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ON EUCLIDEAN SPACE
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ABSTRACT. We study the operator associated to a random walk on R¢
endowed with a probability measure. We give a precise description of the
spectrum of the operator near 1 and use it to estimate the total variation
distance between the iterated kernel and its stationary measure. Our
study contains the case of Gaussian densities on R?.

1. INTRODUCTION

Let p € CY(RY) be a strictly positive bounded function such that du =
p(z)dz is a probability measure. Let A > 0 be a small parameter and By, (z)
be the ball of radius h and center . We consider the natural random walk
associated to the density p with step h: if the walk is in x at time n, then
the position y at time n + 1 is determined by choosing y € R? uniformly
with respect to the measure

p(y)
1.1 th(z,dy) = ————— 1, d
( ) h( y) ,M(Bh(ﬂ?)) |z—y|<h CY
The associated random-walk operator is defined by
1
1.2 Thfa::/ f(2du(z'
2 D= B ST

for any continuous function f, and the kernel of T}, is ¢,(z,dy). This is
clearly a Markov kernel. Introduce the measure

iy = HBAE)

where Zj, is chosen so that dvj, is a probability on R%. Then, the operator
Ty, is self-adjoint on L?(M,dvy,) and the measure dvj, is stationary for the
kernel tj,(z, dy) (this means that T} (dvy,) = duvy, where T} is the transpose
operator of T, acting on Borel measures).

The aim of this article is to describe the spectrum ot 7}, and to address
the problem of convergence of the iterated operator to the stationary mea-
sure. Such problems have been investigated in compact cases in [2], [7] and
[3], and the link between the spectrum of 7}, and the Laplacian (with Neu-
mann boundary condition in [2] and [3]) was etablished. In this paper we
investigate the case of such operators on the whole Euclidean space. The
main difference with the previous works comes from the lack of compactness
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due to the fact that R? is unbounded. We will consider densities satisfyng
the following assumptions:

Case 1: tempered density. A density p € C'(R?) is said tempered if
there exists a constant C' > 0 such that for all x € R?
(1.3) dp(@)] < Cp(a)

We shall say that it is smooth tempered of exponential type if p is smooth
and if there are some positive numbers (Cq ) ene, R > 0, k9 > 0, such that

(1.4) Vi| > R, [02p(x)] < Capl(a)
and, if A := — Zf-l:l 8£¢ is the positive Laplacian,
(1.5) V|z| > R, —Ap(x) > kop(z).

Densities verifying these assumptions can be easily constructed. For in-
stance, if p is a smooth non vanishing function such that there exists o, 6 > 0
such that for any |z| > R we have p(z) = Be~%l, then the above assump-
tions are satisfied with kg = o?. For densities satisfying (1.4), (1.5), we will
define

—Ap(z)

1.6 = i inf ————~.
(1.6) " )

The second type of densities we shall consider is the following

% —alz|?

Case 2: Gaussian density. We assume that p(z) = (£)2e for some

a > 0.

It can be shown that that if p satisfies (1.3) or is Gaussian, there exists a
constant C' > 0 and hg > 0 such that

(1.7) vz € R, Vh €]0, hol, w(Bp(z)) > Chip(z).
Let us set myp(x) = pu(Bp(z)) and define the functions
1 4
(18) (o) = (aaole) @) Gule) = - [ e
Qd Jiz|<1

where ay := Vol(Bra(0,1)). Notice that Gy is a real valued function
bounded above by 1 and below by some M > —1, then define

(1.9) Ap = lim sup ai(z), M := min G4(¢) > —1.

R—o0 lz|>R £eR™

We will show that Ay, =1 — 2(d7’12)h2 + O(h*) with & defined in (1.6).

In order to describe the eigenvalues of T}, let us also introduce the oper-
ator

(1.10) L,=A+V(x)



SPECTRAL ANALYSIS OF RANDOM WALK OPERATORS ON EUCLIDEAN SPACE 3

with V(z) := %’;()x). Observe that the essential spectrum of this operator is

included in [k, +oo[ in the tempered case, and empty in the Gaussian case.
Moreover, we have the following factorisation:

d
(1.11) L,=Y £t
j=1
Oc ; . . :
where (; = —0;, + ljp. This shows that L, is non-negative on L?(R%).

Moreover, since £ju = 0 iff u is proportional to p, then 0 is a simple eigen-
value associated to the eigenfunction p € L' N L>® c L2
We first prove the following result in the tempered case

Theorem 1.1. Suppose that p is tempered in the sense of (1.3), then:
(i) the essential spectrum of Tj, on L?(RY dvy) is contained in [AnM, Ap)
where M and Ay, are defined in (1.9). If in addition A, = lim,_ aj(z),
then (Tess(Th) = [AhM, Ah].
(ii) If (1.4) and (1.5) hold, then A =1 — ﬁhz + O(h*) with k defined
in (1.6), and for all a €]0,1] there exist C > 0,hg > 0 such that, if 0 =
po < p1 < po < ... <y denote the L*(RY, dx) eigenvalues of L, in [0, ax]
counted with multiplicities, and if 1 = Ag(h) > A1(h) > ... > Ag(h) denote
the k largest eigenvalues of Tj, on L*(R", dvy,) counted with multiplicities,
then for all h €]0,ho] and any j =1,...,k,
1

1— muklﬂ — M(R)| < Ch™.

Observe that if p is only tempered, the statement (i) shows that the
essential spectrum can be the whole interval [M,1]: for instance, take a
density p such that p(x) = |z|™™ in {|z| > R} for some R > 0 and m > d,
then it is easy to check that mp(z)/p(x) — 1 as |z| — oo and therefore
Ap, =1 in this case.

Notice also that there are examples of smooth densities of exponential
type p such that the discrete spectrum of L, below its continuous spectrum
is non-empty. Indeed, take for instance p = e~ 7*(*) where 7 > 0 and «a(z)
is smooth, equal to |z| for |z| > 1 and Va(0) = 0, then

P :=712L, =7 2A+|Va]* + 7' Aa

is a 7! semi-classical elliptic differential operator with semi-classical princi-

pal symbol p(z, &) = |€|> +|Val? (see [8, 5, 4] for the theory of semi-classical
pseudodifferential operators). Since |Va| = 1 in |z| > 1 and Aa = 0 in
|z| > 1, the essential spectrum of P; is [1,00), then we can apply Theorem
9.6 of [4] and the fact that Vol{(z,&) € R?%p(x,&) € [0,3]} > 0 (since
Va(0) = 0) to conclude that, if 7 > 0 is large enough, there exist C7¢
eigenvalues of P; in [0, 3] for some C > 0.

We also emphasize that the result in Theorem 1.1 is used in a fundamen-
tal way in the recent paper [1] to analyze random walks on surface with
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hyperbolic cusps.

If instead p is Gaussian, then L, = A + 4a2|z|? — 2da and its spectrum
is discrete o(L,) = 4aN and the eigenfunctions associated to 4ak have the

form Hy,(z)e 2% for some explicit polynomial Hj. We then have

Theorem 1.2. Suppose that p is Gaussian, then the operator Ty, is compact
and if 0 = po < p1 < po < ... < ... denote the L*(R?, dx) eigenvalues
of L, and 1 = Ag(h) > Ai(h) > ... A\p(h) > ... those of T}, then for K >0
fized, there exists C' > 0 and hg > 0 such that for all h €]0, ho] and any
k=1,....K,
1

1~

2(d+2)
Moreover, there exists 09 > 0 such that for any X € [0,0¢], the number
N(X h) of eigenvalues of Ty, in [1 — A, 1] satisfies

(1.13) N(\R) <O+ A=2H)%

(1.12) prh? — Mi(h)| < Ch2.

In the last section of this paper, we also give some consequences on the
convergence of the kernel of 17" to the stationary measure dv, as n — 0.
In particular we show that, contrary to the compact setting [7], the conver-
gence in L norm fails, essentially due to the non-compactness of the space.

These theorems, will be proved by using microlocal analysis. We refer to
the books, [4], [5] and [8] for standard results in this theory. The organisation
of the paper is the following. In the next section we study the essential spec-
trum of T}, on L?(R%, dvy,). In section 3, we collect some a priori estimates
(regularity and decay) on the eigenfunctions of 7},. Following the strategy of
[7], we use these estimates in section 4 to prove the above theorems. In last
section, we adress the problem of total variation estimates: we show that
the convergence to stationarity can not be uniform with respect to the start-
ing point. Considering the case where the starting point z belongs to a ball
of radius 7 we prove total variation bounds in term of the spectral gap and 7.

2. ESSENTIAL SPECTRUM

We start by studying the essential spectrum of 7}, in the tempered and
Gaussian cases. From the definition of dvy, it is easy to see that there exists
some constant ci,co > 0 such that ch® < 7, < coh®. Let us define the
operator Q : L2(R?, dx) — L%(R?, dvy,) by

(2.1) Qf(a) =

which is unitary, and let Th defined by Th = O*T3,) so that
T f(x) = an(x)Th(anf)
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with aj, defined in (1.8) and (with ay = Vol(Bga(0,1)))

(22) Tag@) = o | Sy
r—y|<

Using the semiclassical Fourier transform it is easy to see that

T 1 .
Ty = Ga(hD;), with G4(§) = o /ll BER
z|<1

This function depends only on [[, it is clearly real valued and —1 < M <
Gq(&) <1 for all £ if M is defined in (1.9). Moreover, G4 tends to zero at
infinity and G4(§) = 1 if and if only £ = 0.

Let us first prove (1.7) assuming (1.3): we have by assumption on p that
for all z,y € R? with |z — y| < h

—Ch sup p(z) < p(z) —p(y) <Ch sup p(2)
2€By, () zEBp ()

and therefore if Ch < 1

(1-Ch) sup p() < p(x) < sup p(2)
2€By,(x) z€Bp(x)

which implies

Ch
_ < < .
p@)(1 - 1=a7) <PW) < p@ (14 =)
and thus (1.7).
The function ay, is then bounded and Ay, of (1.9) is well defined. We first
prove

Proposition 2.1. Suppose that p is tempered in the sense of (1.3), then
Oess(Th) C [M Ap, Ap]. If moreover Ap = limpy_ a2 (x), then the inclusion
above is an equality.

Proof. Let R > 0, then the operator T}, can be written under the form
Th = Vo> R Th Yo> R + Dr< o< Rph Th Ljoj<r + Ljoj<r Th UR<|e|<R+h

since T}, increases support by a set of diameter at most h. The kernels of the
last two operators in the right hand side is in L?(R% x R, do ® dx), and thus
these operators are compact. We thus deduce that the essential spectrum
of Ty, is given by that of S}? = N>R T I>g- Since Sk = bfThbf with
bf = N> an(x) and since T}, is a bounded self-adjoint operator satisfying

M|Iflf2 < Tnf, ez, 1 Tnfllee <[]l

and ap(z) > 0 we deduce easily that oess(SF) C [~M AR, AL] where we set
AR = SUD|g|>R ap(x)?. It then suffices to take the limit as R — oo. Now if
in addition a7 (x) has a limit Aj, when |z| — oo, we can write

~ _ _ 1_
(2.3) Ty = ApTh + en(x)Than(x) + AL Thep(z)
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with €,(x) = ap(x) — A% converging to 0 as |z| — oco. In particular, using
that |G4(§)| — 0 when || — oo, we deduce that the last two operators in
(2.3) are compact on L2. Since, T}, is a function of the Euclidean Laplacian
(or radial Fourier multiplier) the spectrum of T, on L?(R?, dx) is absolutely
continuous and consists of [M, 1], which is the range of G4(§). This achieves
the proof since the essential spectrum of th is that of A,T} by (2.3). U

We also describe the asymptotic behaviour of Apy:

Lemma 2.2. If p satisfies (1.4) and (1.5), then the following asymptotic
holds as h — 0

Ap=1- h? + O(h)

(d 2)

—Ap(x)

where r = liminf},_ )

Proof. 1f p is tempered, we expand my,(x) = pu(Bp(x)) with respect to h and
use assumption (1.4):

mp(z) = hd/ p(x + hz)dz
|z]<1

1
= aghip(z) + ihd” Z Oz, 0z, p(7) /| - zizjdz + O(h*py)
i:j 21>

/Bd

=agh’p(x) — hd+2A p(z) + O(h™py)

with |pa(x)| < p(x) and ﬁd = f I1<1 |z|2dz. Using the definition of ay, it
follows from Lemma 3.2 below that

Ap(z)
2.4 az(z) = 1+ h2yg——2 4+ O(h*
(2.0 @) o
with 74 = Qggd = m and the O(h*) is uniform in 2 € R?. Hence, it

follows from (1.6) that

A
A =limsupai(z) = 1 + y4h? liminf plz) + O(hY)

and the proof is complete. ([l
—A
sy (& + =52)

has essential spectrum contained in [m, 00). If in addition k = hm|96|_)OO 7?”,
o0) by Theorem 13.9

Remark 2.3. In the tempered case, the operator vqL, =

then the essential spectrum is exactly oess(L,) =
of [6].

Now for the Gaussian case

lz@rey

Proposition 2.4. If p is Gaussian, then Ty, is a compact operator.
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Proof. The symbol Gg4(¢) of T}, is decaying to 0 as [{| — 0, a standard
argument shows that if lim|,|_., an(z) — 0, then Thay is compact on L2
We write

mh(x) / —2hx.z—h2|z|?
2.5 = e dz
(2:5) hip(x) |z|<1

and by bounding below this integral by a dz integral on a conic region
—z.x > |z|.|z|/2, we see that it converges to oo when |z| — oo, which proves
the claim. (]

Remark 2.5. In the Gaussian case, the operator L, = A + 4a?|z|* — 2da
has compact resolvent and discrete spectrum.

Notational convention: For the following sections, all the tempered den-
sities we shall consider will be smooth tempered densities of exponential
type (ie. satisfying (1.4) and (1.5)), and therefore we will abuse notation
and just call them tempered.

3. SPECTRAL ANALYSIS OF T},

We recall here some notations. Let a = a(z,&;h) be an h-dependent
family of C*°(R??) function and m(z, &) be an order function as in [4]. We
say that a belongs to the symbol class S(m) if there exists some hy > 0 and
constants C,, g such that for any «, 8 € N? any 0 < h < hg

1090, a(x,& )| < Cogm(z,€)

For any a € S(m), we define Op;,(a) by

1

Opn(0) () = gy [ €7 atan ) )

The standard theory of such operators is developped in [4], [5], [8].

3.1. Preliminary estimates. Let us start by some estimates on the sym-
bols of the operator T}, which will be useful to study its eigenfunctions.

Lemma 3.1. The function G4(&) belongs to S(<§)_max(1’%)).

Proof. Suppose first that d > 2. It is clear that the function G4 is smooth.
When [£| > 1, one has

1 .
o’a = / i2)Pei# .
13 d(g) oy |Z|§1( )

Let x € C§°(Bga(0,1)) be a radial cut-off equal to 1 on Bga(0, ). Then the
non-stationary phase theorem shows that

/ x(2)2Pe%dz = O(1¢[~).
|2I<1
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On the other hand,

1
I, = / (1—x(2))2Pe* dz = / (1— X)(T)rd_1+|’8|(/ em"gwﬁdw) dr.
|z[<1 3 §da-1

For any r > % the phase w — w has only two stationary points: these
points are non-degenerate so that the stationary phase theorem implies I, =
O(|§|7%). In the case d = 1, the computation is simpler since G4(§) =

Sinéﬁ. We leave it to the reader. O

We will also need the following result on the function ay.

Lemma 3.2. The function ay, is smooth and the following estimates hold
true:

o if p is tempered, then

(3.1) Vo € N4\ {0}, 3C, > 0, Vh €]0,1], |0%an(x)| < Coh?
and there exists C > 0 such that

h?  —Ap

1
3.2 Vz € RY, —1- <cht
(32 El P BT B B
o if p is Gaussian, then
(3.3) Vo e N%, 3C, > 0, VR €]0,1], |8%ap(x)| < Cohlel,
and
(3.4)
_ 1 (402|z|? — 2da)
VM >0,3Cy > 0, V|z| < Mh™! ~-1- h?| < Cylz|*h*
30 > 0, Vil a2 () 2(d +2) < Culal',
1
(3.5) 30, R > 0,Y|z| > R, —— > max(1 + Ch?|z|?, Cell)
a(z)
Proof. Tt follows from (1.8) that ay(x) = F o gp(x) with F(z) = 2~ %/? and
gn(z) = a:}:;(p%). Following the arguments of the proof of Lemma 2.2, we
have when p is tempered (using f‘z|<1 zidz = fIZ\<1 zizjzpdz = 0)
h?  Ap h*
zx)=1—-—F—-—+ / x,2)dz
9n(z) 2(d+2) p = aap() )iz pa(. )
(3.6) A
=1-— L4 pt
2d+2) p + hry(z)

where py(z, 2) is a function which satisfies for all o € N¢:
|0 pa(x; 2)| < Cap()

uniformly with respect to € R |2| < 1 and ry4(x) has all its derivatives
uniformly bounded on R¢. In particular, for any o € N¢\ {0}, 9%gp(z) =
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O(h?). Hence, for h > 0 small enough, Faa di Bruno formula combined with
(3.6) shows that aj, is a smooth bounded function such that

(3.7) Va e N4\ {0}, 8%y (z) = O(h?).

This shows that aj, enjoys estimate (3.1) while (3.2) is a direct consequence
of (3.6).

Suppose now that p(z) is Gaussian. To enlight the notations, we consider
the case a =1, i.e. p(z) = 7= %e~171°. Tt follows from (2.5) that

1
gn(z) = —
Qg J|z|<1

_ _p21,2
e 2hx.z—h*|z| dz.

Hence, there exists ¢g > 0 such that for all z € R%, h €]0,1], gn(z) > co.
Moreover, for all o € N¢ we have

1
Ovgn(z) = /|| (—2hz)ae*2hz'x*h2‘zlzdz
z|<1

Qg
so that there exists C,, > 0 such that
(3.8) Vh €]0,1], Vo € R, [0%gn(2)] < Cahl®lgp(z)].

Using again Faa di Bruno formula, we easily get that ay, is a smooth function
such that for any a € N,

ol Bl
(3.9) Oy an(r) = Z C|wgh($)_§(2”|+l)HB@H,g%(m?
7T€H|O“ jeBOL]
where IIj,| denotes the set of all partitions of {1,...,[al}, |7| denotes the

number of blocks in the partition 7 and |B| denotes the cardinal of B, and
C|r is an explicit constant depending on |7|. Combining this formula with
estimate (3.8), we get
(3.10)
O an(@)] < D Clafln(@)| "2 D perlhgn(@)| P! < Clan ()|
€|y

which proves (3.3).

Let us now prove the estimates on a;Q = gp. The same computation as in
the tempered case remains valid if we assume that |hz.z| is bounded, which
holds true if h|x| is bounded. This shows (3.4). In order to prove (3.5), we
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observe that there exist constants ¢, C > 0 such that for all 0 < h < 1

ah(x)f2 :Oégl / / 672hrw.97h2r2rd71drd9
Sd-1 Jo<r<1
1
=a;! / / (1 + 4r2h2(x.0)2/ (1-— t)e_zthm'edt> e M 1 g
Sd—1 Jo<r<1 0

1
>1+ 4h2a;1 / / r2(z.0)? (/ (1-— t)e_%h”‘edt) e pd=1 g
Sd=1 Jo<r<1 0
— ch?
ap(z) "2 >1+ Ch?|z|? — ch?

for |x| > R with R > 0 large, the last inequality being proved by the same
argument as for Proposition 2.4. Enlarging R and modifying C' > 0 if
necessary, this shows the quadratic bound in (3.5). The exponential bound
in (3.5) follows easily from the inequality above, by bounding below the
integral by an integral on a region {0.z/|z| < —(1 —€),r > 1 — €} for some
small € > 0. ]

3.2. Regularity and decay of eigenfunctions. We are now in position
to prove the first estimates on the eigenfunctions of T},.

Observe that for any 1/2 > § > 0 small, there exists ss > 0 such that
|Ga(€)] < 1—25 when [£]? > s;.

Lemma 3.3. Let C > 0 and )\, € [1—Ch?,1] be an eigenvalue of T}, (which
can belong to the essential spectrum) in the tempered case, and A\, € [1 —
6,1], 6 > 0 in the Gaussian case. Let e, € L*(R%, dx) satisfy Then = Anen,
| en |L2ray=1. Then ey, belongs to all Sobolev spaces and for all s € R

1—An\3
(3.11) I en Ilzs ey = o((l +— h))
Moreover,
(3.12) I (1= x)(h*A)en || grsmay= O(h™)

where x € C3°(R) is equal to 1 near 0 in the tempered case and x =1 on
[—ss, 85] in the Gaussian case.

Proof. We use arguments similar to those of [7], the difference is that now we
are working in R? instead of a compact manifold: let us write A\, = 1 — h2z,
with 0 < 2;, < k74 in the tempered case and 0 < zj, < 6h~2 in the Gaussian
case; and start from (Th — An)ep, = 0. Since Ty, = apThap, it follows from
Lemmas 3.1 and 3.2 that T}, is a semiclassical pseudodifferential operator
on R? of order m < —1. In particular, it maps L?(R%) into H'(R?%) and
| Th || 22— 1= O(R™Y). Since e), = )\—lhfheh and A, is bounded from below,
we deduce that || ey, || 1= O(h™!). Tterating this argument, we finally get

(3.13) | en ||as= O(h™*)
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for any s > 0 (u~sing interpolation for non integral s). Let us denote py(x, &)
the symbol of T}. It follows from usual symbolic calculus and Lemma 3.2
that

(3.14) pu(z,€) = aj (x)Ga(€) + K" (x, €)

for some symbol ry, € S((Q‘max(l’%))

m = 2 if p is Gaussian.

Suppose that p is smooth tempered and let x € C5°(R) be equal to 1 near
0. Since |G4(€)| < 1 with G4(§) — 0 as || oo and Gy(§) =1 <— £=0,
we deduce that for any cut-off function y equal to 1 near 0, we have

(1= x(§)Ga(§) < (1 —€)(1 —x(8))
for some € > 0 depending on Y. Since Ay, = 1 + O(h?) and aj, = 1 + O(h?),
the symbol

with m = 3 if p is tempered and

qn(z,€) = (1 = X(&))(An — pu(z,§))
is bounded from below by £(1 — x(&)) for A > 0 small enough. Moreover it

is, up to a lower order symbol, equal to the symbol of (1 — ¥ (h2A))(\, — Th)
and thus by taking (1 — X) = 1 on the support of (1 — x), we can construct
a parametrix Lj with symbol ¢ (z,€) € S(1) such that

Lin(1 = %(B*A)) (A = Th) = (1 = x(h*A)) + h™Opy, (wn)
for some symbol wy, € S(1). This clearly shows that

(3.15) | (1= x(h*A))en [| 2= O(h™)
and by interpolation with (3.13) we get
(3.16) | (1= x(h*A))ep, | == O(h).

It remains to show that x(h?A)ey, is bounded in H*. We have
(Opp(pn) — 1+ h2zp)en = 0.

Let by(x,€) = pu(x,€) — 1 4 h2zp,, then since 2, is bounded, we know from
(3.14) that

(3.17) bp(z,€) = ai(x)Ga(&) — 1+ h2rp(x, &)

for some 7, € S°(1). By Taylor expansion of G4(§) at € = 0, we see that
there exists a smooth function I on R™, strictly positive and such that
1— G4(&) = [¢]PF(|€[%). Since ai(z) = 14+ O(h?), we get

b(w,€) = —[EPF(IE]*) + h*Fn (. €)
with 7, € S°(1). Combined with (3.15), this shows that for any y € C$°(R?)
REAF (R A)x(R2A)ey, = Op2(h?).

Since F is strictly positive on the support of y, we can construct a parametrix
like above and obtain that

I x(R*Aer, [|g2= O(1).
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Iterating this process, it follows that the above bounds hold in all Sobolev
spaces.

Consider now the case of a Gaussian density and let us prove (3.12). For
X € C§°(R) equal to 1 on [—s5,ss] (and 0 < x < 1) we get

(1= ) (€R)Ga(€) < (1 - 26)(1 = )(&P).
Since we have a;, < 1+0O(h?) and \;, > 1—§ for small o > 0, this shows that

(1= x (€)M —p(2,€)) = §(1=x)([[*) for h small and (3.15), (3.16) are
still valid. Let us prove (3.11). By definition, we have Opy,(by)en, = 0 with

bp(2, &) = ai (z)Ga(E) = Ap+h2rp(z, €) for some rj, € S(1). Thanks to (3.10),
we have [027(z,€)| < Cyla?(z)| for any a and |02 (a;, *rp(z,€))| < Ca.
Using again the structure of G4 and dividing by a%, it follows that

(3.18) R2AF(h*A)ey, = (1 — Apay, 2(z) + h*Opy, (74))en
for some symbol 7 € S(1). Taking the scalar product with y(h2A)2e;, and
using the fact that Opy,(7,) is bounded on L2, we get
(3.19)
(R2AF(R*A)x(h*A)en, x(h*A)ep) = (1 — Anag,*(2))x(h*A)en, x(h*A)ep) + O(h?)
= Ip(h) + Jg(h) + O(h?)
where
Ir(h) := (VR(2)(1 = Ma,?(2))x(h*A)en, x (h*A)en)
Jr(h) = ((1 = Yr(@))(1 = Ana, *(2))x(h*A)en, x(h*A)en)
with ¢g(z) := 1)< . Hence, it follows from (3.4) that Ir(h) = O(h* R?+1—
An). On the other hand, setting R? = (1—\p,)/(h%€) with € > 0 small enough
but independent of h, (3.5) gives that 1—Apa; ?(z) < —A\,Ch?|z24+(1-)s) <

0 if |z| > R, and hence Jg(h) < 0. Combined with the estimate on Ig, this
shows that

(B2 AF(RA)X(h2A)en, x(h*A)er) = O(1 = Ap).

Dividing by h? and using again the fact that F > 0 we obtain ||Ax(h2A)ep |2 =
01+ ’\h) Iterating this argument and using interpolation, we obtain the
desired estlmates for any H”. O

In order to control the multiplicity of the eigenvalues as in [7], we need
some compactness of the family (ep,),. Since R? is not bounded, the regular-
ity of the eigenfunctions is not sufficient and we need some decay property
of the eigenfunctions near infinity. For R > 0, let xg be a smooth function
equal to 1 for |z| > R+ 1 and zero for |z| < R.

Lemma 3.4. Let us assume that p is tempered and let o €]0,1[. Suppose

that A\, € [1 — ath, 1] and that e, € L*(R?, dx) satisfies Then = Anen
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and |lep||2ray = 1. Let ¢ € C§°(R), then there exists R > 0 such that
| xr(2)(h*A)ep, || L2 ay= O(h).

As a by-product, for any s € R, xren goes to 0 in H3(RY) when h goes to
0, for any s > 0.

Proof. From the preceding Lemma, we know that
(AF(R*A) + Opy, (71))p(h*A)ep, = O(R™).

for some 73, € S(1). On the other hand, this term can be made more precise
: it follows from Lemma 3.2 and equation (3.14) that

Oh) =( ~ AF(RA) ~ La(V(2)Op, (Ga(©)) + Opy(Gal©)V () + 21 ) 6(A*A)er
= — (AF(R*A) +7aV (z) — zn)en + O(h?[|en]|2)
with A;, = 1 — h%2, and using (3.11), we obtain
(AF(R*A) + V() = 2) fu = O(h)

with fp, := ¢(h*A)ep, 2, := z/va and F = F/yq. Let gu(x,€) := [E*F(|¢]*)+
V(z) — Z5. Since F > 0, it follows from assumption (1.5) that there exists
R > 0 such that for any ¢ € R? and any |z| > R, we have q;(z,£) >
(1 —a)k/2if 1 — N\, < arh?/2(d + 2). Hence we can build a parametrix
for g, on the support of xz and this shows that || xgfp ||r2= O(h). Using
interpolation and the fact that (ep,);, is bounded in H®, we obtain directly
the same bounds in H?®. O

Lemma 3.5. Suppose that p is Gaussian. Let 6 > 0 and x € C§°(R) be
equal to 1 on [—ss, s5|, then there exists hg such that, for any k,s € N there
exists Cy s > 0 such that for all h < hg and any eigenfunction ey, € L?(R%)

of Ty, with eigenvalue Ay, € [1 — h25,1], we have

(3.20) Y X (R* A)en| s may < ChsllX(B2A)en]| ot (ra)
Proof. Tt follows from (3.18) and (3.12) that
(3.21) (1 — Apay, 2(2))x(R2A)en, = h?Opy,(r)x (R2A) Aey,

for some 7, € S(1). Let R > 0 be sufficiently large so that a;?*(z) >
1+ Ch?|z|? for |x| > R. Then, if A\; = 1 — h%2;, one has for |z| > R

(3.22) —1+ Apay, % () > B2 (Claf* — zp,) > C'R*(1 + |2?)
for some C’ > 0 independent of h. We take g € C5°(R?) be equal to 1 for
|xr] > R+ 1 and 0 for |z| < R, then by (3.22) and (3.3), we deduce easily
that (z)2h2(—1+ Apa, ?)"br € S(1) and therefore

(@)*Pr(x)x(h*A)en = Opy (7a) x(h*A)Aey,

for some 7, € S(1). Therefore, for any s > 0, we have

@) x (R*A)en | gsray < ClIx(h*A)en]| grs+egay-
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Iterating this argument k/2 times and using (3.11), we get (3.20). O

4. PROOF OF THEOREM 1.1 AND 1.2

4.1. Spectrum localisation. We work as in [7] and we only give a sketch
of the proof since it is rather similar. The main difference with the situation
in [7] is that we work on unbounded domains, so that Sobolev embedding do
not provide directly compactness. In both tempered and Gaussian case, we
will use the following observation: suppose that ¢ is a smooth function, then
it follows from Lemma 3.2 and the expansion G4(&) = 1 — 4l¢|2 + O(J€[*)
as || — 0 that
1— 1Ty,
h2
where [|¢)|| 2(ray = O([|]| fr4(ray) in the tempered case and ||| L2 (o, mn-1)) =
O(H‘5U|490”H4(B(0,Mh*1+1))) for any h-independent M > 0 in the Gaussian
case.

We start with the case of a tempered density and follow the strategy of [7].
Since T}, and Tj, are unitarily conjugated by Q : L2(R, dz) — L*(R?, dvy,),
the eigenvalues of T}, on L?(R%, dvy) (and their multiplicities) are exactly
those of T}, on L?(R%, dx).

First, assume that (L, — p)e = 0 for some pu € [0,x) and e € H?(RY),
e[l z2(azy = 1. Then, e is in fact in C°° and using (4.1) with ¢ = e, we get
easily

(4.1)

¢ = YaLpp + h*y

1 -1
— e = qque + Op2(h?).
h
Since Tj, is self-adjoint, this shows that dist(yqu, o(Ay)) = O(h?) with
1Ty,
Ah = hQ 5
and that there exist Cy > 0,C7 > 0,hg > 0 such that for all 0 < h < hg
and p € o(L,) N[0,k — C1h?), the number of eigenvalues of Ay, in [yqu —
Coh?, vy + Coh?] is bounded from below by the multiplicity of .
Conversely, consider an eigenfunction ej, of Ay, corresponding to an eigen-
value zp, € [0,v4k), then using Lemma (3.3), we get

znen = Apep, = 'ydeeh 4+ Oy (hQ).

This shows that all the eigenvalues of Ay, are at distance at most Ch? of the
spectrum of y4L,. Let us now consider an orthonormal set of eigenfunctions
e} of Ay, associated to the eigenvalues z; contained in [Yap—Coh?, yau+Coh?]
for some p € o(L,) N[0, ax|, where with Cy,C; are the constants given
above. Let R > 0 be fixed as in Lemma 3.4. From Lemmas 3.4 and 3.3,
each eigenfunction can be decomposed as

Jo_ .J J
€, = Uy, + vy,
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with ufz bounded in any H® and supported in B(0, R) and vfl converging to 0
in H*® when h goes to 0. Since H*(B(0, R)) is compactly embedded in H? for
s larger than 2, we can assume (extracting a subsequence if necessary) that
the e converge to some f7 in H?(R%, dz) and 2] converges to ygu. Hence,
the (f7); provide an orthonormal family of eigenfunctions of L, associated
to the eigenvalue p. This shows that the number of eigenvalues of Ap in
[Yap — Coh?,vau + Coh?] is exactly the multplicity of u as an eigenvalue of
L,, and achieves the proof of Theorem 1.1.

Notice in particular that our proof does not rule out the possibility of an
infinite sequence of eigenvalues z] for A} converging to the bottom of the
essential spectrum x.

Assume now that p is Gaussian and start with (L, —p)e = 0 with ||e||2 =
1. It follows from (4.1) that

Ape = Wy cp-1 Yalpe + Nipsp-1 Ape + b2
with ¢ supported in B(0, Mh~") and [[9]|r2 = O(|[(z)*ell g0, pn—141))-

Since e = p(z)e~ = for some polynomial p, then |[¢[|;2 is bounded uni-
formly with respect to h. The same argument and 1, >-1 Ap = Lg>p-1 Ap Npg>p-1-p

shows that || 1y>,-1 Apellr2 = O(h™2e~°""*). This implies that

Ape = yapie + Oz (h?).

Like in the tempered case, it follows that dist(yqu,o(Ap)) = O(h?) and
that for any given L > 0 there exists Cy > 0,hp > 0 such that for all
0 <h<hgandall p€o(L,) with p < L, the number of eigenvalues of Ay,
in [ygu — Coh?, yau + Coh?] is bounded from below by the multiplicity of .

Conversely, suppose now that The;, = (1 — h2zp,)e;, for some ej, € L?(R?)
such that |lep||z2 = 1 and 2z € [0, L], L > 0 being fixed. From Lemmas 3.3
and 3.5, we know that

znen = Anen, = vaLpen + Or2(h?),

this shows that the distance of the eigenvalues of A, (less than L) to o(yqL,)
is of order O(h?).

To get the equality between the multiplicities, we work as in the tem-
pered case and consider an orthonormal family of eigenfunctions e] of Ay,
associated to the eigenvalues zj contained in [ygu — Coh?, yau + Coh?). Tt
follows from Lemmas 3.4 and 3.5 that

efl = ufl + O(h™)
with u{t = X(th)e{L bounded uniformly with respect to h in (z)~FH*(RY)
for any k,s > 0. Then the family (u})pso is compact in H?(R?) and
extracting a subsequence if necessary, we can then assume that both ugl
and ei converge to some f7 in H? and zp converges to yqft when h — 0.
We split w; into ¢y (x)u; + (1 — ¥y (z))u), where vy, is smooth, supported
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in [z| < 1/h and equal to 1 in [z| < 1/2h. In particular we have that
[[(1 = ¢n)ug || g2 = O(h™). On the other hand, it follows from (4.1) that
del = Apel, = Ap(ypul) + O(h™)
= yaLp(na}) + OB w) Ywu | 4) + O(h*)
= qaLo(e}) + O(h?|[(z) e} || 2) + O(h™)
2hel, = vaLp(€}) + O(h?lef | 2) + O(h™)
where we used Lemma 3.5 in the last line. Making h — 0, we show that (f7);

is an orthonormal family of eigenfunctions of L, associated to the eigenvalue
. This achieves the proof of (1.12).

4.2. The Weyl estimate. It remains to prove the Weyl estimate on the
number of eigenvalues in the Gaussian density case. Fix § > 0 small, then
for 7 > 0, let us define the operator on R%

P =7(*(VA/T) + X (V122/7))

where y € C*((0,00)) is a positive increasing function which satisfies
x(x) = x for z < 1—06 and x(z) = 1 for z > 1. Clearly P; is a self-
adjoint bounded operator on L?(R¢) with norm less or equal to 27 and since

for any function f € L? such that f is supported in |z| > 7 or f is supported
in [¢] > 7, one has (P-f, f) > 7||f]|72, the essential spectrum is contained
in the interval [r,27]. Let Il /5 = g ,/9(Fr) be the orthogonal spectral
projector, it is then finite rank by what we just said. We shall prove that
there is € > 0, C' > 0 such that for all f in the range of 1 —II/; and all

h > 0 small enough and 7 < eh ™2, we have
(42) (Tf. f) < (L= CTh?)||£]IZ-
Notice that if (1 —1IIz)f = f, we have (P, f, f) = 27|/ f]|2, and thus

(4.3) X (VAT + (V] ) f11? = %HfW-

We first assume that ||x(y/|z[2/7)f|[*> > }||f||?, then using that T}, has
L? — L? norm bounded by 1 we deduce
(anThant, f) = (Thanf,anf) < llanf|[72-

But from (3.4) and (3.5), we also have that there is e > 0, C' > 0 independent
of 7, h such that if 7 < eh™2,

a2 (z) <1 —Ch?rx(V/|z)2/7)2.

Thus we obtain by combining with (4.3)
(4.4) (anThanf, f) < (1 = Ch*/4)|| f][72.
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Assume now that ||x(v/|z[2/7) f]|? < ]| f]|?, then since (1—1I;/2)f = f this

implies
1
(4.5) IX(VA/ P = S 11F11?

and we shall prove that (4.4) holds as well in that case. Using a7 < 1+ Ch?
for some C' > 0, let us write for f € L?

(anThanf, f) =(@;Thf. f) + (an[Th, an)f, f)
<L+ CP)Thfllz2 1fllz2 + (an[Th, anlf, f)-

Using the fact that Tj, = G4(hD,) is a semiclassical pseudo-differential oper-
ator with symbol G4 € S(1) defined in (1.8) and the estimates |0%ap| = O(h)
if || > 0 of Lemma 3.2, we deduce from the composition law of semiclassi-
cal pseudo-differential operators that [T}, ay] = h?Opy,(c,) where ¢, € S(1)
is a uniformly bounded symbol in h. Therefore by Calderén-Vaillancourt
theorem, ||ap[Th, ap)||r2—12 = O(h?) and thus

(4.7) (an[Th, anlf, f) < CR?(| f[72

for some C' > 0 uniform in h and independent of 7. Now using Plancherel,
(TEf f) = Jga G?l(hf)|f(§)\2df where G4 is defined in (1.8). Now since
Ga(§) — 0 as £ — oo and G%(€) < 1 — C¢[? for some C when ¢ is small,
we directly obtain that there is € > 0 independent of 7, h such that if 7 <
eh™2, the bound G3(h§) < 1—Ch?rx(\/|€[2/7)?. Combined with (4.5), this
implies that ||T}, f||z2 < (1 — Ch%7)||f||z2 and thus, by combining this with
(4.6) and (4.7), (4.4) holds if 7 > 7y for some 79 > 0 independent of h and
we have proved (4.2).

By the min-max principle, one deduces from (4.2) that the number of
eigenvalues of Tj, in [1 — Ch?,1] counted with multiplicites is bounded by
the rank of Il . Now, to prove the Weyl estimate (1.13), it remains to
show that Rank(Il /) = O(7%). This is a rather standard result (see for
instance [4, page 115] for a comparable estimate), but we write some details

Let us consider h := 1/,/7 as a semiclassical parameter. The operator
P(h) := h?Pj-2» is a h semi-classical operator with a symbol in the class
S(1) given by pr(x, &) = x2(|€]) + x2(h|x]), more precisely P(h) is the Weyl
quantization of the symbol px(z,§). Let f € C5°(R) be such that f(s) =1
for |s| <1, f(s) =0 for |s| > 2 and 0 < f < 1. Consider the harmonic
oscillator on R?, H = A + |x|? and define the operator

(4.8) e = f(n*H).

(4.6)

Then Hg is a non-negative self-adjoint operator, its norm is bounded by
1, its rank satisfies rank(II) = O(Ah=2). From the min-max principle, to
prove a Weyl estimate for P(h), it suffices to show that for all u € L?

(4.9) (P(h)u,u) + (ng,m >c
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for some ¢ > 0. First, we claim that the operator Hg can be written under
the form

(4.10) T = Opp(f(R%|2|* + |€]*)) + Rn, where ||Ry||z2—r2 = O(h).
Let Q be a fixed compact subset of C whose intersection with R contains
supp(f). Then, it is easy to check that for all s € QN (C\ R)

1
2 pa—
(1 =0 e g

for some symbol gp(x,§;s) € S(1), satisfying for any «, 3
020¢ an(,€: 8)| < Capltam(s)[ 77117

S) = 1+ hOpp(gn(z,&; 9))

for some C,, g uniform in A, s. Then this implies

- 1 -
(20 =)™ = Ob (o e =) — MOPH =) Opulan(. & 9))

but by the Calderon-Vaillancourt theorem and the spectral theorem for H,
we deduce that

(4.11) (R2H — s)~! = Oph(

1
hW
Cr A
for some bounded operator Wy, on L? with norm O(h|Im(s)|~"V) for some N
depending only on the dimension d. It remains to apply Helffer-Sjostrand
formula [4, Th 8.1] with f € Co () an almost analytic extension of f

/af Y(h?H — 5)"lds A ds
24

and we deduce directly (4.10) from (4.11). Observe that the symbol of
P(h) + I satisfies that there exists C' > 0 such that

XP(ED + 3 (hla]) + F(R%[al* + [€7) >

for all 0 < h < hg. Therefore, by Gérding inequality, (4.9) is satisfied for
some ¢ > 0, and using the min-max principle, this implies easily that the
number of eigenvalues of P(h) less or equal to C/2 is bounded above by
rank(ITH) = O(h=2%), and this concludes the proof of the Weyl estimate for
.

5. CONVERGENCE TO STATIONARITY

In this section, we study the convergence of the iterated kernel 7} (z, dy)
towards its stationnary measure dv, when n goes to infinity. The measure
dvy, is associated to the orthogonal projection Il ; onto constant functions
in L?(dvy,):

(5.1) Won(H)= | F@)dvi(y)
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On the other hand, let us define the spectral gap g(h) = dist(1,0(7%) \ {1}).
It follows from Theorems 1.1 and 1.2 that

_ 2 M 4
(5.2) g(h) =h 20d+2) + O(h%)
in the Gaussian case, and
h? i
(5.3) g(h) = 2d+2) min(x, pu1) + O(h*)

in the tempered case, where x denotes the bottom of the essential spectrum
and g1 the first non-zero eigenvalue of L, with the convention p; = +o0 if
L, has no eigenvalue. The following proposition gives a convergence result
in L? norm.

Proposition 5.1. Let a > 0 be fized. There exists C > 0 and hg > 0 such
that for all h €]0, hg] and all n € N, we have

(5.4) T3 = Ton || 2 (duy) L2 (i) < Ce ™.

Proof. This is a direct consequence of the spectral theorem and the fact that
1 is a simple eigenvalue proved in Theorems 1.1, 1.2. O

Let us now introduce the total variation distance, which is much stronger
than the L? norm. If u and v are two probability measures on a set F, their
total variation distance is defined by

| —vrv = Sup ln(A) —v(A)]

where the sup is taken over all measurable sets. Then, a standard compu-
tation shows that

lu—vlrv =5 swp [u(f) ~v(f)
[fllLoo=1
The following theorem shows that the convegence in total variation dis-
tance can not be uniform with respect to the starting point x. This has to
be compared with the results in the case of compact state space [2], [3] and
[7] where the convergence is uniform in x.

Theorem 5.2. There exists C > 0 such that for any n € N, h €]0,1] and
7> 0, we have
(5.5) \x|2¢$(n+1)h” i (z, dy) vpllrv > p(7)

g 7OL|CC‘2

where p(T) = e~ 207(T=h) 4f p — (%)
if p is tempered.

e is Gaussian and p(T) = f|y|>T p(y)2dy

Proof. Let 7 > 0 and n € N. Consider the function

fr(@) = Wiz oo () — Mpo r((Jz])

5.6
(5:6) 142 (J2]).
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For 2 € R? such that || > 7 + (n + 1)h, thanks to finite speed propagation
we have

(5.7) T} fr(2) = 1.

On the other hand, we also have

o, = [ fwim) =142 [ dn)
>
(5.8) o =T
= -1+ mu(y)p(y)dy.
h Jly|>

If p is tempered, then my(y) < Chep(y) for some constant C' > 0. Hence,
o pfr < =1+ Cp(7) with p(1) = fly\ZT p(y)?dy. Combined with (5.7), this
shows the anounced result in the tempered case.

Suppose now that p(z) = ﬂe‘a‘ﬂz is Gaussian for some «a, 3 > 0. Then

ma(y) < Chie=elv*+2halyl for any h €]0,1]. Hence,
(5.9) Mopfr <—-1+C e 20l =hlul gy < 1 4 Cp(T)
ly|=7

with p(t) = e=227("=h) Using again (5.7), this shows the anounced result
in the Gaussian case. O

In the following theorem, g(h) denotes the spectral gap of T}, whose
asymptotics is given in (5.2) and (5.3).
Theorem 5.3. There exists C' > 0 and hg > 0 such that for any n € N,
h €10, hol, 7 > 0,
(5.10) sup || T (x, dy) — dvy||lrv < Cq(r, h)e 9™

|z|<T

where q(T,h) = h=% SUP|g|<r ﬁ if p is tempered and q(t, h) = e®T(T+3h) 4f
p= (%)ge_o‘k’:|2 is Gaussian.
Proof. Assume that hg > 0 is such that the results of the previous section
hold true for h €]0, hg]. Observe that

1
sup ||y (z, dy) — dvpllrv = 5 Sup  sup Ty f(z) — op f|

(5.11) |z|<T 2| <7 [[f[|Loeo=1

1
= 1T = Mol oo (Rt Lo (ol <r)-
Suppose first that p is tempered and denote B; the ball of radius 7 centred
in 0 and I, (7, h) = || T}" — o pll oo (re)— oo (B, ) - Then, denoting L?(dvy,) for
LA(RY, dvy,),
(5.12)
Ln(7, B) < 1Tl 22(di)—£oe (B T3~ = Wo bl 22 (dvp)— 22 () 1 Th || oo () — L2 (o,
e~ (n=2)g(h)

< Tl 22 (dvp)— Lo (B,)
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where we have used Proposition 5.1 and the fact that ||Th || o (ma)—2(d1,) =

1. To estimate T}, from L?(dvy) into L°°(B;) we consider f € L?(dvy) such
that || fllz2(4y,) = 1. Then,

2 1
T f ()] < ——( /| Ty}

mh(x) z—y|<h mh(y)2

2
< Zy (/ p(y) dy)3.
mp () |lz—y|<h mp(y)
Since p is tempered we have my(z) > Ch?p(z) for some C > 0 and we

deduce from the above estimate that |7}, f(z)| < C/(hgp(a?)). Taking the

supremum over x € B, we obtain the announced result in the tempered

case. .
Suppose now that p = (£)ze”

(5.13)

|

2 . . . .
alz[* {5 Gaussian. Since T}, is Markov and

g(h) is of order h%, we can assume n > h=2. For k € N let o4 (h) = 1_2§(h),
where 1 = Ag(h) > A1(h) > Aa(h) > ... > Ag(h) denote the eigenvalues
of T}. Denote also ey ), the eigenvector associated to A (h) normalized in
L?(dvy,) and Iy = (.,€k7h>L2(dyh)6k’h the associated projector. We write
the eigenvalues under the form Ai(h) = 1 — h?0y(h), then the spectral gap
g(h) = h%01(h). Let § > 0 and decompose T}, = Th1 + Th 2 with

(5.14) Thi= > (1 — h2op(h)) .
o1(h) <o (h)<(1-8)h 2

From the spectral theorem, we deduce that || 7757 ||z2_z2< (1—0)""2 On

the other hand, for p Gaussian, we have my,(z) > Ch?p(z)e~2"*I*|. Combin-
ing this estimate with (5.13), we get

(5.15) | T || 2 () oo (5,9 < Ch™ 2T+,
Since T}y = ThT,?;QTh, we can combine this with the L? estimate, to get
(5.16) || T3's || oo (mey— Lo (B < Ch_gew(TJrsh)(l —6)"% < q(r,h)e o)

since lf%(l —§)" 2 < e, Hence, it remains to study 77 ,.
Since dvy, is a probability, then
(5.17)

| Tk || poo(rey— oo (B,) <N €k,n N zoo ()|l €kt 121 () <II €k Lo (B, ) -

From Lemma 3.3 and Sobolev embedding, we know that || 2*exp || foo (ra)<
d
Co}p ;. Hence,

(5.18)

h 1 " 4 at(7+3h)
Wy py || oo Ry oo (B < SUP(———)2 || Q%exn ||poomay< Cof e
| | oo (Re)— Lo (B, ) BT(mh( ) )2 || | Loo (e ih

z)p(x)
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Using this estimate, we get
(5.19)
d

I T3y N o ey 100 (3, < CeTTH) > (1= hox(h) o2,
o1(h)<or(h)<(1—8)h—2

Using the Weyl estimate (1.13) and the same argument as in [7], we get
(5.20)

(o)
I Tt Nl Lo (rety— Loo (B S CeoT(T3h) / (14+z)Ne ™2 dy < CeoT(TH3h) g—nhion
O1,h

for some N > 0. This completes the proof in the Gaussian case. (Il
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