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Abstract

Let X be an integral plane quartic curve over a field k, let f be an
equation for X. We first consider representations (∗) cf = p1p2 − p20
(where c ∈ k∗ and the pi are quadratic forms), up to a natural no-
tion of equivalence. Using the general theory of determinantal varieties
we show that equivalence classes of such representations correspond to
nontrivial globally generated torsion-free rank one sheaves on X with a
self-duality which are not exceptional, and that the exceptional sheaves
are in bijection with the k-rational singular points of X. For k = C,
the number of representations (∗) (up to equivalence) depends only on
the singularities of X, and is determined explicitly in each case. In the
second part we focus on the case where k = R and f is nonnegative.
By a famous theorem of Hilbert, such f is a sum of three squares of
quadratic forms. We use the Brauer group and Galois cohomology to
relate identities (∗∗) f = p20 + p21 + p22 to (∗), and we determine the
number of equivalence classes of representations (∗∗) for each f . Both
in the complex and in the real definite case, our results are considerably
more precise since they give the number of representations with any
prescribed base locus.
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Introduction

In 1888, David Hilbert published an influential paper [H] which became fun-

damental for real algebraic geometry, and which remains an inspiring source

for research even today (see, for example, [CL], [Re2], and [Pf]). It addresses

the problem whether a real polynomial f(x1, . . . , xn) which takes nonnegative

values on all of Rn is necessarily a sum of squares of real polynomials. Hilbert

proves that the answer is negative in general. As is well known, his results

go much beyond this fact and contain a surprising positive aspect as well.

Namely, for any pair (n, d) of integers with n ≥ 2 and even d ≥ 4, except

for (n, d) = (2, 4), he shows that there exists a nonnegative real polynomial

of (total) degree d in n variables which is not a sum of squares of polyno-

mials. In the exceptional case, however, he proves that every nonnegative

real polynomial of degree four in two (inhomogeneous) variables is a sum of

three squares of real polynomials. Modern expositions of Hilbert’s arguments

are available, e. g. [Re1] and [Re2] for the general negative result and [Ru]

and [Sw] for the positive result in the exceptional case. An elementary and

constructive approach to the latter result was recently started by Pfister [Pf].

The subject of this paper is a refined analysis of this exceptional case. Let

us switch to homogeneous polynomials (as did Hilbert), so we have a real

ternary form f = f(x0, x1, x2) of degree four which is positive semidefinite

(psd), i. e., takes nonnegative values. By Hilbert’s theorem, there exists an

identity

(1) f = p20 + p21 + p22

in which the pi are quadratic forms with real coefficients. Regarding two such

representations as equivalent if one is deduced from the other by an orthogonal

transformation in the pi, we ask for the number of equivalence classes of such

representations. This question was first raised in [PR]. A simple dimension

count shows that this number is finite for generically chosen f . In [PRSS],

to which this paper forms a sequel, it was proved that there exist precisely

eight inequivalent representations (1) if the curve f = 0 is nonsingular. Here
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we treat the general singular case: Assuming that f is irreducible over C,

we prove that the number of inequivalent representations (1) is finite and

depends only on the singularities of the curve f = 0. Moreover, we calculate

this number in each case. In fact, our analysis results in a refined count which

also respects the base loci of representations (1), i. e., the common zeros of

p0, p1 and p2.

A key idea for carrying this out is to regard (1) as a twisted form of a

symmetric 2 × 2-determinant, and thus to relate the question to the subject

of determinantal representations. This is a very classical and well-studied

chapter of algebraic geometry. Thus, in the first part of this paper, we study

representations

(2) f =

∣∣∣∣ p1 p0
p0 p2

∣∣∣∣ = p1p2 − p20

of irreducible ternary forms f over C of even degree 2d, in which the pi have

degree d, again up to a natural notion of equivalence. Under the assumption

that the curve X = {f = 0} has ADE singularities, we associate with a given

identity (2) a line bundle L on some partial normalization X ′ of X, such that

L satisfies a certain self-duality, and we show that L determines (2) up to

equivalence (Theorems 1.15 and 2.17). Conversely, the line bundles L arising

from some representation (2) can be characterized by an abstract condition.

If deg(f) ≥ 6, then in general no representation (2) exists. On the other

hand, the case of quartics (deg(f) = 4) is more favorable. First, the ADE

hypothesis holds automatically. Second, a very satisfactory characterization

of the line bundles L is possible which arise from an identity (2). It only

involves the list of singularities of X (see Corollary 3.9 and 3.11). In this

way we achieve a complete count of determinantal representations (2) in the

case of quartics (4.4). In fact, for each fixed base locus, we obtain the precise

number of corresponding representations.

The idea of associating a line bundle L to an identity (2) was inspired by

Wall [W], and was already used in [PRSS] in the smooth case. The main result

of [W] says that for any form f of degree four (over C), possibly reducible,

there exists at least one representation (2) (over C), except when f is the

product of a cuspidal cubic and its cuspidal tangent. In this case there is

no representation (2). Thus, our results give a quantitative refinement of

Wall’s theorem in the irreducible case. For example, when the curve X is

nonsingular, there are precisely 63 inequivalent representations (2) over C.

This result was already known to Hesse in 1855 ([He] p. 261, see also [Co]

p. 36). For singular X, our results are new.



4 CLAUS SCHEIDERER

As an aside, we remark that the negative part of Wall’s result corrects a

statement erroneously made by Hilbert ([H], middle of second page). Hilbert

had claimed that every ternary quartic form over C is a sum of three squares

of quadratic forms.

Our findings show that a key argument in the proof of [W] fails in certain

cases. This argument concerns the number of base-point free representations.

Our approach covers these cases (even with precise quantitative information),

thereby confirming the correctness of the main result of [W]; see 4.5 for more

details.

In the second part of this paper, we turn to non-closed base fields k (with

char(k) = 0, and with k = R primarily on our mind). We try to analyze

twisted versions of representations (2) over k. That is, given a form f ∈
k[x0, x1, x2] of degree 2d, we are looking for identities

(3) f = q(p0, p1, p2)

in which q is a nondegenerate quadratic form over k in three variables, and

the pi ∈ k[x0, x1, x2] are forms of degree d. Over the algebraic closure k̄,

(3) is equivalent to a determinantal representation (2). Therefore, Galois

cohomology comes as the main tool to complement the methods of the first

part. Assuming that the curve X = {f = 0} is geometrically integral and has

simple singularities, the data associated over k̄ to the representation (3) is

Galois-invariant. Thus we have a partial normalization X ′ of X (defined over

k) and a Galois-invariant line bundle L onX ′⊗kk̄. This bundle L has a natural

invariant ∂(L) in Br(k), the Brauer group of k, and we show (Proposition 5.16)

that this invariant coincides with the so-called Witt invariant of the quadratic

form q. Hence X ′ and L determine q up to a factor in k∗.

Assume now that 2d = deg(f) = 4. When k = R, the field of real numbers,

and when f is positive semidefinite, this suffices to express the number of

quadratic representations (3) of f (over R) in terms of nothing more than

the list of singularities of X (see Scholium 7.2 and 7.3). In fact we get a

much more precise statement, since for every fixed base locus we find both

the number of definite (sum of squares) and indefinite representations with

the given base locus.

In principle, the same can be done when f is indefinite. Of course, there

are no definite representations. However, the precise account (of the indefinite

representations) depends in this case not only on the singularities of X, but

(in general) also on the number of loops, both of X and of its partial normal-

izations. This makes the analysis considerably more complicated. To keep

this paper at a reasonable size, and since our primary focus is on Hilbert’s
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theorem anyway, we did not attempt to cover the indefinite case here in de-

tail. Likewise, we largely ignored the case where f is reducible. In 9.2 we

provide elementary proofs for Hilbert’s three squares theorem for reducible

psd quartics. But in fact a detailed analysis seems possible, similar to the one

given here in the irreducible case. We plan to come back to these points in a

future publication.

Although the main results of this paper ultimately concern quartic forms

over R or C, there would have been little point in narrowing down so much

from the beginning. Thus, a large part of the paper is devoted to a system-

atic setup for the study of representations (3) over an arbitrary ground field

k, where f may be a ternary form of arbitrary even degree. This greater gen-

erality does not cause essential additional complications. On the other hand,

it has the benefit of making more transparent what is special about the case

considered by Hilbert.

Organization of the paper

Here is a brief and more structured overview. The paper is divided into

two parts, the first of which deals with (symmetric 2× 2) determinantal rep-

resentations (2). Here we work over arbitrary base fields (sometimes of zero

characteristic), and in the first two sections with plane curves X of arbitrary

even degree. Section 1 relates identities (2) to certain torsion-free rank one

sheaves F which are not “exceptional”. Its content is summarized in Theorem

1.15. The sheaves F that have come up in Section 1 are related in Section 2 to

partial normalizationsX ′ ofX, and it is shown that they correspond to certain

line bundles on these X ′ when X has simple singularities (see Theorem 2.17).

It is also shown how the base locus of the associated determinantal represen-

tations is determined by X ′ (see Corollary 2.22). In Section 3 we restrict to

quartic curves. We prove that the “exceptional” sheaves F are in one-to-one

correspondence with the k-rational singular points of X (see Corollary 3.9),

and determine the associated partial normalization in terms of the singularity

(see 3.11). Section 4 summarizes the results of Part I for quartics, giving (in

principle) the complete account of their determinantal representations (2) (see

4.2). For k = k̄ algebraically closed, the results are completely explicit (see

4.4).

The second part studies representations of plane curves by arbitrary

(ternary) quadratic forms q over k, that is, by twisted versions (3) of (2). Af-

ter setting up the proper notion of equivalence, Section 5 relates identities (3)

to those determinantal representations (2) over k̄ which are Galois-invariant
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up to equivalence. The latter have a natural Galois cohomological invariant

in Br(k), the Brauer group of the ground field (see 5.14 and 5.15), and we

show that this invariant allows to recover the representing quadratic form q

(as in (3)) up to a scalar factor (Proposition 5.16). Section 6 provides re-

quired information on generalized Jacobians of curves over R. With its help,

we combine in Section 7 the Galois cohomological approach from Section 5

with the results of Part I over C. We obtain the full analysis of quadratic

representations (3) of psd ternary quadric forms over R (see Scholium 7.2 and

7.3). Section 8 contains a few selected examples for which the necessary ar-

guments are carried out in detail; some of them illustrate earlier points in the

paper. Finally, Section 9 gives an elementary proof of Hilbert’s three squares

theorem in the reducible case, thus completing the picture.

Notation and preliminaries

0.1. In the entire paper, k is a field of characteristic not two, and k̄ denotes

an algebraic closure of k. By a k-variety we mean a separated k-scheme of

finite type, neither necessarily irreducible nor reduced. If X is a k-variety and

E is a k-algebra, then X(E) denotes the set of E-valued points of X.

Given a homogeneous ideal I in k[x0, . . . , xn], we write V+(I) for the closed

subscheme of Pn
k defined by I. The notation V+(f1, . . . , fr) (for homogeneous

polynomials fi) has a similar meaning. For convenience of notation, we use

the abbreviation

Pn(k) := H0(P2
k, O(n))

throughout this paper for the vector space of ternary forms of degree n over k.

0.2 (Cf. [Be], 1.5). If M is a finitely generated graded module over S =

k[x0, . . . , xn], then M has a finite graded-free resolution

0 → Fn+1 → · · · → F0 → M → 0.

This resolution is minimal iff im(Fi+1 → Fi) ⊂ mFi for all i, where m =

(x0, . . . , xn) is the irrelevant ideal. The minimal graded-free resolution for M

is unique up to isomorphism. If F is a coherent OPn -module, we can take the

sheaf sequence associated to the minimal resolution of the graded S-module

Γ∗(F) =
⊕

i H
0(Pn, F(i)). This is a twisted-free resolution

0 → Ln+1 → · · · → L0 → F → 0
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which will be called the minimal resolution of F. Its components Li are direct

sums of sheaves OPn(dij), with suitable dij ∈ Z.

0.3. Given an abelian group A and an integer n ≥ 1, we write An (re-

spectively A/n) for the kernel (respectively cokernel) of multiplication by n

on A.

Part I: Determinantal representations

In Part I we are exclusively concerned with representations of plane curves

by symmetric 2 × 2-determinants. In order to simplify language, we will

nevertheless simply speak of (symmetric) determinantal representations.

1. Symmetric determinantal representations and self-dual sheaves

The results of this section are essentially a very particular case of the

theory of determinantal hypersurfaces, which is a classical topic of algebraic

geometry. Its modern formulation is due to Catanese ([Ca1], [Ca2], and [CC])

and Beauville [Be]. We refer to [Be] for an excellent exposition, on which we

shall rely heavily in the sequel.

Let k be a field (always with char(k) �= 2). We consider homogeneous

polynomials (“forms”) in three variables (x0, x1, x2) over k. Recall (see 0.1)

that Pn(k) denotes the space of such forms of degree n.

1.1. Given a nonzero form f ∈ P2d(k) of even degree 2d > 0, we consider

the problem of finding identities

(4) cf = det(P ) = p1p2 − p20

(often simply referred to as “determinantal representations” in the sequel),

where c ∈ k∗ and

P =

(
p1 p0
p0 p2

)
is a symmetric 2× 2-matrix with p0, p1, p2 ∈ Pd(k). With (4) one associates

the sheaf FP on P2 = P2
k defined by the exact sequence

(5) 0 → OP2(−d)2
P−→ O2

P2 → FP → 0.

Then we have the following proposition.
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Proposition 1.2. Let d ≥ 1, and assume that f ∈ P2d(k) is square-free,

i. e., that the curve X = V+(f) is reduced.

(a) Given an identity (4), let F := FP as in (5). Then F has support X

and is a torsion-free coherent OX -module of rank one. Moreover, F is

generated by its global sections and satisfies the following self-duality:

(6) F ∼= HomOX
(F, OX(d)).

In addition, F is not isomorphic to OX(d2 ) (in the case where d is

even).

(b) Conversely, let F be a torsion-free coherent OX-module of rank one

which is generated by its global sections, satisfies (6) and is not iso-

morphic to OX(d2 ) (in the case where d is even). Then there exists an

exact sequence (5) with F ∼= FP and det(P ) = cf for some c ∈ k∗.

1.3. We explain some terminology. Let A be a noetherian ring, and let K

be its total ring of fractions. An A-module M is torsion-free if M → M ⊗AK

is injective. We say that M has rank r if M ⊗A K is a free K-module of

rank r.

If X is a reduced noetherian scheme, a quasi-coherent OX -module F is

called torsion-free if the OX,x-module Fx is torsion-free for every x ∈ X.

Equivalently, the OX(U)-module F(U) is torsion-free for every open affine

U ⊂ X. Similarly, F is said to have rank r if the stalk of F in the generic

point of every irreducible component of X has dimension r (over the function

field of that component).

A substantial part of Proposition 1.2 follows from previous work by

Catanese, Casnati-Catanese and Beauville; see, in particular, [Ca1], Theorem

2.16, [CC], Theorem 0.3 and [Be], Theorem B. We shall give detailed argu-

ments for those parts of the proof that are specific to the present situation,

and shall otherwise give references to [Be].

We start with the following lemma (see also [Be], 1.7).

Lemma 1.4. Let A be an integrally closed noetherian domain. Let M be a

free A-module of finite rank r ≥ 1, and let p ∈ EndA(M) such that det(p) �= 0.

Write f := det(p) and N := coker(p).

(a) N is annihilated by f , and is a torsion-free A/(f)-module.

(b) If the ring A/(f) is reduced, the A/(f)-module N has rank one.

(c) Conversely, if N is annihilated by
√
(f) and is an A/

√
(f)-module of

rank one, then
√
(f) = (f), i. e., the ring A/(f) is reduced.

Proof. The proof of (a) is a straightforward exercise. For (b) and (c) one

uses arguments similar to those in [Be], 1.7. �
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1.5. We start the proof of Proposition 1.2 by showing (a). So assume

cf = det(P ), and put F = FP . It is clear that F is generated by H0 and that

(5) is the minimal resolution of F (cf. 0.2). Moreover, F has support X, and

F is a torsion-free OX -module of rank one by Lemma 1.4. Self-duality (6)

follows from Grothendieck duality (compare [CC] or [Be]).

1.6. For the proof of Proposition 1.2(b), let F be a torsion-free OX -module

of rank one which satisfies self-duality (6). Proceeding as in [CC], proof of

Theorem 0.3, or as in [Be], proof of Theorem B, one sees that the minimal

resolution of F has the shape

(7) 0 →
r⊕

i=1

OP2(−di − d)
P−→

r⊕
i=1

OP2(di) → F → 0

with suitable integers di, in which the matrix P is symmetric. By Lemma

1.4(c), det(P ) = 0 is a reduced equation for X. So det(P ) = cf with some c ∈
k∗. Comparing degrees we see that 2d = deg(f) = deg(detP ) = rd+2

∑
i di,

i. e., 2
∑

i di = (2− r)d.

To complete the proof we will use the hypothesis that F is generated by

global sections. It implies di ≥ 0 for i = 1, . . . , r; see Lemma 1.7 below. This

implies r ≤ 2. The case r = 1 is impossible, since then d = 2d1, and F would

be the cokernel of OP2(−3d1)
f−→ OP2(d1) which is OX(d1) = OX(d2 ), the

sheaf that was excluded. Therefore r = 2, and this implies d1 = d2 = 0. So

we have an exact sequence (5). �
To complete the proof of Proposition 1.2, it remains to settle the following

lemma:

Lemma 1.7. Let

0 →
r⊕

i=1

OP2(−di − d)
M−→

r⊕
i=1

OP2(di) → F → 0

be an exact sheaf sequence on Pn, n ≥ 2, where all non-zero entries of the ma-

trix M have strictly positive degree, and where det(M) is a form of degree 2d.

Then F is generated by global sections if and only if di ≥ 0 for i = 1, . . . , r.

Proof. The “if” being obvious, assume that F is generated by global sec-

tions. The entries of the matrixM = (mij)i,j=1,...,r are forms with deg(mij) =

di + dj + d, and mij = 0 whenever di + dj + d ≤ 0. From deg(detM) = 2d we

see

(8) 2
r∑

i=1

di = (2− r)d.

We arrange the summands such that

(9) d1 ≥ d2 ≥ · · · ≥ dr.
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Then for i = 1, . . . , r we have

(10) di + dr+1−i ≥ 1− d.

Indeed, otherwise all entries of M below and to the right of position

(i, r+ 1− i) (including this position) would be zero, by assumption (9). The

last i columns of M would therefore be linearly dependent (over k(x)), con-

tradicting det(M) �= 0.

We will lead the assumption dr < 0 to a contradiction. Let 1 ≤ p < r

be the largest index with dp ≥ 0. By assumption, F is generated by global

sections. This means that the (r − p)× p matrix,

M ′ :=

⎛⎜⎝ mp+1,1 · · · mp+1,p

...
...

mr,1 · · · mr,p

⎞⎟⎠ ,

has rank r − p everywhere on Pn. We conclude r − p ≤ p, hence p ≥ r
2 .

First assume p ≥ r
2 + 1, and hence r ≥ 3 since p < r. From (10) we get

r∑
i=1

di =

r−p∑
i=1

(di + dr+1−i) +

p∑
i=r−p+1

di ≥ (r − p)(1− d).

The assumption p ≥ r
2 + 1 means 2(r − p) ≤ r − 2. From (8) we there-

fore conclude (2 − r)d = 2
∑

i di ≥ (r − 2)(1 − d), which means r ≤ 2; a

contradiction.

The only remaining possibility is p = r
2 (for r even), respectively p = r+1

2

(for r odd). Here, M ′ is a p × p matrix, respectively a (p − 1) × p matrix,

whose entries are forms of strictly positive degree and which has maximal rank

everywhere on Pn. This is impossible, e.g. by the Eagon-Northcott theorem

[EN] in the second case. The lemma is proved. �
In the situation of Proposition 1.2 it remains to clarify to what extent P

(respectively, the determinantal representation (4)) is determined by F. To

do so we need a few notational preparations.

1.8. On the k-vector space Sym2(k) of symmetric 2 × 2-matrices, the de-

terminant s 	→ det(s) is a nondegenerate quadratic form. We shall denote the

associated symmetric bilinear form by δ, so

δ(s, t) :=
1

2

(
det(s+ t)− det(s)− det(t)

)
for s, t ∈ Sym2(k). The orthogonal group of δ will be denoted Oδ, and the

action of σ ∈ Oδ(k̄) on s ∈ Sym2(k̄) will be written σs.

Let the general linear group GL2 act on Sym2 by

(h, s) 	→ 1

det(h)
· hsht
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(h ∈ GL2(k̄), s ∈ Sym2(k̄)). This action preserves det(s), hence it defines a

homomorphism GL2 → Oδ of algebraic groups over k, and in fact an isomor-

phism from PGL2 = PSL2 to the special orthogonal group SOδ. Since the

natural map GL2(k) → PGL2(k) = PSL2(k) is surjective, this gives a way of

representing the elements of Oδ(k): Every σ ∈ Oδ(k) acts as

σs =
ε

det(h)
· hsht (s ∈ Sym2(k))

with h ∈ GL2(k) and ε = ±1; here ε = det(σ) is determined by σ, and h is

determined up to a factor in k∗. (To avoid possible confusion, note that the

map SL2(k) → PSL2(k) is not necessarily surjective when k �= k̄.)

1.9. We fix an integer d ≥ 1 and write Sym2 Pd(k) := Sym2(k) ⊗k Pd(k)

for the vector space of symmetric 2 × 2-matrices with entries in Pd(k). The

action of Oδ on Sym2 extends to a determinant-preserving action on Sym2 Pd

in the obvious way, written again (σ, P ) 	→ σP .

Given P ∈ Sym2 Pd(k) with det(P ) �= 0, we have associated with P the

sheaf FP on P2 defined by (5). For any a ∈ k∗ and any σ ∈ Oδ(k), if we put

P ′ := a · σP , then it is clear that FP ′ ∼= FP . (Indeed, there are b ∈ k∗ and

h ∈ GL2(k) with P ′ = b ·hPht, from which one gets an isomorphism between

the defining resolutions of P ′ and P .) In other words, P 	→ FP is invariant

under the action of similitudes of δ on P . Except when f is degenerate, we

have the following converse:

Proposition 1.10. Let f ∈ P2d(k) such that f is not a product of two

forms of degree d over k̄. Let P , P ′ ∈ Sym2 Pd(k) and c, c′ ∈ k∗ with

det(P ) = cf, det(P ′) = c′f,

and assume FP
∼= FP ′ (as OP2-modules). Then there are a ∈ k∗ and z ∈

PSL2(k) with c′ = ca2 and P ′ = a · zPzt. Moreover, a and z are uniquely

determined.

For the proof, see 1.14 below.

Corollary 1.11. If det(P ) = det(P ′) = f in the preceding proposition,

then P and P ′ are conjugate by a unique element of Oδ(k). �

1.12. Let P =

(
p1 p0
p0 p2

)
∈ Sym2 Pd(k). If the forms p0, p1, p2 are k-

linearly dependent, then det(P ) is a product of two forms of degree d over

k̄. Therefore, if we exclude this case and write P =
∑

|α|=d Pα xα with Pα ∈
Sym2(k), the k-linear span of the matrices Pα is Sym2(k). Note that the

stabilizer of P in Oδ(k̄) is trivial, i. e., only the identity in Oδ(k̄) fixes P .

The proof of the following lemma can be checked immediately:

Lemma 1.13. Let h ∈ GL2(k) such that the matrix sh is symmetric for

every s ∈ Sym2(k). Then h = bI with b ∈ k∗. �



12 CLAUS SCHEIDERER

1.14. Proof of Proposition 1.10. Since the minimal resolution is unique up

to isomorphism, it follows from FP
∼= FP ′ that there are g, g′ ∈ GL2(k) with

gP = P ′g′. Transposing this identity and multiplying with g′ on the right

gives Pgtg′ = g′tP ′g′ = g′tgP , whence Ph = htP with h = gtg′. In other

words, the matrix Ph is symmetric. Writing P =
∑

|α|=d Pα xα, the matrices

Pα span Sym2(k) by the assumption on f (see 1.12), and so the matrix sh

is symmetric for every s ∈ Sym2(k). By Lemma 1.13, h = bI with b ∈ k∗.

Hence also g′gt = bI, and gPgt = P ′g′gt = bP ′, which says P ′ = b−1 · gPgt.

Comparing determinants we see c′ = a2c with a = b−1 det(g). Hence

P ′ = a · 1

det(g)
gPgt = a · zPzt,

where z ∈ PSL2(k) is represented by the matrix (det g)−1/2 g ∈ SL2(k̄).

This proves the existence of a and z. As for the uniqueness, it was already

remarked in 1.12 that σ ∈ Oδ(k) with P ′ = a · σP is determined once a is

fixed. Replacing a by −a in Proposition 1.10 would force σ to be replaced by

−σ, which is not in SOδ(k) = PSL2(k). �
We summarize the content of Propositions 1.2 and 1.10:

Theorem 1.15. Let d ≥ 1, let f ∈ P2d(k) be square-free, not a product of

two forms of degree d over k̄, and let X = V+(f). Then the construction of

1.1 provides a natural bijection between the following objects:

(1) Equivalence classes of matrices P ∈ Sym2 Pd(k) with det(P ) = cf for

some c ∈ k∗;

(2) isomorphism classes of torsion-free coherent OX -modules F of rank

one satisfying F ∼= HomOX
(F,OX(d)), which are generated by their

global sections and are not isomorphic to OX

(
d
2

)
(in case d even).

Here P and P ′ are called equivalent in (1) if there are a ∈ k∗ and g ∈ GL2(k)

with P ′ = a · gPgt. �

2. Self-dual sheaves and partial normalizations

The aim of this section is to make explicit how, under suitable hypotheses

on the singularities of the curve X, self-dual sheaves of rank one on X corre-

spond to self-dual line bundles on partial normalizations of X. I profited here

from Piontkowski’s work [Pi]. He is studying theta characteristics on singular

curves (over C), a concept which (by the results of Section 1) is related to,

but different from, our topic (see also the remark 2.19 below). At the end of

the section we relate the base loci of determinantal representations of X to

the associated partial normalizations of X.
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2.1. We start with some preparations of general nature. Let X be a lo-

cally noetherian scheme and B a coherent OX -algebra. Let π : X ′ → X be

the associated finite morphism (so X ′ = Spec(B) in the notation of [EGA],

II.1.3.1). The direct image functor π∗ induces an equivalence of categories

π∗ : Qcoh(X ′) → Qcoh(B),

and we will write πo for a quasi-inverse functor. (See also [EGA], II.1.4.3,

where the quasi-inverse functor is denoted M 	→ M̃ .)

IfM is a coherent B-module andN is a coherent OX -module, thenM⊗OX
N,

HomOX
(M,N) and HomOX

(N,M) are coherent B-modules via the action of

B on M. Following [Ha], ex. III.6.10, we will write

π!N := πo HomOX
(B,N).

Here are some basic properties:

Lemma 2.2. Let M be a coherent B-module, and let N, N′ be coherent

OX -modules:

(a) πo HomOX
(M,N) ∼= HomOX′ (π

oM, π!N).

(b) If the OX -module N is locally free, then π!(N′ ⊗OX
N) ∼= (π!N′)⊗OX′

(π∗N). In particular, then,

π!N ∼= (π!OX)⊗OX′ (π
∗N).

Proof. To prove (a), apply πo to the isomorphism

HomOX
(M,N) ∼= HomB(M, HomOX

(B,N))

of B-modules. For (b) observe that the canonical homomorphism

HomOX
(B,N′)⊗OX

N → HomOX
(B, N′ ⊗OX

N)

of OX -modules is B-linear, and is an isomorphism if the OX -module N is

locally free. Applying πo to it gives the desired isomorphism. �
2.3. Let k be a field and X an algebraic curve over k. To make the expo-

sition less technical, we will always assume now that X is integral, although

everything in this section can be generalized to the case where X is just

reduced. By a partial normalization of X we mean any integral curve X ′

over k together with a finite birational morphism π : X ′ → X. This implies

that π∗OX′ is a coherent OX -subalgebra of k(X), the function field of X.

Conversely, for any coherent OX -subalgebra B of k(X), the associated finite

morphism π : X ′ = Spec(B) → X is a partial normalization of X.

If h : X̃ → X is the normalization ofX then, up to isomorphism overX, the

partial normalizations of X correspond to the OX -algebras B satisfying OX ⊂
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B ⊂ h∗OX̃
, or equivalently, to the finite families (Bx)x∈Xsing

of intermediate

rings

OX,x ⊂ Bx ⊂ ÕX,x,

where ÕX,x is the integral closure of OX,x.

2.4. Let X be an integral curve over k and F a torsion-free coherent OX -

module of rank one. Then B := EndOX
(F) is a coherent OX -subalgebra of

k(X). Hence B gives rise to a partial normalization π : X ′ = Spec(B) → X of

X with π∗OX′ = EndOX
(F), which we call the partial normalization defined

by F. We will use the notation from 2.1. In particular, we get the coherent

OX′ -module

F′ := πoF

associated to F. These assumptions and notations will be fixed for the follow-

ing.

2.5. If F is generated by global sections (on X), then also F′ is generated

by global sections (on X ′). But the converse is not true in general. (This

remark is not used in the sequel.)

2.6. In view of Theorem 1.15, we now translate a self-duality condition

F ∼= HomOX
(F,L) for F, in which L is an invertible sheaf on X, into a similar

condition for F′ = πoF on X ′. Thus let L be an invertible OX -module, and

assume we have an isomorphism

(11) φ : F
∼→ HomOX

(F,L)

of OX -modules. Both are in fact B-modules, and φ is automatically B-linear,

as one sees by looking at φ in the generic point. Applying πo to (11) and

using Lemma 2.2(a), we get an isomorphism

(12) φ′ : F′ ∼→ HomOX′ (F
′, π!L)

of OX′-modules. Obviously, the existence of isomorphisms (11) and (12) is

equivalent. Note that, according to Lemma 2.2(b),

(13) π!L ∼= (π!OX)⊗OX′ (π
∗L).

2.7. The sheaf π!OX is the conductor sheaf ofX ′ overX, that is, the largest

ideal sheaf I′ of OX′ for which π∗I
′ is contained in OX . If X is projective

(which is our case of interest), π!OX is related to the dualizing sheaves ω

(respectively ω′) of X (respectively X ′) as follows. One has π!ω = ω′ ([Ha],

ex. III.7.2). If X is a Gorenstein curve, then ω is an invertible sheaf, and (13),

for L := ω, gives

(14) π!OX
∼= ω′ ⊗OX′ (π

∗ω)−1.



HILBERT’S THEOREM ON POSITIVE TERNARY QUARTICS 15

2.8. Assuming F ∼= HomOX
(F,L) as in 2.6, the OX′ -module F′ = πoF is

torsion-free of rank one, self-dual in the sense of (12), and satisfies EndOX′ (F
′)

= OX′ . Without additional hypotheses, F′ need not be an invertible sheaf on

X ′, and neither need π!L be invertible. The situation gets more accessible,

though, if we assume that X has simple singularities, as we are now going to

explain. For the rest of this section we assume char(k) = 0.

2.9. Let A be a complete noetherian local ring of dimension one, with

algebraically closed residue field k = k̄ of characteristic zero, and assume that

A is a simple (or ADE) curve singularity. Thus A is isomorphic to one of the

singularities An (n ≥ 0), Dn (n ≥ 4) or En (n = 6, 7, 8), where A0 denotes

the case where A = k[[t]] is regular. Let Ã denote the normalization of A,

i. e., the integral closure of A in its total ring of fractions. For later reference

we recall some well-known facts:

(1) A is a reduced Gorenstein ring.

(2) There are only finitely many self-dual torsion-free A-modules M of

rank one, up to isomorphism.

(3) Let M be as in (2), and put B := EndA(M). Then M is free (of rank

one) as a B-module.

(4) For M and B as in (3), the semilocal ring B is a finite direct product

of simple curve singularities. In particular, B is a Gorenstein ring.

In particular, the self-dual torsion-free A-modules of rank one are, up to A-

module isomorphism, precisely the intermediate rings A ⊂ B ⊂ Ã with B ∼=
HomA(B,A) (as A-modules). There are only finitely many such B, and for

any given A, their list is precisely known. For these facts we refer to [GK],

[Y] (ch. 9) and [Pi] (Theorem 3.1). For the singularities occuring on plane

quartics, we’ll include the explicit list in 3.10 below.

Definition 2.10. Let k be a field, char(k) = 0, and let X be an integral

curve over k. We say that X has simple singularities if the following is true:

For any closed point y of the curve X̄ := X ⊗k k̄, the completion ÔX̄,y is a

simple singularity (as in 2.9).

2.11. Let x be a closed point of X, let y1, . . . , yr be the points of X̄

lying over x. Then OX,x ⊗k k̄ is the semilocal ring of X̄ in y1, . . . , yr, and

consequently its completion satisfies(
OX,x ⊗k k̄

)̂ ∼= ÔX̄,y1
× · · · × ÔX̄,yr

.

Thus, X has simple singularities in the sense of Definition 2.10 if and only if,

for every closed point x of X, the completion of the semilocal ring OX,x ⊗k k̄

is a (finite) direct product of complete local rings of ADE type (with residue

field k̄).
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We keep assuming char(k) = 0. Our goal is to prove Proposition 2.15

below.

Lemma 2.12. Let X be an integral curve over k with simple singularities.

Let x be a closed point of X and A = OX,x, let M be a torsion-free A-module

of rank one with M ∼= HomA(M,A), and let B = EndA(M). Then

(a) B is a Gorenstein ring.

(b) M is free (of rank one) as a B-module.

In particular, B ∼= HomA(B,A) as A-modules.

Proof. Let A1 := (A⊗k k̄)̂. Then A1 is a direct product of finitely many

complete local rings of ADE type, and A → A1 is faithfully flat. Let M1 =

M⊗AA1, a torsion-free A1-module of rank one (cf. 1.3). Since A → A1 is flat,

one has HomA(N,N ′)⊗AA1
∼= HomA1

(N⊗AA1, N
′⊗AA1) for any two finitely

generated A-modules N , N ′. It follows that EndA1
(M1) = B ⊗A A1 =: B1,

and that M1 is self-dual as an A1-module. By the facts recalled in 2.9(3) and

(4), M1 is free of rank one as a B1-module, and B1 is a Gorenstein ring. Since

B → B1 is faithfully flat, it follows that B is Gorenstein as well (e. g., by [Bo],

ch.X, §3, no. 8, Corollary 1), and that M is locally free as a B-module ([EGA]

IV.2.5.2), hence free since B is semilocal. �
Lemma 2.13. Let A be a local Gorenstein ring of dimension one, and let

A ⊂ B be a finite ring extension such that B is reduced. Then the following

are equivalent:

(i) The B-module HomA(B,A) is free (of rank one);

(ii) B is a Gorenstein ring.

Proof. Since A is Gorenstein, HomA(B,A) is a canonical module for B,

e. g. by [Bo], §9, no. 3, Proposition 6. (Note that the A-module B is Cohen-

Macaulay since B is reduced.) Hence B is Gorenstein iff the B-module

HomA(B,A) is locally free, iff it is free (since B is semilocal). �
Corollary 2.14. Assume that the integral curve X over k has simple sin-

gularities. Let π : X ′ → X be a partial normalization (cf. 2.3). The following

conditions are equivalent:

(i) X ′ is a Gorenstein curve;

(ii) π!OX is an invertible sheaf on X ′;

(iii) the OX -modules HomOX
(π∗OX′ ,OX) and π∗OX′ are locally isomor-

phic.

When these conditions hold we shall simply say that X ′ → X is a Goren-

stein partial normalization of X.

Proof. (i) ⇔ (ii) follows from Lemma 2.13, (ii) ⇒ (iii) is trivial since

HomOX
(π∗OX′ ,OX) = π∗π

!OX , and (iii) ⇒ (i) follows from Lemma 2.12. �
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Proposition 2.15. (char(k) = 0) Assume that the integral curve X over k

has simple singularities. Let F be a torsion-free OX-module of rank one with

F ∼= HomOX
(F,L) for some invertible sheaf L on X, and let π : X ′ → X be

the partial normalization of X defined by F (see 2.4). Then

(a) X ′ is a Gorenstein curve (with simple singularites);

(b) π!OX , π!L and F′ = πoF are invertible OX′-modules.

Proof. Lemma 2.12 implies (a), and also that F′ is an invertible OX′ -

module. Since X ′ is Gorenstein, π!OX is invertible (see Corollary 2.14). By

(13), π!L = (π!OX)⊗ (π∗L) is invertible as well. �
2.16. Using 2.6, it follows from Proposition 2.15 that F′ satisfies F′ ⊗OX′

F′ ∼= π!L. Provided that π!L is a double in Pic(X ′), the number of non-

isomorphic torsion-free rank one OX -modules F satisfying F ∼= HomOX
(F,L)

and EndOX
(F) = π∗OX′ is therefore equal to the cardinality of the 2-torsion

subgroup Pic2(X
′) of Pic(X ′).

Assume now k = k̄, and that X is projective. If deg(L) is even, then π!L

is a double in Pic(X ′). Indeed, by (13), and since the generalized Jacobian of

X ′ is a divisible group, this amounts to saying that the invertible sheaf π!OX

on X ′ has even degree. This is indeed true since, according to (14), we have

(15) deg(π!OX) = 2 pa(X
′)− 2 pa(X).

The following corollary summarizes the discussion so far:

Theorem 2.17. Let char(k) = 0, and let X be a plane projective integral

curve of degree 2d > 0 over k, with simple singularities. Then there is a

natural bijection between the following objects (each up to isomorphism):

(1) Torsion-free coherent OX-modules F of rank one satisfying F ∼=
HomOX

(F, OX(d));

(2) pairs (X ′,F′), where π : X ′ → X is a Gorenstein partial normaliza-

tion of X and F′ ∈ Pic(X ′) satisfies F′ ⊗ F′ ∼= π!OX(d) ∼= ωX′ ⊗
π∗OX(3− d).

If k = k̄ is algebraically closed, the total number of these objects is∑
X′ |Pic2(X ′)| (sum over all X ′ as in (2)).

Proof. This is clear from the previous results. The isomorphism π!OX(d) ∼=
ωX′ ⊗ π∗OX(3− d) in (2) follows from ωX = OX(2d − 3) and (13) and (14).

Since degOX(d) = 2d2 is even, π!OX(d) is a double in Pic(X ′
k̄
) by 2.16, which

gives the additional statement for k = k̄. �
2.18. Given X as in Theorem 2.17, the Gorenstein partial normalizations

X ′ of X correspond to families OX,x ⊂ Bx ⊂ ÕX,x (x ∈ X) of intermediate

rings (see 2.3), for which Bx is self-dual as an OX,x-module (see Corollary

2.14). Knowing the singularities OX,x, these Bx can be listed explicitly, by

descending the known list (cf. 2.9 and 3.10) from (OX,x ⊗k k̄)̂ to OX,x.
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Namely, let X be an integral curve over k (where char(k) = 0), and let x

be a closed point of X. Let A = OX,x, write A0 = A⊗k k̄ and A1 = Â0. Let

Ã be the normalization of A. Then Ã1 := A1 ⊗A Ã is the normalization of

A1 (cf. [EGA], IV.7.8.3). The Galois group Gk = Gal(k̄/k) acts on A1 over

A, and hence also on Ã1 over Ã. Let R be the set of intermediate rings of

A ⊂ Ã and R1 the set of intermediate rings of A1 ⊂ Ã1. Then B 	→ B ⊗A A1

is a bijection from R onto RGk
1 (the set of Gk-invariant elements of R1), with

inverse B1 	→ Ã∩B1. This bijection is compatible with the property of being

self-dual, in the following sense: B ∈ R satisfies B ∼= HomA(B,A) (as A-

modules) if and only if B1 := B ⊗A A1 satisfies B1
∼= HomA1

(B1, A1) (as

A1-modules).

This can be seen as follows. As before, we continuously use that A → A1

is faithfully flat. Let f = {a ∈ A : aÃ ⊂ A}, the conductor of Ã over A.

Then f1 := f ⊗A A1 is the conductor of Ã1 over A1. The elements of R

correspond to the intermediate rings of A/f ⊂ Ã/f, and similarly for R1.

Now Ã/f is a finite k-algebra, and Ã1/f1 = (Ã/f) ⊗k k̄. From this the first

assertion is clear. Let B ∈ R, put M = HomA(B,A), B1 = B ⊗A A1 and

M1 = M ⊗A A1 = HomA1
(B1, A1). If B1

∼= M1 as A1-modules, then B ∼= M

as A-modules; see [EGA], IV.2.5.8. The converse is clear anyway.

2.19. This is a remark on the relation to theta characteristics. Let X be

an integral plane curve of degree 2d, as before. We are studying torsion-free

OX -modules F of rank one satisfying F ∼= HomOX
(F,OX(d)) (see Proposition

1.2 and Theorem 2.17). A theta characteristic on X is a torsion-free rank one

OX -module G with G ∼= HomOX
(G, ωX) ([Hr], p. 618, [Pi]). Assuming that X

has simple singularities, theta characteristics on X correspond to locally free

theta characteristics on Gorenstein partial normalizations of X. For k = k̄,

theta characteristics on X are in bijection with our sheaves F, but there exists

no natural bijection in general. Over a non-closed field, there need not even

be a bijection. Since, moreover, we need to identify the condition that F

is generated by H0, and this condition is not preserved by a bijection with

theta characteristics, it appears that the relation with theta characteristics is

too loose to be useful. An exception would be the case of sextics, where the

sheaves F are precisely the theta characteristics on X.

Definition 2.20. Let cf = p1p2 − p20 = det(P ) be a determinantal rep-

resentation of f ∈ P2d(k) as in 1.1, let X = V+(f). The closed subscheme

V+(p0, p1, p2) of X is called the base locus of the representation (or of P ). The

representation is base-point free if the base locus is empty.

Clearly, the base locus is contained in the singular locus of X. It may be

non-reduced. We show now that the ideal sheaf of the base locus coincides

with the conductor sheaf of the partial normalization defined by F = FP .
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Lemma 2.21. Let (R,m) be a regular local ring, dim(R) = 2, let 0 �= f ∈ m

such that A = R/fR is reduced, and let M be a finitely generated torsion-free

A-module of rank one. Then M ∼= Fitt1(M), and M = Fitt1(M) if M is an

ideal of A.

Here Fitt1(M) is the first Fitting ideal of M , i. e., the ideal generated by

the (n− 1)-minors of ϕ in a free presentation Am ϕ−→ An → M → 0.

Proof. Since M is isomorphic to an ideal of A, it suffices to prove I =

Fitt1(I) for every ideal I of A which does not entirely consist of zero-divisors

of A. Let J ⊂ R be the ideal with I = J/fR. By the Auslander-Buchsbaum

formula, projdimR(R/J) = 2, and hence J is perfect of grade two. So J =

FittR1 (J) by the Hilbert-Burch Theorem, which proves the lemma. �
Corollary 2.22. Let 0 �= f ∈ P2d(k) such that X = V+(f) is integral. Let

P ∈ Sym2Pd(k) with det(P ) = cf , and let I be the ideal sheaf of the base

locus of P (see Definition 2.20). Let F = FP be the OX -module associated

to P , and let π : X ′ → X be the partial normalization defined by F (see 2.4).

Assume that X has simple singularities. Then I is equal to the conductor

sheaf (see 2.7) of X ′ over X, i. e., I = π∗π
!OX .

Proof. Let x be a closed point of X, let A = OX,x, M = Fx and I = Ix.

Then I = Fitt1(M) by the definition of I. On the other hand, let B =

EndA(M), and let (A : B) be the conductor of B over A. Then M ∼= (A : B)

as A-modules by Lemma 2.12, and therefore I = Fitt1(M) = Fitt1(A : B).

By Lemma 2.21, this implies I = (A : B). �
In particular, we see:

Corollary 2.23. In the situation of Corollary 2.22, the representation P

is base-point free if and only if the OX-module F is locally free. �

3. Exceptional sheaves for curves of degree four

3.1. Let f ∈ k[x0, x1, x2] be square-free, homogeneous of degree 2d > 0,

and let X = V+(f). By Theorem 1.15, the equivalence classes of representa-

tions

(16) cf = p1p2 − p20

(with pi ∈ Pd(k)) are in bijective correspondence with the isomorphism classes

of coherent OX -modules F satisfying the following four properties:

(a) F �∼= OX(d2 ) (if d is even);

(b) F is torsion-free of rank one;

(c) F ∼= HomOX
(F,OX(d));

(d) F is generated by its global sections.



20 CLAUS SCHEIDERER

Assuming that X is irreducible and has ADE singularities, the classification

of these F was almost reduced in Theorem 2.17 to the classification of line

bundles F′ on partial normalizations X ′ of X which satisfy a self-duality. Only

“almost” since condition (d) was ignored in Theorem 2.17.

If 2d ≥ 6, it is not possible to make general statements about the F which

not only satisfy condition (1) of Theorem 2.17, but are also globally generated.

Indeed, for generic f of degree 2d ≥ 6 there does not exist any identity (16),

as a simple dimension count shows. If 2d = 4, on the other hand, it is indeed

possible to control the global generation condition. This is the subject of this

section. Briefly, the F which satisfy (a)–(c) but violate (d) are in canonical

bijection with the k-rational singular points of X. As a consequence we will

obtain, at least for k = C, the complete classification of representations (16)

in terms of nothing more than the list of singularities of X (see Section 4).

3.2. In the sequel, k can be any field of characteristic �= 2. Fix a nonzero

form f ∈ k[x0, x1, x2] of degree four, let X = V+(f), and assume that f has

no factor of degree two in k[x0, x1, x2] (so, in particular, X is reduced). Let

F be a coherent OX -module which satisfies (a)–(c) of 3.1 (with d = 2). By

the proof of Proposition 1.2 (see (7)), F has a minimal resolution

(17) 0 →
r⊕

i=1

OP2(−di − 2)
M−→

r⊕
i=1

OP2(di) → F → 0

with suitable di ∈ Z, in which M = (mij) is a symmetric r × r-matrix whose

entries are homogeneous of degrees deg(mij) = di + dj + 2, and det(M) = cf

with c ∈ k∗. Rearranging the summands we assume

(18) d1 ≥ d2 ≥ · · · ≥ dr.

Proposition 3.3. Keep the assumptions of 3.2 (in particular, f has no

quadratic factor over k). Then exactly one of the following two possibilities

happens:

(1) r = 2 and d1 = d2 = 0, hence M =

(
p1 p0
p0 p2

)
with quadratic forms

pi; so cf = p1p2 − p20, and (17) is

0 → OP2(−2)2
M−→ O2

P2 → F → 0.

(2) r = 3 and d1 = d2 = 0, d3 = −1, hence M =

⎛⎝p1 p0 l2
p0 p2 l1
l2 l1 0

⎞⎠ with

quadratic forms pi and linear forms lj; so cf = 2l1l2p0 − l21p1 − l22p2,

and (17) is

0 → OP2(−2)2 ⊕ OP2(−1)
M−→ O2

P2 ⊕ OP2(−1) → F → 0.
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F is generated by its global sections in case (1), but not in case (2). In case

(2) we say that F is an exceptional OX -module.

Conversely, any sheaf F with a resolution as in (1) or (2) satisfies (a)–(c)

of 3.1.

Proof. The last statement is clear, see the proof of Proposition 1.2(a) in

1.5. Therefore let F be as in 3.2, with minimal resolution (17). Comparing

degrees in det(M) = cf gives 2r+2
∑

i di = 4, i. e.
∑

i di = 2− r. Minimality

of (17) means mij = 0 whenever di + dj ≤ −2 (see 0.2 or [Be], 1.5). As in

the proof of Lemma 1.7, we have di + dr+1−i ≥ −1 for all i, and we conclude

2
∑

i di ≥ −r. Since
∑

i di = 2− r, this already gives r ≤ 4. In the case r = 4

we would necessarily have d1 + d4 = d2 + d3 = −1, and hence d3 ≤ −1. Then

M would have the shape ⎛⎜⎜⎝
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ 0 0

∗ ∗ 0 0

⎞⎟⎟⎠ .

Such a symmetric determinant is a square, contradicting the assumption.

Hence r ≤ 3.

If r = 3 we have d1 + d3 ≥ −1, d2 ≥ 0 and d1 + d2 + d3 = −1, which imply

(d1, d2, d3) = (e, 0, −1 − e) with some e ≥ 0. If e ≥ 1, then M would have

the shape, ⎛⎝∗ ∗ ∗
∗ ∗ 0

∗ 0 0

⎞⎠ ,

which would imply that f factors as a product of a quadratic form and two

linear forms; a contradiction. Therefore, r = 3 implies (d1, d2, d3) = (0, 0,−1),

and this gives case (2) of the proposition. By Lemma 1.7, F is not generated

by H0.

If r = 2, then (d1, d2) = (e,−e) with e ≥ 0. Assuming e ≥ 1 gives for M

the shape, (
∗ ∗
∗ 0

)
,

which would imply that f is a product of two quadratic factors, again con-

tradicting our assumption. Therefore, r = 2 implies (d1, d2) = (0, 0), which is

case (1). Finally, the case r = 1 is excluded by the hypothesis F �= OX(1). �
Lemma 3.4. Let pi be quadratic forms and lj linear forms in k[x0, x1, x2],

let

M =

⎛⎝p1 p0 l2
p0 p2 l1
l2 l1 0

⎞⎠



22 CLAUS SCHEIDERER

and

f = det(M) = 2p0l1l2 − p1l
2
1 − p2l

2
2.

Further let F be the cokernel of

M : OP2(−2)2 ⊕ OP2(−1) → O2
P2 ⊕ OP2(−1).

Assume that f is square-free, let X be the quartic curve f = 0. Then the lines

lj = 0 (j = 1, 2) are distinct, and their intersection z is a singular (k-rational)

point of X. The global sections H0(X,F) generate F in every point x �= z,

but do not generate F in z. Away from z, the OX -module F is locally free.

Proof. It is clear that the lines l1 and l2 intersect in a singular point z of X.

Let x ∈ X, and let eν (ν = 1, 2, 3) denote the images of the three canonical

local generators of O2 ⊕ O(−1) in x (each eν being determined up to a unit

of OX,x). The submodule generated by H0(X,F) in Fx is the submodule

generated by e1 and e2. If x �= z, then lj(x) �= 0 for at least one j ∈ {1, 2},
and from the shape of M one concludes that Fx = OX,x ej . On the other

hand, x = z implies e3 /∈ OX,x e1 + OX,x e2. �
Definition 3.5. Assume that the quartic form f has no factor of degree

two, and let X = V+(f). Given an exceptional OX -module F (see Proposition

3.3) there is, according to Lemma 3.4, a unique singular k-rational point z on

X such that F is generated by H0(X,F) away from z. We say that z is the

singular point associated to F.

We shall now show that, conversely, the associated singular point z deter-

mines F up to isomorphism. As before, let f be a form of degree four and

X = V+(f).

Proposition 3.6. Assume that f has no factor of degree two. Let z be a

k-rational singular point on X. Then there exists an exceptional OX -module

F with associated point z (see Definition 3.5). Moreover, any two such F are

isomorphic.

Proposition 3.6 justifies the following definition:

Definition 3.7. Given f and z as in Proposition 3.6, we call F the excep-

tional sheaf associated with z. The partial normalization π : X ′ → X defined

by F (with π∗OX′ = EndOX
(F), see 2.4) will be called the exceptional partial

normalization associated with z.

Proof of Proposition 3.6. The existence of such F is immediate: Choosing

affine coordinates (u, v) centered at z, f has the affine form

f(u, v) = f4(u, v) + f3(u, v) + f2(u, v)

with fν homogeneous of degree ν; it is obvious that such f can be written in

the form

f(u, v) = 2uv q0 − u2q1 − v2q2
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with polynomials qi(u, v) of degree ≤ 2. Homogenizing, this gives F as desired

(Lemma 3.4).

It remains to prove uniqueness of F. If M1, M2 are two injective homo-

morphisms OP2(−2)2 ⊕ OP2(−1) → O2
P2 ⊕ OP2(−1), and if F1, F2 are their

cokernels, then F1
∼= F2 provided there are invertible 3 × 3-matrices A, B of

the shape, ⎛⎝c11 c12 0

c21 c22 0

m1 m2 c33

⎞⎠ ,

with M2B = AtM1, for which cij ∈ k and m1, m2 are linear forms. Let

us write M1 ∼ M2 in this case. Let F be an exceptional OX -module with

associated singular point z, and let

M =

⎛⎝p1 p0 l2
p0 p2 l1
l2 l1 0

⎞⎠
be a matrix with F = coker(M). Then the lines l1 = 0, l2 = 0 intersect in z.

One immediately sees that

M ∼ M ′ :=

⎛⎝ap1 ap0 l2
ap0 ap2 l1
l2 l1 0

⎞⎠
for any a ∈ k∗, and det(M ′) = a det(M). Thus we can assume det(M) = f .

Given any other pair of distinct lines l′1, l
′
2 which intersect in z, we can write

l′j = a1j l1 + a2j l2 (j = 1, 2) with det(aij) �= 0. Using the transformation

S :=

⎛⎝ a22 a12 0

a21 a11 0

0 0 1

⎞⎠ ,

SMSt becomes a matrix of the same shape as M in which lj is replaced by

l′j for j = 1, 2 (and the pi by other quadratics p′i). Therefore, given a second

exceptional OX -module F′ with associated singular point z, we can assume

F′ = coker(M ′), where

M ′ =

⎛⎝p′1 p′0 l2
p′0 p′2 l1
l2 l1 0

⎞⎠
has the same linear forms l1, l2 as M , and for which det(M ′) = f as well.

Writing qi := p′i − pi (i = 0, 1, 2), we have

2l1l2q0 − l21q1 − l22q2 = 0
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since det(M ′) = det(M). So there exist linear forms m1, m2 with q1 = 2m1l2,

q2 = 2m2l1 and q0 = m1l1 +m2l2. The matrix,

S :=

⎛⎝ 1 0 0

0 1 0

m1 m2 1

⎞⎠ ,

satisfies StMS = M ′, which shows M ′ ∼ M , hence F′ ∼= F. This proves the

proposition. �
For later use we record the following variant, which is shown in a completely

similar way:

Lemma 3.8. Let (A,m) be a regular local ring of dimension two containing
1
2 . Given f ∈ m2, there is a symmetric matrix,

M =

⎛⎝p1 p0 x2

p0 p2 x1

x2 x1 0

⎞⎠ ,

over A with det(M) = f , where x1, x2 generate m. The A/(f)-module N =

coker(M) depends, up to isomorphism, only on the ideal (f), but not on the

choice of M . �
We summarize:

Corollary 3.9. Let f be a form of degree four without a factor of degree

two, and let X = V+(f). Then the isomorphism classes of OX -modules F

which satisfy (a)–(c), but not (d), of 3.1, are in natural bijection with the set

of k-rational singular points of X. The bijection is given by F 	→ z, where z

is the unique point in which H0(X,F) fails to generate F. �

3.10. Let R be a simple curve singularity as in 2.9, i. e., a complete noe-

therian one-dimensional local ring of ADE type with residue field k = k̄ of

characteristic zero. We need to refer to specific self-dual R-modules of rank

one, and so we need notational conventions to talk about them. Fortunately,

the list of all such modules is well documented; see for example [GK] and [Y],

ch. 9 or [Pi], Theorem 3.1. To save space, we refer to one of these sources for

the complete list, and content ourselves here with listing the necessary infor-

mation for those singularities that can occur on a plane irreducible quartic

curve. These are An (n ≤ 6), D4, D5 and E6.

In each case, a polynomial f ∈ k[x, y] with R ∼= k[[x, y]]/(f) is listed. We

give R as a subring of its normalization R̃ and write δ = dimk(R̃/R). We
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list those intermediate rings R ⊂ B ⊂ R̃ which are self-dual as R-modules

(briefly called “self-dual partial normalizations” below); they also represent

the isomorphism classes of all self-dual torsion-free R-modules of rank one

(cf. 2.9). Since B is again an ADE singularity (possibly reducible), we also

mention its type. We write A0 for the case where R is normal, and A−1 for

the direct product of two rings of type A0.

An, n even: f = y2 − xn+1, R̃ = k[[t]], R = k[[t2, tn+1]], δ = n
2 .

The self-dual partial normalizations are the Bi = R[tn+1−2i], of type An−2i

(i = 0, . . . , δ).

An, n odd: f = y2 − xn+1, R̃ = k[[t]] × k[[t]], R = k[[(t, t), (tδ, 0)]] where

δ = n+1
2 . The self-dual partial normalizations are the Bi = R[(tδ−i, 0)], of

type An−2i (i = 0, . . . , δ).

D4: f = x2y − y3, R̃ = k[[t]] × k[[t]] × k[[t]], R = k[[(t, t, 0), (t, 0, t)]],

δ = 3. The self-dual partial normalizations are B0 = R, B2 = R̃ (of type

A0 ×A0 ×A0) and

B1 = R[(1, 0, 0)], B′
1 = R[(0, 1, 0)], B′′

1 = R[(0, 0, 1)],

each of type A0 ×A1.

D5: f = x2y − y4, R̃ = k[[t]] × k[[t]], R = k[[(t3, t), (t2, 0)]], δ = 3. The

self-dual partial normalizations are B0 = R, B1 = R[(1, 0)] (of type A2×A0),

B′
1 = R[(t, 0)] (of type A1) and B2 = R̃ (of type A0 ×A0).

E6: f = y3 − x4, R̃ = k[[t]], R = k[[t3, t4]], δ = 3. The self-dual partial

normalizations are B0 = R, B1 = R[t2] (of type A2) and B2 = R̃ (of type

A0).

3.11. (char(k) = 0) Let now X be a plane irreducible curve of degree 4

over k, and let z be a k-rational singular point on X. Let F be the exceptional

sheaf and π : X ′ → X the partial normalization associated to z (see Definition

3.7). We want to determine π in terms of the singularity z. Since F is locally

free on X − z (see Lemma 3.4), π is an isomorphism over X − z. So we only

need to determine the isomorphism type of the OX,z-module Fz. By 2.18,

it suffices to do so after passing to the completion of OX,z ⊗k k̄. In other

words, we have to determine, for each ADE singularity R = k[[x, y]]/(f) as

in 3.10, the R-module N = coker(M) where M is a matrix as in Lemma 3.8

over k[[x, y]] with det(M) = f . According to Lemma 2.21, N is isomorphic

to the ideal I2(M) generated by the 2× 2-minors of the matrix M . This ideal

can be directly read off, and the result is as follows. (See 3.10 for notation;

in the table we write B := EndR(N), so N ∼= B as an R-module, even as a

B-module.) From Table 1 we see that X ′ = X, i. e. F is a line bundle on X,

if and only if z is an A1-singularity.
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sing. z B type(B)

A1 B0 = R A1

A2 B1 = R̃ A0

An (n ≥ 3) B2 An−4

D4 B2 = R̃ A0 ×A0 ×A0

D5 B2 = R̃ A0 ×A0

E6 B2 = R̃ A0

Table 1

4. Summary of determinantal representations

4.1. Let k be a field, char(k) = 0. Let f ∈ k[x0, x1, x2] be a form of degree

four, irreducible over k̄, and let X = V+(f). From the results of the previous

sections it follows that there is a natural bijective correspondence between the

following objects:

(1) Determinantal representations

(19) cf = p1p2 − p20

(with pi ∈ P2(k), c ∈ k∗), up to equivalence (see Theorem 1.15);

(2) pairs (X ′,F′), where π : X ′ → X is a Gorenstein partial normalization

of X and F′ ∈ Pic(X ′) satisfies F′ ⊗ F′ ∼= π!OX(2). Moreover, it is

required here that the OX -module F = π∗F
′ is not exceptional (see

Proposition 3.3), and that F �= OX(1) if X ′ = X.

The total number of pairs (X ′,F′) for which F = π∗F
′ is exceptional and

which otherwise satisfy condition (2) is equal to the number of k-rational

singular points of X. In each case, the conductor sheaf of X ′ over X is equal

to the ideal sheaf of the base locus of the corresponding representation (19).

4.2. At least in principle, a complete account can therefore be made as

follows. First, list all singular points of X. With the help of the lists in

3.10 (and using 2.18), obtain the list of all Gorenstein partial normalizations

π : X ′ → X of X. For each of them, decide whether π!OX is a double in

Pic(X ′). If this is the case, there are |Pic2(X ′)| many F corresponding to X ′.

From this list remove the following items:

1. F = OX(1) (corresponding to X ′ = X);

2. for every k-rational singular point x of X, the associated exceptional

sheaf F (see Proposition 3.6); the partial normalization X ′ corre-

sponding to F is listed in Table 1 of 3.11.



HILBERT’S THEOREM ON POSITIVE TERNARY QUARTICS 27

The remaining OX -modules F correspond bijectively to the equivalence classes

of representations (19).

Speaking in general, there are two steps which tend to be difficult in this

program: Deciding whether π!OX ∈ 2Pic(X ′), and finding the number of

2-torsion classes in Pic(X ′).

4.3. In any case, we see that the number of base-point free (see Definition

2.20) determinantal representations (19) is equal to

|Pic2(X)| − (1 + n),

where n is the number of k-rational nodes of X.

4.4. When k is algebraically closed, the difficulties disappear and we obtain

a complete analysis. Let X = V+(f) ⊂ P2 be an integral quartic curve over

k = k̄. For any possible configuration of singularities of X, the following table

lists the total number of representations

(20) f = p1p2 − p20

(up to equivalence), as well as the number of base-point free such representa-

tions.

More generally, the recipe given in 4.2 allows us to give, for each such

curve and each fixed base locus, the precise number of representations of f

corresponding to this base locus. Obvious space limitations prohibit to include

full details here, but the complete information is available from the author’s

web page. See the Examples section for a sample detailed discussion of a few

selected cases.

Sing. total bp-free

smooth 63 63

A1 46 30

A2 30 15

A3 18 7

A4 10 3

A5 5 1

A6 2 −
D4 9 3

D5 4 1

E6 1 −

Sing. total bp-free

2A1 33 13

A1 +A2 21 6

A1 +A3 12 2

A1 +A4 6 −
2A2 13 3

A2 +A3 7 1

A2 +A4 3 −
3A1 23 4

2A1 +A2 14 1

A1 + 2A2 8 −
3A2 4 −

Table 2
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4.5. (k = k̄) As remarked in 4.3, the number in the last column of Table 2 is

equal to |Pic2(X)|−(n+1), where n is the number of nodes of X. This shows

that a key argument used in the proof of the main theorem of [W] contains

a gap, and is actually incorrect in some cases. Namely, it was asserted in

loc. cit. (p. 420, bottom) that any nonzero 2-torsion class in Pic(X) gives rise

to a determinantal representation (20) of f , which we now see is wrong if X

has a node. The argument was used in [W] to reduce the proof of the main

theorem (existence of a representation (20)) to the case where X is unibranch

at every singular point. From our analysis we see that there would have been

two more cases to be considered, namely A1 + 2A2 and A1 + A4. Indeed, no

class in Pic2(X) gives rise to a representation (20) in these cases. Table 2

shows that, nevertheless, there do exist representations in both cases (with

base points), showing that the correctness of the main theorem of [W] is not

affected. For details in the case of A1 + A4, see 8.1 in the Examples section;

see also 5.12 for how the error was initially discovered.

Part II: Twisted determinantal representations

5. Quadratic representations and Gram tensors

Let k be a field of characteristic not two, and let k̄ be an algebraic closure

of k. Fix d ≥ 1, and recall that Pm(k) denotes the space of homogeneous

polynomials of degree m in k[x0, x1, x2].

5.1. Let f ∈ P2d(k). By a quadratic representation of f (over k) we mean

a pair (S,p) of a symmetric invertible 3 × 3-matrix S = (sij)0≤i,j≤2 over k

and a triple p = (p0, p1, p2)
t ∈ Pd(k)

3 (regarded as a column) such that

f = ptSp =
2∑

i,j=0

sij pipj .

Let span(p) be the linear span of p0, p1, p2 in Pd(k), and call rk(p) :=

dimk span(p) the rank of p. Two quadratic representations (S,p) and (S′,p′)

of f will be called equivalent, denoted (S,p) ∼ (S′,p′), if there exists T ∈
GL3(k) with

S′ = T tST and Tp′ = p.

Note that this implies span(p) = span(p′).

Alternatively, we could consider (S,p) and (S′,p′) as equivalent if span(p)

= span(p′). While in general this is a strictly coarser relation, it coincides

with the above notion of equivalence whenever f is geometrically irreducible,

as we show after the next lemma.
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Lemma 5.2. Let (S,p) be a quadratic representation of f . If rk(p) ≤ 2,

then f is a product of two forms of degree d over k̄.

Proof. Diagonalizing S we can assume f = a1p
2
1 + a2p

2
2 with ai ∈ k and

pi ∈ Pd(k), from which the lemma is clear. �
Proposition 5.3. Let (S,p), (S′,p′) be quadratic representations of f ,

and assume that f is not divisible by a form of degree d over k̄. Then (S,p) ∼
(S′,p′) if and only if span(p) = span(p′).

Proof. “Only if” has already been remarked, so assume span(p) = span(p′).

Since rk(p) = 3 by Lemma 5.2, there is a unique matrix T ∈ GL3(k) with

Tp = p′. Hence pt(S − T tS′T )p = 0. We show that the six forms pipj
(0 ≤ i ≤ j ≤ 2) are linearly independent, which implies S = T tS′T . For

this we can assume k = k̄. Assume that the forms are linearly dependent.

Then there is a nonzero quadratic form g in 3 variables with g(p0, p1, p2) = 0,

and g is irreducible since rk(p) = 3. After a linear change in the pi we can

assume p20 = p1p2. Hence we can write p0 = hq1q2 and pi = hq2i (i = 1, 2)

with suitable forms h, q1, q2. It follows that f = h2φ(q1, q2) where φ(y1, y2)

is a binary form of degree 4. This implies that f is a product of two forms of

degree d; a contradiction. �
5.4. With a quadratic representation (S,p) of f as above we associate its

Gram tensor, defined by

γ(S,p) :=
2∑

i,j=0

sij · pi ⊗ pj .

This is a symmetric tensor in Pd(k) ⊗ Pd(k). Note that the multiplication

map

(21) µ : Pd(k)⊗ Pd(k) → P2d(k)

maps γ(S,p) to f . Equivalent quadratic representations have the same Gram

tensor.

Remarks 5.5. 1. Every quadratic representation of f is equivalent to a

diagonalized representation f =
∑2

i=0 aip
2
i (with ai ∈ k∗, pi ∈ Pd(k)).

2. Viewing S as a (nondegenerate) symmetric bilinear form on k3 and p as

a linear map Pd(k)
∨ → k3, the Gram tensor γ(S,p) is the pull-back p∗S, a

symmetric bilinear form on Pd(k)
∨.

3. Upon choosing a basis of the vector space Sym2(k), every determinantal

representation f = det(P ) with P ∈ Sym2Pd(k) (as considered in Section 1)

becomes a quadratic representation of f . Up to equivalence, this quadratic

representation is independent of the choice of the basis. So, with a slight

abuse, we consider determinantal representations as particular quadratic rep-

resentations. We simply write γ(P ) for the associated Gram tensor. Explicitly,
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if P =

(
p1 p0
p0 p2

)
, then

γ(P ) =
1

2

(
p1 ⊗ p2 + p2 ⊗ p1

)
− p0 ⊗ p0.

4. Two determinantal representations f = det(P ) = det(P ′) of f are equiv-

alent in the sense of 5.1 if and only P and P ′ are conjugate under Oδ(k) (as

in 1.9).

5. Over k̄, every quadratic representation is equivalent to a determinantal

representation, since any two nondegenerate quadratic forms of the same rank

are isometric over k̄. Therefore, we can view quadratic representations over k

as twisted determinantal representations.

5.6. The rank rk(t) of a symmetric tensor t ∈ Pd(k)⊗Pd(k) is defined as the

rank of the symmetric bilinear form t on Pd(k)
∨. Note that rk γ(S,p) ≤ rk(p)

for every quadratic representation (S,p), with equality if rk(p) = 3.

Lemma 5.7. Let t ∈ Pd(k)⊗ Pd(k) be a symmetric tensor of rank ≤ 3.

(a) There exists a quadratic representation (S,p) of f := µ(t) with t =

γ(S,p).

(b) If rk(t) = 3, then (S,p) is uniquely determined up to equivalence.

Proof. (a) is clear since t can be diagonalized. (b) Assume t = γ(S,p) =

γ(S′,p′), where rk(t) = 3. Then p and p′ have rank 3 (see 5.6), so the

linear maps p, p′ : Pd(k)
∨ → k3 are surjective. The assertion follows from the

following elementary lemma:

Let V , W be finite-dimensional k-vector spaces. For i = 1, 2, let bi be

a nondegenerate symmetric bilinear form on W , and let φi : V → W be a

surjective linear map. Assume φ∗
1b1 = φ∗

2b2. Then there exists a unique

σ ∈ GL(W ) with σ ◦ φ1 = φ2 and σ∗b2 = b1. �
Summarizing Proposition 5.3 and 5.6 we get:

Corollary 5.8. Let (S,p), (S′,p′) be quadratic representations of f , and

assume rk(p) = 3. Then

(S,p) ∼ (S′,p′) ⇔ span(p) = span(p′) ⇔ γ(S,p) = γ(S′,p′).

In this case, moreover, the matrix T ∈ GL3(k) with p = Tp′ and T tST = S′

is unique. �
For the case of determinantal representations, the uniqueness part is al-

ready contained in Corollary 1.11. Note that the condition rk(p) = 3 is

automatically fulfilled if f is irreducible over k̄ (see Lemma 5.2). Also note

that the equivalent conditions in Corollary 5.8 are independent of the ground

field.

5.9. We now give a more conceptual interpretation. As before, d ≥ 1

is fixed. Consider the vector spaces Sym2Pd (of symmetric 2 × 2-matrices
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over Pd), Pd⊗Pd and P2d as affine algebraic k-varieties (namely affine spaces).

Let Y be the closed reduced subscheme of Pd⊗Pd whose geometric points are

the symmetric tensors of rank ≤ 3. For brevity, denote the variety Sym2Pd

by V . All varieties are considered as k-schemes, and morphisms of varieties

as k-morphisms, unless otherwise specified.

The orthogonal group Oδ (see 1.8) acts linearly on V = Sym2Pd in the

natural way (this action was considered in 1.9). The Gram tensor construction

5.4 defines a morphism γ : V → Y which is nothing but the quotient morphism

in the sense of invariant theory. In other words, k[Y ] = k[V ]Oδ , the ring of

invariants, and Y could be denoted V//Oδ. The multiplication map µ (see

(21)) is a morphism µ : Y → P2d. Let Y0 ⊂ Y be the open subset consisting

of the tensors of rank equal to 3.

5.10. Given f ∈ P2d(k), let Yf be the fibre of f under µ. By Lemma 5.7,

the map{
quadratic representations of f mod ∼

}
→ Yf (k), (S,p) 	→ γ(S,p)

is surjective. This map induces a bijection between the equivalence classes

(S,p) with rk(p) = 3 and the set Y0,f (k) := Y0(k)∩Yf (k) (see Corollary 5.8).

Now assume that f is not a product of forms of degree d over k̄. Then Yf ⊂ Y0

(see Lemma 5.2), and the map

(22) γ :
{
quadratic representations of f mod ∼

} ∼→ Yf (k)

is bijective. Observe that Yf (k) is identified with the set of all Gal(ks/k)-

invariant equivalence classes of determinantal representations of f over the

separable closure ks.

5.11. Let t ∈ Y0(k), and let Vt denote the fibre of t under γ. The group

Oδ(k̄) acts freely and transitively on the nonempty set Vt(k̄) (see Lemma 5.7

and Corollary 5.8). Thus, Vt is an Oδ-torsor (over k). The isomorphism

classes of Oδ-torsors form the cohomology set H1(k,Oδ). So we have the

natural map

(23) η0 : Y0(k) → H1(k,Oδ), t 	→ Vt.

The set H1(k,Oδ) classifies the nondegenerate quadratic forms of rank 3 over

k up to isometry. The interpretation of η0 is obvious: If η0(t) is the class

of the quadratic form q = 〈a0, a1, a2〉 = a0y
2
0 + a1y

2
1 + a2y

2 (with ai ∈ k∗),

there exists a quadratic representation f = q(p0, p1, p2) = a0p
2
0 + a1p

2
1 + a2p

2
2

which corresponds to t under (22); and every other quadratic representation

corresponding to t under (22) is equivalent to this one.

It is clear how to calculate η0(t) from the tensor t: Viewing t as a symmetric

bilinear form on Pd(k)
∨, η0(t) is the class of this form modulo its null space

(cf. Remark 5.5.2).
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5.12. The approach to quadratic representations via Gram tensors, as in

5.10, is particularly well suited for computations. To fix ideas, let k ⊂ C.

After fixing an enumeration m1, . . . ,mN of the monomials of degree d in

(x0, x1, x2), the symmetric tensors in Pd(C)⊗Pd(C) correspond to SymN (C),

the space of symmetric matrices of size N . The Gram tensors for f form an

affine-linear subspace of SymN (C), easily described in terms of the coefficients

of f . Its subset Yf (C) is described by the vanishing of all 4 × 4-minors. At

least for generic f , the set Yf (C) is finite, and can therefore be determined

with the help of suitable computer algebra systems, at least when the data is

not too complex.

This approach was carried out successfully during an early stage of this

work and of its precursor [PRSS]; see also [PR]. Powers, Reznick, Sottile and

the author collected a supply of empirical data by computing the quadratic

representations of selected quartic forms. It was actually in this way that the

error mentioned in 4.5 was first discovered, before its theoretical explanation

was found. The computations were mostly carried out with the help of the

system Singular, which proved to be very efficient.

5.13. Recall that a quaternion algebra over k is a central simple k-algebra

A of degree two (that is, with [A : k] = 4). For a, b ∈ k∗, the quaternion

algebra (a, b) has k-basis 1, e1, e2, e3 with the relations e21 = a, e22 = b and

e1e2 = e3 = −e2e1. Isomorphism classes of quaternion algebras over k are in

canonical bijection with isometry classes of 3-dimensional quadratic forms of

determinant 1 ∈ k∗/k∗2. Under this bijection, the quaternion algebra (a, b)

corresponds to the quadratic form 〈−a,−b, ab〉. (Recall that 〈a1, . . . , an〉 de-
notes the diagonal quadratic form

∑n
i=1 aiy

2
i .) Expressed in a more invariant

way, one associates to A the restriction of the reduced norm N : A → k to the

subspace of pure quaternions of A; see, e. g., [Sch], ch. 2, §11.
In Galois cohomology these facts are reflected as follows. The setH1(k, SOδ)

can be viewed as the pointed set of all 3-dimensional quadratic forms of de-

terminant 1, up to isometry, with 〈1,−1,−1〉 as the distinguished point. The

extension 1 → µ2 → SL2 → PSL2 → 1 of algebraic groups over k induces

an injective map H1(k,PSL2) ↪→ H2(k, µ2) = Br2(k), where Br2(k) denotes

the 2-torsion subgroup of the Brauer group Br(k) of k. This map identifies

H1(k,PSL2) with the set of classes of quaternion algebras in Br2(k). Com-

posing it with an isomorphism SOδ
∼→ PSL2 (cf. 1.8), the resulting map is

c0 : H
1(k, SOδ) ↪→ Br2(k), 〈−a,−b, ab〉 	→ (a, b),

which is the correspondence indicated before. Using Oδ = SOδ × µ2 we get

H1(k,Oδ) = H1(k, SOδ)× (k∗/k∗2), and composing the projection to the first
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factor with c0 above, we get the canonical map

(24) c : H1(k,Oδ) → Br2(k), 〈a, b, c〉 	→ (−ab,−bc)

known as the Witt invariant [Sch]. We will write η := c ◦ η0 (see (23)), hence

η is the map

(25) η : Y0(k) → Br2(k), t 	→ c(η0(t)).

So η associates with each tensor t ∈ Y0(k) a quaternion algebra η(t) = (a, b)

over k. Up to scaling, this quaternion algebra encodes the quadratic form q

which corresponds to t as in 5.11, via q = λ · 〈a, b,−ab〉 for some λ ∈ k∗.

5.14. From now on we assume char(k) = 0. We are going to exhibit a

second way of calculating the invariant η(t) (Proposition 5.16 below), which

will link this invariant to the approach pursued in Part I of this paper.

Let t ∈ Y (k), put f = µ(t), and assume that f is irreducible over k̄. Let

X = V+(f) and write X̄ := X ⊗k k̄. Over k̄, t comes from a determinantal

representation of f , so there exists P ∈ Sym2Pd(k̄) with γ(P ) = t. Asso-

ciated with P we have the OX̄ -module F = FP (see Proposition 1.2), and

thus the partial normalization π1 : X1 → X̄ of X̄ defined by F (see 2.4) and

characterized by π∗OX1
= EndOX̄

(F). Since any other P ′ ∈ Sym2Pd(k̄) with

γ(P ′) = γ(P ) is conjugate to P under Oδ(k̄) (see 5.8), F and X1 depend only

on t.

Let Gk = Gal(k̄/k). For every σ ∈ Gk, σ(P ) and P are conjugate under

Oδ(k̄), and so σF = coker(σP ) ∼= coker(P ) = F. Hence X1 is invariant

under the action of Gk on the set of partial normalizations of X̄ (dominated

by X̃ ⊗k k̄). Arguing as in 2.18, one concludes that there exists a (uniquely

determined) partial normalization π : X ′ → X ofX (over k) withX1
∼= X ′⊗kk̄

as X̄-schemes. We also write X̄ ′ = X ′ ⊗k k̄ in the pullback diagram

X1 = X̄ ′ ��

π1

��

X ′

π

��
X̄ �� X

and call X ′ → X the partial normalization associated to the Gram tensor t.

Assume that X has simple singularities. Then F1 := πo
1F is a line bundle on

X1 = X̄ ′ (see Proposition 2.15), and its class in Pic(X̄ ′) is Gk-invariant; that

is, F1 ∈ Pic(X̄ ′)Gk .

If (S,p) is a quadratic representation of f with Gram tensor t, note that its

base locus (i. e., the common zero scheme of p0, p1, p2) is equal to the closed

subscheme defined by the conductor sheaf of X ′ over X (see Corollary 2.22).
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5.15. As for any complete and geometrically integral k-variety, one has a

natural map ∂ : Pic(X̄ ′)Gk → Br(k) making the following sequence exact:

(26) 0 → Pic(X ′) → Pic(X̄ ′)Gk
∂−→ Br(k)

res−→ Br(X ′).

Here Br(X ′) = H2
ét(X,Gm) is the (cohomological) Brauer group of X ′, and

res is the restriction map. Sequence (26) follows from the Hochschild-Serre

spectral sequence Hi(Gk, H
j
ét(X̄

′,Gm)) ⇒ Hi+j
ét (X,Gm) in étale cohomology

(e. g. [Mi]), using Hilbert’s Theorem 90. In a more elementary way, (26) is

deduced from the exact sequence

1 → k̄∗ → k̄(X̄ ′)∗ → Div(X̄ ′) → Pic(X̄ ′) → 0

of Gk-modules, where k̄(X̄ ′) is the function field of X̄ ′.

Proposition 5.16. (char(k) = 0) Assume that f ∈ P2d(k) is irreducible

over k̄, and that X = V+(f) has simple singularities. Let t ∈ Y (k) with

µ(t) = f , and construct X ′ and F1 ∈ Pic(X̄ ′)Gk from t as in 5.14. Then

η(t) = ∂(F1)

in Br2(k) ⊂ Br(k).

Here η and ∂ are as defined in (25) and (26), respectively.

Proof. Let P ∈ Sym2Pd(k̄) with γ(P ) = t. For every σ ∈ Gk there are

εσ ∈ {±1}, gσ ∈ SL2(k̄) with σ(P ) = εσ · gtσPgσ (see Corollary 5.8), and

(εσ, ḡσ) ∈ {±1} × PSL2(k̄) = Oδ(k̄) is uniquely determined. The cocycle

(εσ, ḡσ)σ ∈ Z1(Gk, µ2 × PSL2) represents η0(t). Therefore η(t) ∈ H2(Gk, µ2)

is represented by the 2-cocycle (hσ,τ ), where

hσ,τ = gσ · σ(gτ ) · g−1
στ ∈ {±1}.

On the other hand, ∂(F1) can be calculated as follows. For every σ ∈ Gk there

exists an isomorphism ϕσ : F1
∼→ σ∗F1 of invertible sheaves on X̄ ′. Given σ,

τ ∈ Gk, the composition cσ,τ := ϕ−1
στ ◦ σ∗(ϕτ ) ◦ ϕσ is an automorphism of F1,

hence an element of OX̄′(X̄ ′)∗ = k̄∗. The family (cσ,τ ) is a cocycle whose class

in H2(Gk, k̄
∗) = Br(k) is ∂(F1).

Concretely, we get a system of isomorphisms ϕσ as above from the com-

mutative diagrams

0 �� OP2
k̄
(−d)2 P �� O2

P2
k̄

��

gt
σ

∼
��

F ��

ψσ ∼

��

0

0 �� OP2
k̄
(−d)2

σ(P ) ��

εσgσ ∼

��

O2
P2
k̄

�� σ∗F �� 0
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(for σ ∈ Gk), by ϕσ := πo
1(ψσ). Therefore, cσ,τ is induced by the automor-

phism g−t
στ · σ(gτ )t · gtσ ∈ GL2(k̄) of OP2

k̄
. Thus cσ,τ = hσ,τ ∈ {±1}, and the

proposition is proved. �

6. Real curves and their generalized Jacobians

6.1. Let X always be a projective, geometrically integral curve over R,

and let J be the generalized Jacobian of X. In this section we collect some

general information, in particular pertaining to the (2-) torsion and cotorsion

of J(R). Much of it is well known, but the difficulty of finding suitable direct

references (or the lack thereof) makes it preferable to collect these facts here.

Our results are complete in the case where X(R) is finite, which is equivalent

to the function field R(X) being nonreal. Note that, in this case, X(R)

consists of singular points of X. When |X(R)| = ∞, some matters get more

complicated, and we plan to deal with these elsewhere.

Always write G = Gal(C/R). Given an R-scheme Y , let YC := Y ⊗R C. As

usual, Pic(Y ) = H1(Y,O∗
Y ) denotes the Picard group of Y . We will constantly

employ the exact sequence (cf. 5.15),

(27) 0 → Pic(X) → Pic(XC)
G ∂−→ Br(R) → Br(X),

where Br(X) := H2
ét(X,Gm).

For d ∈ Z let Picd(X) denote the set of classes of degree d in Pic(X). Thus

Pic0(XC) = J(C), and Pic0(X) is a subgroup of J(R). By J(R)0 we denote

the identity component of the real Lie group J(R).

Everything in this section (as well as in the next ones) works as well when R

gets replaced by an arbitrary real closed field, upon substituting connectedness

with semi-algebraic connectedness where appropriate.

6.2. As is well known, the Picard group of X can be realized via Weil

divisors on the regular locus Xreg. Let K be the semilocal ring of X in the

singular points of X, i. e., the ring of all rational functions f on X which are

regular on an open set containing Xsing. Then the natural sequence

(28) 1 → R∗ → K∗ ÷−→ Div(Xreg) → Pic(X) → 0

is exact, where the map ÷ sends f ∈ K∗ to the (Weil) divisor of f restricted

to Xreg. We denote the map Div(Xreg) → Pic(X) by D 	→ [D], if necessary.
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Lemma 6.3. The group J(R)0 is divisible, the group J(R)
/
J(R)0 is finite

of exponent ≤ 2, and the extension

0 → J(R)0 → J(R) → J(R)
/
J(R)0 → 0

splits.

Proof. J(R)0 is the image of the norm map N : J(C) → J(R), and therefore

is connected and divisible. The quotient J(R)/J(R)0 is the Tate cohomology

group Ĥ0(G, J(C)), and hence is finite of exponent ≤ 2. Divisibility of J(R)0

implies that the above extension splits. �
Lemma 6.4. Assume |X(R)| < ∞. Then Pic0(X)=J(R)0 and deg Pic(X)

= 2Z. In particular, Pic0(X) is a divisible group. Moreover,

2Pic(X) = {α ∈ Pic(X) : deg(α) ≡ 0 (4)}.

Proof. The norm map N : Pic(XC) → Pic(X) is surjective. Indeed, over

any closed point P ∈ Xreg there lie two points Q �= Q̄ of XC, and so [P ] ∈
Pic(X) is the norm of [Q] ∈ Pic(XC) (cf. 6.2). This implies deg Pic(X) = 2Z

and Pic0(X) = N(J(C)) = J(R)0. The characterization of 2Pic(X) follows

from the divisibility of Pic0(X). �
The following result is due to Weichold, who was a student of Felix Klein;

see [Ge] for a modern exposition. Recall the notation M2 = ker(M
2−→ M)

for an abelian group M (see 0.3).

Proposition 6.5. Assume that X is nonsingular of genus g, and let s be

the number of connected components of X(R). Then J(R)0 ∼= (R/Z)g and[
J(R) : J(R)0

]
= 2a, where

a =

⎧⎪⎪⎨⎪⎪⎩
s− 1 X(R) �= ∅,

1 X(R) = ∅ and g is odd,

0 X(R) = ∅ and g is even.

In particular, |J(R)2| = 2g+a. Moreover,

deg
(
Pic(XC)

G
)
=

{
Z g is even,

2Z g is odd.
�

6.6. In the sequel, let π : X̃ → X be the normalization of the (possibly

singular) curve X, and let J̃ be the Jacobian of X̃. Then J is an extension of

algebraic groups over R

(29) 0 → L → J
π∗
−→ J̃ → 0

of the abelian variety J̃ by a connected linear algebraic group L. The group L

is determined by the singularities of X in the following well-known way. Given
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a singular point x of X, let Rx = OX,x ⊗RC, and let R̃x be the normalization

of Rx. Then

L =
∏

x∈Xsing

Lx

where Lx is the linear algebraic group over R satisfying

Lx(C) = R̃∗
x

/
R∗

x

as G-modules.

6.7. Assume that X has simple singularities. We follow Gudkov’s conven-

tion [Gu] for the notation of real ADE singularities: If there is no superscript,

the point is real and all branches are real. An asterisk indicates that the point

is real and two branches are complex conjugate. A superscript i indicates a

pair of (different) complex conjugate singularities. Thus, for example, 2Ai
1 is

a pair P �= P̄ of complex conjugate nodes.

An irreducible plane quartic curve over C can only have singular points of

type An (n ≤ 6), D4, D5 or E6. It follows that an irreducible plane quartic

curve over R can only have the following singularities:

(30) An (n ≤ 6), A∗
n (n = 1, 3, 5), 2Ai

n (n = 1, 2), D4, D∗
4 , D5, E6.

Let x be a singular point of X. Depending on the type of the ADE singularity

x, the linear algebraic group Lx over R is as follows. (For brevity we only list

the singularities occuring in (30).)

x Lx

A2n+1 Gm ×Gn
a

A∗
2n+1 R1Gm ×Gn

a

2Ai
2n+1 RGm ×G2n

a

A2n Gn
a

2Ai
2n G2n

a

D4 G2
m ×Ga

D∗
4 RGm ×Ga

D5 Gm ×G2
a

E6 G3
a

Table 3

Here R denotes Weil restriction of C/R; thus R1Gm is the anisotropic R-torus

of rank one, and RGm is the quasisplit, nonsplit R-torus of rank two.
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In the following we study the map ∂ from (27). As usual, let pg(X)

(respectively, pa(X)) denote the geometric (respectively, arithmetic) genus

of X.

Lemma 6.8. The map

∂ : Pic(XC)
G → Br(R)

is zero if and only if X(R) �= ∅. Its restriction

∂0 : J(R) → Br(R)

to J(R) is zero if and only if X(R) �= ∅ or pg(X) is even.

Proof. Any point P ∈ X(R) defines a section of Br(R) → Br(X) in (27).

Therefore, X(R) �= ∅ implies ∂ = 0. Now assume X(R) = ∅. Let us

first consider the case where X is nonsingular of genus g. By a theorem of

Witt [Wi], every element of R(X) is a sum of two squares. In particular,

(−1,−1) = 0 in BrR(X), which implies (−1,−1) = 0 in Br(X). Hence the

map ∂ is surjective. From this, from Lemma 6.4 and from Proposition 6.5 it

follows that ∂0 is surjective if and only if g is odd.

To relate the general case to the nonsingular case, let π : X̃ → X be the

normalization of X, and let ∂̃ : Pic(X̃C)
G → Br(R) be the boundary map for

X̃. Using the notation of 6.6, we get the exact sequences of G-modules

0 → L(C) → Pic(XC) → Pic(X̃C) → 0

and

0 → L(C) → J(C) → J̃(C) → 0.

Since X(R) = ∅, L(C) is an induced G-module, and so H1(G,L(C)) = 0.

Thus we get a commutative diagram

J(R)

��

⊂ Pic(XC)
G

��

∂

���������

Br(R)

J̃(R) ⊂ Pic(X̃C)
G ∂̃

���������

with surjective vertical arrows. By the nonsingular case, ∂̃ �= 0, and so ∂ �= 0.

Similarly, ∂|J(R) = 0 ⇔ ∂̃|J̃(R) = 0, and so we can again apply the nonsingular

case to deduce the statement for ∂0. �
For later use we record the following by-product of the last proof:

Corollary 6.9. If X(R) = ∅, then Pic(XC)
G → Pic(X̃C)

G and J(R) →
J̃(R) are surjective. �

Corollary 6.10. The restriction of ∂0 : J(R) → Br(R) to the 2-torsion

subgroup J(R)2 is zero if and only if X(R) �= ∅ or pg(X) is even.



HILBERT’S THEOREM ON POSITIVE TERNARY QUARTICS 39

Proof. If X(R) �= ∅ or pg(X) is even, then even ∂0 = 0 by Lemma 6.8.

Assume that X(R) = ∅ and pg(X) is odd. Then ∂0 �= 0 by Lemma 6.8. Since

J(R)0 ⊂ ker(∂0) (see Lemma 6.4) and every connected component of J(R)

contains an involution (see Lemma 6.3), there exists an involution α in J(R)

with ∂0(α) �= 0. �
Corollary 6.11. Assume that X(R) is finite.

(a) If X(R) �= ∅ or pg(X) is even, then J(R) = J(R)0 = Pic0(X).

(b) If X(R) = ∅ and pg(X) is even, then Pic1(XC)
G �= ∅.

(c) If X(R) = ∅ and pg(X) is odd, then [J(R) : J(R)0] = 2 and

Pic1(XC)
G is empty.

Proof. The sequence 0 → J(R)0 → J(R)
∂0−→ Br(R) is exact by Lemma

6.4. This implies (a) and the first statement in (c), using Lemmas 6.8 and 6.4.

(b) follows from Proposition 6.5 and Corollary 6.9, and the second statement

in (c) follows from Proposition 6.5, applied to X̃. �
We next discuss the subgroup 2Pic(XC)

G := im
(
Pic(XC)

G 2−→ Pic(XC)
G
)

of Pic(X).

Proposition 6.12. Assume that X(R) is finite. Then the following hold:

(a) If X(R) �= ∅, then Pic(XC)
G = Pic(X) and

2Pic(XC)
G = {α ∈ Pic(X) : deg(α) ≡ 0 (4)}.

(b) If X(R) = ∅ and pg(X) is even, then Pic0(XC)
G = Pic0(X) and

2Pic(XC)
G = Pic(X).

(c) Assume that X(R) = ∅ and pg(X) is odd. For every even d ∈ Z,

the set Picd(XC)
G has two connected components, one of which is

Picd(X). Moreover,

2Pic(XC)
G = 2Pic(X) = {α ∈ Pic(X) : deg(α) ≡ 0 (4)}.

Proof. (a) Pic(XC)
G = Pic(X) by Lemma 6.8, so the claim follows from

Lemma 6.4.

(b) Pic0(XC)
G = Pic0(X) by Lemma 6.8, and Pic1(XC)

G �= ∅ by Corol-

lary 6.11. Therefore Pic(X) ⊂ 2Pic(XC)
G follows from the divisibility of

Pic0(XC)
G = Pic0(X).

(c) The first assertion follows from Corollary 6.11, which also gives

deg Pic(XC)
G = 2Z. Using the divisibility of Pic0(X), this implies 2Pic(XC)

G

= 2Pic(X), and we can again use Lemma 6.4. �
6.13. When |X(R)| = ∞, there is an elegant characterization of 2Pic(X)

due to Pedrini and Weibel. Even though we won’t use it, it should be men-

tioned at this point. Topologically, each connected component of X(R) is a

bouquet of circles which are called the loops of X. Let K be as in 6.2. For
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every f ∈ K∗ and every loop L, the sum
∑

P∈L ordP (f) (sum over the non-

singular points in L) is even. So there is a well-defined relative degree mod 2

on L, denoted degL : Pic(X) → Z/2. If L1, . . . , Lt are the loops of X, then

the map

(degL1
, . . . , degLt

) : Pic(X)/2 → (Z/2)t

is an isomorphism [PW].

We also need to discuss the 2-torsion subgroup of J(R). Since this tends to

become more subtle when |X(R)| = ∞, we leave this case away and restrict

to |X(R)| < ∞.

Proposition 6.14. Assume that X(R) is finite. Then (29) induces exact

sequences

(31) 0 → L(R) → J(R) → J̃(R) → B → 0

and

(32) 0 → L(R)2 → J(R)2 → J̃(R)2 → B → 0,

where B = Z/2 if X(R) �= ∅ and pg(X) is odd, and B = 0 otherwise.

Proof. We only have to calculate the cokernels in the two sequences. The

group L is a direct product of copies of Ga and of tori R1Gm and RGm (see

6.7). Therefore L(R) is connected, hence divisible. From the commutative

diagram with exact rows

0 �� J(R)2 ��

��

J(R)
2 ��

��

J(R)0 ��

��

0

0 �� J̃(R)2 �� J̃(R)
2 �� J̃(R)0 �� 0

it therefore follows that the first and second vertical arrow have the same

cokernel, since the last vertical arrow is surjective. Therefore it suffices to

study B := coker(J(R) → J̃(R)).

If pg(X) is even, then B = 0 follows from the (obvious) surjectivity of

Pic(X) → Pic(X̃), together with Pic0(X) = J(R) and Pic0(X̃) = J̃(R) (see

Proposition 6.12, (a) and (b)). If X(R) = ∅, then again B = 0 by Corollary

6.9. Assume now that pg(X) is odd and X(R) �= ∅. Then J(R) is connected

while J̃(R) has two connected components (see Corollary 6.11), which implies

B = Z/2. �
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7. Positive semidefinite real quartic forms

We continue to write G = Gal(C/R). For the final analysis of qua-

dratic representations of quartic forms, we shall need to know whether or not

π!OX(2) ∈ Pic(X ′) is a double in Pic(X ′
C
)G, when π : X ′ → X is a given par-

tial normalization. Since π!OX(2) ∼= π!OX ⊗ π∗OX(1)⊗2 (see Lemma 2.2(b)),

it is equivalent to ask whether π!OX ∈ 2Pic(X ′
C
)G.

Proposition 7.1. Let X be an integral curve over R with simple singular-

ities, and let π : X ′ → X be a Gorenstein partial normalization of X. Assume

that X(R) is finite. The invertible sheaf π!OX on X ′ is a double in Pic(X ′
C
)G

if and only if (1) or (2) holds:

(1) pa(X)− pa(X
′) is even;

(2) X ′(R) = ∅ and pg(X) is even.

π!OX is a double in Pic(X ′) if and only if (1) holds.

Proof. We have deg(π!OX) = 2pa(X
′) − 2pa(X); see (15). Therefore,

π!OX ∈ 2Pic(X ′) is equivalent to (1) by Lemma 6.4. From Proposition

6.12(b) we see that (2) implies π!OX ∈ 2Pic(X ′
C
)G. Conversely assume

π!OX ∈ 2Pic(X ′
C
)G, and assume that (1) fails. Then deg(π!OX) ≡ 2 (4),

and Proposition 6.12 shows that (2) holds. �
The question of when π!OX ∈ 2Pic(X ′) holds has a more complicated

answer when X(R) is infinite. We plan to investigate this elsewhere, together

with its consequences for quadratic representations of indefinite real quartics.

Scholium 7.2. We now give a summary of how the complete analysis of

quadratic representations of a given real quartic form is obtained. For this we

assume that the quartic form f ∈ R[x0, x1, x2] is psd (i. e., nonnegative) and

irreducible over C. Let X = V+(f). For simplicity, we will refer to general

quadratic representations of f over R (see 5.1) as signed representations, since

they are equivalent to representations f = ±q20 ± q21 ± q22 . We will call such a

representation definite if all signs are +, and indefinite otherwise. (Note that

at least one sign is + since f is psd.)

Start by making the list of singularities of X. From this obtain the list of

all Gorenstein partial normalizations π : X ′ → X of X, using 3.10 and 2.18.

Fixing one such X ′ for the rest of the discussion, we explain how to obtain the

number of signed representations of f associated to X ′ (in the sense of 5.14).

Note that these are precisely the signed representations whose base locus is

the zero scheme of the conductor sheaf of X ′ over X.

The sheaf π!OX(2) = π!OX ⊗ π∗OX(2) lies in Pic(X ′). From Proposition

7.1 we can read off whether π!OX is a double in Pic(X ′
C
)G. If this is not the

case, there exist no signed representations associated to X ′.
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Assume therefore that π!OX ∈ 2Pic(X ′
C
)G, and let J ′ be the generalized

Jacobian of X ′. The number of F′ ∈ Pic(X ′
C
)G for which F′⊗F′ is isomorphic

to π!OX ⊗OX′ OX′
C
is equal to |J ′(R)2|. We have to determine which of these

F′ correspond to a determinantal representation of f over C (see 5.10). By

4.2, this means to discard OXC
(1) in case X ′ = X, and also those F′ which

are exceptional with respect to some singular point of XC. Since F′ is G-

invariant, F′ can only be exceptional with respect to an R-rational singular

point of X (using Lemma 3.4). Let e be the number of singular points in

X(R) whose associated exceptional partial normalization (see Definition 3.7)

is X ′. This number can be read off from 3.11, Table 1. The number of signed

representations associated to X ′ is then equal to{
|J ′(R)2| − (e+ 1) if X ′ = X,

|J ′(R)2| − e if X ′ �= X.

The order of the group J ′(R)2 is easily obtained from Proposition 6.5, 6.7 and

Proposition 6.14.

It remains to discuss how many of these representations are definite re-

spectively indefinite. Given one such representation, let F′ be its associated

line bundle in Pic(X ′
C
)G. According to Proposition 5.16, the representation

is indefinite if and only if ∂(F′) = 0, where ∂ : Pic(X ′
C
)G → Br(R) is the

map explained in 5.15. Let ∂2 denote the restriction of ∂ to J ′(R)2. From

Corollary 6.10 we can read off whether or not ∂2 is the zero map.

First assume that ∂2 = 0. Then the signed representations associated to X ′

are either all definite or all indefinite. Which one happens can be decided as

follows: If π!OX ∈ 2Pic(X ′), then all representations are indefinite. Otherwise

they are all definite. The information as to whether or not π!OX ∈ 2Pic(X ′)

is given in Proposition 7.1.

Second, assume ∂2 �= 0. Then precisely 1
2 |J ′(R)2| many representations are

definite, and the remaining ones are indefinite. Indeed, ∂(F′) = 0 holds for

any exceptional F′, since such F′ lies in Pic(X ′); and similarly ∂(OX(1)) = 0

(in case X ′ = X).

This gives the complete account of all signed representations of f , up to

equivalence, sorted by their base locus and by being definite or not.

7.3. Part of the results of this analysis is summarized in the table below.

Let f be any geometrically irreducible psd ternary quartic form over R. The

first column in Table 4 lists the configuration of singularities of X = V+(f).

The next two columns give the total number of quadratic (“signed”) repre-

sentations of f over R and the number of base-point free such representations.

The last two columns give the total number of definite representations over R

and the number of base-point free definite representations. (As is common,
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the shortcut sos stands for “sum of squares”.) Singularities that are not listed

in Table 4 cannot occur for f as considered here.

Sing. total qr bpf qr total sos bpf sos

smooth 15 15 8 8

A∗
1 10 6 4 −

2A∗
1 9 5 2 −

2Ai
1 11 7 6 4

3A∗
1 11 4 1 −

A∗
1 + 2Ai

1 7 2 3 −
2Ai

2 7 3 4 2

A∗
1 + 2Ai

2 4 − 2 −
A∗

3 6 3 2 −
A∗

1 +A∗
3 6 2 1 −

A∗
5 3 1 1 −

Table 4

More complete data (containing the explicit numbers of definite and indefi-

nite representations associated to any fixed base locus) can be found on the

author’s webpage. For a few examples which are more explicit, see the next

section.

7.4. Obviously, in any sum of squares representation

(33) f = p20 + p21 + p22,

the pi vanish in all real points of X. Table 4 shows that there exists a base-

point free representation (33) whenever X(R) = ∅. The refined analysis

(which is not displayed here) shows actually that there always exists a repre-

sentation (33) for which all common zeros of the pi are real. However, it is

not always possible to find such a representation for which the base locus is

reduced. For example, this is impossible for an A∗
5-singularity (see Example

8.5 below).

8. Examples

We illustrate the general method of determining all quadratic represen-

tations of a ternary quartic form by a few selected examples. In Examples

8.1–8.3 we only consider representations over k = C, while in Examples 8.4
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and 8.5 we study signed representations over k = R. For the theoretical back-

ground, see 4.2 and 4.4 over C and Scholium 7.2 over R. Always X = V+(f)

where f is a ternary quartic form over k, irreducible over C.

Example 8.1. Let X have an A1-singularity P and an A4-singularity Q.

We discuss the determinantal representations of f over C. The Gorenstein

partial normalizations of X form a diagram

X12

����
��

��
��

����
��

��
��

X11

����
��

��
��

����
��

��
��

X02

����
��

��
��

X10

����
��

��
��

X01

����
��

��
��

X00

where the X1j are nonsingular over P and the Xi2 are nonsingular over Q.

So X = X00 and X̃ = X12. Let Jij be the generalized Jacobian of Xij . Then

Jij ∼= G1−i
m ×G2−j

a , so |Jij(C)2| = 21−i. The exceptional partial normalization

associated with P is X = X00, the one associated with Q is X02 (see 3.11,

Table 1). We conclude that for each of X02 and X1j (j = 0, 1, 2) there is

exactly one associated representation, while there are two for X01 and none

for X00. In particular, there exists no base-point free representation, although

X has two branches at P . Compare 4.5.

Example 8.2. (k = C) Let X have a D5-singularity in Q. The curve X

is rational and has two branches at Q, one of which is cuspidal. Besides the

normalization X̃ there are two proper partial normalizations Xj (j = 1, 2) of

X. We label them in such a way that Xj has an Aj-singularity (j = 1, 2). Let

J respectively Jj be the generalized Jacobian of X respectively Xj (j = 1, 2).

We have J ∼= Gm × G2
a, J1

∼= Gm and J2 ∼= Ga. The exceptional partial

normalization is X̃ (see 3.11, Table 1). It follows that there are altogether

four determinantal representations: One of them is base-point free, one has an

infinitely near point on the non-cuspidal branch as base locus (it corresponds

to X2), and two have an infinitely near point on the cuspidal branch as base

locus (they correspond to X1).

Example 8.3. (k = C) Let X have an E6-singularity. There are three

Gorenstein partial normalizations X3 → X2 → X0 = X, where X3 = X̃ and

X2 has an A2-singularity. The generalized Jacobian Ji of Xi is isomorphic

to G3−i
a (i = 0, 2, 3). The exceptional partial normalization is X3 = X̃ (see
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3.11). Hence there exists only one single quadratic representation of f , and

it is associated to X2.

Example 8.4. (k = R) Let f be psd such that X has two A∗
1-singularities

P1, P2 and is otherwise smooth. There are four Gorenstein partial normaliza-

tions which form a diagram:

X̃

����
��

��
��

		�
��

��
��

�

X1

π1 		�
��

��
��

� X2

π2����
��

��
��

X

Here Xi is smooth over Pi (i = 1, 2). Let π̃ denote the normalization X̃ → X

of X.

We have pg(X) = 1 and pa(X) = 3, pa(Xi) = 2 (i = 1, 2). We see that

π!
iOX(2) is not a double in Pic(XiC)

G for i = 1, 2 (see Proposition 7.1). On

the other hand, π̃!OX(2) is a double in Pic(X̃), again by Proposition 7.1.

The generalized Jacobian J of X is an extension 1 → L → J → J̃ → 1,

where J̃ (the Jacobian of X̃) is an elliptic curve and L = R1Gm × R1Gm.

Hence |J̃(R)2| = 4 by Proposition 6.5 and |J(R)2| = 8 by Proposition 6.14.

We have two exceptional partial normalizations, one corresponding to each

Pi, and both are equal to X itself (see 3.11). Hence there are 8− (1 + 2) = 5

base-point free signed representations, and 4 signed representations with base

locus {P1, P2}.
To determine their signatures we have to see whether ∂ vanishes on the 2-

torsion. This is the case for X since X(R) �= ∅, but not for X̃ (see Corollary

6.10). So 2 of the 4 representations with base locus {P1, P2} are definite, the

other two are indefinite. All 5 base-point free representations are indefinite.

For an explicit example, let f = x4 + x2y2 + y4 − 2x2 + 1 (in affine co-

ordinates). Here X has A∗
1-singularities in P1,2 = (±1, 0). The two definite

representations are

f = (x2 − 1)2 + x2y2 + y4 = y2 +
3

4
y4 +

1

4

(
2x2 + y2 − 2

)2
.

Example 8.5. (k = R) Let f be psd such that X has an A∗
5-singularity.

There are four Gorenstein partial normalizations X3 → X2 → X1 → X0 = X

(cf. 3.10), where X3 = X̃ is the normalization. Write πi : Xi → X.

We have pg(X) = 0 and pa(Xi) = 3− i. The curve Xi has a singularity of

type A∗
5−2i (i = 0, 1, 2), respectively is smooth (i = 3). Since Xi(R) �= ∅ for

i = 0, 1, 2 (and X3(R) = ∅), we see that π!
iOX(2) is a double in Pic(XiC)

G
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for i �= 1 (but not for i = 1), and is a double in Pic(Xi) for i = 0, 2 (but not

for i = 1, 3), by Proposition 7.1.

The generalized Jacobian Ji of Xi is a linear group, isomorphic to R1Gm×
G2−i

a (for i = 0, 1, 2) (respectively trivial for i = 3). Hence Ji(R)2 has order 2

for i = 0, 1, 2. The restriction of ∂ to Ji(R)2 is trivial for all i since pg = 0 (see

Corollary 6.10). Finally, the exceptional partial normalization (cf. Definition

3.7) is X2, according to 3.11.

From this we see that for i = 0, 2, 3 there is precisely one signed represen-

tation associated with Xi, while there is none associated with X1. For i = 3,

this representation is definite (since π!
3OX(2) is not a double in Pic(X3)),

while for i = 0, 2 it is indefinite (since π!
iOX(2) is a double in Pic(Xi)); see

Proposition 7.1.

For an explicit example, let f = x4 + 2x2y2 + y4 + 2xy2 + x2 (with an

A∗
5-singularity in the origin). The three signed representations are

f =
1

16

(
4x2 + 5y2 + 2

)2
− 1

16

(
3y2 − 2

)2
− 1

2

(
xy − 2y

)2
= (x2 + y2)2 + (x+ y2)2 − y4

= x4 + 2x2y2 + (x+ y2)2.

The first is the only base-point free representation, the third is the only definite

representation (each up to equivalence).

9. Complements

9.1. Our results (7.3, Table 4) re-prove Hilbert’s 1888 theorem, at least in

the irreducible case: If f ∈ R[x0, x1, x2] is a psd form of degree 4 which is

irreducible over C, then f is a sum of three squares of quadratic forms. Of

course, this is not the point of this work altogether. It was not our aim to give

an alternative proof, but to arrive at a refined understanding and analysis of

the existing representations.

9.2. Nevertheless we’d like to indicate here, for the sake of completeness,

how the reducible cases of Hilbert’s theorem can all be covered by direct

arguments. These are elementary, but not all of them are obvious. There are

several cases to distinguish. Let f ∈ R[x0, x1, x2] be a psd form of degree 4

which is reducible over C.

If f is irreducible over R, then f = p21 + p22 is a sum of two squares of

quadratic forms. Suppose therefore that f is reducible over R. Then f = q1q2
where q1, q2 are quadratic forms over R. If one of them is indefinite, then

q2 = cq1 with c > 0, and so f is a square. Hence we can assume that q1, q2
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are both psd. If both are sums of two squares, then the same holds for f . If

one qi is a square, we are equally finished.

Assume that q1 is irreducible over C. Hence q1 is a sum of three, but not

of two squares over R. First let q2 be a sum of two squares (not a square).

By simultaneously diagonalizing q1 and q2 we can assume q1 = x2
0 + x2

1 + x2
2

and q2 = a0x
2
0 + a1x

2
1 where 0 < a1 ≤ a0. Then q1 = 1

a0
q2 + p where

p =
(
1− a1

a0

)
x2
1+x2

2 is a sum of two squares, and hence f = q1q2 = 1
a0
q22 +pq2

is a sum of three squares.

It remains to consider the case where both q1 and q2 are irreducible over

C, and hence both are sums of three but not of two squares over R. Here one

can use the following lemma which is an exercise in linear algebra: Let b1, b2
be two positive definite symmetric bilinear forms on R3. For 0 �= x ∈ R3 put

g(x) := b1(x,x)
b2(x,x)

. Then there exist 0 �= x, y ∈ R3 with bi(x, y) = 0 for i = 1, 2

and with g(x) = g(y).

Using this lemma, one shows that there exist linear forms ui (i = 1, . . . , 4)

and a real number c > 0 such that q1 = u2
1+u2

2+u2
3 and q2 = c(u2

1+u2
2+u2

4).

From the identity

(u2
1 + u2

2 + u2
3)(u

2
1 + u2

2 + u2
4) = (u2

1 + u2
2 + u3u4)

2 + (u2
1 + u2

2)(u3 − u4)
2

one concludes therefore that q1q2 is a sum of three squares. (After diagonal-

izing q1 and q2 simultaneously, and after some tedious calculations, one can

write down such a representation explicitly.)
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