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[f(n)] =0, |n| — oo

Any absolutely continuous p is Rajchman

1 = middle third Cantor measure (distribution of 3" ;,37%,
€ ~ %50 + %52) is not Rajchman:

(3% =a) #0, VkeN.
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Stationary measures for random walks on split semisimple Lie groups
with spectral gap (Li)

Self-similar measures (Li-S., Brémont, Varja-Yu, Solomyak)
Non-commuting self-affine measures (Li-S.)

Equilibrium states for non-linear iterated function systems (Kaufman,
Mosquera-Shmerkin, S.-Stevens)



Fourier decay and Lebesgue like properties
e 1 Rajchman = spt(u) is set of multiplicity for trigonometric series:
i.e. 3 sequences (an)nez # (bn)nez C C such that Vo € R\ spt(p):

§ :an627r'mz _ § :bn627rmm'

neL nez



Fourier decay and Lebesgue like properties
e 1 Rajchman = spt(u) is set of multiplicity for trigonometric series:
i.e. 3 sequences (an)nez # (bn)nez C C such that Vo € R\ spt(p):

§ :an627r'mz _ § :bn627rmm'

neL nez

~

e |fi(n)| = O<(loglog ]n])_l_e), In| > 00 = pae zisnormal



Fourier decay and Lebesgue like properties
e 1 Rajchman = spt(u) is set of multiplicity for trigonometric series:
i.e. 3 sequences (an)nez # (bn)nez C C such that Vo € R\ spt(p):

§ :an627r'mz _ § :bn627rmm'

nez ne”

e |fi(n)| = O((loglog ]n\)_l_e), In| > 00 = pae zisnormal
=0

o liitn)| = O((log[n))2=¢), |n| > 00 =
N(CL’: ‘x—q%‘ < ¢(qi") for oo many (p,n)> = {(1): §§=1 zgz:; z 25

for any lacunary sequence (¢,) C N. (Khintchine type property)



Fourier decay and Lebesgue like properties
e 1 Rajchman = spt(u) is set of multiplicity for trigonometric series:
i.e. 3 sequences (an)nez # (bn)nez C C such that Vo € R\ spt(p):

§ :an627r'mz _ § :bn627rmm'

nez ne”

e |fi(n)| = O<(loglog ]n\)_l‘e), In| > 00 = pae zisnormal
=0

o [im)| = O((og|n)) <), In] > 00 =

e

for any lacunary sequence (¢,) C N. (Khintchine type property)

¥(qn)
n

1, 220:1 w(QH) = 005
O’ ZZO:1 ¢(qn) <00

ﬂ?—ﬁ‘ <
qn

for oo many (p,n)) = {

o i) =0(n=*), Inl > 00 =

- pis L? improving: Vf € LP(R), 1 < p < co: fxpu € LPT¢(R)
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Avoiding lattices and Fourier decay

e Bernoulli convolution yy: distribution of - e, A" for 0 < A <1
where g, ~ %5,1 + %51 i.id. foralln € N.

e Erdds-Salem: p is Rajchman if and only if (d(A™",Z))nen ¢ £2.
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e Let {f, :a € A} be an iterated function system, ie. ACN, I CR
is an interval and f, € C2(I) is a contraction: | f!]lcc < 1.

e The IFS fractal defined by {f, : a € A} is the unique non-empty
compact set F' C [ satisfying

F= Ufa(F)

acA

e If o : I — R is a function, then the equilibrium state (., associated
to ¢ is the measure on F satisfying Vh € C(1):

[ adute) = 3 [ #0Dh(fu(a)) dia),

acA

e Example: If A={1,2}, I=[-(1-XN)"L (1 -N"1],
filz) = Az +1, fa(z) = Ax — 1, p(z) = log(1/2),
then 11, = py, the Bernoulli convolution associated to 0 < A < 1.
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e I=1[0,1, A=N, fu(x) = (x+a)"!, a € N. Then f, are the inverse
branches of the Gauss map T'(z) = X mod 1.

e Jordan-S. 2016: For all equilibrium states ji,, with dimy o, > 1/2 and
log |T"| has a light tail at infinity w.r.t. z,, we have
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Application:

e Salem (1943) conjectured the Minkowski question mark measure p- is
Rajchman, where p7 is the Stieltjes measure associated to the
Minkowski's question mark bijection ? : [0, 1] — [0, 1] mapping
quadratic irrational numbers onto dyadic rational numbers.

e Indeed, 117 is an equilibrium state for p(z) = log(2~%(*)) where a; (z)
is the first continued fraction digit of x € [0, 1].
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e X =T\ H : convex co-compact hyperbolic surface.
Limit set: Ax C OH can be represented as a subset of an IFS fractal
for some collection of maps f,(z) = ;aﬁilza, ac A
e If 1 is the Patterson-Sullivan measure on Ay, it is equilibrium state
with potential defined by ¢(f,(x)) = log|f.(z)|°, for 6 = dimg Ay.
e Bourgain-Dyatlov 2017: 3a(6) > 0 s.t. Vg, g € C%(R),

leller + Hg\lm <oo and infly'|>0:
> | / ) ()] = O(n°D), oo,

Application:
e Selberg zeta function on X:

(x(s) = H H ~(s+REY - Re(s) > 1,5 € C.

~ primitive
closed geodesic in X

e V5 >0, Jap(d) > 0 such that {x(s) = 0 for only finitely many s € C
with Re(s) > d — ag(9).
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o Let {f,: I =+ R:ac A} be C? IFS. Assume I, := f,(I), a € A, are
disjoint. Then there is an expanding map T : I — R with

(T|Ia)_1 = fa-

e {fa:a € A} is conjugated to a self-similar IFS if there exists
1 : I — R constant on each I, such that

log|T'|=goT — g+

for some g € C1(I).

l.e. 3h € C*(I) such that {hf,h~!: a € A} consists of similitudes.
e {fs:a € A} is totally non-linear if it is not conjugated to a

self-similar IFS.
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Assume exists ¢ : I — R constant on each I, and g € C'(I) such that
log|T|=goT —g+¢

and p1, equilibrium state with ¢(x) = log p,(y) for some > 4 pa =1,
0 <pa <1, and a(z) € N determined by = = T'(fqz)()).
e Mosquera-Shmerkin 2018: inf |¢’| > 0 and ¢ = constant, then p, is
Rajchman with power decay.
e Li-S. 2019: if g =0 and 1 is not a lattice: ¥(I) ¢ cZ for some
c € R, then p, is Rajchman.
e Brémont 2019: if g =0, ¢(I) C c¢Z and p, is not Rajchman, then
e~ ¢ is a Pisot number.
e Varjo-Yu 2020: if g =0, ¥(I) C c¢Z with e ¢ is not Pisot nor Salem
number, then p, is Rajchman with polylogarithmic decay.

e Solomyak 2019: if g = 0, for all 1) except zero Hausdorff dimensional
parameter set of v, 11, is Rajchman with power decay.
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Totally non-linear case

Theorem (S.-Stevens 2020)

Assume {f, : I — R} is totally non-linear and A is finite. Then every
non-atomic equilibrium state y,, is Rajchman with power decay.

A. Algom, F.-R. Hertz, Z. Wang (work in progress) can also prove
Rajchman property but not power decay for C'*7 IFSs when

{—log|fl(xa)| : @ € A} is not contained in an arithmetic progression,
where 1z, is the fixed point of f,.
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Large deviations
Write I, := fa(I) for the composition fa := fo, 0---0 f,,, a € A™.

e Large deviations for light tailed observables: for any £ > 0 and
n € N, we can find words R,,(¢) C A" such that for p = i,

w= Z plr, + Z il

acRn(e) ac A"\ Ry (g)

where
(1) for A= [log|T"|dp and § = dimpy p we have

e e A <L S efme ™ ae R,(e)
676n|1a|6 S ulla) S 66n|Ia|6 a € Ryl(e)

(2) and the tail is exponentially small:

S wll) =0,

ac A"\ R, (¢g)
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Non-concentration and spectral gap
e The key to find gy > 0 and ¢y > 0 such that the derivatives
fi(z), a€R,(e), zel,

non-concentrate in the scales m € N, 2n < m < ggn in the
following sense: for any x € I, y € R:

Ha € Ro(e) : M fala) € Blyne ™) _ o o
iR (e) ~

e For us &g and ¢y and depends on the spectral gap for L, _ 1,477
with s = § — 2mi&. Stoyanov (2011) has a proof for the spectral gap
under a local non-integrability assumption for the roof functions of the
symbolic Markov codings of C? Axiom A flows on C? complete
Riemannian manifolds. This follows under total non-linearity of T' with
the roof log |T”|.



Reduction to sum-product bounds

Cauchy-Schwartz and bounded distortions give us whenever

|£‘ ~ 6(2k+1)n)\eson
that

|[/Z(£)|2 gemene—)\@k-{—l)&n Z

ag...apERy, (e)k+1

sup 6—27ri77(1(b1)---<k(bk) X

eaon/QSm‘Sesneson b1...by,

for the maps
Gi(b) = e fo ()

and z,; is the center point of fa;(I) and fa, is the composition of the
maps corresponding f, to the word a; = (ay,...,a,).



Sum-product bound

Lemma 8.43 (J. Bourgain: The Discretized Sum-Product and
Projection Theorems, 2010)

For all k > 0, there exists e3 > 0, €4 > 0 and k£ € N such that the
following holds.

Let v be a probability measure on [%, 1] and let N be a large integer.
Assume for all 1/N < o < 1/N°®* that

maxv(B(a, ) < o".

Then for all £ € R, |£] ~ N:

‘ // . ./e_%i@l‘“z" dv(zy)...dv(zg)| < N™%4.

One can make this into a version involving multiple vy, 15, ..., v for v; a
. o 1
scaled version of 11j = 75 D lber, (c) 0¢;(b)-



Representation theory and higher dimensions

e Li 2018: Renewal theoretic approach for Fourier decay of the
Furstenberg measures on the projective spaces. This should help to
get higher dimensional, totally non-linear case.

e Li-Naud-Pan 2019: PSL(2,C) version of Bourgain-Dyatlov proved

e Li-S. 2019: Self-affine measures, non-commuting matrices using Li
2018

e Fourier decay for self-similar measures in higher dimensions when
assuming dense rotations is difficult, closely related to problem of
finding spectral gap for non-lattice random walks on SO(d). Currently
known for algebraic parameters by Benoist-Saxcé 2014.



