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• Fourier transform of a probability measure µ on R:

µ̂(n) =

ˆ
e−2πinx dµ(x), n ∈ Z.

• Probability measure µ on R is called Rajchman if

|µ̂(n)| → 0, |n| → ∞

• Any absolutely continuous µ is Rajchman
• µ = middle third Cantor measure (distribution of

∑
εk3
−k,

εk ∼ 1
2δ0 + 1

2δ2) is not Rajchman:

µ̂(3k) = µ̂(1) 6= 0, ∀k ∈ N.
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Examples of Rajchman measures
• Random Cantor measure constructions (Salem, Shmerkin-Suomala et

al.)

• Bernoulli convolutions (Salem, Erdös)
• Measures arising from Brownian motion (Kahane et al.)
• Constructions on well- and badly approximable numbers, Liouville

numbers (Kaufman, Bluhm, Hambrook)
• Equilibrium states for the Gauss map (Jordan-S., S.-Stevens)
• Patterson-Sullivan measures for limit sets of convex co-compact

hyperbolic surfaces and manifolds (Bourgain-Dyatlov, Li-Naud-Pan)
• Stationary measures for random walks on split semisimple Lie groups

with spectral gap (Li)
• Self-similar measures (Li-S., Brémont, Varjú-Yu, Solomyak)
• Non-commuting self-affine measures (Li-S.)
• Equilibrium states for non-linear iterated function systems (Kaufman,

Mosquera-Shmerkin, S.-Stevens)
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Fourier decay and Lebesgue like properties
• µ Rajchman =⇒ spt(µ) is set of multiplicity for trigonometric series:

i.e. ∃ sequences (an)n∈Z 6= (bn)n∈Z ⊂ C such that ∀x ∈ R \ spt(µ):∑
n∈Z

ane
2πinx =

∑
n∈Z

bne
2πinx.

• |µ̂(n)| = O
(

(log log |n|)−1−ε
)
, |n| → ∞ =⇒ µ a.e. x is normal

• |µ̂(n)| = O
(

(log |n|)−2−ε
)
, |n| → ∞ =⇒

µ
(
x :
∣∣∣x− p

qn

∣∣∣ ≤ ψ(qn)

qn
for ∞ many (p, n)

)
=

{
1,

∑∞
n=1 ψ(qn) =∞;

0,
∑∞

n=1 ψ(qn) <∞

for any lacunary sequence (qn) ⊂ N. (Khintchine type property)

• |µ̂(n)| = O
(
|n|−α

)
, |n| → ∞ =⇒

- µ is Lp improving: ∀f ∈ Lp(R), 1 < p <∞: f ∗ µ ∈ Lp+ε(R)
- Hausdorff dimension of µ satisfies dimH µ ≥ min{1, 2α}



Fourier decay and Lebesgue like properties
• µ Rajchman =⇒ spt(µ) is set of multiplicity for trigonometric series:

i.e. ∃ sequences (an)n∈Z 6= (bn)n∈Z ⊂ C such that ∀x ∈ R \ spt(µ):∑
n∈Z

ane
2πinx =

∑
n∈Z

bne
2πinx.

• |µ̂(n)| = O
(

(log log |n|)−1−ε
)
, |n| → ∞ =⇒ µ a.e. x is normal

• |µ̂(n)| = O
(

(log |n|)−2−ε
)
, |n| → ∞ =⇒

µ
(
x :
∣∣∣x− p

qn

∣∣∣ ≤ ψ(qn)

qn
for ∞ many (p, n)

)
=

{
1,

∑∞
n=1 ψ(qn) =∞;

0,
∑∞

n=1 ψ(qn) <∞

for any lacunary sequence (qn) ⊂ N. (Khintchine type property)

• |µ̂(n)| = O
(
|n|−α

)
, |n| → ∞ =⇒

- µ is Lp improving: ∀f ∈ Lp(R), 1 < p <∞: f ∗ µ ∈ Lp+ε(R)
- Hausdorff dimension of µ satisfies dimH µ ≥ min{1, 2α}



Fourier decay and Lebesgue like properties
• µ Rajchman =⇒ spt(µ) is set of multiplicity for trigonometric series:

i.e. ∃ sequences (an)n∈Z 6= (bn)n∈Z ⊂ C such that ∀x ∈ R \ spt(µ):∑
n∈Z

ane
2πinx =

∑
n∈Z

bne
2πinx.

• |µ̂(n)| = O
(

(log log |n|)−1−ε
)
, |n| → ∞ =⇒ µ a.e. x is normal

• |µ̂(n)| = O
(

(log |n|)−2−ε
)
, |n| → ∞ =⇒

µ
(
x :
∣∣∣x− p

qn

∣∣∣ ≤ ψ(qn)

qn
for ∞ many (p, n)

)
=

{
1,

∑∞
n=1 ψ(qn) =∞;

0,
∑∞

n=1 ψ(qn) <∞

for any lacunary sequence (qn) ⊂ N. (Khintchine type property)

• |µ̂(n)| = O
(
|n|−α

)
, |n| → ∞ =⇒

- µ is Lp improving: ∀f ∈ Lp(R), 1 < p <∞: f ∗ µ ∈ Lp+ε(R)
- Hausdorff dimension of µ satisfies dimH µ ≥ min{1, 2α}



Fourier decay and Lebesgue like properties
• µ Rajchman =⇒ spt(µ) is set of multiplicity for trigonometric series:

i.e. ∃ sequences (an)n∈Z 6= (bn)n∈Z ⊂ C such that ∀x ∈ R \ spt(µ):∑
n∈Z

ane
2πinx =

∑
n∈Z

bne
2πinx.

• |µ̂(n)| = O
(

(log log |n|)−1−ε
)
, |n| → ∞ =⇒ µ a.e. x is normal

• |µ̂(n)| = O
(

(log |n|)−2−ε
)
, |n| → ∞ =⇒

µ
(
x :
∣∣∣x− p

qn

∣∣∣ ≤ ψ(qn)

qn
for ∞ many (p, n)

)
=

{
1,

∑∞
n=1 ψ(qn) =∞;

0,
∑∞

n=1 ψ(qn) <∞

for any lacunary sequence (qn) ⊂ N. (Khintchine type property)

• |µ̂(n)| = O
(
|n|−α

)
, |n| → ∞ =⇒

- µ is Lp improving: ∀f ∈ Lp(R), 1 < p <∞: f ∗ µ ∈ Lp+ε(R)
- Hausdorff dimension of µ satisfies dimH µ ≥ min{1, 2α}



Avoiding lattices and Fourier decay

• Bernoulli convolution µλ: distribution of
∑

n∈N εnλ
n for 0 < λ < 1

where εn ∼ 1
2δ−1 + 1

2δ1 i.i.d. for all n ∈ N.

• Erdös-Salem: µλ is Rajchman if and only if (d(λ−n,Z))n∈N /∈ `2.
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IFS fractals
• Let {fa : a ∈ A} be an iterated function system, i.e. A ⊂ N, I ⊂ R

is an interval and fa ∈ C2(I) is a contraction: ‖f ′a‖∞ < 1.

• The IFS fractal defined by {fa : a ∈ A} is the unique non-empty
compact set F ⊂ I satisfying

F =
⋃
a∈A

fa(F ).

• If ϕ : I → R is a function, then the equilibrium state µϕ associated
to ϕ is the measure on F satisfying ∀h ∈ C0(I):

ˆ
h(x) dµ(x) =

∑
a∈A

ˆ
eϕ(fa(x))h(fa(x)) dµ(x).

• Example: If A = {1, 2}, I = [−(1− λ)−1, (1− λ)−1],
f1(x) = λx+ 1, f2(x) = λx− 1, ϕ(x) ≡ log(1/2),
then µϕ = µλ, the Bernoulli convolution associated to 0 < λ < 1.
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IFSs from the Gauss map

• I = [0, 1], A = N, fa(x) = (x+ a)−1, a ∈ N. Then fa are the inverse
branches of the Gauss map T (x) = 1

x mod 1.

• Jordan-S. 2016: For all equilibrium states µϕ with dimH µϕ > 1/2 and
log |T ′| has a light tail at infinity w.r.t. µϕ, we have

|µ̂ϕ(n)| = O
(
|n|−α

)
, |n| → ∞.

Application:
• Salem (1943) conjectured the Minkowski question mark measure µ? is

Rajchman, where µ? is the Stieltjes measure associated to the
Minkowski’s question mark bijection ? : [0, 1]→ [0, 1] mapping
quadratic irrational numbers onto dyadic rational numbers.
• Indeed, µ? is an equilibrium state for ϕ(x) = log(2−a1(x)) where a1(x)

is the first continued fraction digit of x ∈ [0, 1].



IFSs from the Gauss map

• I = [0, 1], A = N, fa(x) = (x+ a)−1, a ∈ N. Then fa are the inverse
branches of the Gauss map T (x) = 1

x mod 1.
• Jordan-S. 2016: For all equilibrium states µϕ with dimH µϕ > 1/2 and

log |T ′| has a light tail at infinity w.r.t. µϕ, we have

|µ̂ϕ(n)| = O
(
|n|−α

)
, |n| → ∞.

Application:
• Salem (1943) conjectured the Minkowski question mark measure µ? is

Rajchman, where µ? is the Stieltjes measure associated to the
Minkowski’s question mark bijection ? : [0, 1]→ [0, 1] mapping
quadratic irrational numbers onto dyadic rational numbers.
• Indeed, µ? is an equilibrium state for ϕ(x) = log(2−a1(x)) where a1(x)

is the first continued fraction digit of x ∈ [0, 1].



IFSs from the Gauss map

• I = [0, 1], A = N, fa(x) = (x+ a)−1, a ∈ N. Then fa are the inverse
branches of the Gauss map T (x) = 1

x mod 1.
• Jordan-S. 2016: For all equilibrium states µϕ with dimH µϕ > 1/2 and

log |T ′| has a light tail at infinity w.r.t. µϕ, we have

|µ̂ϕ(n)| = O
(
|n|−α

)
, |n| → ∞.

Application:
• Salem (1943) conjectured the Minkowski question mark measure µ? is

Rajchman, where µ? is the Stieltjes measure associated to the
Minkowski’s question mark bijection ? : [0, 1]→ [0, 1] mapping
quadratic irrational numbers onto dyadic rational numbers.
• Indeed, µ? is an equilibrium state for ϕ(x) = log(2−a1(x)) where a1(x)

is the first continued fraction digit of x ∈ [0, 1].



IFSs from convex co-compact hyperbolic surfaces
• X = Γ \H : convex co-compact hyperbolic surface.

Limit set: ΛX ⊂ ∂H can be represented as a subset of an IFS fractal
for some collection of maps fa(x) = rax+ba

%ax+ca
, a ∈ A.

• If µ is the Patterson-Sullivan measure on ΛX , it is equilibrium state
with potential defined by ϕ(fa(x)) = log |f ′a(x)|δ, for δ = dimH ΛX .
• Bourgain-Dyatlov 2017: ∃α(δ) > 0 s.t. ∀ϕ, g ∈ C2(R),

‖ϕ‖C1 + ‖g‖C2 <∞ and inf |ϕ′| > 0 :

⇒
∣∣∣ˆ g(x)e−2πinϕ(x) dµ(x)

∣∣∣ = O(|n|−α(δ)), n→∞.

Application:
• Selberg zeta function on X:

ζX(s) =
∏

γ primitive
closed geodesic in X

∞∏
k=0

(1− e−(s+k)`(γ)), Re(s) & 1, s ∈ C.

• ∀δ > 0, ∃α0(δ) > 0 such that ζX(s) = 0 for only finitely many s ∈ C
with Re(s) > δ − α0(δ).



IFSs from convex co-compact hyperbolic surfaces
• X = Γ \H : convex co-compact hyperbolic surface.

Limit set: ΛX ⊂ ∂H can be represented as a subset of an IFS fractal
for some collection of maps fa(x) = rax+ba

%ax+ca
, a ∈ A.

• If µ is the Patterson-Sullivan measure on ΛX , it is equilibrium state
with potential defined by ϕ(fa(x)) = log |f ′a(x)|δ, for δ = dimH ΛX .

• Bourgain-Dyatlov 2017: ∃α(δ) > 0 s.t. ∀ϕ, g ∈ C2(R),

‖ϕ‖C1 + ‖g‖C2 <∞ and inf |ϕ′| > 0 :

⇒
∣∣∣ˆ g(x)e−2πinϕ(x) dµ(x)

∣∣∣ = O(|n|−α(δ)), n→∞.

Application:
• Selberg zeta function on X:

ζX(s) =
∏

γ primitive
closed geodesic in X

∞∏
k=0

(1− e−(s+k)`(γ)), Re(s) & 1, s ∈ C.

• ∀δ > 0, ∃α0(δ) > 0 such that ζX(s) = 0 for only finitely many s ∈ C
with Re(s) > δ − α0(δ).



IFSs from convex co-compact hyperbolic surfaces
• X = Γ \H : convex co-compact hyperbolic surface.

Limit set: ΛX ⊂ ∂H can be represented as a subset of an IFS fractal
for some collection of maps fa(x) = rax+ba

%ax+ca
, a ∈ A.

• If µ is the Patterson-Sullivan measure on ΛX , it is equilibrium state
with potential defined by ϕ(fa(x)) = log |f ′a(x)|δ, for δ = dimH ΛX .
• Bourgain-Dyatlov 2017: ∃α(δ) > 0 s.t. ∀ϕ, g ∈ C2(R),

‖ϕ‖C1 + ‖g‖C2 <∞ and inf |ϕ′| > 0 :

⇒
∣∣∣ˆ g(x)e−2πinϕ(x) dµ(x)

∣∣∣ = O(|n|−α(δ)), n→∞.

Application:
• Selberg zeta function on X:

ζX(s) =
∏

γ primitive
closed geodesic in X

∞∏
k=0

(1− e−(s+k)`(γ)), Re(s) & 1, s ∈ C.

• ∀δ > 0, ∃α0(δ) > 0 such that ζX(s) = 0 for only finitely many s ∈ C
with Re(s) > δ − α0(δ).
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Nonlinearity

• Let {fa : I → R : a ∈ A} be C2 IFS. Assume Ia := fa(I), a ∈ A, are
disjoint. Then there is an expanding map T : I → R with

(T |Ia)−1 = fa.

• {fa : a ∈ A} is conjugated to a self-similar IFS if there exists
ψ : I → R constant on each Ia such that

log |T ′| = g ◦ T − g + ψ

for some g ∈ C1(I).
I.e. ∃h ∈ C2(I) such that {hfah−1 : a ∈ A} consists of similitudes.
• {fa : a ∈ A} is totally non-linear if it is not conjugated to a

self-similar IFS.
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Conjugated to self-similar IFSs
Assume exists ψ : I → R constant on each Ia and g ∈ C1(I) such that

log |T ′| = g ◦ T − g + ψ

and µϕ equilibrium state with ϕ(x) = log pa(x) for some
∑

a∈A pa = 1,
0 < pa < 1, and a(x) ∈ N determined by x = T (fa(x)(x)).

• Mosquera-Shmerkin 2018: inf |g′| > 0 and ψ = constant, then µϕ is
Rajchman with power decay.
• Li-S. 2019: if g = 0 and ψ is not a lattice: ψ(I) 6⊂ cZ for some
c ∈ R, then µϕ is Rajchman.
• Brémont 2019: if g = 0, ψ(I) ⊂ cZ and µϕ is not Rajchman, then
e−c is a Pisot number.
• Varjú-Yu 2020: if g = 0 , ψ(I) ⊂ cZ with e−c is not Pisot nor Salem

number, then µϕ is Rajchman with polylogarithmic decay.
• Solomyak 2019: if g = 0, for all ψ except zero Hausdorff dimensional

parameter set of ψ, µϕ is Rajchman with power decay.
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Totally non-linear case

Theorem (S.-Stevens 2020)

Assume {fa : I → R} is totally non-linear and A is finite. Then every
non-atomic equilibrium state µϕ is Rajchman with power decay.

A. Algom, F.-R. Hertz, Z. Wang (work in progress) can also prove
Rajchman property but not power decay for C1+γ IFSs when
{− log |f ′a(xa)| : a ∈ A} is not contained in an arithmetic progression,
where xa is the fixed point of fa.
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Large deviations
Write Ia := fa(I) for the composition fa := fa1 ◦ · · · ◦ fan , a ∈ An.

• Large deviations for light tailed observables: for any ε > 0 and
n ∈ N, we can find words Rn(ε) ⊂ An such that for µ = µϕ:

µ =
∑

a∈Rn(ε)

µ|Ia +
∑

a∈An\Rn(ε)

µ|Ia

where
(1) for λ =

´
log |T ′| dµ and δ = dimH µ we have

e−εne−λn . |Ia| . eεne−λn, a ∈ Rn(ε)

e−εn|Ia|δ . µ(Ia) . eεn|Ia|δ a ∈ Rn(ε)

(2) and the tail is exponentially small:∑
a∈An\Rn(ε)

µ(Ia) = O(e−δ(ε)n),
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Non-concentration and spectral gap

• The key to find ε0 > 0 and c0 > 0 such that the derivatives

f ′a(x), a ∈ Rn(ε), x ∈ I,

non-concentrate in the scales m ∈ N, ε02 n ≤ m ≤ ε0n in the
following sense: for any x ∈ I, y ∈ R:

]{a ∈ Rn(ε) : eλnf ′a(x) ∈ B(y, e−ε0m)}
]Rn(ε)

. eεne−c0m

• For us ε0 and c0 and depends on the spectral gap for Lϕ−s log |T ′|
with s = δ − 2πiξ. Stoyanov (2011) has a proof for the spectral gap
under a local non-integrability assumption for the roof functions of the
symbolic Markov codings of C2 Axiom A flows on C2 complete
Riemannian manifolds. This follows under total non-linearity of T with
the roof log |T ′|.
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Reduction to sum-product bounds

Cauchy-Schwartz and bounded distortions give us whenever

|ξ| ∼ e(2k+1)nλeε0n

that

|µ̂(ξ)|2 .eκεne−λ(2k+1)δn
∑

a0...ak∈Rn(ε)k+1

sup
eε0n/2≤|η|≤eεneε0n

∣∣∣ ∑
b1...bk

e−2πiηζ1(b1)...ζk(bk)
∣∣∣.

for the maps
ζj(b) := e2λnf ′aj−1b

(xaj )

and xaj is the center point of faj (I) and faj is the composition of the
maps corresponding fa to the word aj = (a1, . . . , an).



Sum-product bound

Lemma 8.43 (J. Bourgain: The Discretized Sum-Product and
Projection Theorems, 2010)

For all κ > 0, there exists ε3 > 0, ε4 > 0 and k ∈ N such that the
following holds.

Let ν be a probability measure on [12 , 1] and let N be a large integer.
Assume for all 1/N < % < 1/N ε3 that

max
a

ν(B(a, %)) < %κ.

Then for all ξ ∈ R, |ξ| ∼ N :∣∣∣ˆ ˆ . . .

ˆ
e−2πiξx1...xk dν(x1) . . . dν(xk)

∣∣∣ < N−ε4 .

One can make this into a version involving multiple ν1, ν2, . . . , νk for νj a
scaled version of µj = 1

]Rn(ε)
∑

b∈Rn(ε) δζj(b).



Representation theory and higher dimensions

• Li 2018: Renewal theoretic approach for Fourier decay of the
Furstenberg measures on the projective spaces. This should help to
get higher dimensional, totally non-linear case.

• Li-Naud-Pan 2019: PSL(2,C) version of Bourgain-Dyatlov proved
• Li-S. 2019: Self-affine measures, non-commuting matrices using Li

2018
• Fourier decay for self-similar measures in higher dimensions when

assuming dense rotations is difficult, closely related to problem of
finding spectral gap for non-lattice random walks on SO(d). Currently
known for algebraic parameters by Benoist-Saxcé 2014.


