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ABSTRACT. We define and study the renormalized volume for geometrically finite hyper-
bolic 3-manifolds with rank-1 cusps. We prove a variation formula, and show that for certain
families of convex co-compact hyperbolic metrics g- degenerating to a geometrically finite hy-
perbolic metric go with rank-1 cusps, the renormalized volume converges to the renormalized
volume of the limiting metric.

1. INTRODUCTION

The renormalized volume is a geometric quantity for certain infinite volume hyperbolic
3-dimensional manifolds, namely those which are convex co-compact. Such a manifold X can
be compactified into a smooth compact manifold with boundary X in a way that its metric g
has the following property: for any smooth function p € €°°(X) which is a boundary defining
function (i.e., p > 0, p~1(0) = 0X and dp|,5 does not vanish), p?g extends to a smooth
metric on X. This induces a natural conformal class on the boundary M := 9X by picking the
conformal class [h] of h = (p2g)|as. We call (M, [h]) the conformal boundary of X. We say that
a boundary defining function p is a geodesic boundary defining function in X if |dlog(p)|, = 1
near the boundary M. Notice that such a function induces an equidistant foliation near
M, given by the level sets of p. It turns out that there is a one-to-one correspondence
h = e2¢h € [h] — p between geodesic boundary defining functions (or equivalently, equidistant
foliations) near M and the elements of the conformal class [h] on M, where p solves the
Hamilton-Jacobi equation near M
dp

2 =1 Gol=h (L1)

The renormalized volume of (X, g) is the function on [h] defined by
Volr(X, g; il) = FPZ_O/ p*dvol,
X

where p is any smooth positive extension to X of the function solving (1.1) and FP,— denotes
the finite part (or regular value) at z = 0 of a meromorphic function in the variable z € C. In
a way, this definition has similarities with the renormalization used to define the determinant
of the Laplacian on a compact manifold. In fact, the functional ¢ +— Volr(X, g; €2?h) varies
in the same exact way as do the Liouville functional and the logarithm of the determinant
of the Laplacian viewed as functionals on [h]. Among metrics in the conformal class [h] of
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constant volume 27|y (M)], it is maximized at the hyperbolic metric AP € [h], and we define
the renormalized volume of (X, g) by

Volr(X, g) := Volg(X, g; h™P).

We remark that the renormalized volume could equivalently be defined by Volg (X, g; h) = ag,
where ag is defined by the asymptotic expansion (for some a; € R) as € = 0

/ dvol, = ase™ 2 + a1 log(e) + ag + O(e).
p>e

In this setting, the first general study was done by Krasnov-Schlenker [KrSc|, although
earlier works of Takhtajan-Teo [TaTe] considered this quantity, and for more general Poincaré-
Einstein manifolds the renormalized volume appeared even earlier in works of Henningson-
Skenderis [HeSk] and Graham [Gr] in AdS/CFT correspondence.

When defined in this way, the renormalized volume has many interesting properties:

e The renormalized volume is a K&hler potential for the Weil-Peterson metric on the
Teichmiiller space of the conformal boundary, when viewed as a function on the de-
formation space of convex co-compact hyperbolic 3-manifolds. This was proved by
Takhtajan-Teo [TaTe| for a class of Kleinian convex co-compact groups, by Krasnov-
Schlenker [KrSc| for quasi-Fuchsian manifolds and by Guillarmou-Moroianu [GuMo]
for all geometrically finite hyperbolic 3-manifolds without cusps of rank 1.

e Volgr(X,g) can be compared to the volume of the convex core Vol(C(X)) by

Vol(C(X)) — 10x(M) < Volg(X, g) < Vol(C(X)).

This inequality is proved by Schlenker [Sc| for quasi-Fuchsian manifolds, and extended
by Bridgeman-Canary [BrCa] to convex co-compact 3-manifolds with incompressible
boundary.

e Schlenker [Sc] proves that for quasi-Fuchsian manifolds, Volgr(X, g) is comparable to
the Weil-Petersson distance between the two connected components (M, hy) of the
conformal boundary. Namely he shows that

VOlR(Xv g) < % V 27rX(X)dWP(h+7 h—)7 (1'2)

improving a weaker inequality due to Brock [Br]. Moreover, using [Br], Schlenker
obtains that there exists some ki, k2 > 0 such that

kldWP(thvh*) — ko < VO]R(ng)

These inequalities have interesting implications about the geometry of hyperbolic 3-
manifolds fibering over the circle, cf. [KoMc], [BrBr] .

e Ciobotaru-Moroianu [CiMo] prove that for almost-Fuchsian manifolds, the renormal-
ized volume is positive except at the Fuchsian locus where it vanishes'.

IThe normalization to make it 0 at the Fuchsian locus is actually to choose the metric in the conformal
boundary to have Gaussian curvature —4. The same normalization is used in [KrSc]
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e Moroianu [Mo] proves that the renormalized volume has a critical point on the defor-
mation space of convex co-compact 3-manifolds if the convex core has smooth totally
geodesic boundary, and the Hessian of Volg is positive definite there.

Like in the estimate (1.2), it is of interest to understand the properties of Volg on the
deformation space of convex co-compact hyperbolic 3-manifolds with a given topology. For
example, (1.2) shows that Volr does not explode as one approaches the boundary of the
Teichmiiller space viewed as a Bers slice in the quasi-Fuchsian space.

The first goal of this work is to define the renormalized volume for geometrically finite
hyperbolic 3-manifolds, focusing on the rank-1 cusps. Contrary to the convex co-compact
setting, the existence of equidistant foliations via geodesic boundary defining functions turns
out to be quite tricky in the case of rank-1 cusps. A geometrically finite hyperbolic manifold
(X,g) = I'\H?® with rank-1 cusps is the interior of a smooth non-compact manifold X =
I'\(H? U Qr) with boundary, where Qr C S? is the discontinuity set of the Kleinian group I' C
PSLy(C). The smooth manifold with boundary X has a non-compact boundary M = T'\Qr
equipped with a conformal class [h] induced from the hyperbolic metric g. On this conformal
boundary (M, [h]), we show in Proposition 2.3 that there exists a unique complete hyperbolic
metric h'P € [h] with finite volume and cusps.

Theorem 1. Let (X,g) be a geometrically finite hyperbolic 3-manifold with rank-1 cusps,
let (M, [h]) be its conformal boundary and let h™P be the complete hyperbolic metric with
finite volume in the conformal class [h]. Then there exists a non-negative smooth boundary
defining function p on X such that p’g|yr = WP and, outside a finite volume region V C
X, |dlog(p)lg = 1. The function z — fX\V pdvoly admits a meromorphic extension from
Re(z) > 2 to a neighborhood of z = 0 and we define

Volg(X, g) := Voly (V) + FPZZO/ p*dvoly.
X\

In fact, in Proposition 2.4, we show a stronger statement: we prove that for each conformal
representative in [h] with certain asymptotic properties near the cusp, there is an associated
geodesic boundary defining function and an equidistant foliation, allowing to view Volp as a
function on [h] like in the convex co-compact case. In Proposition 7.1, we show a variation
formula similar to that of the determinant of the Laplacian [AAR, Theorem 2.9] or the
Liouville functional:

1
Volg(X, g; e*h™P) = Volg(X, g; h"P) — i / (IV@[ e — 2¢)dvolynyp.
M

There is a diffeomorphism 1 : [0,¢), x M — X \ V such that 1)*p = z, and the metric has
the form
B dz? + ho 4+ 22hs + x*hy
= 2

Vg
where hg = hP, RS := hy — %hhyp is a trace-free and divergence-free symmetric tensor on M
with respect to h"P and hy = $ho(A?,) if A is the endomorphism defined by hy = ho(A-, ).
The tensor h9 can thus be identified to a cotangent vector to the Teichmiiller space T(M) of

. (1.3)
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M at the metric hg = h™P and the pair (ho, h9) € T*T(M) characterizes uniquely g. We call
hY the second fundamental form of g at M.

Theorem 2. Fort e (—1,1), let (X,g") be a smooth family of geometrically finite hyperbolic
metrics with cusps of rank 1 and let ht be the unique finite volume hyperbolic representative
of the conformal boundary of (X, g'). Then,

1

8,5VOIR(X, gt)‘tzo = —4/ <h, h8>hdvolh,
M

with h = 8;ht|—o, h = ht|i—o, and hY is the second fundamental form of g = ¢'|i—o at M.

The equivalent result was shown by Krasnov-Schlenker [KrSc| (see also [GuMo] for another
proof) in the convex co-compact setting. This implies, using a theorem of Marden [Ma2], that
the deformation space of a geometrically finite hyperbolic 3-manifold (X, g) with rank-1 cusps
can be viewed as a Lagrangian submanifold H C T*T(M ), the graph of the exact 1-form on
T(M) given by the exterior differential of the renormalized volume functional Volg(X,-) :
T(M) — R. Equivalently, the restriction to H of the Liouville 1-form on T*T(M) is exact,
and a primitive is given by Volg (X, -) if we identify H with T(M) by the canonical projection;
we refer to [GuMo] for details in the convex co-compact setting.

Our last result comnsists in analyzing the renormalized volume of families of convex co-
compact hyperbolic 3-manifolds degenerating to a geometrically finite manifold with rank-
1 cusps. We define precisely an admissible degeneration of convex co-compact metrics in
Definition 6.1, but essentially such a family of metrics (g:)e>o on X corresponds to having a
disjoint union H = Uglle ; of j1 simple curves in M = dX such that

(1) outside a uniform neighborhood U of H, p?g. converges smoothly to a metric on X \ U
if p is a fixed boundary defining function of 0X;

(2) in U near Hj, the metric g. is isometric to a certain region of <fy]5>\H3 where 75 €
PSLy(C) is a loxodromic element converging as ¢ — 0 to a parabolic element ~;
in such a way that «;(e)/¢;(e) converges , where ¢;(¢) and o;(e) are respectively
the translation length and the holonomy angle of %5 (i.e., 7; is conjugated to z —
e£(€)+ia]~(€)z)'

Our last theorem is

Theorem 3. Assume g. is an admissible degeneration of convex co-compact hyperbolic metrics
on X, in the sense of Definition 6.1, to a geometrically finite hyperbolic metric gy with rank-1
cusps on X. Then

lim Vol(X, g.) = Volr(X, go)-
e—0
We show in Proposition 6.2 that such admissible degenerations happen for instance on the
boundary of the classical Schottky space.
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FiGURE 1. We consider a case when the curve H is being pinched in the
boundary M. The equidistant foliation is represented by the dotted lines.
The first picture corresponds to the convex co-compact case and the second
picture is the hyperbolic 3-manifold with a rank-1 cusp. The dark regions are
the convex cores.

S. M. was partially supported by the CNCS project PN-II-RU-TE-2012-3-0492. We thank R.
Canary and J.-M. Schlenker for helpful discussions.

2. RENORMALIZED VOLUME FOR GEOMETRICALLY FINITE HYPERBOLIC 3-MANIFOLDS

2.1. Geometrically finite hyperbolic 3-manifolds. In this Section, we recall the geome-
try of geometrically finite hyperbolic manifolds of dimension 3. For more details, we refer to
the paper of Bowditch [Bo], see also Mazzeo-Phillips [MaPh] or Guillarmou-Mazzeo [GuMal.
A manifold X of dimension 3 is said to be geometrically finite hyperbolic if it can be realized
as a quotient X = I'\H? by a Kleinian group I' C PSLs(C) ~ PSO(3, 1), so that its action on
H? has a fundamental domain with finitely many side. In higher dimension, this definition
is not very natural and the correct one is given by Bowditch, however we shall restrict here
to the 3-dimensional case. If we view H® as the open unit ball in R3, it can be naturally
compactified into the closed unit ball H® = H* U S?, and elements of PSLy(C) acts on H3.
We say that X has cusps if I' contains parabolic elements in PSLy(C), i.e. elements which
fix only one point in the closed unit ball H3. If for each point p € S? fixed by a parabolic
transformation v, € I', the subgroup I', C I' fixing p is the cyclic group generated by the
element vy,, then we say that X has only cusps of rank 1, and we will make this assumption
for what follows.”

We view H? as the unit ball in R®. We can add to X a conformal boundary by defining
X =T\(H*uQ)

where Q C §? is the domain of discontinuity of the group I', ie. the complement in S? of the
limit set Ar consisiting of accumulation points in the closed unit ball of the orbit of any given
point m € H3. The manifold X is a smooth manifold with boundary and its boundary

M :=T\Q=0X

2cusps of rank 2 are trivial to deal with for what concerns renormalized volume questions, since they generate

ends with finite volume in X.
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is a union of smooth Riemann surfaces, which has cusps if and only I' has rank-1 cusps. It
inherits a conformal class which is defined to be the conformal class of p?g|y; where g is the
hyperbolic metric on X and p is any smooth boundary defining function in X (ie. p > 0,
M = {p =0} and dp|ps never vanishes on M). Note that X is not compact if T has cusps.

The important geometric fact that we shall use is the following: there exists a compact
set X C X such that X \ X = U;;ﬂiﬁ where Uj are disjoint open sets of X, called cusp
neighbourhoods, so that g on U§ N X is isometric through a map ¢; to

{(z=y+iz,w) € H? x (R/%Z); |z| > R;},

dz? + dy? + dw? (2.1)
2

with metric g =
x

for some R; > 0; here H? = {z € C;Im(z) > 0} is viewed as the upper half plane. We shall
therefore identify U5 with the region in (2.1). Here jo is the number of rank-1 cusps. The
compact K in X decomposes further into KX = Ko U U" where Kg is compact in X and U" is
a compact set of X such that the hyperbolic metric ¢ in the interior of U" near M is of the
form g = g/p? where p is a smooth boundary defining function of M and g is a smooth metric
on X. The boundary M is a non compact Riemann surface with 2j9 cusps, and M equipped
with the conformal class [p?g|y] is called the conformal boundary of X. Notice that, using
an inversion (v + iu) = —1/(y + ix) in the H? factor of (2.1), the neighborhood U5 N X with
metric g is also isometric to

{(z=v+iu,w) € H? x (R/3Z); |2] < Rj_l}’

du® + dv? + (u? + v?)2dw? (2.2)
5 .

with metric g =
u

Using this model for U3, we see that we can compactify X into a compact smooth manifold

with boundary, denoted X, by compactifying the open set (2.2) to
{(z = v+ iu,w) € H2 x (R/37Z); |2| <R;1} (2.3)

if H2 is the closed upper half-plane of C, and with the smooth structure given by the smooth
structure on H2 x (R/ %Z) This compactification amounts to adding a circle at each cusp of
X, and clearly the interior of X is X and X is an open set in X. We denote by H ; each of
these circles defined by {u =v =0} in (2.3), and let H := U;ﬁ:lHj.

There is another natural compactification of X (and X) that arises, which corresponds to
the real blow-up of H in 0X in X, which we denotes by X .. This is a smooth manifold with
corners of codimensions 2 defined as follows: by taking the representation (2.2) of U3, we see
that this has closure in X diffeomorphic to

{(u,v,w) € Ry x R x (R/3Z);u* +v* < R]-_Q}
and to define X ., we replace this chart by the chart

{(r,0,w) € [0, R}") x [~ 5, 5] x (R/3Z)}

vl
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FIGURE 2. The manifold with corners X, (the circle variable w is not rep-
resented). The region V has finite volume and appears in the statement of
Proposition 2.4, it corresponds to the region where the geodesic boundary
defining function is well-defined.

where 7 := vu? +v? and 6 := arctan . This corresponds to a real blow-up (denoted X, =
[X; H] in [Me, Chap. 5]) of the submanifold {(u,v,w) € IT‘]?;U = v = 0}, which is a circle.
In this way, the manifold with corners X, has two boundary hypersurfaces. One, given by
0 = £7, is denoted M and is a compactification of M to a smooth surface with boundary,
while the other, the cusp face, denoted cf, is given by r = 0 and is diffeomorphic to a
-5, 5lax (R/ %Z)w if there is only one cusp of rank 1. More generally, the connected
components of cf are in one-to-one correspondence with the cusps of rank 1 of X with each

T T

connected component diffeomorphic to [—%, 3]y x (R/3Z),,. We will use this extended space

cylinder [

X, to describe the analytic structure of the geodesic boundary defining function of M in
X near the cusps, which allows us to define the renormalized volume in that setting. To
summarize, we have the following manifolds and inclusions

OX=McCcM, XcXcX, XcXcX.=[X;H|

2.2. Renormalized volume in the convex co-compact case. A geometrically finite hy-
perbolic 3-manifold X = I'\H? with no cusps is called convez co-compact. Such a manifold X
can be decomposed as X = K U U where X C X is a compact region with smooth boundary
and U is isometric to

dp? + h((1d + 3p°4)*, )
2
where M =T'\Q is a compact surface (not necessarily connected), h is a metric on M, A is a
symmetric endomorphism of T'M satisfying the trace and divergence properties
Tr(A) = —1Scaly, 6p(A) = 1dScaly, (2.5)
see [FeGr, Th 7.4] or [KrSc] for details. The product form (2.4) will also be written
dp® + ho + p*ha + p'hy
9= 5
p
with hg = h, ha(-,+) = h(A-,-) and ha(-,-) := $h(A%,-). The manifold M is compact and,
when equipped with the conformal class [p?g|ras] = [h], is the conformal boundary of X. As
above, X can be compactified smoothly into X with boundary X = M and p, viewed as a

M % (0,0),, with metric g = (2.4)
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function on X \ X is a smooth boundary defining function. The function p in U so that the
metric has the form (2.4) is not unique and is characterized by the property

d
‘;p‘ =1 in U, and (p?g)|rm = h.
9

In fact, for each metric h conformal to h, there is a unique function p near X satisfying
|dp/plg = 1 and p*g|,—0 = h, and we call p the geodesic boundary defining function associated
to the conformal representative h. We just recall briefly the argument of Graham [Gr], as

it will be useful later for the cusp case: take p a boundary defining function of X, then the
structure of the hyperbolic metric on H? near its boundary implies that § = p?g is smooth
up to X and |dp/pl, is smooth on X and equal to 1 at X (that follows from the fact that
g has curvature —1 in U, see [MaMe]), then writing h := (p2g)|ra and p = pe¥ the equation
|dp/ply = 1 with the condition p?g|,% = h = %?h for some ¢ € C®(M) is equivalent to the
equation

1 —|dp?|;
2deo, dp)g + pldf? = L1 )2

, with boundary condition w|y% = ¢.

This is a non-characteristic Hamilton-Jacobi equation with smooth coefficients which can be
solved near the boundary by the method of characteristics and the solution is unique. We
then extend p smoothly outside this neighborhood as a positive function in any fashion. The
form of the metric g in the collar neighborhood of M = 9X induced by the gradient flow of p
with respect to the metric p%g is then of the form g = (dp® + fz(ﬁ)) /p? for some one-parameter
smooth family ﬁ([)) of metrics on M parametrized by p, and the constant sectional curvature
—1 implies the form (2.4) with (2.5) (using Gauss and Codazzi constraint equations).

If p is a geodesic boundary defining function near X associated to a conformal representa-
tive h € [h], extended smoothly as a positive function on X, then the form (2.4) of the metric
in U implies that the Riemannian volume measure in U has the form p~3dvol, = G(p)dp dvoly,
for some smooth function G € €>([0,4)). It is then direct to see (see [Al, GMS] for details)
that

H(z) ::/ p*dvol,
X

has a meromorphic extension from {z € C;Re(z) > 2} to C, with a simple pole at z = 0 and
the value of the finite part of H(z) at z = 0 is independent of the value of p in any fixed
compact set K C X: in fact

FP,_oH(z) = (FPZ:o /

pzdvolg) + Voly (X).
X\K

We define the renormalized volume of X with respect to the conformal representative h € [h]
by

Volr(X, h) := FPZ()/ p*dvoly.
X
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As a function on the set of metrics in the conformal class [h] with volume 27y (9X), the
functional Volg(X,h) has a unique maximum at h = AP the unique hyperbolic metric in
the conformal class, see for instance [GMS, Prop. 3.1].

Definition 2.1. Let X be a convex co-compact hyperbolic 3-manifold with conformal bound-
ary (M, [h]) a Riemann surface admitting a hyperbolic metric, ie. M does not contain genus-1
connected components. Let h"YP € [h] be the unique hyperbolic representative in the confor-
mal class [h], and let p be the geodesic boundary defining function associated to h™P, defined
uniquely near M and extended smoothly as a positive function in X. The renormalized
volume of X is defined to be

Volg(X) = FPZZO/ p*dvol, = Volg(X, h™P)
X
where ¢ is the hyperbolic metric on X.

The choice of the conformal representative AP e [h] to be hyperbolic is important and
yields particularly interesting properties of the renormalized volume related to quasi-Fuchsian
reciprocity and construction of Kéhler potential for the Weil-Peterson metric; see [KrSc,
GMS].

2.3. Uniformisation of Riemann surfaces with cusps.

Definition 2.2. A hyperbolic cusp is a region {y > R} of the quotient (z — z + %>\H2 for
some R > 0, where z = y + iw are coordinates on the hyperbolic half-plane H?.

This set is also isometric to

dv?
= —

dy? + dw?

((R, 00)y X (R/LZ),, h = QT) ~ ((o, L)y X (R/3Z)w, b + v2dw2).

A surface with hyperbolic cusps (M, h) is a surface isometric outside a compact set to a finite
disjoint union of hyperbolic cusps.

We can compactify M into a smooth compact surface M with boundary by replacing each
cusp end (0, )y X (R/3Z),, by [0, £)0 X (R/3Z),, that is, by adding circles at infinity of the
cusp end.

We can also compactify M to a compact surface ¥ by adding a finite number of points,
one for each cusp. Define a conformal coordinate near such a point by ¢ = exp(4dnw(—y + iw)).
(The factor 4 is needed in order for e*™ to be well-defined for w € R/%Z.) We compute

|d¢? = (4m)?I¢ P (dy? + dw?) = (4m)?|¢ Py h. (2.6)

Since h is conformal to |d(|?, we get in this way a conformal structure on ¥. If M is oriented,
> becomes a compact Riemann surface.

If we take a boundary defining function p in a geometrically finite hyperbolic 3-manifold
with a certain behaviour near the cusps, we see that the conformal infinity M = 90X will
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have a metric with a hyperbolic cusp in the conformal class: indeed, set p to be a smooth
boundary defining function for M in X such that

p:L in U5.

/12 + y2
Then the metric h := p?g|ys is a smooth metric on M which is given near the cusps, that is
in U N M ~{y € R;[y[ > R;} x (R/3Z), by

dy? + dw?
h = g ly| > Rj, weR/3Z
or equivalently, using the coordinates (u,v,w) of (2.2), p = u/vu? + v? and
dv?

h— vTJerde’ 0 <|v] <1/Rj, w e R/3Z.

We define on M the space €°(M) to be the Fréchet subspace of (M) consisting of
functions vanishing to infinite order at M. We also define C2°(M) to be the subspace of
€>°(M) consisting of functions f such that 8,f € C*(M). This corresponds to smooth
functions whose Taylor series at the boundary is of the form

fx,0) ~ Zakvk (2.7)
k=0

where aj are constants, rather than functions of w. On a surface (M, h) with hyperbolic
cusps, we say that a symmetric tensor b’ € C®(M; S?(T*M)) is a cusp symmetric tensor if
there exist A € C°(M;End(T'M)) self-adjoint with respect to h such that (-, -) = h(A-,-).

We first claim the following uniformisation theorem, see [RoZh, Theorem 3| for a related
result for Kéhler-Einstein metrics.

Proposition 2.3. Let h be a metric on a surface M with hyperbolic cusps and let M be the
compactification as above. There exists a unique conformal factor ¢ € C>°(M)NL>(M) such
that h"YP = ¢2¢h has constant curvature —1 on M. Moreover, ¢ € CX(M) and ¢lozz = 0.
More precisely, in every cusp of M,

(v, w) +log(1 + av) € € (M)

for some a € R depending on the cusp.

Proof. The surface (M, h) is conformal to the compact Riemann surface ¥ with a finite number
of points removed, hence its fundamental group is non-commutative and free. The Poincaré—
Koebe uniformization theorem implies that M with its induced conformal structure is con-
formal to a complete hyperbolic quotient. In other words, there exists a unique conformal
factor ¢ € @°(M) such that the Riemannian metric h"YP = €2#h is hyperbolic and complete.
The complete hyperbolic metric on a punctured Riemann surface is known to have hyperbolic
cusps near the punctures, hence there exist isometries ® between the hyperbolic cusps of h
and AMP near the punctures. Such a ® is a holomorphic self-map of ¥ defined only near the
punctures, and ®*h = e2#h.
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Note that ® is an isometry, hence it is proper. It follows that it extends continuously
as the identity on the punctures. The possible singularities of ® at the punctures are thus
removable since the target surface ¥ is compact, so in terms of the complex variable { =
exp(4m(—y +iw)), we have ®(¢) = ¢ f(¢) with f(0) = ®'(0) # 0. Then using (2.6)

jd¢i> 1

= = ¢
62 P log?ld]
This implies
op_ Qa2 P
21 2 o 2

[CF ()P log” [CF ()] (1 4 i'gﬁ(gﬁ”)

In terms of the boundary-defining function v = 1/,
oglel = =27, (L eexan, 1wl - oglf(0)] € (D),

Thus the conformal factor e2? = % satifies p+log(1— %v) € (M) near the cusp. [

2.4. The renormalized volume of geometrically finite hyperbolic 3-manifolds. We
now wish to define a renormalized volume for a geometrically hyperbolic 3-manifold X with
rank-1 cusps. We proceed like in the convex co-compact case, by first uniformizing the
conformal infinity (M, [h]) with the choice of the finite volume hyperbolic metric h in the
conformal class and then constructing a geodesic boundary defining function p in X associated
to h. The difficulty here is that the conformal boundary is non-compact and it is not clear
what is the behavior of the function p near the cusp in X. We proceed as in Section 2.3: we
start by choosing p as a smooth boundary defining function near X = M which is equal to
p = u/vu? +v? in the model (2.2) of each cusp neighborhood U, the metric h € [h] obtained
by h = p%g|y in the conformal infinity is then hyperbolic outside a compact region of M.
Then by Proposition 2.3 we know that there exists a hyperbolic metric AP = e2#h, with
¢ € C°(M) and ¢|s5; = 0. We obtain the following Proposition, whose proof is done in
Section 6.3.

Proposition 2.4. Let X be a geometrically finite hyperbolic 3-manifold with rank-1 cusps.
Let (M, [h]) be the conformal infinity and h™P be the complete hyperbolic metric with cusps
in the conformal class obtained from Proposition 2.3. For each 1 € CX(M), consider the
conformal representative h = 2P There emists a smooth boundary defining function
p € C®(X,) of the boundary hypersurface M in X. and a closed set V C X. with finite
volume, intersecting 0X . only at cf, such that

db _ .
‘i‘ —1in X \V, Pglu=h (2.8)
pPlg
The function p is defined uniquely near M. There is a smooth diffeomorphism ¢ : M x[0,€), —
X.\V such that ¢*p = x and
B dx? + izo + :UQng + %x4fz4

22

g

(2.9)
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where ﬁo = h and ﬁg, ﬁ4 are cusp symmetric tensors such that
A 1 . 1
Trho(hg) = —§Scalﬁo and 550(}52) = §dsca1;;0-

Finally, the function H(z) := fX p*dvoly admits a meromorphic extension from Re(z) > 2 to
a neighborhood of z = 0, with pole of order 1 at z = 0.

A smooth boundary defining function of M in X, is called geodesic boundary defining
function associated to h if it satisfies (2.8). Similarly to the convex co-compact case, the
value of the finite part at z = 0 of the integral in any compact subset V C X.\ M is
independent of the value of p in V:

FP,_oH(z) — (FPz:o /

pzdvolg> + Voly (V).
X\V
This is a consequence of the fact that V has finite volume. In other words, FP,_oH (z) depends
only on the values of p in arbitrarily small neighborhoods of M in X, and thus it depends

only on the conformal representative h € [h] in the conformal infinity.

Now we can define the renormalized volume in this setting:

Definition 2.5. Let X be a geometrically finite hyperbolic 3-manifold with rank-1 cusps, and
with conformal boundary (M, [h]) admitting a complete hyperbolic metric. Let h™P € [h]
be the unique hyperbolic representative in the conformal class [h]. For ¢ € C(M), let
p € €>®(X,) be the geodesic boundary defining function of M associated to h = e2¥pvp
defined uniquely by Proposition 2.4 in a neighborhood of M in X. and extended in any
fashion as a positive smooth function in X, \ M. The renormalized volume of X associated
to the conformal representative h = €2 P is defined to be

Volg(X, h) :== FP._g / p* dvol,
X

where g is the hyperbolic metric on X. We define the renormalized volume of X by

Volg(X) := Volg(X, ht¥P).

3. FORMATION OF A CUSP FROM SCHOTTKY GROUPS

3.1. Notations. We shall use mainly the representation of H® as a half-space R} x C, in
R3, the boundary then becomes OH? = {0} x C ~ C. We call half-ball of H? any intersection
of H? = R} x C,, with a Euclidean ball centered at a point of the boundary OH?, and we
denote it B(z,r) if the Euclidean center and radius are z and r. In terms of hyperbolic
geometry, this is an unbounded domain with totally geodesic boundary given by a half-sphere
OB(z,7) NH3. We call in general half-sphere of center z € C and radius r > 0 the boundary
of a half-ball B(z,r) in H3, we denote it by H(z,r). We say that the ball is supported by the
disc D(z,7) C C of center z and radius r (this corresponds to OH? N B(z,r)). Similarly we
say that H(z,r) is supported by the circle C(z,7) = dD(z,r) in OH? ~ C (this corresponds
to OH® N H(z,7)).
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3.2. Schottky groups. We shall analyze the behaviour of Volg(X?) for a family (X¢).so of
convex co-compact hyperbolic 3-manifolds such that, as € — 0, X¢ converges to a hyperbolic
3-manifold X° with rank-1 cusps. Here, we take ¢ > 0 to be a continuous parameter, but
one could of course also consider sequences. The case that we consider is a smooth (in € > 0)
family of Schottky groups I'® with certain loxodromic generators of PSLy(C) converging to a
parabolic transformation of PSLy(C).

We recall that a marked Schottky group T' C PSLy(C) of genus g with standard generators
Yis---,7g € PSLy(C) is a group generated by these generators such that there exists 2g
disjoint Jordan curves (C4;)j=1..4 in S? = OH? bounding a connected open domain D C S?
with v;(D)ND = 0 and ;(C_;) = C4;. ThenT is free and contains only loxodromic elements,
with fundamental domain D U; Cy; C S? for the action of T' on the discontinuity set Q C S?
(which is connected open and dense set in S?). It is shown by Chuckrow [Ch] that every set
of g free generators of a Schottky group is in fact a set of standard generators. A Schottky
group is said to be a classical Schottky group if there is some set of free generators for which
the curves C't; can be taken to be circles. A family of circles associated to the generators
satisfying the conditions as above will be called a set of adapted circles. Such a set is of course
not unique. We can view I as a discrete group of isometries acting freely and discontinuously
on H?, and as a group of conformal transformations acting freely and discontinuously on the
discontinuity set  C S?. To define the Schottky space 8,, we follow Chuckrow [Ch]: PSLy(C)
identifies with P3(C) \ Y where P3(C) is the 3-dimensional complex projective space, and Y
the algebraic submanifold {y € PSLy(C);dety = 0}. Consider the subset U, of (PSLy(C))?
consisting of groups with g generators 71, ...,7, such that there are at least 3 distincts fixed
points among those of ;. Then U, is an open and connected subset of (P3(C) \ Y')9. There
is an action of PSLy(C) on U, by conjugation:

(B, (71,---,7)) = (BB ',...,By,B™)

and U, /PSLy(C) is a complex manifold of dimension 3g—3 with the natural topology inherited
from (PSLy(C))9. One way of fixing coordinates on this space is to fix 3 distincts fixed points
of the generators by conjugating the group with an appropriate element of PSLy(C). More
precisely near a I' € U, /PSLy(C), up to conjugation, we can choose the generators ~; so that
0, 1 and oo are the three distinct fixed points among the generators, then there are local
complex coordinates on Uy /PSLy(C) near [I'] given by the coefficients a;,bj,¢;,d; € C so
that v;(2) = (a;z + bj)/(cjz + d;) with a;d; — bjc; = 1 (notice that 3 complex parameters
among the ~; are fixed). The Schottky space 8, is the subset of U,/PSLy(C) corresponding
to equivalence classes of marked Schottky groups. For a group I' € 8/, we can always choose
the three distinct fixed points to be the repulsive and attractive fixed point of v; and the
repulsive fixed point of 3, and one then gets global complex coordinates by conjugating
the groups so that 0 and oo are the attractive and repulsive fixed point of v, and 1 is the
repulsive point of vs. This system of coordinates is not well adapted to the description of
groups tending to the boundary of 8, with 7 becoming parabolic. Chuckrow [Ch] showed
that 8, is a connected open subset of U,;/PSLy(C), and the Schottky classical space 82 is
the open subset of those groups which are classical. Chuckrow showed that such boundary
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points in 08, are free groups with g generators, without elliptic transformations, which either
have a parabolic element or are not discontinuous, and both cases may happen. Marden [Ma]
proved that groups in 98, are discrete, that &, \872 is a non-empty open set, and groups in
682 are discontinuous. Later Jorgensen-Marden-Maskit [JMM] proved that all points in 882
are geometrically finite Kleinian group with parabolic elements. Thus 82 is better behaved
and we will only focus on this space.

3.3. Admissible Schottky groups. We consider a sequence of classical Schottky groups
e e 82 where (fyf,...,'yg) converge to (7?,...,72) with T generated by these elements
in 882 N o8, as € — 0, so that I'V is a geometrically finite free group with g generators,
with parabolic elements. We assume that +; is smooth in ¢ € [0,1] for j < g. We use the
coordinates on 8, as above, so that the fixed points of 7 are 0 and oo, and the repulsive
point of 75 is 1. For notational simplicity, we shall sometime remove the 0 superscript for
the limiting objects at € = 0, for instance we shall use ; for ’y?. We write these elements of
PSLy(C) as

ajz+bj c . aj(a)z—i-bj(a)
gerdy T T G0 a6
with a;d; — bjc; =1 and a;(e)d;(e) — bj(e)cj(e) = 1.

i(2) = ;
For j < jo, the fixed points of 75 are denoted p4;(e) and given by

a;(e)—d; Tr(v5)?—4
pij(e) = ](;zj(é‘])(s) :|: QCJ'ZE) : (31)

(we use the determination of /- on C\R_). Up to possibly exchanging 5 by its inverse in our
choice of generators, we can assume that p, ;(¢) is the attractive, and p_;(e) the repulsive fixed
point. The geodesic in H? relating p_;(g) to p;() is called the axis of 7;- The Euclidean
distance in C between the two fixed points of 75 is

Tr(45)2 — 4|3
Ip1(e) —p—j(e)| = % (3.2)

Take a family of adapted circles C ; bounding a fundamental domain D*. Notice that D* has
compact closure contained in the region bounded by C¢; and C%, in C. If the circles C7; are
not contained in a compact set of C independent of ¢, then all fixed points of a subsequence
of 75 for j > 1 tend to oo, and that is not possible since the limiting transformations ~; and
vk can not have common fixed points if j # k, according to [Ma, Lemma 2.3]. For the same
reason, D® can not shrink to 0 and more generally to a point of C. Up to extraction of a
subsequence &, — 0, the circles Ci’; then converge to circles or points, and for j = 1 the limits
Cy are circles. If they are disjoint then the limiting domain D is non-empty and thus, if
some circle C’i*; converge to a point p, we obtain a contradiction since «; would have to map
D to p. This shows in that case that all C’i’; converge to circles Cy;. If Cyq = C_q, then
since v{ — 71, we necessarily have that 7 is elliptic or the Identity, but this can not happen
by [Ch] since T'? can not contain elliptic elements and must be a free group with g generators
given by v1,...7,. We thus conclude that D*» — D° non-empty, bounded by circles Cy;.
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Necessarily, at least two of the circles Ct; must intersect at a point since we assume that ro
is not in 82. We will make the assumption that the limiting circles satisfy

Ct;N(CrpruCy) = 0, if j # k. (3.3)

Thus there are g — jo of the generators 7; that are parabolic for some 0 < jo < g—1. Without
loss of generality, we choose them to be v; for j = jo+1,...,9. For j < jo the ~; are
loxodromic. If j > jo, we have Tr(;) = 2 at the limit and the unique fixed point of the
ajzzjdj, and we have that [ Tr(v5) — 2|%/|cj(5)\ —0ase—0.
The fundamental domain D® for I'® is uniformly bounded in C, and ¢;(e) # 0 for j > 1 in order
to have adapted circles C’ij associated to 'yj- . To be adapted, the disk bounded by the circle
C7; has to contain the point 2z = a;(¢)/c;j(e) (which is the image of co by 75) and the disk
bounded by the circle C2 ; has to contain z = —d;(¢)/c;(e) (which is mapped to oo by 75); since
C3; also contains py; (¢), we deduce that when j > jo and € — 0, the fact that p+;(e) — p;
implies that the radius of CF; is bounded below by (| Tr(v5)| — [ Tr(v5) — 2|%)/4|cj(5)| for
small ¢ > 0. In particular ¢;(e) converge to ¢; # 0 as otherwise the radius of the adapted
circles would tend to oo. There is a subsequence €, where for each j there are adapted circles
Cff} associated to the 7]5-" that converge to circles C_S)Ej (also denoted C'yj), which are tangent
if and only if j > jo and with C; N C_; = p; being the fixed point of ;. Then the limiting
(tangent) adapted circles for j > jo have radius bounded below by 1/2|c;|. Moreover, an easy

parabolic transformation is p; =

computation shows that v; preserve the line cj_l(aj + R) C C that we call the azis of v;.

The element ~j is of the form

M) =ale)z ql)€C, la(E)>1

and each 75 for j > 1 can be written as the transformation of C =~ S?\ {oo} satisfying

€ € o € € ,__Z_p—j(g)

05 05 (2) = q;(e)05(2), 05(2): p—p o)
where p4;(e) € C are the two fixed points of 7; and gj(e) € C is the complex multiplier
with |g;(e)| > 1 (we take p4;(e) to be the attractive fixed point). The multiplier will also be

written as

gj(e) = eh Ot (3.4)
for some £;(g) > 0 and a(e) € [0,2n). Since for j > jo, 75 converge to a parabolic element -;
with fixed point p;, then gj(e) — 1 since Tr(wj-)Q —4 = (gj(e) — 1)?/q;j(¢) must converge to 0.
The axis of 75 is mapped to R* x {0} C H? by (0;-)*1 in the half-space model H? = R} x C,

The set D¢ is a fundamental domain for the action of I'* on the discontinuity set Q¢ C C.
The group acts properly discontinuously on 2° by conformal transformations and the quotient
Me = I'°\D® = I'°\Q° is a closed Riemann surface of genus g, with conformal structure
induced by that of C. It is the conformal boundary of the hyperbolic 3-manifold X ¢ := I'*\H?.
We denote by F° C H?® the fundamental domain for the group I'* with totally geodesic
boundary satisfying 0F° N 0H® = D?; in particular X¢ = I'*\F°. Up to extraction of a
subsequence, these fundamental domains converge to DY and F° (that we also denote D and
F) and X? = T%\ FY is a geometrically finite hyperbolic manifold (that we also denote X).
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We define the parameters

Aj (E) — |p+j (E;jzg])g—j (8)‘ Y (E)

= L (3.5)
Then since c¢;(e) is smooth in [0, 1] and Tr(v5) = qj(s)% + qj(e)_%, we see from (3.2) that if
vj(e) is smooth, then \;(e) extends smoothly in € € [0,1] and
1
A = lim () = (14 )3/l . (3.6)
In fact, if v;(e) is smooth, then by (3.1) we have that % extends smoothly to ¢ =0
with
P+j(e) —p—j(€)
4i(e)

— (14+1ivj)/c; ase— 0. (3.7)

Definition 3.1. For a smooth family of multipliers e — ¢(¢) € C*°(]0,1];C \ D(0,1)) with
q(0) = 1 and |g(e)| > 1 if ¢ > 0, we say that g(¢) is admissible if q(e) = /©)1+¥(e) for
some real valued functions ¢(¢),v(e) smooth in € € [0, 1]. We say that a smooth family I'® of
classical Schottky groups of genus g is admissible if each multiplier g;(e) of the generator v
is either admissible or ~; = *y? is loxodromic, and if there is a subsequence &, — 0 for which
there are 2¢g adapted circles C’i’; converging to C'1; such that if two of the limiting 2g circles
C4; intersect, this can only be C;NC_; = {p;} for j so that 7; is parabolic with fixed point
p;-

3.4. Canonical circles. The adapted circles CF ; associated to the elements 75 can actually
be taken smoothly in € > 0, but they are not in general of the best form to get a local model
description of the geometry with respect to ¢ — 0. In addition it is not clear if they can be
taken smoothly down to € = 0, but we will show below that if the family of Schottky groups
I'¢ is admissible, then we can find a smooth family of fundamental domains down to € = 0,
which are bounded by pieces of circles near the punctures.

For this purpose and to obtain a nice description of the degeneration near the punctures,
we define the notion of canonical circles for a loxodromic transformation.

If v € PSLy(C) is loxodromic with fixed points p_ and py and multiplier ¢ = e/d+%) with
¢>0and fovyof~L(z) = gz for some § € PSLy(C), the canonical circles for v will be the
circles

Cy:=0"'{z 2] = ei%}) ={z € C;|z — z4| =7}, with

pr—ps P+ —p-|
1—et’ 2sinh(¢/2)

(3.8)

Lemma 3.2. Let v € PSLy(C) be lozodromic with multiplier ¢ = ¢/0+%)

and fized points
p—,p+ € C, and let C; be its associated canonical circles, deﬁned by (3.8). Then the trans-
formation _maps the exterior of the disk D_ bounded by C_ to the interior of the disk D+

bounded by C'+
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Proof. Consider now the two concentric circles Sy = {|z| = ei%e} and let m(q) be the
complex dilation by ¢ in C. Consider the transformations
21 P+t _p+—p-(9)
o) =g v =+ B g Pl (39)
The composition 7ib¢ maps {0,000} to {p_,p,} and v = (nd)m(q)(nYé) . The circles Cx
are mapped by 6 := (1p¢) ! to {|z| = e*/?} and the Lemma follows directly. O

We shall denote by éi ; the canonical circles of 7;; a priori they are not adapted circles for
the group. For j > jo, assuming that v;(e) is smooth in ¢ € [0, 1], we see by (3.8) and (3.7)
that C’ij extends smoothly to ¢ = 0 with limiting circles C? ;» tangent at p;, with radius r;

2
P (E37) W—X—V1+%
oo R T

and center z4; given by

Note that the lines passing through the centers z; and z_; intersect the axis of the parabolic
transformation v; at an angle arctan(v;).

3.5. Good fundamental domains. For I'* a family of admissible Schottky groups we have
a subsequence of fundamental domains F*» with totally geodesic boundary and with D =
OH? N 0F*" bounded by the adapted circles C’i’;, and F°» and D°" are converging to F'
and D°, where D° is bounded by the limiting circles C4;. From the limiting domain F’ 0 we
shall construct new fundamental domains F¢ for I'® for small ¢ > 0, called good fundamental
domains and constructed by combining canonical circles with the limiting adapted circles C4 ;.
The domain D° = 9F° N §H? will be bounded by Jordan curves instead of circles, but their
form near the parabolic points p; will be a good model for the geometry as ¢ — 0 near the
punctures.

Notice that we can always choose dy > 0 small enough but independent of € > 0 so that for
each j > jo and & € (0,8p), for all £ > 0 the half-ball B(p;,8) C H? is at positive Euclidean
distance from all connected components of F9\dF°NOH? except those half-spheres supported
by Cij~

Recall that éij are the canonical circles of 75, and denote by 5; C C the disk bounded

by éi ;- We then show the existence of good fundamental domains:

Lemma 3.3. There exist C > 0 and 0 € (0,00) such that for all € € [0,e0], there exist
fundamental domains F€ for T acting on H? with the following properties:

e the boundary OF¢ is a smooth in ¢ € [0,e0] collection of 2g smooth hypersurfaces
(Hij)jﬂ,m,g homeomorphic to half-spheres: more precisely HE ; is the image of H_S]Ej
by a smooth in € € [0,g9] family of diffeomorphisms of H3 equal to Id at e = 0. The

closures of HL ; in H3 are all disjoint except when € = 0 where ng N H_OH = {p;} for
J > Jo-
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e cach; maps the exterior of the compact domain bounded by HE ; in H3 to the interior
of the compact domain bounded by HS ; in H3.

e For each j > jo, F* N B(pj,0) = F7 N B(pj,0) if F7 is the fundamental domain
with totally geodesic boundary for the cyclic group <'yj> and satisfying OF} N OH3 =
C\ (D3,;UDz)).

Proof. For j < jo, we can take H: ; = H ]Q to be the half-spheres supported by the circles C’gj
and H ij = 7]5 (HJO) Since vj — vj and C4; are adapted circles for the limiting ;, clearly
for small enough ¢ the hypersurfaces HY; satisfy the desired properties. Now we deal with
the more delicate part, that is when j > jo and the limiting ~; is parabolic. We take ¢ small,
but independent of € > 0, and take a large C' > 0 so that B(pj, Cd) is at positive distance
from the half-spheres supported by the limiting Cy; at OH? for k # j. Note that C can be
taken large by taking & small (for instance C' ~ §~1/2 works). We start with ¢ = 0, where
we will modify FO to FO near the parabolic points p;. We may assume that ng #* 6’9j as
otherwise it suffices to take H 1, to be the half-spheres supported by 15_%, which satisfy the
desired properties. By conjugating by ¢ : z — 1/(z — p;) the parabolic element ~; becomes
a parabolic transformation fixing oo, thus of the form z — 2z 4 ¢ for some ¢ € C, which in
H3 acts by 7. : (z,2) = (x,z + ¢). The half-balls B(p;,d) and B(p;,Cd) are mapped by the
Poincaré extension ® of ¢ to (the interior of ) H3\ B(0,5~!) and H3\ B(0, (C§)~!). The circles

ng and 59]- are mapped to lines L and L of C with respective tangent vector 7 € C and
7 € C, and qﬁ(C?rj) and ¢(09j) are images of these lines by 2z — 2z +¢, that is L+ ¢ and L +c.
The half-spheres of H? supported by C° ; and 59]- are mapped to vertical planes RT x L and
R* x L by ®, and the image of the half-spheres supported by ng and CE)H- are RT x (L +c¢)
and R* x (L +c¢). Note that § := ®(FO N B(p;,C8))NOH? and S = @(FV]Q N B(p;, C5))NOH?
are strips in C\ D(0, (C4)~!) bounded by L and L+ ¢ (resp. L and L+ ¢). For the following
part of the proof, we recommend the reader to see Figure 3.5 while reading the argument.

For C > 0 large and 6 > 0 small, consider the annulus As := {(C6)™! < |z] < 67} in
C viewed as the boundary of the half-space H>. If § > 0 is chosen very small, then in Aj
the strips bounded by L and L + ¢ and the strips bounded by Land L+ c are at a positive
distance. We can then take two segments 17 and 75 in As with extremities on L and l~}, which
are transverse to the lines with tangent vector ¢ € C. Then P; := U;_¢(o 1) (T; +tc) for i = 1,2
are two parallelograms with vertices on L, L+c, E, L+c. Then there is a unique fundamental
domain D C C for the translation z — z + ¢, with boundary made of two piecewise linear
curves Z and Z + ¢, with Z containing 5 segments, and such that D is equal to S outside
|z < 671, to S inside |z| < (C§)~!, and contains the parallelograms P; and P,. The two
points of D at the largest distance from S are vertices v; and vy of P; and P, (we choose v;
to be the one on L), and there is a homotopy h (for ¢ € [0,1]) between D and S which can be
done in the obvious way by moving v; along L toward v} := LN L and v, along L + ¢ toward
vh = (L + ¢) N (L + ¢) linearly in ¢. By choosing C' > 0 large enough, there exists a height
zo € ((C6)71,671) so that in the half-space H?, U;ejo1;({tzo} X he(Pr U P2)) in contained in
B(0,671)\ B(0,(C68)~!). We thus take the fundamental domain F C R} x C = H? for the
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FIGURE 3. The new fundamental domain D in OH? ~ C before smoothing is
given by the dark region

quotient (T.)\H? given by

F = ( U (o} x ht(D))) U ([z0, +00) x 3).
te(0,1]

This has a piecewise smooth boundary, and can be smoothed out by an arbitrarily small
perturbation in B(0,571) \ B(0,(C6§)~1). For convenience we keep the same notation for
the smoothed fundamental domain. By construction, ®~1(F) N B(p;, Cd) gives the desired
modification of F© inside B (pj, C9) to produce FO°. This construction defines the hypersurfaces
Hij, which are the connected components of OF° \ OFY N OHB.

Next we want to use a perturbation argument to construct Hf ; from Hij. For each j > jo,
there exists a smooth family in e € [0,e9] of Mobius transformations A5 € PSLy(C) which
map 5’9]- onto 5'5]-. It is just a composition of a translation and a dilation and equal Id at
€ = 0. Then Hij = A;ng is a smooth hypersurface and define Hij = 'yj(Hfj); both
hypersurfaces are disjoint from other Hf, for small € since it is the case for € = 0. The point
d;/c; € C that is mapped to co by «; is in the disk D_; bounded by C_j;, and since Aj — Id
as € — 0, we see that for ¢ > 0 small enough d;(¢)/c;j(¢) is in the domain bounded by the
curve BHij N OH? C C and thus property 2) in the Lemma is satisfied for this choice of
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HY ;. By construction, in B (pj, 6) the hypersurfaces H 1, are given by pieces of half-spheres
supported by 5%, and outside B(pj,d) they are arbitrarily close to Hij since A; — Id in
(‘Bk—norms, thus we deduce that HE j NnNH ij = () for € > 0 small enough. These conditions

ensure that the domain F° bounded by the hypersurfaces H. i;isa fundamental domain for
I'¢ satisfying all the desired properties of the Lemma. 0

4. ANALYSIS OF THE MODEL DEGENERATION

In this section, we shall describe more precisely the model geometry for the degeneracy to

£(1+iv)

a rank-1 cusp. Let 77, € PSLy(C) be loxodromic with multiplier g = e and fixed points

p— =0 and py = M for some A > 0; we write L = (¢,v, ) and we take
LeQ:=(0,1] x[-N,N] x [N"!,N] (4.1)

for some N > 0 fixed. Using (3.7), the set of those vz, such that L € Q has closure such that
the boundary {¢ = 0} corresponds to parabolic elements

fixing p_ = py = 0. We denote Q the closure of Q and call {¢ = 0} the parabolic boundary of
Q. There is a smooth fibration

II:X — Q, with fibers the manifolds

Y (L) =X = (y)\(H UQp) 2

where Qp, = 9H3\ {0, \¢} the discontinuity set of the cyclic group (). We call cusp region of
X 1, the image of a neighborhood B(0, §) of 0 € H? by the covering map ,, : (H3UQz) — X1,
and we say that U, \ g7y, (B(0,9)) is the cusp region of X.

If |q| > 1, consider the isometry of the hyperbolic space H? = R} x C,

m(q) : (z,2) — (lglz, ¢2) (4.3)
and the quotient of H? by the elementary group (m(q)) generated by m(q)

Xm(g) = (m(q))\H> with covering map Tm(q) H? — (m(q))\H>. (4.4)

q

Lemma 4.1. For L = (¢,v,\) € Q, let v, € PSLy(C) be loxodromic with multiplier g =

!0+ ) and fized points p— =0 and p+ =M € (0,00), and let éi be its associated canonical

circles, defined by (3.8). Let ﬁi C C be the disk bounded by éi and F;, C H3 the fundamental
dgmainjor the cyclic group (y1) with totally geodesic boundary satisfying OFy, N OH3 = C \
(DY UDE). Let ., : H3 — (y.)\H? denote the covering map, then for § > 0 small the set

U =, (B(0,6) N Fy) (4.5)
s 1sometric to

Tonta) ({(@,2) € B9\ Ble,p); e 3 < VaZ 2 < e3}) (4.6)
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where e(L) € C C OH® and p(L) > 0 have asymptotics for small ¢
292 494 292
e(L) = =1 =25 +0(%), p(L) =% +0(%5). (4.7)

The isometry from (4.5) to (4.6) is given by

Or(x,z) = (4.8)

( x M  — |z|2+)\€z>
|z — M2+ 227 |z — M|? + 22

Proof. We use the notations of the proof of Lemma 3.2. We have a composition ni¢ which
maps {0, 00} to {0, M} and v = nppm(q) (nbé) L. We define © to be the Poincaré extension
of @ = (mp®)~! to the half-space H?, thus given by (4.8). We check that the image of B(0, )
under (n7y¢)~"! is the complement of the half-ball B(e, p) as claimed in the statement of the
Lemma: 1~ 'n~! maps B(0,6) to the half-ball centered at (x,z) = (0, —1) and radius 25/,
then ¢! maps to the half-ball with center and radius

242
(z,2) =(0,-1— 52{){2{2); pP= |52i¥272|

which proves the claim. [l

The following Proposition describes the model manifold X, with more appropriate co-
ordinates; the proof involves a sequence of tedious (and not very enlightning) computations,
we thus have deferred its proof in the Appendix.

Proposition 4.2. Assume that L = (¢,v,\) € Q with the notation (4.1), then there is an
isometry @1, between the solid torus (4.4) and the manifold (R/3Z),, x HEZH_W equipped with
the metric

B du® + dv* 4 (1 + v*)R* — 4020%u?)dw? + 2v(R? — 2u?)dwdv + 4vuvdudw (4.9)

u2

gL
where R := vu? +v2 + (2. With e(L), p(L) given by (4.7), the neighborhood

Tty ({(2,2) € B\ Ble, p); €73 < V/aT 1o < e'}) (4.10)
is mapped by @1, to the set

W i= 7 ({(,€) € [=4, 1) X B ¢ — v (w)] < 7. (w)} ) (4.11)
where T, : RxH? — (R/37Z) x H? is the covering map, and 7r,(w), vy (w) are smooth functions

of w € [—1, %) which converge uniformly as £ — 0 to some Ty, (w) and vy, (w) satisfying

vap(w) = 0(8%) and 7, (w) = 25/X + O(8%) uniformly in |w| < 1/4. Finally, the map
(L,z,2) — (L, @ 00OL(z,2)) € (2 x (R/3Z) x H2)

extends smoothly to a neighborhood of the cusp region of X and is a diffeomorphism with image

V\{¢ =0, =0} where V is some neighborhood of {¢ = 0,( = 0}.

Notice that when ¢ — 0, the limiting model in Proposition 4.2 is (R/1Z), x HEZU_H-U

equipped with the metric

B du?® 4+ dv? + (1 + v2)(u? 4 v2)2dw? + 2v(v? — u?)dwdv + dvuvdudw (4.12)
= = . .

9o
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Writing = := ﬁ’ Yy = , this becomes

__v _
u2+o?

_d? +dy? + (1 + v?)dw? + 2vdwdy

g0

2
: / / AN x Y vy 3 3 [
and thus taking (2/,y/,w') = (7m, 57w + 173) and the inverted coordinates (u’ =
’ ’ ’ , .
gV = —x,2y7+y,2,w ), we obtain

B da'? + dy’2 + dw'? B du'® + dv'® + (u? + v"?)2dw'

go :L‘/Q u/2 (413)
which is exactly the model metric of (2.2). We can then write this change of variable
2,2 2,2
o =1+ 1/2)3/2u(1 - WM), v =1+ %)l - m)
, y (4.14)
w =w—

1+ 0202 +u?
and if we take the fundamental domain [—%, 1], x HZ,,, for (R/3Z),, x H?, we see that the
corresponding fundamental domain in the coordinates (u’,v’,w’) for the action w’ — w’ + %

becomes

D= {(w',z‘u’+v’)eRxH2;w’+ﬁlﬁ$ﬁe[—i,§]}. (4.15)

This explicit isometry will be used later since it is sometime more convenient to work in the
model (4.13) than in the model (4.12).

The function U := % in W‘SL defines the boundary corresponding to X, via ®7, 0 Or. We
will see later that, near the cusp, this function is a boundary defining function on a space
that compactifies X as a manifold with corners. This function will essentially give the form
of the equidistant foliation near the pinched geodesic.

Lemma 4.3. Let U := 5 be the chosen boundary defining function in W‘z, then the metric
hy = (1+v2)(U?gL)|u=0 in the conformal infinity induced by the defining function Uv/1 + v/2
s given by

b = (14 2)( + (0% + ) (1 + 1) du? + 2wdvdw)

vZ 4 42
and has constant Gaussian curvature —1.

82

Proof. First we notice that hi = AR

hy is flat, since it is given by
Wy, = do% + 2(1 + v?)dw? + 20vdfdw

with 6 := arctan(v/{), and thus the Gaussian curvature of hy, is given by

1 I V2 4 (2 -
s o e (o8 (S ) ) = (cos0) 0 log cos(0) = -1

which finishes the proof. ([l
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5. FORMATION OF A CUSP ON SURFACES

In this section, we discuss the uniformisation on a Riemann surface when there is a degen-
eration to a surface with cusps.

We start by setting the assumptions. Let N be a compact surface of genus g > 2 and h. a
family of smooth metrics on N for € > 0. Assume that there is a finite family of disjoint smooth
embedded circles (H;)j—1,. j, on N (for some j; € N) which satisfies the following properties:
there exist A > a > 0 and some connected open neighborhoods 2% C (R/ 17Z) x (—A, A) of
(R/3Z) x {0} and some neighborhood Y5 of H; in N such that (R/3Z) x (—a,a) C 5%, and
there exist some smooth diffeomorphisms

6% Y
and some parameters v;(e), Ej(s) converging to v; € R and 0 as ¢ — 0, such that

U5 he = (14 5(0)2) (g + (0% + 601+ v (e))du? + 25 )dvdw) . (5.1)

where w € (R/ %Z) is an angle variable and v is the coordinate obtained by projecting on the
second factor. Moreover, we ask that ¢ is converging in Ck-norms for all k € Ny to some
smooth diffeomorphisms ¢? : Zg \ (R/3Z) x {0}) — H? \ H; where Z? = Int(N>025) and
HO Int(ﬂ€>0‘gj ). We finally assume that the metric h. converges in C*-norms on compact
sets of M := N \ H for all k € Ny to a smooth metric hy defined on M where H := J 1 Hj.
Thus, for € > 0, the metric h. is smooth on N, while for € = 0, hg is a complete metric on M
of finite volume with cusp ends.

Notice that near H; the metric (5.1) can be rewritten under the more standard form

he = 2+£ (  + (0% + () 2)duw'’,
(5.2)

with w' 1= w(1 + v;(g)?) — 28 arccos (\/UQ:EW)
which shows that H; = {v = 0} is a closed geodesic of length 3¢;(¢)(1 + v;(¢)?) in this
neighborhood. Since ¢~ arccos(v/vv? + £2) = — [ 1/(t*+(*)dt, we see that for the limiting
case £j(¢) = 0, the change of coordinates above is only well defined (and smooth) in the region
{v > 0}. But changing arccos(v/\/v? + £;(¢)?) to arccos(—v/\/v? + £;(£)?), we get a smooth
change of coordinates at ¢ = 0 in {v < 0}. We use the model (5.1) 1nstead of (5.2) since it is
more suitable to our 3-dimensional model of Proposition 4.2 for the rank-1 cusp formation.

We can compactify smoothly M into M by using 1/)?: it suffices to compactify the charts
W? \ (R/3Z) x {0}) made of two disjoint connected components {v > 0} and {v < 0} by
attaching a circle at v = 0 on each connected component and defining the smooth structure
by saying that v and w are smooth functions. The obtained surface is a smooth surface
with 241 boundary components and with interior given by M. It is important to notice that
the isometry between (5.1) and (5.2) at ¢; = 0 (ie. ¢ = 0) is not smooth at v = 0 since
Fy(v) = —1/v, thus the smooth compactification we take for M using 1/1? is not the same as
the one used in the beginning of Section 2.3, which corresponds rather to compactifying by
using the coordinates (w’,v) putting metric under the form (5.2).
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By the uniformisation theorem, we can find for each ¢ > 0 a unique function ¢, € C*(N)

such that the conformal metric
h?yp = e2¥ep,

is hyperbolic. Similarly, for ¢ = 0, Proposition 2.3 insures that we can find ¢y € C*°(M) such
that hgyp = e2#9hq is a complete hyperbolic metric of finite volume with cusps on M. In fact,
if (w’,v) are the coordinates above putting the metric under the form (5.2), Proposition 2.3
shows that ¢o(w’,v) admits a smooth extension from each connected component of {v # 0}
to both {v > 0} and {v < 0} (it is smooth from each side but not globally on an open interval
containing 0) with ¢g|y=0 = 0 and 9o = O(|v|*®) near v = 0. Viewing now ¢y as a function
of (w,v), we get po(w’,v) = p(w(l+v?) =% v) in v > 0 and po(w',v) = p(w(l +v?) + %, v)
in v < 0, and we easily see that (g admits a smooth extension to M such that (g o737 = 0 and
Owipo vanishes to infinite order at OM = {v = 0}.

Proposition 5.1. Under the assumptions above, we have, as € — 0,

| e — @olleo — 0.

Proof. Let ¢ be a continuous function on N x [0,&0). whose restriction to ¢ = 0 is given by
¢p and such that ¢ is smooth on (N x [0,£¢)) \ (H x {0}). Moreover, we ask that

G = O0((¢(e) + [v])>) (5:3)

near H; x {0}; for instance this can be achieved by writing ¢o = ¢o,1 + 0,2 with supp(¢o,1) N
H =0, and supp(po,2) C Uﬂ; (where H; is the collar neighborhood with coordinates v, w as
above) and then taking ¢ = @1 + @2 where @9 is supported in U;¥5 and given in Y5 by

~ 1 v—o’
Balvwe) = 7 [ XES el (54)
J

where x € CP(R) satisfies [ x = 1, x > 0 and x(0) = 1. Using that, near Hj, Oypo2 =
Owpo = O([v|*), we obtain the claim. Consider the new family of metrics
he = €®Phe, e €0,20),

and set . := p. — p(-,€) so that AP = ¢20:h, = ¢2P<h,. Notice that Gy = 0 and that
REO = —2 where R denotes the scalar curvature. Thus, outside any fixed open set containing
H, we will have that R;; = —2+0(1) as € — 0, by the fact that h. — ho on M in Ck-norms
on compact sets of M. On the other hand, near H, R;_ = —2 by Lemma 4.3, so by the

formula for the scalar curvature under conformal changes of metrics, we have that
Ry = e 2P0 (=2 4 2A,,.3(-,¢)) near H.
The Laplacian Ajy_ near H; is given by
1+v(e)?)™! vi(e)
A = —0,(v? 4+ £;(£)})0 —(]—82 227 9,0,
he o(v7 4 45(2)7) 0, v +4(e)? w L+u(e)2 7"
therefore using (5.3), (5.4) and the fact that ¢y € C*°(M), we deduce that R; converges

uniformly to R near H as e — 0 and thus R; = —2+ o(1) uniformly. In partigcular, for e
sufficiently small, R;LE will be negative.
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Now, again by the formula for the curvature under conformal changes of metrics, we have
that

—20, ~

—2=¢ % (Rﬁg + 2A7L5<pg). (5.5)

Thus, for € > 0 sufficiently small so that Rﬁg is negative, we see that if @, attains its maximum
at p, then

- R (p _ 1 R (p
92> 6_2%@)1%%6@) — 2P:(0) < If;) — 5.(p) < §log (lf;)) = o(1).

Similarly, if @, attains its minimum at ¢, then

R~
pe(a) 2 %log ( 'f;@> = o(1).

Consequently, . — 0 uniformly on M as ¢ — 0. Since p. — po = @ + @(,€) — o and
[|2(+,€) — @ol|ree = 0o(1) as € — 0, the result follows. O

Remark 5.2. A recent result of Melrose-Zhu [MeZh] shows that in fact ¢, admits a polyho-
mogeneous expansion on the manifold with corners obtained from N x [0,1). by blowing up
H x {0}.

The following corollary will be useful to deal with the limit of the renormalized volume
under the formation of a rank-1 cusp.

Corollary 5.3. Let I. C [—1,1] with size |I.| — 0, and let €2?= be the uniformisation factor
for he on M so that AP — e?? h, is hyperbolic. We have in each collar neighborhood C; of
Hj

lim/ |dg0£|zgdvdw =0,
e—0 R/%Z 1.

lim / |de.|;_dvoly, = / |depolf;, dvoly,.
M M

e—0

(5.6)

Proof. Since ¢y € C®(M) with O, € C°(M), we see from the form of the metric h. in
(5.1) that |deol; € L°° with uniform bound with respect to €, and so

lim / |dyol;, dvdw = 0. (5.7)
R/1Z JI.

e—0
On the other hand, we know that
20 pe = —2e2%e — Ry, fore€|0,¢0). (5.8)

By the previous proposition, we therefore have that ||Ap e —Apgpolleo(ary = o(1). Moreover,
the form of the metric (5.1) and the fact that ¢y € €°(M) and dypo € C(M) imply that
[An 0 — Apypolleo(ary = o(1). Now we combine these facts and use integration by parts to
show that

/ |d(pe — goo)|,215dvolh5 = / (peAn e + PoAn. Lo — 200 A pe)dvoly,, = o(1). (5.9)
M M
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The boundary terms at H are 0 by the properties of h. and ¢.. In particular, as ¢ — 0
/ |d(p= — @0) 5, dvdw = o(1). (5.10)
R/37 JI.

The first result in the Corollary then follows by combining (5.7) and (5.10) and using the
triangle inequality. The second result follow from (5.9) and using the fact that

lim [ |deo|2 dvoly, = [ |dwol? dvoly,. (5.11)
e—0 M € € M 0

This ends the proof. ([l

6. THE BOUNDARY DEFINING FUNCTION USED TO DEFINE THE RENORMALIZED VOLUME

In this Section, we analyze the geodesic boundary defining function corresponding to the hy-
perbolic representative in the conformal infinity when we have a family of convex co-compact
hyperbolic 3-manifold converging to a geometrically finite hyperbolic 3-manifold with rank-1
cusps.

6.1. Geometric assumptions on the family of metrics. We fix a compact manifold with
boundary X and a family of hyperbolic convex co-compact metrics g., with ¢ > 0, on the
interior X of X.

Definition 6.1. We say that the family g is an admissible degeneration of convex co-compact
hyperbolic metrics on X if g. are convex co-compact hyperbolic metrics satisfying the following
properties (below, H? denotes the open upper half-plane in C and H2 the closed upper half-
plane; we use the topology of C to define bounded sets in @):

Assumption 1 (Model near the cusp). There exists a family of j; disjoint simples
curves Hi, ..., Hj, in X, and disjoint open neighborhoods u; X of Hj, there are diffeo-

morphisms W5 : We — U where W5 C (R/ 17) ¥ IHT% are bounded open sets containing
(R/1Z) x {¢ € HZ;|¢| < r;} for some r; > 0, and for { = v + iu

o du? + dv? + (1 + vj(e)?)R* — 4;(e)?vj(e)?u?)dw?
\Il] ge = 9

u
+2Vj (e)(R? — 2u?)dwdv + 4v;(e)uvdudw
2
u

(6.1)

for some /;() — 0 and vj() = v; € R as e — 0, with R := \/u? + v + {;(¢)?.

Assumption 2 (Convergence outside the cusp). There exists a hyperbolic metric
go on X such that for any fixed boundary defining function p € €*(X), p%g. — p%go in all
C*-norms on compact sets of X \ U;H; as € — 0. If W? i= Int(NeoW5) C (R/3Z)y % H2 and
U? = Int(Neso U5) C X, then WS converge to a smooth diffeomorphism \Ilg : W? \ (R/3Z) x
{0} — ug? \ H; in all C¥-norms.

Under these assumptions, the metric gg has rank-1 cusps. This follows from the convergence
of WS, U, W5 and the fact that (6.1) has a limiting metric as ¢ — 0 which is isometric to
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a neighborhood (2.2) of a rank-1 cusp. The degenerating curve H C 0X is the submanifold
given by H := UjL Hj.

Proposition 6.2. Let I'* C PSLy(C) be an admissible family of classical Schottky groups of
genus g in the sense of Definition 3.1. Then for each ¢ > 0, X¢ := I'*\H? is isometric to
(X, gc) where X is the interior of a solid torus of genus g and g- is an admissible degeneration
of convex co-compact hyperbolic metrics on X in the sense of Definition 6.1.

Proof. We can write the hyperbolic manifold as X¢ =1¢ \ﬁ ¢ where F© are good fundamental
domains constructed in Lemma 3.3. The metric on X is the hyperbolic metric gys on Fe ,
which descends smoothly to the quotient by I'®. In fact, we can also consider the closure X¢
obtained from the action of I'® on the closure of F¢ in H3 U QF where Q° C S? is the set of
discontinuity of I'*. These can be put together into a smooth fibration

T : % — [0,1] (6.2)

such that II-!(¢) = X¢ has interior equipped with the complete hyperbolic metric §. induced
from gys. For ¢ > 0, X¢ is naturally the interior of a solid torus X¢ of genus g, while
when ¢ = 0, there are cusps of rank 1. So as we have seen in Section 2, the conformal
compactification is no longer a solid torus, it is a solid torus with a circle removed for each
rank-1 cusp. In fact, by Lemma 4.1 and Proposition 4.2, for each cusp point p;, we have an
isometry W5 := (@jo@j)*l from a neighborhood of ¢ = 0in (R/3Z),, ng to a neighborhood of
pj in F¢, where 05 = @L(,Y;;) is given by (4.8) and @5 = (I)L(Vf) is given by Proposition 4.2 with
L(v;) = (¢;(¢),vj(g), Aj(e)) smooth in € € [0,1] (in Section 4 we take the fixed points p® ; =0
and p5 ; = A;j(€)¢;(e) but we can always reduce to this case by composing with a smooth family
of translations are rotations). Moreover, these combine to give a smooth diffeomorphism
U, : W; = U; from a neighborhood W; of {¢ = 0,¢ =0} in (R/%Z)wxﬁgx [0,1].\{¢ =e =0}
into a neighborhood U; C X of the cusp point p; in II71(0) € X. This follows from the last
statement of Proposition 4.2.

The diffeomorphisms ¥; give us a natural way to compactify uniformly down to ¢ = 0 by
simply replacing W; by its closure W; in (R/3Z),, x Hﬁg x [0,1]¢. Indeed, we can consider a
compactification

Im:X —[0,1] (6.3)
of (6.2) such that ﬁ_l(e) = X< for e > 0 and ¥; : W; — U;, which restrict to ¥; on W,
is a diffeomorphism from W; to a neighborhood U; of the circle H; C ﬁ_l(()) corresponding
to the cusp point p;. Here, X is now a compact manifold with corners and II is a surjective
submersion. Moreover, the fibres of II are manifolds with boundary, more precisely solid tori
of genus g. Choosing a horizontal connection for (6.3), we can then use parallel transport to
obtain a commutative diagram

XX x[0,1] (6.4)

i pr2

[0,1]

/e
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where pry : X x [0,1] — [0, 1] is the projection on the second factor, X is a fixed manifold
with boundary and G is a diffeomorphism of manifolds with corners. In the statement of
Proposition 6.2, it suffices then to take X to be the interior of X with family of metrics
ge = G+g. on the slices pry 1(5) where g, is the induced family of hyperbolic metrics on the
fibres of IT : X — [0,1]. The family of diffeomorphisms associated to each cusp point p; in
Definition 6.1 can then be taken to be G o ¥;(-,¢) for € > 0. O

6.2. The Hamilton-Jacobi equation outside the cusps. We consider an admissible de-
generating family of convex co-compact metrics g. on X = Int(X) in the sense of Definition 6.1
and we keep the notations of Section 6.1. The manifold (X, gg) is geometrically finite hyper-
bolic with cusps of rank-1 and X = X\ H where H is the degenerating curve in the boundary
of X. Recall that K is a compact subset of X where Assumption 2 is satisfied in Definition
6.1. Let hgyp be the uniformizing metric on the conformal boundary M = X \ H = 0X,
given by Proposition 2.3; it is a complete hyperbolic metric with finite volume. We define pg
to be the geodesic boundary defining function of M in X near X to be the solution of the
Hamilton-Jacobi equation

2

=1, (pg90)lrm =
go

dpo
Po
The equation is non-characteristic at M N X and has a unique solution near M N X, just as
in the convex co-compact case (see the discussion of Section 2.2). We first want to define a
geodesic boundary defining function for g. by the equation
2
= 17 ws‘p:O =0 (6.5)
9e

hyp
hy”*.

dpe
Pe

where p. = eve po; notice that wy = 0. We first show

Lemma 6.3. There exists 6 > 0 such that for all € > 0, the Hamilton-Jacobi equation (6.5)
has a solution & in KN {py < 6} and & converges to 0 in C¥-norms there for all k.

Proof. The equation can be written as

1 — |dpgls.
Po

where g. := pig. converges in €*°(XK;S?T*X) to p?go as € — 0. This is a uniform family

(with respect to €) of non-characteristic Hamiton-Jacobi equations, which converge in €>(X)

to a non-characteristic Hamiton-Jacobi equation as € — 0. This is solved by the method of

2(dwe, dpo)g. + po\ddjg\ga = , with boundary condition w,|,,—o = 0,

characteristics and thus it admits a solution in a uniform neighborhood of py = 0, converging
smoothly to wp =0 as € — 0. g

Notice that p. is not exactly the geodesic boundary function that we would need to compute
the renormalized volume but we will see later that the renormalized volume there can be
expressed easily in terms of this boundary defining function. The function we are interested
is

pe = € pe (6.6)
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where w; is the solution of

dpe|*

pe

= 17 wé‘poio = Qe

ge

h

and ¢ is the uniformization factor such that he*? := e?¢<h. is hyperbolic if he := (p3ge)|po=0;

The Hamilton-Jacobi equation (6.6) has a unique solution in X near M and in particular one
has wo|xnm = o = 0.

6.3. The Hamilton-Jacobi equation near the cusps. In the model from Proposition 4.2,
which is a neighborhood of {¢ = 0} in (R/3Z), x HZ_,
parameter and consider now (¢(¢),v(g)) as independent parameters (¢,v) and we shall study

the geodesic boundary defining function as functions of (¢,v) where v € R is a bounded

it will be useful to forget the e

parameter and ¢ € [0, £y] for some fixed small ¢y > 0. We view v as a parameter moving in
a compact set, and the metric has a uniform behavior in terms of v in this set, and for this
reason we shall not emphasize the dependence in v in the notations. The metric g. of (4.9)
will be rewritten as

B du?® + dv® + (1 + v*)R* — 40%0%u?)dw? + 2v(R? — 2u?)dwdv + 4vuvdudw
- 2

gr ” (6.7)

with R = vu? + v2 + (2.
We thus consider for the moment just a neighborhood of cusps, that is we set
U= {(w,u,v) € (R/3Z) x [0,1) x R; u? +0? < 1}

and U its interior. Consider the submanifold H := {u = v = £ = 0} C X x [0,4y) which
corresponds to the cusp, and let Uy be the blow-up of U x [0, 4) at H, defined to be

Uy = (Ux[0,6p) \ H)USH

where SH C T(X x [0,4))|m is the normal inward pointing spherical bundle of H. There is
a blow-down map 3 : U, — U x [0, ), which is the identity outside SH and the projection
SH — H on the base when restricted to SH, U has a natural structure of smooth manifold
with corners of codimension 2 in a way that the functions u, v, ¢, R lift by £ to smooth functions
on Up; we will use the same notations for these functions and for their lift to Uy. There are
three boundary hypersurfaces in U,: the face denoted F, whose interior is diffeomorphic
to {¢ = 0,u # 0} C U x [0,4), the face denoted F, whose interior is diffeomorphic to
{u=0,f#0} CUxI[0,£), and the front face Fr = SH given by the equation R = 0. See
Figure 4. We notice that F, is naturally diffeomorphic to a neighborhood of cf in the manifold
X, defined in Section 2.3, with cf identified with Tz N F, thus studying what happens on F,
is equivalent to consider a neighborhood of the cusp in X..

Consider the following smooth variables on Up:

(U = %, v, w, ). (6.8)

They provide coordinates outside Fg. In fact, when restricted to F, (U, v, w) provides smooth
coordinates on Fy near the corner Fr N F,, with U being a smooth defining function for F,
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u

Fu
14

FIGURE 4. The manifold with corners Uy,

and v being a smooth defining function for Fr. We will also sometime use the smooth variable

v 02
=_—=44/1-U2— —
v R v R?

@ B dU n Vdv
u U1 -U?2)  R(1-U2%)
Hence, we see that the dual vector fields ud, and 9, to du/u and dv become in the coordinates
(U,v,w)

on Uy. Then we have

udy, — U(1 = U0y, 0y — 0y — V—]gaU. (6.9)

In terms of the variables U, v, w, the metrics gy is given by
B dU*? n 2vdUdv n vido? n (1 —U?)dv? n 4dvv JU duw
A —U22 T U - U2+ @) (2422 U2+ 2)  U(L-U?)
(v? + %) 202 N (1-20?%)
U2(1-U?) 2402 U?

+ (402 — 432 dw?® + 20 )dwdo.
v
(6.10)
In particular, looking at the conformal family of metrics g, = U2g,, we see that when pulling-
back to {U = 0} = &, this metric, one has
he:=3 _ 14+ %) (02 + 2)dw? + 2vdvd 6.11
f'_g[’UZO_,UQ_i_gQ_'_( +v (U"i' w* + 2rdvdw, ( )
which corresponds to the model (5.1) for the formation of a cusp obtained by pinching a closed
geodesic. In general, as described in the previous section, the global hyperbolic representative

of this conformal infinity will be slightly different, of the form
hP = eXfthy (6.12)

for some family of smooth functions ¢y, which is obtained by uniformisation and has the
properties of Proposition 2.3 for the case £ = 0. By Proposition 5.1 (with ¢ playing the role
of € here), the uniformising factor ¢, will tend to g as £ — 0 on the interior of F,. Since
we want to work in a more general setting than the uniformized metric, we now just fix an
arbitrary family of smooth functions ¢, so that ¢, — ¢o on F,, as £ — 0 with the requirement
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that g satisfies the properties of Proposition 2.3, ie. it extends smoothly to the closure of
Fu in Fy and Oypp vanishes to infinite order at Fp = {v =U =0} in Fy N F,.

To define the renormalized volume associated to such a choice of representative in the

conformal class at the boundary, we need to construct a boundary defining function p, of the
face ¥, = {U = 0} such that

(1) py=e“*U for some function wy satisfying we|,_o = e

2 . (6.13)

ge

dpy
2 R
@) pe

We solve this first order differential equation near the face Fr. This is an equation of
Hamilton-Jacobi type which we write explicitly in terms of the coordinates U, v,w. First,
in the coordinates u,v, w and in matrix form, the family of dual metrics g, ! on the cotangent
space is given by

2 R* + 4v2u?v? 202uv(R? — 2u?) —2vuv
9, = ol 20%uv(R? — 2u?) R+ v3(R? — 2u?)? —v(R?—2u?) |. (6.14)
—2vuv —v(R? — 2u?) 1
Since C% = % — ’%” + dwy, the equation |% 3@ = 1 becomes
(1-U?)? v? du
s ldulg, + [dw3, + prldvlf, +2(1 = U)(—=, dwi)y, 615
20(1 — U?) du 2v '
—va, Z>g[ - ﬁ<d’0,d&1[>g£ =1.
Now, we compute (recall that V = v/R)
(1-U?)? s v 5 20(1-U? du
T|du‘ge+ﬁ|dv|gz —T<dv,z>ge = (6 16)
(1-U%?+ VU2 (41/2(1 U2 414021 - 20%)% — 42 (1 - U1 - 2U2)>,
and
du 27727/2 2772 2 2V
(Z,du@gz =(1 +4v°U*V?)(ulywy) + 2v°U*(1 — 2U*)V ROywy — 20U anwg,
(dv, dw)g, = — 202U2(1 — 2U)V R(udywy) + U2(1 + 12(1 — 20%)2) R20,wy (6.17)

— Uv(1 — 2U?) 0wy,
and from (6.14), |dwd3£ is of the form
2 ,  U? 2 2 2 1
deel?, = (uDuwr)? + T5lOuwel? + VUPo (U2, Vs udop, ROuor, 1-0utr)

for some polynomial Py(z,y; X,Y, Z), which is quadratic in (X,Y, Z) with coefficients which
are polynomial functions in (x,y), independent of £ and depending smoothly on v. Gathering
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these computations with (6.15), we obtain that |dpe/pelg, = 1 is equivalent to

2(1 — U? + 202V2U%(3 — 4U?)) (udywy) + UV Q1(U?)(ROywy) + uU2VQ2(U2)(%8wwg)

2
1
+(udywe)? + %|8ww|2 + vU?Py(U?, V; udywy, Rywy, anwf) = U2Q3(U?,V)

where @); are polynomials, and thus using (6.9) and dividing by U we get an equation of the
form

2((1 = U?)?2 + V2U2Qo(U?))dywe + UQ1(UH)wdywe + U (1 — U?)*(Oywe)* + %mwd?

—|—1/UVQ2(U2)(%8wwg) +vUP, (U?,V, R; Udywe, ROywy, %aww) =UQs(U? V)
(6.18)
for some polynomials @Q;, and P; having the same properties as Py, and (J2. This equation is
of the form F'(Dwy,wy, z) = 0, where x = (U, v, w), Dw; = (Oywy, Opywy, Oywy) and

F(pa Z,l‘) = F(pprvva7zaU7’U7w)

v
=2[(1=U%)? + VAU Qo(U?)] pu + UvQu(U*)py + =5 Qa(U%)pu (6.19)
2\2. 2 UP%U 2 1. Pw 2
+U(1—U ) pU—ﬁ—ﬁ—i-l/UPﬂU 7V7UpU7RpU7E)_UQ3(U ,V)

In this definition, notice that the dependence in z and w is in fact trivial. Now, since
Opy Flu=o = 2 # 0, the equation with initial condition wy|y—g = ¢, is noncharacteristic.
It can therefore be resolved using the method of characteristics for U small outside R = 0.
In general, the equations for the characteristics are given by (denoting (x1, x2,x3) = (U, v, w)

and (p17p27p3) - (vap’LHPIU))
pz(s) = - 8xiF(p(S), Z(S),I(S)) - 8ZF(p(S)’ Z(S)’ ‘T(S))’
i(s) = ZapiF(p(s), z(s),2(s))pi(s), (6.20)

i(s) =0p, F(p(s), 2(s), z(s)).
where a dot is used to denote a derivative with respect to the parameter s. We notice that,
when v = 0, these equations have smooth coefficients except for all terms containing p,,/R.
Thus they are smooth outside the face Fr = {R = 0}, in particular they restrict on the face
Fe \ {R # 0} corresponding to the rank-1 cusp limiting case. We will need to solve these
equations with the following initial conditions on the face ¥, = {U = 0} (we restrict for the
moment to the region U = 0, R # 0)

U0)=0, v(0)=wv, w(0)=wo, =2(0)= vy, wp),
pu(0) = Oupe(vo, wo),  puw(0) = dwpe(vo, wo), pu(0) =0,

where the last condition follows from the fact F'(p(0),2(0),z(0)) = 0. The behavior of the
solution for U small near the face R = 0 can possibly be singular because of the singularity

(6.21)

of the coefficients containing some R~! in F' there. The solution w, will be given by

Dag(U(s),v(s), w(s)) = (pu(s), pu(s) pu(s)),  w(U(s),v(s),w(s)) = z(s) (6.22)
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with initial condition wy(0, vy, wo) = @e(vo, wp). We analyze the solution near Fr when £ =0
(Fr N Fyp corresponds to {u = v = 0} inside Fy).

Proposition 6.4. For each ¢y € C®(F, N Fy,) with Owpo vanishing to infinite order at Fr,
there exists a unique smooth function wg on Fy defined in a neighborhood of F, N Fr in Fy
such that 0wy vanishes to infinite order at Fr and pg = €*°U is a boundary defining function
of Fy N F,, with the property that

dpo
Po

=1.
go

(p(Q)go) ’ Fo e*# ho,

Proof. We need to investigate if the equation (6.20) can be solved in a uniform way as the
initial condition vg in (6.21) approaches zero. We first change coordinates and use the coordi-
nates (u/,v’,w’) of (4.14) in which the metric go has the simpler form (4.13). In fact, since the
metric in the new coordinates has the same form as in the original coordinates (u,v,w) but
with v replaced by 0, we are reduced to solve a Hamilton-Jacobi equation which has the same
form as (6.18) but with ¥ = 0, and in the coordinates (U’,v',w") where U’ := u'/v/u'? + v'2.
Our first goal is to prove that wy viewed in the (U’,v', w') coordinates is smooth near U’ = 0,
and then to come back to the original coordinates using (4.14) to deduce the desired result.

We are reduced to analyze the solution of (6.18) when v = 0, which we now do (for
convenience of notations we keep the expression of this equation with the variable (U, v, w)
for the moment, having in mind that they really mean (U’,v',w’)). We also allow w and wq to
be in R instead of R/ %Z, which is the same as viewing the equation in the universal covering,
since we need to work in the domain (4.15) where the coordinates (U’,v’,w’) are valid. We
notice that since we assume v = 0, each of the singular terms in the equations (6.20) comes
now with a p,, factor. From the initial conditions and the independence of F' with respect to
w, we have that py,(s) = ypo(ve, wo) for all s. On the other hand, by hypothesis, we know
that Oy po(vo, wo) = O(|vg|*) when vy — 0. To solve the ODE (6.20) uniformly as vg — 0,
we now check that for vy # 0, v(s) cannot approach zero rapidly.

Lemma 6.5. There exists a positive constant K depending on g but not on vy and wg, as
well as C > 0 such that

lu(s)| > |vole™ % and U(s) >s for s<K.

Proof. We will consider the case vy > 0, since the case vg < 0 can be dealt with in a similar
fashion. First we use that for £ = 0, we have that

v
R=—\ V=y1-U2
VI—U?

Set y = log v, then from (6.19) and (6.20), we can write, as long as U < 1,
§=UQ1(U?) + U (A1(U)e¥ + A2 (U?)py + A3(U?)eYpy + As(U?)e Vpy,)

for some polynomials A; in the variable U?. Consider the vector X = (pu(s),pu(s) —
pu(0),U(s),y(s) — y(0)), where y(0) = logvg. Since p,, is in fact independent of s, we see
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from (6.19) and (6.20) that there exists a positive constant K; depending on ¢g such that
d X K
— <
d S’ (8) ’ = [

whenever \Y(sﬂ < 71%1' This means that

X (s)] < Kis

for s < In particular, there exists C' > 0 such that

1
ly(s) —y(0)| < Kis = w(s) = voe™ "

for s < % This gives the first half of the result for some big constant K. Now, for |Y(s)]
1

sufficiently small, notice that U > 1. Integrating, we get that U (s) > s for s sufficiently small.
Taking the constant K smaller if necessary gives the result. U

We have py(s) = pw(0) = Owpo(vo, wo) which decreases rapidly when vy tends to zero, and
V =w/R is close to 1 when U is small, thus using Lemma 6.5, there is C' > 0 such that for
s <1/K, we have U(s) > s and

pw(s) 8111900('007“)0) CU(s) 3w800(vo,w0) o
< < —| = .
‘R(s)2) - 2‘ v(s)? ) < Ce v3 Oleol™)

Using this rapid vanishing as vy — 0, by looking at (6.20) and (6.19), we deduce that the
(U(s),v(s),w(s)) extend smoothly as the initial condition z;(0), p;(0) tend to {v = 0}, on a
uniform time s € [0, so] with sgp > 0. In fact, with the initial condition vg = 0, we have by
(6.19) that v(s) = pw(s) = 0 for all s and the ODE simply becomes in the region U < 1 (using
that V' = +/1 — U? in that case)

o =Li(Upv), Po=Lo(U,pupv), #=L3U,Py), U=L4yUPy), w=0 (623)

for some polynomials L; with L4(0,py) = 2. In particular, we see that the curves Uf(s),v(s)
are tangent to the face v = 0 (as long as U < 1) and they are transverse to U = 0; moreover
U(s) = 2s + O(s%) near U = 0. We thus obtain that 1 : (s,vo,wp) — (U(s),v(s),w(s)) is a
smooth local diffeomorphism on [0, €) x [0,€) x R for small € > 0 and there is € > 0 such that
for each point wy € R it is a diffeomorphism from [0, €) x [0, €) X (wp — €, wo + €) on its image.
Moreover, it is easily seen that (s, vg, wg + %) = (U(s),v(s),w(s)+ %) The same hold in the
region vy < 0 and this implies that wy given by (6.22) for £ = 0 extends as a smooth function of
(U,v,w) near each (0,0, wp) on {U > 0,v > 0} and on {U > 0,v < 0}, in some neighborhood
which has uniform size with respect to wg. We also have that 9y,wo(1(s,vo, wp)) = pw(s) =
Owpo(vo, wo) = O(|ug|*), thus dywo = O(|v|>°) uniformly where it is defined.

We have thus proved that in the (U’,v',w’) coordinates, wy lifted to the universal cover is
smooth in [0,€) x [0,€) x R, and 9wy = O(Jv'|*°) . To conclude the proof, we need to come
back to the original coordinates (U, v, w) by using (4.14):

U,_U\/1+V2 , v(140?) ;- v 1—U2‘

V142202 T YTV T IR
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First it is clear that wo(U’,v’,w’) is smooth when viewed as a function of (U,v,w) except
possibly at v = 0 where w’ is a singular function of v. Similarly to the discussion of Section
5 (which corresponds to an analysis in the boundary U = 0), the fact that d,ywo = O(Jv|*)
actually implies that wg is smooth in the variable (U, v, w) since Dwy admits a smooth exten-
sion to v = 0. This achieves the proof of the proposition, as (U, v, w) are smooth coordinates
near ¥ N F, on the face Fy, and U’ is a smooth function of U. ]

Corollary 6.6. Let pg be the function of Proposition 6.4. There exists a diffeomorphism
¢ :[0,6)s x O = Q C Fy with Q a neighborhood of F, N Fr in Fy and O a neighborhood of
FuNFr in Fy, N Fyp such that ¢*pg = s and
. ds® + ho(Ay - -

® g0 = 32( <)
with A, is a one-parameter smooth family of smooth endomorphisms of TO up to Fgr, for
s € [0,¢), so that hs(+,+) := ho(As - +) is a smooth family of cusp symmetric tensors.

Proof. The diffeomorphism is given by ¢(s, vo, wg) = ¢s(vp, wy) where ¢ is the flow at time
s of the gradient VP po of py with respect to p3go. First, we notice that this flow is exactly
the diffeomorphism ¢(s,vg, wp) = x(s/2) where z(s) is the integral curve studied in the proof
of the previous proposition (satisfying (6.20) with initial condition z(0) = (0, vg,wp). Since
(¢*U)/s is a smooth function on [0, €) x O for some small neighborhood O of {0} x {0} x (R/3Z)
in (U,v,w) € [0,€) x [0,£) x (R/3Z), the metric s>¢*gy is given by a positive smooth function
times ¢*(U?go) with go given in (6.10) (for £ = 0). To prove the statement, it suffices to check
that for vector fields Z; := vy0,, and Z3 := vo_lawo, we have that ¢*(U%go)(Z;, Zj) is smooth
near s = vg = 0 for i,5 € {1,2}. Since ¢(s,0,wg) C {v = 0} by the analysis of the proof in
the previous proposition, writing ¢(s, vg, wo) = (U, v, w) we get v = vg(1 + vo f (s, vo, wo)) and
w = wy + vok(s, vy, wpy) for some smooth functions f, k, and thus

qb*(voavo) = ’L)I/Vl7 qb* (Ualawo) = U_law + W2

for some smooth vector field Wiy, Wy near v = U = 0. By inspecting (6.10) for ¢ = 0,
¢*(U%g0)(Zi, Z;) is smooth near s = v = 0. The same argument works in the region v < 0
covering the other neighborhood of Fr N F,, in F. g

6.4. Proof of Proposition 2.4. We decompose the hyperbolic 3-manifold with rank-1 cusps
(X, g) as in Section 2.1 into a region X C X and some cusp neighborhoods uj forj=1,...,71.
Recall that X can be compactified into X .. Then we fix a boundary defining function p in a
neighborhood of M = dX, which is equal to p = u/v/u2 + v2 in the coordinates of the model
(2.2) of U§. The hyperbolic metric g there, as given by the model (2.2), corresponds to the
case £ = 0,v = 0 in the expression (6.7) and U = u/R is the chosen defining function of
0X in these coordinates. Let h™P be the unique hyperbolic metric on M in the conformal
class of h = (p%g)|ar. Let 1 € C(M) and h = e2h™P. By Proposition 2.3, we have
2V AYP = 2(WH2)], for some ¢ € €°(M). Since we still have that ¢¥+p € C°(M), Proposition
6.4 shows that there exists a smooth defining function p of M on a neighborhood of c¢f NM
in X, (as explained above, M corresponds to F, and cf to I in the model F, of X, near
the cusps), such that |dp/p|, = 1 with p?g|y = €Y hP; it is unique where it is defined. On
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the other hand, outside u;, this equation is also a smooth non-characteristic Hamilton-Jacobi
type equation, thus the solution p defined near M Ncf can be extended uniquely as a solution
also in a whole neighborhood of M in X, giving the desired function p. Considering the maps
¢ :10,€)y = M — X, given by ¢(x,y) = ¢.(y) where ¢, the flow at time s of the gradient
\val p of p with respect to p?g, we see by using Corollary 6.6 (recall that ¢ is the gradient
flow in the proof of that Corollary) that on (0,€), x M

g = da? —12— ha
x
for some 1-parameter family hy of smooth metrics on M depending smoothly on = € [0,¢),
and h, are actually a smooth family of cusp symmetric tensors. Since g is hyperbolic, we
know (as it is a local computation) from [FeGr, Theorem 7.4] that the dependence of hy is a
polynomial of order 2 in 22

he = h((Id + 22A)-, -)
with Tr(A) = —3Scal; and 6;(A) = 1dScal;. It remains to check that the complement
of the region ¢([0,¢) x M), called V, has finite volume with respect to g in X. Clearly,
KN (X\{p < €}) is compact in X thus has finite volume. Now we analyze the region
US\ {p < €}. To show that it has finite volume, it suffices to use that p is a defining function
of F,NFy in the blown-up space Fy of ﬁ; around the region H = {(u,v) = 0} representing the
cusp, and so {p > €} is contained in some regiogl {2U > ce} for some ¢ > 0. Now the volume
u“+v
u3

form of the metric g in coordinates (u, v, w) is dudvdw and a simple computation shows

that o
1 u 2 2
U Zu“ +v
dvdu < oo 6.24
/0 /—Cu<\/u2+v2> ud ( )

for all z € C and thus by taking z = 0 we see that the region has finite volume for any finite
constant C' > 0. It remains to show that if j is extended smoothly to X, as a boundary
defining function of M (positive in X, \ M) then H(z) = [y p*dvoly is meromorphic in
{Re(z) > —¢} for some € > 0. We can split the integral as an integral near 9X N X and the
meromorphy of this part follows directly from the fact that p is a smooth boundary defining
function there, and there remains the integral in each Uj. The part of the integral in V clearly
gives holomorphy in z by (6.24). For the integral in U\ 'V, we notice that the volume form in
the coordinates (U, R, w) near J,, = {U = 0} in the model F; (isometric to U with v = 0) of
Section 6.3 is given by dUdRdw/(U3v/1 — U?) and thus from the fact that p/U is a smooth
positive function in these coordinates near U = 0, the meromorphy of the remaining part of
the integral H(z) follows by Taylor expanding p/U at U = 0. O

6.5. Taylor expansion of the boundary defining function to second order. For ¢ > 0
fixed, it is also straightforward to solve the equations (6.15) near the degenerating curve and
find wy and p. The function wy will be smooth in s, so smooth in U. In particular, at U = 0,
it has an expansion of the form

we~ Y a;U" (6.25)
j=0



RENORMALIZED VOLUME OF PUNCTURED SURFACES 37

To compute the limit as £ — 0 of the renormalized volume, we will need to know the terms
of order 0 and 2. By assumption, we have that ag = ¢,. We now compute a; and as.

Proposition 6.7. Near v = 0, the coefficients a1 and az in the expansion (6.25) are given
by a1 =0 and
1 02
ay=—7 (\dcp@]%é + (14 1?) (1 —

2vv
2
M) — 2+ 2(1/ — 1)v8v(pg — M(%,cpg) .

Proof. We see directly from (6.18) that a; = 0. Then notice that by (6.14), the metric dual
to g, = U2gy is smooth near F, \ (F, N Fr) and as U — 0

2 2(/ 2 2 2 2 (awW)z
dunlf, =U2 (02 + 2)(1+ ) Dope)) + 5
=U?|depql};, + O(U?)

where hy is given by (6.11). Combining this with (6.15), (6.16) and (6.17), we have

2

v 2 2 v
-2 + m(l + v ) +4(12 + 2(1/ — 1)7}8@@( — QVW

which achieves the proof. O

- 2vf9v<pz8ww> +0(U?)

duwpe + |degli, =0

7. VARIATION FORMULAS FOR THE RENORMALIZED VOLUME

In this section we describe the properties of the renormalized volume as a function on the
conformal class of the conformal boundary, and we compute the variation of the renormalized
volume for families of hyperbolic metrics with rank 1-cusps.

Arguing as in [GMS, Prop. 3.11], we have the following variation formula for the renor-
malized volume under a change of conformal representative in the conformal boundary.

Proposition 7.1. Let X be a geometrically finite hyperbolic 3-manifold. Let h™P be the
unique hyperbolic representative in the conformal boundary of g and let h = 2V P with
Y € C(M). If p and p are geodesic boundary defining functions associated to h™P and h
given by Proposition 2.4, we have

N 1
Volg(X, h) = Volp(X, hP) - / (V|2 — 205)dvOlyup.
M
For any x € €°(X) satisfying x = Zi:o xkp? + 0(p%) at 0X, with x € C°(M)

FPZZO/ p*xdvolgy :FPZZO/ p*xdvolgy
X X (7.1)

1
- /M(X°(|W|’2‘h” — 20) — dx21h)dvOlye.

Proof. First, by Proposition 2.4, associated to both A™P (resp. to B), there are product
coordinates [0, €), x M near M in the compactification X, of X in which ¢ is of the form
_ dz? + hg + 22hy + x*hy
- 2
x

g
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with hg = A™P (resp. hg = ﬁ) , ho,hy some smooth cusp symmetric tensors such that
Ttp,(ho) = —3Scaly, and &y, (he) = 3dScalp,. The complement of the regions covered by
these coordinates have finite volume, thus the part of the integrals above over the region
x > €/2 are trivial to deal with. On the other hand, by the proof of Proposition 2.4, we
can also solve the Hamilton-Jacobi equation ]dm—x + dwlg = 1 near M with initial condition
wlg = %. From the symmetries of this equation, we see that w has to have an even expansion
inzat M, w~ Z(;io wojz®. As in [GMS, Lemma 3.6], putting this expansion back in the
Hamilton-Jacobi equation, we compute that (the computation is local)
1 9 .
wgz—Z|Vw0]h07 with wg = 1.

On the other hand, the volume form of g is given by dvol, = v(x)dvolho% with v(z) =
vo + 2%y + O(23) for vg = 1 and vg = —%Scalho. Hence, we compute just as in the proof of
[GMS, Lemma 3.5] that

VOIR(X, il) = VOIR(X) + / (’Uowg + Ugwo) dVOlhhyp
M
1 (7.2)
= Vola(X) - | /M(|w0|§hyp — 20)dvol e

For (7.1), the calculation is similar but one has to replace v(x) by v(x)x(x) in the reasoning,
thus vows and vowp become wvgyowe and (vexo + voX2)wo- O

First we say that (X, g*) for t € (—tg, to) is a smooth family of geometrically finite hyperbolic
manifolds if g := ¢% is a geometrically finite metric on X with j; cusps of rank-1, represented
by some disjoint curves H = U?lle ; in the boundary X of the compactification X as in
Section 2.1, ¢' is hyperbolic for all ¢ and there is a neighborhood U; of H; in X such that
p?g' extends to a smooth metric on X \ U;U; if p is a boundary defining function of X, and
there exists a smooth family of diffeomorphisms 9% : U; — ¥*(U;) C Hg x (R/3Z), such that
for ¢ = v +iu € H?

du? + dv? + (u? + v?)dw?
(h)g' = :

For such a family of metrics, it is easy by extending (W;)_l o 1/;? to X to construct a diffeo-

u2

morphism % of X such that p?(6!)*g’ extend smoothly as a metric on X = X \ H and near
H;

(w?)*(ﬁt)*gt _ du? + dv? +u(2u2 + vz)de'
We can thus reduce the analysis to the family of metrics (6%)*g! with a cusp singularity at H,
which we do now and to avoid heavy notation we write g* instead of (6)*g*. Denote by h! the
hyperbolic metric in the conformal boundary of (X, ¢'), it is a smooth family in ¢ of hyperbolic
metric with finite volume and cusps. Proceeding as in the proof of Proposition 6.4 and using
ht as the representative of the conformal infinity of g¢, we can then solve the Hamilton-Jacobi
equation

=1, (0], ="
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smoothly in t to get a smooth family of boundary defining functions p* of M in X. As we
have seen in the proof of Proposition 2.4, the gradient vector field V7' pf, where gt = (p')2¢",
will be defined and smooth in a neighborhood of M in X, and will be tangent to the cusp face
cf. Integrating this vector field for each ¢ then gives a smooth family of collar neighborhood
@' : M x [0,€), — X such that

(¢")"g"

with hj; some smooth families (in t) of cusps symmetric tensors such that hf = h'.

da® 4 hfy + 2*hh + 2 b
B 2
Z

(7.3)

Theorem 4. Let (X, g') be a smooth family of geometrically finite hyperbolic metrics. Let
h' be the unique hyperbolic representative of the conformal infinity of g' and hl the second
fundamental form at OX given by (7.3). If Voliz(X) denotes the renomalized volume of (X, g*),

then
1

8,5V01§%(X) ‘t:O == _Z /M<h0, h2 - hO)hOdVOIhm

where hy = hg ho = ht]t:() and the dot denotes a derivative in the t variable evaluated at

t=0.

l1=o-

Proof. The proof is very similar to the proof of [GMS, Theorem 5.3] and is based on Schlafli
formula, but here one has to be careful about the degeneracy near the cusps to perform the
argument. Like in [GMS, Theorem 5.3], we can pull-back ¢¢ (using an extension of (¢') ~1o¢)
by a family of diffeomorphisms of X, which is the Identity outside a neighborhood of M so
that the new metric, is isometric to the right hand side of (7.3) near M via the diffeomorphism
¢ := ¢° that is independent of t. For § € (0, ), consider the region Vs := ¢(M x [0,6)) C X.
Then, as in the proof of Proposition 2.4, X \ Vj is of finite volume with respect to g*, and we
claim that

— 1 . 1,.
O¢Vol(X \ st’gt)’tzo = 2/ ) <H + 2<g,H>g> dvoly, (7.4)
o=

where H' is the mean curvature of ¢(M x {§}) with respect to the metric g*, I" is its second
fundamental form and g := g'|t—9. The proof of (7.4) is then the same as the one of [GMS,
Lemma 5.1]: using the variation formula for the scalar curvature, we find

—49,Vol(X \ V5,¢") = / (AyTr,(g) + d*69(g))dvol,
X

and the integration by parts of A, Try(g) and d*69g can be done but there could possibly be a
new contribution coming from the cusp face cf in the compactification X, of X (cfN{p = §}
corresponds to the cusp point at infinity of the Riemann surface {p = d§}). In order to analyze
this, we can apply Green’s formula on {R > A, p > §} where R is a boundary defining function
of cf. If ¢’ : cf x[0,1) — X is a collar neighborhood of the cusp face in X, we know from the
local form (2.2) of g* that

Area(¢/(cf x {A})) N (X\ V) = O(N?).

It is direct to check (using (6.14) with v = 0) that 0 Try(g) and 69(g)(Or) are uniformly
bounded in A on ¢'(cf x{A})) N (X \ Vi), where 9 is the unit normal vector to ¢'(cf x{\}))
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with respect to g, this means that there is in fact no contribution coming from the cusp face
when we take the limit A \, 0. Thus, when we integrate by parts, we obtain the same formula
as in [GMS] and (7.4) follows. O

8. LIMIT OF THE RENORMALIZED VOLUME UNDER THE FORMATION OF A RANK-1 CUSP

We consider an admissible degeneration of convex co-compact hyperbolic metrics g. on a
manifold X in the sense of Definition 6.1; X is thus the interior of a smooth compact manifold
X with boundary N := 0X, with degenerating curve H = Ugllej C Nand X = X\ H.
Recall that X is the smooth manifold with corners obtained by blowing-up H in X, with
boundary faces M and cf, see Section 2.3. The goal of this Section is to show

Theorem 5. Let g. be an admissible degeneration of convexr co-compact hyperbolic metrics
on X in the sense of Definition 6.1, with limiting geometrically finite hyperbolic metric gg.
Then

lim VOlR(X’ gE) = VOIR(Xa gO)
e—0

8.1. Limit far from the cusp. First we describe the limit of the renormalized volume of
the part far from the cusp, that in a fixed compact region KX C X.

Proposition 8.1. Let p. € C>(X) be a geodesic boundary defining function such that he :=
(p2g:)| v is the unique hyperbolic metric in the conformal boundary (pe is uniquely defined near
N). Let py € €°(X,) be a geodesic boundary defining function of M of Proposition 2./ with
ho := (pggo)|M being the unique finite volume hyperbolic metric in the conformal boundary
(po is uniquely defined near M ). Let 0. be a family of smooth functions on X vanishing in a
uniform neighborhood of the degenerating curve H and converging in all C*-norms to 6. The
following limit holds

e—0

lim (FPZZO / 0. dvolgg> = FP,_q / 007 dvoly, .
X X

Proof. Let X be a compact neighborhood of supp 6. First, we can write dvol,, = erdvolg0
for some smooth function G¢ converging to 0 in €*°(X). We use the notations of Section 6.2:
the geodesic boundary defining function p. in X is defined by (6.5). Then we get

/ 0pZ dvol,, — / 0§ dvol,, = / pE (0% 7% — ) dvoly, (8.1)
X X X

where p. = e pg, and &. and 6. — 6§ converge to 0 in C>(X) by Lemma 6.3. Now the volume
form of go near pp = 0 is of the form p, 3ef dpodp where dp is a smooth measure on K N M
and H a smooth function of X, thus writing

e*%e =1+ 20, + 2°F.
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for some smooth function F. on C, x X and using that for small § > 0, f 0 pz_ldpg has a pole

0
of order 1 at z = 0 with residue 1, we directly obtain that

FP._g / P& (0% 1% — 0) dvoly, =FP,_ / pE (0% — 0) dvoly,
X X

1

+ 5 / 830 («95€G5+H(;)5)|p0:0 du
KNM

where 8, is the vector field given by the gradient of py with respect to p?go. Using that
Ge - 0, w. — 0 and 6. — 0 in C>*°(X), as ¢ — 0, we obtain that the finite part of (8.1) at
z = 0 converges to 0 as ¢ — 0. We write h, = e%#¢ he. To conclude, we may use Proposition
7.1, which of course also works in the convex co-compact case: that is for each € > 0, we get
with 0. = 327 0. ,pk + O(p2) for some 6, € C3°(M)

FPZZQ/ pZ0 dvol,, :FPZ:()/ pZ6. dvol,,
X X

1

- / (O-x(|dge]2. + Scaly. pz) — 46. yp2)dvol,..
KNM

By assumption we have 0, — 65 with 0 = Zi:o Oxpk 4+ O(p). Using Proposition 5.1 and
Corollary 5.3 we directly obtain that (recall that ¢ = 0)

lim (96,0(’d805‘%€ + Scalp, o) — 40- 20-)dvol,. =0
e—0 KOM
which achieves the proof since (8.1) has finite part at z = 0 tending to 0. D

8.2. Limit near the cusp. We next study the behaviour of the renormalized volume in the
regions Uj containing the degeneration. We notice that Theorem 5 follows from Propositions
8.1 and the following

Proposition 8.2. With the notations and assumptions of Proposition 8.1 and Theorem 5,
we have

lim FP,— / (1 —6°)pidvoly,, = FP,— / (1 —0)pidvoly,.

e—0 X X
Proof. We can assume that (1 — %) is supported in U;U5, we are reduced to a local analysis
and we can use the model U, with metric ge of Section 6.3, where we have forgot the e
parameter and use rather ¢ with ¢ — 0, and v = v(¢) is converging to some limit 1y as ¢ — 0.
First, an easy computation gives that the volume form of g, is given by
R2dudvdw
dVOlge = T

where R? = u? + v? + 2. We need to prove that
) R?dudvdw R2dudvdw
lim FP, / i = FP. / ]
=0 ('U,,”U,'UJ,E)EUZ u
where py = p. is the function solving (6.13) with e2#¢h, being hyperbolic if h, is given by
(6.11), and x € C*(Uy) is independent of ¢ and equal to 1 near u = v = 0. To study the
renormalized integral (8.2) we decompose Uy in several regions, see Figure 5.

= (8.2)
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FIGURE 5. The manifold with corners Uy,

We start with a region of finite volume (with the notations of Section 6.3)
Ri(0) ={(u,v,w) |u<d, -1 <V <1 0<L<1},

where we use the following coordinates,

u, V:B, L=—-, w. (8.3)
u

U
In fact, for £ > 0 fixed, we have that

0<L<1,0<u<d = (<u<éd.

Take ¢ so that y is supported in vu? +v2 < §. In these coordinates, the volume form of g,

is for ¢ fixed given by

(2 + u? + v?)dudvdw
w3

dvol,, = = (14 V?+ L dudV dw.
ge

Restricted to this region, the volume is thus clearly finite and there is no need to renormalize.
Thus,

2
FPZZO/ pZXR dudvdw / / / (u, Vu,w <1 +V24+ 4 )dudde
R1(€) u? 3

We can use dominated convergence (using L? 11[475} (u) < Tjg4) to deduce that

2d dud 1 pd
lim FP,—g / pﬁxw / / / x(u, Vu,w) (1 + V2) dudV dw
=0 (w,V,L,w)ER, u? 3 Jo Jo

(8.4)
(u? + v?)dudvdw

=FP.—g / PoX
z R1(0) 0 u3

Next we analyze the region Ry(¢) near the intersection F,, N Fr but away from the corners
FrNF, NFy. In this region, we can use the coordinates

~ u ~ v
9 £7 g’ w

In these coordinates, we can define more precisely the region Ry (¢) by

Ry(0) = {(u,v,w) | 0<U <1, —1<V <1}
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In these coordinates, the volume form of g, is given (for ¢ fixed) by

(14 U2 4+ V2)dUdV dw

dvoly, = 73
Since U := 5 = \/ﬁ and p; = e“tU with the notation of (6.13), we have
. R2dudvdw oLl (14 U2 4 V2)dUdV dw
Fon/ Xpp—5— = Fon/ / / PeX ( = )
Ry (0) u —1 U3

o / / / (07 (1+ U + V2)dUdV dw
A (14 02+ V2)503

with

)

—A1(£)+A2 ) + As(0).

z rr2 2

A —FPZO/// (U (1 + U? + V2)dUdV dw
,i US

) e~
1 (U wp(1+ U% + V2)dUdVd
As(0) = reszzo/4 / / X we(l + i ) w’
-1Jo U3

) _ o I
1 i bt U log(1+ U2 + V(1 4+ U2 + VAUV dw
As(l) == — reSz—o/ / / X B )[%3 ) .

|
=

For j = 0,1, the function £x(¢U, €V, w)(1 + U2 + V?2)(log(1 + U2 + V?2)) converges to 0 in
Ck-norms for all k, and thus it is direct to see limy_A;(¢) = limy_gA3(¢) = 0. For the
second term, we use the Taylor expansion of wy in terms of U using (6.25)

U2
we = ag + axU% + O(U3) = ap + a2
14 V2

+O(U3).

Thus, we compute that

_5/

iy /
¢ 1 C102 + Covdy
/ x(0, v, w) (sDe — i|d90€|i2zg + 2Vl Csv0yp0 + ) dvdw.
—¢

/ (02 4 v?)

where C; are constant depending smoothly on v, and we used that ag = ¢, is uniformly
bounded in ¢ in the second line. From Proposition 5.1 and Corollary 5.3, we see that

C1 02
/ / va <pg \dcpg]he @ - )>dvdw—>0

1 ~ ~ ~
/ ((ao + a2)(x (0, £V, w) 4 agl*(1 + V)52 x(0, 4V, w)) dVdw
-1

N»—-

Aim

/1 x(0, 0V, w)(ag + az)dVdw + O(£%). (8.5)
-1

.M»—‘

»&\H
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Using Cauchy-Schwartz and |dy|s, > C(|(v? + €2)~ 2 wipe| + [v0ypr|) we also get that

¢ 0
/ 1 /Z |X(07U71U)| <M + 03|’U8UQDZ|> dvdw S
1J-

¢! (Villagdla + | / i gl dvi) )

for some C’ independent of ¢, thus this converges to 0 by Corollary 5.3, and we conclude that
limg_)() AQ([) =0 and

RQdudvdw
lim FPZZO/ ngi =0
£—0 Ra(0) u3
Next, we consider the coordinates, smooth near the corners Fp N F, N F,
~ - 14
v, U = ° L=— w
’ o]’ o]’

and taking region R3(¢) U R4({) given by
R3(0) = {(u,v,w) | |v| <6, L <1,U < 1}.

we see that x can written as Z?:l X 1g, () - In these coordinates, the volume form of gy is
given for fixed ¢ by

(1+ L2 + U?)dUdvdw

dvoly, = 3
: _ U
Thus, since U = Jiriio we have
R%dudvdw L UZerr(1 + ﬁi + U?)dU dvdw
Fon/ Xp 7 =FP.= 0/ / X R YT
Ra(0) u tJe<ppl<s Jo (1+ 4 + U220 (8.6)
= i (0) + I () + I3(0).
with
L U (14 & + U dUdvd
I —FPZ 0/ / / Y ( 02 T ) v w’
1 Je<pi<s Jo U3
/ / / Uwy(1 + —|—U2)dUdvdw
Ir(0) :=res,— )
1 Je<lo|<s U3
1 i . Iz Uz(l—i— +U2)dUdvdw
I3(0) := — = res,— log (14+U?+ —
0= s o/ Jopger s (174 )

We notice that, in view of the smoothness of w, as a function of U, v, w, these three terms
also make sense for £ = 0, and (8.6) for £ = 0 is given by 2:33':1 1;(0). To conclude the proof,
we want to prove that I;(¢) — I;(0) as £ — 0 for j = 1,2,3. For the first term, we compute
that

1) = / 1Je /<|v|<5 UQ)Q1 (v, ) + ga2(v, w))dvdw, (8.7)
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where ¢; and g9 are smooth and independent of ¢, and it is then clear that
limI(¢) =T
lim 11 (€) = 1,(0)

To deal with I3(¢), we can proceed similarly: we remark that for ¢ > 0, the integrand in I3(¢)
is of the form U Z_SQ(U, ﬁ—z, v, w) where @ is some smooth function of its parameters, thus it

is straightforward to see that
2
/ / q3(v, ﬁ—g, w)dvdw
1 JI<vl<é

for some smooth function g3 of its parameters. We conclude as for I; that

lim I3(¢) = I3(0).

Finally we study I2(¢). From the expansion (6.25), we have for £ > 0 that

~

asU?
Wg=a0+a2U2+O(U3):ao+27€2

2

+O(U?).
Hence, we compute that for £ > 0

/ /< - ao+a2)( (0, v,w) +ao(v —1—52)82)((07@,11,)) dvdw

1
1
1
/4

C12 + CovBuipe >
(0, d Civ0, dvd
/<v|<5 vrw) <W 4ol + (@ go7) Rty | dva

1
1

/ / (v? + £%)52x(0, v, w)dvdw.
i <\v\<5

for some constant C; depending smoothly on v. By Proposition 5.1, the last line is continuous
at ¢ = 0, and using Corollary 5.6 with the stronger estimate (5.9), it is direct to check (like
we did for the term Ay(¢)) that I»(¢) is continuous at ¢ = 0, ie. limy_,oI2(¢) = [2(0). We
have finished the proof. O

9. APPENDIX

Proof of Proposition 4.2. We will construct @, in two steps, as a composition &y = =0T
Let us first construct the diffeomorphism T, which is done by changing coordinates on X, ).

Let 7 = y/22 + |2|2 be the Euclidean radial coordinate in H? = R xH2, then the hyperbolic

metric takes the form in the Euclidean radial coordinates (r,w) with w € S?
B dr? + r’gg
JHe = r2w?

where rw, = z and w, = wz(w) is the vertical coordinate on the sphere. We denote by
w1 = Re(z(w)) and we = Im(2(w)) the coordinates of w in the horizontal direction z. Consider



46 COLIN GUILLARMOU, SERGIU MOROIANU, AND FREDERIC ROCHON
the stereographic projection S? — R? from the point (z,2) = (0,—1) € S ¢ R3, providing
coordinates 1, € R? so that

4(da® + di?)
(1+a2+02)%

Wy w2

(,c.)l—i-l7

U = , U= and the metric gs2 =

+
—_

w1
In the coordinates (r,4,9) € RT x RT x R, the hyperbolic metric takes the form

A+ a4 0%)%dr? | da? + do?
e = 43272 a2

Notice that © + i@ define coordinates on the hyperbolic plane H? (viewed as the upper half-
space in C), and the stereographic projection is an isometry from the half-sphere H(0,1)
equipped with the metric induced from H? to this hyperbolic plane. The action z — gz =
e!d+%) 2 in C corresponds in H® to a dilation by e’ centered at (x,z) = (0,0) followed by a
hyperbolic rotation Rys(vf,z) of angle v¢ around the z axis in H? = R} x C,. The latter
is an elliptic isometry for ggs and so, its restriction to H(0,1) becomes an elliptic isometry
of the hyperbolic half-plane H? with coordinate z = ¢ + i@, fixing the point z = i, and
considering the derivative at this point shows that Rpys(v¢, )| (1), viewed in the variable
z = 9 + it € H? via the stereographic projection, acts as the hyperbolic rotation of angle v/
and center z = i € H2. We denote by

vl g v
Ry, — < s Sl ) € PSLy(R)

—sin g cos 5
this hyperbolic rotation.
In the quotient (4.6), the fundamental domain is e3¢ < r < e2' s0 to have coordinates

with uniform behavior with respect to the deformation parameters £, we introduce the rescaled

coordinates

log r
"= (i "=t = :
u U, v v, w 57

We denote by Tp, : (z,2) — (w,v' 4 ') the diffeomorphism corresponding to the change of

coordinates. In these coordinates, the hyperbolic metric on e3¢ <r< e3" takes the form:

dulQ + dv’2 4 (EQ +’U,I2 +v’2)2dw2
2 )

(Yr)sgms = o

where w € [—%, %] Moreover the transformation 77, becomes in these coordinates

(w,v" + i) = (w4 5, LR_, (01 (V) + iu))).

The intersection of the half-sphere dB(e(L), p(L)) of (4.6) with the half-sphere H (0, e2*")
(with |w| < 1/4) is the half-circle obtained by intersecting the plane
e(L)2 + edw _ p(L)2
2e(L)

Re(z) = k(w, £,0) =

with H(0,e%). Under the stereographic projection H(0,e?") — {(z,2);Re(z) = 0} = R?

from the point (z,z) = (0, —e?), a small computation shows that it is thus sent to the half
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circle centered at 0 of radius

e%w\/eyw - rw,UL),9) _ ralw) +0s(1), ma(w) = <)\2 — 4w2>

D=

e2tw — g (w, ¢, 6) 1 262

where we have used (4.7) in the last equality. Consequently, the intersection of the half-
ball B(e(L), p(L)) of (4.6) with the half-sphere H(0,e?) (with |w| < 1/4) becomes, in the
coordinates ¢/ = v/ + iu’ € H?, a half-disc of the form

(0 (w, £,6))e2
et + k(w, ¢, 0)

Im(¢') >0, [{|< E\/ = ry(w) + 05(¢). (9.1)

and thus, taking ¢ small enough (independent of ¢) so that A/d —4 > 1 this set is asymptotic
to the half-disk

{¢" € G;Im({") > 0,[¢"] < ra(w)}- (9.2)
We have thus showed the following

Lemma 9.1. There is an isometry Y, between (yr)\H® and

du’? + dv' + (02 + 02 + v'2)2dw?
X, = b\ (R % B - FY e
where 4 is the map
_ , 1 cos(vl/2)¢" + Esin(vl/2)
Yo (w0, C) = (w t o —0—1sin(vl/2)¢" + cos(vl/2) )
Moreover, if § > 0 is small enough, the model neighborhood (4.6) is mapped via Yy, to
Toa ({(,C) € [=4,3) x B¢ < ryw)}) (9.4)

where T, 1 R X H? — X, 18 the covering map, and rq(w) is the radius of the half-circle given
by equation (9.1) and converging to rx(w) > 0 with ry(w) = O(5) uniformly in |w| < 1/4.

Notice that £ — 0, then 7, converges to some transformation 7, : (w, (') = (v + 3, P,(¢'))

with P, € PSLy(R) the parabolic transformation ¢’ %ﬂz’ and X, converges to

du? + dv'"? + (u? + v/2)2dw2>

Xy, = )\ <Rw x Hg/:””ﬂ“/’ 90 = u’?

Conjugating by an inversion ¢’ + —1/¢’ on H?, P, becomes the transformation ¢’ + ¢/ —v/2
and the transformation +, viewed in the coordinates (w, y+iz) defined by y+ix = —1/(v+iu)
is the parabolic isometry of H?® = R,, x Hzﬂ-x fixing co and given by T, : (w,y + ix) —
(w+ 3,y — % +iz). Then X, is isometric to (7,,)\H?, which is the model of a hyperbolic
cusp of rank 1. Clearly, the model of Lemma 9.1 extends smoothly to the parabolic boundary

{£ =0} of Q.
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We also need to control the change of coordinates from the neighborhood U3 of (4.5) to
this new model when ¢ — 0, that is we want to know Yy 0o ©p. A direct computation gives

22N202 + |22 + |2 — 2 M)
(@2 + |z — N?)? ’

r2(0r(z,2)) =

2V ~ —2? — [z]2 4+ Re(2)M
wz(Or(z,2)) = L2 wi1(Or(x,2)) = . (@.2) (9.5)
~ Im(z)A\
2O =5 )
with 77, (z, 2) = /(22 + Im(2)2)A202 + (22 + | 2|2 — Re(2) )2, thus
W(O1(2,2)) = o ey (1 2) + 0 4l = Re(2)A0)
Im(2) (9-6)

V'(Or(z,2)) = (nn(z, 2) + 22 + |2]* — Re(2)\0).

A(z? + Im(2)?)

Notice that T 0 O extends smoothly in a neighborhood of the cusp region of X of the form

VO .= {(L,x,2) € Q x 1, (B(0,0)); (w,2) € Fy, \ {0}}.

Indeed one has w(Or(z,2)) = W, and by (9.5) we can write it under the form
w(Or(z,2)) = w for some F(L,x, z) smooth in V° and thus w extends smoothly

in V°. Tt is also easily checked that (u’,v’) extend smoothly to V by (9.6). We inverse also
admits a smooth extension to {¢ =0, (v/,v") # (0,0)}, by a similar computation.
To finish the proof of the Proposition, we shall construct a diffeomorphism =y, corresponding

2
C'=v'+iu!

to a new change of coordinates. In the H? = R,, x H hyperbolic space, we define the

function
p(w, (") = dy2(C'5il)
which is invariant by the transformation 7,. One has in particular

u? + 0"+ 12

cosh(p) = W,

Let us make the following change of coordinates on [—1/4,1/4] x H2, which defines =,
Ep: (w,¢') = (w, ¢ = ER g (07C1))

where Ry € PSLy(R) is the hyperbolic rotation of angle § and center i. The transformation
4 becomes in the (w, () coordinates (ie. after conjugation with =) the transformation

Epovg0 (E0) 7 (w,Q) = (w+3,0):
We see that =, extends smoothly to {¢ = 0;|¢’| < §} if 0 is small enough, with value

¢

= N —
‘—‘(O,I/,A) (U)?C ) V'LUC/ + 1
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and the same holds for its inverse. Thus we deduce that ®;, := =0T, is such that (L, x, z) —
P 0 O extends smoothly to V if § > 0 is chosen small enough. We write ¢ = v + ju € H?,
then the function cosh(u) is clearly invariant by rotation, so
u/2+vl2+£2 _ ’U,2—|-U2—|—£2

u! N U

(9.7)

and we compute

;L U dc = d¢ + dw(v(? + vi?) (9.8)
| = =L sin(vfw)C + cos(vhw)|?’ ~ (—£~Lsin(vbw)¢ + cos(viw))? '
Therefore the metric g;, becomes in the new coordinates.

du® + dv? + (1 + v?)R* — 4020%u?)dw?

u

gr = (Ep o TpL)gms =

2
u
n 2v(R? — 2u?)dwdv + 4vuvdudw
w2
where R := vu? + v2 + (2. Here, we notice that the change of coordinates v’ + iv/ — v + iu

for a fixed w is a hyperbolic rotation of angle —2vfw and center i¢ in H2. In particular it
maps the half-circle (9.1) (which is a geodesic of H?) to the half-circle in H? which intersects
the real axis at the two points

vs(q) = +7q(w) cos(vlw) + Lsin(vlw)  Frg(w)

— Frg(w)sin(vlw) + cos(vlw) 1 F vwrg(w) +0(0).

This shows that the region (9.4) in the coordinates (w, () becomes the set

{(w,Q) €[4, 1) x B [¢ = vg(w)] < 74(w)}/{w ~ w + 3}

for vg(w) = £ (v4(g) + v—(q)) and 74(w) = 3(v4(q) — v_(q)) which clearly converge as £ — 0,
and satisfy the desired properties (recall that r, = ry(w) 4+ o(1) as £ — 0 with the notation
of (9.2)).
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