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Abstract. We prove uniform Sobolev estimates ||u||Lp′ ≤ C||(∆ − α)u||Lp for α ∈ C and
p = 2n/(n+2), p′ = 2n/(n−2) on non-trapping asymptotically conic manifolds of dimension
n, generalizing to non-constant coefficient Laplacians a result of Kenig-Ruiz-Sogge [12].

1. Introduction

In this paper, we consider a class of complete non-compact Riemannian manifolds of di-
mension n, which generalize the Euclidean structure near infinity in a natural way. These are
asymptotically conic manifolds, defined as follows: (M, g) is asymptotically conic if M is the
interior of a smooth compact manifold with boundary M , g is a smooth metric on M such
that there exists a smooth boundary defining function x on M with (M, g) isometric outside
a compact set to

(1) (0, ε)x × ∂M, with metric g =
dx2

x4
+
hx
x2

where hx is a smooth one-parameter family of metrics on ∂M . Euclidean space Rn fits into
this framework, with ∂M = Sn−1, x = 1/|z| where z ∈ Rn, and hx the standard metric on
Sn−1. More generally, if hx is independent of x for small x, the metric is of the form dr2 +r2h
in terms of r = 1/x for large r, hence conic near infinity.

The Laplacian ∆ associated to g has only continuous spectrum given by the half-line
[0,∞). Let dE√∆(λ) be the spectral measure of

√
∆, defined by F (

√
∆) =

∫∞
0 F (λ)dE√∆(λ)

for all bounded functions F . In [9], the authors with Adam Sikora proved that, when n ≥ 3,
the spectral measure dE√∆(λ) maps Lq(M) to Lq

′
(M) boundedly for all q in the range

[1, 2(n+1)/(n+3)], generalizing the Tomas-Stein restriction estimate to this class of manifolds.
When in addition (M, g) is non-trapping, meaning that every geodesic on M reaches spatial
infinity in forward and backward time, then the following estimate was also shown in [9]:

(2)
∥∥dE√∆(λ)

∥∥
Lq(M)→Lq′ (M)

≤ Cλn(1/q−1/q′)−1, for all λ > 0

with a constant C independent of λ. In general if (M, g) is trapping, the estimate still holds
for 0 < λ < λ0 with a constant C depending on λ0.

Resolvent estimates between Lq spaces are also of interest for a number of reasons. The
most classical is the Hardy-Littlewood-Sobolev inequality in Rn, a special case of which is

‖∆−1u‖Lr(Rn) ≤ C‖u‖Lq(Rn),
1
q

=
1
r

+
2
n
.

This was generalized in the following way by Kenig-Ruiz-Sogge [12]: suppose that L is any
constant coefficient first order differential operator on Rn. Then for the ‘Sobolev exponents’
p = 2n/(n+ 2), p′ = 2n/(n− 2), there is an inequality

(3)
∥∥(∆ + L)u

∥∥
Lp(Rn)

≥ C‖u‖Lp′ (Rn), for all u ∈W 2,p(Rn)
1
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with a constant C independent of L. (In fact, they were able to obtain such a uniform estimate
even when ∆ was replaced by a homogeneous second order constant coefficient differential
operator, not necessarily elliptic but with non-degenerate leading symbol.) In particular,
when L is a constant −α ∈ C, they showed

(4)
∥∥(∆− α)u

∥∥
Lp(Rn)

≥ C‖u‖Lp′ (Rn), for all u ∈W 2,p(M).

Inequality (3) was then used to deduce Carleman inequalities, and then unique continuation
theorems, on Rn.

Given (2) and (4), and noting that p = 2n/(n+2) is within the range of validity of (2), it is
natural to predict that similar uniform estimates hold on asymptotically conic non-trapping
manifolds. Indeed, this is the case. Our main result is

Theorem 1.1. Let (M, g) be an asymptotically conic non-trapping manifold of dimension
n ≥ 3. Let p = 2n/(n+ 2) and p′ = 2n/(n− 2). Then there is a constant C > 0 such that for
all α ∈ C, we have

(5) ‖u‖Lp′ (M) ≤ C
∥∥(∆g − α)u

∥∥
Lp(M)

, for all u ∈W 2,p(M).

Equivalently, for all f ∈ Lp(M) and all α ∈ C,

(6)
∥∥(∆g − α)−1f

∥∥
Lp′ (M)

≤ C‖f‖Lp(M).

When α > 0, the operator in (6) may be taken to be either the incoming or outgoing resolvents,
(∆− (α ± i0))−1. If the metric is trapping, the same estimate holds true for all α such that
Reα ≤ A for any A > 0, with C depending only on A.

Remark 1.2. In fact we prove a more general result in the non-trapping case (see remarks
4.2, 6.3 and 6.10): for all q ∈ [ 2n

n+2 ,
2(n+1)
n+3 ], there is C > 0 such that for all α ∈ C and all

f ∈ Lq(M)

(7)
∥∥(∆g − α)−1f

∥∥
Lq′ (M)

≤ C|α|n( 1
q
− 1

2
)−1‖f‖Lq(M).

If η > 0 is small, the same estimate holds true for all q ∈ [ 2n
n+2 , 2] and | arg(α)| > η > 0, with

C depending only on η: see (17).

Remark 1.3. It is not completely obvious that (5) and (6) are equivalent. To see that they
are, first consider the case Imα 6= 0 or Reα < 0. Then (∆ − α)−1 is a pseudodifferential
operator of order −2 (more precisely in the scattering calculus [14]). Therefore ∇∇(∆−α)−1

is a pseudodifferential operator of order 0, and hence bounded on Lp(M), 1 < p <∞. Hence
(∆−α)−1 is an isomorphism between Lp(M) and W 2,p(M), and using this we easily see that
(5) and (6) are equivalent and W 2,p(M) ⊂ Lp′(M). In the case that α > 0, we show that (6)
implies (5). Let u ∈ C∞c (M) ⊂ W 2,p(M) and f = (∆ − α)u. Then, by (6), one has for all
α > 0, ε > 0,

(8)
∥∥(∆− (α+ iε))−1f

∥∥
Lp′
≤ C‖f‖Lp .

Therefore there is a sequence of ε tending to zero such that (∆−(α+iε))−1f has a weak limit.
By definition, (∆−(α+i0))−1f is the distributional limit of (∆−(α+iε))−1f as ε tends to zero.
But (∆− (α+ iε))−1f = u+ iε(∆− (α+ iε))−1u and u ∈ x1/2+εL2(M), hence by the limiting
absorption principle [14], limε→0(∆− (α+ iε))−1u exists and thus (∆− (α+ i0))−1f = u. By
(8), this limit lies in Lp

′
and satisfies

‖u‖Lp′ (M) ≤ C
∥∥(∆g − α)u

∥∥
Lp(M)

.
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A density argument then shows this for all u ∈W 2,p(M). The converse implication is obtained
through similar reasoning.

1.1. Outline of the proof and previous results. We prove Theorem 1.1 in two steps,
first in the region {Re(α) ≤ 0 or | argα| < η} for any η > 0 and then in {| argα| < η}.

The estimate in the first region is a consequence of ellipticity and the Sobolev estimate
||∆u||Lp ≥ C||u||Lp′ , which follows for instance from Gaussian estimates on the heat kernel
e−t∆(z, z′) and (2) for λ near 0 (an alternative approach is to use the inverse ∆−1 of ∆
constructed in [7] — see Remark 2.2). We do this in Sections 2 and 3. We also show that (2)
implies a uniform estimate on the difference (∆ − α)−1 − (∆ − α)−1 between the resolvent
and its formal adjoint, for all α ∈ C \ R.

To prove the estimate within the sector | argα| < η, i.e. close to the spectrum, we need
more detailed properties of the spectral measure. Using complex interpolation, we show that
if we had pointwise estimates of the form∣∣∣∂`λdE√∆(λ)(z, z′)

∣∣∣ ≤ Cλn−1−`(1 + λd(z, z′))−
n−1

2
+`, ∀ ` ≤ n/2

where d(z, z′) is the Riemannian distance between z, z′ ∈M , then (6) would be a consequence.
However, these estimates, which hold for the Euclidean Laplacian, do not hold in general
for asymptotically conic non-trapping manifolds, essentially because there can be conjugate
points for the geodesic flow. As in [9], the way we bypass this problem is through a microlocal
partition of the identity, Id =

∑N
i=1Qi(α), where Qi(α) are pseudodifferential operators

depending on α. If i, j are such that the microsupports (which will be also called wavefront
sets) of Qi(α) and Qj(α) are chosen appropriately, we have from [9] that there is C > 0 such
that for λ/α ∈ [1− δ, 1 + δ]

(9)
∣∣Qi(α)∂`λdE√∆(λ)Qj(α)(z, z′)| ≤ Cλn−1−`(1 + λd(z, z′))−

n−1
2

+`.

The condition on i, j is essentially that the microsupports of Qi and Qj are sufficiently close
in phase space (in a sense that will be explained later). This allows us to prove ‘near-diagonal’
estimates on the resolvent, that is, for Qi(α)(∆− (λ± iγ)2)−1Qj(α) when i, j are as above.

It remains to discuss the ‘off-diagonal’ estimates, that is, for Qi(α)(∆− (λ± iγ)2)−1Qj(α)
whenQi(α), Qj(α) have separated microsupports. Our proof of these estimates uses properties
of the resolvent proved in [11, 8], namely that it is the sum of a pseudodifferential operator
and a ‘Legendre distribution’. The Legendre part is oscillatory at the boundary and can be
understood as a sort of Fourier Integral operator, and has a well-defined microlocal support,
analogous to the canonical relation of an FIO; for the outgoing/incoming resolvent, this
microlocal support is essentially the forward/backward geodesic flow relation on the cotangent
bundle of M ×M . Because of this oscillatory structure, we can understand the composition
Qi(∆− (α± i0))−1Qj microlocally — see Proposition 5.3 (which is taken from [9, Section 7]).

Our strategy is then to choose the partition Qi so that, either the microsupports of Qi
and Qj are very close, in which case we are effectively in the ‘on-diagonal’ case, where (9)
holds, or Qi has the property of either being ‘not outgoing-related’ or ‘not incoming-related’
to Qj in the sense explained in section 5.1. Heuristically ‘not outgoing-related’ means that
there is no point in the microsupport of Qi that is obtained from the microsupport of Qj by
forward geodesic flow. We give a construction of such a partition in Section 5.2. We show
from this that the outgoing resolvent, R(λ + iγ) for γ > 0, is essentially trivial when sand-
wiched between Qi and Qj if Qi is not outgoing-related to Qj . If Qi is not incoming-related
to Qj then the same is true for the incoming resolvent (that is, the case γ < 0). Thus, for
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each pair (Qi, Qj), we get off-diagonal estimates for at least one of the incoming or outgoing
resolvents. Since we already observed that we have an Lp → Lp

′
estimate for the difference

of the resolvents, this completes the proof.

In Appendix A, we also give a second, alternative proof of the off-diagonal resolvent esti-
mates based on positive commutator, which does not rely on the Legendre structure of the
resolvent. Since we think this could useful in other situations, the positive commutator proof
provides some statement similar to propagation of singularities (ie. semiclassical wave-front
set, including wave-front set ‘at infinity’) for the incoming and outgoing resolvents, and we
wrote it without assuming non-trapping geometry but rather certain assumptions like poly-
nomial resolvent estimates on the spectrum, see Lemma A.3.

The first uniform Sobolev estimate of this type (5) appeared in the work of Kenig-Ruiz-
Sogge [12] for homogeneous second order operators on Rn, and it was used to prove Lp

Carleman estimates and unique continuation. Shen [17] proved that for the torus Tn = Rn/Zn,

(10) ||(∆− α)−1||Lp→Lp′ ≤ C in the region (Imα)2 > δRe(α), |α| > δ,

where C depends only on δ > 0. This estimate was generalized by Dos Santos Ferreira-Kenig-
Salo [5] to compact manifolds of dimension n ≥ 3 and very recently, Bourgain-Shao-Sogge-Yao
[1] proved that this estimate is sharp in general on compact manifolds since for the sphere Sn

(or Zoll manifolds), the regions where the estimate (10) can not be made smaller. They also
show in this paper some equivalence between Lp → Lp

′
norms of spectral projectors of ∆ in

frquency windows [λ−ε(λ), λ+ε(λ)] with ε(λ)→ 0 and Lp → Lp
′

estimates for (∆−λ+ iγ)−1

in |γ| ≥ ε(λ) and λ > 1.
To compare these compact results with our case, we point out two main differences: first

the non-trapping condition which allows us to get estimates down to the spectrum, like in Rn,
but brings technical difficulties coming from the complicated structure of the resolvent near
spatial infinity on asymptotically conic manifolds. The second difference with the compact
setting is that we deal with the behaviour at small frequencies, where we need to use the
result of [8] microlocally analyzing the resolvent and spectral measure on the spectrum on
the frequency window [0, λ0].

Acknowledgements. We thank Adam Sikora and Jean-Marc Bouclet for useful dis-
cussions. C.G. thanks the Mathematics Department at ANU where part of this work was
done, and the PICS-CNRS Progress in Geometric Analysis and Applications between ANU
and CNRS. C.G. is partially supported by grants ANR-09-JCJC-0099-01 and ANR-10-BLAN
0105. A.H. acknowledges the support of the Australian Research Council through a Future
Fellowship FT0990895 and Discovery Grant DP1095448.

2. Estimates when Reα ≤ 0

We first consider the case α = 0; the case Reα ≤ 0 will then follow easily.

2.1. Sobolev estimate for ∆. We first recall the restriction estimate of [9]: let (M, g) be
an asymptotically conic manifold in dimension n ≥ 3, let 1 ≤ q ≤ 2n+1

n+3 and q′ its conjugate
exponent, then for all λ0 > 0, there exists C > 0 such that for all λ0 > λ > 0

(11) ||dE√∆(λ)||Lq→Lq′ ≤ Cλ
n( 1
q
− 1
q′ )−1

.
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Proposition 2.1. Let (M, g) be an asymptotically conic manifold of dimension n ≥ 3. We
then have the classical Sobolev inequality: there exists C > 0 such that for all u ∈ C∞c (M)

(12) 〈∆u, u〉 ≥ C||u||2
Lp′
, p′ =

2n
n− 2

.

Proof. Varopoulos [19] proves that on any Riemannian manifold (M, g), a bound of the form
||e−t∆||L1→L∞ ≤ Ct−n/2 for all t > 0 implies the Sobolev estimate (12). This heat operator
estimate is proved for t ∈ (0, 1) on any complete Riemannian manifold by Cheng-Li-Yau [2],
it remains to prove it for large time. First, we write

e−t∆1[0,1](∆) =
∫ 1

0
e−tλ

2
dE√∆(λ)dλ

and use (11) with p = 1 to get directly

||e−t∆1[0,1](∆)||L1→L∞ ≤ Ct−
n
2 .

By the estimate of [2], we know that for any 0 < ε < 1/4, e−ε∆ is bounded as a map
L1(M)→ L2(M) and as a map L2 → L∞(M), thus we directly obtain for t ≥ 1

||e−t∆1[1,∞)(∆)||L1→L∞ ≤ C||e−(t−2ε)∆1[1,∞)(∆)||L2→L2 ≤ Ce−t/2.
�

2.2. Sobolev estimate for Reα ≤ 0. It is now easy to show

Proposition 2.1. Suppose that Reα ≤ 0. Then (5) holds.

Proof. Let α satisfy Reα ≤ 0 and let u ∈ C∞0 (M) be not identically zero. Then by (12),
there exists C > 0 independent of u such that

(13) ||(∆− α)u||Lp(M) ≥
∣∣〈(∆− α)u, u〉

∣∣
||u||Lp′ (M)

≥ 〈∆u, u〉
||u||Lp′ (M)

≥ C||u||Lp′ (M).

which achieves the proof. �

Remark 2.2. We could alternatively use results of [7] at zero energy, which shows that the
Green function ∆−1

g (z, z′) is bounded by a constant times d(z, z′)−(n−2). We can then use
an abstract Hardy-Littlewood-Sobolev inequality from [6], valid on metric measure spaces
such that the measure of a ball of radius ρ is comparable to ρn, that states that the kernel
d(z, z′)−(n−2) maps Lq to Lr provided 1/q = 1/r + 2/n, 1 < q < r <∞.

3. Estimates when Reα > 0 and | argα| ≥ η > 0

We now turn to the more interesting case when Reα ≥ 0. We shall prove, in this section,
some estimates outside conic neighbourhood of the positive real axis. Below, φ(t) is a smooth
function vanishing except on the interval [1 − δ, 1 + δ] and equal to 1 on the interval [1 −
δ/2, 1 + δ/2]. Also, we write α = β + iγ, β, γ ∈ R for the real and imaginary parts of α.

Proposition 3.1. Let α = β + iγ with β > 0 and | argα| ≥ η > 0. Then there is a constant
C depending only on η such that

(14)
∥∥(∆− α)−1

∥∥
Lp(M)→Lp′ (M)

≤ C.
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Moreover, for φ as above, there exists C > 0 such that for all Reα > 0,

(15)
∥∥∥(1− φ(∆/|α|)

)
(∆− α)−1

∥∥∥
Lp→Lp′

≤ C.

Proof. From (12) and duality, we know that (∆ + β)−
1
2 is bounded as an operator L2 → Lp

′

and Lp → L2, thus there exists C > 0 independent of β such that for all u ∈ C∞c (M)

||(∆− α)−1u||Lp′ ≤ C||(∆ + β)
1
2 (∆− α)−1u||L2 ≤ C2

∥∥(∆ + β)(∆− α)−1
∥∥
L2→L2 ||u||Lp .

Now the L2 → L2 bound for the operator in the right hand side is∥∥(∆ + β)(∆− α)−1
∥∥
L2→L2 ≤= sup

σ>0

( (σ + β)2

(σ − β)2 + γ2

) 1
2 ≤ Cβ

γ

which is bounded by C/η for some C > 0. To prove (15), we use the same argument as above
to bound

(16)
∥∥∥(1− φ(∆/|α|)

)
(∆− α)−1

∥∥∥
Lp→Lp′

≤ C
∥∥∥(1− φ(∆/|α|)

)
(∆ + β)(∆− α)−1

∥∥∥
L2→L2

≤ C sup
σ>0

(
1− φ

( σ√
β2 + γ2

))( (σ + β)2

(σ − β)2 + γ2

) 1
2
.

Since η > 0 can be taken as small as we like in the proof above, it remains to consider the
case where α = β(1 ± iε) for all sufficiently small ε ≥ 0. We then take |ε| sufficiently small
relative to δ, and then using the property that φ = 1 on [1− δ/2, 1 + δ/2], we see that

sup
σ>0

(
1− φ

( σ√
β2 + γ2

))( (σ + β)2

(σ − β)2 + γ2

) 1
2 ≤ sup

|σ/β−1|>δ/4

( (σ/β + 1)2

(σ/β − 1)2 + ε2

) 1
2 ≤ C ′.

This achieves the proof. �

Remark 3.1. Using interpolation between (14) (or (15)) and the L2 → L2 norm of (∆−α)−1,
we have for each η > 0 that there is C > 0 such that for all q ∈ [ 2n

n+2 , 2] with 1
q + 1

q′ = 1 and

(17)
‖(∆− α)−1‖Lq→Lq′ ≤ C|α|

n( 1
q
− 1

2
)−1

, ∀α ∈ C, | arg(α)| > η

‖
(
1− φ(∆/|α|)

)
(∆− α)−1‖Lq→Lq′ ≤ C|α|

n( 1
q
− 1

2
)−1

, ∀α ∈ C, Re(α) > 0.

We next prove that if we look at the difference between the resolvents (∆ − α)−1 and
(∆− α)−1, this is uniformly bounded Lp → Lp

′
as we approach the real axis.

Corollary 3.2. There exists C > 0 such that for all α ∈ C with Reα > 0 and all q ∈
[ 2n
n+2 ,

2(n+1)
n+3 ]:

(18) ||(∆− α)−1 − (∆− α)−1||Lq→Lq′ ≤ C|α|
n( 1
q
− 1

2
)−1

.

Proof. In view of (15), it only remains to check that this is true when ∆/|α| is spectrally
localized near 1. Writing α = β + iγ as above, we can estimate using (2)

(19)

∥∥∥φ(∆/|α|)
(

(∆− α)−1 − (∆− α)−1
)∥∥∥

Lq→Lq′

≤ C
∫ ∞

0
φ
( λ2

|α|
) ∣∣∣ 1
λ− β − iγ

− 1
λ− β + iγ

∣∣∣ ∥∥dE√∆(λ)
∥∥
Lq→Lq′ dλ

≤ C
∫ ∞

0
φ
( λ2

|α|
) 2|γ|

(λ2 − β)2 + γ2
λ
n( 1
q
− 1
q′ )

dλ

λ
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and it is easy to check that |α|1−
n
2

( 1
q
− 1
q′ ) times this integral depends only on γ/β and is

uniformly bounded as γ/β → 0. We can then use (17) to conclude. �

In particular if q = 2n/(n+ 2) is the Sobolev exponent, then n(1
q −

1
2)− 1 = 0 and (18) is

uniformly bounded in α.

4. Localized uniform estimates near the spectrum

Our aim to complete the proof of Theorem 1.1 is to obtain a uniform estimate

(20) ||φ(∆/|α|)(∆− α)−1||Lp→Lp′ ≤ C

when | argα| is small and φ ∈ C∞0 (R) is a function as in Proposition 3.1. We are not
able to prove this directly, but rather we will later introduce a operator partition of unity,
Id =

∑
iQi(α), depending on |α| and prove localized estimates

||Qi(α)φ(∆/|α|)(∆− α)−1Qj(α)||Lp→Lp′ ≤ C.

For that purpose, we start with an abstract result: Assuming that Q(α), Q′(α) are bounded
operators on L2 such that pointwise bounds of the type (9) are valid for Q(α)dE√∆(λ)Q′(α),
we show in the following Lemma a uniform estimate for the localized resolvent

||Q(α)φ(∆/|α|)(∆− α)−1Q′(α)||Lp→Lp′ ≤ C.

This will be used with Q(α), Q′(α) elements of a well chosen operator partition of unity
constructed in Section 5.

Lemma 4.1. Let δ, η > 0 be small, let α ∈ C∗ and φ ∈ C∞0 (R) as in Proposition 3.1. Assume
that there exist L2 bounded operators Q(α), Q′(α) and C > 0 such that

(21)
∣∣∣Q(α)∂jλdE√∆(λ)Q′(α)(z, z′)

∣∣∣ ≤ Cλn−1−j(1 + λd(z, z′))−
n−1

2
+j

for all j ≤ n/2 and all λ ∈ [(1− δ)
√
|α|, (1 + δ)

√
|α|]. Then there is C ′ > 0 such that for all

α ∈ C with 0 < | arg(α)| ≤ η∥∥∥Q(α)φ(∆/|α|)(∆− α)−1Q′(α)
∥∥∥
Lp→Lp′

≤ C ′.

Proof. Let us prove the result for the case arg(α) < 0; the other case is similar. We shall prove
this by complex interpolation. Let us consider the analytic family of operators Hs,α(

√
∆/|α|)

in Re(s) ≤ 0 if

Hs,α(x) := es
2 |α|sφ(x2)(x2 − ei arg(α))s

and the logarithm is defined with a cut at R−. Since the operator we are interested in is
H−1,α(

√
∆/|α|) and since by the spectral theorem

sup
t∈R
||Hit,α(

√
∆/|α|)||L2→L2 ≤ C,

it suffices to prove that

(22) sup
t∈R
||H−n

2
+it,α(

√
∆/|α|)||L1→L∞ ≤ C

and the result follows by complex interpolation for the family of operators Hs,α(
√

∆/|α|).



8 COLIN GUILLARMOU AND ANDREW HASSELL

Let us first assume that n is odd. Then we write

H−n
2

+it,α(
√

∆/|α|)

e(it−n
2

)2
=|α|−

n
2

+it

∫ ∞
0

φ(
λ2

|α|
)(
λ2

|α|
− ei arg(α))−

n
2

+itdE√∆(λ)dλ

=
|α|−

n−1
2

+it

L(t)

∫ ∞
0

φ(λ2)(
1

2λ
∂λ)

n−1
2

(
λ2 − ei arg(α)

)− 1
2

+it
dE√∆(λ|α|

1
2 )dλ

where L(t) is a polynomial such that |L(t)| > C > 0 for all t ∈ R. We compose with Q(α) on
the left and Q′(α) on the right and integrate by parts by using the vanishing order at λ = 0
in (21), this yields

e−(it−n
2

)2Q(α)H−n
2

+it,α(
√

∆/|α|)Q′(α) =

|α|−
n−1

2
+it

L(t)

∫ ∞
0

(λ2 − ei arg(α))−
1
2

+itQ(α)(∂λ
1

2λ
)
n−1

2

(
φ(λ2)dE√∆(λ|α|

1
2 )
)
Q′(α)dλ

Using the estimate (21) with j ≤ n−1
2 , we deduce the bound∥∥∥Q(α)(∂λ

1
2λ

)
n−1

2

(
φ(λ2)dE√∆(λ|α|

1
2 )
)
Q′(α)

∥∥∥
L1→L∞

≤ C|α|
n−1

2

and therefore∥∥∥Q(α)H−n
2

+it,α(
√

∆/|α|)Q′(α)
∥∥∥
L1→L∞

≤ Ceπ|t|−t2
∫ 2

0
|λ2 − 1|−

1
2dλ ≤ C.

We now want to deal with the case n even. Let us write, using integration by parts (n/2
times) as before,

H−n+1
2

+it,α(
√

∆/|α|)

e(it−n+1
2

)2
=
|α|−

n
2

+it

L(t)

∫ ∞
0

(λ2 − ei arg(α))−
1
2

+it(∂λ
1

2λ
)
n
2

(
φ(λ2)dE√∆(λ|α|

1
2 )
)
dλ

for some polynomial L(t) such that |L(t)| > C > 0 for all t ∈ R. We multiply this by Q(α)
on the left and Q′(α) on the right and use (21) to obtain the pointwise estimate

(23) |Q(α)H−n+1
2

+it,α(
√

∆/|α|)Q′(α)(z, z′)| ≤ C|α|−
1
2 (1 + (1 + δ)|α|

1
2d(z, z′))

1
2 .

Similarly, we have by integration by parts (n/2− 1 times)

H−n−1
2

+it,α(
√

∆/α)

e(it−n−1
2

)2
=
|α|−

n
2
−1+it

L(t)

∫ ∞
0

(λ2−ei arg(α))−
1
2

+it(∂λ
1

2λ
)
n
2
−1
(
φ(λ2)dE√∆(λ|α|

1
2 )
)
dλ

for some polynomial L(t) as before, and using (21) we get

(24) |Q(α)H−n−1
2

+it,α(
√

∆/|α|)Q′(α)(z, z′)| ≤ C|α|
1
2

(
1 + (1− δ)|α|

1
2d(z, z′)

)− 1
2
.

Since for each (z, z′) the Schwartz kernel Q(α)Hs,α(
√

∆/|α|)Q′(α)(z, z′) is holomorphic in s
in the strip |Re(s) +n/2| ≤ 1/2, we can use Phragmen-Lindelof and (23), (24) to deduce that∣∣∣Q(α)H−n

2
,α(
√

∆/|α|)Q′(α)(z, z′)
∣∣∣ ≤ C sup

w>0

(1 + (1 + δ)w
1 + (1− δ)w

) 1
4 ≤ C.

This ends the proof. �
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Remark 4.2. The same type of proof shows that in fact, or all q ∈ [ 2n
n+2 ,

2(n+1)
n+3 ] and 1

q′ +
1
q = 1

there is C > 0 such that for all α > 0

(25)
∥∥∥Q(α)φ(∆/α)(∆− α± i0)−1Q′(α)

∥∥∥
Lq→Lq′

≤ Cαn( 1
q
− 1

2
)−1

.

under assumption (21) for j ≤ (n + 1)/2. Let us give a brief argument, which is due to
Adam Sikora whom we gratefully acknowledge. We want to interpolate the norms of the
operator Hs,α(

√
∆/α) between Re(s) = −n+1

2 (for L1 → L∞) and Re(s) = 0 (for L2 → L2).
First, let χz+ be the family of distributions on R defined by analytic continuation of χz+(λ) :=
λz+/Γ(z + 1) in z ∈ C; in particular χ−k+ = δk−1

0 if k ∈ N. Then the following estimate holds
for all a < b < c < 0 and b = θa+ (1− θ)c: there is C > 0 such that for all f ∈ C∞0 (R) and
t ∈ R,

(26) ||(λ± i0)b+it ∗ f ||L∞ ≤ C(1 + |t|)e
π
2
|t|||χa+ ∗ f ||θL∞ ||χc+ ∗ f ||1−θL∞ .

The proof is an exercise, and is very similar to the proof of Lemma 3.3 in [9]. To get estimate
on the L∞ norm of the Schwartz kernel of Hs,α(

√
∆/α) on the line Re(s) = −n+1

2 , we write
as kernels

Hs,α(
√

∆/α)(z, z′) = es
2
αs+

1
2

〈
(λ− 1 + i0)s,

φ(λ)
2
√
λ
Q(α)dE√∆(α

√
λ)Q′(α)(z, z′)

〉
where the pairing is the distribution pairing in λ. If n is odd, we set a = −n+3

2 , b = −n+1
2

and c = −n−1
2 with a, c negative integers and apply (26) together with the estimates (21)

(with j = −a− 1 and j = −c− 1 = −a− 3), to deduce that there is C > 0 such that for all
t ∈ R

|Hb+it,α(
√

∆/α)(z, z′)| ≤ Cα−
1
2 sup
w>0

(1 + (1 + δ)w
1 + (1− δ)w

) 1
2 ≤ Cα−

1
2 .

Using the complex interpolation Lemma in [18, p 385], this gives (25) for q = 2(n+1)
n+3 and the

other q are obtained by interpolating with q = p. In even dimension, the similar argument
works with a = −n+2

2 , b = −n+1
2 and c = −n

2 .

5. Microlocal partition of unity

5.1. Pseudodifferential calculus. We start with some preliminaries on pseudo-differential
operators in our setting. The natural class of pseudo-differential operators for this geometry is
the scattering calculus introduced by Melrose [14]. The semi-classical version (high-frequency)
is defined in Vasy-Zworski [20] and in details in Appendix A in Wunsch-Zworski [21]. We will
give a brief review of this calculus and refer the reader to these articles, for further details
(see also[3, Sec. 2] for wave-front sets discussions). The Euclidean version of the semiclassical
calculus can be found for instance in the book of Zworski [22].

Phase space. Recall that g is an asymptotically conic metric on M . In the case that it is
exactly conic near infinity, it takes the form dx2/x4 + h/x2 when x is small, or equivalently
dr2 + r2h when r = 1/x is large, with h independent of x. A frame of uniformly bounded
vector fields (with respect to g) is given by x2∂x and x∂yi for small x; dually, a uniformly
bounded coframe is given by dx/x2 and dyi/x. These scalings motivate the introduction of
the scattering cotangent bundle as the natural phase space for dynamics (such as geodesic
flow) on (M, g). The scattering cotangent bundle scT ∗M is a smooth bundle over M defined
as follows : let ε > 0 be small, then over {x ≥ ε}, scT ∗M is simply T ∗M |x≥ε, and over



10 COLIN GUILLARMOU AND ANDREW HASSELL

{x ≤ 2ε} its smooth sections are given by linear combinations over C∞(M) of dr = −dx/x2

and ω/x where ω are 1-forms smooth up to ∂M . In local coordinates (x, y1, . . . , yn−1) near
the boundary (where yi are local coordinates on ∂M), the bundle scT ∗M is locally spanned
by

dx

x2
,
dy1

x
, . . . ,

dyn−1

x
.

Locally near a point of ∂M , we use the coordinates for a point ξ ∈ scT ∗M

ξ = νd
(1
x

)
+ µ.

dy

x
.

Thus (ν, µ) form linear coordinates on each fibre of scT ∗M near the boundary. For example,
if M = Rn, with Euclidean coordinate z, then (ν, µ) are the radial and angular components of
the cotangent variable ζ dual to z. The geodesic flow for the metric g acts on scT ∗M and pre-
serve the energy levels |ξ|g = const. We shall use the notation gt for the geodesic flow at time t.

Symbols. Let h0 > 0 and h ∈ (0, h0] the semi-classical parameter. A (semi-classical) symbol
a on Rn in the class Sm,`,k(Rn) with (m, l, k) ∈ R3 is defined to be a smooth function on
[0, h0)h × R2n satisfying: for all α, β multi-indices, there exists Cα,β such that for all h, z, ζ

|∂αz ∂
β
ζ a(h, z, ζ)| ≤ Cα,βh−k(1 + |z|)−`−|α|(1 + |ζ|)m−|β|.

A symbol is classical if hkκmx−`a ∈ C∞([0, h0) × Sn+ × Sn+) where Sn+ is the radial smooth
compactification of Rn and x = 1/|z|, κ = 1/|ζ|. Similarly one can fiber radially compactify
the cotangent space scT ∗M into scT

∗
M and a classical symbol in Sm,`,k(M) is defined to be

a function a on [0, h0) × scT
∗
M) such that hkκmx−`a ∈ C∞([0, h0) × scT

∗
M) where κ is a

boundary defining function of the fiber infinity.
One can also define Sm,`,k(M) by reducing to the Rn case. Consider an neighbourhood

of a point y0 ∈ ∂M of the form {(x, y) ∈ M | x < ε, y ∈ U} where U is a neighbourhood
of y0 in ∂M . Choosing a diffeomorphism ω from U to an open subset U ′ in Sn−1, we map
(x, y) to ω(y)/x ∈ Rn using the standard embedding of Sn−1 in Rn. We call this a ‘conic
type’ chart. Such charts induce a smooth map between the associated scattering cotangent
bundles, allowing one to define classical symbols in Sm,`,k(M) as those that can be pulled
back from Sm,`,k(Rn) via such conic-type charts.

We shall only consider classical symbols in what follows and, by abuse of notation, we de-
note by Sm,`,k(M) the class of classical symbols of order (m, `, k) on M . There is a principal
symbol map σ : Sm,`,k(M)→ Sm,`,k(M)/Sm−1,`+1,k−1(M) which assigns the leading term in
the asymptotic expansion as hκx→ 0, ie. at the boundary of [0, 1)× scT

∗
M .

Quantization. Let Ċ∞(M) be the space of smooth functions on M vanishing to infinite order
at ∂M = {x = 0}, and C−∞(M) its dual. We say that an operator A : Ċ∞(M)→ C−∞(M)
is in Ψm,`,k(M) if it can be written, up to a residual operator (ie. mapping C−∞(M) to
h∞Ċ∞(M)), as a finite sum of operators Aj with Schwartz kernels supported in Uj × Uj in
the Euclidean charts Uj with coordinates z (of conic type near infinity and relatively compact
otherwise) and of the form

Aju(z) =
1

(2πh)n

∫
Rn
ei

(z−z′).ζ
h aj(h, z, ζ)u(z)dzdζ, z ∈ U
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for u supported in the chart and aj ∈ Sm,`,k(Rn). There is a well defined principal sym-
bol map σ : Ψm,`,k(M) → Sm,`,k(M)/Sm−1,`+1,k−1(M). We can also define a (semiclassical)
quantization Oph such that Oph : Sm,`,k(M) 7→ Ψm,`,k(M) for all (m, `, k); this can be done
by choosing a set of coordinates, two associated partitions of unity

∑
j ϕj = 1 =

∑
j ψj

with ψjϕj = ϕj , and then set Oph(a) =
∑

j ψjAjϕj where we use the formula above
for Aj with aj the pullback of a in the chart. The space Ψ∗,∗,∗(M) forms an algebra
and Ψm,`,k(M).Ψm′,`′,k′(M) ⊂ Ψm+m′,`+`′,k+k′(M). The principal symbol is multiplicative:
σ(AB) = σ(A)σ(B). An operator A ∈ Ψm,`,0(M) is said to be elliptic at K ⊂ scT̄ ∗M if
σmx`σ(A) ≥ c > 0 on K for some constant c. One also has that if A ∈ Ψm,`,k(M), B ∈
Ψm′,`′,k′(M), then [A,B] ∈ Ψm+m−1,`+`′+1,k+k′−1(M) and

(27) σ([A,B]) =
h

i
{σ(A), σ(B)}

where {a, b} is the Poisson bracket.

Wave-front sets. The wave front set WF′(A) of A = Op(a) is a subset of the boundary
of [0, h0) × scT

∗
M , defined as the complement in ∂

(
[0, h0) × scT

∗
M
)

of those points ξ such
that in a neighborhood of ξ, a vanishes to all orders at all boundary faces of [0, h0)× scT

∗
M .

In other words, ∂αa = O(hNxNκN ) for all N ∈ N and all multi-indices α near ξ (here κ is
a defining function for the fiber boundary, in Euclidean local coordinates (z, ζ) we can take
κ = 1/|ζ|). This notion of WF′ is globally well defined and

(28) WF′(AB) ⊂WF′(A) ∩WF′(B).

A function u ∈ x−NH−N (M) with ||u||H−N = O(h−N ) for some N ∈ N is said to be tempered.
We define its wave-front set to be the complement of the set of points ξ ∈ ∂

(
[0, h0)× scT

∗
M
)

such that there exists A ∈ Ψm,`,0(M) elliptic near ξ such that ||x−NAu||L2 = O(h∞) for all
N ∈ N. In particular, we have

WF′(Au) ⊂WF′(A) ∩WF′(u)

if A ∈ Ψm,`,k(M).

Geodesic flow near infinity. We let p be the Hamiltonian on scT ∗M defined by p(m, ξ) =
gm(ξ, ξ). If the metric g is written near ∂M under the form g = dx2/x4 + hx/x

2 where hx is
a smooth family of metric on ∂M for x ∈ [0, ε), then the principal symbol of ∆g near ∂M is

p(x, y; ξ) = |ξ|2g = ν2 + |µ|2hx
and the Hamiltonian vector field associated to p is (see [20])

Hp = −2xν(x∂x) + (2x|µ|2hx − x
2∂x|µ|2hx)∂ν − 2xνµ.∂µ + xH|µ|2hx

where H|µ|2hx
is the Hamiltonian vector field of |µ|2hx on ∂M . Near x = 0, the equation for the

geodesic flow is given by (dot denotes time derivative)

(29)
ẋ(t) = −2x(t)2ν(t), ν̇(t) = 2x(t)|µ(t)|2hx − x(t)2∂x(|µ|2hx)(t)

µ̇(t) = −2x(t)ν(t)µ(t)− x(t)∂y(|µ|2hx)(t), ẏ(t) = 2x(t)(∂µ|µ|2hx)(t).

We denote the Hamiltonian flow at time t by gt. As described in [14, 15], the Hamiltonian
Hp can be written near ∂M as Hp = xĤp + x2V with V smooth on scT ∗M and tangent to
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its boundary, and

(30) Ĥp := −2ν(x∂x + µ.∂µ) + 2|µ|2h0
∂ν +H|µ|2h0

.

This last vector field is tangent to {x = 0, p = 1} ∩ scT ∗M and vanishes there at µ = 0 only.
Moreover one has ν̇(t) > 0 along its integral curve as long as |ν(t)| < 1.

Outgoing/incoming relations. Let Q,Q′ ∈ Ψ−∞,0,0(M) be two pseudodifferential opera-
tors. We say that Q is not outgoing-related to Q′ if the forward flowout from WF′(Q′) by the
geodesic flow does not meet WF′(Q), that is if gt(WF′(Q′)) ∩WF′(Q) = ∅ for all t ≥ 0. For
boundary points ξ ∈ scT ∗

∂M
M , the action of the flow gt on ξ is defined to be the flow at time

t for the vector field Ĥp acting on scT ∗
∂M

M . Similarly we say that Q is not incoming-related
to Q′ if the backward flowout from WF′(Q′) by the geodesic flow does not meet WF′(Q), or
equivalently if Q′ is not outgoing-related to Q.

5.2. The microlocal partition of unity. Let α = β + iγ with β > β0 for some fixed β0

and let h = 1/
√
|α| be our semi-classical parameter. We will construct an operator partition

of unity (J ∈ N is independent of h)

Id = (1− φ(h2∆)) +
J∑
i=1

Qj(h), with Qj(h) ∈ Ψ−∞,0,0(M)

for which there is a dichotomy: either Qi(h) and Qj(h) have close support and such that
(9) holds, or they are such that Qi(h) is either not outgoing-related or not incoming-related
to Qj(h). In Proposition 6.7, we will show that Qi(h)(h2∆ − (β ± iγ))−1Qj(h) (+ for not
outgoing-related, − for not incoming-related) is a trivial operator for |γ| ≤ η and |β− 1| ≤ δ.

Partition in phase space. We first need the following

Lemma 5.1. Let N ∈ N be large and ε > 0, δ > 0 be small with δ < 1/N . Let us cover
[−(1 + δ), 1 + δ] by N closed intervals Bi of same size 3(1 + δ)/N and each Bi intersects
only Bi−1 and Bi+1, then we cover p−1([1 − δ, 1 + δ]) ∩ {x < ε} by ∪Ni=1B̃i with B̃i :=
p−1(]1− δ, 1 + δ[)∩ {x < ε, ν ∈ Bi}. If N is large enough and δ, ε > 0 are small enough, then
1) when dist(Bi, Bj) > 0 we have

either ∀t ≥ 0, gt(B̃i) ∩ B̃j = ∅ or ∀t ≤ 0, gt(B̃i) ∩ B̃j = ∅.

2) for any small open set U in scT ∗M ∩ {x ≥ 2ε}, then for all i ≤ N

either ∀t ≥ 0, gt(U) ∩ B̃i = ∅ or ∀t ≤ 0, gt(U) ∩ B̃i = ∅.

Proof. We start with a couple of facts about the flow near ∂M . First, from (29), there exists
ε > 0 small so that as long as x(t) ≤ 2ε, one has

(31) ν̇(t) ≥ (2− Cε)x(t)|µ|2hx ≥ 0.

Also, the sign of ẋ is the same as that of −ν. Therefore, if x(0) ≤ 2ε and ν(0) ≥ 0 then
x(t) ≤ 2ε for all t ≥ 0, while if x(0) ≤ 2ε and ν(0) ≤ 0 then x(t) ≤ 2ε for all t ≤ 0.
Equivalently, the compact set x ≥ 2ε is geodesically convex.

Second, suppose that x(0) = ε and −δ ≤ ν(0) ≤ 0 for some 0 < δ < 1/8. As above,
x(t) ≤ ε for all negative t. Now we show that x(t) will be no larger than 3ε/2 for all positive
t, provided that ε is sufficiently small (depending only on (M, g)). To see this, let t0 > 0 be
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the time defined by 0 = ν(t0) ≥ ν(t) for all t ∈ (0, t0); such a time exists by the non-trapping
assumption which means that ν(t)→ 1 as t→∞. For t ∈ [0, t0] one has |µ(t)|2 ≥ 1−δ. Also,
on the interval [0, t0], x is nondecreasing, so x(t) ≥ ε for t ∈ [0, t0], while on the other hand
|ẋ/x2| = |d/dt(x−1)| ≤ 2, implying that x(t) ≤ 2ε for t ≤ 1/4ε. Now using the equation for ν̇
we see that, for sufficiently small ε, ν̇(t) ≥ 2ε(1 − δ − Cε) > ε for 0 < t < min(1/4ε, t0). For
δ < 1/8 this means that ν becomes nonnegative within time δ/ε < 1/8ε, i.e. t0 < δ/ε. This
implies that x(t0) < 3ε/2 for δ < 1/8. Now we have x(t0) < 3ε/2 and ν(t0) = 0 we see from
the paragraph above that x(t) < 3ε/2 for all times t ∈ R. A similar argument shows that if
x(0) = ε and 0 ≤ ν(0) ≤ δ for some 0 < δ < 1/8, then x(t) < 3ε/2 for all times t ∈ R.

Let us now show 1). Without loss of generality assume that inf(Bi) > sup(Bj). Now con-
sider a geodesic γ starting at γ(0) ∈ B̃i. If γ(t) stays entirely within x ≤ 3ε/2 for t ≥ 0, then
ν(t) is nondecreasing along γ for t ≥ 0 and it follows that γ(t) is disjoint from B̃j for t ≥ 0.
On the other hand, if γ(t) reaches x > 3ε/2 for some t2 > 0, then it follows that ν(0) < 0,
so inf(Bi) < 0. Let (t1, t3) be the maximal open interval containing t2 on which x(t) > 3ε/2.
Then we have ν(t) ≤ 0 for t ≤ t1 and ν(t) ≥ 0 for t ≥ t3 since ν is nondecreasing whenever
x ≤ 2ε. It follows that γ(t) is disjoint from B̃j for all t ≥ 0: for t ≤ t1 since ν ≥ ν(0) > supBj ,
on [t1, t3] since x ≥ 3ε/2 and on t ≥ t3 since ν ≥ 0 ≥ ν(0) > supBj .

Showing 2) is similar. Suppose that inf Bi > 0. Then a trajectory γ with γ(0) ∈ B̃i stays in
x ≤ ε for all t ≥ 0 and hence is disjoint from U . Similarly if supBj < 0, trajectories starting
in B̃i stay in x ≤ ε for all t ≤ 0. Now consider the case that 0 ∈ Bi. Then provided that
δ < 1/8 and ε is sufficiently small, the second fact above shows that x(t) ≤ 3ε/2 for all time,
showing that trajectories starting in B̃i are disjoint from U for all t ∈ R. �

In a second Lemma, we complete the adapted covering by covering the region {x ≥ ε}.

Lemma 5.2. Let ι > 0 be sufficiently small, in particular smaller than half of the injectivity
radius of (M, g), and δ > 0 be small. There exist open sets Dj ⊂ {x > ε/2}∩p−1(]1−δ, 1+δ[)
for j = 1, . . . , N ′ such that {x ≥ ε} ∩ p−1(]1 − δ, 1 + δ[) ⊂ ∪jDj and satisfying the following
properties:
1) If Dj ∩ Dk 6= ∅, then all geodesics going from a point m ∈ Dj to a point m′ ∈ Dk have
length less than ι.
2) If (j, k) are such that dist(Dj , Dk) > ι, then either gt(Dj) ∩ Dk = ∅ for all t < ι/2 or
gt(Dj) ∩Dk = ∅ for all t > −ι/2.
3) If Dj ⊂ {x < 2ε}, then there exist i ≤ N such that Dj ⊂ B̂i where B̂i := p−1(]1 − δ, 1 +
δ[) ∩ {x < 2ε, ν ∈ Bi}.

Proof. We first cover the set S∗M ∩ {x ≥ ε/2} by balls Dj of radius r > 0 where r is
chosen smaller than ι/4, and we thicken Dj homogeneously in |ξ| to make open sets in
{||ξ|g − 1| < δ, x ≥ ε/2} ⊂ T ∗M , implying 1) for δ small. Such an r exists by compactness.
By taking r small enough depending only on N , it is also clear that 3) can be obtained. Using
the non-trapping assumption, we will prove that 2) is satisfied if r is chosen small enough.
Taking δ > 0 small, it suffices to consider the flow on S∗M . First, the region {x ≤ ε/2}∩S∗M
is geodesically convex if ε > 0 is small enough, then since g is non-trapping, we can define a
function z → t(z) on {x > ε/2} ⊂ S∗M which to a point z assigns the time t(z) > 0 such that
x(gt(z)(z)) = ε/2, and this function is continuous (t(z) is obtained by applying the implicit
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function theorem to the function (z, t) → x(gt(z))), which implies that for any compact set
K ⊂ S∗M ∩ {x ≤ ε/2}, there exists T+ > 0 such that gt(K) ∈ {x < ε/2} ∩ S∗M for all
t > T+. Similarly there is a T− < 0 so that for all t < T−, gt(K) ∈ {x < ε/2} ∩ S∗M . Now
if such covering Dj does not exist, we can construct, using compactness, two sequences of
points zn, z′n ∈ {x > ε/2} both converging to the same point z ∈ {x > ε/2} ∩ S∗M , and
two sequences of times tn ≤ −ι/2, t′n ≥ ι/2 such that limn→∞ g

tn(zn) = limn→∞ g
t′n(z′n).

Moreover, these times are necessarily bounded by the existence of T± if K is chosen to be
a small ball centered at z. Passing to a subsequence, tn and t′n have an accumulation point
t ≤ −ι/2, resp. t′ ≥ ι/2, then we have gt(z) = gt

′
(z), which implies that z is on a periodic

geodesic, contradicting the non-trapping assumption. �

High energy partition of unity We first note that by [20, Section 2], the function φ(h2∆)
is a semiclassical pseudodifferential operator with symbol φ(|ξ|2). We now choose smooth
functions qi for i = 1, . . . , N +N ′ on scT ∗M such that

• qi ∈ C∞0 (B̃i), i = 1 . . . N ;
• qN+j ∈ C∞0 (Dj), j = 1 . . . N ′;
•
∑N+N ′

i=1 qi = 1 on {(m, ξ); |ξ|2 ∈ suppφ}.
Now we define the operators

(32) Qi(h) = Oph(qi)φ(h2∆), i = 1, . . . , N +N ′,

where Oph is a semiclassical quantization as explained before. By construction, we have

(33)
∑
i

Qi(h)− φ(h2∆) = R(h) ∈ Ψ−∞,∞,−∞(M).

Let us redefine Q1(h) to be Q1(h) + R(h), which does not change any microlocal properties
of Q1(h). Then (Qi(h), (1 − φ)(h2∆)) is a partition of unity. Let us also observe that as
the Qi(h) are uniformly bounded as operators L2 → L2, and as they are Calderón-Zygmund
operators in a uniform sense as h→ 0, then they are uniformly bounded as operators Lp → Lp

for 1 < p < ∞. We shall frequently use the notation Qi below instead of Qi(h). Since
WF′(Qi) ⊂ B̃i and WF′(Qi+N ) ⊂ Di for i ≤ N , in view of Lemma 5.1 we have the following

Lemma 5.3. Let ε, ι,N,N ′ and Bi defined in Proposition 5.1. For 1 ≤ j, k ≤ N +N ′, one
of the following alternatives is satisfied:
1) either gt(WF′(Qi)) ∩WF′(Qj) = ∅ for all t ≥ 0
2) or gt(WF′(Qi)) ∩WF′(Qj) = ∅ for all t ≤ 0
3) or WF′(Qi) ∩WF′(Qj) 6= ∅ with WF′(Qi) ⊂ {x < 2ε, ν ∈ Bk}, WF′(Qj) ⊂ {x < 2ε, ν ∈
Bk′} for some k, k′ with |k − k′| ≤ 1
4) or WF′(Qi)∩WF′(Qj) 6= ∅, WF′(Qi)∪WF′(Qj) ⊂ {x > ε} and dist(WF′(Qi),WF′(Qj)) <
ι.

Moreover, all but one of the Qi have operator wavefront set WF′(Qi) disjoint from the
outgoing radial set {x = 0, µ = 0, ν = +1}, and all but one of the Qi have operator wavefront
set WF′(Qi) disjoint from the incoming radial set {x = 0, µ = 0, ν = −1}.

In the first case, one has Qj not outgoing related to Qi, in the second case Qj is not in-
coming related to Qi, while in the last two cases the microsupports are close one to each other.
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Low energy partition of unity For a low energy partition of unity, we can effectively use
the low energy partition of unity from [9, Section 6]. For the reader’s convenience we describe
this here.

We first remark that this partition of unity lives in the calculus of pseudodifferential op-
erators Ψ0

k(M,Ω1/2
k,b ) defined in [7], [8]. This calculus provides a way of defining pseudodif-

ferential operators depending on an energy parameter λ ∈ [0, λ0] in a uniform way as λ→ 0
(for some λ0 > 0 fixed). In view of the choice of Q0 below, we only describe this here for
pseudodifferential operators supported in the set ρ := x/λ ≤ 2ε for some small ε. Then such
pseudodifferential operators can be defined as follows: we see that an operator A, supported
where x, x′ ≤ 2ελ, is in this calculus if for each boundary point y0 ∈ ∂M there is a conic-
type neighbourhood U with coordinates z : U → Rn so that x = |z|−1 such that for all
half-densities u|dz|1/2, u ∈ C∞c (U) we have

(Au)(z) =
(( λ

2π
)n ∫ ∫

eiλ(z−z′)·ζa(ρ, λ, y, ζ)u(z′) dζ dz′
)
|dz|1/2, z ∈ U,

where a is a zeroth order symbol in ζ depending smoothly on (ρ, λ, y) and supported in ρ ≤ 2ε.
Such operators are uniformly bounded on L2; indeed, they are Calderón-Zygmund operators
in a uniform sense as λ → 0 and therefore uniformly bounded on Lq as λ → 0, 1 < q < ∞.
For our purposes here, we only need to consider operators of order −∞. The wavefront set
WF′(A) is then a subset of scT ∗

∂M
M × [0, λ0] and can be defined either by the vanishing

properties of its symbol by analogy with the high-energy case, or equivalently in terms of its
microlocal support as in [9, Section 5].

We first choose Q0 to be multiplication by the function 1 − χ(ρ), where χ(ρ) = 1 for
ρ ≤ ε/2 and χ(ρ) = 0 for ρ ≥ ε, for some sufficiently small ε. Next, we choose Q′∗ such
that Id−Q′∗ is microlocally equal to the identity for |µ|2h + ν2 ≤ 3/2, and microsupported in
|µ|2h + ν2 ≤ 2. Let Q∗ = χ(ρ)Q′∗. Finally, we write Id−Q0 − Q∗ = χ(ρ)(Id−Q′∗), which has
compact microsupport, as a finite sum of operators Qi, 1 ≤ i ≤ N , where Qi is microsupported
in B̃i from Lemma 5.1. Observe that the Q1, . . . , QN satisfy

Lemma 5.4. Let ε,N and Bi be defined in Proposition 5.1. Let j, k ∈ [1, N ], then one of the
following alternative is satisfied:
1) either sup{ν(q) | q ∈WF′(Qi)} < inf{ν(q) | q ∈WF′(Qj)}
2) or inf{ν(q) | q ∈WF′(Qi)} > sup{ν(q) | q ∈WF′(Qj)}
3) or WF′(Qi)∩WF′(Qj) 6= ∅ with WF′(Qi) ⊂ {x < ε, ν ∈ Bk}, WF′(Qj) ⊂ {x < ε, ν ∈ Bk′}
for some k, k′ with |k − k′| ≤ 1.
Moreover, all but one of the Qi have operator wavefront set WF′(Qi) disjoint from the outgoing
radial set {x = 0, µ = 0, ν = +1}, and all but one of the Qi have operator wavefront set
WF′(Qi) disjoint from the incoming radial set {x = 0, µ = 0, ν = −1}.

6. Estimates close to the spectrum

In this section, we prove estimates on the resolvent (∆ − α)−1 for | argα| ≤ η, where we
may take η as small as we like thanks to Proposition 3.1. In this section we use microlocal
properties of the resolvent proved in [9]; these properties which we require here are recalled in
Section 6.1 so that no detailed knowledge of Legendre distributions, etc, is required to read
this section. However, in the Appendix we give an alternative proof using positive commutator
estimates, which avoids all use of Legendre distributions, which may be preferred by some
readers.
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We first show that the desired estimate in a sector close to the spectrum are a consequence
of the estimates on the boundary, thanks to Phragmén-Lindelöf principle. We write it for
p = 2n/(n+ 2), but the same proof obviously works for p replaced by q ∈ (1,∞): the growth
inside the sector is bounded by the growth on the boundary if that growth is a power of |α|
(typically we shall take |α|n( 1

q
− 1

2
)−1).

Proposition 6.1. Let η ∈ (0, π/2) and p ∈ (1,∞). Assume that we have estimates∥∥(∆− α)−1
∥∥
Lp→Lp′ ≤ C, argα = η, Reα > 0

on the ray argα = η, and estimates on the spectrum:∥∥(∆− (α+ i0))−1
∥∥
Lp→Lp′ ≤ C, α > 0.

Then there exists C > 0 such that for all α ∈ C satisfying 0 ≤ arg(α) ≤ η, one has

||(∆− α)−1||Lp→Lp′ ≤ C.

Proof. Let π/2 > η > 0 be fixed and let ϕ,ψ ∈ C∞0 (M) with ||ϕ||Lp ≤ 1 and ||ψ||Lp ≤ 1.
Then we define the function

F (α) := 〈(∆− α)−1ϕ,ψ〉
which is holomorphic in the sector 0 < arg(α) < η. By assumption, there is C > 0 such that

|F (α)| ≤ C||ϕ||Lp ||ψ||Lp

for all α > 0 and for all α ∈ R+e
iη. The function F (α) is continuous in Uη := {α ∈ C; 0 ≤

arg(α) ≤ η, 0 < |α|} as follows from [14, Prop. 14]. Moreover, [16, Prop 1.27] shows that
there is C ′ > 0 such that for α ∈ Uη, |α| ≤ 1, we have

||x1/2+εR(α)x1/2+ε||L2→L2 ≤ C ′/|α|L

for some L ≥ 0, while this follows with L = 1 for α ∈ Uη, |α| ≥ 1 by [20]. Thus |F (α)| ≤
C ′′max(|α|−L, |α|−1) in Uη for some C ′′ > 0 depending on ϕ,ψ. We can apply Phragmen-
Lindelöf for F (ez) in the half strip {|Im(z)| ≤ η,Re(z) ≤ 0} and we deduce that |F (α)| ≤
C||ϕ||Lp ||ψ||Lp in the closure of Uη. �

This reduces our analysis to estimates on the real line.

6.1. The high frequency estimates. The goal in this subsection is to prove the

Proposition 6.2. Let (M, g) be an asymptotically conic manifold with non-trapping geodesic
flow. Let A, η > 0, then for p = 2n

n+2 and 1/p′ + 1/p = 1, there exists C > 0 such that for all
α ∈ C with |α| > A and ± arg(α) ∈ (0, η),

||φ(∆/|α|)(∆− α)−1||Lp→Lp′ ≤ C.

Remark 6.3. As it will be clear from its proof, the estimate in this Proposition also holds
with p replaced by any q ∈ [ 2n

n+2 ,
2(n+1)
n+3 ]: there is C > 0 such that

||φ(∆/|α|)(∆− α)−1||Lq→Lq′ ≤ C|α|
n( 1
q
− 1

2
)−1

for all α ∈ C with |α| > A > 0 and ± arg(α) ∈ (0, η). We do not discuss the details, this is
straightforward.
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We turn the problem into a semiclassical problem by setting h = 1/
√
|α|. Using the

microlocal partition of unity
∑

iQi introduced in (32), we see that it suffices to prove for the
high-frequency part that for h0 > 0 fixed there is C > 0 such that

(34) ||Qiφ(h2∆)(h2∆− β − iγ)−1Qj ||Lp→Lp′ ≤ Ch
−2

for all β ∈ (1− δ, 1 + δ), all γ ∈ (0, η), all h ∈ (0, h0), and i, j ∈ {1, . . . , N +N ′}.

The ‘near diagonal’ estimate. In Theorem 1.12 in [9, Th. 1.12], we proved that for
non-trapping asymptotically conic manifolds, the following holds:

Proposition 6.4. Let N, ι and Qi = Qi(h) as in Lemma 5.1. If N is chosen large enough
and ι small enough, then for all ` ∈ N and all i, j with Qi, Qj satisfying either 3) or 4) in
Lemma 5.3, there is C > 0 such that for all h ∈ (0, h0) and all λ ∈ [1−δ

h , 1+δ
h ]

|Qi∂jλdE√∆(λ)Qj(z, z′)| ≤ Cλn−1−`(1 + λd(z, z′))−
n−1

2
+`.

Now, by Lemma 4.1 and the remark that follows, we obtain the following corollary.

Corollary 6.5. Let N, ι as in Lemma 5.1, let p = 2n
n+2 and 1/p′ + 1/p = 1. If N is chosen

large enough and ι small enough, then for all j, k with Qi, Qj satisfying either 3) or 4) in
Lemma 5.3, there is C > 0 such that for all β ∈ (1− δ, 1 + δ) and γ ∈ (0, η)

||Qiφ(h2∆)(h2∆− β − iγ)−1Qj ||Lp→Lp′ ≤ Ch
−2.

Using Remark 4.2 after Lemma 4.1 the same estimate with O(h−2n( 1
q
− 1

2
)) bound holds for

Lq → Lq
′

norms when q ∈ [ 2n
n+2 ,

2(n+1)
n+3 ].

The ‘off diagonal’ estimates. For the ‘off diagonal’ estimates, that is, estimates when
(Qi, Qj) satisfy 1) or 2) in Lemma 5.3, we will obtain the estimates in the case when we are
on the spectrum, i.e. to Qi(h2∆ − (β ± i0))−1Qj . We use the description of the resolvent
kernel as a Legendre distribution as in [8]; this was based on the high energy construction of
the resolvent from [11]. We first recall relevant properties of Legendre distributions needed
in our argument. Full details are in the papers [15, 11, 8].

Legendre distributions, depending on the semiclassical parameter h are best understood on
the space M2

b ×[0, h0], h0 = λ−1
0 , where M2

b is the b-double space of M , defined to be the radial
blowup of M2 at the corner (∂M)2. The manifold M2

b is a smooth manifold with corners
obtained by replacing the corner (∂M)2 in M

2 by the interior pointing normal unit bundle
at the corner, identified with [0, 1] × (∂M)2, we refer to [13] for details on the construction
of M2

b . Informally, M2
b is the resolved space so that x/(x′+ x), x′/(x+ x′), x+ x′ are smooth

functions near the corner x = x′ = 0. There are 3 boundary hypersurfaces in M2
b :

lb := { x

x′ + x
= 0}, rb = { x′

x+ x′
= 0}, bf := {x+ x′ = 0}.

The boundary face bf has interior which can be identified to (0,∞) × (∂M)2 by restricting
the coordinates (s := x/x′, y, y′) to bf. The natural semiclassical phase space on M2

b is the
tensor product of the two vector bundles obtained by lifting the scattering cotangent bundle
over M to M2

b via either the left or right stretched projections. Thus, in the interior of M2
b

it just looks like the usual cotangent space, with spatial coordinates (z, z′), z ∈ M and dual
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coordinates (ζ, ζ ′), but near the blown-up face we would use spatial coordinates (x/x′, x′, y, y′)
where x/x′ ≤ C or (x, x′/x, y, y′) where x′/x ≤ C, and fibre coordinates (ν, µ, ν ′, µ′).

We then introduce the product space M2
b × [0, h0] and adopt the usual semiclassical scaling.

That is, we consider the semiclassical vector fields h∂zi in M , or hx2∂x, hx∂yi as our basic
building blocks (since the semiclassical Laplacian h2∆ is an elliptic combination of such vector
fields), for which dual vector fields are dx/(x2h) and dyi/(xh). Hence we write covectors on
M2
b × [0, h0] in the form

(35)
ζ · dz

h
+ ζ ′ · dz

′

h
+ Td

(1
h

)
in the interior of M2

b × [0, h0], or

ν
1
h
d
(1
x

)
+
∑
i

µi
dyi
xh

+ ν ′
1
h
d
( 1
x′
)

+
∑
i

µi
dy′i
x′h

+ Td
(1
h

)
near bf × [0, h0].

defining linear coordinates (ν, µ, ν ′, µ′, T ) on the fibres on M2
b × [0, h0].

A (semiclassical) Legendre distribution F on M2
b is a kernel whose microlocal properties

are determined by a Legendre submanifold associated to the ‘main face’ mf := M2
b × {0}.

In fact, it turns out that the restriction of the phase space to {h = 0} is a contact manifold
in a natural way, with contact structure given in local coordinates over the interior of mf
by −dT + ζ · dz. Then a Legendre submanifold of this space can equivalently (by forgetting
the T coordinate) be thought of as a Lagrangian submanifold of T ∗M2 and, in terms of
this Lagrangian submanifold, a Legendre distribution is precisely a semiclassical Lagrangian
distribution associated to this Lagrangian submanifold.

The Legendre submanifold has a continuous extension to the boundary hypersurfaces of
the phase space over M2

b × [0, h0] lying over bf, the left boundary lb and the right boundary
rb. In this paper we will focus on the microlocal support of the Legendre distribution, which
has components at mf, at bf× [0, h0], and at lb× [0, h0] and rb× [0, h0]; these will be denoted
WF′mf(F ), WF′bf(F ), WF′lb(F ), WF′rb(F ), and will be described in the following paragraphs.
In particular, near a point m ∈ M2

b × [0, h0] with m ∈ f for some f ∈ {rb, lb, bf,mf}, a
Legendre distribution F vanishes to infinite order at the boundary face f if m does not belong
to the projection of WF′f(F ) to the base f × [0, h0].

In the case of WF′mf(F ) this is obtained from the Legendre submanifold by negating the
right cotangent variables (the same way that the canonical relation is obtained from the
Lagrangian submanifold for FIOs). It is shown in [9] that for F the kernel of the outgoing or
incoming resolvent (h2∆ − (β ± i0))−1, the microlocal support at mf consists of a diagonal
(or pseudodifferential) part together with the forward geodesic flow relation on M :

(36)

WF′mf

(
(h2∆− (β ± i0))−1

)
=
{

(z, ζ, z′, ζ ′, T ) | z = z′, ζ = ζ ′, T = 0
}

∪ L′± :=
{

(z, ζ, z′, ζ ′, T ) | |ζ|2g = β; (z, ζ) lies on the forward (+)/backward (−)

geodesic ray starting from (z′, ζ), ±T is the (nonnegative) length of this geodesic.
}

At bf× [0, h0], whose interior can be viewed as (0,∞)x/x′×∂M ×∂M × [0, h0], the microlocal
support is the diagonal relation, together with the forward/backward geodesic flow relation
on the exact metric cone C(∂M, h(0)) := (R+

r × ∂M ; dr2 + r2h(0)), together with a purely
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incoming/outgoing set:
(37)
WF′bf

(
(h2∆− (β ± i0))−1

)
=
{

(x/x′, y, y′, ν, µ, ν ′, µ′, h) | x/x′ = 1, y = y′, ν = ν ′, µ = µ′
}

∪ (Lbf)′± :=
{

(x/x′, y, y′, ν, µ, ν ′, µ′, h) | ν2 + |µ|2h = β, and there exist (r, r′) such that

x/x′ = r′/r, and (r, y, ν, µ) lies on the forward (+)/backward (−)

geodesic ray starting from (r′, y′, ν ′, µ′) on the cone C(∂M, h(0))
}

∪
{

(x/x′, y, y′, ν, µ, ν ′, µ′, h) | ν = ±
√
β, ν ′ = ∓

√
β, µ = µ′ = 0

}
(note that on an exact cone, there is a dilation invariance which means that only the ratio
between the two radial variables r/r′, or equivalently only the ratio x/x′, is relevant). By
(31), the variable ν is monotone along the geodesic. Consequently, we have

(38) ν ≥ ν ′ on (Lbf)′+, ν ≤ ν ′ on (Lbf)′−,

with strict inequalities away from the diagonal.
Finally, the microlocal supports at the left and right boundaries are subsets of scT ∗

∂M
M ×

[0, h0] and for the resolvents are given by

(39)
WF′lb

(
(h2∆− (β ± i0))−1

)
=
{
x = 0, µ = 0, ν = ±

√
β
}
,

WF′rb
(
(h2∆− (β ± i0))−1

)
=
{
x′ = 0, µ′ = 0, ν ′ = ∓

√
β
}
.

For the purposes of this paper, we need to know two properties of the microlocal support.
The first is how it behaves under composition with pseudodifferential operators. The following
result was proved in [9, Section 7]:

Proposition 6.6. Let F be a Legendre distribution/intersecting Legendre distribution/Legendre
conic pair on M2

b × [0, h0]. Let Q,Q′ ∈ Ψ−∞,l,k(M) be pseudodifferential operators such that
their operator wavefront set WF′(Q),WF′(Q′) is compact in scT ∗M . Then the microlocal
support of QFQ′ satisfies

WF′mf(QFQ
′) ⊂WF′mf(F ) ∩

{
(z, ζ, z′, ζ ′, T ) | (z, ζ) ∈WF′(Q), (z′, ζ ′) ∈WF′(Q′)

}
;

WF′bf(QFQ
′) ⊂WF′bf(F ) ∩

{
(x/x′, y, y′, ν, µ, ν ′, µ′, h) | (y, ν, µ, h) ∈WF′(Q),

(y′, ν ′, µ′, h) ∈WF′(Q′)
}

;

WF′lb(QFQ′) ⊂WF′lb(F ) ∩WF′(Q);

WF′rb(QFQ′) ⊂WF′rb(F ) ∩WF′(Q′).

The second fact about the microlocal wavefront set we need is that a Legendre distribution
F has trivial kernel, i.e. kernel in h∞x∞x′∞C∞(M2 × [0, h0]) if and only if its microlocal
support is empty.

From these statements, it is straightforward to obtain the following result.

Proposition 6.7. Let h0 > 0, let i, j so that Qi, Qj satisfying 2) in Lemma 5.3, ie. Qi is
not outgoing-related to Qj, then for all L > 0, all q, q′ ∈ (1,∞) there is C > 0 such that for
all β ∈ (1− δ, 1 + δ) and h ∈ (0, h0)

||Qi(h2∆− β − i0)−1Qj ||Lq→Lq′ ≤ Ch
L.

Similarly, if Qj not outgoing related to Qi, then

||Qi(h2∆− β + i0)−1Qj ||Lq→Lq′ ≤ Ch
L.
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Proof. For definiteness, we assume that Qi, Qj satisfy 2) in Lemma 5.3, and we prove the first
estimate in the Proposition. The other is obtained in exactly the same way.

We begin by recalling that by [11, Theorem 1.1], the incoming and outgoing resolvents are
a sum of an intersecting Legendre distribution and a Legendre conic pair, so Proposition 6.6
applies. Property 2) in Lemma 5.3 together with (36) and the first line of Proposition 6.6
implies that WF′mf(Qi(h

2∆− (β + i0))−1Qj) is empty. Similarly, property 2), (37), (38) and
the second line of Proposition 6.6 shows that WF′bf(Qi(h

2∆−(β+i0))−1Qj) is empty. Finally,
given the last statement in Lemma 5.3, we see that Qi has operator wavefront set disjoint
from the outgoing radial set, and Qj has operator wavefront set disjoint from the incoming
radial set (otherwise property 2) could not be satisfied). Hence, using (39) and the last two
lines of Proposition 6.6, WF′lb(Qi(h2∆− (β + i0))−1Qj) and WF′rb(Qi(h2∆− (β + i0))−1Qj)
are empty.

It follows that the kernel of Qi(h2∆− (β+ i0))−1Qj is in h∞x∞x′∞C∞(M2
b × [0, h0]). The

estimate now follows trivially. �

Finally, we obtain

Corollary 6.8. Let N, ι as in Lemma 5.1 and let φ be as in Section 3. If N is chosen large
enough and ι small enough, then for all j, k with Qi, Qj satisfying either 1) or 2) in Lemma
5.3, there is C > 0 such that for p = 2n

n+2 with 1/p+ 1/p′ = 1 and all β ∈ (1− δ, 1 + δ),

||Qiφ(h2∆)(h2∆− β ± i0)−1Qj ||Lp→Lp′ ≤ Ch
−2.

Proof. Since Qi and Qj are zeroth order pseudodifferential operators, they are bounded on
Lp uniformly in h. Hence, using (15), we see that

(40)
∥∥∥Qi(1− φ)(h2∆)(h2∆− (β ± i0))−1Qj

∥∥∥
Lp→Lp′

≤ Ch−2.

Then, if (Qi, Qj) satisfy 2), we see from Proposition 6.7 and (40) that

(41)
∥∥∥Qiφ(h2∆)(h2∆− (β + i0))−1Qj

∥∥∥
Lp→Lp′

≤ Ch−2.

Now using the uniform boundedness of Qi, Qj on Lq spaces again, Corollary 3.2, and Propo-
sition 6.7, we see that

(42)
∥∥∥Qiφ(h2∆)

(
(h2∆− (β + i0))−1 − (h2∆− (β − i0))−1

)
Qj

∥∥∥
Lp→Lp′

≤ Ch−2.

Combining (41) and (42) we see that we also have

(43)
∥∥∥Qiφ(h2∆)(h2∆− (β − i0))−1Qj

∥∥∥
Lp→Lp′

≤ Ch−2

(where we have the incoming resolvent instead of the outgoing resolvent as in (41)). The
same argument (with incoming and outgoing reversed) works for Qi, Qj satisfying 1). �

Proof of Proposition 6.2. Now Corollary 6.5 and 6.8 together prove (34) which in turn proves
Proposition 6.2 �
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6.2. Low frequency estimates. Here we use the low frequency partition of unity from Sec-
tion 5.2, and deduce estimates for the Lp to Lp

′
norm of (∆− α)−1 for Reα ≤ C.

The ‘near diagonal’ estimate. The estimate (21) is proved in [9, Th. 1.12], and Lemma 4.1
finishes the proof for the near diagonal terms Q0(∆− α)−1Q0, Q∗(∆− α)−1Q∗ and Qi(∆−
α)−1Qj when |i− j| ≤ 1.

The ‘off diagonal’ estimate. To prove the low energy off diagonal estimates, we begin
by noting that thanks to Proposition 6.1 it is only necessary to prove the estimate on the
spectrum, that is, for (∆−β± i0)−1 for 0 < β < C; we often write β = λ2, where λ > 0. Here
we use the microlocal structure of the low energy resolvent as proved in [8]; the argument is
entirely analogous to the argument in the high energy setting, with the main difference being
that the low energy resolvent has polyhomogeneous expansions as λ → 0, as opposed to the
high energy resolvent which is oscillatory as h → 0. Let us recall that the low energy space
introduced in [7] and used in [8, 9] is a blown up version of M2× [0, λ0]. The space is obtained
by first blowing up the codimension-3 corner ∂M2 × {0} and then the three codimension-2
corners, corresponding to ∂M ×M × {0}, M × ∂M × {0} and ∂M × ∂M × (0, λ0]. There
are four boundary hypersurfaces at λ = 0, labelled zf, lb0, rb0 and bf0 according as they arise
from M ×M ×{0}, ∂M ×M ×{0}, M ×∂M ×{0}, or ∂M ×∂M ×{0}. The other boundary
hypersurfaces are lb, rb and bf which arise from ∂M ×M × [0, λ0], M × ∂M × [0, λ0] and
∂M × ∂M × [0, λ0]. For the low energy resolvent, we need to keep track of the microlocal
support, which lives at bf, lb and rb only and is given by (37), (39), together with the order
of vanishing at λ = 0, i.e. at zf, lb0, rb0 and bf0. We have the analogue of Proposition 6.6
for zeroth order pseudodifferential operators Q,Q′ in the low energy case (see [9, Section 6]),
together with the fact that QFQ′ is conormal at each boundary hypersurface at λ = 0, with
the same order of vanishing there as F .

Proposition 6.9. Let (Q0, Q∗, Q1, . . . , QN ) denote the low energy partition of unity con-
structed in Section 5. Suppose that Qi, Qj satisfy 2) in Lemma 5.4, ie. Qi is not outgoing-
related to Qj. Then there is C > 0 such that for all 0 < β = λ2 < C,

||Qi(λ)(∆− (β + i0))−1Qj(λ)||Lp→Lp′ ≤ C.
Similarly, if Qj not outgoing related to Qi, then

||Qi(λ)(∆− (β − i0))−1Qj(λ)||Lp→Lp′ ≤ C.
Remark 6.10. We can replace p by any q ∈ [1, 2n/(n+ 1)) here, and then the right hand side
becomes |β|n(1/q−1/2)−1.

Proof. In this proof, it will be convenient to use the following terminology: we will call a
kernel ‘acceptable’ if it is bounded by a constant times

(44) λn−2
(
1 +

λ

x

)−(n−1)/2(1 +
λ

x′
)−(n−1)/2

.

A straightforward computation shows that this kernel has uniformly bounded Lp
′

norm on
M ×M (recall that the measure looks like x−(n+1)dx dy in each factor of M , for small x).
Therefore, any acceptable kernel is uniformly bounded as a map Lp(M) → Lp

′
(M). More

generally, as a map from Lq(M) to Lq
′
(M) with q ∈ [ 2n

n+2 ,
2(n+1)
n+3 ], and 1/q + 1/q′ = 1, the

norm is O(λ2n( 1
q
− 1

2
)−2).
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The resolvent kernel vanishes to order 0 at the zf face and order n − 2 at all the other
boundary hypersurfaces at λ = 0 [8, Theorem 3.9] (note that in [8], we have ν0 = n/2 − 1;
also note that the density half-bundle in Theorem 3.9 differs from the Riemannian density
bundle by factors of ρn/2lb0

ρ
n/2
rb0
ρnbf0

). Moreover it vanishes to order (n−1)/2 at the left and right
boundaries. Note that in our partition Q(∆−β± i0)−1Q′, only the term Q0(∆−β± i0)−1Q0

has support meeting the zf face and is a ‘near-diagonal’ term, so in analyzing the off-diagonal
terms we can ignore the vanishing order at this face; all off-diagonal terms are O(λn−2) at
λ = 0.

Consider first the compositions Q0(∆−β±i0)−1Q′ and Q′(∆−β±i0)−1Q0, where Q′ 6= Q0.
These kernels vanish in a neighbourhood of bf. Thus, we are only left with the expansions at
the left or right boundaries, together with the hypersurfaces at λ = 0 excluding zf. Observe
that (1 + λ/x)−1 is a product of boundary defining functions for bf and the left boundary,
while (1 +λ/x′)−1 is a product of boundary defining functions for bf and the right boundary.
Since the kernels Q0(∆−β± i0)−1 and (∆−β± i0)−1Q0 vanish to order (n− 1)/2 at the left
and right boundaries, to order λn−2 at λ = 0 and to infinite order at bf, they are bounded by
a constant times (44) and hence acceptable. Also, as noted in [9], the operators Q∗ and Qi are
bounded on Lq uniformly in λ, for 1 < q <∞, so we see that all terms Q0(∆− β ± i0)−1Qj
and Qj(∆− β ± i0)−1Q0, j ∈ {∗, 1, 2, . . . , N}, are uniformly bounded from Lp to Lp

′
.

Next consider the terms Q∗(∆ − β ± i0)−1Q′ and Q′(∆ − β ± i0)−1Q∗. We use Propo-
sition 6.6 to see that this form of sandwiching of the resolvent wipes out the piece (Lbf)′±
of the microlocal support completely, so the microsupport is contained in the diagonal (only
possible for Q′ = Q0) together with the left or right boundaries. Correspondingly, this term
is the sum of a pseudodifferential operator in the calculus Ψ0

k(M,Ω1/2
k,b ) plus an acceptable

term, both of which are uniformly bounded on Lp.
Finally we consider terms of the form Qi(∆ − β + i0)−1Qj where i, j ≥ 1 and where Qi

is not outgoing-related to Qj . Using Proposition 6.6, this sandwiching of the resolvent again
wipes out the piece (Lbf)′± of the microlocal support completely, so again the microsupport
is contained in the left or right boundaries. Hence these terms are acceptable and uniformly
bounded on Lp. �

The low-energy estimates are completed by proving the analogue of Corollary 6.8 in the
low-energy setting. Since the argument is identical to the high-energy case, we omit the
details.

Appendix A. A positive commutator approach for the off-diagonal estimate

In this section we outline an alternative approach to the off-diagonal estimates in Proposi-
tion 6.7, which does not use the Legendre structure of the spectral measure. Instead, we use
positive commutator estimates in the spirit of [14] and especially [20]. In fact, our estimates
are essentially localized versions of the following global commutator estimate from [20]:

Proposition A.1. [Vasy-Zworski] Let (M, g) be a non-trapping asymptotically conic man-
ifold. Let h0 > 0, then for each ε > 0 small, there exists C > 0 such that for all h ∈ (0, h0),
all γ > 0 small and all f ∈ x1/2+εL2(M)

(45)
∥∥(h2∆− 1± iγ

)−1
f
∥∥
x−1/2−εL2(M)

≤ Ch−1‖f‖x1/2+εL2(M).
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We give two lemmas, the first of which is needed in the proof of the second. The desired off-
diagonal estimates follow immediately from the second lemma. Although we want to use them
for non-trapping metrics, we state them in a general setting where the geodesic flow can have
trapped trajectories, since we believe that these Lemmas could be useful for related problems
in trapping situations. Lemma A.3 below can be seen as a propagation of singularities result.
We recall that the forward trapped set Γ+ (resp. backward trapped set Γ−) is the closure of
of the set of points ζ ∈ T ∗M such that gt(ζ) belongs to a compact set for all t ≥ 0 (resp. all
t ≤ 0).

Lemma A.2. Let (M, g) be an aymptotically conic manifold and assume that there exists
J ≥ 1 such that for all small ε > 0 there is C > 0, h0 > 0 such that for all h ∈ (0, h0), all
small γ > 0 and all f ∈ x−1/2−εL2(M)

(46)
∥∥(h2∆− 1± iγ

)−1
f
∥∥
x−1/2−εL2(M)

≤ Ch−J‖f‖x1/2+εL2(M).

Let K > 0, and suppose that A ∈ Ψ0,0,0(M) satisfies WF′(A)∩scT ∗
∂M

M∩{ν = ±1, µ = 0} = ∅,
then there exists C ′ > 0 such that for all h ∈ (0, h0) and all f ∈ x−KL2(M),∥∥(h2∆− (1∓ iγ)

)−1
Af
∥∥
x−K−1L2(M)

≤ Ch−J‖f‖x−KL2(M).

Lemma A.3. Let (M, g) be an aymptotically conic manifold and assume an a priori tempered
estimate (46) for the resolvent. Let A1, A2 ∈ Ψ0,0,0(M) such that:
1) A1 is not outgoing-related to A2,
2) WF′(A1) does not intersect the backward trapped set Γ−,
3) WF′(A2) ∩ scT ∗

∂M
M ∩ {ν = −1, µ = 0} = ∅

4) WF′(A1) ∩ scT ∗
∂M

M ∩ {ν = 1, µ = 0} = ∅.
Then for any L,K,K ′ ≥ 0, there is C > 0 such that for any f ∈ x−K′L2(M), all γ > 0 small
and all h ∈ (0, h0)

(47) ||A1(h2∆− (1 + iγ))−1A2f ||xKL2(M) ≤ ChL||f ||x−K′L2(M).

Both these lemmas are proved in a very similar manner to the argument in [20, Section
3]. Lemma A.3 is proved in [3, Lemma 2] when A1, A2 have compact support and when g
is non-trapping. Because of this, we will only give the main arguments in the proof and we
refer to these articles for details.

Remark A.4. By sacrificing one factor of h in (47), we can change the norm on the left hand
side to the xKH1(M) norm. Then Lemma A.3 and the Sobolev embedding H1 ⊂ Lp

′
give

another proof of Proposition 6.7.

Proof of Lemma A.2. We only prove this lemma for (h2∆−1+iγ)−1, the other case is similar.
Note that it is sufficient to prove a dual statement: that is, to show that the operator

(48) A∗(h2∆− 1− iγ)−1 maps xK+1L2(M) to h−JxKL2(M) uniformly in (h, γ).

The rest of the proof is devoted to proving (48).
We first divide A into an elliptic part and a propagating part. Choose a smooth function ψ

of a real variable, equal to 1 in the interval [1− δ/2, 1 + δ/2] and supported in [1− δ, 1 + δ] for
sufficiently small δ > 0. We decompose A∗ = A∗(Id−ψ(P )) +A∗ψ(P ), and call the first term
the elliptic part. As a pseudodifferential operator A∗ is uniformly bounded on weighted L2

spaces. Also, using Lemma 2.2 of [20] we see that (1−ψ(h2∆))(h2∆− (1 + iγ))−1 is bounded
uniformly on weighted L2 spaces. This shows that the elliptic part satisfies (48).
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We first note that it is easy to prove (48) if the wavefront set of A is disjoint from the
characteristic variety of h2∆ − 1, just using elliptic estimates. Thus we may assume that A
is microsupported near the characteristic variety, given by {|ζ|g = 1}, or {ν2 + |µ|2h = 1} near
the boundary. The result is also trivial if A∗ is microsupported in {x ≥ x0 > 0}. Due to the
assumption that A∗ is microsupported away from the outgoing radial set {ν = 1, µ = 0}, we
see that it suffices to prove the Lemma under the following two additional hypotheses, which
we record for later use:

(49)
•A∗ is microsupported in {ν ≤ 1− δ, x ≤ x0} for some δ > 0, x0 > 0;

•A∗(1− φ(h2∆)) = 0.

where φ is a function similar to ψ above, equal to 1 near 1 but supported on [1− 2δ, 1 + 2δ].
Notice that φ(h2∆) ∈ Ψ−∞,0,0(M) and has principal symbol φ(p), see [20, 4].

Under this assumption for the remainder of the proof, we begin by proving (48) for K = −ε,
ε > 0 small. So we take f ∈ x1−εL2(M). Let ρ, ρ̃ ∈ C∞0 (R) be non increasing, equal to 1 near
0 and 0 in [x0,∞) for some small x0 > 0, and with ρρ̃ = ρ. Let χ ∈ C∞(R) be non-increasing,
with χ′ ≤ −c1χ, positive in ] −∞, ν0] and 0 in [ν1,∞) for some 0 < ν0 < ν1 < 1 both close
to 1 and some c1 > 0 large. Let φ̃ ∈ C∞0 (R) equal 1 near 1 and φφ̃ = φ̃. It suffices to prove
the Lemma for A∗ = Oph(a) with a = ρ̃(x)χ(ν)φ̃(p).

Following Section 4 [20], there exists a real valued symbol such that

(50) q ∈ S−∞,−1/2+ε,0(M) such that Hp(q2) = −bφ(p)2 with bρ2(x) ≥ c0x
2εa2ρ2(x)

and such that there exists C0 > 0 such that

(51) C0a
2ρ2(x) ≥ x1−2εq2ρ2(x).

It suffices to take q := x−
1
2

+ερ̃(x)φ̃(p)χ(ν) and use the identity for α ∈ R

(52) x−α−1Hp(xαρ̃(x)χ(ν)) = −2ν(αρ̃(x) + ρ̃ ′(x))χ(ν) + 2|µ|2h0
χ′(ν)ρ̃(x) + O(x).

Let Q = Oph(q), and B = Oph(b). It follows that, with P := h2∆, we have

(53) i[Q∗Q,P ] = hφ(P )Bφ(P ) + h2R,

with R ∈ Ψ−∞,1+2ε,0(M). Let f ∈ x1−εL2(M) and u := (P − (1 + iγ))−1f . We then follow
the argument of [20, Section 3] to deduce

〈u, i[Q∗Q,P ]u〉 = −2 Im〈u,Q∗Q(P − (1 + iγ))u〉 − 2γ‖Qu‖2.

It follows from (53) that we have

(54) h〈u, φ(P )Bφ(P )u〉 ≤ 2
∣∣〈u,Q∗Q(P − (1 + iγ))u〉

∣∣+ h2
∣∣〈u,Ru〉∣∣.

We estimate

(55)
∣∣〈u,Q∗Q(P − (1 + iγ))u〉

∣∣ ≤ h

2C0
‖x1/2Qu‖2L2 +

2C0

h

∥∥x−1/2Q(P − (1 + iγ))u
∥∥2

L2 .

Using that Q ∈ Ψ−∞,−
1
2

+ε,0(M), we find that (for small ε)

(56)
∥∥x−1/2Q(P − (1 + iγ))u

∥∥2

L2 ≤ C‖f‖2x1−εL2 .

Next we use (50) and the sharp Garding inequality [20, Lemma 2.1]to deduce that as
operators,

ρ(x)φ(P )Bφ(P )ρ(x) ≥ φ(P )Aρ2(x)x2εA∗φ(P ) + hR1,
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for some pseudo R1 ∈ Ψ−∞,1+2ε,0(M). Since A∗ = A∗φ(P ), we have

(57) ‖ρ(x)xεA∗u‖2 ≤ 〈u, ρ(x)φ(P )Bφ(P )ρ(x)u〉+ h
∣∣〈R1u, u〉

∣∣.
We also use (51) and sharp Garding to deduce

(58) Q∗ρ2(x)xQ ≤ C0Aρ
2(x)x2εA∗ + hR2,

with R2 ∈ Ψ−∞,1+2ε,0(M), implying that

(59) ‖ρ(x)x1/2Qu‖2L2 ≤ C0‖ρ(x)xεA∗u‖2L2 + h
∣∣〈R2u, u〉

∣∣.
By (46) and the compact support of (1− ρ(x)), we also have

(60)
‖(1− ρ(x))x1/2Qu‖L2 ≤ Ch−J‖f‖x1/2+εL2 ,

|〈(1− ρ(x))u, φ(P )Bφ(P )u〉|+ |〈u, φ(P )Bφ(P )(1− ρ(x))u〉| ≤ Ch−2J‖f‖2
x1/2+εL2 .

We combine this with (54), (55), (56) and (59) to deduce

〈u, φ(P )Bφ(P )u〉 ≤ Ch−2J‖f‖2x1−εL2(M) +
1
2
‖ρ(x)xεA∗u‖2 + h

∣∣〈R2u, u〉
∣∣+ h

∣∣〈u,Ru〉∣∣.
We insert this in (57) and use again (60)to find that

(61) ‖ρ(x)xεA∗u‖2L2 ≤ Ch−2J‖f‖2x1−εL2(M) + Ch(
∣∣〈R1u, u〉

∣∣+
∣∣〈R2u, u〉

∣∣+
∣∣〈u,Ru〉∣∣).

The terms involving R and Rj can be estimated by Ch−2J‖f‖x1/2+εL2 , using (45) again and the
fact that R ∈ Ψ−∞,1+2ε,0(M) . Thus this proves the claim since obviously ||(1− ρ)xεA∗u||L2

is estimated by Ch−J ||f ||x1/2+εL2 by (60) and the fact that (1− ρ(x)) has compact support.
That is, we have shown that

(62) ‖xεA∗u‖2 ≤ Ch−2J‖f‖2x1−εL2(M),

which proves (48) for K = −ε, ε > 0 small.
Now to prove for larger values of K, we proceed by induction. Given (48) for a particular

value of K, we prove true for K + l, where 0 < l ≤ 1/2. To do this, we now let f ∈
xK+1+lL2(M) and as before we find a symbol
(63)

q ∈ S−∞,−K−1/2−l,0(M) such that Hp(q2) = −bψ(p)2 with bρ2(x) ≥ c0x
−2K−2la2ρ2(x).

and for which there is a constant C0 > 0 with

(64) C0a
2ρ2(x) ≥ x−2K−1−2lq2ρ2(x).

Then we have (53) where now R has order −2K + 1 − 2l ≥ −2K. We follow the line of
argument above until (56) which is replaced by

(65)
∥∥x−1/2Q(P − (1 + iγ))u

∥∥2 ≤ Ch−1‖f‖2xK+1+lL2(M)

since now Q has order −K − 1/2− l.
We replace the sharp Garding inequality by

(66) ρ(x)φ(P )Bφ(P )ρ(x) ≥ φ(P )Aρ2(x)x−2K−2lA∗φ(P ) + hR1,

and (58) by

(67) Q∗ρ2(x)xQ ≤ C0Aρ
2(x)x−2K−2lA∗ + hR2,
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where the Rj ∈ Ψ−∞,−2K−2l+1(M). Since −2K + 1− 2l ≥ −2K, using the inductive assump-
tion u ∈ h−Jx−KL2 uniformly shows that the R and Rj terms can be controlled as above.
Then the rest of the argument proceeds as above to yield

‖x−K−lA∗u‖2 ≤ Ch−2J‖f‖2xK+1+lL2(M),

which proves (48) for K + l. Thus, starting from K = −ε, a finite number of iterations gives
(48) for any K > 0. �

Proof of Lemma A.3. This lemma is proved in a very similar way. Again we easily deal with
the case that the microsupport of A1 is disjoint from the characteristic variety, and reduce
to the case where A1 satisfies conditions (49). We proceed by induction. Lemma A.2 gives
a starting point for the induction: we can take L = −J and K = −K ′ − 1. Now assume
that the have the result for some (K ′, L). We wish to show that the conclusion is valid for
(K + 1/2, L + 1/2). Take f ∈ x−K′L2(M) and it suffices to assume that Ai = Oph(ai) with
a1, a2 ∈ S−∞,0,0(M).

Assume, following [20], that we have a symbol

(68) q ∈ S−∞,−K−1,0(M) such that Hp(q2) = −bφ(p)2 with b ≥ c0x
−2K−1a2

1

and q = 0 on all points outgoing-related to supp a2.

where φ is like in the previous Lemma. The construction of the symbol is explained later. As
a consequence of (68), we can find quantizations Q, B of q, b respectively, such that

i[Q∗Q,P ] = hφ(P )Bφ(P ) + h2R,

with R ∈ Ψ−∞,−2K,0(M) and such that

(69) the microsupports of Q, B and R are not outgoing-related to that of A2.

We write v = (P − (1 + iγ))−1A2f and use the identity

〈v, i[Q∗Q,P ]v〉 = −2 Im〈v,Q∗Q(P − (1 + iγ))v〉 − 2γ‖Qv‖2.
We then apply very similar arguments to those in [20] and the previous lemma to deduce that

(70) h〈v, φ(P )Bφ(P )v〉 ≤ 2
∣∣〈v,Q∗Q(P − (1 + iγ))v〉

∣∣+ h2
∣∣〈v,Rv〉∣∣.

The first term is estimated as follows: we write (P − (1 + iγ))v = A2f and estimate for N
large ∣∣〈v,Q∗Q(P − (1 + iγ))v〉

∣∣ ≤ ‖hNxNQv‖‖h−Nx−NQA2f‖.
Since WF′(Q) ∩WF(A2) = ∅, QA2v is O(h∞) in any weighted space so the second norm is
bounded by C‖f‖x−K′L2 . The first term is controlled by Lemma A.2. Thus we find that

(71)
∣∣〈v,Q∗Q(P − (1 + iγ))v〉

∣∣ ≤ Ch2L+1‖f‖2
x−K′L2 .

Next we use (68), the sharp Garding inequality, and (49) to deduce that as operators,

φ(P )Bφ(P ) ≥ A∗1x−2K−1A1 + hR1

for some R1 ∈ Ψ−∞,−2k,0(M). Therefore

‖x−K−1/2A1v‖2 ≤ 〈v, φ(P )Bφ(P )v〉+ h
∣∣〈R1v, v〉

∣∣.
Combining this with (70) and (71), we find that

‖x−(K+1/2)A1v‖2 ≤ Ch2L+1‖f‖2
x−K′L2 + h

∣∣〈v,Rv〉∣∣+ h
∣∣〈R1v, v〉

∣∣.
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Let us explain briefly how to deal with the R term (the R1 term is similar): from (69) we
can rewrite 〈v,Rv〉 = 〈R2v,R3v〉 for some R2, R3 ∈ Ψ−∞,−k,0(M) with microsupport not
outgoing related to A2, and then using the induction assumption, we see that this term is
bounded by Ch2L‖f‖2

x−K′L2 . We conclude that

‖x−(K+1/2)A1v‖2L2 ≤ Ch2L+1‖f‖2
x−K′L2 .

This completes the inductive step, and thus proves the Lemma.

Now we discuss the construction of the symbol. It suffices to do this assuming that A1 is
microsupported in an arbitrarily small neighbourhood of a point ξ1 ∈ scT ∗M . It also suffices
to assume that the microsupport of A2 is contained in an arbitrarily small neighbourhood of
the characteristic variety {ν2 + |µ|2 = 1}, otherwise we are in the easy elliptic case. Using the
hypothesis that WF′(A2) is disjoint from the incoming radial set, this allows us to assume
without loss of generality that

(72) ν ≥ ν0 > −1 on WF′(A2).

First assume that ξ1 is in the incoming radial set {x = 0, µ = 0, ν = −1}. Then using (72)
we can use a symbol q of the form

(73) x−K−1ρ̃(x)φ̃(p)χ(ν), χ(ν) supported in {ν ≤ ν1} where − 1 < ν1 < min(0, ν0)

as in the proof of Lemma A.2.
On the other hand, suppose that ξ1 is not in the incoming radial set. By hypothesis is it

also not in the outgoing radial set, so the Hamilton vector field x−1Hp is nonzero at ξ1. We
may therefore choose coordinates in scT ∗M , valid in a small neighbourhood of the integral
curve of x−1Hp through ξ1, in the form (Ξ, t), Ξ ∈ R2n−1, t ∈ R such that ξ1 = (0, 0) and
x−1Hp = ∂t in these coordinates, i.e. Ξ is constant along integral curves. We can then find a
function of the form q′1 = χ(t)φ(Ξ), where χ(t) is nonnegative, strictly positive on (−∞, t0),
t0 > 0 and zero on [t0,∞) and φ ∈ C∞c (R2n−1) with φ(0) = 1. Then x−1Hp(q′1) is nonpositive,
and strictly negative at ξ1. Since ξ1 is not outgoing-related to the microsupport of A2, by
choosing t0 small and the support of φ sufficiently close to 0, we can ensure that the support
of q′1 is disjoint from WF′(A2). Also, since ξ1 is not backward-trapped, if the support of φ
is sufficiently close to 0 then all integral curves in suppφ tend to the incoming radial set as
t→ −∞. So we modify q′1 to q1 = q′1ρ(t1 − t) where ρ(s) is zero for s ≤ 0, 1 for s ≥ 1, and t1
sufficiently negative. Notice that q1 is smooth on scT ∗M , and x−1Hpq1 is strictly negative in
a neighbourhood of ξ1 and nonnegative everywhere except on the support of ρ′(t1− t) which,
for sufficiently negative t1, will be arbitrarily close to the incoming radial set. Finally we let
q = q1 + Cq2 where q2 is of the form (73) and C is sufficiently large and this satisfies all
conditions. �
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