] = 2X, [U±i , U

∓
j ] = 2Ri+1,j+1,

[Ri+1,j+1, X] = 0, [Ri+1,j+1, U
±
k ] = δjkU

±
i − δikU±j .

(3.8)

The Lie algebra elements U±i are very important in our argument since they generate

horocylic flows, see Section 4.2. The flows of U1
± in the case n = 1 are shown in

Figure 3(a); for n > 1, the flows of U j
± do not descend to SHn+1.

The group G acts on Hn+1 transitively, with the isotropy group of e0 ∈ Hn+1 iso-

morphic to SO(n+ 1). It also acts transitively on the unit tangent bundle SHn+1, by

the rule γ.(x, ξ) = (γ · x, γ · ξ), with the isotropy group of (e0, e1) ∈ Hn+1 being

H = {γ ∈ G | γ · e0 = e0, γ · e1 = e1} ' SO(n). (3.9)

Note that H is the connected Lie subgroup of G with Lie algebra spanned by Ri+1,j+1

for 1 ≤ i, j ≤ n. We can then write SHn+1 ' G/H, where the projection πS : G →
SHn+1 is given by

πS(γ) = (γ · e0, γ · e1) ∈ SHn+1, γ ∈ G. (3.10)

3.3. Geodesic flow. The geodesic flow,

ϕt : SHn+1 → SHn+1, t ∈ R,
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is given in the parametrization (3.1) by

ϕt(x, ξ) = (x cosh t+ ξ sinh t, x sinh t+ ξ cosh t). (3.11)

We note that, with the projection πS : G→ SHn+1 defined in (3.10),

ϕt(πS(γ)) = πS(γ exp(tX)),

where X is defined in (3.6). This means that the generator of the geodesic flow can

be obtained by pushing forward the left invariant field on G generated by X by the

map πS (which is possible since X is invariant under right multiplications by elements

of the subgroup H defined in (3.9)). By abuse of notation, we then denote by X also

the generator of the geodesic flow on SHn+1:

X = ξ · ∂x + x · ∂ξ. (3.12)

We now provide the stable/unstable decomposition for the geodesic flow, demonstrat-

ing that it is hyperbolic (and thus the flow on a compact quotient by a discrete group

will be Anosov). For ρ = (x, ξ) ∈ SHn+1, the tangent space Tρ(SHn+1) can be written

as

Tρ(SHn+1) = {(vx, vξ) ∈ (R1,n+1)2 | 〈x, vx〉M = 〈ξ, vξ〉M = 〈x, vξ〉M + 〈ξ, vx〉M = 0}.

The differential of the geodesic flow acts by

dϕt(ρ) · (vx, vξ) = (vx cosh t+ vξ sinh t, vx sinh t+ vξ cosh t).

We have Tρ(SHn+1) = E0(ρ) ⊕ T̃ρ(SHn+1), where E0(ρ) := RX is the flow direction

and

T̃ρ(SHn+1) = {(vx, vξ) ∈ (R1,n+1)2 | 〈x, vx〉M = 〈x, vξ〉M = 〈ξ, vx〉M = 〈ξ, vξ〉M = 0},

and this splitting is invariant under dϕt. A natural norm on Tρ(SHn+1) is given by the

formula

|(vx, vξ)|2 := −〈vx, vx〉M − 〈vξ, vξ〉M , (3.13)

using the fact that vx, vξ are Minkowski orthogonal to the timelike vector x and thus

must be spacelike or zero. Note that this norm is invariant under the action of G.

We now define the stable/unstable decomposition T̃ρ(SHn+1) = Es(ρ)⊕Eu(ρ), where

Es(ρ) := {(v,−v) | 〈x, v〉M = 〈ξ, v〉M = 0},
Eu(ρ) := {(v, v) | 〈x, v〉M = 〈ξ, v〉M = 0}. (3.14)

Then Tρ(SHn+1) = E0(ρ) ⊕ Es(ρ) ⊕ Eu(ρ), this splitting is invariant under ϕt and

under the action of G, and, using the norm from (3.13),

|dϕt(ρ) · w| = e−t|w|, w ∈ Es(ρ); |dϕt(ρ) · w| = et|w|, w ∈ Eu(ρ).
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Finally, we remark that the vector subbundles Es and Eu are spanned by the left-

invariant vector fields U+
1 , . . . , U

+
n and U−1 , . . . , U

−
n from (3.7) in the sense that

π∗SEs = span(U+
1 , . . . , U

+
n )⊕ h, π∗SEu = span(U−1 , . . . , U

−
n )⊕ h.

Here π∗SEs := {(γ, w) ∈ TG | (πS(γ), dπS(γ) · w) ∈ Es} and π∗SEu is defined similarly;

h is the left translation of the Lie algebra of H, or equivalently the kernel of dπS.

Note that while the individual vector fields U±1 , . . . , U
±
n are not invariant under right

multiplications by elements of H in dimensions n+ 1 > 2 (and thus do not descend to

vector fields on SHn+1 by the map πS), their spans are invariant under H by (3.8).

The dual decomposition, used in the construction of Pollicott–Ruelle resonances, is

T ∗ρ (SHn+1) = E∗0(ρ)⊕ E∗s (ρ)⊕ E∗u(ρ), (3.15)

where E∗0(ρ), E∗s (ρ), E∗u(ρ) are dual to E0(ρ), Eu(ρ), Es(ρ) in the original decomposition

(that is, for instance E∗s (ρ) consists of all covectors annihilating E0(ρ) ⊕ Es(ρ)). The

switching of the roles of Es and Eu is due to the fact that the flow on the cotangent

bundle is (dϕ−1
t )∗.

3.4. Conformal infinity. The metric (3.3) in the ball model Bn+1 is conformally

compact; namely the metric (1 − |y|2)2(ψ−1)∗gH continues smoothly to the closure

Bn+1, which we call the conformal compactification of Hn+1; note that Hn+1 embeds

into the interior of Bn+1 by the map (3.2). The boundary Sn = ∂Bn+1, endowed with

the standard metric on the sphere, is called conformal infinity. On the hyperboloid

model, it is natural to associate to a point at conformal infinity ν ∈ Sn the lightlike ray

{(s, sν) | s > 0} ⊂ R1,n+1; note that this ray is asymptotic to the curve {(
√

1 + s2, sν) |
s > 0} ⊂ Hn+1, which converges to ν in Bn+1.

Take (x, ξ) ∈ SHn+1. Then 〈x ± ξ, x ± ξ〉M = 0 and x0 ± ξ0 > 0, therefore we can

write

x± ξ = Φ±(x, ξ)(1, B±(x, ξ)),

for some maps

Φ± : SHn+1 → R+, B± : SHn+1 → Sn. (3.16)

Then B±(x, ξ) is the limit as t → ±∞ of the x-projection of the geodesic ϕt(x, ξ) in

Bn+1:

B±(x, ξ) = lim
t→±∞

π(ϕt(x, ξ)), π : SHn+1 → Hn+1.

Note that this implies that for X defined in (3.12), dB± ·X = 0 since B±(ϕs(x, ξ)) =

B±(x, ξ) for all s ∈ R. Moreover, since Φ±(ϕt(x, ξ)) = e±t(x0 + ξ0) = etΦ±(x, ξ) from

(3.11), we find

XΦ± = ±Φ±. (3.17)

For (x, ν) ∈ Hn+1 × Sn (in the hyperboloid model), define the function

P (x, ν) = (x0 − x′ · ν)−1 = (〈x, (1, ν)〉M)−1, if x = (x0, x
′) ∈ Hn+1. (3.18)
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Note that P (x, ν) > 0 everywhere, and in the Poincaré ball model Bn+1, we have

P (ψ−1(y), ν) =
1− |y|2
|y − ν|2 , y ∈ Bn+1 (3.19)

which is the usual Poisson kernel. Here ψ is defined in (3.2).

For (x, ν) ∈ Hn+1 × Sn, there exist unique ξ± ∈ SxHn+1 such that B±(x, ξ±) = ν:

these are given by

ξ±(x, ν) = ∓x± P (x, ν)(1, ν) (3.20)

and the following formula holds

Φ±(x, ξ±(x, ν)) = P (x, ν). (3.21)

Notice that the equation B±(x, ξ±(x, ν)) = ν implies that B± are submersions. The

map ν → ξ±(x, ν) is conformal with the standard choice of metrics on Sn and SxHn+1;

in fact, for ζ1, ζ2 ∈ TνSn,

〈∂νξ±(x, ν) · ζ1, ∂νξ±(x, ν) · ζ2〉M = −P (x, ν)2〈ζ1, ζ2〉Rn+1 . (3.22)

Using that 〈x+ ξ, x− ξ〉M = 2, we see that

Φ+(x, ξ)Φ−(x, ξ)(1−B+(x, ξ) ·B−(x, ξ)) = 2. (3.23)

One can parametrize SHn+1 by

(ν−, ν+, s) =

(
B−(x, ξ), B+(x, ξ),

1

2
log

Φ+(x, ξ)

Φ−(x, ξ)

)
∈ (Sn × Sn)∆ × R, (3.24)

where (Sn×Sn)∆ is Sn×Sn minus the diagonal. In fact, the geodesic γ(t) = ϕt(x, ξ) goes

from ν− to ν+ in Bn+1 and γ(−s) is the point of γ closest to e0 ∈ Hn+1 (corresponding

to 0 ∈ Bn+1). In the parametrization (3.24), the geodesic flow ϕt is simply

(ν−, ν+, s) 7→ (ν−, ν+, s+ t).

We finally remark that the stable/unstable subspaces of the cotangent bundle E∗s , E
∗
u ⊂

T ∗(SHn+1), defined in (3.15), are in fact the conormal bundles of the fibers of the maps

B±:

E∗s (ρ) = N∗(B−1
+ (B+(ρ))), E∗u(ρ) = N∗(B−1

− (B−(ρ))), ρ ∈ SHn+1. (3.25)

This is equivalent to saying that the fibers of B+ integrate (i.e. are tangent to) the

subbundle E0⊕Es ⊂ T (SHn+1), while the fibers of B− integrate the subbundle E0⊕Eu.
To see the latter statement, for say B+, it is enough to note that dB+ · X = 0 and

differentiation along vectors in Es annihilates the function x + ξ and thus the map

B+; therefore, the kernel of dB+ contains E0⊕Es, and this containment is an equality

since the dimensions of both spaces are equal to n+ 1.
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3.5. Action of G on the conformal infinity. For γ ∈ G and ν ∈ Sn, γ · (1, ν)

is a lightlike vector with positive zeroth component. We can then define Nγ(ν) > 0,

Lγ(ν) ∈ Sn by

γ · (1, ν) = Nγ(ν)(1, Lγ(ν)). (3.26)

The map Lγ gives the action of G on the conformal infinity Sn = ∂Bn+1. This action

is transitive and the isotropy groups of ±e1 ∈ Sn are given by

H± = {γ ∈ G | ∃s > 0 : γ · (e0 ± e1) = s(e0 ± e1)}. (3.27)

The isotropy groups H± are the connected subgroups of G with the Lie algebras gen-

erated by Ri+1,j+1 for 1 ≤ i < j ≤ n, X, and U±i for 1 ≤ i ≤ n. To see that H± are

connected, for n = 1 we can check directly that every γ ∈ H± can be written as a

product etXesU
±
1 for some t, s ∈ R, and for n > 1 we can use the fact that Sn ' G/H±

is simply connected and G is connected, and the homotopy long exact sequence of a

fibration.

The differentials of Nγ and Lγ (in ν) can be written as

dNγ(ν) · ζ = 〈dx0, γ · (0, ζ)〉, (0, dLγ(ν) · ζ) =
γ · (0, ζ)− (dNγ(ν) · ζ)(1, Lγ(ν))

Nγ(ν)
,

here ζ ∈ TνSn. We see that the map ν 7→ Lγ(ν) is conformal with respect to the

standard metric on Sn, in fact for ζ1, ζ2 ∈ TνSn,

〈dLγ(ν) · ζ1, dLγ(ν) · ζ2〉Rn+1 = Nγ(ν)−2〈ζ1, ζ2〉Rn+1 .

The maps B± : SHn+1 → Sn are equivariant under the action of G:

B±(γ.(x, ξ)) = Lγ(B±(x, ξ)).

Moreover, the functions Φ±(x, ξ) and P (x, ν) enjoy the following properties:

Φ±(γ.(x, ξ)) = Nγ(B±(x, ξ))Φ±(x, ξ), P (γ · x, Lγ(ν)) = Nγ(ν)P (x, ν). (3.28)

3.6. The bundle E and parallel transport to the conformal infinity. Consider

the vector bundle E over SHn+1 defined as follows:

E = {(x, ξ, v) ∈ SHn+1 × TxHn+1 | gH(ξ, v) = 0},
i.e. the fibers E(x, ξ) consist of all tangent vectors in TxHn+1 orthogonal to ξ; equiva-

lently, E(x, ξ) consists of all vectors in R1,n+1 orthogonal to x and ξ with respect to the

Minkowski inner product. Note that G naturally acts on E , by putting γ.(x, ξ, v) :=

(γ · x, γ · ξ, γ · v).

The bundle E is invariant under parallel transport along geodesics. Therefore, one

can consider the first order differential operator

X : C∞(SHn+1; E)→ C∞(SHn+1; E) (3.29)
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which is the generator of parallel transport, namely if v is a section of E and (x, ξ) ∈
SHn+1, then Xv(x, ξ) is the covariant derivative at t = 0 of the vector field v(t) :=

v(ϕt(x, ξ)) on the geodesic ϕt(x, ξ). Note that E(ϕt(x, ξ)) is independent of t as a

subspace of R1,n+1, and under this embedding, X just acts as X on each coordinate

of v in R1,n+1. The operator 1
i
X is a symmetric operator with respect to the standard

volume form on SHn+1 and the inner product on E inherited from THn+1.

We now consider parallel transport of vectors along geodesics going off to infinity.

Let (x, ξ) ∈ SHn+1 and v ∈ TxHn+1. We let (x(t), ξ(t)) = ϕt(x, ξ) be the corresponding

geodesic and v(t) ∈ Tx(t)Hn+1 be the parallel transport of v along this geodesic. We

embed v(t) into the unit ball model Bn+1 by defining

w(t) = dψ(x(t)) · v(t) ∈ Rn+1,

where ψ is defined in (3.2). Then w(t) converges to 0 as t → ±∞, but the limits

limt→±∞ x0(t)w(t) are nonzero for nonzero v; we call the transformation mapping v to

these limits the transport to conformal infinity as t→ ±∞. More precisely, if

v = cξ + u, u ∈ E(x, ξ),

then we calculate

lim
t→±∞

x0(t)w(t) = ±cB±(x, ξ) + u′ − u0B±(x, ξ), (3.30)

where B±(x, ξ) ∈ Sn is defined in Section 3.4. We will in particular use the inverse

of the map E(x, ξ) 3 u 7→ u′ − u0B±(x, ξ) ∈ TB±(x,ξ)Sn: for (x, ξ) ∈ SHn+1 and

ζ ∈ TB±(x,ξ)Sn, define (see Figure 3(b))

A±(x, ξ)ζ = (0, ζ)− 〈(0, ζ), x〉M(x± ξ) = ±∂νξ±(x,B±(x, ξ)) · ζ
P (x,B±(x, ξ))

∈ E(x, ξ). (3.31)

Here ξ± is defined in (3.20). Note that by (3.22), A± is an isometry:

|A±(x, ξ)ζ|gH = |ζ|Rn , ζ ∈ TB±(x,ξ)Sn. (3.32)

Also, A± is equivariant under the action of G:

A±(γ · x, γ · ξ) · dLγ(B±(x, ξ)) · ζ = Nγ(B±(x, ξ))−1 γ · (A±(x, ξ)ζ). (3.33)

We now write the limits (3.30) in terms of the 0-tangent bundle of Mazzeo–Melrose [MaMe].

Consider the boundary defining function ρ0 := 2(1− |y|)/(1 + |y|) on Bn+1; note that

in the hyperboloid model, with the map ψ defined in (3.2),

ρ0(ψ(x)) = 2

√
x0 + 1−√x0 − 1√
x0 + 1 +

√
x0 − 1

= x−1
0 +O(x−2

0 ) as x0 →∞. (3.34)

The hyperbolic metric can be written near the boundary as gH = (dρ2
0 + hρ0)/ρ2

0 with

hρ0 a smooth family of metrics on Sn and h0 = dθ2 is the canonical metric on the

sphere (with curvature 1).
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Define the 0-tangent bundle 0TBn+1 to be the smooth bundle over Bn+1 whose

smooth sections are the elements of the Lie algebra V0(Bn+1) of smooth vectors fields

vanishing at Sn = Bn+1 ∩ {ρ0 = 0}; near the boundary, this algebra is locally spanned

over C∞(Bn+1) by the vector fields ρ0∂ρ0 , ρ0∂θ1 , . . . , ρ0∂θn if θi are local coordinates on

Sn. Note that 0TBn+1 naturally embeds into TBn+1 and this embedding is an isomor-

phism when restricted to the interior Bn+1. We denote by 0T ∗Bn+1 the dual bundle

to 0TBn+1, generated locally near ρ0 = 0 by the covectors dρ0/ρ0, dθ1/ρ0, . . . , dθn/ρ0.

Note that T ∗Bn+1 naturally embeds into 0T ∗Bn+1 and this embedding is an isomor-

phism in the interior. The metric gH is a smooth non-degenerate positive definite

quadratic form on 0TBn+1, that is gH ∈ C∞(Bn+1;⊗2
S(0T ∗Bn+1)), where ⊗2

S denotes

the space of symmetric 2-tensors.

We can then interpret (3.30) as follows: for each (y, η) ∈ SBn+1 and each w ∈
TyBn+1, the parallel transport w(t) of w along the geodesic ϕt(y, η) (this geodesic

extends smoothly to a curve on Bn+1, as it is part of a line or a circle) has limits

as t → ±∞ in the 0-tangent bundle 0TBn+1. In fact (see [GMP, Appendix A]), the

parallel transport

τ(y′, y) : 0TyBn+1 → 0Ty′Bn+1

from y to y′ ∈ Bn+1 along the geodesic starting at y and ending at y′ extends smoothly

to the boundary (y, y′) ∈ Bn+1×Bn+1 \diag(Sn×Sn) as an endomorphism 0TyBn+1 →
0Ty′Bn+1, where diag(Sn × Sn) denotes the diagonal in the boundary; this parallel

transport is an isometry with respect to gH . Same properties hold for parallel transport

of covectors in 0T ∗Bn+1, using the duality provided by the metric gH . An explicit

relation to the maps A± is given by the following formula:

A±(x, ξ) · ζ = dψ(x)−1 · τ(ψ(x), B±(x, ξ)) · (ρ0ζ), (3.35)

where ρ0ζ ∈ 0TB±(x,ξ)Bn+1 is tangent to the conformal boundary Sn.

4. Horocyclic operators

In this section, we build on the results of Section 3 to construct horocyclic operators

U± : D′(SHn+1;⊗jE∗)→ D′(SHn+1;⊗j+1E∗).

4.1. Symmetric tensors. In this subsection, we assume that E is a vector space of

finite dimension N , equipped with an inner product gE, and let E∗ denote the dual

space, which has a scalar product induced by gE (also denoted gE). (In what follows,

we shall take either E = E(x, ξ) or E = TxHn+1 for some (x, ξ) ∈ SHn+1, and the

scalar product gE in both case is given by the hyperbolic metric gH on those vector

spaces.) In this section, we will work with tensor powers of E∗, but the constructions

apply to tensor powers of E by swapping E with E∗.
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We introduce some notation for finite sequences to simplify the calculations below.

Denote by A m the space of all sequences K = k1 . . . km with 1 ≤ k` ≤ N . For

k1 . . . km ∈ A m, j1 . . . jr ∈ A r, and a sequence of distinct numbers 1 ≤ `1, . . . , `r ≤ m,

denote by

{`1 → j1, . . . , `r → jr}K ∈ A m

the result of replacing the `pth element of K by jp, for all p. We can also replace some

of jp by blank space, which means that the corresponding indices are removed from

K.

For m ≥ 0 denote by ⊗mE∗ the mth tensor power of E∗ and by ⊗mS E∗ the subset of

those tensors which are symmetric, i.e. u ∈ ⊗mS E∗ if u(vσ(1), . . . vσ(m)) = u(v1, . . . , vm)

for all σ ∈ Πm and all v1, . . . , vm ∈ E, where Πm is the permutation group of {1, . . . ,m}.
There is a natural linear projection S : ⊗mE∗ → ⊗mS E∗ defined by

S(η∗1 ⊗ · · · ⊗ η∗m) =
1

m!

∑

σ∈Πm

η∗σ(1) ⊗ · · · ⊗ η∗σ(m), η∗k ∈ E∗ (4.1)

The metric gE induces a scalar product on ⊗mE∗ as follows

〈v∗1 ⊗ · · · ⊗ v∗m, w∗1 ⊗ · · · ⊗ w∗m〉gE =
m∏

j=1

〈v∗j , w∗j 〉gE , w∗i , v
∗
i ∈ E∗.

The operator S is self-adjoint and thus an orthogonal projection with respect to this

scalar product.

Using the metric gE, one can decompose the vector space ⊗mS as follows. Let (ei)
N
i=1

be an orthonormal basis of E for the metric gE and (e∗i ) be the dual basis. First of

all, introduce the trace map T : ⊗m+2E∗ → ⊗mE∗ contracting the first two indices by

the metric: for vi ∈ E, define

T (u)(v1, . . . , vm−2) :=
N∑

i=1

u(ei, ei, v1, . . . , vm−2) (4.2)

(the result is independent of the choice of the basis). For m < 2, we define T to be

zero on ⊗mE∗. Note that T maps ⊗m+2
S E∗ onto ⊗mS E∗. Set

e∗K := e∗k1
⊗ · · · ⊗ e∗km ∈ ⊗mE∗, K = k1 . . . km ∈ A m.

Then

T
( ∑

K∈Am+2

fKe∗K

)
=
∑

K∈Am

∑

q∈A

fqqKe∗K .

The adjoint of T : ⊗m+2
S E∗ → ⊗mS E∗ with respect to the scalar product gE is given by

the map u 7→ S(gE ⊗ u). To simplify computations, we define a scaled version of it:

let I : ⊗mS E∗ → ⊗m+2
S E∗ be defined by

I(u) =
(m+ 2)(m+ 1)

2
S(gE ⊗ u) =

(m+ 2)(m+ 1)

2
T ∗(u). (4.3)
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Then

I
( ∑

K∈Am

fKe∗K

)
=

∑

K∈Am+2

m+2∑

`,r=1
`<r

δk`krf{`→,r→}Ke∗K .

Note that for u ∈ ⊗mS E∗,

T (Iu) = (2m+N)u+ I(T u). (4.4)

By (4.3) and (4.4), the homomorphism T I : ⊗mS E∗ → ⊗mS E∗ is positive definite and

thus an isomorphism. Therefore, for u ∈ ⊗mS E∗, we can decompose u = u1 + I(u2),

where u1 ∈ ⊗mS E∗ satisfies T (u1) = 0 and u2 = (T I)−1T u ∈ ⊗m−2
S E∗. Iterating this

process, we can decompose any u ∈ ⊗mS E∗ into

u =

bm/2c∑

r=0

Ir(ur), ur ∈ ⊗m−2r
S E∗, T (ur) = 0, (4.5)

with ur determined uniquely by u.

Another operation on tensors which wil be used is the interior product: if v ∈ E

and u ∈ ⊗mS E∗, we denote by ιv(u) ∈ ⊗m−1
S E∗ the interior product of u by v given by

ιvu(v1, . . . , vm−1) := u(v, v1, . . . , vm−1).

If v∗ ∈ E∗, we denote ιv∗u for the tensor ιvu with gE(v, ·) = v∗.

We conclude this section with a correspondence which will be useful in certain cal-

culations later. There is a linear isomorphism between ⊗mS E∗ and the space Polm(E)

of homogeneous polynomials of degree m on E: to a tensor u ∈ ⊗mS E∗ we associate

the function on E given by x → Pu(x) := u(x, . . . , x). If we write x =
∑N

i=1 xiei in a

given orthonormal basis then

PS(e∗K)(x) =
m∏

j=1

xkj , K = k1 . . . km ∈ A m.

The flat Laplacian associated to gE is given by ∆E = −∑N
i=1 ∂

2
xi

in the coordinates

induced by the basis (ei). Then it is direct to see that

∆EPu(x) = −m(m− 1)PT (u)(x), u ∈ ⊗mS E∗. (4.6)

which means that the trace corresponds to applying the Laplacian (see [DaSh, Lemma

2.4]). In particular, trace-free symmetric tensors of order m correspond to homoge-

neous harmonic polynomials, and thus restrict to spherical harmonics on the sphere

|x|gE = 1 of E. We also have

PI(u)(x) =
(m+ 2)(m+ 1)

2
|x|2Pu(x), u ∈ ⊗mS E∗. (4.7)
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4.2. Horocyclic operators. We now consider the left-invariant vector fields X, U i
±,

Ri+1,j+1 on the isometry group G, identified with the elements of the Lie algebra of G

introduced in (3.6), (3.7). Recall that G acts on SHn+1 transitively with the isotropy

group H ' SO(n) and this action gives rise to the projection πS : G → SHn+1 –

see (3.10). Note that, with the maps Φ± : SHn+1 → R+, B± : SHn+1 → Sn defined

in (3.16), we have

B±(πS(γ)) = Lγ(±e1), Φ±(πS(γ)) = Nγ(±e1), γ ∈ G,

where Nγ : Sn → R+, Lγ : Sn → Sn are defined in (3.26). Since H±, the isotropy

group of ±e1 under the action Lγ, contains X,U±i in its Lie algebra (see (3.27) and

Figure 3(a)), we find

d(B± ◦ πS) · U±i = 0, d(B± ◦ πS) ·X = 0. (4.8)

We also calculate

d(Φ± ◦ πS) · U±i = 0. (4.9)

Define the differential operator on G

U±K := U±k1
. . . U±km , K = k1 . . . km ∈ A m.

Note that the order in which k1, . . . , km are listed does not matter by (3.8). Moreover,

by (3.8)

[Ri+1,j+1, U
±
K ] =

m∑

`=1

(δjk`U
±
{`→i}K − δik`U±{`→j}K). (4.10)

Since H is generated by the vector fields Ri+1,j+1, we see that in dimensions n+ 1 > 2

the horocyclic vector fields U±i , and more generally the operators U±K , are not invariant

under right multiplication by elements of H and therefore do not descend to differential

operators on SHn+1 – in other words, if u ∈ D′(SHn+1), then U±K(π∗Su) ∈ D′(G) is not

in the image of π∗S.

However, in this section we will show how to differentiate distributions on SHn+1

along the horocyclic vector fields, resulting in sections of the vector bundle E introduced

in Section 3.6 and its tensor powers. First of all, we note that by (3.14), the stable

and unstable bundles Es(x, ξ) and Eu(x, ξ) are canonically isomorphic to E(x, ξ) by

the maps

θ+ : E(x, ξ)→ Es(x, ξ), θ− : E(x, ξ)→ Eu(x, ξ), θ±(v) = (−v,±v).

For u ∈ D′(SHn+1), we then define the horocyclic derivatives U±u ∈ D′(SHn+1; E) by

restricting the differential du ∈ D′(SHn+1;T ∗(SHn+1)) to the stable/unstable foliations

and pulling it back by θ±:

U±u(x, ξ) := du(x, ξ) ◦ θ± ∈ E∗(x, ξ). (4.11)
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To relate U± to the vector fields U±i on the group G, consider the orthonormal frame

e∗1, . . . , e
∗
k of the bundle π∗SE over G defined by

e∗j(γ) := γ−∗(e∗j+1) ∈ E∗(πS(γ)).

where the e∗j = dxj form the dual basis to the canonical basis (ej)j=0,...,n+1 of R1,n+1, and

γ−∗ = (γ−1)∗ : (R1,n+1)∗ → (R1,n+1)∗. More generally, we can define the orthonormal

frame e∗K of π∗S(⊗mE∗) by

e∗K := e∗k1
⊗ · · · ⊗ e∗km , K = k1 . . . km ∈ A m.

We compute for u ∈ D′(SHn+1), du(πS(γ)) · θ±(γ(ej+1)) = U±j (π∗Su)(γ) and thus

π∗S(U±u) =
m∑

j=1

U±j (π∗Su)e∗j . (4.12)

We next use the formula (4.12) to define U± as an operator

U± : D′(SHn+1;⊗mE∗)→ D′(SHn+1;⊗m+1E∗) (4.13)

as follows: for u ∈ D′(SHn+1;⊗mE∗), define U±u by

π∗S(U±u) =
m∑

j=1

∑

K∈Am

(U±j uK)e∗jK , π∗Su =
∑

K∈Am

uKe∗K . (4.14)

This definition makes sense (that is, the right-hand side of the first formula in (4.14)

lies in the image of π∗S) since a section

f =
∑

K∈Am

fKe∗K ∈ D′(SHn+1; π∗S(⊗mE∗)), fK ∈ D′(G)

lies in the image of π∗S if and only if Ri+1,j+1f = 0 for 1 ≤ i < j ≤ n (the differentiation

is well-defined since the fibers of π∗S(⊗mE∗) are the same along each integral curve of

Ri+1,j+1), and this translates to

Ri+1,j+1fK =
m∑

`=1

(δjk`f{`→i}K − δik`f{`→j}K), 1 ≤ i < j ≤ n, K ∈ A m; (4.15)

it remains to use (4.10).

To interpret the operator (4.13) in terms of the stable/unstable foliations in a man-

ner similar to (4.11), consider the connection ∇S on the bundle E over SHn+1 defined

as follows: for (x, ξ) ∈ SHn+1, (v, w) ∈ T(x,ξ)(SHn+1), and u ∈ D′(SHn+1; E), let

∇S
(v,w)u(x, ξ) be the orthogonal projection of ∇R1,n+1

(v,w) u(x, ξ) onto E(x, ξ) ⊂ R1,n+1,

where ∇R1,n+1
is the canonical connection on the trivial bundle SHn+1 × R1,n+1 over

SHn+1 (corresponding to differentiating the coordinates of u in R1,n+1). Then ∇S nat-

urally induces a connection on ⊗mE∗, also denoted ∇S, and we have for v, v1, . . . , vm ∈
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E(x, ξ) and u ∈ D′(SHn+1;⊗mE∗),
U±u(x, ξ)(v, v1, . . . , vm) = (∇S

θ±(v)u)(v1, . . . , vm). (4.16)

Indeed, if γ(t) = γ(0)etU
±
j is an integral curve of U±j on G, then γ(t)e2, . . . , γ(t)en+1

form a parallel frame of E over the curve (x(t), ξ(t)) = πS(γ(t)) with respect to ∇S,

since the covariant derivative of γ(t)ek in t with respect to ∇R1,n+1
is simply γ(t)U±j ek;

by (3.7) this is a linear combination of x(t) = γ(t)e0 and ξ(t) = γ(t)e1 and thus

∇S
t (γ(t)ek) = 0.

Note also that the operator X defined in (3.29) can be interpreted as the covariant

derivative on E along the generator X of the geodesic flow by the connection ∇S. One

can naturally generalize X to a first order differential operator

X : D′(SHn+1;⊗mE∗)→ D′(SHn+1;⊗mE∗) (4.17)

and 1
i
X is still symmetric with respect to the natural measure on SHn+1 and the inner

product on ⊗mE∗ induced by the Minkowski metric. A characterization of X in terms

of the frame e∗K is given by

π∗S(Xu) =
∑

K∈Am

(XuK)e∗K , π∗Su =
∑

K∈Am

uKe∗K . (4.18)

It follows from (3.8) that for u ∈ D′(SHn+1;⊗mE∗),
XU±u− U±Xu = ±U±u. (4.19)

We also observe that, since [U±i , U
±
j ] = 0, for each scalar distribution u ∈ D′(SHn+1)

and m ∈ N, we have Um± u ∈ D′(SHn+1;⊗mS E∗), where ⊗mS E∗ ⊂ ⊗mE∗ denotes the space

of all symmetric cotensors of order m. Inversion of the operator Um± is the topic of the

next subsection. We conclude with the following lemma describing how the operator

Um± acts on distributions invariant under the left action of an element of G:

Lemma 4.1. Let γ ∈ G and u ∈ D′(SHn+1). Assume also that u is invariant under

left multiplications by γ, namely u(γ.(x, ξ)) = u(x, ξ) for all1 (x, ξ) ∈ SHn+1. Then

v = Um± u is equivariant under left multiplication by γ in the following sense:

v(γ.(x, ξ)) = γ.v(x, ξ), (4.20)

where the action of γ on ⊗mS E∗ is naturally induced by its action on E, which in turn

comes from the action of γ on R1,n+1.

Proof. We have for γ′ ∈ G,

Um± u(πS(γ′)) =
∑

K∈Am

(U±K(u ◦ πS)(γ′))e∗K(γ′).

1Strictly speaking, this statement should be formulated in terms of the pullback of the distribution

u by the map (x, ξ) 7→ γ.(x, ξ).
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Therefore, since U±j are left invariant vector fields on G,

Um± u(γ.πS(γ′)) = Um± u(πS(γγ′)) =
∑

K∈Am

(U±K(u ◦ πS)(γ′))e∗K(γγ′).

It remains to note that e∗K(γγ′) = γ.eK(γ′). �

4.3. Inverting horocyclic operators. In this subsection, we will show that distribu-

tions v ∈ D′(SHn+1;⊗mS E∗) satisfying certain conditions are in fact in the image of Um±
acting on D′(SHn+1). This is an important step in our construction of Pollicott–Ruelle

resonances, as it will make it possible to recover a scalar resonant state corresponding

to a resonance in the mth band. More precisely, we prove

Lemma 4.2. Assume that v ∈ D′(SHn+1;⊗mS E∗) satisfies U±v = 0, and X v = ±λv for

λ 6∈ 1
2
Z. Then there exists u ∈ D′(SHn+1) such that Um± u = v and Xu = ±(λ−m)u.

Moreover, if v is equivariant under left multiplication by some γ ∈ G in the sense

of (4.20), then u is invariant under left multiplication by γ.

The proof of Lemma 4.2 is modeled on the following well-known formula recovering

a homogeneous polynomial of degree m from its coefficients: given constants aα for

each multiindex α of length m, we have

∂βx
∑

|α|=m

1

α!
xαaα = aβ, |β| = m. (4.21)

The formula recovering u from v in Lemma 4.2 is morally similar to (4.21), with U±j
taking the role of ∂xj , the condition U±v = 0 corresponding to aα being constants,

and U∓j taking the role of the multiplication operators xj. However, the commutation

structure of U±j , given by (3.8), is more involved than that of ∂xj and xj and in

particular it involves the vector field X, explaining the need for the condition X v =

±λv (which is satisfied by resonant states).

To prove Lemma 4.2, we define the operator

V± : D′(SHn+1;⊗m+1E∗)→ D′(SHn+1;⊗mE∗), V± := T U±,

where T is defined in Section 4.1. Then by (4.14)

π∗S(V±u) =
∑

K∈Am

∑

q∈A

(U±q uqK)e∗K , u =
∑

K∈Am+1

uKe∗K .

For later use, we record the following fact:

Lemma 4.3. U∗± = −V±, where the adjoint is understood in the formal sense.
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Proof. If u ∈ C∞0 (SHn+1;⊗mE∗), v ∈ C∞(SHn+1;⊗m+1E∗) and uK , vJ are the coor-

dinates of π∗Su and π∗Sv in the bases (e∗K)K∈Am and (e∗J)J∈Am+1 , then by (4.14), we

compute the following pointwise identity on SHn+1:

〈U±u, v̄〉+ 〈u,V±v〉 = V±w, w ∈ C∞0 (SHn+1; E∗), π∗Sw =
∑

K∈Am

q∈A

uKvqK e∗q.

It remains to show that for each w, the integral of V±w is equal to zero. Since V± is a

differential operator of order 1, we must have
∫

SHn+1

V±w =

∫

SHn+1

〈w, η±〉

for all w and some η± ∈ C∞(SHn+1; E∗) independent of w. Then η± is equivariant

under the action of the isometry group G and in particular, |η±| is a constant function

on SHn+1. Moreover, using that
∫
Xf = 0 for all f ∈ C∞0 (SHn+1) and V±(Xw) =

(X ∓ 1)V±w, we get for all w ∈ C∞0 ,

∓
∫

SHn+1

〈w, η±〉 =

∫

SHn+1

V±(Xw) = −
∫

SHn+1

〈w,X η±〉.

This implies that X η± = ±η± and in particular

X|η±|2 = 2〈X η±, η±〉 = ±2|η±|2.
Since |η±|2 is a constant function, this implies η± = 0, finishing the proof. �

To construct u from v in Lemma 4.2, we first handle the case when T (v) = 0; this

condition is automatically satisfied when m ≤ 1.

Lemma 4.4. Assume that v ∈ D′(SHn+1;⊗mS E∗) and U±v = 0, T (v) = 0. Define

u = Vm∓ v ∈ D′(SHn+1). Then

Um± u = 2mm!

( n+m−2∏

`=n−1

(`±X )

)
v. (4.22)

Proof. Assume that

π∗Sv =
∑

K∈Am

fKe∗K , fK ∈ D′(G).

Then

π∗Su =
∑

K∈Am

U∓KfK , π∗S(Um± u) =
∑

K,J∈Am

U±J U
∓
KfKe∗J .

For 0 ≤ r < m, J ∈ A m−1−r, and p ∈ A , we have by (3.8)
∑

K∈A r

q∈A

[U±p , U
∓
q ]U∓KfqKJ = ±2X

∑

K∈A r

U∓KfpKJ + 2
∑

K∈A r

q∈A

Rp+1,q+1U
∓
KfqKJ .
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To compute the second term on the right-hand side, we commute Rp+1,q+1 with U∓K
by (4.10) and use (4.15) to get

∑

K∈A r

q∈A

Rp+1,q+1U
∓
KfqKJ =

∑

K∈A r

q∈A

( r∑

`=1

(δqk`U
∓
{`→p}KfqKJ − δpk`U∓{`→q}KfqKJ)

+U∓KfpKJ − δpqU∓KfqKJ +
r∑

`=1

(δqk`U
∓
Kfq({`→p}K)J − δpk`U∓Kfq({`→q}K)J)

+
m−1−r∑

`=1

(δqj`U
∓
KfqK({`→p}J) − δpj`U∓KfqK({`→q}J))

)
.

Since v is symmetric and T (v) = 0, the expressions
∑

K∈A r, q∈A δqk`U
∓
{`→p}KfqKJ ,∑

q∈A fq({`→q}K)J , and
∑

q∈A fqK({`→q}J) are zero. Further using the symmetry of v,

we find ∑

K∈A r

q∈A

Rp+1,q+1U
∓
KfqKJ = (n+m− r − 2)

∑

K∈A r

U∓KfpKJ .

and thus
∑

K∈A r

q∈A

[U±p , U
∓
q ]U∓KfqKJ = 2

∑

K∈A r

U∓K(±X + n+m− 2r − 2)fpKJ . (4.23)

Then, using that U±v = 0, we find

∑

K∈A r+1

U±p U
∓
KfKJ =

∑

K∈A r

q∈A

r+1∑

`=1

U∓k`...kr [U
±
p , U

∓
q ]U∓k1...k`−1

fqKJ

= 2
∑

K∈A r

r+1∑

`=1

U∓K(±X + n+m− 2`)fpKJ

= 2(r + 1)
∑

K∈A r

U∓K(±X + n+m− r − 2)fpKJ .

(4.24)

By iterating (4.24) we obtain (using also that v is symmetric) for J ∈ A m,

U±J
∑

K∈Am

U∓KfK = 2mU±j1...jm−1

∑

K∈Am−1

U∓K(±X + n− 1)fKjm

= 4m(m− 1)U±j1...jm−2

∑

K∈Am−2

U∓K(±X + n)(±X + n− 1)fKjm−1jm

= . . .

= 2mm!
n+m−2∏

`=n−1

(±X + `)fJ

which achieves the proof. �
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To handle the case T (v) 6= 0, define also the horocyclic Laplacians

∆± := −T U2
± = −V±U± : D′(SHn+1)→ D′(SHn+1),

so that for u ∈ D′(SHn+1),

π∗S∆±u = −
n∑

q=1

U±q U
±
q (π∗Su).

Note that, by the commutation relation (3.8),

[X,∆±] = ±2∆±. (4.25)

Also, by Lemma 4.3, ∆± are symmetric operators.

Lemma 4.5. Assume that u ∈ D′(SHn+1) and Um+1
± u = 0. Then

Um+2
± ∆∓u = −4(X ∓m)(2X ± (n− 2))I(Um± u)− 4I2(T (Um± u)).

Proof. We have

π∗S(Um+2
± ∆∓u) = −

∑

K∈Am+2

q∈A

U±KU
∓
q U

∓
q u e∗K .

Using (3.8), we compute for K ∈ A m+2 and q ∈ A ,

[U±K , U
∓
q ] =

m+2∑

`=1

U±k1...k`−1
[U±k` , U

∓
q ]U±k`+1...km+2

= 2
m+2∑

`=1

(
δqk`U

±
{`→}K(±X +m− `+ 2) + U±k1...k`−1

Rk`+1,q+1U
±
k`+1...km+2

)

= 2
m+2∑

`=1

(
U±{`→}K

(
δqk`(±X +m− `+ 2) +Rk`+1,q+1

)
+

m+2∑

r=`+1

(δqkrU
±
{r→}K − δk`krU±{`→,r→q}K)

)

= 2
m+2∑

`=1

(
U±{`→}K

(
δqk`(±X +m+ 1) +Rk`+1,q+1

)
−

m+2∑

r=`+1

δk`krU
±
{`→,r→q}K

)
.

Since Um+1
± u = 0, for K ∈ A m+2 and q ∈ A we have U±Ku = [U±K , U

∓
q ]u = 0 and thus

U±KU
∓
q U

∓
q u = [[U±K , U

∓
q ], U∓q ]u.

We calculate
∑

q∈A

[δqk`(±X +m+ 1) +Rk`+1,q+1, U
∓
q ] = (n− 2)U∓k`
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and thus for K ∈ A m+2,

∑

q∈A

U±KU
∓
q U

∓
q u = 2

m+2∑

`=1

(
[U±{`→}K , U

∓
k`

](±X +m+ n− 1)

−
m+2∑

r=`+1

δk`kr
∑

q∈A

[U±{`→,r→q}K , U
∓
q ]

)
u.

Now, for K ∈ A m+2,

m+2∑

`=1

[U±{`→}K , U
∓
k`

](±X +m+ n− 1)u = 2
m+2∑

`,s=1
6̀=s

(
δk`ksU

±
{`→,s→}K(±X +m)

−
m+2∑

r=s+1
r 6=`

δkskrU
±
{s→,r→}K

)
(±X +m+ n− 1)u

= 2
m+2∑

`,r=1
`<r

δk`krU
±
{`→,r→}K(±2X +m)(±X +m+ n− 1)u.

Furthermore, we have for K ∈ A m,

∑

q∈A

[U±qK , U
∓
q ]u = 2U±K

(
(m+ n)(±X +m)−m

)
u− 2

∑

q∈A

m∑

s,p=1
s<p

δkskpU
±
qq{s→,p→}Ku

We finally compute

∑

q∈A

U±KU
∓
q U

∓
q u = 4

m+2∑

`,r=1
`<r

δk`krU
±
{`→,r→}KX(2X ± (n+ 2m− 2))u

+4
∑

q∈A

m+2∑

`,r=1
`<r

m+2∑

s,p=1
s<p; {s,p}∩{`,r}=∅

δk`krδkskpU
±
qq{`→,r→,s→,p→}Ku,

which finishes the proof. �

Arguing by induction using (4.4) and applying Lemma 4.5 to ∆r
∓u, we get

Lemma 4.6. Assume that u ∈ D′(SHn+1) and Um+1
± u = 0, T (Um± u) = 0. Then for

each r ≥ 0,

Um+2r
± ∆r

∓u = (−1)r22r

( r−1∏

j=0

(X ∓ (m+ j))

)( r∏

j=1

(2X ± (n− 2j))

)
Ir(Um± u).
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Moreover, for r ≥ 1

T (Um+2r
± ∆r

∓u) = (−1)r22rr(n+ 2m+ 2r − 2)

·
( r−1∏

j=0

(X ∓ (m+ j))

)( r∏

j=1

(2X ± (n− 2j))

)
Ir−1(Um± u).

We are now ready to finish the proof of Lemma 4.2. Following (4.5), we decompose

v as v =
∑bm/2c

r=0 Ir(vr) with vr ∈ D′(SHn+1;⊗m−2r
S E∗) and T (vr) = 0. Since X

commutes with T and I, we find Xvr = ±λvr. Moreover, since U±v = 0, we have

U±vr = 0. Put

ur := (−∆∓)rVm−2r
∓ vr ∈ D′(SHn+1).

By Lemma 4.4 (applied to vr) and Lemma 4.6 (applied to Vm−2r
∓ vr and m replaced by

m− 2r),

Um± ur = 22r

( r−1∏

j=0

(λ− (m− 2r + j))

)( r∏

j=1

(2λ+ n− 2j)

)
Ir(Um−2r

± Vm−2r
∓ vr)

= 2m(m− 2r)!

( n+m−2r−2∏

j=n−1

(λ+ j)

)( m−r−1∏

j=m−2r

(λ− j)
)( r∏

j=1

(2λ+ n− 2j)

)
Ir(vr).

Since λ 6∈ 1
2
Z, we see that v = Um± u, where u is a linear combination of u0, . . . , ubm/2c.

The relation Xu = ±(λ − m)u follows immediately from (4.19) and (4.25). Finally,

the equivariance property under G follows similarly to Lemma 4.1.

4.4. Reduction to the conformal boundary. We now describe the tensors v ∈
D′(SHn+1;⊗mS E∗) that satisfy U±v = 0 and Xv = 0 via symmetric tensors on the

conformal boundary Sn. For that we define the operators

Q± : D′(Sn;⊗m(T ∗Sn))→ D′(SHn+1;⊗mE∗)

by the following formula: if w ∈ C∞(Sn;⊗m(T ∗Sn)), we set for ηi ∈ E(x, ξ)

Q±w(x, ξ)(η1, . . . , ηm) := (w ◦B±(x, ξ))(A−1
± (x, ξ)η1, . . . ,A−1

± (x, ξ)ηm) (4.26)

where A±(x, ξ) : TB±(x,ξ)Sn → E(x, ξ) is the parallel transport defined in (3.31), and

we see that the operator (4.26) extends continuously to D′(Sn;⊗mS (T ∗Sn)) since the

map B± : SHn+1 → Sn defined in (3.16) is a submersion, see [HöI, Theorem 6.1.2]; the

result can be written as Q±w = (⊗m(A−1
± )T ).w ◦B± where T means transpose.

Lemma 4.7. The operator Q± is a linear isomorphism from D′(Sn;⊗mS (T ∗Sn)) onto

the space

{v ∈ D′(SHn+1;⊗mS E∗) | U±v = 0, X v = 0}. (4.27)
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Proof. It is clear that Q± is injective. Next, we show that the image of Q± is con-

tained in (4.27). For that it suffices to show that for w ∈ C∞(Sn;⊗mS (T ∗Sn)), we have

U±(Q±v) = 0 and X (Q±v) = 0. We prove the first statement, the second one is es-

tablished similarly. Let γ ∈ G, w1, . . . , wm ∈ C∞(Sn;TSn), and w∗i = 〈wi, ·〉gSn be the

duals through the metric. Then

Q±(w∗1 ⊗ · · · ⊗ w∗m)(πS(γ)) =
n∑

k1,...,km=1

( m∏

j=1

(w∗j ◦B± ◦ πS(γ))(A−1
± (πS(γ))γ · ekj+1)

)
e∗K(γ) =

(−1)m
n∑

k1,...,km=1

( m∏

j=1

〈(A±.wj ◦B±) ◦ πS(γ), γ · ekj+1〉M
)
e∗K(γ)

where we have used (3.32) in the second identity. Now we have from (3.31)

A±(πS(γ))ζ = (0, ζ)− 〈(0, ζ), γ · e0〉Mγ(e0 + e1)

thus

Q±(w∗1 ⊗ · · · ⊗ w∗m)(πS(γ)) =
n∑

k1,...,km=1

( m∏

j=1

〈(0,−wj(B±(πS(γ)))), γ · ekj+1〉M
)
e∗K(γ).

Since d(B± ◦ πS) · U±` = 0 by (4.8) and U±` (γ · ekj+1) = γ · U±` · ekj+1 is a multiple of

γ · (e0 ± e1) = Φ±(πS(γ))(1, B±(πS(γ))), we see that U±(Q±w) = 0 for all w.

It remains to show that for v in (4.27), we have v = Q±(w) for some w. For that,

define

ṽ = (⊗mAT±) · v ∈ D′(SHn+1;B∗±(⊗mS T ∗Sn))

where AT± denotes the tranpose of A±. Then U±v = 0, X v = 0 imply that U±` (π∗S ṽ) = 0

and Xṽ = 0 (where to define differentiation we embed T ∗Sn into Rn+1). Additionally,

Ri+1,j+1(π∗S ṽ) = 0, therefore π∗S ṽ is constant on the right cosets of the subgroupH± ⊂ G

defined in (3.27). Since (B± ◦πS)−1(B± ◦πS(γ)) = γH±, we see that ṽ is the pull-back

under B± of some w ∈ D′(Sn;⊗mS T ∗Sn), and it follows that v = Q±(w). �

In fact, using (3.31) and the expression of ξ±(x, ν) in (3.20) in terms of Poisson

kernel, it is not difficult to show that Q±(w) belongs to a smaller space of tempered

distributions: in the ball model, this can be described as the dual space to the Frechet

space of smooth sections of ⊗m(0SBn+1) over Bn+1 which vanish to infinite order at

the conformal boundary Sn = ∂Bn+1.

We finally give a useful criterion for invariance of Q±(w) under the left action of an

element of G:

Lemma 4.8. Take γ ∈ G and let w ∈ D′(Sn;⊗mS (T ∗Sn)). Take s ∈ C and define

v = Φs
±Q±(w). Then v is equivariant under left multiplication by γ, in the sense
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of (4.20), if and only if w satisfies the condition

L∗γw(ν) = Nγ(ν)−s−mw(ν), ν ∈ Sn. (4.28)

Here Lγ(ν) ∈ Sn and Nγ(ν) > 0 are defined in (3.26).

Proof. The lemma follows by a direct calculation from (3.28) and (3.33). �

5. Ruelle resonances

In this section, we first recall the results of Butterley–Liverani [BuLi] and Faure–

Sjöstrand [FaSj] on the Pollicott–Ruelle resonances for Anosov flows. We next state

several useful microlocal properties of these resonances and prove Theorem 2, modulo

properties of Poisson kernels (Lemma 5.8 and Theorem 6) which will be proved in

Sections 6 and 7. Finally, we prove a pairing formula for resonances and Theorem 3.

5.1. Definition and properties. We follow the presentation of [FaSj]; a more recent

treatment using different technical tools is also given in [DyZw]. We refer the reader

to these two papers for the necessary notions of microlocal analysis.

Let M be a smooth compact manifold of dimension 2n + 1 and ϕt = etX be an

Anosov flow on M, generated by a smooth vector field X. (In our case, M = SM ,

M = Γ\Hn+1, and ϕt is the geodesic flow – see Section 5.2.) The Anosov property is

defined as follows: there exists a continuous splitting

TyM = E0(y)⊕ Eu(y)⊕ Es(y), y ∈M; E0(y) := RX(y), (5.1)

invariant under dϕt and such that the stable/unstable subbundles Es, Eu ⊂ TM satisfy

for some fixed smooth norm | · | on the fibers of TM and some constants C and θ > 0,

|dϕt(y)v| ≤ Ce−θt|v|, v ∈ Es(y);

|dϕ−t(y)v| ≤ Ce−θt|v|, v ∈ Eu(y).
(5.2)

We make an additional assumption that M is equipped with a smooth measure µ

which is invariant under ϕt, that is, LXµ = 0.

We will use the dual decomposition to (5.1), given by

T ∗yM = E∗0(y)⊕ E∗u(y)⊕ E∗s (y), y ∈M, (5.3)

where E∗0 , E
∗
u, E

∗
s are dual to E0, Es, Eu respectively (note that Eu, Es are switched

places), so for example E∗u(y) consists of covectors annihilating E0(y)⊕ Eu(y).

Following [FaSj, (1.24)], we now consider for each r ≥ 0 an anisotropic Sobolev space

Hr(M), C∞(M) ⊂ Hr(M) ⊂ D′(M).
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Here we put u := −r, s := r in [FaSj, Lemma 1.2]. Microlocally near E∗u, the space

Hr is equivalent to the Sobolev space H−r, in the sense that for each pseudodifferen-

tial operator A of order 0 whose wavefront set is contained in a small enough conic

neighborhood of E∗u, the operator A is bounded Hr → H−r and H−r → Hr. Similarly,

microlocally near E∗s , the space Hr is equivalent to the Sobolev space Hr. We also

have H0 = L2. The operator P admits a unique closed unbounded extension from C∞
to Hr, see [FaSj, Lemma A.1].

The following theorem, defining Pollicott–Ruelle resonances associated to ϕt, is due

to Faure and Sjöstrand [FaSj, Theorems 1.4 and 1.5]; see also [DyZw, Section 3.2].

Theorem 5. Fix r ≥ 0. Then the closed unbounded operator

−X : Hr(M)→ Hr(M)

has discrete spectrum in the region {Reλ > −r/C0}, for some constant C0 indepen-

dent of r. The eigenvalues of −X on Hr, called Ruelle resonances, and taken with

multiplicities, do not depend on the choice of r as long as they lie in the appropriate

region.

We have the following criterion for Pollicott–Ruelle resonances which does not use

the Hr spaces explicitly:

Lemma 5.1. A number λ ∈ C is a Pollicott–Ruelle resonance of X if and only the

space

ResX(λ) := {u ∈ D′(M) | (X + λ)u = 0, WF(u) ⊂ E∗u} (5.4)

is nontrivial. Here WF denotes the wavefront set, see for instance [FaSj, Definition 1.6].

The elements of ResX(λ) are called resonant states associated to λ and the dimen-

sion of this space is called geometric multiplicity of λ.

Proof. Assume first that λ is a Pollicott–Ruelle resonance. Take r > 0 such that

Reλ > −r/C0. Then λ is an eigenvalue of −X on Hr, which implies that there exists

nonzero u ∈ Hr such that (X+λ)u = 0. By [FaSj, Theorem 1.7], we have WF(u) ⊂ E∗u,
thus u lies in (5.4).

Assume now that u ∈ D′(M) is a nonzero element of (5.4). For large enough r, we

have Reλ > −r/C0 and u ∈ H−r(M). Since WF(u) ⊂ E∗u and Hr is equivalent to

H−r microlocally near E∗u, we have u ∈ Hr. Together with the identity (X + λ)u, this

shows that λ is an eigenvalue of −X on Hr and thus a Pollicott–Ruelle resonance. �

For each λ with Reλ > −r/C0, the operator X + λ : Hr → Hr is Fredholm of index

zero on its domain; this follows from the proof of Theorem 5. Therefore, dim ResX(λ)

is equal to the dimension of the kernel of the adjoint operator X∗ + λ̄ on the L2 dual
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of Hr, which we denote by H−r. Since 1
i
X is symmetric on L2, we see that ResX(λ)

has the same dimension as the following space of coresonant states at λ:

ResX∗(λ) := {u ∈ D′(M) | (X − λ̄)u = 0, WF(u) ⊂ E∗s}. (5.5)

The main difference of (5.5) from (5.4) is that the subbundle E∗s is used instead of E∗u;
this can be justified by applying Lemma 5.1 to the vector field −X instead of X, since

the roles of the stable/unstable spaces for the corresponding flow ϕ−t are reversed.

Note also that for any λ, λ∗ ∈ C, one can define an inner product

〈u, u∗〉 ∈ C, u ∈ ResX(λ), u∗ ∈ ResX∗(λ
∗). (5.6)

One way of doing that is using the fact that wavefront sets of u, u∗ intersect only at the

zero section, and applying [HöI, Theorem 8.2.10]. An equivalent definition is noting

that u ∈ Hr and u∗ ∈ H−r for r > 0 large enough and using the duality of Hr and H−r.
Note that for λ 6= λ∗, we have 〈u, u∗〉 = 0; indeed, X(uu∗) = (λ∗− λ)uu∗ integrates to

0. The question of computing the product 〈u, u∗〉 for λ = λ∗ is much more subtle and

related to algebraic multiplicities, see Section 5.3.

Since 1
i
X is self-adjoint on L2 = H0 (see [FaSj, Appendix A.1]), it has no eigenvalues

on this space away from the real line; this implies that there are no Pollicott–Ruelle

resonances in the right half-plane. In other words, we have

Lemma 5.2. The spaces ResX(λ) and ResX∗(λ) are trivial for Reλ > 0.

Finally, we note that the results above apply to certain operators on vector bundles.

More precisely, let E be a smooth vector bundle over M and assume that X is a first

order differential operator on D′(M; E ) whose principal part is given by X, namely

X (fu) = f X (u) + (Xf)X (u), f ∈ D′(M), u ∈ C∞(M; E ). (5.7)

Assume moreover that E is endowed with an inner product 〈·, ·〉E and 1
i
X is symmetric

on L2 with respect to this inner product and the measure µ. By an easy adaptation of

the results of [FaSj] (see [FaTs13b] and [DyZw]), one can construct anisotropic Sobolev

spaces Hr(M; E ) and Theorem 5 and Lemmas 5.1, 5.2 apply to X on these spaces.

5.2. Proof of the main theorem. We now concentrate on the case

M = SM = Γ\(SHn+1), M = Γ\Hn+1,

with ϕt the geodesic flow. Here Γ ⊂ G = PSO(1, n + 1) is a co-compact discrete

subgroup with no fixed points, so that M is a compact smooth manifold. Henceforth

we identify functions on the sphere bundle SM with functions on SHn+1 invariant

under Γ, and similar identifications will be used for other geometric objects. It is

important to note that the constructions of the previous sections, except those involving

the conformal infinity, are invariant under left multiplication by elements of G and thus

descend naturally to SM .
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The lift of the geodesic flow on SM is the generator of the geodesic flow on SHn+1

(see Section 3.3); both are denoted X. The lifts of the stable/unstable spaces Es, Eu
to SHn+1 are given in (3.14), and we see that (5.1) holds with θ = 1. The invariant

measure µ on SM is just the product of the volume measure on M and the standard

measure on the fibers of SM induced by the metric.

Consider the bundle E on SM defined in Section 3.6. Then for each m, the operator

X : D′(SM ;⊗mS E∗)→ D′(SM ;⊗mS E∗)

defined in (4.17) satisfies (5.7) and 1
i
X is symmetric. The results of Section 5.1 apply

both to X and X .

Recall the operator U− introduced in Section 4.2 and its powers, for m ≥ 0,

Um− : D′(SM)→ D′(SM ;⊗mS E∗).

The significance of Um− for Pollicott–Ruelle resonances is explained by the following

Lemma 5.3. Assume that λ ∈ C is a Pollicott–Ruelle resonance of X and u ∈ ResX(λ)

is a corresponding resonant state as defined in (5.4). Then

Um− u = 0 for m > −Reλ.

Proof. By (4.19),

(X + λ+m)Um− u = 0.

Note also that WF(Um− u) ⊂ E∗u since WF(u) ⊂ E∗u and Um− is a differential operator.

Since λ+m lies in the right half-plane, it remains to apply Lemma 5.2 to Um− u. �

We can then use the operators Um− to split the resonance spectrum into bands:

Lemma 5.4. Assume that λ ∈ C \ 1
2
Z. Then

dim ResX(λ) =
∑

m≥0

dim ResmX (λ+m), (5.8)

where

ResmX (λ) := {v ∈ D′(SM ;⊗mS E∗) | (X + λ)v = 0, U−v = 0, WF(v) ⊂ E∗u}. (5.9)

The space ResmX (λ) is trivial for Reλ > 0 (by Lemma 5.2). If λ ∈ 1
2
Z, then we have

dim ResX(λ) ≤
∑

m≥0

dim ResmX (λ+m). (5.10)

Proof. Denote for m ≥ 1,

Vm(λ) := {u ∈ D′(SM) | (X + λ)u = 0, Um− u = 0, WF(u) ⊂ E∗u}.
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Clearly, Vm(λ) ⊂ Vm+1(λ). Moreover, by Lemma 5.3 we have ResX(λ) = Vm(λ) for m

large enough depending on λ. By (4.19), the operator Um− acts

Um− : Vm+1(λ)→ ResmX (λ+m), (5.11)

and the kernel of (5.11) is exactly Vm(λ), with the convention that V0(λ) = 0. Therefore

dimVm+1(λ) ≤ dimVm(λ) + dim ResmX (λ+m)

and (5.10) follows.

To show (5.8), it remains to prove that the operator (5.11) is onto; this follows from

Lemma 4.2 (which does not enlarge the wavefront set of the resulting distribution since

it only employs differential operators in the proof). �

The space ResmX (λ+m) is called the space of resonant states at λ associated to mth

band ; later we see that most of the corresponding Pollicott–Ruelle resonances satisfy

Reλ = −n/2−m. Similarly, we can describe ResX∗(λ) via the spaces ResmX ∗(λ + m),

where

ResmX ∗(λ) := {v ∈ D′(SM ;⊗mS E∗) | (X − λ̄)v = 0, U+v = 0, WF(v) ⊂ E∗s}; (5.12)

note that here U+ is used in place of U−.

We further decompose ResmX (λ) using trace free tensors:

Lemma 5.5. Recall the homomorphisms T : ⊗mS E∗ → ⊗m−2
S E∗, I : ⊗mS E∗ → ⊗m−2

S E∗
defined in Section 4.1 (we put T = 0 for m = 0, 1). Define the space

Resm,0X (λ) := {v ∈ ResmX (λ) | T (v) = 0}. (5.13)

Then for all m ≥ 0 and λ,

dim ResmX (λ) =

bm
2
c∑

`=0

dim Resm−2`,0
X (λ). (5.14)

In fact,

Resm,0X (λ) =

bm
2
c⊕

`=0

I`(Resm−2`,0
X (λ)). (5.15)

Proof. The identity (5.15) follows immediately from (4.5); it is straightforward to

see that the defining properties of ResmX (λ) are preserved by the canonical tensorial

operations involved. The identity (5.14) then follows since I is one to one by the

paragraph following (4.4). �

The elements of Resm,0X (λ) can be expressed via distributions on the conformal

boundary Sn:
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Lemma 5.6. Let Q− be the operator defined in (4.26); recall that it is injective. If

πΓ : SHn+1 → SM is the natural projection map, then

π∗Γ Resm,0X (λ) = Φλ
−Q−(Bdm,0(λ)),

where Bdm,0(λ) ⊂ D′(Sn;⊗mS (T ∗Sn)) consists of all distributions w such that T (w) = 0

and

L∗γw(ν) = Nγ(ν)−λ−mw(ν), ν ∈ Sn, γ ∈ Γ, (5.16)

where Lγ, Nγ are defined in (3.26). Similarly

π∗Γ Resm,0X ∗ (λ) = Φλ̄
+Q+(Bdm,0(λ̄)), Bdm,0(λ̄) = Bdm,0(λ).

Proof. Assume first that w ∈ Bdm,0(λ) and put ṽ = Φλ
−Q−(w). Then by Lemma 4.8

and (5.16), ṽ is invariant under Γ and thus descends to a distribution v ∈ D′(SM ;⊗mS E∗).
Since XΦλ

− = −λΦλ
− and U−j (Φλ

−◦πS) = 0 by (3.17) and (4.8), and X and U− annihilate

the image of Q− by Lemma 4.7, we have (X+λ)v = 0 and U−v = 0. Moreover, by [HöI,

Theorem 8.2.4] the wavefront set of ṽ is contained in the conormal bundle to the fibers

of the map B−; by (3.25), we see that WF(v) ⊂ E∗u. Finally, T (v) = 0 since the map

A−(x, ξ) used in the definition of Q− is an isometry. Therefore, v ∈ Resm,0X (λ) and we

proved the containment π∗Γ Resm,0X (λ) ⊃ Φλ
−Q−(Bdm,0(λ)). The opposite containment

is proved by reversing this argument. �

Remark. It follows from the proof of Lemma 5.6 that the condition WF(v) ⊂ E∗u
in (5.9) is unnecessary. This could also be seen by applying [HöIII, Theorem 18.1.27]

to the equations (X + λ)v = 0, U−v = 0, since X differentiates along the direction E0,

U− differentiates along the direction Eu (see (4.11) and (4.16)), and the annihilator of

E0 ⊕ Eu (that is, the joint critical set of X + λ,U−) is exactly E∗u.

It now remains to relate the space Bdm,0(λ) to an eigenspace of the Laplacian on

symmetric tensors. For that, we introduce the following operator obtained by inte-

grating the corresponding elements of Resm,0X (λ) along the fibers of Sn:

Definition 5.7. Take λ ∈ C. The Poisson operators

P±
λ : D′(Sn;⊗mT ∗Sn)→ C∞(Hn+1;⊗mT ∗Hn+1)

are defined by the formulas

P−
λ w(x) =

∫

SxHn+1

Φ−(x, ξ)λQ−(w)(x, ξ) dS(ξ),

P+
λ w(x) =

∫

SxHn+1

Φ+(x, ξ)λ̄Q+(w)(x, ξ) dS(ξ).

(5.17)

Here integration of elements of ⊗mE∗(x, ξ) is performed by embedding them in ⊗mT ∗xHn+1

using composition with the orthogonal projection TxHn+1 → E(x, ξ).
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The operators P±
λ are related by the identity

P±
λ w = P∓

λ w. (5.18)

By Lemma 5.6, P−
λ maps Bdm,0(λ) onto symmetric Γ-equivariant tensors, which can

thus be considered as elements of C∞(M ;⊗mS T ∗M). The relation with the Laplacian

is given by the following fact, proved in Section 6.3:

Lemma 5.8. For each λ, the image of Bdm,0(λ) under P−
λ is contained in the eigenspace

Eigm(−λ(n+ λ) +m), where

Eigm(σ) := {f ∈ C∞(M ;⊗mS T ∗M) | ∆f = σf, ∇∗f = 0, T (f) = 0}. (5.19)

Here the trace T was defined in Section 4.1 and the Laplacian ∆ and the divergence

∇∗ are introduced in Section 6.1. (A similar result for P+
λ follows from (5.18).)

Furthermore, in Sections 6.3 and 7 we show the following crucial

Theorem 6. Assume that λ /∈ Rm, where

Rm =

{
−n

2
− 1

2
N0 if n > 1 or m = 0

−1
2
N0 if n = 1 and m > 0

(5.20)

Then the map P−
λ : Bdm,0(λ)→ Eigm(−λ(n+ λ) +m) is an isomorphism.

Remark. In Theorem 6, the set of exceptional points where we do not show isomor-

phism is not optimal but sufficient for our application (we only needRm ⊂ m−n
2
−1

2
N0);

we expect the exceptional set to be contained in −n + 1 − N0. This result is known

for functions, that is for m = 0, with the exceptional set being −n − N. This was

proved by Helgason, Minemura in the case of hyperfunctions on Sn and by Oshima–

Sekiguchi [OsSe] and Schlichtkrull–Van Den Ban [VdBSc] for distributions; Grellier–

Otal [GrOt] studied the sharp functional spaces on Sn of the boundary values of

bounded eigenfunctions on Hn+1. The extension to m > 0 does not seem to be known

in the literature and is not trivial, it takes most of Sections 6 and 7.

We finally provide the following refinement of Lemma 5.4, needed to handle the case

λ ∈ (−n/2,∞) ∩ 1
2
Z:

Lemma 5.9. Assume that λ ∈ −n
2

+ 1
2
N. If λ ∈ −2N, then

dim ResX(λ) =
∑

m≥0
m 6=−λ

dim ResmX (λ+m).

If λ /∈ −2N, then (5.8) holds.

Proof. We use the proof of Lemma 5.4. We first show that for m odd or λ 6= −m,

Um− (Vm+1(λ)) = ResmX (λ+m). (5.21)
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Using (5.15), it suffices to prove that for 0 ≤ ` ≤ m
2

, the space I`(Resm−2`,0
X (λ+m)) is

contained in Um− (Vm+1(λ)). This follows from the proof of Lemma 4.2 as long as

λ+m /∈ Z ∩
(
[2`+ 2− n−m, 1− n] ∪ [m− 2`,m− `− 1]

)
,

λ+m+
n

2
/∈ Z ∩ [1, `];

using that λ > −n
2
, it suffices to prove that

λ /∈ Z ∩ [−2`,−`− 1]. (5.22)

On the other hand by Lemma 5.6, Theorem 6, and Lemma 6.1, if ` < m
2

and the space

Resm−2`,0
X (λ+m) is nontrivial, then

−
(
λ+m+

n

2

)2

+
n2

4
+m− 2` ≥ m− 2`+ n− 1,

implying
∣∣∣λ+m+

n

2

∣∣∣ ≤
∣∣∣n
2
− 1
∣∣∣ (5.23)

and (5.22) follows. For the case ` = m
2

, since ∆ ≥ 0 on functions, we have

−
(
λ+m+

n

2

)2

+
n2

4
≥ 0,

which implies that λ ≤ −m and thus (5.22) holds unless λ = −m.

It remains to consider the case when m = 2` is even and λ = −m. We have

ResmX (0) = I`(Res0,0
X (0));

that is, Resm−2`′,0
X (0) is trivial for `′ < m

2
. For n > 1, this follows immediately

from (5.23), and for n = 1, since the bundle E∗ is one-dimensional we get Resm
′,0
X (λ) = 0

for m′ ≥ 2. Now, Res0,0
X (0) = Res0

X (0) corresponds via Lemma 5.6 and Theorem 6 to

the kernel of the scalar Laplacian, that is, to the space of constant functions. Therefore,

Res0,0
X is one-dimensional and it is spanned by the constant function 1 on SM ; it follows

that ResmX (0) is spanned by I`(1). However, by Lemma 4.3, for each u ∈ D′(SM),

〈I`(1),Um− u〉L2 = (−1)m〈Vm− I`(1), u〉L2 = 0.

Since Um− (Vm+1(λ)) ⊂ ResmX (0), we have Um− = 0 on Vm+1(λ), which implies that

Vm+1(λ) = Vm(λ), finishing the proof. �

To prove Theorem 2, it now suffices to combine Lemmas 5.4–5.9 with Theorem 6.
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5.3. Resonance pairing and algebraic multiplicity. In this section, we prove

Theorem 3. The key component is a pairing formula which states that the inner

product between a resonant and a coresonant state, defined in (5.6), is determined

by the inner product between the corresponding eigenstates of the Laplacian. The

nondegeneracy of the resulting inner product as a bilinear operator on ResX(λ) ×
ResX∗(λ) for λ 6∈ 1

2
Z immediately implies the fact that the algebraic and geometric

multiplicities of λ coincide (that is, X + λ does not have any nontrivial Jordan cells).

To state the pairing formula, we first need a decomposition of the space ResX(λ),

which is an effective version of the formulas (5.8) and (5.14). Take m ≥ 0, ` ≤ bm/2c,
w ∈ Bdm−2`,0(λ). Let I be the operator defined in Section 4.1. Then (5.15) and

Lemma 5.6 show that

ResmX (λ) =

bm/2c⊕

`=0

I`(Resm−2`,0
X (λ)) =

bm/2c⊕

`=0

I`(Φλ
−Q−(Bdm−2`,0(λ))).

Next, let

Vm± : D′(SM ;⊗mS E∗)→ D′(SM), ∆± : D′(SM)→ D′(SM)

be the operators introduced in Section 4.3. Then the proofs of Lemma 5.4 and

Lemma 4.2 show that for λ 6∈ 1
2
Z,

ResX(λ) =
⊕

m≥0

bm/2c⊕

`=0

Vm`(λ), ResX∗(λ) =
⊕

m≥0

bm/2c⊕

`=0

V ∗m`(λ);

Vm`(λ) := ∆`
+Vm−2`

+ (Φλ+m
− Q−(Bdm−2`,0(λ+m))),

V ∗m`(λ) := ∆`
−Vm−2`
− (Φλ̄+m

+ Q+(Bdm−2`,0(λ+m))),

(5.24)

and the operators in the definitions of Vm`(λ), V ∗m`(λ) are one-to-one on the corre-

sponding spaces. By the proof of Lemma 5.9, the decomposition (5.24) is also valid

for λ ∈ (−n/2,∞) \ (−2N); for λ ∈ (−n/2,∞) ∩ (−2N), we have

ResX(λ) =
⊕

m≥0
m 6=−λ

bm/2c⊕

`=0

Vm`(λ), ResX∗(λ) =
⊕

m≥0
m 6=−λ

bm/2c⊕

`=0

V ∗m`(λ). (5.25)

We can now state the pairing formula:

Lemma 5.10. Let λ 6∈ −n
2
− 1

2
N0 and u ∈ ResX(λ), u∗ ∈ ResX∗(λ). Let 〈u, u∗〉L2(SM)

be defined by (5.6). Then:

1. If u ∈ Vm`(λ), u∗ ∈ V ∗m′`′(λ), and (m, `) 6= (m′, `′), then 〈u, u∗〉L2(SM) = 0.

2. If u ∈ Vm`(λ), u∗ ∈ V ∗m`(λ) and w ∈ Bdm−2`,0(λ+m), w∗ ∈ Bdm−2`,0(λ+m) are

the elements generating u, u∗ according to (5.24), then

〈u, u∗〉L2(SM) = cm`(λ)〈P−
λ+m(w),P+

λ+m(w∗)〉L2(M), (5.26)
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where

cm`(λ) = 2m+2`−nπ−1−n
2 `!(m− 2`)! sin

(
π
(n

2
+ λ
))

·Γ(m+ n
2
− `)Γ(λ+ n+ 2m− 2`)Γ(−λ− `)Γ(−λ−m− n

2
+ `+ 1)

Γ(m+ n
2
− 2`)Γ(−λ− 2`)

.

and under the conditions (i) either λ /∈ −2N or m 6= −λ and (ii) Vm`(λ) is nontrivial,

we have cm`(λ) 6= 0.

Remarks. (i) The proofs below are rather technical, and it is suggested that the

reader start with the case of resonances in the first band, m = ` = 0, which preserves

the essential analytic difficulties of the proof but considerably reduces the amount of

calculations needed (in particular, one can go immediately to Lemma 5.11, and the

proof of this lemma for the case m = ` = 0 does not involve the operator Cη). We

have

c00(λ) = (4π)−n/2
Γ(n+ λ)

Γ(n
2

+ λ)
.

(ii) In the special case of n = 1,m = ` = 0, Lemma 5.10 is a corollary of [AnZe07, The-

orem 1.2], where the product uu∗ ∈ D′(SM) lifts to a Patterson–Sullivan distribution

on SH2. In general, if |Reλ| ≤ C and Imλ→∞, then cm`(λ) grows like |λ|n2 +m.

Lemma 5.10 immediately gives

Proof of Theorem 3. By Theorem 6, we know that

P−
λ : Bdm−2`,0(λ+m)→ Eigm−2`(−(λ+m+ n/2)2 + n2/4 +m− 2`)

is an isomorphism. Given (5.18), we also get the isomorphism

P+
λ : Bdm−2`,0(λ+m)→ Eigm−2`(−(λ+m+ n/2)2 + n2/4 +m− 2`).

Here we used that the target space is invariant under complex conjugation. By

Lemma 5.10, the bilinear product

ResX(λ)× ResX∗(λ)→ C, (u, u∗) 7→ 〈u, u∗〉L2(SM) (5.27)

is nondenegerate, since the L2(M) inner product restricted to Eigm−2`(−(λ + m +

n/2)2 + n2/4 +m− 2`) is nondegenerate for all m, `.

Assume now that ũ ∈ D′(SM) satisfies (X + λ)2ũ = 0 and ũ ∈ Hr for some r,

Reλ > −r/C0; we need to show that (X + λ)ũ = 0. Put u := (X + λ)ũ. Then

u ∈ ResX(λ). However, u also lies in the image of X + λ on Hr, therefore we have

〈u, u∗〉 = 0 for each u∗ ∈ ResX∗(λ). Since the product (5.27) is nondegenerate, we see

that u = 0, finishing the proof. �
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In the remaining part of this section, we prove Lemma 5.10. Take some m,m′, `, `′ ≥
0 such that 2` ≤ m, 2`′ ≤ m′, and consider u ∈ Vm`(λ), u∗ ∈ V ∗m′`′(λ) given by

u = ∆`
+Vm−2`

+ v, u∗ = ∆`′
−Vm

′−2`′
− v∗,

where for some w ∈ Bdm−2`,0(λ+m) and w∗ ∈ Bdm
′−2`′,0(λ+m′),

v = Φλ+m
− Q−(w) ∈ Resm−2`,0

X (λ+m), v∗ = Φλ̄+m′
+ Q+(w∗) ∈ Resm

′−2`′,0
X ∗ (λ+m′).

Using Lemma 4.3 and the fact that ∆± are symmetric, we get

〈u, u∗〉L2(SM) = (−1)m
′〈Um′−2`′
− ∆`′

−∆`
+Vm−2`

+ v, v∗〉L2(SM ;⊗m′−2`′E∗).

By Lemmas 4.4 and 4.6, we have Um+1
− ∆`

+Vm−2`
+ v = 0. Therefore, if m′ > m, we

derive that 〈u, u∗〉L2(SM) = 0; by swapping u and u∗, one can similarly handle the case

m′ < m. We therefore assume that m = m′. Then by Lemmas 4.4 and 4.6 (see the

proof of Lemma 4.2),

(−1)`+`
′Um−2`′
− ∆`′

−∆`
+Vm−2`

+ v = T `′Um− (−∆+)`Vm−2`
+ v

= 2m+`(m− 2`)!
Γ(λ+ n+ 2m− 2`− 1)Γ(−λ− `)Γ(−λ−m− n

2
+ `+ 1)

Γ(λ+m+ n− 1)Γ(−λ− 2`)Γ(−λ−m− n
2

+ 1)
T `′I`v.

If `′ > `, this implies that 〈u, u∗〉L2(SM) = 0, and the case `′ < ` is handled similarly.

(Recall that T (v) = 0.) We therefore assume that m = m′, ` = `′. In this case,

by (4.4),

T `I`v = 2``!
Γ(m+ n

2
− `)

Γ(m+ n
2
− 2`)

v,

which implies that

〈u, u∗〉L2(SM) = (−2)m+2``!(m− 2`)!
Γ(m+ n

2
− `)Γ(λ+ n+ 2m− 2`− 1)

Γ(m+ n
2
− 2`)Γ(λ+ n+m− 1)

Γ(−λ− `)Γ(−λ−m− n
2

+ `+ 1)

Γ(−λ− 2`)Γ(−λ−m− n
2

+ 1)
〈v, v∗〉L2(SM ;⊗m−2`E∗).

Note that under assumptions (i) and (ii) of Lemma 5.10, the coefficient in the formula

above is nonzero, see the proof of Lemma 5.9.

It then remains to prove the following identity (note that the coefficient there is

nonzero for λ /∈ Z or Reλ > m− n
2
):

Lemma 5.11. Assume that v ∈ Resm,0X (λ) and v∗ ∈ Resm,0X ∗ (λ). Define

f(x) :=

∫

SxM

v(x, ξ) dS(ξ), f ∗(x) :=

∫

SxM

v∗(x, ξ) dS(ξ),

where integration of tensors is understood as in Definition 5.7. If λ 6∈ −(n
2

+N0), then

〈f, f ∗〉L2(M ;⊗mT ∗M) = 2nπ
n
2

Γ(n
2

+ λ)

(n+ λ+m− 1)Γ(n− 1 + λ)
〈v, v∗〉L2(SM ;⊗mE∗).
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x

y

η−

η+
η

B−(x,ξ)

=B−(y,η−)

B+(x,ξ)

=B+(y,η+)ξ x

y
ζ− ζ+

(a) (b)

Figure 4. (a) The map Ψ : (x, ξ, η) 7→ (y, η−, η+). (b) The vectors

A±(x, ξ)ζ± (equal in the case drawn) and A±(y, η±)ζ±.

Proof. We write

〈f, f ∗〉L2(M ;⊗mT ∗M) =

∫

S2M

〈v(y, η−), v∗(y, η+)〉⊗mT ∗yM dydη−dη+ (5.28)

where the bundle S2M is given by

S2M = {(y, η−, η+) | y ∈M, η± ∈ SyM}.

Define also

S2
∆M = {(y, η−, η+) ∈ S2M | η− + η+ 6= 0}.

On the other hand

〈v, v∗〉L2(SM ;⊗mE∗) =

∫

SM

〈v(x, ξ), v∗(x, ξ)〉⊗mE∗(x,ξ) dxdξ. (5.29)

The main idea of the proof is to reduce (5.28) to (5.29) by applying the coarea formula

to a correctly chosen map S2
∆M → SM . More precisely, consider the following map

Ψ : E → S2
∆Hn+1: for (x, ξ) ∈ SHn+1 and η ∈ E(x, ξ), define Ψ(x, ξ, η) := (y, η−, η+),

with


y

η−
η+


 = A

(
|η|2
)


x

ξ

η


 , A(s) =




√
s+ 1 0 1
s√
s+1

1√
s+1

1

− s√
s+1

1√
s+1

−1


 .

Note that, with |η| denoting the Riemannian length of η (that is, |η|2 = −〈η, η〉M),

Φ±(y, η±) =
Φ±(x, ξ)√

1 + |η|2
, B±(y, η±) = B±(x, ξ), |η+ + η−| =

2√
1 + |η|2

.
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Also,

detA(s) = − 2

s+ 1
, A(s)−1 =




√
s+ 1 −

√
s+1
2

√
s+1
2

0
√
s+1
2

√
s+1
2

−s s+1
2

− s+1
2


 .

The map Ψ is a diffeomorphism; the inverse is given by the formulas

x =
2y + η+ − η−
|η+ + η−|

, ξ =
η+ + η−
|η+ + η−|

, η =
2(η− − η+)− |η+ − η−|2y

|η+ + η−|2
.

The map Ψ−1 can be visualized as follows (see Figure 4(a)): given (y, η−, η+), the

corresponding tangent vector (x, ξ) is the closest to y point on the geodesic going

from ν− = B−(y, η−) to ν+ = B+(y, η+) and the vector η measures both the distance

between x and y and the direction of the geodesic from x to y. The exceptional set

{η+ + η− = 0} corresponds to |η| =∞.

A calculation using (3.31) shows that for ζ± ∈ TB±(x,ξ)Sn,

A±(y, η±)ζ± = A±(x, ξ)ζ± +
(A±(x, ξ)ζ±) · η√

1 + |η|2
(x± ξ).

Here · stands for the Riemannian inner product on E which is equal to −〈·, ·〉M re-

stricted to E . Then (see Figure 4(b))

(A+(y, η+)ζ+) · (A−(y, η−)ζ−) = (A+(x, ξ)ζ+) · (A−(x, ξ)ζ−)

− 2

1 + |η|2
(
(A+(x, ξ)ζ+) · η

)(
(A−(x, ξ)ζ−) · η

)

=
(
Cη(A+(x, ξ)ζ+)

)
· (A−(x, ξ)ζ−),

where Cη : E(x, ξ)→ E(x, ξ) is given by

Cη(η̃) = η̃ − 2

1 + |η|2 (η̃ · η)η.

We can similarly define C ∗η : E(x, ξ)∗ → E(x, ξ)∗. Then for ζ± ∈ ⊗mT ∗B±(x,ξ)Sn,

〈⊗m(A−1
+ (y, η+)T )ζ+,⊗m(A−1

− (y, η−)T )ζ−〉⊗mT ∗yHn+1

= 〈⊗mC ∗η ⊗m (A−1
+ (x, ξ)T )ζ+,⊗m(A−1

− (x, ξ)T )ζ−〉⊗mE∗(x,ξ).
(5.30)

The Jacobian of Ψ with respect to naturally arising volume forms on E and S2
∆Hn+1

is given by (see Appendix A.2 for the proof)

JΨ(x, ξ, η) = 2n(1 + |η|2)−n. (5.31)

Now, Ψ is equivariant under G, therefore it descends to a diffeomorphism

Ψ : EM → S2
∆M, EM := {(x, ξ, η) | (x, ξ) ∈ SM, η ∈ E(x, ξ)}.

Using Lemma 5.6 and (5.30), we calculate for (x, ξ, η) ∈ EM and (y, η−, η+) = Ψ(x, ξ, η),

〈v(y, η−), v∗(y, η+)〉⊗mT ∗yM = (1 + |η|2)−λ〈⊗mC ∗η v(x, ξ), v∗(x, ξ)〉⊗mE∗(x,ξ). (5.32)
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We would now like to plug this expression into (5.28), make the change of variables from

(y, η−, η+) to (x, ξ, η), and integrate η out, obtaining a multiple of (5.29). However,

this is not directly possible because (i) the integral in η typically diverges (ii) since

the expression integrated in (5.28) is a distribution, one cannot simply replace S2M

by S2
∆M in the integral.

We will instead use the asymptotic behavior of both integrals as one approaches the

set {η+ + η− = 0}, and Hadamard regularization in η in the (x, ξ, η) variables. For

that, fix χ ∈ C∞0 (R) such that χ = 1 near 0, and define for ε > 0,

χε(y, η−, η+) = χ
(
ε |η(y, η−, η+)|

)
,

where η(y, η−, η+) is the corresponding component of Ψ−1; in fact, we can write

χε(y, η−, η+) = χ
(
ε
|η+ − η−|
|η+ + η−|

)
.

Then χε ∈ D′(S2M). In fact, χε is supported inside S2
∆M ; by making the change of

variables (y, η−, η+) = Ψ(x, ξ, η) and using (5.31) and (5.32), we get
∫

S2M

χε(y, η−, η+)〈v(y, η−), v∗(y, η+)〉⊗mT ∗yM dydη−dη+

= 2n
∫

EM
χ(ε|η|)(1 + |η|2)−λ−n〈⊗mC ∗η v(x, ξ), v∗(x, ξ)〉⊗mE∗(x,ξ) dxdξdη.

(5.33)

By Lemma A.4, (5.33) has the asymptotic expansion

2nπ
n
2

Γ(n
2

+ λ)

(n+ λ+m− 1)Γ(n− 1 + λ)
〈v, v∗〉L2(SM ;⊗mS E∗)

+
∑

0≤j≤−Reλ−n
2

cjε
n+2λ+2j + o(1)

(5.34)

for some constants cj.

It remains to prove the following asymptotic expansion as ε→ 0:
∫

S2M

(1− χε(y, η−, η+))〈v(y, η−), v∗(y, η+)〉⊗mT ∗yM dydη−dη+ ∼
∞∑

j=0

c′jε
n+2λ+2j (5.35)

where c′j are some constants. Indeed, 〈f, f ∗〉L2(M ;⊗mT ∗M) is equal to the sum of (5.33)

and (5.35); since (5.35) does not have a constant term, 〈f, f ∗〉 is equal to the constant

term in the expansion (5.34).

To show (5.35), we use the dilation vector field η · ∂η on E , which under Ψ becomes

the following vector field on S2
∆M extending smoothly to S2M :

L(y,η−,η+) =

(
η− − η+

2
,
|η+ − η−|2

4
y−η+

2
+
η− · η+

2
η−,−

|η+ − η−|2
4

y−η−
2

+
η− · η+

2
η+

)
.
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The vector field L is tangent to the submanifold {η+ + η− = 0}, in fact

L(|η+ − η−|2) = −L(|η+ + η−|2) =
|η+ − η−|2 · |η+ + η−|2

2
.

We can then compute (following the identity L|η| = |η|)

L

( |η+ − η−|
|η+ + η−|

)
=
|η+ − η−|
|η+ + η−|

on S2
∆M.

Using the (x, ξ, η) coordinates and (5.31), we can compute the divergence of L with

respect to the standard volume form on S2M :

DivL = n(η+ · η−).

Moreover, B±(y, η±) are constant along the trajectories of L, and

L(Φ±(y, η±)) = −|η+ − η−|2
4

Φ±(y, η±).

We also use (3.31) to calculate for ζ± ∈ TB±(y,η±)Sn,

L
(
(A+(y, η+)ζ+) · (A−(y, η−)ζ−)

)
=
(
(A+(y, η+)ζ+) · η−

)(
(A−(y, η−)ζ−) · η+

)
,

L
(
(A±(y, η±)ζ±) · η∓

)
= (η+ · η−)

(
(A±(y, η±)ζ±) · η∓

)
.

Combining these identities and using Lemma 5.6, we get
(
L+

λ

2
|η+ − η−|2

)
〈v(y, η−), v∗(y, η+)〉⊗mT ∗yM

= m〈ιη+v(y, η−), ιη−v
∗(y, η+)〉⊗m−1T ∗yM .

(5.36)

Integrating by parts, we find

ε∂ε

∫

S2M

(1− χε(y, η−, η+))〈v(y, η−), v∗(y, η+)〉⊗mT ∗yM dydη−dη+

=

∫

S2M

L
(
1− χε(y, η−, η+)

)
〈v(y, η−), v∗(y, η+)〉⊗mT ∗yM dydη−dη+

=

∫

S2M

(
λ

2
|η+ − η−|2 − n(η+ · η−)

)
(1− χε(y, η−, η+))〈v(y, η−), v∗(y, η+)〉⊗mT ∗yM dydη−dη+

−m
∫

S2M

(1− χε(y, η−, η+))〈ιη+v(y, η−), ιη−v
∗(y, η+)〉⊗m−1T ∗yM dydη−dη+.

Arguing similarly, we see that if for integers 0 ≤ r ≤ m, p ≥ 0, we put

Ir,p(ε) :=

∫

S2M

|η−+η+|2p(1−χε(y, η−, η+))〈ιrη+
v(y, η−), ιrη−v

∗(y, η+)〉⊗m−rT ∗yM dydη−dη+

then (ε∂ε − 2λ − n − 2(r + p))Ir,p(ε) is a finite linear combination of Ir′,p′(ε), where

r′ ≥ r, p′ ≥ p, and (r′, p′) 6= (r, p). For example, the calculation above shows that

(ε∂ε − 2λ− n)I0,0(ε) = −λ+ n

2
I0,1(ε)−mI1,0(ε).
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Moreover, if N is fixed and p is large enough depending on N , then Ir,p(ε) = O(εN);

to see this, note that Ir,p(ε) is bounded by some fixed C∞-seminorm of |η−+ η+|2p(1−
χε(y, η−, η+)). It follows that if N is fixed and Ñ is large depending on N , then

( Ñ∏

j=0

(ε∂ε − 2λ− n− 2j)

)
I0,0(ε) = O(εN)

which implies the existence of the decomposition (5.35) and finishes the proof. �

6. Properties of the Laplacian

In this section, we introduce the Laplacian and study its basic properties (Sec-

tion 6.1). We then give formulas for the Laplacian on symmetric tensors in the half-

plane model (Section 6.2) which will be the basis for the analysis of the following

sections. Using these formulas, we study the Poisson kernel and in particular prove

Lemma 5.8 and the injectivity of the Poisson kernel (Section 6.3).

6.1. Definition and Bochner identity. The Levi–Civita connection associated to

the hyperbolic metric gH is the operator

∇ : C∞(Hn+1, THn+1)→ C∞(Hn+1, T ∗Hn+1 ⊗ THn+1)

which induces a natural covariant derivative, still denoted∇, on sections of ⊗mT ∗Hn+1.

We can work in the ball model Bn+1 and use the 0-tangent structure (see Section 3.6)

and nabla can be viewed as a differential operator of order 1

∇ : C∞(Bn+1;⊗m(0T ∗Bn+1))→ C∞(Bn+1,⊗m+1(0T ∗Bn+1))

and we denote by ∇∗ its adjoint with respect to the L2 scalar product, ∇∗ is called the

divergence: it is given by ∇∗u = −T (∇u) where T denotes the trace, see Section 4.1.

Define the rough Laplacian acting on C∞(Bn+1;⊗m(0T ∗Bn+1)) by

∆ := ∇∗∇ (6.1)

and this operator maps symmetric tensors to symmetric tensors. It also extends to

D′(Bn+1;⊗mS (0T ∗Bn+1)) by duality. The operator ∆ commutes with T and I:

∆T (u) = T (∆u), ∆I(u) = I(∆u) (6.2)

for all u ∈ D′(Bn+1;⊗mS (0T ∗Bn+1)).

There is another natural operator given by

∆D = D∗D

if

D : C∞(Bn+1;⊗mS (0T ∗Bn+1))→ C∞(Bn+1;⊗m+1
S (0T ∗Bn+1))
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is defined by D := S◦∇, where S is the symmetrization defined by (4.1), and D∗ = ∇∗
is the formal adjoint. There is a Bochner–Weitzenböck formula relating ∆ and ∆D,

and using that the curvature is constant, we have on trace-free symmetric tensors of

order m by [DaSh, Lemma 8.2]

∆D =
1

m+ 1
(mDD∗ + ∆ +m(m+ n− 1)). (6.3)

In particular, since |S∇u|2 ≤ |∇u|2 pointwise by the fact that S is an orthogonal

projection, we see that for u smooth and compactly supported, ‖Du‖2
L2 ≤ ‖∇u‖2

L2 and

thus for m ≥ 1, u ∈ C∞0 (Hn+1;⊗mS (T ∗Hn+1)), and T u = 0,

〈∆u, u〉L2 ≥ (m+ n− 1)‖u‖2. (6.4)

Since the Bochner identity is local, the same inequality clearly descends to co-compact

quotients Γ\Hn+1 (where ∆ is self-adjoint and has compact resolvent by standard

theory of elliptic operators, as its principal part is given by the scalar Laplacian), and

this implies

Lemma 6.1. The spectrum of ∆ acting on trace-free symmetric tensors of order m ≥ 1

on hyperbolic compact manifolds of dimension n+ 1 is bounded below by m+ n− 1.

We finally define

E(m) := ⊗mS (0T ∗Bn+1) ∩ ker T (6.5)

to be the bundle of trace-free symmetric m-cotensors over the ball model of hyperbolic

space.

6.2. Laplacian in the half-plane model. We now give concrete formulas concerning

the Laplacian on symmetric tensors in the half-space model Un+1 (see (3.4)). We fix

ν ∈ Sn and map Bn+1 to Un+1 by a composition of a rotation of Bn+1 and the map (3.5);

the rotation is chosen so that ν is mapped to 0 ∈ Un+1 and −ν is mapped to infinity.

The 0-cotangent and tangent bundles 0T ∗Bn+1 and 0TBn+1 pull back to the half-

space, we denote them 0T ∗Un+1 and 0TUn+1. The coordinates on Un+1 are (z0, z) ∈
R+ ×Rn and z = (z1, . . . , zn). We use the following orthonormal bases of 0TUn+1 and
0T ∗Un+1:

Zi = z0∂zi , Z∗i =
dzi
z0

; 0 ≤ i ≤ n.

Note that in the compactification Bn+1 this basis is smooth only on Bn+1 \ {−ν}.
Denote A := {1, . . . , n}. We can decompose the vector bundle ⊗mS (0T

∗Un+1) into

an orthogonal direct sum

⊗mS (0T
∗Un+1) =

m⊕

k=0

E
(m)
k , E

(m)
k = span

(
S((Z∗0)⊗k ⊗ Z∗I ))I∈Am−k

)
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and we let πi be the orthogonal projection onto E
(m)
i . Now, each tensor u ∈ ⊗mS (0T

∗Un+1)

can be decomposed as u =
∑m

i=0 ui, with ui = πi(u) ∈ E(m)
i which we can write as

u =
m∑

i=0

ui, ui = S((Z∗0)⊗i ⊗ u′i), u′i ∈ E(m−i)
0 . (6.6)

We can therefore identify E
(m)
k with E

(m−k)
0 and view E(m) as a direct sum E(m) =⊕m

k=0 E
(m−k)
0 . The trace-free condition T (u) = 0 is equivalent to the relations

T (u′r) = − (r + 2)(r + 1)

(m− r)(m− r − 1)
u′r+2, 0 ≤ r ≤ m− 2. (6.7)

and in particular all ui are determined by u0 and u1 by iterating the trace map T .

The u′i are related to the elements in the decomposition (4.5) of u0 and u1 viewed as a

symmetric m-cotensor on the bundle (Z0)⊥ using the metric z−2
0 h =

∑
i Z
∗
i ⊗ Z∗i . We

see that a nonzero trace-free tensor u on Un+1 must have a nonzero u0 or u1 component.

Koszul formula gives us for i, j ≥ 1

∇ZiZj = δijZ0, ∇Z0Zj = 0, ∇ZiZ0 = −Zi, ∇Z0Z0 = 0 (6.8)

which implies

∇Z∗0 = −
n∑

j=1

Z∗j ⊗ Z∗j = − h
z2

0

, ∇Z∗j = Z∗j ⊗ Z∗0 . (6.9)

We shall use the following notations: if Πm denotes the set of permutations of

{1, . . . ,m}, we write σ(I) := (iσ(1), . . . , iσ(m)) if σ ∈ Πm. If S = S1 ⊗ · · · ⊗ S` is a

tensor in ⊗`(0T ∗Un+1), we denote by τi↔j(S) the tensor obtained by permuting Si
with Sj in S, and by ρi→V (S) the operation of replacing Si by V ∈ 0T ∗Un+1 in S.

The Laplacian and ∇∗ acting on E
(m)
0 and E

(m)
1 . We start by computing the

action of ∆ on sections of E
(m)
0 , E

(m)
1 , and we will later deduce from this computation

the action on E
(m)
k . Let us consider the tensor Z∗I := Z∗i1 ⊗ · · · ⊗ Z∗im ∈ E

(m)
0 where

I = (i1, . . . , im) ∈ A m and Z∗σ(I) := Z∗iσ(1)
⊗ · · · ⊗ Z∗iσ(m)

. The symmetrization of Z∗I is

given by S(Z∗I ) = 1
m!

∑
σ∈Πm

Z∗σ(I) and those elements form a basis of the space E
(m)
0

when I ranges over all combinations of m-uplet in A = {1, . . . , n}.

Lemma 6.2. Let u0 =
∑

I∈Am fIS(Z∗I ) with fI ∈ C∞(Un+1). Then one has

∆u0 =
∑

I∈Am

((∆ +m)fI)S(Z∗I ) + 2mS(∇∗u0 ⊗ Z∗0)

+m(m− 1)S(T (u0)⊗ Z∗0 ⊗ Z∗0)

(6.10)



50 SEMYON DYATLOV, FRÉDÉRIC FAURE, AND COLIN GUILLARMOU

while, denoting dzfI =
∑n

i=1 Zi(fI)Z
∗
i , the divergence is given by

∇∗u0 =− (m− 1)S(T (u0)⊗ Z∗0)−
∑

I∈Am

ιdzfIS(Z∗I ). (6.11)

Proof. Using (6.9), we compute

∇(fIS(Z∗I )) =
n∑

i=0

(ZifI)(z)Z∗i ⊗ S(Z∗I ) +
fI(z)

m!

m∑

k=1

∑

σ∈Πm

τ1↔k+1(Z∗0 ⊗ Z∗σ(I)).

Then taking the trace of ∇(fIS(Z∗I )) gives

∇∗(fIS(Z∗I )) =− fI
m!

m∑

k=2

∑

σ∈Πm

δiσ(1),iσ(k)
ρk−1→Z∗0 (Z∗iσ(2)

⊗ · · · ⊗ Z∗iσ(m)
)

−
n∑

i=1

(ZifI)
1

m!

∑

σ∈Πm

δi,iσ(1)
(Z∗iσ(2)

⊗ · · · ⊗ Z∗iσ(m)
)

(6.12)

We notice that S(T (S(Z∗I ))⊗ Z∗0) is given by

S(T (S(Z∗I ))⊗ Z∗0) =
1

m!(m− 1)

∑

σ∈Πm

m−1∑

k=1

δiσ(1),iσ(2)
τ1↔k(Z

∗
0 ⊗ Z∗iσ(3)

⊗ · · · ⊗ Z∗iσ(m)
).

which implies (6.11). Let us now compute ∇2(fIS(Z∗I )):

∇2(fIS(Z∗I )) =
n∑

i,j=0

ZjZi(fI)Z
∗
j ⊗ Z∗i ⊗ S(Z∗I )− Z0(fI)z

−2
0 h⊗ S(Z∗I )

+
n∑

j=1

Zj(fI)Z
∗
j ⊗ Z∗0 ⊗ S(Z∗I ) +

Z0(fI)

m!

∑

σ∈Πm

m∑

k=1

τ1↔k+2(Z∗0 ⊗ Z∗0 ⊗ Z∗σ(I))

+
n∑

i=1

Zi(fI)

m!

∑

σ∈Πm

m∑

k=1

τ1↔k+2(Z∗0 ⊗ Z∗i ⊗ Z∗σ(I))

+
n∑

i=1

Zi(fI)

m!

∑

σ∈Πm

m∑

k=1

τ2↔k+2(Z∗i ⊗ Z∗0 ⊗ Z∗σ(I))

+
Z0(fI)

m!
Z∗0 ⊗

m∑

k=1

∑

σ∈Πm

τ1↔k+1(Z∗0 ⊗ Z∗σ(I))

− fI
m!

n∑

j=1

Z∗j ⊗
∑

σ∈Πm

m∑

k=1

τ1↔k+1(Z∗j ⊗ Z∗σ(I))

+
fI
m!

m∑

k=1

m+1∑

`=1
6̀=k+1

τ1↔`+1(Z∗0 ⊗ τ1↔k+1(Z∗0 ⊗ Z∗σ(I))).
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We then take the trace: the first line has trace −(∆fI)S(Z∗I ), the second and fifth lines

have vanishing trace, the sixth line has trace −mfIS(Z∗I ), the last line has trace

2fI
m!

∑

σ∈Πm

∑

1≤k<`≤m
δiσ(k),iσ(`)

ρk→Z∗0ρ`→Z∗0 (Z∗σ(I)) (6.13)

and the sum of the third and fourth lines has trace

2
n∑

i=1

Zi(fI)

m!

∑

σ∈Πm

m∑

k=1

δi,iσ(k)
ρk→Z∗0 (Z∗σ(I)). (6.14)

Computing S(T (S(Z∗I ))⊗ Z∗0 ⊗ Z∗0) gives

S
(
T (S(Z∗I ))⊗ Z∗0 ⊗ Z∗0

)
=

2

m!m(m− 1)

∑

1≤k<`≤m

∑

σ∈Πm

δiσ(1),iσ(2)
τ1↔k+2τ2↔`+2(Z∗0 ⊗ Z∗0 ⊗ Z∗iσ(3)

⊗ · · · ⊗ Z∗iσ(m)
)

therefore the term (6.13) can be simplified to

m(m− 1)fIS
(
T (S(Z∗I ))⊗ Z∗0 ⊗ Z∗0

)
.

Similarly to simplify (6.14), we compute

S
(
∇∗(fIS(Z∗I ))⊗ Z∗0

)
= −(m− 1)S(T (fIS(Z∗I ))⊗ Z∗0 ⊗ Z∗0)

−
n∑

i=1

(ZifI)
1

m!m

m∑

k=1

∑

σ∈Πm

δi,iσ(1)
τ1↔k(Z

∗
0 ⊗ Z∗iσ(2)

⊗ · · · ⊗ Z∗iσ(m)
)

so that

2
n∑

i=1

Zi(fI)

m!

∑

σ∈Πm

m∑

k=1

δi,iσ(k)
ρk→Z∗0 (Z∗σ(I))

= −2mS(∇∗(fIS(Z∗I ))⊗ Z∗0)− 2m(m− 1)S(T (fIS(Z∗I ))⊗ Z∗0 ⊗ Z∗0).

and this achieves the proof of (6.10). �

A similarly tedious calculation, omitted here, yields

Lemma 6.3. Let u1 = S(Z∗0 ⊗u′1), u′1 =
∑

J∈Am−1 gJS(Z∗J) with gJ ∈ C∞(Un+1), then

the E
(m)
0 ⊕ E(m)

1 components of the Laplacian of u1 are

∆u1 =
∑

J∈Am−1

(
(∆ + n+ 3(m− 1))gJ

)
S(Z∗0 ⊗ Z∗J)

+ 2
∑

J∈Am−1

S(dzgJ ⊗ Z∗J) + Ker(π0 + π1)
(6.15)
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and the E
(m)
0 ⊕ E(m)

1 components of divergence of u1 are

∇∗u1 =
1

m

∑

J∈Am−1

((n+m− 1)gJ − Z0(gJ))S(Z∗J)

− (m− 1)

m

∑

J∈Am−1

S(Z∗0 ⊗ ιdzgJS(Z∗J)) + Ker(π0 + π1).

(6.16)

General formulas for Laplacian and divergence. Armed with Lemmas 6.2

and 6.3, we can show the following fact which, together with (6.7), determines com-

pletely the Laplacian on trace-free symmetric tensors.

Lemma 6.4. Assume that u ∈ D′(Un+1;⊗mS T ∗Un+1) satisfies T (u) = 0 and is written

in the form (6.6). Let

u0 =
∑

I∈Am

fIS(Z∗I ), u1 =
∑

J∈Am−1

gJS(Z0 ⊗ Z∗J).

Then the projection of ∆u onto E
(m)
0 ⊕ E(m)

1 can be written

π0(∆u) =
∑

I∈Am

((∆ +m)fI)S(Z∗I ) + 2
∑

J∈Am−1

S(dzgJ ⊗ Z∗J)

+m(m− 1)S(z−2
0 h⊗ T (u0)),

(6.17)

π1(∆u) =
∑

J∈Am−1

((∆ + n+ 3(m− 1))gJ)S(Z∗0 ⊗ Z∗J)

− 2m
∑

I∈Am

S(Z∗0 ⊗ ιdzfIS(Z∗I ))

+ (m− 1)(m− 2)S(Z∗0 ⊗ z−2
0 h⊗ T (u′1))

− 2m(m− 1)
∑

I∈Am

S(Z∗0 ⊗ dzfI ⊗ T (S(Z∗I ))).

(6.18)

Proof. First, it is easily seen from (6.9) that ∆uk is a section of
⊕k+2

j=k−2E
(m)
j . From

Lemmas 6.2 and 6.3, we have

π0(∆(u0 + u1)) =
∑

I∈Am

((∆ +m)fI)S(Z∗I ) + 2
∑

J∈Am−1

S(dzgJ ⊗ Z∗J). (6.19)

Then for u2, using S((Z∗0)⊗2 ⊗ u′2) = S(gH ⊗ u′2)− S(z−2
0 h⊗ u′2) and ∆I = I∆,

π0(∆u2) = π0(S(z−2
0 h⊗∆u′2))− π0(∆(S(z−2

0 h⊗ u′2)))

and writing u′2 = −m(m−1)
2
T (u0) by (6.7), we obtain, using (6.10)

π0(∆u2) = m(m− 1)S(z−2
0 h⊗ T (u0)) (6.20)

We therefore obtain (6.17).
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Now we consider the projection on E
(m)
1 of the equation (∆ − s)T = 0. We have

from (6.10)

π1(∆u0) = −2m
∑

I∈Am

S(Z∗0 ⊗ ιdzfIS(Z∗I ))

where ιdzfI means
∑n

j=1 Zj(fI)ιZj . Then, from (6.15)

π1(∆u1) =
∑

J∈Am−1

(
(∆ + n+ 3(m− 1))gJ

)
S(Z∗0 ⊗ Z∗J).

Using again S((Z∗0)⊗2 ⊗ u′2) = S(gH ⊗ u′2)− S(z−2
0 h⊗ u′2) and ∆I = I∆, (6.10) gives

π1(∆u2) = −2m(m− 1)
∑

I∈Am

S(Z∗0 ⊗ dzfI ⊗ T S(Z∗I )).

Finally, we compute π1(∆u3), using the computation (6.15) we get

π1(∆u3) =π1(S(z−2
0 h⊗∆S(Z∗0 ⊗ u′3))− π1(∆S(Z∗0 ⊗ z−2

0 h⊗ u′3))

=(m− 1)(m− 2)S(Z∗0 ⊗ z−2
0 h⊗ T (u′1)).

We conclude that π1(∆u) is given by (6.18). �

Similarly, we also have

Lemma 6.5. Let u be as in Lemma 6.4. Then the projection onto E
(m−1)
0 ⊕E(m−1)

1 of

the divergence of u is given by

π0(∇∗u) = −
∑

I∈Am

ιdzfIS(Z∗I ) +
1

m

∑

J∈Am−1

((n+m− 1)gJ − Z0(gJ))S(Z∗J), (6.21)

π1(∇∗u) =(m− 1)
∑

I∈Am

(Z0fI − (m+ n− 1)fI)S
(
T (S(Z∗I ))⊗ Z∗0

)

− (m− 1)

m

∑

J∈Am−1

S(Z∗0 ⊗ ιdzgJS(Z∗J)).
(6.22)

Proof. The π0 part follows from (6.11) and (6.16). For the π1 part, we also use (6.11)

and (6.16) but we need to see the contribution from ∇∗u2 as well. For that, we write

as before u′2 = −m(m−1)
2

∑
I∈Am fIT (S(Z∗I )) and a direct calculation shows that

π1(∇∗u2) = (m− 1)
∑

I∈Am

(Z0fI − (m+ n− 2)fI)S(T (S(Z∗I ))⊗ Z∗0)

implying the desired result. �
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6.3. Properties of the Poisson kernel. In this section, we study the Poisson kernel

P−
λ defined by (5.17).

Pairing on the sphere. We start by proving the following formula:

Lemma 6.6. Let λ ∈ C and w ∈ D′(Sn;⊗mS (T ∗Sn)). Then

P−
λ w(x) =

∫

Sn
P (x, ν)n+λ(⊗m(A−1

− (x, ξ−(x, ν)))T )w(ν) dS(ν)

where the map ξ− is defined in (3.20).

Proof. Making the change of variables ξ = ξ−(x, ν) defined in (3.20), and using (3.21)

and (3.22), we have

P−
λ w(x) =

∫

SxHn+1

Φ−(x, ξ)λ(⊗m(A−1
− (x, ξ))T )w(B−(x, ξ)) dS(ξ)

=

∫

Sn
P (x, ν)n+λ(⊗m(A−1

− (x, ξ−(x, ν)))T )w(ν) dS(ν)

as required. �

Poisson maps to eigenstates. To show that P−
λ w(x) is an eigenstate of the Lapla-

cian, we use the following

Lemma 6.7. Assume that w ∈ D′(Sn;⊗m(T ∗Sn)) is the delta function centered at

e1 = ∂x1 ∈ Sn with the value e∗j1+1⊗· · ·⊗ e∗jm+1, where 1 ≤ j1, . . . , jm ≤ n. Then under

the identifications (3.2) and (3.5), we have

P−
λ w(z0, z) = zn+λ

0 Z∗j1 ⊗ · · · ⊗ Z∗jm .

Proof. We first calculate

P (z, e1) = z0.

It remains to show the following identity in the half-space model

A−T− (z, ξ−(z, ν))e∗j+1 = Z∗j , 1 ≤ j ≤ n. (6.23)

One can verify (6.23) by a direct computation: since A− is an isometry, one can instead

calculate the image of ej+1 under A−, and then apply to it the differentials of the maps

ψ and ψ1 defined in (3.2) and (3.5).

Another way to show (6.23) is to use the interpretation of A− as parallel transport to

conformal infinity, see (3.35). Note that under the diffeomorphism ψ1 : Bn+1 → Un+1,

ν = e1 is sent to infinity and geodesics terminating at ν, to straight lines parallel to the

z0 axis. By (6.9), the covector field Z∗j is parallel along these geodesics and orthogonal

to their tangent vectors. It remains to verify that the limit of the field ρ0Z
∗
j along these

geodesics as z →∞, considered as a covector in the ball model, is equal to e∗j+1. �
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Proof of Lemma 5.8. It suffices to show that for each ν ∈ Sn, if w is a delta function

centered at ν with value being some symmetric trace-free tensor in ⊗mS T ∗ν Sn, then
(
∆ + λ(n+ λ)−m

)
P−

λ w = 0, ∇∗P−
λ w = 0, T (P−

λ w) = 0.

Since the group of symmetries G of Hn+1 acts transitively on Sn, we may assume that

ν = ∂1. Applying Lemma 6.7, we write in the upper half-plane model,

P−
λ w = zn+λ

0 u0, u0 ∈ E(m)
0 , T (u0) = 0.

It immediately follows that T (P−
λ w) = 0. To see the other two identities, it suffices

to apply Lemma 6.2 together with the formula

∆zn+λ
0 = −λ(n+ λ)zn+λ

0 .

Injectivity of Poisson. Notice that P−
λ is an analytic family of operators in λ. We

define the set

Rm =

{ −n
2
− 1

2
N0 if n > 1 or m = 0

−1
2
N0 if n = 1 and m > 0

(6.24)

and we will prove that if λ /∈ Rm and w ∈ D′(Sn;⊗mS T ∗Sn) is trace-free, then P−
λ (w)

has a weak asymptotic expansion at the conformal infinity with the leading term

given by a multiple of w, proving injectivity of P−
λ . We shall use the 0-cotangent

bundle approach in the ball model and rewriteA−1
± (x, ξ±(x, ν)) as the parallel transport

τ(y′, y) in 0TBn+1 with ψ(x) = y and y′ = ν, as explained in (3.35). Let ρ ∈ C∞(Bn+1)

be a smooth boundary defining function which satisfies ρ > 0 in Bn+1, |dρ|ρ2gH = 1

near Sn = {ρ = 0}, where gH is the hyperbolic metric on the ball. We can for example

take the function ρ = ρ0 defined in (3.34) and smooth it near the center y = 0 of

the ball. Such function is called geodesic boundary defining function and induces a

diffeomorphism

θ : [0, ε)t × Sn → Bn+1 ∩ {ρ < ε}, θ(t, ν) := θt(ν) (6.25)

where θt is the flow at time t of the gradient ∇ρ2gHρ of ρ (denoted also ∂ρ) with respect

to the metric ρ2gH . For ρ given in (3.34), we have for t small

θ(t, ν) =
2− t
2 + t

ν, ν ∈ Sn.

For a fixed geodesic boundary defining function ρ, one can identify, over the boundary

Sn of Bn+1, the bundle T ∗Sn and TSn with the bundles 0T ∗Sn := 0T ∗SnBn+1 ∩ ker ιρ∂ρ
simply by the isomorphism v 7→ ρ−1v (and we identify their duals TSn and 0TSn as

well). Similarly, over Sn, E(m) ∩ ker ιρ∂ρ identifies with ⊗mS T ∗Sn ∩ ker T by the map

v 7→ ρ−mv. We can then view the Poisson operator as an operator

P−
λ : D′(Sn;E(m) ∩ ker ιρ∂ρ)→ C∞(Bn+1;⊗mS (0T ∗Bn+1)).
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z

z0

z′w(z′)

(z0, z)

τ(z′; z0, z)
Tw(z′)

z ϕ(z)

τ(z0, z; z)ϕ(z)

Figure 5. The covector w(z′), the vector ϕ(z), and their parallel trans-

ports to (z0, z) viewed in the 0-bundles, for the case m = 1.

Lemma 6.8. Let w ∈ D′(Sn;E(m)∩ker ιρ0∂ρ0
) and assume that λ /∈ Rm. Then P−

λ (w)

has a weak asymptotic expansion at Sn as follows: for each ν ∈ Sn, there exists a

neighbourhood Vν ⊂ Bn+1 of ν and a boundary defining function ρ = ρν such that for

any ϕ ∈ C∞(Vν ∩ Sn;⊗mS (0TSn)), there exist F± ∈ C∞([0, ε)) such that for t > 0 small
∫

Sn
〈P−

λ (w)(θ(t, ν)),⊗m(τ(θ(t, ν), ν)).ϕ(ν)〉dSρ(ν) =

{
t−λF−(t) + tn+λF+(t), λ /∈ −n/2 + N;

t−λF−(t) + tn+λ log(t)F+(t), λ ∈ −n/2 + N.

(6.26)

using the product collar neighbourhood (6.25) associated to ρ, and moreover one has

F−(0) = C
Γ(λ+ n

2
)

(λ+ n+m− 1)Γ(λ+ n− 1)
〈eλf .w, ϕ〉 (6.27)

for some f ∈ C∞(Sn) satisfying ρ = 1
4
efρ0 + O(ρ) near ρ = 0 and C 6= 0 a constant

depending only on n. Here dSρ is the Riemannian measure for the metric (ρ2gH)|Sn
and the distributional pairing on Sn is with respect to this measure.

Proof. First we split w into w1 +w2 where w1 is supported near ν ∈ Sn and w2 is zero

near ν. For the case where w2 has support at positive distance from the support of ϕ,

we have for any geodesic boundary defining function ρ that

t 7→ t−n−λ
∫

Sn
〈P−

λ (w2)(θ(t, ν)),⊗m(τ(θ(t, ν), ν)).ϕ(ν)〉dSρ(ν) ∈ C∞([0, ε)),

this is a direct consequence of Lemma 6.6 and the following smoothness properties

(y, ν) 7→ log
(
P (ψ−1(y), ν)/ρ(y)

)
∈ C∞(Bn+1 × Sn \ diag(Sn × Sn))

τ(·, ·) ∈ C∞(Bn+1 × Bn+1 \ diag(Sn × Sn)); 0T ∗Bn+1 ⊗ 0TBn+1).

This reduces the consideration of the Lemma to the case where w is w1 supported near

ν, and to simplify we shall keep the notation w instead of w1. We thus consider now
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w and ϕ to have support near ν. For convenience of calculations and as we did before,

we work in the half-space model R+
z0
× Rn

z by mapping ν to (z0, z) = (0, 0) (using the

composition of a rotation on the ball model with the map defined in (3.5)) and we

choose a nighbourhood Vν of ν which is mapped to z2
0 + |z|2 < 1 in Un+1 and choose

the geodesic defining function ρ = z0 (and thus θ(z0, z) = (z0, z)). (See Figure 5.) The

geodesic boundary defining function ρ0 = 2(1−|y|)
1+|y| in the ball equals

ρ0(z0, z) = 4z0/(1 + z2
0 + |z|2) (6.28)

in the half-space model. The metric dSρ becomes the Euclidean metric dz on Rn near

0 and w has compact support in Rn. By (3.5) and (3.19), the Poisson kernel in these

coordinates becomes

P̃ (z0, z; z
′) = ef(z′)P (z0, z; z

′) with P (z0, z; z
′) :=

z0

z2
0 + |z − z′|2 , f(z′) = log(1 + |z′|2)

where z, z′ ∈ Rn and z0 > 0. One has ρ = 1
4
efρ0 +O(ρ) near ρ = 0.

In the Appendix of [GMP], the parallel transport τ(z0, z; 0, z′) is computed for z′ ∈
Rn is a neighbourhood of 0: in the local orthonormal basis Z0 = z0∂z0 , Zi = z0∂zi of

the bundle 0TUn+1, near ν, the matrix of τ(z0, z; z
′) := τ(z0, z; 0, z′) is given by

τ00 = 1− 2P (z0, z; z
′)
|z − z′|2

z0

, τ0i = −τi0 = −2z0(zi − z′i)
P (z0, z; z

′)

z0

,

τij = δij − 2P (z0, z; z
′)

(zi − z′i).(zj − z′j)
z0

.

In particular we see that τ(z0, z; z) is the identity matrix in the basis (Zi)i and thus

τ(θ(z0, z), z) as well. We denote (Z∗j )j the dual basis to (Zj)j as before.

Now, we use the correspondence between symmetric tensors and homogeneous poly-

nomials to facilitate computations, as explained in Section 4.1. To S(Z∗I ), we associate

the polynomial on Rn given by

PI(x) = S(Z∗I )

( n∑

i=1

xiZI , . . . ,
n∑

i=1

xiZI

)
= xI

where xI =
∏m

k=1 xik if I = (i1, . . . , im). We denote by Polm(Rn) the space of ho-

mogeneous polynomials of degree m on Rn and Polm0 (Rn) those which are harmonic

(thus corresponding to trace free symmetric tensors in E
(m)
0 ). Then we can write

w =
∑

αwαpα(x) for some wα ∈ D′(Rn) supported near 0 and pα(x) ∈ Polm0 (Rn).

Each pα(x) composed with the linear map τ(z′; z0, z)|Z⊥0 becomes the homogeneous

polynomial in x

pα
(
x− 2(z − z′)〈z − z′, x〉.P (z0,z;z′)

z0

)

where 〈·, ·〉 just denotes the Euclidean scalar product. To prove the desired asymptotic

expansion, it suffices to take ϕ ∈ C∞0 ([0,∞)z0 × Rn) and to analyze the following
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homogeneous polynomial in x as z0 → 0
∫

Rn

∑

α

〈
e(n+λ)fwα, ϕ(z0, z)P (z0, z; ·)n+λpα

(
x− 2(z − ·)〈z − ·, x〉.P (z0,z;·)

z0

)〉
dz (6.29)

where the bracket 〈wα, ·〉 means the distributional pairing coming from pairing with

respect to the canonical measure dS on Sn, which in Rn becomes the measure 4ne−nfdz,

and so the enf in (6.29) cancels out if one works with the Euclidean measure dz, which

we do now. We remark a convolution kernel in z and thus apply Fourier transform in

z (denoted F): denoting P (z0; |z− z′|) for P (z0, z; z
′), the integral (6.29) becomes (up

to non-zero multiplicative constant)

I(z0, x) :=
∑

α

〈
F−1(eλfwα),F(ϕ).Fζ→·

(
P (z0; |ζ|)n+λpα

(
x− 2 ζ〈ζ,x〉

z0
P (z0; |ζ|)

))〉
Rn

We can expand pα
(
x− 2 ζ〈ζ,x〉

z0
P (z0; |ζ|)

)
so that

P (z0; |ζ|)n+λpα
(
x− 2 ζ〈ζ,x〉

z0
P (z0; |ζ|)

)
=

m∑

r=0

Qr,α(ζ, x)z−r0 2rP (z0; |ζ|)n+λ+r

where Qr,α(ζ) is homogeneous of degree m in x and 2r in ζ. Now we have (for some

C 6= 0 independent of λ, r, α)

2r

zr0
Fζ→ξ(P n+λ+r(z0; |ζ|)Qr,α(ζ, x)) =

C2−λz−λ0

Γ(λ+ n+ r)
[Qr,α(i∂ζ , x)(|ζ|λ+

n
2

+rK
λ+

n
2

+r
(|ζ|))]ζ=z0ξ

where Kν(·) is the modified Bessel function (see [AbSt, Chapter 9]) defined by

Kν(z) :=
π

2

(I−ν(z)− Iν(z))

sin(νπ)
if Iν(z) :=

∞∑

`=0

1

`!Γ(`+ ν + 1)

(z
2

)2`+ν

(6.30)

satisfying that |Kν(z)| = O( e
−z√
z

) as z →∞, and for s /∈ N0

F((1 + |z|2)−s)(ξ) =
2−s+1(2π)n/2

Γ(s)
|ξ|s−n/2Ks−n/2(|ξ|).

When λ /∈ (−n
2

+ Z) ∪ (−n− 1
2
N0), we have

2−λz−λ0 Qr,α(i∂ζ , x)(|ζ|λ+
n
2

+rK
λ+

n
2

+r
(|ζ|))|ζ=z0ξ =

2r+
n
2 πz−λ0

2 sin(π(λ+ n
2

+ r))

×
( ∞∑

`=0

z
2(`−r)
0 Qr,α(i∂ξ, x)(|1

2
ξ|2`)

`!Γ(`− λ− n
2
− r + 1)

− z2λ+n
0

∞∑

`=0

z2`
0 Qr,α(i∂ξ, x)(|1

2
ξ|2(λ+r+`)+n)

`!Γ(`+ λ+ n
2

+ r + 1)

)
.

(6.31)

Here the powers of |ξ| are homogeneous distributions (note that for λ 6∈ Rm, the

exceptional powers |ξ|−n−j, j ∈ N0, do not appear) and the pairing of (6.31) with
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F−1(eλfwα)F(ϕ) makes sense since this distribution is Schwartz as wα has compact

support. We deduce from this expansion that for any wα ∈ D′(Rn) supported near 0

and ϕ ∈ C∞0 (Rn), when λ /∈ (−n
2

+ Z) ∪ (− n− 1
2
N0)

I(z0, x) = z−λ0 F−(z0, x) + zn+λ
0 F+(z0, x)

for some smooth function F± ∈ C∞([0, ε) × Rn) homogeneous of degree m in x. We

need to analyze F−(0, x), which is obtained by computing the term of order 0 in ξ in

the expansion (6.31) (that is, the terms with ` = r in the first sum; note that the terms

with ` < r in this sum are zero): we obtain for some universal constant C 6= 0

F−(0, x) = C
∑

α

〈eλfwα, ϕ〉Rn
m∑

r=0

(−1)r2−rΓ(λ+ n
2
)

r!Γ(λ+ n+ r)
Qr,α(i∂ξ, x)(|ξ|2r)

where we have used the inversion formula Γ(1−z)Γ(z) = π/ sin(πz) andQr,α(i∂ξ, x)(|ξ|2r)
is constant in ξ. Using Fourier transform, we notice that

Qr,α(i∂ξ, x)(|ξ|2r) = ∆r
ζQr,α(ζ, x)|ζ=0 = ∆r

ζ(pα(x− ζ〈ζ, x〉))|ζ=0

We use Lemma A.5 to deduce that

F−(0, x) = C
∑

α

〈eλfwα, ϕ〉Rnpα(x)m!
Γ(λ+ n

2
)

Γ(λ+ n+m)

m∑

r=0

(−1)rΓ(λ+ n+m)

(m− r)!Γ(λ+ n+ r)
.

The sum over r is a non-zero polynomial of order m in λ, and using the binomial

formula, we see that its roots are λ = −n −m + 2, . . . ,−n + 1, therefore we deduce

that

F−(0, x) = C〈eλfw,ϕ〉Rn
Γ(λ+ n

2
)

(λ+ n+m− 1)Γ(λ+ n− 1)
.

We obtain the claimed result except for λ ∈ −n
2

+N by using that the volume measure

on Sn is 4−nenf .

Now assume that λ = −n/2 + j with j ∈ N. The Bessel function satisfies for j ∈ N:

|ξ|jKj(|ξ|) = −
j−1∑

`=0

(−1)`2j−1−2`(j − `− 1)!

`!
|ξ|2` + |ξ|2j(log(|ξ|)Lj(|ξ|) +Hj(|ξ|))

for some function Lj, Hj ∈ C∞(R+)∩L2(R+) with Lj(0) 6= 0. Then we apply the same

arguments as before and this implies the desired statement. �

We obtain as a corollary:

Corollary 6.9. For m ∈ N0 and λ /∈ Rm, the operator P−
λ : D′(Sn;⊗mS (T ∗Sn) ∩

ker T )→ C∞(Hn+1;⊗mS (T ∗Hn+1)) is injective.

This corollary immediately implies the injectivity part of Theorem 6 in Section 5.2.
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7. Expansions of eigenstates of the Laplacian

In this section, we show the surjectivity of the Poisson operator P−
λ (see Theorem 6

in Section 5.2). For that, we take an eigenstate u of the Laplacian on M and lift it to

Hn+1. The resulting tensor is tempered and thus expected to have a weak asymptotic

expansion at the conformal boundary Sn; a precise form of this expansion is obtained

by a careful analysis of both the Laplacian and the divergence-free condition. We then

show that u = P−
λ w, where w is some constant times the coefficient of ρ−λ in the

expansion of u (compare with Lemma 6.8).

7.1. Indicial calculus and general weak expansion. Recall the bundle E(m) de-

fined in (6.5). The operator ∆ acting on C∞(Bn+1;E(m)) is an elliptic differential

operator of order 2 which lies in the 0-calculus of Mazzeo–Melrose [MaMe], which es-

sentially means that it is an elliptic polynomial in elements of the Lie algebra V0(Bn+1)

of smooth vector fields vanishing at the boundary of the closed unit ball Bn+1. Let

ρ ∈ C∞(Bn+1) be a smooth geodesic boundary defining function (see the paragraph

preceding (6.25)). The theory developped by Mazzeo [Ma] shows that solutions of

∆u = su which are in ρ−NL2(Bn+1;E(m)) for some N have weak asymptotic expan-

sions at the boundary Sn = ∂Bn+1 where ρ is any geodesic boundary defining function.

To make this more precise, we introduce the indicial family of ∆: if λ ∈ C, ν ∈ Sn,

then there exists a family Iλ,ν(∆) ∈ End(E(m)(ν)) depending smoothly on ν ∈ Sn and

holomorphically on λ so that for all u ∈ C∞(Bn+1;E(m)),

t−λ∆(ρλu)(θ(t, ν)) = Iλ,ν(∆)u(θ(0, ν)) +O(t)

near Sn, where the remainder is estimated with respect to the metric gH . Notice that

Iλ,ν(∆) is independent of the choice of boundary defining function ρ.

For σ ∈ C, the indicial set specb(∆− σ; ν) at ν ∈ Sn of ∆− σ is the set

specb(∆− σ; ν) := {λ ∈ C | Iλ,ν(∆)− σ Id is not invertible}.
Then [Ma, Theorem 7.3] gives the following2

Lemma 7.1. Fix σ and assume that specb(∆ − σ; ν) is independent of ν ∈ Sn. If

u ∈ ρδL2(Bn+1;E(m)) with respect to the Euclidean measure for some δ ∈ R, and

(∆− σ)u = 0, then u has a weak asymptotic expansion at Sn = {ρ = 0} of the form

u =
∑

λ∈specb(∆−σ)

Re(λ)>δ−1/2

∑

`∈N0,
Re(λ)+`<δ−1/2+N

kλ,`∑

p=0

ρλ+`(log ρ)pwλ,`,p +O(ρδ+N−
1
2
−ε)

2The full power of [Ma] is not needed for this lemma. In fact, it can be proved in a direct way

by viewing the equation (∆− σ)u = 0 as an ordinary differential equation in the variable log ρ. The

indicial operator gives the constant coefficient principal part and the remaining terms are exponentially

decaying; an iterative argument shows the needed asymptotics.
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for all N ∈ N and all ε > 0 small, where kλ,` ∈ N0, and wλ,`,p are in the Sobolev spaces

wλ,`,p ∈ H−Re(λ)−`+δ−1
2 (Sn;E(m)).

Here the weak asymptotic means that for any ϕ ∈ C∞(Sn), as t→ 0

∫

Sn
u(θ(t, ν))ϕ(ν)dSρ(ν) =

∑

λ∈specb(∆−σ)

Re(λ)>δ−1/2

∑

`∈N0
Re(λ)+`<δ−1/2+N

kλ,`∑

p=0

tλ+` log(t)p〈wλ,`,p, ϕ〉

+O(tδ+N−
1
2
−ε)

(7.1)

where dSρ is measure on Sn induced by the metric (ρ2gH)|Sn and the distributional pair-

ing is with respect to this measure. Moreover the remainder O(tδ+N−
1
2
−ε) is conormal

in the sense that it remains an O(tδ+N−
1
2
−ε) after applying any finite number of times

the operator t∂t, and it depends on some Sobolev norm of ϕ.

Remark. The existence of the expansion (7.1) proved by Mazzeo in [Ma, Theorem 7.3]

is independent of the choice of ρ, but the coefficients in the expansion depend on the

choice of ρ. Let λ0 ∈ specb(∆ − σ) with Re(λ0) > δ − 1/2 be an element in the

indicial set and assume that kλ0,0 = 0, which means that the exponent ρλ0 in the weak

expansion (7.1) has no log term. Assume also that there is no element λ ∈ specb(∆−σ)

with Re(λ0) > Re(λ) > δ − 1/2 such that λ ∈ λ0 − N. Then it is direct to see from

the weak expansion that for a fixed function χ ∈ C∞(Bn+1) equal to 1 near Sn and

supported close to Sn and for each ϕ ∈ C∞(Bn+1), the Mellin transform

h(ζ) :=

∫

Bn+1

ρ(y)ζχ(y)ϕ(y)u(y) dvolgH (y), Re ζ > n+
1

2
− δ,

(with values in Em) has a meromorphic extension to ζ ∈ C with a simple pole at

ζ = n− λ0 and residue

Resζ=n−λ0h(ζ) = 〈wλ0,0,0, ϕ|Sn〉. (7.2)

As an application, if ρ′ is another geodesic boundary defining function, one has ρ =

efρ′ + O(ρ′) for some f ∈ C∞(Sn) and we deduce that if w′λ0,0,0
is the coefficient of

(ρ′)λ0 in the weak expansion of u using ρ′, then as distribution on Sn

w′λ0,0,0
= eλ0fwλ0,0,0 (7.3)

In particular, under the assumption above for λ0 (this assumption can similarly be seen

to be independent of the choice of ρ), if one knows the exponents of the asymptotic

expansion, then proving that the coefficient of ρλ0 term is nonzero can be done locally

near any point of Sn and with any choice of geodesic boundary defining function.
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Finally, if wλ0,0,0 is the coefficient of ρλ0
0 in the weak expansion with boundary

defining function ρ0 defined in (3.34) and if γ∗u = u for some hyperbolic isometry

γ ∈ G, we can use that ρ0 ◦ γ = N−1
γ · ρ0 +O(ρ2

0) near Sn, together with (7.2) to get

L∗γwλ0,0,0 = Nλ0
γ wλ0,0,0 ∈ D′(Sn;E(m)) (7.4)

as distributions on Sn (with respect to the canonical measure on Sn) with values in

E(m). Here Nγ, Lγ are defined in Section 3.5. If we view wλ0,0,0 as a distribution with

values in ⊗mS T ∗Sn, the covariance becomes

L∗γwλ0,0,0 = Nλ0−m
γ wλ0,0,0 ∈ D′(Sn;⊗mS T ∗Sn). (7.5)

Using the calculations of Section 6.2, we will compute the indicial family of the

Laplacian on E(m):

Lemma 7.2. Let ∆ be the Laplacian on sections of E(m). Then the indicial set

specb(∆− σ, ν) does not depend on ν ∈ Sn and is equal to3

bm
2
c⋃

k=0

{λ | −λ2 + nλ+m+ 2k(2m+ n− 2k − 2) = σ}

∪
bm−1

2
c⋃

k=0

{λ | −λ2 + nλ+ n+ 3(m− 1) + 2k(n+ 2m− 2k − 4) = σ}.

Proof. We consider an isometry mapping the ball model Bn+1 to the half-plane model

Un+1 which also maps ν to 0 and do all the calculations in Un+1 with the geodesic

boundary defining function z0 near 0. By (6.7), each tensor u ∈ E(m) is determined

uniquely by its E
(m)
0 and E

(m)
1 components, which are denoted u0 and u1; therefore, it

suffices to understand how the corresponding components of Iλ,ν(∆)u are determined

by u0, u1. We can use the geodesic boundary defining function ρ = z0; note that

∆zλ0 = λ(n− λ)zλ0 for all λ ∈ C.

Assume first that u satisfies u1 = 0 and u0 is constant in the frame S(Z∗I ). Then by

Lemma 6.4,

π0(z−λ0 ∆(zλ0u)) = R0u0 = (λ(n− λ) +m)u0 +m(m− 1)S(z−2
0 h⊗ T (u0)),

π1(z−λ0 ∆(zλ0u)) = 0.

3Our argument in the next section does not actually use the precise indicial roots, as long as they

are independent of ν and form a discrete set.
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Assume now that u satisfies u0 = 0 and u1 is constant in the frame S(Z∗0 ⊗Z∗J). Then

by Lemma 6.4,

π0(z−λ0 ∆(zλ0u)) = 0,

π1(z−λ0 ∆(zλ0u)) = R1u1 = (λ(n− λ) + n+ 3(m− 1))u1

+(m− 1)(m− 2)S(Z∗0 ⊗ z−2
0 h⊗ T (u′1)).

We see that the indicial operator does not intertwine the u0 and u1 components and

it remains to understand for which λ the number s is a root of R0 or R1.

Next, we consider the decomposition (4.5), where for u ∈ E(m)
0 , we define I(u) =

(m+2)(m+1)
2

S(z−2
0 h⊗ u):

u0 =

bm
2
c∑

k=0

Ik(⊗uk0), u1 =

bm−1
2
c∑

k=0

S(Z∗0 ⊗ Ik(uk1)),

where uk0 ∈ E(m−2k)
0 , uk1 ∈ E(m−2k−1)

0 are trace-free tensors. Using (4.4), we calculate

R0(Ik(uk0)) = (λ(n− λ) +m)Ik(uk0) + 2I(T (Ik(uk0)))

=
(
− λ2 + nλ+m+ 2k(2m+ n− 2k − 2)

)
Ik(uk0),

R1(S(Z∗0 ⊗ Ik(uk1)))

= (λ(n− λ) + n+ 3(m− 1))S(Z∗0 ⊗ Ik(uk1)) + 2S(Z∗0 ⊗ I(T (Ik(uk1))))

=
(
− λ2 + nλ+ n+ 3(m− 1) + 2k(n+ 2m− 2k − 4)

)
S(Z∗0 ⊗ Ik(uk1)),

which finishes the proof of the lemma. �

7.2. Weak expansions in the divergence-free case. By Lemma 7.1, we now know

that solutions of ∆u = σu which are trace-free symmetric tensors of order m in some

weighted L2 space have weak asymptotic expansions at the boundary of Bn+1 with

exponents obtained from the indicial set of Lemma 7.2. In fact we can be more precise

about the exponents which really appear in the weak asymptotic expansion if we ask

that u also be divergence-free:

Lemma 7.3. Let u ∈ ρδL2(Bn+1;E(m)) be a trace-free symmetric m-cotensor with

ρ a geodesic boundary defining function and δ ∈ (−∞, 1
2
), where the measure is the

Euclidean Lebesgue measure on the ball. Assume that u is a nonzero divergence-free

eigentensor for the Laplacian on hyperbolic space:

∆u = σu, ∇∗u = 0 (7.6)
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for some σ = m + n2

4
− µ2 with Re(µ) ∈ [0, n+1

2
− δ) and µ 6= 0. Then the following

weak expansion holds: for all r ∈ [0,m], N > 0, and ε > 0 small

(ιρ∂ρ)
ru =

∑

`∈N0
Re(−µ)+`<N−ε

ρ
n
2
−µ+r+`wr−µ,`

+
∑

`∈N0
Re(µ)+`<N−ε

kµ,`∑

p=0

ρ
n
2

+µ+r+` log(ρ)pwrµ,`,p +O(ρ
n
2

+N+r−ε)

(7.7)

with wr−µ,` ∈ H−
n
2

+Re(µ)−r−`+δ− 1
2 (Sn;E(m−r)), wrµ,`,p ∈ H−

n
2
−Re(µ)−r−`+δ− 1

2 (Sn;E(m−r)).

Moreover, if µ /∈ 1
2
N0, then kµ,` = 0.

Remarks. (i) If u is the lift to Hn+1 of an eigentensor on a compact quotient M =

Γ\Hn+1, then u ∈ L∞(Bn+1;E(m)) and so for all ε > 0 the following regularity holds

w−µ,0 ∈ H−
n
2

+Re(µ)−ε(Sn;E(m)), wµ,0,0 ∈ H−
n
2
−Re(µ)−ε(Sn;E(m)).

(ii) The existence of the expansion (7.7) does not depend on the choice of ρ. For

r = 0, this follows from analysing the Mellin transform of u as in the remark following

Lemma 7.1. For r > 0, we additionally use that if ρ′ is another geodesic boundary

defining function, then ρ∂ρ − ρ′∂ρ′ ∈ ρ · 0TBn+1 (indeed, the dual covector by the

metric is ρ−1dρ − (ρ′)−1dρ′ and we have ρ′ = efρ for some smooth function f on

Bn+1). Therefore, (ιρ′∂ρ′ )
ru is a linear combination of contractions with 0-vector fields

of ρr−r
′
(ιρ∂ρ)

r′u for 0 ≤ r′ ≤ r, which have the desired asymptotic expansion. Moreover,

as follows from (7.3), for each r ∈ [0,m], the condition that wr
′
−µ,0 = 0 for all r′ ∈ [0, r]

also does not depend on the choice of ρ, and same can be said about wr
′
µ,0,0 when

µ /∈ 1
2
N0.

Proof. It suffices to describe the weak asymptotic expansion of u near any point ν ∈ Sn.

For that, we work in the half-space model Un+1 by sending −ν to ∞ and ν to 0 as

we did before (composing a rotation of the ball model with the map (3.5)). Since the

choice of geodesic boundary defining function does not change the nature of the weak

asymptotic expansion (but only the coefficients), we can take the geodesic boundary

defining function ρ to be equal to ρ(z0, z) = z0 inside |z|+ z0 < 1 (which corresponds

to a neighbourhood of ν in the ball model). Considering the weak asymptotic (7.1) of

u near 0 amounts to taking ϕ supported near ν in Sn in (7.1): for instance, if we work

in the half-space model we shall consider ϕ(z) supported in |z| < 1 in the boundary of

Un+1.

We decompose u =
∑m

k=0 uk with uk ∈ ρδL2(Un+1;E
(m)
k ) and we write uk =

S((Z∗0)⊗k ⊗ u′k) for some u′k ∈ ρδL2(Un+1;E
(m−k)
0 ) following what we did in (6.6).

Now, since u ∈ ρδL2(Bn+1) = ρδ0L
2(Bn+1) satisfies ∆u = σu, we deduce from the

form of the Laplacian near ρ = 0 that u ∈ ρδ−2k
0 H2k(Bn+1;E(m)) for all k ∈ N where
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Hk denotes the Sobolev space of order k associated to the Euclidean Laplacian on

the closed unit ball. Then by Sobolev embedding one has that for each t > 0, u|z0=t

belongs to (1 + |z|)NL2(Rn
z ;E(m)) for some N ∈ N and we can consider its Fourier

transform in z, as a tempered distribution.4 Then Fourier transforming the equation

(π0 +π1)(∆u−σu) = 0 in the z-variable (recall that πi is the orthogonal projection on

E
(m)
i ), and writing the Fourier variable ξ as ξ =

∑n
i=1 ξidzi =

∑n
i=1 z0ξiZ

∗
i , with the

notations of Lemma 6.4, we get
∑

I∈Am

((−(Z0)2 + nZ0 + z2
0 |ξ|2 +m− σ)f̂I)S(Z∗I ) + 2i

∑

J∈Am−1

ĝJS(ξ ⊗ Z∗J)

+m(m− 1)
∑

I

f̂IS(z−2
0 h⊗ T (S(Z∗I ))) = 0.

(7.8)

and ∑

J∈Am−1

((−(Z0)2 + nZ0 + z2
0 |ξ|2 + n+ 3(m− 1)− σ)ĝJ)S(Z∗J)

−2im
∑

I∈Am

f̂IιξS(Z∗I )− 2im(m− 1)
∑

I∈Am

f̂IS(ξ ⊗ T (S(Z∗I )))

+(m− 1)(m− 2)
∑

J∈Am−1

ĝJS(z−2
0 h⊗ T (S(Z∗J))) = 0.

(7.9)

where hat denotes Fourier transform in z and ιξ means
∑n

j=1 z0ξjιZj . Similarly we

Fourier transform in z the equation (π0 + π1)(∇∗u) = 0 using Lemma 6.5 to obtain

∑

I∈Am

if̂IιξS(Z∗I ) =
1

m

∑

J∈Am−1

((n+m− 1)ĝJ − Z0(ĝJ))S(Z∗J),

∑

I∈Am

(Z0f̂I − (n+m− 1)f̂I)T (S(Z∗I )) =
1

m

∑

J∈Am−1

iĝJ ιξS(Z∗J).

(7.10)

Now, we use the correspondence between symmetric tensors and homogeneous poly-

nomials to facilitate computations, as explained in Section 4.1 and in the proof of

Lemma 6.8; that is, to S(Z∗I ), we associate the polynomial xI on Rn. If ξ ∈ Rn is a

fixed element and u ∈ Polm(Rn), we write ∂ξu = du.ξ ∈ Polm−1(Rn) for the derivative

of u in the direction of ξ and ξ∗u for the element 〈ξ, ·〉Rnu ∈ Polm+1(Rn). The trace

map T becomes − 1
(m(m−1))

∆x. We define û0 :=
∑

I∈Am f̂IxI and û1 =
∑

J∈Am−1 ĝJxJ .

The elements f̂I(z0, ξ), ĝI(z0, ξ) belong to the space C∞(R+
z0

; S ′(Rn
ξ )). We decompose

them as

û0 =

bm
2
c∑

j=0

|x|2jû2j
0 , û1 =

bm−1
2
c∑

j=0

|x|2jû2j
1 (7.11)

4Unlike Lemma 6.8, we only use Fourier analysis here for convenience of notation – all the calcu-

lations below could be done with differential operators in z instead.
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for some û2j
i ∈ Polm−i−2j

0 (Rn) (harmonic in x, that is trace-free).

Using the homogeneous polynomial description of u0, equation (7.8) becomes

(−(Z0)2 + nZ0 + z2
0 |ξ|2 +m− σ)û0 + 2iz0ξ

∗û1 − |x|2∆xû0 = 0. (7.12)

First, if W is a harmonic homogeneous polynomial in x of degree j, one has ∆x(ξ
∗W ) =

−2∂ξW and ∆2
x(ξ
∗W ) = 0, thus one can write

ξ∗W =
(
ξ∗W − ∂ξW

n+ 2(j − 1)
|x|2
)

+
∂ξW

n+ 2(j − 1)
|x|2 (7.13)

for the decomposition (4.5) of ξ∗W . In particular, one can write the decomposition

(4.5) of ξ∗û1 as

ξ∗û1 =

bm−1
2
c∑

j=0

|x|2j
(
ξ∗û2j

1 −
∂ξû

2j
1

n+ 2(m− 2− 2j)
|x|2 +

∂ξû
2(j−1)
1

n+ 2(m− 2j)

)

We can write ∆xû0 =
∑bm/2c

j=0 λj|x|2j−2û2j
0 for λj = −2j(n+ 2(m− j− 1)). Thus (7.12)

gives for j ≤ bm/2c
(−(Z0)2 + nZ0 + z2

0 |ξ|2 +m− σ − λj)û2j
0

+2iz0

(
ξ∗û2j

1 −
|x|2∂ξû2j

1

n+ 2(m− 2− 2j)
+

∂ξû
2(j−1)
1

n+ 2(m− 2j)

)
= 0.

(7.14)

Notice that ιξ(S(Z∗I )) corresponds to the polynomial z0
m
dxI .ξ = z0

m
∂ξ.xI if I ∈ A m.

From (7.10) we thus have for cm := n+m− 1

−iz0∂ξû0 =(Z0 − cm)û1,

−iz0∂ξû1 =(Z0 − cm)∆xû0.
(7.15)

Next, (7.9) implies

(−(Z0)2 + nZ0 + z2
0 |ξ|2 + n+ 3(m− 1)− σ)û1 − 2iz0∂ξû0

+2iz0ξ
∗∆xû0 − |x|2∆xû1 = 0.

Using (7.15), this can be rewritten as

(−(Z0)2 + (n+ 2)Z0 + z2
0 |ξ|2 − n+m− 1− σ)û1

+2iz0ξ
∗∆xû0 − |x|2∆xû1 = 0.

(7.16)

We can write ∆xû1 =
∑[(m−1)/2]

j=0 λ′j|x|2j−2û2j
1 for λ′j = −2j(n + 2(m− j − 2)). We get

from (7.16)
(
− (Z0)2 + (n+ 2)Z0 + z2

0 |ξ|2 − n+m− 1− σ − λ′j
)
û2j

1

+2iz0

(
λj+1ξ

∗û2(j+1)
0 − λj+1∂ξû

2(j+1)
0

n+ 2(m− 3− 2j)
|x|2 +

λj∂ξû
2j
0

n+ 2(m− 1− 2j)

)
= 0.

(7.17)
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We shall now partially uncouple the system of equations for û2j
0 and û2j

1 . Using

(7.13) and applying the decomposition (4.5), we have

∂ξ(|x|2jû2j
0 ) = |x|2j∂ξû2j

0

n+ 2(m− j − 1)

n+ 2(m− 2j − 1)
+ 2j|x|2j−2

(
ξ∗û2j

0 −
|x|2∂ξû2j

0

n+ 2(m− 2j − 1)

)

∂ξ(|x|2jû2j
1 ) = |x|2j∂ξû2j

1

n+ 2(m− j − 2)

n+ 2(m− 2j − 2)
+ 2j|x|2j−2

(
ξ∗û2j

1 −
|x|2∂ξû2j

1

n+ 2(m− 2j − 2)

)

and from (7.15), this implies that for j ≥ 0

(Z0 − cm)û2j
1 =

−iz0

(
∂ξû

2j
0

n+ 2(m− j − 1)

n+ 2(m− 2j − 1)
+ 2(j + 1)

(
ξ∗û2(j+1)

0 − |x|2∂ξû2(j+1)
0

n+ 2(m− 2j − 3)

))
,

(7.18)

and for j > 0

(Z0 − cm)û2j
0 =

iz0

( ∂ξû
2(j−1)
1

2j(n+ 2(m− 2j))
+

1

n+ 2(m− j − 1)

(
ξ∗û2j

1 −
|x|2∂ξû2j

1

n+ 2(m− 2j − 2)

))
.

(7.19)

Combining with (7.14) and (7.17) we get for j ≥ 0

(−(Z0)2 + (n+ 4j)Z0 + z2
0 |ξ|2 +m− σ − λj − 4jcm)û2j

0

+2iz0
n+ 2(m− 2j − 1)

n+ 2(m− j − 1)

(
ξ∗û2j

1 −
|x|2∂ξû2j

1

n+ 2(m− 2− 2j)

)
= 0,

(7.20)

(−(Z0)2 + (n+ 2 + 4j)Z0 + z2
0 |ξ|2 − n+m− 1− σ − λ′j − 4jcm)û2j

1

+2iz0(λj+1 + 4j(j + 1))
(
ξ∗û2(j+1)

0 − |x|2∂ξû2(j+1)
0

n+ 2(m− 3− 2j)

)
= 0,

(7.21)

(−(Z0)2 + (n+ 2− λj+1

j+1
)Z0 + z2

0 |ξ|2 − n+m− 1− σ +
λj+1

j+1
(cm − j))û2j

1

+2iz0
(n+ 2(m− j − 1))(n+ 2(m− 2j − 2))

n+ 2(m− 2j − 1)
∂ξû

2j
0 = 0

(7.22)

and for j > 0

(−Z2
0 + (n− λj

j
)Z0 + z2

0 |ξ|2 +m− σ +
λj
j

(cm − j))û2j
0

−iz0
2(m− 1− 2j) + n

j(n+ 2(m− 2j))
∂ξû

2(j−1)
1 = 0.

(7.23)
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To prove the lemma, we will show the following weak asymptotic expansion for

i = 0, 1:

〈û2j
i (z0, ·), ϕ̂〉 =

∑

`∈N0,
Re(−µ)+`<N−ε

z
n
2
−µ+2j+i+`

0 〈w̃2j
i;−µ,`, ϕ〉

+
∑

`∈N0,
Re(µ)+`<N−ε

kµ,`∑

p=0

z
n
2

+µ+2j+i+`

0 log(z0)p〈w̃2j
i;µ,`,p, ϕ〉+O(z

n
2

+2j+i+N−ε
0 ),

(7.24)

where w̃2j
i;−µ,` and w̃2j

i;µ;`,p are distributions in some Sobolev spaces in {|z| < 1} ⊂ Rn

and for µ /∈ 1
2
N0, we have kµ,` = 0.

Define for 0 ≤ r ≤ m and ϕ ∈ C∞0 (Rn) supported in {|z| < 1},

F r(ϕ)(z0) :=

{
〈ûr0(z0, ·), ϕ̂〉, r is even;

〈ûr−1
1 (z0, ·), ϕ̂〉, r is odd.

Since ûr−ii is the Fourier transform in z of iterated traces of ui, Lemma 7.1 gives that

the function F r(ϕ)(z0) satisfies for all N ∈ N, ε > 0

F r(ϕ)(z0) =
∑

λ∈specb(∆−σ)

Re(λ)>δ−1/2

∑

`∈N0,
Re(λ)+`<N−ε

krλ,`∑

p=0

zλ+`
0 log(z0)p〈wrλ,`,p, ϕ〉+O(zN−ε0 ) (7.25)

as z0 → 0, and some wrλ,`,p in some Sobolev space on {|z| < 1}. We pair (7.20), (7.21)

with ϕ̂, and it is direct to see that we obtain a differential equation in z0 of the form

P r(Z0)F r(ϕ)(z0) = −z2
0F

r(∆ϕ)(z0) + z0F
r+1(Qrϕ)(z0) (7.26)

for Z0 = z0∂z0 ,

P r(λ) := −λ2 + (n+ 2r)λ− r(n+ r)− n2

4
+ µ2 = −

(
λ− n

2
− r
)2

+ µ2,

and Qr some differential operator of order 1 with values in homomorphisms on the

space of polynomials in x. Here we denote Fm+1 = 0.

We now show the expansion (7.24) by induction on r = 2j + i = m,m − 1, . . . , 0.

By plugging the expansion (7.25) in the equation (7.26) and using

P r(Z0)zλ0 log(z0)p = zλ0
(
P r

0 (λ)(log z0)p + p∂λP
r
0 (λ)(log z0)p−1

+O((log z0)p−2)
) (7.27)

we see that if for some p, zλ0 (log z0)p is featured in the asymptotic expansion of

F r(ϕ)(z0), then either λ ∈ n/2 + r− µ+ N0, or λ ∈ n/2 + r+ µ+ N0, or zλ−2
0 (log z0)p

is featured in the expansion of F r(∆ϕ)(z0). Moreover, if p > 0 and λ /∈ {n/2 + r±µ},
then either zλ0 (log z0)p

′
is featured in F r(ϕ)(z0) for some p′ > p, or zλ−2

0 (log z0)p is

featured in F r(∆ϕ)(z0), or zλ−1
0 (log z0)p is featured in F r+1(Qrϕ)(z0). If p > 0 and
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λ = n/2 + r ± µ, then (since µ 6= 0 and thus ∂λP
r
0 (λ) 6= 0) either zλ0 (log z0)p

′
is

featured in F r(ϕ)(z0) for some p′ > p, or zλ−2
0 (log z0)p−1 is featured in F r(∆ϕ)(z0),

or zλ−1
0 (log z0)p−1 is featured in F r+1(Qrϕ)(z0), however the latter two cases are only

possible when λ = n/2 + r+µ and µ ∈ 1
2
N0. Together these facts (applied to ϕ as well

as its images under combinations of ∆ and Qr) imply that the weak expansion of u2j
i

has the form (7.24).

The asymptotic expansions (7.7) now follow from (7.24) since ρ∂ρ = Z0 for our choice

of ρ and for each r ∈ [0,m], by (6.7) and (7.11) we see that (identifying symmetric

tensors with homogeneous polynomials in (x0, x))

(ιZ0)ru(x0, x) =
m∑

r′=r

∑

s≥0
r′+2s≤m

cm,r,r′,s x
r′−r
0 |x|2su2br′/2c+2s

r′−2br′/2c (x) (7.28)

for some constants cm,r,r′,s; for later use, we also note that cm,r,r,0 6= 0. �

7.3. Surjectivity of the Poisson operator. In this section, we prove the surjectiv-

ity part of Theorem 6 in Section 5.2 (together with the injectivity part established in

Corollary 6.9, this finishes the proof of that theorem). The remaining essential com-

ponent of the proof is showing that unless u ≡ 0, a certain term in the asymptotic

expansion of Lemma 7.3 is nonzero (in particular we will see that u cannot be vanishing

to infinite order on Sn in the weak sense). We start with

Lemma 7.4. Take some u satisfying (7.6). Assume that for all r ∈ [0,m], the coeffi-

cient wr−µ,0 of the weak expansion (7.7) is zero. (By Remark (ii) following Lemma 7.3,

this condition is independent of the choice of ρ.) Then u ≡ 0. If µ /∈ 1
2
N0, then we can

replace wr−µ,0 by wrµ,0,0 in the assumption above.

Proof. We choose some ν ∈ Sn and transform Bn+1 to the half-space model as explained

in the proof of Lemma 7.3, and use the notation of that proof. Define the function

f ∈ C∞(Bn+1) in the half-space model as follows:

f =

{
z−m0 u2m

0 if m is even;

z−m0 u2m−1
1 if m is odd.

Here u2j
0 , u2j

1 are obtained by taking the inverse Fourier transform of û2j
0 , û

2j
1 . By (7.20),

(7.21) (see also (7.26)) we have

(∆Hn+1 − n2/4 + µ2)f = 0. (7.29)

Denote by C∞temp(Bn+1) the set of smooth functions f in Bn+1 which are tempered in

the sense that there exists N ∈ R such that ρN0 f ∈ L2(Bn+1). Set λ := −n/2 + µ;

it is proved in [VdBSc, OsSe] (see also [GrOt] for a simpler presentation in the case
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|Re(λ) + n/2| < n/2) that the Poisson operator acting on distributions on hyperbolic

space is an isomorphism

P−
λ : D′(Sn)→ ker(∆Hn+1 + λ(n+ λ)) ∩ C∞temp(Bn+1)

for λ /∈ −n − N0, and if Re(λ) ≥ −n/2 with λ 6= 0 any element v ∈ C∞temp(Bn+1) with

(∆Hn+1 + λ(n+ λ))v = 0 and v 6≡ 0 satisfies a weak expansion for any N ∈ N

v = P−
λ (v−µ,`) =

N∑

`=0

(
ρ
n/2−µ+`
0 v−µ,` +

kµ,`∑

p=1

ρ
n/2+µ+`
0 log(ρ0)pvµ,`,p

)
+O(ρ

n/2−µ+N
0 )

with v−µ,0 6≡ 0; moreover kµ,` = 0 if λ /∈ −n
2

+ 1
2
N0, and vµ,0,0 6= 0 for such λ (here

v−µ,`, vµ,`,p are distributions on Sn as before).5

Next, by (7.28), for some nonzero constant c we have

f = c(z−1
0 ιZ0)mu = c〈u,⊗m∂z0〉.

A calculation using (3.5) shows that in the ball model, using the geodesic boundary

defining function ρ0 from (3.34),

∂z0 = −
(

1− |y|2
2

ν + (1 + y · ν) y

)
∂y (7.30)

is a C∞(Bn+1)-linear combination of ∂ρ0 and a 0-vector field. It follows from the form

of the expansion (7.7) and the assumption of this lemma that the coefficient of ρ
n
2
−µ

0

of the weak expansion of f is zero. (If µ /∈ 1
2
N0, then we can also consider instead the

coefficient of ρ
n
2

+µ

0 .)

By (7.29) and the surjectivity of the scalar Poisson kernel discussed above, we now

see that f ≡ 0. Now, for each fixed y ∈ Bn+1 and each η ∈ TyBn+1, we can choose ν

such that η is a multiple of (7.30) at y; in fact, it suffices to take ν so that the geodesic

ϕt(y, η) converges to −ν as t → +∞. Therefore, for each y, η, we have 〈u,⊗mη〉 = 0

at y. Since u is a symmetric tensor, this implies u ≡ 0. �

We now relax the assumptions of Lemma 7.4 to only include the term with r = 0:

Lemma 7.5. Take some u satisfying (7.6). If n = 1 and m > 0, then we additionally

assume that µ 6= 1
2
. Assume that the coefficient w0

−µ,0 of the weak expansion (7.7) is

zero. (By Remark (ii) following Lemma 7.3, this condition is independent of the choice

of ρ.) Then u ≡ 0. If µ /∈ 1
2
N0, then we can replace w0

−µ,0 by w0
µ,0,0 in our assumption.

5The existence of the weak expansion with known coefficients for elements in the image of P−
λ is

directly related to the special case m = 0 of Lemma 6.8 and the existence of a weak expansion for

scalar eigenfunctions of the Laplacian follows from the m = 0 case of Lemma 7.3. However, neither

the surjectivity of the scalar Poisson operator nor the fact that eigenfunctions have nontrivial terms

in their weak expansions follows from these statements.
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Proof. Assume that w0
±µ,0 = 0; here we consider the case of w0

µ,0 := w0
µ,0,0 only when

µ /∈ 1
2
N0. By Lemma 7.4, it suffices to prove that wr±µ,0 = 0 for r = 0, . . . ,m.

This is a local statement and we use the half-plane model and the notation of the

proof of Lemma 7.3. By (7.28), it then suffices to show that if w̃0
0;±µ,0 = 0 in the

expansion (7.24), then w̃2j
i;±µ,0 = 0 for all i, j.

We argue by induction on r = 2j + i = 0, . . . ,m. Assume first that i = 0, j > 0,

and w̃
2(j−1)
1;±µ,0 = 0. Then we plug (7.24) into (7.23) and consider the coefficient next

to z
n
2
±µ+2j

0 ; this gives w̃2j
0;±µ,0 = 0 if for λ = n

2
± µ + 2j, the following constant is

nonzero:

−λ2 +
(
n− λj

j

)
λ+m− σ +

λj
j

(cm − j)

= (n+ 2m− 2− 4j)(±2µ− n− 2m+ 2 + 4j).
(7.31)

We see immediately that (7.31) is nonzero unless m = 2j. For the case m = 2j, we can

use (7.19) directly; taking the coefficient next to z
n
2
±µ+m

0 , we get w̃2j
0;±µ,0 = 0 as long

as n
2
± µ + m 6= cm, or equivalently ±µ 6= n

2
− 1; the latter inequality is immediately

true unless n = 1, and it is explicitely excluded by the statement of the present lemma

when n = 1.

Similarly, assume that i = 1, 0 ≤ 2j < m, and w̃2j
0;±µ,0 = 0. Then we plus (7.24)

into (7.22) and consider the coefficient next to z
n
2
±µ+2j+1

0 ; this gives w̃2j
1;±µ,0 = 0 if for

λ = n
2
± µ+ 2j + 1, the following constant is nonzero:

−λ2 + (n+ 2− λj+1

j+1
)λ− n+m− 1− σ +

λj+1

j+1
(cm − j)

= (n+ 2m− 4− 4j)(±2µ− n− 2m+ 4 + 4j).
(7.32)

We see immediately that (7.32) is nonzero unless m = 2j+1. For the case m = 2j+1,

we can use (7.18) directly; taking the coefficient next to z
n
2
±µ+m

0 , we get w̃2j
1;±µ,0 = 0

as long as n
2
± µ+m 6= cm, which we have already established is true. �

We finish the section by the following statement, which immediately implies the

surjectivity part of Theorem 6. Note that for the lifts of elements of Eigm(−λ(n+λ)+

m), we can take any δ < 1/2 below. The condition Reλ < 1
2
− δ for m > 0 follows

from Lemma 6.1.

Corollary 7.6. Let u ∈ ρδL2(Bn+1;E(m)) be a trace-free symmetric m-cotensor with

ρ a geodesic boundary defining function and δ ∈ (−∞, 1
2
), where the measure is the

Euclidean Lebesgue measure on the ball. Assume that u is a nonzero divergence-free

eigentensor for the Laplacian on hyperbolic space:

∆u = (−λ(n+ λ) +m)u, ∇∗u = 0 (7.33)

with Re(λ) < 1
2
− δ and λ /∈ Rm, with Rm defined in (5.20). Then there exists

w ∈ HRe(λ)+δ− 1
2 (Sn;⊗mS T ∗Sn) such that u = P−

λ (w). Moreover if γ∗u = u for some



72 SEMYON DYATLOV, FRÉDÉRIC FAURE, AND COLIN GUILLARMOU

γ ∈ G, then L∗γw = N−λ−mγ w.

Proof. For the case Re(λ) ≥ −n/2 we set µ = n/2 + λ and apply Lemma 7.3: the

distribution w will be given by C(λ)w−µ,0 for some constant C(λ) to be chosen, and

this has the desired covariance with respect to elements of G by using (7.5) from the

Remark after Lemma 7.1.

To see that u = P−
λ (w) for a certain C(λ), it suffices to use the weak expansion

in Lemma 6.8 and the identity (7.3) from the Remark following Lemma 7.1, to de-

duce that C(λ)B(λ)w−µ,0 appears as the leading coefficient of the power ρ−λ0 in the

expansion of u, where B(λ) is a non-zero constant times the factor appearing in (6.27);

here ρ0 is defined in (3.34). (The factor B(λ) does not depend on the point ν ∈ Sn
since the Poisson operator is equivariant under rotations of Bn+1.) Then choosing

C(λ) := B(λ)−1, we observe that u and P−
λ (w) both satisfy (7.33) and have the same

asymptotic coefficient of ρ−λ0 in their weak expansion (7.7); thus from Lemma 7.5 we

have u = P−
λ (w). Finally, for Re(λ) < −n/2 with λ /∈ −n

2
− 1

2
N0 we do the same thing

but setting µ := −n/2− λ in Proposition 7.3. �

Appendix A. Some technical calculations

A.1. Asymptotic expansions for certain integrals. In this subsection, we prove

the following version of Hadamard regularization:

Lemma A.1. Fix χ ∈ C∞0 (R) and define for Reα > 0, β ∈ C, and ε > 0,

Fαβ(ε) :=

∫ ∞

0

tα−1(1 + t)−βχ(εt) dt.

If α− β 6∈ N0, then Fαβ(ε) has the following asymptotic expansion as ε→ +0:

Fαβ(ε) =
Γ(α)Γ(β − α)

Γ(β)
χ(0) +

∑

0≤j≤Re(α−β)

cjε
β−α+j + o(1), (A.1)

for some constants cj depending on χ.

Proof. We use the following identity obtained by integrating by parts:

ε∂εFαβ(ε) =

∫ ∞

0

tα(1 + t)−β∂t(χ(εt)) dt

= (β − α)Fαβ(ε)− βFα,β+1(ε).

(A.2)

By using the Taylor expansion of χ at zero, we also see that

χ(εt) = χ(0) +O(εt);
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given the following formula obtained by the change of variables s = (1+ t)−1 and using

the beta function,
∫ ∞

0

tα−1(1 + t)−β dt =
Γ(α)Γ(β − α)

Γ(β)
, if Re β > Reα > 0,

we see that

Fαβ(ε) =
Γ(α)Γ(β − α)

Γ(β)
χ(0) +O(ε) if Re(β − α) > 1.

By applying this asymptotic expansion to Fα,β+M for large integer M and iterat-

ing (A.2), we derive the expansion (A.1). �

For the next result, we need the following two calculations (see Section 4.1 for some

of the notation used):

Lemma A.2. For each ` ≥ 0,
∫

Sn−1

(⊗2`η) dS(η) =
2π

n−1
2 Γ(`+ 1

2
)

Γ(`+ n
2
)
S(⊗`I),

where I =
∑n

j=1 ∂j ⊗ ∂j.

Proof. Since both sides are symmetric tensors, it suffices to show that for each x ∈ Rn,
∫

Sn−1

(x · η)2` dS(η) =
2π

n−1
2 Γ(`+ 1

2
)

Γ(`+ n
2
)
|x|2`.

Without loss of generality (using homogeneity and rotational invariance), we may

assume that x = ∂1. Then using polar coordinates and Fubbini’s theorem, we have

Γ(`+ n
2
)

2

∫

Sn−1

η2`
1 dS(η) =

∫

Rn
e−|η|

2

η2`
1 dη = π

n−1
2 Γ
(
`+

1

2

)

finishing the proof. �

Lemma A.3. For each η ∈ Rn, define the linear map Cη : Rn → Rn by

Cη(η̃) = η̃ − 2

1 + |η|2 (η̃ · η)η.

Then for each A1, A2 ∈ ⊗mS Rn with T (A1) = T (A2) = 0, and each r ≥ 0, we have
∫

Sn−1

〈(⊗mCrη)A1, A2〉 dS(η) = 2π
n
2

m∑

`=0

m!

(m− `)!Γ(n
2

+ `)

(
− r2

1 + r2

)`
〈A1, A2〉.

Proof. We have

Crη = Id− 2r2

1 + r2
η∗ ⊗ η,
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where η∗ ∈ (Rn)∗ is the dual to η by the standard metric. Then

∫

Sn−1

〈(⊗mCrη)A1, A2〉 dS(η) =

∫

Sn−1

〈
⊗m

(
I − 2r2

1 + r2
η ⊗ η

)
, σ(A1 ⊗ A2)

〉
dS(η).

where σ is the operator defined by

σ(η1 ⊗ · · · ⊗ ηm ⊗ η′1 ⊗ · · · ⊗ η′m) = η1 ⊗ η′1 ⊗ · · · ⊗ ηm ⊗ η′m.

We use Lemma A.2, a binomial expansion, and the fact that Aj are symmetric, to

calculate
∫

Sn−1

〈
⊗m

(
I − 2r2

1 + r2
η ⊗ η

)
, σ(A1 ⊗ A2)

〉
dS(η)

=
m∑

`=0

m!

`!(m− `)!
(
− 2r2

1 + r2

)` ∫

Sn−1

〈(⊗2`η)⊗ (⊗m−`I), σ(A1 ⊗ A2)〉 dS(η)

= 2π
n−1

2

m∑

`=0

m!

`!(m− `)! ·
Γ(`+ 1

2
)

Γ(`+ n
2
)

(
− 2r2

1 + r2

)`
〈S(⊗`I)⊗ (⊗m−`I), σ(A1 ⊗ A2)〉.

Since T (A1) = T (A2) = 0, we can compute

〈S(⊗`I)⊗ (⊗m−`I), σ(A1 ⊗ A2)〉 =
2`(`!)2

(2`)!
〈A1, A2〉.

Here 2`(`!)2/(2`)! is the proportion of all permutations τ of 2` elements such that for

each j, τ(2j − 1) + τ(2j) is odd. It remains to calculate

m∑

`=0

m!

`!(m− `)! ·
Γ(`+ 1

2
)

Γ(`+ n
2
)
· 2`(`!)2

(2`)!
t` =

m∑

`=0

√
πm!

(m− `)!Γ(`+ n
2
)
(t/2)`.

�

We can now state the following asymptotic formula, used in the proof of Lemma 5.11:

Lemma A.4. Let χ ∈ C∞0 (R) be equal to 1 near 0, and take A1, A2 ∈ ⊗mS Rn satisfying

T (A1) = T (A2) = 0. Then for λ ∈ C, λ 6∈ −(n
2

+ N0), we have as ε→ +0,

∫

Rn
χ(ε|η|)(1 + |η|2)−λ−n〈(⊗mCη)A1, A2〉 dη

= π
n
2

Γ(n
2

+ λ)

(n+ λ+m− 1)Γ(n− 1 + λ)
〈A1, A2〉+

∑

0≤j≤−Reλ−n
2

cjε
n+2λ+2j + o(1),

for some constants cj.
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Proof. We write, using the change of variables η =
√
tθ, θ ∈ Sn, and χ(s) = χ̃(s2), and

by Lemma A.3
∫

Rn
χ(ε|η|)(1 + |η|2)−λ−n〈(⊗mCη)A1, A2〉 dη

=
1

2

∫ ∞

0

χ̃(ε2t)t
n
2
−1(1 + t)−λ−n

∫

Sn−1

〈(⊗mC√tθ)A1, A2〉 dS(θ)dt

= π
n
2

m∑

`=0

(−1)`m!

(m− `)!Γ(n
2

+ `)
〈A1, A2〉

∫ ∞

0

χ̃(ε2t)t
n
2

+`−1(1 + t)−λ−n−` dt.

We now apply Lemma A.1 to get the required asymptotic expansion. The constant

term in the expansion is 〈A1, A2〉 times

π
n
2 Γ
(n

2
+ λ
) m∑

`=0

(−1)`m!

(m− `)!Γ(n+ λ+ `)

= π
n
2 (−1)mm!Γ

(n
2

+ λ
) m∑

`=0

(−1)`

`!Γ(n+ λ+m− `) .
(A.3)

We now use the binomial expansion

(1− t)n+λ+m−1

Γ(n+ λ+m)
=
∞∑

`=0

(−1)`

`!Γ(n+ λ+m− `) t
`

and the sum in the last line of (A.3) is the tm coefficient of

(1− t)−1 · (1− t)n+λ+m−1

Γ(n+ λ+m)
=

(1− t)n+λ+m−2

Γ(n+ λ+m)

=
1

n+ λ+m− 1

∞∑

j=0

(−1)j

j!Γ(n+ λ+m− j − 1)
tj;

this finishes the proof. �

A.2. The Jacobian of Ψ. Here we compute the Jacobian of the map Ψ : E → S2
∆Hn+1

appearing in the proof of Lemma 5.11, proving (5.31). By the G-equivariance of Ψ

we may assume that x = ∂0, ξ = ∂1, η =
√
s ∂2 for some s ≥ 0. We then consider the

following volume 1 basis of T(x,ξ,η)E :

X1 = (∂1, ∂0, 0), X2 = (∂2, 0,
√
s ∂0), X3 = (0, ∂2,−

√
s ∂1), X4 = (0, 0, ∂2);

∂xj , ∂ξj , ∂ηj , 3 ≤ j ≤ n+ 1.

We have Ψ(x, ξ, η) = (y, η−, η+), where

y = (
√
s+ 1, 0,

√
s, 0, . . . , 0), η± =

(
∓ s√

s+ 1
,

1√
s+ 1

,∓√s, 0, . . . , 0
)
.
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Then we can consider the following volume 1 basis for T(y,η−,η+)S
2
∆Hn+1:

Y1 =
(
∂1,

y√
s+ 1

,
y√
s+ 1

)
, Y2 =

(√
s ∂0 +

√
s+ 1 ∂2,

√
s√

s+ 1
y,−

√
s√

s+ 1
y
)
,

Y3 =
(0,
√
s ∂0 −

√
s ∂1 +

√
s+ 1 ∂2, 0)√

s+ 1
, Y4 =

(0, 0,
√
s ∂0 +

√
s ∂1 +

√
s+ 1 ∂2)√

s+ 1
;

∂yj , ∂ν−j , ∂ν+j
, 3 ≤ j ≤ n+ 1.

Then the differential dΨ(x, ξ, η) maps

X1 7→
√
s+ 1Y1 −

√
s Y3 −

√
s Y4,

X2 7→ Y2,

X3 7→ −
√
s Y1 +

√
s+ 1Y3 +

√
s+ 1Y4,

X4 7→
1√
s+ 1

Y2 +
1

s+ 1
Y3 −

1

s+ 1
Y4.

Moreover, for 3 ≤ j ≤ n + 1, dΨ(x, ξ, η) maps linear combinations of ∂xj , ∂ξj , ∂ηj
to linear combinations of ∂yj , ∂ν−j , ∂ν+j

by the matrix A(s). The identity (5.31) now

follows by a direct calculation.

A.3. An identity for harmonic polynomials. We give a technical lemma which is

used in the proof of Lemma 6.8 (injectivity of the Poisson kernel).

Lemma A.5. Let P be a harmonic homogeneous polynomial of order m in Rn, then

for r ≤ m, we have for all x ∈ Rn

∆r
ζP (x− ζ〈ζ, x〉)|ζ=0 = 2r

m!r!

(m− r)!P (x).

Proof. By homogeneity, it suffices to choose |x| = 1. We set t = 〈ζ, x〉 and u = ζ − tx
and P (x − ζ〈ζ, x〉) viewed in the (t, u) coordinates is the homogeneous polynomial

(t, u) 7→ P ((1− t2)x− tu). Now, we write for all u ∈ (Rx)⊥ and t > 0

P (tx− u) =
m∑

j=0

tm−jPj(u)

where Pj is a homogeneous polynomial of degree j in u ∈ (Rx)⊥, and since the Lapla-

cian ∆ζ written in the t, u coordinates is −∂2
t + ∆u, the condition ∆xP = 0 can be

rewritten

∆uPj(u) = (m− j + 2)(m− j + 1)Pj−2(u), ∆uP1(u) = ∆uP0 = 0,

which gives for all j and ` ≥ 1

∆`
uP2`(u) = m(m− 1) · · · (m− 2`+ 1)P0, ∆jP2`−1(u)|u=0 = 0.
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We write ∆r
ζ =

∑r
k=0

r!
k!(r−k)!

(−1)k∂2k
t ∆r−k

u and using parity and homogeneity consid-

erations, we have

∆r
ζP (x− ζ〈ζ, x〉)|ζ=0 =

r∑

k=0

(−1)kr!

k!(r − k)!

∑

2j≤m
[∂2k
t ((1− t2)m−2jt2j)∆r−k

u P2j(u)]|(t,u)=0

=
∑

max(0,r−m/2)≤k≤r

(−1)kr!

k!(r − k)!
(∂2k
t ((1− t2)m−2(r−k)t2(r−k)))|t=0 ∆r−k

u P2(r−k)

= P0 ·
m!r!

(m− r)!
∑

r/2≤k≤r

(−1)k+r(2k)!

k!(r − k)!(2k − r)! = 2r
m!r!

(m− r)!P0

and P0 is the constant given by P (x). Here we used the identity

∑

r/2≤k≤r

(−1)k+r(2k)!

k!(r − k)!(2k − r)! =
∑

0≤k≤r/2
(−1)k

r!

k!(r − k)!
· (2r − 2k)!

r!(r − 2k)!
= 2r

which holds since both sides are equal to the tr coefficient of the product

(1− t2)r · (1− t)−1−r =
(1 + t)r

1− t ,

(1− t)−1−r =
1

r!
drt (1− t)−1 =

∞∑

j=0

(j + r)!

j!r!
tj;

the tr coefficient of (1 + t)r/(1 − t) equals the sum of the t0, t1, . . . , tr coefficients of

(1 + t)r, or simply (1 + 1)r = 2r. �

Appendix B. The special case of dimension 2

We explain how the argument of Section 2.1 fits into the framework of Sections 3

and 4. In dimension 2 it is more standard to use the upper half-plane model

H2 := {w ∈ C | Imw > 0},
which is related to the half-space model of Section 3.1 by the formula w = −z1 + iz0.

The group of all isometries of H2 is PSL(2;R), the quotient of SL(2;R) by the

group generated by the matrix − Id, and the action of PSL(2;R) on H2 is by Möbius

transformations: (
a b

c d

)
.z =

az + b

cz + d
, z ∈ H2 ⊂ C.

Under the identifications (3.2) and (3.5), this action corresponds to the action of

PSO(1, 2) on H2 ⊂ R1,2 by the group isomorphism PSL(2;R)→ PSO(1, 2) defined by

(
a b

c d

)
7→




a2+b2+c2+d2

2
a2−b2+c2−d2

2
−ab− cd

a2+b2−c2−d2

2
a2−b2−c2+d2

2
cd− ab

−ac− bd bd− ac ad+ bc


 . (B.1)
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The induced Lie algebra isomorphism maps the vector fields X,U−, U+ of (2.1) to the

fields X,U−1 , U
+
1 of (3.6), (3.7).

The horocyclic operators U± : D′(SH2) → D′(SH2; E∗) of Section 4.2 (and analo-

gously horocyclic operators of higher orders) then take the following form:

U±u = (U±u)η∗,

where η∗ is the dual to the section η ∈ C∞(SH2; E) defined as follows: for (x, ξ) ∈ SH2,

η(x, ξ) is the unique vector in TxH2 such that (ξ, η) is a positively oriented orthonormal

frame. Note also that η(x, ξ) = ±A±(x, ξ) · ζ(B±(x, ξ)), where A±(x, ξ) is defined in

Section 3.6 and ζ(ν) ∈ TνS1, ν ∈ S1, is the result of rotating ν counterclockwise by

π/2; therefore, if we use η and ζ to trivialize the relevant vector bundles, then the

operators Q± of (4.26) are simply the pullback operators by B±, up to multiplication

by ±1.

Appendix C. Eigenvalue asymptotics for symmetric tensors

C.1. Weyl law. In this section, we prove the following asymptotic of the counting

function for trace free divergence free tensors (see Sections 4.1 and 6.1 for the notation):

Proposition C.1. If (M, g) is a compact Riemannian manifold of dimension n + 1

and constant sectional curvature −1, and if

Eigm(σ) = {u ∈ C∞(M ;⊗mS T ∗M) | ∆u = σu, ∇∗u = 0, T (u) = 0},
then the following Weyl law holds as R→∞

∑

σ≤R2

dim Eigm(σ) = c0(n)(c1(n,m)− c1(n,m− 2)) Vol(M)Rn+1 +O(Rn),

where c0(n) = (2
√
π)−n−1

Γ(n+3
2

)
and c1(n,m) = (m+n−1)!

m!(n−1)!
is the dimension of the space of

homogeneous polynomials of order m in n variables. (We put c1(n,m) := 0 for m < 0.)

Remark. The constant c2(n,m) := c1(n,m) − c1(n,m − 2) is the dimension of the

space of harmonic homogeneous polynomials of order m in n variables. We have

c2(n, 0) = 1, c2(n, 1) = n.

For m ≥ 2, we have c2(n,m) > 0 if and only if n > 1.

The proof of Proposition C.1 uses the following two technical lemmas:

Lemma C.2. Take u ∈ D′(M ;⊗mS T ∗M). Then, denoting D = S◦∇ as in Section 6.1,

[∆,∇∗]u = (2− 2m− n)∇∗u− 2(m− 1)D(T (u)), (C.1)

[∆, D]u = (2m+ n)Du+ 2mS(g ⊗∇∗u). (C.2)
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Proof. We have

∆∇∗u = T 2(∇3u), ∇∗∆u = T 2(τ1↔3∇3u).

where τj↔kv denotes the result of swapping jth and kth indices in a cotensor v. We

have

Id−τ1↔3 = (Id−τ1↔2) + τ1↔2(Id−τ2↔3) + τ1↔2τ2↔3(Id−τ1↔2),

therefore (using that T τ1↔2 = T )

[∆,∇∗]u = T 2
(
∇(Id−τ1↔2)∇2u+ τ2↔3(Id−τ1↔2)∇3u

)

Since M has sectional curvature −1, we have for any cotensor v of rank m,

(Id−τ1↔2)∇2v =
m∑

`=1

(τ1↔`+2 − τ2↔`+2)(g ⊗ v).

Then we compute (using that T (τ2↔3τ1↔3) = T (τ2↔3))

[∆,∇∗]u = T 2

(
τ2↔3 − Id +

m∑

`=1

((τ2↔`+3 − τ3↔`+3)τ1↔3 + τ2↔3(τ1↔`+3 − τ2↔`+3))

)
(g ⊗∇u).

Now,

T 2(g ⊗∇u) = T 2(τ2↔4τ1↔3(g ⊗∇u)) = T 2(τ2↔3τ1↔4(g ⊗∇u)) = −(n+ 1)∇∗u,
T 2(τ2↔3(g ⊗∇u)) = T 2(τ3↔4τ1↔3(g ⊗∇u)) = T 2(τ2↔3τ2↔4(g ⊗∇u)) = −∇∗u,

and since u is symmetric, for 1 < ` ≤ m,

T 2(τ2↔`+3τ1↔3(g ⊗∇u)) = T 2(τ2↔3τ1↔`+3(g ⊗∇u)) = −∇∗u,
T 2(τ3↔`+3τ1↔3(g ⊗∇u)) = T 2(τ2↔3τ2↔`+3(g ⊗∇u)) = τ1↔`−1∇(T (u)).

We then compute

[∆,∇∗]u = (2− 2m− n)∇∗u− 2
m−1∑

`=1

τ1↔`∇(T (u)),

finishing the proof of (C.1). The identity (C.2) follows from (C.1) by taking the adjoint

on the space of symmetric tensors. �

Lemma C.3. Denote by π̃m : ⊗mS T ∗M → ⊗mS T ∗M the orthogonal projection onto the

space ker T of trace free tensors. Then for each m, the space

Fm := {v ∈ C∞(M ;⊗mS T ∗M) | T (v) = 0, π̃m+1(Dv) = 0} (C.3)

is finite dimensional.

Proof. The space Fm is contained in the kernel of the operator

Pm := ∇∗π̃m+1D

acting on trace free sections of ⊗mS T ∗M . By [DaSh, Lemma 5.2], the operator Pm is

elliptic; therefore, its kernel is finite dimensional. �
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We now prove Proposition C.1. For each m ≥ 0 and s ∈ R, denote

Wm(σ) := {u ∈ D′(M ;⊗mS T ∗M) | ∆u = σu, T (u) = 0}.
The operator ∆ acting on trace free symmetric tensors is elliptic and in fact, its

principal symbol coincides with that of the scalar Laplacian: p(x, ξ) = |ξ|2g. It follows

that Wm(σ) are finite dimensional and consist of smooth sections. By the general

argument of Hörmander [HöIII, Section 17.5] (see also [DiSj, Theorem 10.1] and [Zw,

Theorem 6.8]; all of these arguments adapt straightforwardly to the case of operators

with diagonal principal symbols acting on vector bundles), we have the following Weyl

law:
∑

σ≤R2

dimWm(σ) = c0(n)(c1(n+1,m)−c1(n+1,m−2)) Vol(M)Rn+1 +O(Rn); (C.4)

here c1(n+ 1,m)− c1(n+ 1,m+ 2) is the dimension of the vector bundle on which we

consider the operator ∆.

By (C.1), for m ≥ 1 the divergence operator acts

∇∗ : Wm(σ)→ Wm−1(σ + 2− 2m− n). (C.5)

This operator is surjective except at finitely many points σ:

Lemma C.4. Let C1 = dimFm−1, where Fm−1 is defined in (C.3). Then the number

of values σ such that (C.5) is not surjective does not exceed C1.

Proof. Assume that (C.5) is not surjective for some σ. Then there exists nonzero

v ∈ Wm−1(σ + 2 − 2m − n) which is orthogonal to ∇∗(Wm(σ)). Since the spaces

Wm−1(σ) are mutually orthogonal, we see from (C.5) that v is also orthogonal to

∇∗(Wm(σ)) for all σ 6= σ. It follows that for each σ and each u ∈ Wm(σ), we have

〈Dv, u〉L2 = 0. Since
⊕

σW
m(σ) is dense in the space of trace free tensors, we see that

for each u ∈ C∞(M ;⊗mS T ∗M) with T (u) = 0, we have 〈Dv, u〉L2 = 0, which implies

that v ∈ Fm−1. It remains to note that Fm−1 can have a nontrivial intersection with

at most C1 of the spaces Wm−1(σ + 2− 2m− n). �

Since Eigm(σ) is the kernel of (C.5), we have

dim Eigm(σ) ≥ dimWm(σ)− dimWm−1(σ + 2− 2m− n),

and this inequality is an equality if (C.5) is surjective. We then see that for some

constant C2 independent of R,
∑

σ≤R2

dimWm(σ)−
∑

σ≤R2+2−2m−n
dimWm−1(σ) ≤

∑

σ≤R2

dim Eigm(σ)

≤ C2 +
∑

σ≤R2

dimWm(σ)−
∑

σ≤R2+2−2m−n
dimWm−1(σ)
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and Proposition C.1 now follows from (C.4) and the identity c1(n + 1,m) − c1(n +

1,m− 1) = c1(n,m).

C.2. The case m = 1. In this section, we describe space Eig1(σ) in terms of Hodge

theory; see for instance [Pe, Section 7.2] for the notation used. Note that symmetric

cotensors of order 1 are exactly differential 1-forms on M . Since the operator ∇ :

C∞(M)→ C∞(M ;T ∗M) is equal to the operator d on 0-forms, we have

Eig1(σ) = {u ∈ Ω1(M) | ∆u = σu, δu = 0}.
Here ∆ = ∇∗∇; using that M has sectional curvature −1, we write ∆ in terms of the

Hodge Laplacian ∆Ω := dδ+δd on 1-forms using the following Weitzenböck formula [Pe,

Corollary 7.21]:

∆u = (∆Ω + n)u, u ∈ Ω1(M).

We then see that

Eig1(σ) = {u ∈ Ω1(M) | ∆Ωu = (σ − n)u, δu = 0}. (C.6)

Finally, let us consider the case n = 1. The Hodge star operator acts from Ω1(M) to

itself, and we see that for σ 6= 1,

Eig1(σ) = {∗u | u ∈ Ω1(M), ∆Ωu = (σ − 1)u, du = 0}
= {∗(df) | f ∈ C∞(M), ∆f = (σ − 1)f}. (C.7)

Note that ∗(df) can be viewed as the Hamiltonian field of f with respect to the natu-

rally induced symplectic form (that is, volume form) on M .
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[FaSj] Fréderic Faure and Johannes Sjöstrand, Upper bound on the density of Ruelle resonances for

Anosov flows, Comm. Math. Phys. 308(2011), no. 2, 325–364.

[FaTs12] Frédéric Faure and Masato Tsujii, Prequantum transfer operator for symplectic Anosov

diffeomorphism, preprint, arXiv:1206.0282.

[FaTs13a] Frédéric Faure and Masato Tsujii, Band structure of the Ruelle spectrum of contact Anosov

flows, Comptes Rendus Math. 351(2013), no. 9–10, 385–391.
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[NoZw09] Stéphane Nonnenmacher and Maciej Zworski, Quantum decay rates in chaotic scattering,

Acta Math. 203(2009), no. 2, 149–233.
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