RESOLVENT AT LOW ENERGY AND RIESZ TRANSFORM FOR
SCHRODINGER OPERATORS ON ASYMPTOTICALLY CONIC
MANIFOLDS. II.
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ABSTRACT. Let M° be a complete noncompact manifold of dimension at least
3 and g an asymptotically conic metric on M°, in the sense that M° compact-
ifies to a manifold with boundary M so that g becomes a scattering metric on
M. We study the resolvent kernel (P + k?)~! and Riesz transform T of the
operator P = Ay + V, where Ay is the positive Laplacian associated to g and
V' is a real potential function smooth on M and vanishing at the boundary.

In our first paper we assumed that P has neither zero modes nor a zero-
resonance and showed (i) that the resolvent kernel is polyhomogeneous conor-
mal on a blown up version of M? x [0, ko], and (ii) T is bounded on LP(M?)
for 1 < p < mn, which range is sharp unless V = 0 and M° has only one end.

In the present paper, we perform a similar analysis allowing zero modes
and zero-resonances. We show once again that (unless n = 4 and there is a
zero-resonance) the resolvent kernel is polyhomogeneous on the same space,
and we find the precise range of p (generically n/(n —2) < p < n/3) for which
T is bounded on LP(M) when zero modes are present.

Soit M° une variété compléte de dimension n > 3 et g une métrique asymp-
totiquement conique sur M°, au sens ou M° se compactifie en une variété a
bord M telle que g soit une métrique de type “scattering” sur M. On étudie
le noyau intégral de la résolvante (P + k2)~! et la transformée de Riesz T de
Popérateur P = Ay + V, ou Ay est le laplacien positif associé & g et V' un
potentiel réel, lisse sur M et s’annulant au bord.

Dans le premier article nous avons supposé que 0 n’est ni résonance ni
valeur propre pour P et montré (i) que le noyau de la résolvante est conormal
polyhomoggne sur une version éclatée de M? x [0, ko], et (ii) que T est borné
sur LP(M?°) pour 1 < p < n, ce qui optimal sauf si V=0 ou M° a seulement
un bout.

Dans le présent article, on effectue une analyse similaire tout en autorisant
les cas ol 0 est résonance ou valeur propre. On montre la encore (sauf sin = 4
et 0 est résonance) que le noyau de la résolvante est polyhomogene sur le méme
espace, et on donne 'intervalle de p (génériquement n/(n—2) < p < n/3) pour
lequel T est borné sur LP(M) quand 0 est valeur propre.

1. INTRODUCTION

This is the second in a series of papers on the analysis of low energy asymptotics
of the resolvent for Laplace-type operators on asymptotically conic spaces. Our
setting is a complete noncompact Riemannian manifold (M°,g) which is asymp-
totically conic in the sense that M® is the interior of a manifold with boundary M
such that in a collar neighbourhood [0, €),, x OM near OM,

dr?  h(z)
(11) g = ? + ?
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where z is a smooth function that defines the boundary OM (i.e. M = {z = 0}
and dz does not vanish on M) and h(x) is a smooth family of metrics on M. We
let V' be a real potential such that there exists an integer I > 3 with

(1.2) VelC®M), V=0(@G"asz—0,
and consider the Schrédinger operator
P=A,+V

where A, is the positive Laplacian with respect to g. Our main interest is the
behaviour of the resolvent kernel (P + k%)~ as k | 0, and related operators such
as the Riesz transform and the heat kernel of P.

The operator P is self-adjoint on L?(M,dg) and its spectrum is o(P) = [0, 00) U
opp(P) where opp(P) = {—k7 > -+ > —k% } is a set of negative eigenvalues (by
convention k; > 0). The point 0 can also be an L?-eigenvalue, but the positive
spectrum is absolutely continuous.

The resolvent R(k) = (P + k?)~! is well defined as a bounded operator on
L?(M,dg) for k € (0,k;) but fails to be bounded or defined at k = 0. In the
first paper in this series, [5], which we refer to as Part I, we assumed that n >
3, that [ = 3 in (1.2) and that P had neither zero modes (i.e. 0 is not an L?
eigenvalue of P) nor a zero-resonance and showed that for small kg < kp, the
distributional kernel of R(k) is well-behaved on a certain manifold with corners,
denoted M,isc, that is a blown-up version of X = [0, ko], x M x M. This space,
illustrated in Figure 2.1, is a compact manifold with corners up to codimension 3,
and has 8 boundary hypersurfaces. Each boundary hypersurface can be considered
an ‘asymptotic regime’; for example, one asymptotic regime is when k goes to zero
and simultaneously the left variable z, z € M, tends to infinity (i.e. x(z) — 0)
while 2’ is held fixed, and this corresponds to the boundary hypersurface lbg in the
figure. This face by may be considered as a bundle of directions of convergence
in the corner {z = 0,k = 0}, the fibers of which are identified with [—1,1], where
7:= (z — k)/(z + k), the basis being the corner.

Using this space we defined a calculus of pseudodifferential operators, denoted
\IJ;n’(abe’a“’a“);g(M :Q/?) which are polyhomogeneous conormal both at the di-
agonal submanifold and at each boundary hypersurface of M ,?7SC. The index m
denotes the conormal order at the diagonal (that is, the order as a pseudodiffer-
ential operator), while (aps,, a.f, asc) and € specify the type of polyhomogeneous
expansion allowed at the various boundary hypersurfaces of M ,3’“; see Section 2.3
of Part I. The first main result of Part I was that the resolvent kernel lies in this
calculus of operators; in this sense we found the complete asymptotic expansion of
the resolvent kernel, in every asymptotic regime, as k — 0. We also computed the
leading order behaviour of the resolvent at each boundary hypersurface.

This precise analysis of the resolvent at low energy allowed us to determine the
exact range of p for which the Riesz transform of P is bounded on LP. If P is
nonnegative, then the Riesz transform T is defined by T = dP~'/2; in general, to
make sense of this, one needs to project off the nonpositive part of the spectrum
(i.e. that corresponding to eigenvalues) before taking the —1/2 power of P. In Part
I, we showed

Theorem 1.1. Let n > 3, and let P = A, be the Laplacian on an asymptotically
conic manifold (M,g). First we assume that M has one end. Let Appr be the
Laplacian on the boundary of M for the metric h(0) given by (1.1), let Ay be its
first non-zero eigenvalue, and let vi = \/((n —2)/2)2+ 1. If 11 < n/2, then the
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Riesz transform T satisfies

1
T e L(LP(M), LP(M; T*M)) <= 1<p< n<g - ,,1)

while if v1 > n/2, then
TeL(LP(M),LP(M;T*M)), forall 1<p<oo.

Next let P = Ay+V with V' as above, and suppose that either M has more than
one end, or that V is not identically zero. In either case we assume that P has no
zero modes or zero-resonances. Then

TeL(LP(M),LP(M;T*M)) <= 1<p<mn.

In this second paper, we allow P to have zero modes or zero-resonances. Here
a zero mode is an eigenvector 1 € L?(M) such that Py = 0, and a zero-resonance
is an function ¢ ¢ L?(M) with Py = 0, with 1 tending to zero at infinity; zero-
resonances can only occur in dimensions 3 and 4. We carry out a similar parametrix
construction for the resolvent as in Part I [5], but with additional complications.
The main problem is that the leading terms in the parametrix are more singular
than they were when no zero modes are present: for example, the leading term is
at order —2 instead of 0 at zf, and may be at order n/2 — 4 instead of n/2 — 2 at
rbg. This means we must define several ‘models’ (i.e. terms in the Taylor series)
at each boundary hypersurface, rather than just one, and this in turn means the
compatibility conditions between models on adjacent boundary hypersurfaces are
much more involved. Nevertheless, we carry out the program and show that the
resolvent lies in our calculus of operators, except in exceptional cases. The result
depends on the nature of the L? kernel of P. Define

(1.3) m' = min(2,m), m=sup{a>0|ker P C 2" ?T*L>®(M)}.
We show

Theorem 1.2. Let (M, g) be asymptotically conic of dimension n > 3. Let P =
A, +V as above and assume that P has nontrivial L? kernel. Also, if n = 3,4 or
5 we assume that

(1.4) P has no zero-resonance, and m' > (5 —n)/2 if n = 3,4,5.

Then R(k) = (P+k?)~! € W;Q;(_Q’O’O)’R(M; Q;/z) is in the calculus and has leading
behaviour at order —2 at zf, —2 at bfyy, n/2 —4+m’ at lby and rby, 0 at sc and is
rapidly vanishing at b, rb, bf.

This is a simplified version of Theorem 4.1 which contains additional information.
In the asymptotically Euclidean, rather than conic, setting the corresponding result
is presented in Theorem 3.4.

The complete analysis in dimensions 3 and 4 is more involved because of the pos-
sibility of resonant states and due to the relatively slow decrease at infinity of zero
modes. We have not attempted a complete treatment of all cases, but deal fully
with the asymptotically Euclidean case in dimension 3 in Section 5, which allows a
direct comparison with the work of Jensen-Kato [7]. We also show polyhomogene-
ity in this case; see Theorem 5.2. The asymptotically conic case in dimension 3
is sketched in Section 6 assuming that there is either a unique resonant state or a
unique zero mode with rather weak decrease at infinity. This assumption is made
to avoid excessive technicalities and suffices to show a variety of possible asymp-
totic behaviours of the resolvent as k — 0, depending on the rate of decrease of the
resonant state (resp. zero mode) at infinity. It turns out that in dimension 3, when
there is a resonant state ¢ € 23/2L°°(M)\ x3/2+€L>° (M), thus failing only logarith-
mically to be a zero mode, the resolvent is no longer polyhomogeneous on M ,?7SC.
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Actually we do not give details in this case since the same phenomenon appears in
the dimension 4 asymptotically Euclidean case for a resonant state decreasing like
2?2 (i.e. r2) at infinity, and we have thus chosen to explain this phenomenon in
that more familiar geometric setting — see Theorem 7.2. It leads to the surpris-
ing (although known since at least Murata’s work [11]) result that the generalized
projection onto the resonance occurs at order k=2(logk)~!. The reciprocal of the
logarithm shows that the resolvent is not polyhomogeneous in this case; rather it
has the form of k=2 times a convergent power series expansion in 1/logk as k — 0.

It is worthwhile to emphasize that the analysis of the expansion at £ = 0 of the
resolvent for perturbations of conic manifolds has been worked out by X-P. Wang
[12], but our result is stronger in the sense that we study the Schwartz kernel at all
asymptotic regimes and not only at kK = 0 with 2,2z’ € M° fixed. In particular our
result about the resolvent allows us to obtain precise estimates on the heat kernel
as t — oo (as shown for instance in [4]) and Riesz transform analysis.

We now turn to a generalization of the Riesz transform results to this setting.
Let II< denote the spectral projection for the operator P onto the positive spectrum
(0,00), and Ps = Polls. The operator P;1/2 is obtained from the resolvent using
the formula

1 2 [
(1.5) P>5 = ;/ (P +k*) "' oIl dk.
0

If P has zero modes, then there will be a term k™ 2IIy present in the resolvent,
which obviously makes the integral diverge. However, composing with Il kills the
k2 singular term and then there is a chance that the integral becomes convergent,
allowing the Riesz transform to be defined in this setting too. It turns out that
this happens in dimensions n > 6, but not necessarily in lower dimensions where
terms of order k~% with a > 1 may appear in the expansion of R(k) at k = 0. In
the present paper, we find the optimal range of p for which the Riesz transform is
bounded on LP; this range depends on n and the nature of the null space through
the number m’ defined in (1.3). There is a large literature about this question for
the Laplacian on manifolds (i.e. when V' = 0) and a few results for the case V' > 0;
we refer the reader to the Introduction of Part I [5] for a few references and known
results.

Since we need to compute explicitly the leading asymptotic coefficient of the
Schwartz kernel of the resolvent R(k;z,z’) as z’ — 0 to analyze Riesz transform,
we will make an additional assumption which is not serious but more a technical
device to keep the paper of a reasonable clarity: we shall suppose that

(1.6) h(z) — h(0) = O(z®), V =O0(z°) as x — 0.

Theorem 1.3. Let (M, g) be an asymptotically conic manifold of dimension n > 3
and V be a potential satisfying (1.6). With P := Ay, +V, assume that kerp2 P # 0
and (1.4), where m’ be defined by (1.3). Then

T € L(LP(M), LP(M;T*M)) < <p<

n n
n—2+m 3—m'’

Remark 1.4. In dimension 3 and when 1 < m < 3/2, we see that T is bounded in
the range (3/(1+m),3/(3—m)) C (1,2) and when m — 1, this interval reduces to
p = 3/2. Tt is perhaps surprising that these intervals do not contain the point p = 2.
To illustrate this, in Section 5.9 we prove directly (without using resolvent) that, in
this case, there is a sequence fr € IIs (L?(M)) such that ||dfr||> > «(R){Pfr, fr)
with a(R) — oo when R — oo. The condition m < 1 also corresponds to the
case where R(k)II- becomes non-integrable at k = 0 since its expansion at k = 0
contains powers of order lower or equal to —1. In dimension 4 (resp. 5), the same
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phenomenon holds when 1/2 < m < 1 (resp. m = 0), then the limit as m — 1/2
(resp. m — 0) of the interval of boundedness reduces to p = 8/5 (resp. 5/3).

Remark 1.5. These cases might be considered somewhat artificial, geometrically
speaking, since the resonances or eigenvalues come from the potential perturbation
V. However, it is very likely that a similar phenomenon occurs for the Laplacian
acting on forms on asymptotically conic and Euclidean manifolds, due to L? har-
monic forms and zero-resonance forms [3]. We plan to analyze this in a future
publication.

1/2)

2. THE BLOWN-UP SPACE M? , AND THE CALCULUS WZ“g(A4;Qb

k,sc

2.1. The space M,f,sc. The resolvent kernel (P + k%)~ is a distribution on the
space M° x M° x (0, ko]. We work on a compactification of this space tailored to
the geometric and analytical properties of the operator P + k2. We begin with the
obvious compactification M x M X [0, ko] and perform several blowups. The reason
for the blowups can be explained in terms of the off-diagonal behaviour of the
resolvent kernel. Roughly speaking at energy —k?, the resolvent kernel should have
exponential decay at the scale k! away from the diagonal. Thus for fixed k& > 0 the
kernel is essentially supported close to the diagonal, but for £ = 0 we get only weak
(polynomial) decay. To effectively decouple these two effects we blow up boundary
submanifolds of M? x [0, ko] which separates the exponential behaviour for k > 0
from the polynomial behaviour at k = 0. Let us denote the boundary hypersurfaces
of this space zf = M? x {0}, tb = M x OM x [0, ko], and 1b = M x M x [0, ko].
Then we blow up the submanifold (9M)? x {0}, followed by the lift to this space
of (OM)? x [0,ko], M x OM x {0}, OdM x M x {0}, to produce a space we call
M 131;' The new boundary hypersurfaces so created are denoted bfy, bf, rby and lby,
respectively. Finally we blow up the boundary of the diagonal intersected with bf
to create a new boundary hypersurface sc, to produce the final space M ,fsc. See
Figure 2.1. The rigorous description of this space is done in Subsection 2.2 of Part
I [5].

This space has eight boundary hypersurfaces, and each one can be thought of as
a geometric realization of a distinct ‘asymptotic regime’. Let us denote points in
the left copy of M by z and points in the right copy of M by z’. For z in a collar
neighbourhood of M we write z = (x,y) with y a local coordinate on M. Then if
k tends to 0 with z, 2’ fixed we arrive at zf. If kK — 0 and z, 2’ both tend to infinity
with k/z and k/z’ tending to limiting values, then we arrive at bfy. If k£ > 0 is fixed
and z, 2z’ both tend to infinity with y tending to a limit and the distance d(z, 2’)
fixed then we arrive at sc, and so on.

To construct an accurate parametrix for the resolvent, we need to solve the PDE
(P + k?)G = § where §, the kernel of the identity function, is a delta function
supported on the diagonal submanifold. Thus the construction ‘begins’ by spec-
ifying the correct conormal singularity at the diagonal, together with the correct
model operators on each of the boundary hypersurfaces that intersects the diagonal,
namely sc, zf and bfy. Let us consider the model problem at zf, that is at £k = 0
and for z,2’ € M°, in more detail.

We define the metric g, by g, = x2g; it is then an exact b-metric in the sense of
Melrose [8], that is an asymptotically cylindrical metric on M. We now define the
operator P, by

n _n
P=g2ttp g3t

Since P is formally self-adjoint with respect to g, P, is formally self-adjoint with
respect to gp. Actually, we prefer to think about the relation between P and
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1bg

1b
b, A

SC

bf
rb

FiGURE 1. The blow-up manifold M,?ysc.

P, differently. If we regard the derivatives comprising P, as annihilating the b-
half-density |dgs|'/? (the Riemannian half-density corresponding to the metric g;),
and the derivatives comprising P as annihilating the half-density |dg|'/?, then this

effectively implements the conjugation by 2”/2 in the formula above and the relation
becomes
(2.1) P=zPx.

Explicitly, the formula for P, is

n —

2 2
(2.2) Pyi=—(20.)? + (") + Bou + W,

with W € zDiffy,(M) a lower-order term at z = 0 (here Diff, means the set of
differential operators which are smooth combinations of vector fields tangent to
OM, see Part I [5]). We see directly from this that P, is elliptic as an b-differential
operator. The kernel of its inverse therefore lives naturally on the space sz =
[M?;(0M)?], i.e. M? with the corner blown up [8]. The face zf is canonically
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diffeomorphic to M7, and the leading model for (P + k?)~! (at least in the absense
of zero-modes and zero-resonances) is the inverse of P, (up to powers of z).

We need to recall some of the main results of the b-calculus from [8]. For more
details, and definitions of index sets, etc, see Part I [5], section 2; here we just quote
the three main theorems needed in this paper:

First, we denote L3 (M) := L?*(M;Q?) the square integrable (b-)half-densities;
here ), is a canonical smooth bundle over M of 1-densities defined in Subsection
2.2.2 of Part I [5] and trivialized by |dgs|. The spaces Hj (M) is the associated j-th
Sobolev space, see Section 2.1 of Part I.

Let Ao =0 < A1 < Ag... be the spectrum of the Laplacian on (0M, hg), without
counting multiplicity. We then define

(2.3) Ny = {vo,vn, - |vi = (%—1)2“2}.

In general we shall not assume that OM is connected except in a few particular
cases for simplicity of exposition (in which case it will be emphasized). In the case
of the canonical sphere (M = S"~1 hy = df?) (i.e. for the Euclidean setting) we
have

Ny = {g—1+l;leNO}.
We shall also use the notations
E,, :=ker(Appr — A;) for the conic case ,
E; :=ker(Agn-1 —i(i + n — 2)) for the Euclidean case.

Theorem 2.1 (Melrose’s Relative Index Theorem, [8]). The operator P, is Fred-
holm as a map from x“Hg(M) to xaHg;Z(M) for all j > 2 and all o # +uy,
1 =0,1,2,.... The index of Py is equal to 0 for |a| < (n/2 — 1) and the index
Jumps by dy, the multiplicity of the v}-eigenspace E,, of Aoy + (n/2 —1)%, as «
crosses the value +v; (with o decreasing).

Theorem 2.2 (Regularity of solutions to Pyu = f). Suppose that f is polyhomoge-
neous on M with respect to the index set E, that u € x*LE(M), and that Pyu = f.
Let S be the set

S={4y|1=0,1,2,...}

and for b € R let u(b,j) = t{b+ k;k = 0,...5} NS. Then u is polyhomogeneous
with respect to the index set EUF, where F is the index set

{((£v+)),k) |l €No,j € Ng, 11 > o, 0 < k < p(£1,5) — 1}
Remark 2.3. When (OM, ho) = (S™1, d6?), this reduces to
{(n/2+0Lk)|l€Z n/2+1>a, 0<k< N, —1}.

where N is the number of elements of the form +(n/2—147), j € Ny in the interval
(a,n/241] .

Recall from Section 2.1 of Part I [5] the definition of G, C Ej,,|. It is a finite
dimensional subspace of C*°(9M). Informally it is set of coefficients of the leading
asymptotic as z — 0 of all u € null P, u € 2"~ ¢L?(M) for all € > 0.

Proposition 2.4. ([8], Chapter 6) The subspaces G, and G_,, of E,, are orthog-
onal complements with respect to the inner product on (OM, hg).

In order to simplify the exposition and avoid tedious computations, we will
make the assumption (1.6). This assumption implies that if w is solution of Pyu =



8 COLIN GUILLARMOU AND ANDREW HASSELL
O(xv*+2%¢) with asymptotic

u= Y ¥ (logx)Fiuy,(y) + O
v;ENp
v<v; <v+2
for some v € Ny, € > 0, k; € Ng, u,, € C*°(OM), then k; =0 and u,, € E,, for
any i such that v; < v+ 2. This is straightforward from the indicial equation.

2.2. Operator calculus. The purpose of the space M,f,sc is to carry the kernel of
our parametrix for the resolvent (P + k2)~!; eventually, we will see that the resol-
vent kernel itself is nice on this space. We define a ‘calculus’ of pseudodifferential
operators, denoted \Ilkm"g (M; Q;/ 2), defined by their kernels which are half-densities
on M, f They can be realized as operators on half-densities on M° depending

parametrically on k. The space \IJZIE(M ; Q;/ 2) depends on a pseudodifferential
order m, controlling the diagonal singularity, and an index family &, i.e an index
set for each of the boundary hypersurfaces zf, bfy, sc, Ibg, rbg, specifying the allowed
terms in the polyhomogeneous expansion of the kernel at each of these faces (at
the remaining boundary hypersurfaces, i.e. 1b, rb, bf, the kernels are required to be
rapidly decreasing). See Definition 2.8 in Part I [5] for the precise definition.

The most important properties of this calculus are

,s¢c”

e There is a composition law: given index families A and B as above, there
is an index family € given in Part I [5, Prop 2.10] such that

m,A ~1/2 m/, B ~N1/2 m+m’,C ~1/2
TA M0 0 W (M 0% w7,

o If F € \I/ZL’E(M;Q;/Q) is in the calculus, with m < 0 and with & > 0
for f = zf, bfy, sc, Ibg, rbg, then for large enough N, EV is Hilbert-Schmidt
with ||EN (k)| s — 0 as k — 0. In particular, the operator Id —E™N (k) is
invertible for N large enough and k small enough, and the Neumann series
Id+E(k) + E(k)? + ... for the inverse converges in operator norm and in
Hilbert-Schmidt norm.

o Ifthe index family A is nonnegative, then the restriction of A € \I/Zl’“q (M; Q;p)
to any of the faces zf, bfy, sc is well-defined, denoted I¢(A), f = zf, bfy, sc, and
called the normal operator at f. The kernel I,¢(A) is a b-pseudodifferential
operator of order m, the kernel Iy, (A) is a pseudodifferential operator act-
ing on half-densities on OM x (0,00) and the kernel I;.(A) is a family,
parametrized by OM x (0, ko], of convolution pseudodifferential operators
acting on half-densities on R™. The normal operators respect composition:

If(A) O If(B) = If(A o B)
provided that
-Arbo + Blbo > 0 and Albo + Brbo > 0.

See Part I, Section 2 for more details.

3. RESOLVENT KERNEL FOR ASYMPTOTICALLY EUCLIDEAN MANIFOLDS

In this section, we assume that n > 3, that M is asymptotically Euclidean, that
P has no zero-resonance, and that m > 2 if n = 3 (see (1.3)). We apply the same
method as the case of section 3 of Part I, but with additional difficulties due to
zero modes. We recall that our operators act on half-densities. This means that the
space L2(M;Q'/?) = L?(M; 92/2) has invariant meaning (independent of a choice
of metric).
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Our strategy is the same as in Part I. That is, we construct a parametrix G(k)
in our calculus, i.e. we want to find G(k) € \11122;(72’0’0)’9(M, Q;/2) that solves

(P + k)G (k) = Id +E(k)

with E(k) ‘small’ as k — 0. As an element of the calculus, G(k) has a Taylor series
at each boundary hypersurface of M, E,SC. We use k as a boundary defining function
for the interior of zf, bfy, Ibg, rby and coordinates (z, z’) on zf, (k, ', y,y") for bfy,
(2,9', k) for tbg and (2, y, k) for Ibg. Here, on the left M factor of M2, z € M is
written z = (x,y) close to M, where y is a coordinate on IM, and xk = k/z; while
primes indicate the same coordinates on the right factor. Using these coordinates
we can write the Taylor series at the face f, for f = zf, bfyy, rbg, Ibg in the form

> G

Jj2Jjo
and this defines the coefficents Gg uniquely. We call Gg the ‘model’ at order j
at the face f. Let us remark that, at the other boundary hypersurfaces of M, ,?7SC,
elements of the calculus have trivial expansions (i.e. are rapidly decreasing) at
bf,1b, rb while at sc we only need to consider the leading term (normal operator)
which is well-defined independent of the choice of coordinates.

We specify G(k) by giving a finite number of models at each boundary hypersur-
face, together with the singularity at the diagonal, and checking compatibility of
the models at adjacent faces. The parametrix can then be taken to be any element
of the calculus consistent with the specified models.

3.1. Term at sc and bfy and the singularity at the diagonal. The terms G2.,

Gl;fi and the diagonal singularity are defined exactly as in Part I: G2, is defined
to be the inverse of (P + k?)?. and the diagonal singularity is defined to be the
symbolic inverse of (P + k?). As for Gl:fi’ we recall that, in terms of coordinates

k=k/x,k" =k/z',y,y', k valid near the interior of bfy, the operator P + k? reads
(31) P+k*=k* 3! ( —(80) 4+ Agnt + (n— 2)2/4 + K2+ W)n%’l.

with respect to the flat connection on half-densities annihilating |dg|*/2. Here
W = O(x) (see (2.2)). In terms of the b-flat connection annihilating the b-half-

density |dgy|'/?, our operator is to leading order at bfy
3.2) k! ( — (k0)2 4+ Agnt + (n—2)2/4+ nz)ﬂ e

The operator Py, acting on the left on My x My on b-half-densities f(x, y)\nfld/@dy\%
has an inverse Qug, in terms of eigenspaces on S™:

Quty = 3T, (L 1 () Ky 1 (W) H (6 = )

(3.3) =0 )
drdydr'dy’ |2
+ L1 (K)Kjrg (k) H(k — "ﬂl)> T
where here and below, IIg, = IIg,(y,y’) means the Schwartz kernel of the or-

thogonal projection on E; C L?(S™~!), and I,(z), K, (z) are the modified Bessel
functions (see [1]). We set

(3.4) Gl;fi = (HH/)Qbe.

The consistency of these models follows exactly as in Part I [5], Subsection 3.5.
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3.2. Terms at zf. As in Part I, the theory of b-elliptic operators given by Melrose
[8, Sec. 5.26] shows that there is a generalized inverse @, a b-pseudo of order —2
for the operator P, on L, such that

N
PQy=QuPy =1d—> ¢; ® ¢;.
j=0

where (¢;); is a basis of L? real orthonormalized (half-density) eigenfunctions of
P, with eigenvalue 0. The normal operator I (@) on the front-face ff := zf N biy
of zf is exactly as in Part I, namely the inverse of the normal operator Ig(P,) =
(sDg)? + (n/2 —1)? 4+ Agn-1, given explicitly by

dydy'dxdz’ |2

xx!

o0 —(j+2-1)|log 5|
(& 2
3.5 Il
(3:5) ;0 B i+ n—2

where s := x/2’ is a global coordinate on the interior of ff, identified with (0, 00)s x
Sl x S"~1. The ¢; are smooth in M and, by Theorem 2.2, have a polyhomoge-
neous expansion at the boundary OM of the form

(3.6) o~ ( 1ZZalk 2! log ( )) ® |dgy|V?,  x — 0.

=0 k=0

The logarithmic terms in (3.6) complicate the parametrix construction (although
not in an essential way). In order to present the construction as smoothly as possible
we assume (1.6) to avoid logarithmic terms coming too early in the expansion. (See
Remark 3.6 for what happens if we do not make this assumption.) With this
assumption, W in (3.1) is O(2?®) and we have

m—+2
j n_ oy 1
pi(ey) = (3 alpw)at ™+ 4 0@ loga)) © day

l=m

(3.7)
and al, € By = ker(Agn1 —Il(n—2+1)), l=m,m+1,m+2.

For what follows, we will write a{ instead of a{o to avoid too many subscripts.
Since P = zPyx (see (2.1)), we obtain

N
(3.8) Pz 'Qur™t) = Id—ngpj @z ;.
j=0

We denote by (;)j=0,..~ a basis of real orthonormalized eigenfunctions of P for
eigenvalue 0. Then we may write

N
(3.9) i = Zaz‘jxilS%'
=0

for some matrix (;;), whose inverse is denoted (a*). Decomposing in L?(M),

TY; = errP(‘T@j) + (1 - errP)(x(pj)ﬂ

N N N
(3.10) Ilker p(zep; ) : Z (/ x@j7/}k)¢k = Z Oékl(/ @j‘ﬂl)iﬁk = Zakﬂ/}k-
k=0 ‘M 1,k=0 M k=0
Thus we deduce
N N ' N
(3.11) (Mer p(x95)) @705 = Y anad"p @y =Y vy @ .

=0 4.k, 1=0 k=0
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Let us denote zlel := (1 — Hyer p)(2¢;). Then x_lel € x2=3+tm=<[2(M) for all
e > 0. Thus, for n > 4 it is in x_%_eL%(M) for e > 0 (recall that m > 1 if n = 4).
By Theorem 2.1, P, is Fredholm of index 0 on this space. Therefore, x*1¢% is in
Range(Py) on z*%*€L§ if and only if it is orthogonal to the null space of P, on
zatel? (M). This is actually true since the null space of P, on :1:%+5L2(M) is equal
to the null space on L?(M) in view of the expansions (3.6), and hence spanned by
the ;. But 271y, is a linear combination of the 1) and hence 2 !¢; is orthogonal
to wﬁ, or equivalently ; is orthogonal to x_lz/)kl. If now n = 3 and m > 2,
then x_le- € LE (M) so we can apply the same arguments in this space instead of
x’%’ELf.

This implies that there exists y; € 22 “L2(M) (resp. in L}(M)) for j =
0,..., N such that

(3.12) Pyyj ="'y

if n >4 (resp. if n =3 and m > 2). Assume now that n > 4 and m’ > 1 for n = 5.
(The cases n = 3,m' = 2 and n = 5,m’ = 0 will be discussed in Sections 3.4 and
3.5 respectively; note that m’ > 1 automatically if n = 4.) We define our model
operators at orders -2, -1, 0 and 1 at zf by

N
Gt =) vy

=0
G;' =0
(3.13) N
Gpp = (xa) ™ <Qb +> (R +9;® Xj))
=0
G;f == O

It is then not difficult to check that PGY + G;fQ = Id, which implies that (P +
k?)G(k) —1d vanishes to order k? at zf for any parametrix G (k) with this expansion
at zf.

We need to check consistency of these models with Ggfi. To do this we need to
show that the term of order p;flfz in the Taylor series for Gt:f?) at bfyNzf agrees with
the term of order pi;;l in the Taylor series for GL, at zfNbfy, for —2 <1 < 1, where
Poio Pzt = k. For | = —2, we note that ¢; vanishes to order n/2—1+m at z =0 (as
a multiple of |dgy|'/2), hence G, vanishes to order 2(n/2 — 2 +m) =n — 4 + 2m
at bfy. Since n — 4 + 2m > 0 here, we see that the restriction of this to zf N bfy is
zero. This matches the restriction of Gt:fﬁ to zf N bfy at zf N bfy since Ggfi vanishes
to order 2 at zf N bfy. From this we see that also Ggfi and G;cl are compatible.
Moreover, for v € (0,00) \ {1} we have

(3.14)
1 z 1 z2
Iy -~ (Z\V 1 P O 4

@) =15 ( i (5) ok )) .

K (Z) _ M(E)*V(l n F(*V)(E)Zu + L(E)Q i 0(24 o z)) as z — 0.
=T T(v) ‘2 1-v'2 &
To simplify the notations, we define the following renormalized Bessel function:
% KV(Z) I —v

(3.15) K,(z) = T)2T' so that K, (z) ~,—o 2" for Re(v) > 0.

This implies that the next term in the Taylor series of Gt:fi is at order 2, so that it
is also compatible with G;.
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It remains to check compatibility of Gl;fi and GY%. We have already observed
that Ggf?) and (z2’)~1Qp are compatible. On the other hand, we know that 2~ 1¢;
vanishes to order n/2 —2 +m at x = 0 (as a multiple of |dg,|'/?) and, by (3.19),
71y vanishes to order n/2 — 4 4+ m at & = 0. So the rank one terms in the third
line of (3.13) decay to order n — 6 + 2m > —1 at zf N bfy and so restricts to zero
there when multiplied by pi; . This verifies compatibility of Gl;fi and GY;.

3.3. Terms at rby and lby. Next we construct terms Gfbo on rbg. We will need
these for three values of j, depending on m, namely j = n/2 — 4 + i for ¢ =
m’,m’ + 1,m' + 2 where m’ = min(m,2) . The terms at lby will be determined
from those at rbg by the condition that G(k) has a symmetric kernel. We note here
that in order to determine the resolvent kernel, it is not necessary to specify so
many models; for this we only need the models of negative order at rby. However,
the three models are required to determine the leading behaviour of the resolvent
at rbg and lbg which is important for Riesz transform applications.

We begin by determining the first few terms in the Taylor series of G;fQ and G
at zf Nrby. Let us begin with the kernel Q);. Localizing near rb, the kernel of the
identity vanishes identically and we have

N
PQy = QP = —Z@j ®@ @j.
=0

Using Theorem 2.2 and (1.6) we can write the following asymptotic for @ at rb:

2
(3.16) Qp = Z Z vir(z, )2 ogh () + O(2'? T2 log(2))

1=0 k=0

for some v;5. By considering the operator operating on the right variable, and using
assumption (1.6), the logarithmic terms v;; for k > 0 are absent for ¢ < m, while
for i > m we have v;; = 0 if k > 2 and v;; is given by

N .

> ah()ei(2)

j=0

since ((20,)? — (n/2 — 1 +14)%)z2 ~Tilog(z) = (n — 2+ 2i)z2 '™ Now consider

P, acting on the left variable. By matching the series (3.16) with the expansion

(3.5) at zf N bfy we see that for all 4,

x7%+17iHEi (ya y,)
(2i +n—2)

1

) =5

(317) Ui()(xvyay/) = +O(’I7%+27i)

and

(3.18) Pyvjg =0 for i < m, while Pyv;g = — Z(pj(z)afo(y') for i > m.

J
Moreover, according to the assumption (1.6), we have v;o(z,-) € E; for i < 2. Like
the af terms, we will denote v; instead v;g for simplicity of notations, and we define
v; := 0 for 7 < 0.

Next we consider the asymptotics of the rank one part of G%. For this we
need the asymptotics of ;. The term J;_lel = — Zf@v:o akja?_ll/)k + ¢; has the
asymptotic

N m—42

e ) = = Y amaw Y dl@)e? T 4], (y)at T 4 0@ loga).

k,1=0 i=m
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Theorem 2.2 implies that, after setting

N N
= E E akjakla

k=0 1=0
we get the asymptotics
1 mzﬁ ( _bz (y) + ﬁj ( )) o444 agn(y)x%—%m logx
€T . = —_— 7 X —
(3.19) V= 2\ —apaq) Y 2T I

+O(z" ™ log? ).

for some 6{ € E; such that 55 =0ifi <O.
The leading behaviour of Gz_f2 and GY at rby is therefore

m—+2 N

Y Y a)agaup(z)a T + 0@ T og(a!))
i=m j,k,l=0
m+2 N ) N ) N

= 7Y N )ei () F T 0@ T  og(a))

i=m j=0

-2
sz

and

(3.20) GY% =~ 1ZN:<7§:2(W+6 2(y )) 4”)@(2)
' “t : 2(n — 4 + 20) J

7=0 \i=m

a2t Z viz,y)a' 2 TP ! Z al, (v )x;(2)x'? rEREm O(.%‘/%_H_m, log? )

Note that the /2 2T log 2’ term from (z2')~'Qy cancels that of (zz’)~! 29 ®

X;- Thus, let us define for i = m’,m’ + 1 (recall that K, (2) is defined in (3.15))

2 —441
Gfbo + _K,K" 3+'L (Z@J 2 / +Ul Z(Z y))
(3.21)
+I€Kﬂ_1+z 121)]

Notice that P annihilates these models due to (3.18), since I <i—2 < m —1 in the
second term. If m = 0 or 1 we set

5—2+m 1
Gi, =K K"+1+m me+2 (2)

N
+ K Ky 1 (5o <vm(z, )+ Bny)ei(2) + a?n(y’)Xj(Z)> -
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Then using (3.18) and (3.12) we compute for m = 0,1

PR =W K v (e (Boem(e) + 3 Pbxxz)azg(y'))
:/{/K%,ler ( Z a] y)ap;(z
ICIOR errpwj(z)))aa(y’))

=—KEKn_11m(s Zlﬂ Yzt (2)

G5—4+m

In this case the error term E(k) will have leading behaviour at rby no worse than
p?b;Hm log(prb,) at rbg. When m > 2, we need to include an additional term in
GE, to kill the

N

w(z) =w(zy) =v(zy)+ > B )ei(2)

=0

term coming from kQGif (note that this term is actually constant in ¢’ and that
B =01 m > 2).

Lemma 3.1. There is a half-density 9(z) € x~% ~17¢L2 such that Pyo(z) = 2~ 2w(z),
with the asymptotic expansion

v

(3.22) u(2) = 2n(n — 2)Vol(Sn—1)

+0(z"%272), 2 —0.

We postpone the proof of this lemma to section 3.7. Accepting this, we set

Gr"’bo =K Kw+3 -1 ij + & Ko _1 ()2 22 19(2)

2

N
+ K Ko i1 (k)z™ <vz(z, V) + DB )ei(z) + aé(y’)xj(z)> -

Jj=0

and then again PGr%b0 = —Gr%b;Q, so the error term at rby has leading term at order

Prbo IOg(Prbo) ‘
We next observe that the dependence of Gfbfﬂ(z, k',y') on k' and y’, for i =
m’,m’'+1 is always of the form H’f(n/z,lﬂ(n’)bj(y’) where b; € E;. It follows that

P acting in the right variable kills these models, or equivalently that PGI%_‘H_i =0
0

for i = m/,m' +1,m’ + 2. In addition, we automatically gain two orders at the left
boundary since P = x P,z and x = 0 at lbg. Therefore the error term has leading
order n/2 4 1+ m' at the left boundary.

Using the formulae in (3.14), one easily checks that Gig“i matches with Ggf
for i = m/;m'+1,m' +2 and j € {—2,—1,0,1} at zf Nrby. The Gifﬂ also
match with Gl:fi’ using the asymptotics of vjo(z) and of I,,(x). Also note that when

m' = 2 the matching of G’ie and Gl;fi involves the subleading, rather than leading,
term of Iz (k) at k =0 in Gl:fi'
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3.4. Additional term when n = 3 and m > 2. In this case, all terms we have
constructed above are kept the same except the term GL. Indeed, to match G
with Gl:fi’ we see that the term of order z in the asymptotic

(3.23) K

ol
—~
I3
~
Il

o |
/N
N\

N

— 22 —|—O(z%)>, z—0,
implies the asymptotic of Gt:f?) at zf

Gy = ' (In(Qu) = k(w2') " o(y)do(y') + O(p3y))
and we thus set the term
Gl = —(zx")~'Vol(S%)vo(2)vo(2)
which is compatible with Ggfﬁ in view of (3.17) and ¢o(y) = (Vol(S2))"2. As
for matching of GL; with G:b%, it comes from the second asymptotic term in the
1

K Ky 5(K)vo(2) term of G 2.

3.5. The case n = 5 with m = 0. In this case, we see that all our parametrix
can be constructed similarly, except that a term at order 1 at zf needs to be added
to match with Gr_b?;/ ®: indeed zYK,(z) has a cubic term in its expansion only for
n = 5, which explains why we need a nonzero G.; term, and this term will force us
to add a Gz_f1 as well.

For this part we assume that M has one end to simplify, then dim Ey = 1 and we
can always suppose that 1) is a normalized eigenfunction decaying like cyz'/? |dgb\%
with ¢g = Z;V:O aojaé and that the other ¢; are in z'/2*<L2(M) for small € > 0
and orthogonal to 9. Then using Theorem 2.1 we can see that there exists 6
such that P8 = 1y with 6 ~ eox_5/2|dgb\% for some constant eg. Indeed, ™4y is
in the range of P, acting in x~%/27¢L? since it is orthogonal to the Null space of
P, on x3/2+6L§ (this null space being spanned by the (z1;);>0), thus there exist
g x*?’/z*eLg with P,§ = x4 and 6 := 2716 satisfies PO = 1g. From Theorem
2.2 and the equation Pyz—/2 = 2272 + O(a;%)7 the asymptotic of 0 is given by

~ 1
0 = ez %/ + §cox_1/2 + O(acl/Q), eg € C

and by considering Green’s formula on lim,_,g fx>€(Pb§);mp0 - ng(mpO) =1 we
find eg = —(3coVol(S*))~t. Then we define

(3.24)  Gyi= —cgVol(8?) (9 ® o + o ® 9), G = cgVol(S)do ® .

so that PG, = —G;'. The term of order pl; in k*3/2Gr_bSO/2 comes from the x/3/2

coefficient in the expansion of Kj/o(x'), that is kx’_5/2/3 times

N N N
dobhalei(z) = > akrT gj(2)anal = Y agiz pj(2)anah = coto(2),
J=0 3k, 1=0 4,1=0

which implies consistency between G, G..' and G;bi/ ?. Note that G, G also
match with Gr_bt/ % if we modify Gr_bt/ 2 by adding the term

3
€o

”IR3/2(“/)W¢O(Z)7

as is straightforward to check using (3.14).
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Remark 3.2. The analysis in this Subsection is only necessary if we want to specify
the leading term at rby and the £~! term at zf. If one is content to construct
a parametrix with an error that iterates away, then one can specify G, for j =
—2,—1,0 as in (3.13) and leave GL; unspecified.

Remark 3.3. A similar phenomenon occurs in dimension 4 and 6: the log term
in Ky(z) forces a term at order (2,1), i.e. at order k?logk at zf, which requires
a nonzero G(Z)gl, i.e. at order logk. We shall not emphasize this here although it
is important in that it contributes to the leading order behaviour of the spectral
measure at k = 0.

3.6. Error term and resolvent. The error term E defined by (P+k?)G = [d+FE
now vanishes to order 2 at zf, order 1 at bfy and sc, and order n/2 — 1 + m’ at
rbg and n/2 4+ 1+ m’ at lby (possibly with log terms at leading order at lby and
rbg, and at zf for n = 4,6 only — see Remark 3.3). Therefore it iterates away in
the sense of Remark 2.12 of Part I, and as above the inverse Id +S = (Id +E) ™!
exists for small £ and lies in the calculus. Here S has index sets contained in
(2,1)U(2+N") at zf, 1+ N’ at bfy, 1 at sc, (n/2+1+m/,1)Un/24+1+m’+N" at by,
(n/2=14+m/,1)Un/2—1+m’+N" at rbg for some nonnegative integral index set N’
and empty at bf, Ib and rb. The resolvent itself is given by R(k) = G(k)+G(k)S(k)
and satisfies

Theorem 3.4. Assume thatn > 5, or that n = 3 or 4 with the additional condition
that P has no zero-resonances. We also assume that P satisfies (1.6). Let m’ be
defined as in (1.3) and assume (1.4). Then for small ko, k < ko, the resolvent
R(k) = (P +k*)~! on half-densities satisfies

(3.25) R(k) € U=2(200R (a7 0)/%)
where the index family R satisfies
R C (—2,0) U (—1,0) U (0,1) UN",
:Rbfo C -2+ NH,
Rse =0
Rlbo = :Rrbo C n/2 —44+m' + N
for some integral (with log-terms) index set N > 0, and the empty set at all other
faces. Moreover, the leading terms of the resolvent R(k) at zf, bfy, sc, lbg, rby are
equal to the leading terms of the parametriz G(k) as defined above. We also have
Zf = G Y= 0 in all cases except when n = 5,m = 0 where R;fl = G;fl s given
by (3.24); RO =0 forn # 4,6; and R, is always equal to G, modulo a finite rank
y zf y q zf

term wzth values in kery2 P.

Remark 3.5. In the case that M is flat R", Jensen [6] obtains R,*> = Py, the
projection onto the zero eigenspace, Rz}l = 0 for n > 6 and gives the expression
Py VG3V Py for R;fl when n = 5, where (G3 is the operator with kernel constant
and equal to 1/3. Note that

/ Vi, = / Ay = lim OrYj (R, w)dw

RS R—0o0 JaB(R,0)

is equal to coVol(S%) if j = 0 and 0 otherwise. Using this and Vol(S*) = 872/3
we can check that this is the same as our R;fl for n = 5. The agreement on Rgf
for j = —2 and j = —1,n > 6 is clear, so our results on the singular part of the
resolvent at zf are in agreement with Jensen’s.
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Remark 3.6. If we do not make assumption (1.6), our proof allows to construct a
weaker parametrix (in particular with only the first term at rbg,lbg) which shows,
with the composition formula [5, Prop 2.10], that the same result holds if n >
6 but with another index set R which has same properties than R except that
R, C (—2,0) UR’, and we can not specify the leading terms of R(k) at rbg,1bg. In
general the proof could be well adapted, there will be additional logarithmic terms
at rby and lby that need to be specified, which would make the paper extremely

technical. If m = 0, then there may be terms of order pigs log prb, pr%b;Q(log Prbg)?

and pi;Q log prb,- The extra models will all be similar in structure to Gz _44; for
i = 1,2 and create no essential difficulties.

3.7. Proof of Lemma 3.1. To prove the existence of v, we use Theorem 2.1,
which tells us that =2w(z) is in the range of P, acting on =2 ~1=¢L2(M) if and
only if 2~ 2w(z) is orthogonal to the null space of P, on x2 1+ L2(M).

Let us begin with the equation PG = Id 3", v; ® t;, which implies that
GY%; is in the span of the 9. If m > 2, the v vanish to order at least n/2 at
r = 0 (as a b-half-density). Now consider a 1) € ker P that lies in 227<L? (and
hence actually decreasing to order § + 1), corresponding to a ¢; € ker P, that lies
in 212, Consider applying Ggf to such a . From the assumption m > 2 and
the fact that this lies in the span of the v; we see that the result is O(z%~2) as a
b-half-density. However, the kernel of G vanishes to order —2 at zf and n/2 — 2
at 1bg, while the lift of ¢ to zf (in the right factor) vanishes to order n/2 + 1 at
rby and lbg. From this, we see that G apparently only vanishes to order n/2 — 2
at x = 0, with a coefficient obtained from the integral of ¢ against the value of
273 +2GY; restricted to zfN1bg. But 72 +2GY; restricted to zf N 1by is, from (3.20)
(with the left and right variables switched) equal to

We conclude that this integrated against ¢(z’) vanishes:

(3.26) /M 7 (w() - 5 b%ﬁf) 0i()) (=) =0
j=0

We also note that the coefficient of 2% 2 must be constant in y. However b} € E;
which is orthogonal to constants so integrating in y (and recalling w is independent

of y we deduce that
/ " w()() =0
M
as claimed.
So choose ¥ € =2 ~17¢LZ(M) with P, = 2w, which is defined modulo el-
ements in the null space of P in x*”/%l’eLg(M). Then Theorem 2.2 and the

asymptotic behaviour of w(z) using (3.17) show that

v

2n(n — 2)Vol(Sm—1)

for some (3 € Ey (recall that an L?-normalized element of Ey is (Vol(S"71))~2).
It is necessary, in order to match with Ggfﬁ, that 6 = 0, and we will see that

(:) = +a7 70 + O Y

n__

this can be obtained by adding a term in the null space of P, in =2 17¢LZ(M).
By Proposition 2.4, this is possible if and only if £ is orthogonal to the subspace
G5 C E5 consisting of the leading asymptotics of elements of ker P, that are ~ 2% !
as © — 0, or equivalently of elements ¢ of ker P that are ~ 22 as  — 0.
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We now prove this. Let ¢ be an element of ker P that is equal to x%y(y) +
O(x3%1), as a b-half-density, with v € Fy. Note by Green’s formula we have

1 ~
LBy = [ 6w +a) = St [ AEGee
== i 5 lim /ﬂc>€ ™ w(2)Y(2)
so it is enough to show that
(3.27) lim zhw(2)p(z) = 0.

=0 xr>€

n
2

Again we look at G%). Since now we are assuming ¢ ~ x 2, Melrose’s Pushfoward

theorem [10] tells us that
GO ~ 222 log xdy(y) + 2 72dy (y) + O(x2 ' log x),

where d; is given by a sum of terms
N

i [ o () - 30 B0 ) o)

e—0 ' >e€ 2n

j=0

+ / I (Q) (5,9, ') () (' )dsdy’
s<e—1

and dyg = d; = 0 since m > 2. To compute the second term, we use the formula (3.5)
to obtain the limit v(y)/2n. For the first term, we can take 1) = z~1p; without
loss of generality, whence v = aj,(y), and we compute

N
1 =1 nos—1 (! :aj
St [ 2 ) =k

since [, a  p(2)a s = Eszo a*laki and bl (y) = Zszo Z?LO aga;iak(y). This
proves that (3.27), and completes the proof of the lemma.

4. RESOLVENT KERNEL FOR ASYMPTOTICALLY CONIC MANIFOLDS

We make the same assumptions as in the previous section, but allow M to be
asymptotically conic rather than Euclidean. It is quite similar to the asymptotically
Euclidean case but more terms come in the parametrix. We recall the definitions
of m and m/ in (1.3) (now m is not necessarily an integer), define m € Ny so that
Vs =n/2—14+m € Ny (see (2.3)), and assume (1.4). Then the eigenfunctions
have asymptotics

pi= Y. al(ya+ 0@t
Vi Svi Svm+2
for some € > 0. Now the term @, has asymptotic on rb
1
Q=>" > v,zy)a" (oga))" + 0@
k=0vo<v;<vo+2
for some € > 0, with v,, 1 = 0 if j <m, and
0 ifi<m

Py, o(2,9) = cr e~
b Vmo( y') { *Zé\;oaw(y’)%(@ ifi >m
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with v, (2,-) := vy, 0(2,-) € E,, and v,,(2,y’) having leading behaviour (obtained
from Ig(Qyp))

g, (y,y')

2w, 7" + Ozt logx).

vy, (2, 9,Y) =

We also define v, := 0 if 2 ¢ Ny to match with our following notations.
The x; are defined as in the previous section, and have asymptotics

4 al z'mLlogx
o= ) (4(67()+5V12( )= - BnlVTT 18T | i,

v; +1 2u5
Vi <v; S +2 it ) m

for some 3J € E, such that 8 = 0 for z < 1.
We set as before be = KK Qps, With

(41) Qoo = ZHE( Koy, () H(K = k) + L, () Ky, () H (1 — 1))
drdydr’dy’ 3

and (except for n = 5,m’' =0 — see Section 4.2) define Gj for j = —=2,...,1 by
(3.13). The leading behaviour of G and GY at by is therefore

N
_ _ i vi—1 Vi +1+e€
Gy = ot ) ( > al, ) arjanen(z)a’ )+O(x’ )
v <vilvm+2 §,k,1=0
N
_ i vi—1 Vintlte
Y (X Ew)esee ) 4 o
0

v SviSvm 42 j=

and

— al _bj( ) IVi—
@) =3[ Y (4(% S8 00)e 7 | )

=0 \vm<vi<vm+2
-1 / 2V -1 /mel 12 —14+m’+e
+x E vy, (2,9) E aum +O0(x ).
vo<v; <vo+2

Note that the z/*™ ' log ' term from (zz’)~1Qj cancels that of (zz')~* > Pi®X;-
Thus for 7 such that vy +m’ < v; < vy + 2+ m/, we define

Gy =Ko *(Zﬁy,z 5(2) + vna(29))
(4.3)

+ KK, (k)" Z vl (v
=0

If m' <2, we set

N
Gl i=r'K,, ( (Z 2)+ o, (z9) +al_(y)x;(z ))

N

+ 1 K ()27 Y0, ()95 (2)
3=0
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so that PGYVQ)_1 = Gr"lf:)_?’. If now m’ = 2, we set

N
Gt =k Ky 1 (k)™ ( > B2 W)ei(2) + vupra(2,y) + al (W)X (Z))
§=0

N
+ 1 Ky a(:)2 Y bl ()es(2) + K Ky 1 ()" a7 (2, ),
§=0

where ¥ is defined like in Lemma 3.1 (thus actually v(z,%’) is constant in y’) so
that

N
Pyo(z, y/) = Uy, (2, yl) + Zﬁzjzo (yl)(Pj (2).
j=0
Then again PGi = _ng—27 so the error term at rby has leading term at order
, 0 bo
prygjm ~1) for some € > 0.

4.1. Additional term when n = 3. Now when n = 3 and m > 1, there is an
additional term at zf at order 1 as when OM = S2, this is

Gl = —(xa") " Voly,, (OM )vo(2)vo(2')

and it is there to match with the second term in the asymptotic of Ggfi at zf.

4.2. Terms at zf when n = 5, m’ = 0. This works just as in the Euclidean
case; we define GZ;' by (3.24), replacing Vol(S*) with Vol(9M) (with respect to the
metric h(0) from (1.1)).

4.3. Error term and resolvent. The error term E defined by (P+k?)G = Id+FE
vanishes to order 1 + € at zf (for some € > 0 depending on a finite number of v;),
at order 1 at bfy and sc, and order n/2 — 2 +m’ + € at rby and n/2 + m' + € at
Ibg. Then it iterates away in the sense of Remark 2.12 of Part I, and the inverse
Id+S = (Id+E)~! exists for small k > 0 and lies in the calculus, where S has
index sets included in 1+ Z at zf, (1,0) U (1 + Z) at bfy, 1 at sc, n/2 +m' + Z at
Ibg, n/2 — 24+ m’ + Z at rby and empty at bf, Ib and rb for some index set Z such
that Z > € for some € > 0. The resolvent itself is given by R(k) = G(k) + G(k)S(k)
and satisfies

Theorem 4.1. Assume that n > 5, or that n = 3 or 4 with the additional condition
that P has no zero-resonances. We assume that P satisfies (1.6) and (1.4). Then
for small ko, k < ko, the resolvent R(k) = (P + k?)~! on half-densities satisfies
(4.4) R(k) € U=2(=200.R (71 O}/2)
where the index family R satisfies

sz - (_2a O) U (_170) U (_1 + Z/)a

:Rbfo C (_2a 0) U (_170) U (_1 + Z/)a

Rse =10

Rlbo = :Rrbo C TL/2 —44+m' + 2

for some index set Z' > € where ¢ > 0 depends on Ng, and the index set at
the other faces are empty. Moreover, the leading terms of the resolvent R(k) at

zf, bfy, s¢, lbo, rbo are equal to the leading terms of the parametriz G(k) as defined
above. We also have Rz_f1 = Gz_fl (which vanishes except in the case n =5,m' =0).
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Remark 4.2. We could, as in [5], deal with potentials, V ~ 22V, 2 — 0, i.e.
inverse-square potentials, with little further difficulty, provided that the coefficient
Vo satisfies the same condition as was imposed in [5]; namely, that Agpys + Vo +
(n —2)?/4 is a strictly positive operator acting on L?(9M). The assumption V =
22V + O(2°) would then be convenient to avoid having to deal with logarithmic
terms in the parametrix. The Vj coefficent changes the set Ny and hence the index
family R in Theorem 4.1, since the ); in (2.3) are replaced by the eigenvalues of
Agnr + V. Also in Theorem 4.1 we would need to assume no zero-resonances
in all dimensions, since (as observed in [12]) these may occur for operators with
inverse-square potentials in all dimensions.

5. RESOLVENT: ASYMPTOTICALLY EUCLIDEAN MANIFOLDS, DIMENSION 3

In this section we suppose that n = 3 and that P has L? kernel and possibly also
a zero-resonance. We use similar notations and same method as in Section 3 since
this is almost exactly the same problem, the only difference being that m’ may be
0 or 1. To simplify (to avoid log-terms coming too early in expansions) we make
assumption (1.6) throughout this section.

5.1. Terms Gz_fz, GY%, ngo. Transposed into the b-problem as before we have an
orthonormal basis (¢;);=0,.. ~ of ker P,. To simplify exposition, we assume that
M has only one end. If P has a resonance at 0, then one of the ¢; € ker P is
~ az? |dgb|% at x = 0 for some a € C, which we may suppose is pg. We sometimes
denote it ¢ instead to point out the difference with the other eigenstates. We shall
use the convention g = 0 if 0 is not a resonance. There also may be zero-modes
@; ~ x3%al|dgy|? at x = 0, with a] € ker(Ag> — 2) (these were ruled out in
Section 3 by our assumption that m > 2 when n = 3.)
We can decompose in an orthogonal sum (for small € > 0)

ker P, = (ker P, N 2%/ L2 (M, |dg,|?)) & H & C

for some H of dimension d < 3 = dimker(Ag2 — 2). Then we can suppose that
(pi)i=1,....a is an orthonormal basis of H and in general

vi = (ad()2*2 + al(y)a®/? + O log ) ) ldgn| />

with ] € ker(Ag> —2), d) € ker(Ag> — 6)
for any 1 < j < N with a{ = 0if j > d. The mapping ¢; — a{ identifies H with
a subspace (still noted H) of ker(Ag> — 2) and we denote by 3+ an orthogonal
complement of H in ker(Agz — 2). Let now (¢1, d2, ¢d3) an orthonormal basis of
ker(Agz — 2), and we note a] = 27:1 aj,¢1 for some a7, € C.

There exists Qp such that P,Q, = QpP, = Id — Zj\;l ©; ® ; as in Section 3.
Localizing near rb, the identity becomes P,Qp = Qo Py = — 95 ®; and consid-
ering P, acting on the right factor z’, this gives the following asymptotic for @, at
rb

NS 13/2 . _
, vo(z,y")2'2 + O(z"7) if =0
Qv(2,2') = 1 1 3/2y .
—ap(z)x'? logx’ +v1(z,y)x'? + O@@7) if p#0

for some v;(z,y") = v;(z), i = 0, 1, constant in ¢, which, by considering the operator
acting on the left variable z, must satisfy
(5.1) Pyvg(z) =0, Pywi(z) = —ap(z)
This existence of vy is guaranteed by Proposition 2.4 if P has no zero-resonance.
Similarly, if ¢ # 0, the existence of an element u € x_1/2L12) such that Pyu =
¢ is a consequence of Theorem 2.1: indeed, P, is Fredholm in x~/27¢L? with
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index 1 and ¢ is in the range of P, in this space since it is orthogonal to the
kernel of Py in #'/2+¢L2. Notice that u is uniquely determined modulo ker Py, it is
polyhomogeneous, and by adding a constant times ¢ to u, it can be chosen to have
asymptotic

w=br"% +ax? logx + O(z*/?

for some b € C. Then v1(2) = —au(z) + Be(z) + n(z) for some § € C and n €
ker P, N 23/2L°°(M). The normal operator at the front face Ig(Q,) given in (3.5)
implies that vo(z) has the aymptotic
1 1
vz = G
when ¢ = 0. While when ¢ # 0, Green formula with the asymptotics of u, ¢ give
the relation

log x)

(Pyu,p) =1 = lir% ((20,u)p — u(20yp)) = —abVol(S?) = —4rab

Tr=¢€

thus ab = —(47)~1. We now define

Q=Q+udp+eeu
which satisfy Pb@b =1- Zjvzl vj ® ;. We obtain

N
P(z7'Qp™t) =1d - Z ;@ e
j=1
Gathering this information, we find that, when ¢ # 0, the asymptotic behaviour of
Q@ at rb is given by

(52)  Qulz,) =bp(2)a' "7 + (Bp(z) +n(2)a'* + 0w

We remark that the 2’ B log 2’ term of @y at rb is cancelled by the ¢ ® u term of
Qv

As before, we denote by (¢;);=1,...n an orthonormal basis of eigenfunctions of P
and express these in terms of the ¢; by (3.9). Following the argument in Section 3
(see (3.10)), we have

'3/210gx').

N N N

N N
Y TMherp(ze) @ oy =Y > anad e @ =Y P @ .
Jj=1 k=1

j=1k=11=1
We proceed exactly as before: we denote wj-‘ = (1 — Hyer P)(z¢;), then x*1¢j- =
O(z~2) is not anymore in L? but instead is in x_%_eLf. The extension of P, to
m’%’eLi is Fredholm by Theorem 2.1. Hence xile- is in Range(P,) on m’%’ELE
if x_le- 1 ker 1 P, = kerLg P,. This is satisfied since

z2ter?
0=/ %L?ﬁk:/ gy,
M M

and (z1;); is a basis of ker 1. , F. This implies that there exists x; € T2 L2
for 7 =0,..., N such that

Pyx; = fﬂ_liﬁf
As in Section 3 we set the term at order —2 at zf to

N N
Gt =) 4@, GYi=(za’)"! (@b +Y (i ®pit+9;® Xj))

j=1 j=1
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The term ac_lz/JjL =— Z]kvzl akjac_lz/}k + ¢; has the asymptotic

x_l%‘l(y) == Z akjakl(all(y)x_% + ab(y)z %) + O(ac2 log z)
ki=1

which implies that, after setting

4 N N
(5.3) bl (y) == Z Zoz samiak(

m=1[=1

we get the asymptotic
_ _ 1, ; _ 1. i 1
(5:4) 2 (,9) = 292 (—5b ) + BLy) + 27V 2b(y) + B) + 0wt loga)

for some ﬁmﬂ 1 € C. It is important to notice that x; is determined modulo
elements in the null space of P, in =2 ¢L? but this space contains either the
function vy ~ (4w)~'z~1/2 (if 0 is not resonance) or a function ¢ ~ azz (if 0 is
resonance), which mean in first case that any i , can be supposed to be 0 by
adding a constant times vy to x; while in the second case any 63 can be taken to
be 0 by adding a constant times .

Observe that G;* is O(pus,) and 27y @ 27 Lp,, 27 p; @ 271y, are O(pgf(l)).

Note that we will often use the identity

(5.5) Zx (= anerP z1) (2)ak(y')

which follows from (3.9), (3.10) and (5.3).

5.2. Term Gl;t% . We next define Ggfﬁ. As above and Part I, we use coordinates
(k = %, K = %,y, y', k) which are valid near the interior of bfy. We write Gl;f?) =

(kK")Quns, where Qpg, solves
Pog, Qut, = 1d

and Py, is given by (3.2). We can write the general solution Qung, in terms of
spherical harmonics but we’ll need an additional finite rank term when ¢ # 0, in
order to match with the u ® ¢ + ¢ ® u term of G%: we set (H =Heaviside)

@bfo=[ZHEJ(J+ WV 4 (6 V(5 = 8) + 1oy () K () H (5 — 1))

1
2

drdydr’dy’

/ 9

+CoHE0K% (H)K% (Iﬁ/)}

RK

with Eq(y,y’) = 1/Vol(S?) = (47)~! and for some ¢y € C to determine. In higher
dimensions, this additional term is too singular at x = ' = 0, i.e. at bfy N zf and
therefore cannot appear. This coefficient ¢ is set to be 0 when ¢ = 0 while when
¢ # 0, it is constructed to match with G%: we find, using asymptotics for K% (2)
given by (3.23) that ¢g = 2/7. Indeed, using leading behaviours of u and ¢ when
¢ # 0, the asymptotic of G near the corner zf N bfy is

G = (wa') 7 (In(@) + ab(ata’™* +2"ha73) + O(py))

whereas the asymptotic of Gl:fi near this corner is

|
8
|
vl
+
8
wol=

Gt = Ky (1@ + L (6wt @ d b ) + 0.
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Recalling that ab = —1/4m from our analysis of G, we find that we must set
co = 2/7 (we emphasize that it is the subleading term and not the leading term of
the K (k) Ky (') term in Ggf?) that matches with u ® ¢+ ¢ ® u). The leading term
will be at order —1 at zf and it will require us to have a corresponding nonzero
Gz_fl. Note that, with such a choice for ¢g, the term of order k in the expansion of
Gl;fi at zf is given by

(5.6) (87T)_1k(a:‘5/2x’_% +$'_5/23:‘%),
which will be useful to define G;.

5.3. Term G;fl when 0 is resonance, first attempt. To match with the term
at order —1 of Ggfﬁ at zf, we need a term of the form ¢ ® 1 where v is a zero-
resonance. This has the form 1 = cx~ 'y for some ¢ # 0 to determine, plus an

element of the L? null space. But matching with G,;fz implies that the leading term
of ¥ is

(5.7) Y(z) = \/ﬁ +0(z'/?)

where we chose the sign to be + by convention. This means ca = (47)~2; the
leading behaviour of @ then agrees with the canonical resonance of Jensen-Kato
[7]. As for the L? null space part (which does not affect the leading behaviour), it
is natural to ask that 1 is orthogonal, in a generalized sense, to the 1. Observe
that for 1 < j < d, ¢ -1; has asymptotic a](y)z® + O(x?) as z — 0 and is therefore
not L'; however, since aj is orthogonal to constants, the integral of al(y) iny
vanishes and therefore

lim P -y exists.

=0 Mn{x>e}
We denote this limit (1, 1). We choose v := cx =ty — Egzl(cx_lgo,z/)wwk to be
the unique zero-resonance satisfying (5.7) and with (¢, ¢;) =0 for 1 < j < N. (If
there is no zero-resonance then we take ¢ = 0 in the formulae below.) This agrees
with the canonical zero-resonance of Jensen-Kato in the case that (M, g) = (R3,6);
see Section 5.8 for more details. We now temporarily define (the tilde indicates
that this will be modified below)

Gl=vp

which matches with Ggfﬁ.

5.4. Term G;,f’om. We construct Gr_b?(’)/2 like in Section 3 with m = 1 if ¢ = 0, while
if ¢ # 0, we shall add a term. In any case, we define it to be

N
(5.8) Gul? = K Ko (k)™ S b1 (y) s (2) + 6 Ky ja (k') (4m) "2 (2).
j=1

By construction and from the asymptotics of K 1/25 I~(3 /2, this terms matches with
GZ}Q,Gz}l,Ggfi and also with G% when ¢ = 0. The consistency between this
term and GY% when ¢ # 0 is less straightforward but it is satisfied using (i) from
Lemma 5.1, the expansion

~ 1
(59) IilKl/Q(K/) _ K,/% _ :‘4'//3/2 + §H/5/2 + 0(5/7/2)

and —(4m)~1/2¢c = b in view of the identities ab = —(47)~! and ca = (47)~ /2,
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5.5. The terms Gl Gfl The term at order 1 at zf has to match with G7f2 and
Grbg/ % We first assume there is a resonance, i.e. ¢ Z 0. Then x4 is orthogonal to
any x, thus to the null space of P, in x3/2+€L2 for € € (0,1), so we deduce that it
is in the range of P, acting on x~3/27¢L2. Therefore there exists x € 273/2L> (M)
such that

Pyx = x4 or equivalently P(z'y) = 1.

Moreover, considering the leading asymptotic of i, we must have
1 1 )
(5.10) X = —5(47)7%73/2 +(y)z 32+ Oz~ 2)

for some « € B since (—(20,)? +1/4)x=3/2 = —2273/2. Let us assume that y = 0,
which can be arranged, possibly after adding a term z~'v for some v ~ —yz—3/2
in the null space of P, in x*S/z’eLﬁ. So as not to interrupt the exposition we defer
the proof to Lemma 5.1. We then see from (5.6) that a term

(5.11) ~(@ev+ve @)

of order 1 at zf would match with Ggfﬁ, while from (5.9) and (5.8) it is clear that

it would match with the K /(') terms of Gr_biﬂ (i.e. the first line of (5.8)) at
rbo N zf.
It remains to add a part at zf, order 1, that will match the K3/5(x’) terms of

GrbS/ ®. These terms have leading asymptotic at zf, modulo O(pzf/ 2)

3 d
—3/2 —172 1 3 2 Los 2
Grbo/ —(’ /2 _ 5/_1/ / % ZZ Z O Otm1a 0 (¥ )05 (2)

3 d
—172 1,3 2 5 2
:(H/ / — iﬁ/ / / 5/ Zznkerp iEQOl )allpqsp(y/)

p=11=1

In particular, we see that a term at order 1 at zf must be added to (5.11). From
Theorem 2.1 and Proposition 2.4, there exists 0; € x5 L>® (M) for j =1,2,3 such

that
_J ey forj<d .
Pb‘gj{o for j > d with
3 ) 3 1 . 3 .
0; = Zci(y)xﬁ +0(z72), cy) = Zciz@(y) € ker(Ag2 — 2)

1=1 _
for some C{ - Then (C{)j:dﬂ,.“,g form a basis of 5. From Green’s formula
applied to

0ij Z/ (<Pb9i,<pj> - <9i,Pb<pj>), j<d, i<3,
Mn{z>e}
we obtain, by letting ¢ — 0,
3 [ AWy =5, G<di<s
SZ

Let C be the 3 x 3 matrix whose entries are Cj; := c{l, A the 3 x 3 matrix whose
entries are Aj; :=a, for j < d and Aj; := ¢J,/3 for j > d (thus invertible), we have
C = 1(AT)~1. Note that 6; is determined up to a O(z~'/2) term and since this
coefficient of order is constant, then, if ¢ = 0, we can add a constant times vy so
that 6;(z,y) = Z?:l ) i(y) + O(x2). Tn the case ¢ # 0, the term of order /2
vanishes automatically; see Lemma 5.1 below.
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Let us define GL, (the tilde indicates that this will be modified below):

d 3
GL .= (Z Z 2710; @ My p(20;) + dij ey p(70;) @ x’_19j)
+ (z2') tevo ® vy,

when ¢ = 0, while if ¢ Z 0

d 3
sz - (ZZ 719 ®errP(lE<P7>+d7]errp(Ig07)® ,710j>

~ (@ ev+ve @)

where d;j,e € C are parameters to determine and D := (d;;) is the correpond-
ing d x 3 matrix. To match with G;;zm and using the fact that (¢;);=1,.. 4 and
(Iker p(z1))i=1,... N are respectively linearly independent, this forces to have as
matrices DC = %HdA where I : M343(C) — Myx3(C) is the canonical projection
from 3 x 3 matrices to d x 3 matrices (so that IIzA is the matrix A with the c{l
changed to 0). We conclude that

(5.12) D =T1I,AAT.

Note that (dij)1<ij<d = (aﬁ,a{)Lz(sz) is a symmetric d x d matrix that depends
only on (¢;)1<j<d-

Consider the matching conditions é;f — G’Efﬁ. The terms in G’;f involving 0,
are O(pgfﬁ) so have no effect at order —2 on bfy. When ¢ = 0, the remaining term
involving vg is of order pgf‘z and so has to match with the p3; coefficient of Gl:fi
Using (3.14) we see that this comes only from the j = 0 term of (3.3) (since only
for v = 1/2 does the second term in the expansion of K, differ from the leading
term by one order). The terms match provided we choose e = —vol(5?) = —4r. If,
on the contrary ¢ ;7é 0, then we have seen that the terms involving X, 1 are those
who match with be , so this proves consistency between Gl ¢ and be

Now we have on 2

d d
zf =Y+ (Z Z dz] TP;) ® errP('mp]))
j=11i=1
This is not quite what we want since we require PG}, = —Gz_f1 with PGZ_f1 =0
in order to construct a parametrix at order 2 at zf. To remedy this we decompose
2p; = ier p(205) + 95~ and then modify G} to
d
_ -1
Gh=> (diﬂc Y05 — X5) © Mier p(03) + diga’ ™ Tier p(wps) @ (0; — Xj))
i,j=1

d 3
+ (Z Z d'jxilgj ® chrP(xQOi) + dijl'/ilnkcrp(l'gﬂi) X 0])

- 47r(:cx ) tup ® o
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when P has no resonance at 0 while
d

Gyu= (dijfﬂ_le —X;) ® Ther p(s) + dija’ ™ Ty p(20;) @ (6, — Xj))

i,j=1

d 3
+ (Z Z dijz ™ 0; @ yer p(z07) + dz‘jxl_lnkerP(x%) ® 93‘)
i=1 j=d+1

~ (e ev+ee @)

when 0 is resonance. so that

d
PG;f = Z dinkerP(-eri) ® errP(I(Pj) - ’(/} &® w

i,j=1
Then we modify G;fl to set

d
(5.13) Gl == > dijTlier p(20) @ Tier p(205) + 9 @ ¢

ij=1

which is a symmetric expression satisfying PGZ}1 = 0 and matching with GJ; in the
sense PGl = fG;cl. (We also observe that Gz_f1 agrees with that in Section 3.4
when m = 2 since then d = 0, hence D =0, and ¢y = x = 0.)

Let us now prove several deferred results in the following lemma:

Lemma 5.1. (i) The coefficients ﬂil from (5.4) satisfy

N

N
(5.14) Zﬁ{lx_lgpj = (4m)"2 Z(Cﬂb‘_l%@ﬂﬁk)ibk-
j=1

k=1

ii) The term v in the asymptotic (5.10) of x is zero if dim H = 3 or can made 0 by
possibly adding an element in JH.
i) If ¢ £ 0, the coefficient of x=2 in the expansion of 0; is 0.

Proof: the proof of all claims follow from Green’s formula. To prove (i), we
apply Green’s formula to

hr% <Pijv C<)0> - <Xja Pb(C‘P»
VI Mn{z>e}
and obtain (47)2 37 | = (Iyer p(2p;), cx™ ' ); using (3.10) and the identity =~ ¢, =
SN adiy; we obtain (5.14).
For ii), we apply Green formula

[ Egwin—xPiain) = [ (@0ux)in ~ xads(win)

x>€ T=€

for any 9y € ker P and let € — 0. The limit has to be zero by construction of x and
since Py(x1y) = 0, but from the expansions of x, (3.6) and (3.9), we see that the
right hand side has for limit (up to non zero constant) Z?Zl ki [g2 7(y)al(y). Now

ay; is invertible so « is orthogonal to the functions (a});=1,.. 4 on S2. If d = 3, we
get v = 0, otherwise from Proposition 2.4, there is a function with the asymptotic
~ 273/25(y) in the null space of P, thus i) is proved. As for iii), this is similar
by using Green formula on [ _ (Py0;)¢ — (Pyp)f; and taking the limit as e — 0
(which gives 0). O
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5.6. The term G;blo/ 2. To see what G;bt/ ? should be, we consider the asymptotics
of Ggf at rbg. These are first (where we use (5.5))

d N
G2 =23 M p(20))(2)a] (v) + 2> 3" T p(2100) (2)as ()

j=1 1=0

+ O(:v’5/2 log z")

d
Gt =" " diTler p(a00) ()6 () — (4m) "1/ 22" ()
i,j=1
+ 2260 () + 0@

where ¢ € Ej is the term in the expansion 1(z) = (4mx)~/2 + ¢(y)x'/? + O(23/?),
and if there is no resonance

d
GO = — 5 ’_3/2ZerrP(Wj)(Z)a{(y')

Jj=1

4o (2 o +znkmpx%><f%a2<>+ﬂo>) o)

7=0

d
1 -
Gl = 52" Y Thier p(a01)(2)ah (4)

=1
d
_ 1 ; _
— o (e (=) - 5 D dyller ()bl (6) + O 2).
ij=1

while if there is a resonance

d
1 71— ()]
sz = Z.T 3/2 ]2:1 chrP(CUSOj)(Z)aJl (y )
' 1/2 (ﬂgjfl ( )—I—JZ 77 - = E Myer p x@])aQ( /)) —|—O(.Z‘/1/2)

d
. .
sz:* 1o E ier p(205)(2)a1(y’)

j=1

— o () .S i T (20 (301 (0) — 921)) + O ™72)
t,j=1

where p1 € C is defined from the expansion x = —3 (4m)~1/2273/2 4 p2=1/240(21/?)
and 7, 3 are defined in the construction of G from the expansion (5.2) of Qp at
rbg. We need to check that the coefficient of x’ ~1277 i the expansion of Ggf agrees
with the coefficient of x7T1/2 in the expansion of G;bt/ 2, and finally B]; 1 ﬁg come
from the expansion of x;. Let W € C'*°([0,1]) a function with support in [0,1/2)
which is equal to 1 near 0. We set

2

Ggalo/2 =z 1 ( ) /K ( Z/BonkerP IQ@])

3 N
~ WKy (W) Y dijTlher p(9:) (201 (y) + K K3 () Y Tlier p(wp1)ab(y')

i,7=1 =0
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when ¢ =0 or
d
G;bt/? = — ,{/3/2W(,‘§/) (Mw(z) + Z ﬁj_ldijﬂkerp(mtpj))

4,j=1

3
+aH(Bo(2) + ()R Ky (k) — &' K3 (k') > dijTher p(203) (2)6] ()
ij=1
N N
+ R K3 (+) Y Tler p(wpr)as(y)
1=0
if ¢ # 0. By construction, both satisfy these matching conditions with G?

zf?

i = —2,...,1. The matching Gr_blo/2 — G,;fo just involves the vy term, and only

_1
when there is no resonance. To conclude PGrbi = 0 in both cases.

We define Gﬂ)i’/ 2 by symmetry with respect to the rbg terms as before.

5.7. Resolvent. Let G(k) € \11122;(72’0’0)’9(M7 Q;/z) be an operator consistent with
all the models we have defined above, and let E(k) = (P + k?)G(k) — Id. Then

E(k) € U8 (M; Q%)

where € is an index family with Epgy, > 1, ¢ > 1, &y > 1/2, €, > 3/2 and
€, > 2 and it also has empty index sets at the other faces. By Corollary 2.11 of
Part I, the error term E(k) iterates away under Neumann iteration.

The true resolvent is given by R(k) = G(k)(1 + E(k))~! and the composition
result [5, Prop. 2.10] implies

Theorem 5.2. If n =3, (M, g) is asymptotically Euclidean with one end, then
R(k) € U, 2200 R (A 00/%)

where where Ry = =24+ R, Ryp = =2+ R, Rye = 0, Rypy = Ry = —3/2 + R/,
for some integral index set R’ > 0, the index sets at the other faces being empty.
Moreover, Rif = szf forj =—2,-1, Rb_fi = Gb_fi, R;bi/Q = G;b?;/Q, while Rgf = Ggf
up to a symmetric finite rank term with range in kerp2 P @& Ctyp where ¥ is the

resonant state.

5.8. Comparison with Jensen-Kato. In [7], Jensen-Kato compute the order —1
term of the resolvent (that is, R;fl in our notation) for P = Ags + V where Ags is
the Laplacian on flat Euclidean space R®. Their result is (in operator notation)

1

(5.15) R =T VG VIl +9 @1, Golz,2) = E|z—z'|2.

Here we write 1/; for their canonical zero-resonance and Il for projection onto the
L? null space of P. Let us verify that this agrees with our G;fl defined in (5.13),
in the case that M is flat R® and the potential function satisfies our conditions.

First we show that @Z agrees with our 1. Assuming, as Jensen-Kato do, that V
decays at infinity faster than z3, 1/; is characterized by the condition

VGV = 0.
We need to adapt their Lemma 2.6 as follows:
Lemma 5.3. Suppose that u,v are both in 2°L? for some 3 > 5/2 and that v is
orthogonal to 1. Then if Go(z,2") = (4m|z — 2'|) 7! is the Green function of Ags,

(u,Gov) = lim Gou - Gov.
R—o B(0,R)
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(In [7] both u and v are required to be orthogonal to 1, and the inner product on
the right is then well-defined without regularization.) Using this lemma we compute
for any w € kery2 P

0= (VG Vih,w) = (Vip, GoVw) = lim GoVip - GoVw
— JB(0,R)
= lim 1E~w.
R—o0 /p(o,R)

This shows that 1[1 is the same as our . Thus it remains to show that the first
term in (5.15) agrees with the first term in (5.13).
So consider the operator IIgV GoVIly. This operator can be written

24’/T sz ® '(/}j /% - Z/‘2V(Z/>¢(Z/) dz dz/)
(5.16)
= 2 Z% ® 1; /1/% 2)(|2)* —22-2 + |z'|2)V(z’)¢j(z’)dzdz’>.

We change back to writing the eigenfunctions as functions rather than half-densities,
and use x for a smooth positive function on R® equal to [2|~" for |2| > 1. In this
notation v; ~ x Z ;@) (see (3.9)), and af = 0 for j > d + 1. Also recall that a?
is an eigenfunction on the sphere with eigenvalue 2, hence

Zalml —xz

in terms of the orthonormal basis y/3/4wxz; of this eigenspace.

First we claim that the |z|> and |2’|? terms in (5.16) vanish. To see this we
observe that Vi, = —As; since v; is a zero-mode of P. Also, each ¢; = O(x?)
and, by Theorem 2.2 is conormal at © = 0. Hence [ A¢; = 0 since Vio; = O(z?)
has sufficiently fast decay at infinity. We are therefore left with the cross term
involving z - 2’ in (5.16).

Next we claim that if either 4 > d or j > d then the corresponding z - 2’ term in
(5.16) vanishes. It suffices to assume that j > d. Then, again using Vi; = —A);,

/z,’cij = /A(z,gwj) — 2V}1p; vanishes.

We are left with terms where 4,5 < d and involving the cross term z - z’. We
may choose a coordinate system in which > j a;ja] is a multiple of zz;. Then

/zkAd)J = lim 2 A,

R—oo BR(O)
= lim A(zph) — 2Vi);
R—oo BR(O)
. Zk 3 Zz -2 -3 2
= lim ozlaw r 4+ 0(r redw
(5.17) R—oo 3BR(O) ( Z T ) ( )))
: 3 Zz —2 -3
~ lim - ( Za”a”/ )r +O(r ))) dw

=34/ E zj:aijajl /32 zizpdw = —\/127sz:aija]15ik.
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We see from this that

1

Tom Ai(z)z - z/A¢j(z/) = ZZ ailajm<al17 ay’)sz.

In this form we see, using (3.10), (5.13) and the line below (5.12), that this agrees
with our G;' = R ;.

5.9. Unboundedness of Riesz transform on L2. We see from the results of
this section that the term R;fl does not vanish if either there is a zero resonance or
a zero mode vy, ~ '/2|dgy|'/? of P (i.e. if m = 1 in the notation of Theorem 1.3).
It follows that the integral (1.5) defining P< /2 does not converge, leading one to
suspect that the Riesz transform is not defined — even on L2. In fact, a simple
direct argument shows that this is the case. Suppose for simplicity that the pure
point spectrum of P is a single zero mode of P with asymptotic ¢ ~ $1/2|dgb|1/2.
For the Riesz transform to be bounded on L? we require that there is a constant C
such that
(df,df) < C{Pf, f)

for all f € H?(M) N (1 —1ly)L?3(M) (in this case 1 — IIy = Il is the projection
on the positive spectrum of P). To simplify let us present the argument when
there is a single L? zero mode vy, as above. Then (after rotating coordinates)
Yp ~ 21/r + O(r=3). Let x be a cutoff function supported in {1/4 < |z| < 2},
equal to 1 in {1/2 < |z| < 1}, and let ¢ := R™'x(2/R)z1/r. Then, as R — oo,
lorllL: ~ RY?, |dor|lL2 ~ R™Y? and (¢g, 1)) ~ A for some constant A # 0. We
have fr = ¢r — (dr, ¥r)Yk in the range of (Id —IIy) and

(dfr. dfr) ~ (g, Vi) [*||dvr||> ~ A®||dy|]* # 0.
However,
(Pfr, fr) ~ (Por, fr) ~ (PR, dr) = O(R™).

So no such constant C' can exist. A similar argument with the zero-resonance (tak-
ing o = x(r/R)r') gives the same result and the general case works exactly
the same way, using in addition that the eigenvectors corresponding to negative
spetrum are vanishing at all order at oo by Agmon estimates [2].

The same arguments clearly works as well for the conic case investigated in the
next section and it shows that there exists a sequence fg € I (L*(M)) and o(R) —
oo as R — oo such that ||dfr||> > a(R)(Pfr, fr), as long as 1/2 < m < 3/2 in
dimension n = 3, 0 < m < 1 in dimension n = 4 and 0 < m < 1/2 in dimension
n =>5.

6. RESOLVENT IN DIMENSION 3: ASYMPTOTICALLY CONIC MANIFOLDS

It is interesting to see what happens in the three-dimensional case when the
manifold is asymptotically conic, rather than asymptotically Euclidean. In this case
there may be models at zf at non-integral orders between —2 and 0, i.e. nontrivial
RS for =2 < a < 0, a # —1. Indeed, the fact that there is a nonzero term R;' at
the particular order —1 in the previous section is related to the precise value of the
second eigenfunction of the Laplacian on S? with the standard metric, and is not
at all typical in the class of three-dimensional asymptotically conic manifolds.

Rather than attempt a comprehensive treatment, we consider only a couple of
very special cases. We give very few details and only indicate the most interesting
features of these examples.
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6.1. One zero resonance and no zero modes. We assume that (M, g) is asymp-
totically conic and recall the set Ny from (2.3). Let us assume that P has one unique
resonant state 1 at zero energy with asymptotic 1 (z,y) ~ a, (y)x* ! |dgb|% for some
ve[l/2,1)N Ny, e >0 and a, € E,. In terms of the operator P,, this means that
P, has a unique L} (normalized) zero-mode ¢ = x1) with asymptotic

(6.1) p(r,y) =aa’+ Y @%ay,(y)+O(z")
v<v; <v+2

where a,, € E,,.
We choose GY; as in Section 5:

Gy = (M’)’I(Qb +u®<p+<p®U)

where @y is the generalized inverse of Py, i.e. P,Qp =1d —¢p ® ¢ and u € x_”_ELf
is a function such that P,u = ¢. The existence of such a u with asymptotic

(6.2) u="b,x "+ Z (b;ix_”i—kbjim”’?)—g—;x”logx—i— Z b 2¥ +0(z' ),
1/2<v;<v v<v; <1

where the v; runs over the set Ny and bi € E,,, is ensured by Theorem 2.1 and
Theorem 2.2.

We define Gk:fi similarly to the Euclidean case with a resonance, that is Ggfﬁ =
kK Qug, Where

Qbfo - Z HEj (ij (K)KVJ (KI)H(K/ - KV) + II/j (H/)Kuj (K)H(fi — ,‘{/))
j=0
+cuay<y>ay@/)KU(@KM] dndyl'dy |

where ¢, € C is to be determined to get matching with G%. Considering the
asymptotic expansion of Ggfi at zf gives

(6.3) Gipp =T()*2% *(kr') " ay (y)an (y') + (k") " I (Qs)
F F - ’ v [ €
7@) 4( v (k'K DRGNS LN )+ O(pgf+ ).

The ¢, term has to match with the (zz') ™' (v ® ¢ + ¢ ® u) term of G%. A short
computation proves that they match as long as ¢, = —2/(T'(v)['(1—v)||a,||?). This
will force a term at order —2v to be added at zf. We set

G;f?u — ,(/) ® ,(/}
where ¢ = 272 /T(v)/T(1 — v)|ay || "'z~ is chosen (up to sign) to match with

the (kk’)!™" term of (6.3). In other words, ¢ is the unique function in the null
space of P with asymptotic

+ cva,(y)a, (yl)

1 F(V)
=9¥3, [ oV O(xVTe
where ¢, is a function in £, with L2(0M) norm 1. Note that the order of this term
is —2v € [—1,2) under our assumptions on v.
These models can be completed to a parametrix G(k) with error term that
iterates away, showing that the resolvent is phg on M, ,asc and that Rz_fz” = Gz_fz” =

P @Y.
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6.2. One zero mode and no zero resonance. The next example we consider is
that P has one zero mode ¥ (z,y) ~ a,(y)z"~! for some v € (1,3/2], a, € E,. In
terms of the operator Py, this means that P, has a unique (up to sign) L?-normalized
zero mode ¢ = x with asymptotic

plry) =aa’ + > ava,(y) + O )
v<v; <v+2
where a,, € E,,. We may take 9 to be L*-normalized and write 1 = cx~'¢ for
c:=[lz 7 llL,-
We follow the method of Section 5. We set the first term at zf to
G = (za')™? (Qb +XRp+p® X)

where @y, is the generalized inverse of P, and x € x”*Q’CL% is a function such that
Pyx = 2~ where ot = 2o — (20, ¥)1) = 20 — i (recall 1 = cx ™1 is the L?
normalized eigenvector). We thus get PGY% = Id —¢ ® 1 and we set

—2 —2

sz = 1/} ® ¢7 beo = HH/Qbe
where Qus, is given in (4.1).
The G;fQ term requires a matching term at order v — 3 at rbg which we take to

be _

G = 1Ky (K )ea, (i )0 (2).
This in turn requires a term at order 2v — 2 at zf, from the k¥ term in K, (k) as

k — 0. To match this with Ggf_og, we note that there exists u € x7¥ 7L such that
Pyu = ¢ and with asymptotic

w(a,y) = a,)r™"y "+ D )" + 0@ t)
1/2<v;<1

with v := —2v/ \ay||%2(aM) (we have used Proposition 2.4 so that the 7" powers do

not show up for 1/2 < v; < v). Thus we have P(z~'u) = zp and P(z~(x —u)) =
it — xp = —c1p. Then we define

A e T e )

I'(v)
v—4 2F(_V) —2v
G ™= e ) 27V W oY)

so that Pfo”_Q = fof”_Al and they match with the G;’l;)‘n’ term at rby N zf.
Following the same method used for the asymptotically Euclidean case above,

we can complete this to a parametrix so that the error term iterates away, and we

find that the resolvent is again polyhomogeneous, with R?. = G?. for j = —2,2v—4.

6.3. A limiting case. We have not discussed what happens in the case v = 1.
This corresponds to a zero-resonance that fails only logarithmically to be square-
integrable. In Section 6.1 we saw that for v € [1/2, 1) there is a nonzero term R, >,
but with a coefficient T'(1 — v)~! that vanishes at v = 1, so it is not clear what to
expect at v = 1. (We can also note that the simple bound ||R(k)||2_z2 < k2
valid near & = 0 prevents any behaviour more singular than £~2 in the kernel of
R(k) as k — 0, while a term at order k=2 can only be expected if there is an atom
in the spectral measure at k = 0.)

What happens is that the resolvent becomes non-polyhomogeneous in this case
and there is a term of order k~2(logk)™! in the expansion of the resolvent at zf.
Even though the resolvent in this case fails to be non-polyhomogeneous, the polyho-
mogeneous calculus can be used to construct a weak parametrix with a O(1/logk)
error term. Rather than do this here, instead we move to the four-dimensional
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case since the same phenomenon occurs there in the asymptotically Euclidean sit-
uation, which is perhaps of greater interest and importance. This is the topic of
the following section.

7. RESOLVENT IN DIMENSION 4 WITH A ZERO-RESONANCE - ASYMPTOTICALLY
EUCLIDEAN CASE

Assume now that (M, g) is four-dimensional and asymptotically Euclidean. To
simplify the exposition, we assume (1.6) as before. As mentioned above, this case
is a special case in which the resonance only fails logarithmically to be square-
integrable, and this leads to non-polyhomogeneous behaviour of the resolvent. Our
strategy is to find a polyhomogeneous kernel G(k) on M2 such that

k,sc
(P + k*)G (k) = logk - 1d +E(k)

for some polyhomogeneous function E(k) which is the integral kernel of a com-
pact operator uniformly down to k = 0, with L? — L? operator norm uniformly
bounded. This means that Id + F(k)/logk can be inverted using the Neumann se-
ries for small k, and this yields the resolvent (G(k)/logk)(Id +E(k)/logk)~! which
we see has an expansion in powers of 1/logk (in the interior of zf, say).

To avoid problems coming from the nature of the function log k& near bfy N zf,
we will now switch to use the boundary defining function ' = k/2’ for zf, and «’
for bfy (at least outside bfy Nrbg) and for rby, both of which commute with P.
Following our previous notations, we shall denote by Gz’j the term defined on the
face f which corresponds to the pilog(ps)? coefficient in the asymptotic expansion
at the face f, where p¢ is the previously fixed boundary defining function of the
interior of the face f.

7.1. Diagonal and scattering face terms. The diagonal singularity of G(k) is
encoded in a symbolic term which is the symbolic inverse of log(k)o (P + k?) and
the leading term at the scattering face sc is the inverse of log(k)(A + k?) where A
is the flat laplacian on the fibers of sc induced by A,.

7.2. Terms Gggl, GY%. A resonant state 1 correspond to an L normalized element
¢ € ker P, in LZ(M) \ 2°L}(M) (¢ > 0 small) by the relation ¢ € Cax~1p, it has
asymptotic ¢ = ax + O(2?) for some a € C. We follow the method applied for
n = 3 and thus we will only give few details. There is a generalized inverse Q) for
P, such that

P,Qy =Id—¢p® .
By Theorem 2.1, there exists u € x*1’6L127 such that Pyu = ¢ and with asymptotics

u=br"!— %xlogm + O(x?)
for some b, c € C satisfying ab = —(2vol(S3))~! from Green’s formula applied to
1=lim (Pyu, ) — (u, Pyp).
=0 Mn{z>e}
We set
Gt = (@) Qo +u@ o+ ou)

so that PGggl = Id on zf. Note that Ig(Q}), the restriction of @, to ff = zf N bfy,
is given by (3.5) with n = 4. Like the case n = 3 in (5.2), we have the asymptotic
at the right boundary

(7.1) (22") N Qo+ u @ ¢ + p @ u) = ba' 2p(2) + Bp(z) + O(x')
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for some g € C. At bfy N zf, we have

_ 2
"2 4+ o

(7.2) Gt = (xa') " Ig(Qu) — TOVol(5%)

+ O(ppg 108%(pury ) )-
We shall also define (the tilde indicates that it will be corrected below)
G = log(a')(wa') "M (Qp +u @ ¢ +  ® ).

which satisfies PG = log(2’)Id. Note that P(log(x')G%' + G%) = log(k)Id since
log k' + logz’ = logk, moreover the same argument shows that Gggl,Ggf match
with the diagonal singularity term.

7.3. Term Gl:fi 1 and Ggfi. With this new boundary defining function for bfy, we

write P + k2 = 2>k Py, s~ and thus we set Goot = £Qug, where
Quiy = 2 e, (0, ) (D () K5 (R H (6 = 1) + Ty () Ko () H (o = 1))
j=0

The term log(x’)x'sz;f’l matches with the log(z)(zz') Q) part of égf and cer-
tainly match with log(x’ )Gggl at zf N bfy. We can not add a finite rank term
K (k)K1(K') to Ggfi’l like we did for the case n = 3 to match GY% since this would
imply a term of order p;fQ’l at zf to be added, and then we would not be able to end
the construction of a parametrix with a sufficient error. However we can instead
put a term of order pgfi at bfy that we call Gl:fi’ we define it by

— K K
bei = log(/@’)EQbfO + COEKl(N)Kl(/‘ﬁ/)

for some ¢ € C and we get I, (2/ (P + k2))Ggfi = log(x/)Id. Using the asymp-
totic
2log(2) +1 -2y

4

1
Ki(2)=z"'4 §zlogz +az+0(2logz), a:=

at z = 0 with « Euler’s constant, we find

_ t2
(7.3) Gp2 = cor’ *+log(x') (%O(tzﬂ)thQbfo) +co (a(1+t2)+5 log(t)) +0(pat)

where t := k/k’ = 2’/ is smooth and non vanishing outside rbg,lby but near
zfNbfy. The term of order 2/~ log(x’) matches with the vol(S?) term of log(ﬁ’)Gg%l
if and only if ¢g = —1/vol(S?) = 2ab. The consistency of these two terms with the
diagonal singularity is again straightforward.

7.4. Term G;f2. The most singular term of the asymptotic (7.3) at zf forces to add
a term of order '~ 2 at zf, we call it G;fZ and define it by

_ 1
vol(S3)”

P&

b)
z'?

G;fQ = - with ¢ € C(z '), such that 1 ~

(Recall that now we are using ', not k, as the boundary defining function for
zf.) Note that K’_ZGZ_fQ certainly matches with ﬂ’_2log(m’)Ggf§’1 and z’_ngfi;
moreover it solves PGZ}2 =0 at zf.
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7.5. Term Ggf corrected. We need to correct Ggf so that it matches with the bfy
terms. We just set

Gy = log(2') (22 ) HQy +u® o+ @u) + (0P + ¥R 0)
where 6 is chosen to be a polyhomogeneous function satisfying

z 2logx

"2 vol(53) VOI(S?’)a

7% 4+ O(z).

A short computation shows that G matches with the bfy terms and PGY =
log(z")Id + (P6) ® 1.

Remark 7.1. In principle, to improve the parametrix and get a better error term at
zf, it would be necessary to have P = ¢ so that PG = (log’)Id — I<;2/<;’72GZ}Q.
Using the Theorem 2.1, we can find a function v € x717¢L? such that Pyv = 2714,
or equivalently P(z71v) = ¢ and one can check that v satisfies the asymptotic

— 1 -1 —1
v = me logx + px~" + O(zlogz) for some p € C. However we are not

able to prove that u = —a/+/Vol(S3) in order to take § := z~1v, and we believe
that this actually does not hold in general. Notice in addition that Green’s formula
applied to [ P(z~'v)y shows that

— 11/ Vol(53)

1

x>

[f* =
€
where fp means finite part (i.e. we keep the €” coefficient in the asymptotic expan-
sion at € — 0).
7.6. Terms at rbg. We first set
_ -1 _
G2 = —n T KL (W) (2)

which matches with the 3 zf terms using (7.1). There is a term at order —1 at rbg
coming from the second asymptotic term in the expansion of 1 in Gz_f2: writing

P =1/y/Vol(S3) + ¢1(y)z + O(2? log z)
for some ¢ € Ey (recall Ej; = ker(Ags — 3)), we set

1

Gy = 5 K2 ()01 (') (2)

Then using again (7.1) we see that the term
Gy, = B~ o) K ()
matches with the zf terms. Notice that the 3 terms at rbg solve PG}, = 0 and are

consistent with the bfy terms.

7.7. Term at lby. Here we may use again the function k as a defining function for
Ibg, then we set

Gyl = —kK, (k)2 o(2).

Notice that Gﬁ)i solves the model equations at the lbg face.
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7.8. Resolvent. One can construct an operator
Gk € log k- W > 2208 (4, Q%) 4w B 205 (g, 0172

consistent with all the models we have defined above, where G is an index set such
that

SSC = Oa Sbfo C (_270) + 9/7 92f C -2+ 9/; grbo = glbo =—-2+ 9/
where §’ > 0 is some integral index set (including log terms). The error defined by

E(k) = —(P + k2)G(k) + (logk)Id is in W, °*® where € is an index set (integral
except log terms) such that for any € > 0

(7.5) Ex>0, Eppy>1—€, Epy >0, Eipy>1, Ec>1

with the empty set at the other faces.
We can now state a result concerning the expansion of the resolvent as k — 0 in
two different senses:

Theorem 7.2. Assume that n = 4, that M is asymptotically Euclidean, and that
kerrz P = 0 but P has a zero-resonance ¢ at 0 normalized as above. Let R(k)
denote the resolvent (P + k?)~1 of P.

(i) The kernel k*R(k) has an expansion

o0

(7.6) K R(k) = (log k)™ R;(k),

=0
with R;(k) in the calculus:
Ry(k) € Wy 2O00R (4 O1/2)

Rl =No, R C(0,0UR, R, Rj, R, Ry, =

(7.7)
(0,0) UR"

for some index set R'”? > 1—¢ for any € > 0. The terms in the series are eventually
bounded operators on L%, uniformly in k, and the series converges in the norm
L>([0, kol; || - |z2—12) for sufficiently small kg > 0.

(i) In addition, for any compact set K of {(z,2') € M° x M°,z # Z'}, and for
any N € N,e > 0 the kernel k>R(k; z,2") of k2R(k) has an ezpansion of the form
(7.8)

N [eS)
E*R(k; z,2') Z Z RM 2,2k (log k) 7 +O (kN (log k)’ N*Y) ) (2,2)) e K
£=0 j=—J(¢

for some J : N — N and R@)j € C*®(K), which converges in L>([0, kol; C*°(K)).
The kernels Ry ; satisfy Ro; =0 for 7 <0 and

Roj(z,2") = (~1)w " ()9 (2)
for j > 0, where the real number w is given by (7.10).
Proof. Let us define E'(k) := E(k)/logk. We first prove that, for j > n/2 + 1,
E’(k)? is a uniformly bounded (down to k = 0) family of Hilbert-Schmidt operators

with norm converging to 0 as k — 0. In view of (7.5) and the composition theorem
(Proposition 2.10 of Part I [5]), the kernel E;(k;z, 2") of E(k)’ is bounded by

—ef
(7.9) 1By (ks 2. 2)| < '~ (5 ) dgudgy |2
where C is uniform in k£ € (0,1): indeed E(k)’ is an operator in \I/,Zoo’gj for some
index set &’ satisfying same bounds as in (7.5) but with &J, > n/2 in addition.
(See Definition 2.7 of Part I for why we need the vanishing factor of order > n/2
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at sc.) We consider the L? norm of the kernel of E;(k,z,z") on M?: let us fix k,
then in the region k > 2’ we have (it suffices to work in z,2’ € (0,1))

2dz dm ' \2dz’
E el < 1
/53/53/ / ‘ kZZ /; (ifl—f—l) x/ _C

where C’,C" are constants. It remains to treat the part 2’ > k. Then we remark
that |log k|~ < |log2’|~! and

|Ej(k; 2, 2")(log k)™t < C|log k| ~Y/32'~¢| log 2| ~2/3

which is in L?(M x M) with L? norm bounded by |logk|~'/3 (this is because
|logz’|~1=¢ € L*((0,1/2),dx’ /') for any € > 0). By iterating this, it follows that
| E'(k)7||z2— > is bounded by AC7(logk)~7/3 for some A > 0 and for all j > n,
where C' is independent of j.

We can apply similar reasoning to the kernel k*G(k )/logk o E'(k )j for a fixed
§ > n/2+2. Write G(k) = G1(k) + Ga(k), with G;(k) € W, #2009 (00172,
Then using the composition formulae, k2G; (k) o E(k)? is in the calculus with index
sets > 0 at zf, bfp,lbg, rbg and > n/2 + 2 at sc. Instead of (7.9) we can bound the
kernel by

/

(e) g i

(since the kernel, as a multiple of |dgbdgb\1/ 2. vanishes to at least second or-

der at sc, and to any order at lb,rb,bf). Using similar reasoning we deduce a
bound |logk[*/3 on the L? norm of this kernel. But we have an extra factor
(log k)~7 in k2G(k)/ log ko E' (k)7 which yields a uniform bounds for ||k?>G(k)/ log ko
E'(k) |22 for any j > n/2 + 2. Combining these results we see that the series
(7.6) is convergent in operator norm, proving the first part of the theorem.

To prove the second part, we use the fact that the L°° norm of the kernel of an
operator coincides with the L' — L> operator norm. With a similar argument to
that above, we deduce that |E’(k)?|| p2—r~ and ||[k®G(k)/logko E' (k)| ;1 _ 1> are
bounded uniformly in & for any j > n/2. (These are strictly weaker results since we
only need the L2L° norm on the kernel instead of the L?L? norm, and we already
know from the calculus that these operators have bounded kernels.) Composing
these inequalities with || B’ (k)| 2— 2 < ACY(logk)~9/3, we conclude that the L
norm of the kernel of k2G(k)E’(k)?/logk is bounded by AC7(logk)~7/3 for large
j and therefore the series (7.8) converges in L for k small. Moreover, the same
estimates hold if we apply arbitrary smooth differential operators on K to the kernel
of G(k)E'(k)?, so we get convergence of (7.8) in L>([0, ko]; C*(K)) for all s.

To compute the terms of order k~2(logk)™7 in the expansion of R(k) at zf, we
notice that, at zf,

Gi-z
G(k) = zf
(k) k2logk
where EY := PGY% + k2G> = (PO — ¢)) ® 1 is the term of order k° in the ex-
pansion of E(k) at zf. Thus the composition G>(E%)7 is the coefficient of order
k=2(log k)=~ of R(k) at zf, and it is exactly
~((, PO =)' v @ .

Now the constant w := (¢, P — 9) can be computed through Green’s formula on
balls {x > €} and taking the limit ¢ — 0, this gives

1 2log(2) —1—+
(7.10) w=gta— i =-2B I e

This completes the proof of the theorem. O

+0(1), E(k) = (B +Ok) = (Ex) +O(k)
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Note that, using Remark 7.1, this constant w vanishes if and only if —2z~*v € C¢
where v is the unique function (modulo C(z~1+)) such that Pyv = 1.

8. RIESZ TRANSFORM
In this section we prove Theorem 1.3. We begin with a preparatory lemma.

8.1. A computation. Let us define the function for v > 1/2
F(k):=r"K, (k)

which is smooth on (0, 00), with F(0) = —2"71I'(v) and F(k) = F(0) + O(x?) +
O(k?) as k — 0.

Lemma 8.1. We have the identity for v > 1
/0 "k 2(F (k) — F(0))dr =

Proof. We first have by integration by parts for € > 0 small

(8.1) /OO k2(F(k) — F(0))dk = e *(F(e) — F(0)) + /Oo k10 F(k)dk

but since 2K, (2) = ¢, Fr—.((1 4 12)77"2) with ¢, := T(v + %)2’/717{7% we get by
another integration by parts

O F —iKt y )
0:F(x) _ —ic,,/ Q4R = / eI (1 4 £2) Va4t
K R K —2v+1Jp

Using that formula and making ¢ — 0 in (8.1) yields

2w (v + 1)
—2v+1

2me,
—2v+1
which proves the lemma since 9, F'(0) = 0. O

/OOO Kk 2(F(k) — F(0))dr = 0. F(0) +

8.2. Proof of Theorem 1.3. In this section, we follow essentially the Section 5.2
of Part I [5]. First recall from the Introduction that the Riesz transform T is defined
by T = d o (Ps)~/2, or equivalently (when it is defined on L?)

2 oo
(8.2) T = ;d/o R(k)TIs dk

where I is the spectral projection onto (0,00) for the operator P. We shall also
use Iy to denote the projection onto the zero eigenspace. By the arguments of Part
I, Sec. 5.2, we just have to study LP boundedness of

(8.3) id/oko X(k)R(k)(Id —Ho) dk.

for some small ko > 0 where x(k) is a smooth function with value 1 near & = 0
and supported on [0, ko] (recall that in Part I we have first decomposed the integral
near and away from k = 0, then analyzed the part [kg,o0) and dealt with the
part R(k)II. where II. is the projector onto the part correponding to the negative
spectrum).

Rather than study (8.3) directly, we subtract off the free resolvent kernel, and
consider

ko
(8.4) %d/o x (k) (R(k)(Id ~Tp) — QSRO(k)qS) dk.

First consider the IIy term, x(k)R(k)Ily = x(k)k~2Ily. This term does not lie
in the calculus since it is not rapidly vanishing at Ib, rb or bf. To deal with this we
introduce the function x((xz + ')k/xx’), where x is as above, which is supported
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away from these boundary faces. Then k=2?x((z + 2')k/za’)l lies in the calculus.
On the other hand, the remaining part k=2(1 — x((z + 2')k/za’)y can be treated
directly: we have

ko /
gd/ XEE2(1 = x((z + 2 )k /za’)y dk < O
T Jo xx

So consider the kernel (x + 2')/z2'Ily on M?. Let s = z/2’. With respect to the
scattering (Riemannian) half-density |dgdg’|'/? on M?, TIy decays as (zz’)* =2+,
We can write the kernel d((x—&—m’)/xm’l’[@ as A1+ Ay where A; is supported in s > 1
and As is supported in s < 1. Notice that acting with d on the left factor yields

. . . 2n—4+2m’ g, /
an extra decay factor of z. So A; is bounded pointwise by a/>" ™ gn—1+m’ —

2" 050t with § = n— 4+ 2m', @« = 3—m/. Notice that § > 0 by our assumptions
on m’ relative to n. The argument in the proof of Proposition 5.1 of Part I then
shows that A; is bounded on L? for p < n/a. Similarly, As has kernel bounded
by x2n—dt2m’ g—(n=24m) — yn+éo—(+3) 3 — 2 — py/ and is bounded on LP for
p > n/(n—f). Therefore the kernel A; + A, satisfies the conditions of the theorem.

We return to (8.4), replacing R(k)Iy with k=2x((z + 2')k/zz’)[Iy as allowed
by the discussion above. By Theorem 4.1 (or Theorem 3.4 in the asymptotically
Euclidean case), R(k) is in the calculus with pseudodifferential order —2 and with
index sets —2 at zf, n/2 —4+m’ at rby and 1bg, —2 at bfp, 0 at sc and trivial at all
other boundary hypersurfaces. Also, we have just seen that y((x +z')k/zz’)k =211,
is in the calculus; it has pseudodifferential order —oo and index sets —2 at zf,
n/2 —4+m’ at rbg and lbg, n — 6 + 2m’ at bfy and trivial at all other boundary
hypersurfaces. Of course, the Iy term is chosen precisely to cancel the leading
order behaviour of R(k) at zf, and by Theorem 4.1, the leading behaviour of the
difference R(k) — x((z + 2')k/xz")k 21, is at order > —1. Notice also that, with
our assumptions on m/’ relative to n, n—6+2m’ > —1 and so the leading behaviour
of R(k) — x((x + 2')k/za")k 211, is equal to that of R(k), at order —2, with the
next term at order —1.

Now we bring in the kernel ¢Ry(k)¢. This is in the calculus with pseudodif-
ferential order —2 and with similar index sets (actually, better at lbg and rbg
if m < 2). The point of subtracting ¢Ro(k)¢ is that it cancels the leading be-
haviour of R(k) — x((x + 2)k/xx" )kl at bfy and at sc, so that R(k) — x((x +
2')k/xa')k~*1y — ¢Ro(k)¢ has leading behaviour at order > —1 at bfy and > 1 at
sc.

Now we apply d = ), dz; ® 0., on the left. Vector fields 0., of finite length
on M lift from the left factor to have the form pug, pib, P1bPbe times a vector field
tangent to the boundary of M, ,3’“. Therefore d increases the order of vanishing to
n/2 —3+m' at Iby and to 0 at bfy and leaves the others fixed (and also increases
the pseudodifferential order to —1). We can now apply Proposition 5.1 of [5], with
a=3—m'and 8 =2—m/, to deduce that (8.4) is bounded for the stated range.
Combined with the earlier results about the integral for large k, we have proved
that T'— ¢Ty¢ is bounded on LP for the stated range, where Ty is the classical Riesz
transform on the exact cone (with respect to Ag). However, it is shown in [9] that
Tp is bounded on LP for 1 < p < oo (this is of course classical in the asymptotically
Euclidean case where Tj is the Riesz transform on R™), so we conclude that T itself
is bounded on LP for the stated range.

Finally we prove that the range of p is sharp. For simplicity we shall do this
first in the case that m’ < 2. In this case we can write the resolvent kernel near
the right boundary (now as a multiple of the scattering half-density rather than
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the b-half density, which gives an extra factor of (zz')"/?) as

N
R(k) _ I,%k%74+mlﬁllkg_1+m/(H/)In/271 Z b]y'm (y/)wj (Z)
=0

N
ron ’ ~ .
= 2" T W K e ()22 T (4)4(2)
Jj=0

modulo O(P:Lb_ongm/ log pyb, ), with b, some non-zero function on M in E,_. So
we have

dR(k) — dk™2TIy = gmm (Ii/%_3+m/K%_1+mf(l€/) - /@_2)

N
<3 b ()@ g (2)) + O log )

7

(since d acts in the left variable z here). Integrating in k, we change variable to
k' = k/x’ (which gives us an extra power of z’) and obtain

S , N
x/n—3+m / (K15—3+m K%—l-‘,—m' (K/) _ H_Q) dr’ Z szffn (y/)d(xn/Z—l(pj (Z))
0 =0

for the leading asymptotic of T at 2’ = 0. Since 2™/271,(z) is not constant,

d(z"/?~1p;(2)) is not identically zero. Moreover, by Lemma 8.1, the # integral

does not vanish. Hence T' = a(z,y)z’" >*™ + 0@ ™) at ' = 0 where a
does not vanish. It follows immediately that the upper threshold for p is sharp. A
similar analysis at the left boundary shows that T' = b(y, 2/)z" =2+ 4 O(zn~1+m")
as x — 0 where b does not vanish, showing that the lower threshold is also sharp.

For m’ = 2 we have only to verify that the extra term in (4.3) does not cancel
the first term after integration in x’. But this is straightforward since the two terms
have different asymptotics as © — 0.

This completes the proof of the theorem. O
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