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Torsors and Galois cohomology

Let K be a field. Fix a separable closure Ks and denote by ΓK the Galois

group Gal(Ks/K ). Let G be a linear (i.e. smooth and affine) algebraic

group over K . A G -torsor over K is a K -scheme Y equipped with a

faithful and transitive (right) action of G (Ks) on Y (Ks) that is compatible

with the natural (left) action of ΓK :

(1) ∀ y1, y2 ∈ Y (Ks), ∃! g ∈ G (Ks) such that y1.g = y2, and

(2) ∀ y ∈ Y (Ks) , g ∈ G (Ks) , γ ∈ ΓK : γ(y .g) = γ(y).γ(g).
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A G -torsor over K is trivial (i.e., isomorphic to G with the action given by

translation) if and only if it has a K -rational point. The set of isomorphism

classes of G -torsors over K is isomorphic to the first cohomology set

H1(K , G ) :=
{ z : ΓK → G (Ks) | zστ = zσ.

σzτ }
{ z ∼ z ′ ⇐⇒ ∃ g ∈ G (Ks) : zσ = g−1z ′σ

σg }
.

This is a pointed set with the distinguished element corresponding to the

class of the trivial torsor Y = G .
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Example (Description of H1(K , G ))

(1) G = PGLn. The set H1(K , G ) may be identified with the set of

isomorphism classes of central simple K -algebras of dimension n2.

Indeed, PGLn is the (algebraic) group of automorphisms of the algebra

Mn of n × n matrices. The set H1(K , G ) classifies the twisted forms of

Mn, namely, the central simple algebras of dimension n2 over K .

(Since G = PGLn is also the automorphism group of the projective space

Pn−1, we may also regard H1(K , G ) as the set of isomorphism classes of

Severi–Brauer varieties of dimension n − 1 over K .)
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Example (Continued)

(2) (char(K ) 6= 2) G = O(q), the orthogonal group of a nonsingular

quadratic form q over K . Then H1(K , G ) is identified with the set of

isomorphism classes of (nonsingular) quadratic forms of dimension

n = dim q over K .

(3) (char(K ) 6= 2) G = SO(q), the special orthogonal group of a

nonsingular quadratic form q over K . Then H1(K , G ) is identified with

the set of isomorphism classes of (nonsingular) quadratic forms that have

the same dimension and the same determinant as q over K .

HU Yong � ] () Hasse principle for torsors 26 September, 2012 6 / 47



Example (Continued)

(4) Let A be a central simple algebra (CSA) over K . Let G = GL1(A), the

general linear group of A. This is the group defined by

GL1(A)(R) := (A⊗K R)∗ for every commutative K -algebra R .

Then H1(K , G ) = 1 (Hilbert’s Theorem 90).

(5) Let Nrd : A→ K be the reduced norm map of a CSA A over K . Let

G = SL1(A) be the kernel of the induced group homomorphism

Nrd : GL1(A) −→ Gm = GL1(K ). The previous example yields an

identification

K ∗/Nrd(A∗)
∼−→ H1(K , G ) .
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Classical problems

It is not difficult to prove (using the description of H1(K , PGLn)) that if

H1(K , G ) = 1 for all connected semisimple groups G over K , then the

field K must have cohomological dimension ≤ 1.

Conversely, we have the following theorem of Steinberg, which settles

Serre’s Conjecture I.

Theorem (Steinberg, 1965)

Let K be a perfect field of cohomological dimension cd(K ) ≤ 1. Then for

every connected linear algebraic group G/K , H1(K , G ) = 1 i.e. every

G -torsor over K is trivial.
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The two-dimensional analog is the famous Serre’s Conjecture II.

Conjecture II (Serre, 1962)

Let K be a perfect field of cohomological dimension cd(K ) ≤ 2. Then

H1(K , G ) = 1 for every semisimple simply connected group G over K .

This conjecture has been proven in many cases and remains open only for

a few exceptional groups (e.g. E8).

Notice that the conjecture is certainly false if the “simply connectedness”

assumption is removed.

By a theorem of Merkurjev and Suslin, the converse of Conjecture II over a

perfect field is true.
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For fields of cohomological dimension 3, more interesting would be the

problem of Hasse principle.

Let ΩK denote the set of equivalence classes of (rank 1) discrete valuations

of K and let Kv be the completion of K at v for each v ∈ ΩK . A K -variety

X is said to satisfy the Hasse principle (HP) (with respect to ΩK ) if

∏
v∈ΩK

X (Kv ) 6= ∅ =⇒ X (K ) 6= ∅ .

For a torsor Y of a linear algebraic group G/K , one has
∏

v∈ΩK
Y (Kv ) 6= ∅

iff the class [Y ] ∈ H1(K , G ) is in the kernel of the natural map

H1(K , G ) −→
∏

v∈ΩK

H1(Kv , G ) .
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Why p-adic function fields ?

Analogous results over C((t))(C ), C : algebraic curve over the field of

Laurent series C((t)). (Colliot-Thélène–Gille–Parimala, 2004)

(1) H1(K , G ) = 1 for all semisimple simply connected G over

K = C((t))(C ), i.e., Conjecture II is completely solved over C((t))(C ).

(2) The HP for torsors under semisimple absolutely almost simple (not

necessarily simply connected) groups over C((t))(C ).

Nice properties that can be useful in some simplest cases have been

established over p-adic function fields. For example, the arithmetic of

quadratic forms over these fields have been well understood. (More

details later.)
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The Hasse principle conjecture

The main question we’ll discuss from now on is the following conjecture :

Conjecture (Colliot-Thélène–Parimala–Suresh, 2008)

Let K = F (C ) be the function field of an algebraic curve C over a p-adic

field F . Let G be a simply connected semisimple group over K . Then the

G -torsors over K satisfy the Hasse principle. In other words, the kernel of

the natural map

H1(K , G ) −→
∏

v∈ΩK

H1(Kv , G )

is trivial.
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We may (by Shapiro’s lemma) and we will assume G is absolutely simple

(i.e. the root system of GK̄ is irreducible).

Colliot-Thélène, Parimala and Suresh proved their conjecture for

quasi-split groups. (quasi-split = having a Borel subgroup defined over the base field. For Bn, Cn, E7, E8, F4 and

G2, quasi-split⇔ split.)

If G is split (⇔ has a Borel K -subgroup that admits a composition series with quotients Gm or Ga ⇔ (since

G reductive) has a maximal torus which splits over the base field K), they used a patching

method developed by Harbater–Hartmann–Krashen. This argument is

classification-free (and applies to type E8).

If G is (quasi-split and) not of type E8, one may use an injectivity

property of the Rost invariant.
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For an absolutely simple simply connected group G over a field K (which can be

arbitrary for the moment), the Rost invariant is a “functorial map” of pointed sets

RG : H1(K , G ) −→ H3(K , Q/Z(2)) .

We say that it is a cohomological invariant of dimension 3 (with value in

Q/Z(2)). The image of RG lies in the n-torsion part H3(K , Q/Z(2))[n] for

some integer n = nG > 0 depending on G .

If G is quasi-split and not of type E8 and if K is of cohomological

dimension ≤ 3, then RG has a trivial kernel, by the work of Chernousov,

Garibaldi and Gille.
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We have the commutative diagram

H1(K , G ) −−−−→
∏

v H1(Kv , G )y y
H3(K , Q/Z(2)) −−−−→

∏
v H3(Kv , Q/Z(2))

Theorem (Kato, 1986)

For K/Qp(t) finite, the map

H3(K , Q/Z(2)) −→
∏
v

H3(Kv , Q/Z(2))

is injective.

This proves the HP conjecture for quasi-split groups (not of type E8).
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Remark

For quasi-split/split groups of type E8 over p-adic function fields, one

proves the injectivity (i.e. triviality of the kernel) of the Rost invariant by

an argument in the reverse direction : The HP for torsors + extra

(nontrivial) work =⇒ Ker(RG ) = 1. (CT-P-S)

HU Yong � ] () Hasse principle for torsors 26 September, 2012 16 / 47



Main theorem

For not necessarily quasi-split groups, we have the following theorem :

Main Theorem (H., 2012)

Over a finite extension K of Qp(t), the Hasse principle for G -torsors holds

if G is a semisimple simply connected group which has no factors other

than the following

1A∗n,
2A∗n , Bn , C ∗n , D∗n , F red

4 , G2 .
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Explicit description of the groups in the theorem :

(1) 1A∗n : the special linear group SL1(A) of a CSA A over K whose index

ind(A) is square-free ;

(2) 2A∗n : the special unitary group SU(h) of a hermitian form h over a

pair (D, τ), where D is a central division algebra of square-free index

over a quadratic extension L/K and τ is an L/K -involutionon D ;

(3) Bn : the spin group Spin(q) of a quadratic form q of rank 2n + 1 over

K ;

(4) C ∗n : the unitary group U(h) of a hermitian form h over a pair (D, τ)

where D is a quaternion algebra over K and τ is the canonical

(symplectic) involution on D ;
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(5) D∗n : the spin group Spin(h) of a hermitian form h over a pair (D, τ),

where D is a quaternion algebra over K and τ is an orthogonal

involution on D (If D is split, we get the spin group Spin(q) of an even

dimensional quadratic form q/K ) ;

(6) F red
4 : the group of automorphisms Aut(J) of a reduced exceptional

Jordan algebra J of dimension 27 over K ;

(7) G2 : the group of automorphisms Aut(C ) of a Cayley algebra C over

K .
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Remark

By a theorem of Saltman, a central division algebra of exponent 2 over a

p-adic function field K is either a quaternion algebra or a biquaternion

algebra. So for a group of type Cn, say G = U(h) with h a hermitian form

over a symplectic pair (D, τ), the case not covered by our theorem is the

case where D is a biquaternion algebra. Similarly, for a group of classical

type Dn (trialitarian D4 excluded), say D = Spin(h) with h a hermitian

form over an orthogonal pair (D, τ), the remaining case is the one with D

a biquaternion algebra.
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Strategies for the proof

Easy cases : 1A∗n, C ∗n , F red
4 and G2.

• 1A∗n and F red
4 : use cohomological invariants.

For SL1(A), the Rost invariant map

H1(K , SL1(A)) = K ∗/Nrd(A∗) −→ H3(K , Q/Z(2)) ; λ 7−→ (λ) ∪ (A)

is injective when ind(A) is square-free (Suslin).

For F red
4 , use some cohomological invariants of dimension 3 and 5 (f3, f5).
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• C ∗n and G2 : use classification of relevant algebraic objects via quadratic

forms (trace forms of hermitian forms over a quaternion algebra, norm

forms of Calyer algebras) and the injectivity of

I 3(K ) −→
∏
v

I 3(Kv )

(easy consequence of Kato’s theorem).

(Here I 3(K )=the third power of the fundamental ideal I (K ) of the Witt ring

W (K ) of quadratic forms = the subgroup generated by classes of 3-fold Pfister

forms =the subgroup consisting of classes of quadratic forms with even rank,

trivial discriminant and trivial Clifford invariant.)
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Harder cases : Bn, D∗n and 2A∗n of odd index

Sketch of the proof for Spin(q) (∈ Bn ∪ D∗n , q a quadratic form.)

The exact sequence

1 −→ µ2 −→ Spin(q)
Sn−→ SO(q) −→ 1

where Sn is the “spinor norm” map, induces an exact sequence

1 −→ K ∗/K ∗2

Sn(qK )
−→ H1(K , Spin(q))

η−→ H1(K , SO(q)) .
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It suffices to prove 2 HP : one for

Im(H1(K , Spin(q))
η−→ H1(K , SO(q))), the other for K∗/K∗2

Sn(qK ) .

The HP for Im(η) can be proved using the HP for I 3(K ) : If

ξ ∈ H1(K , Spin(q)) has image η(ξ) corresponding to a form q′, then

q′ − q ∈ I 3(K ). (So this HP relies on Kato’s theorem.)
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For the HP for the spinor norms (Ker(η) ∼= K∗/K∗2

Sn(qK ) ),

If dim q < 5, the problem can be reduced to the case of 1A∗n : the

spinor norms can be described in terms of reduced norms of an

associated quaternion algebra D (or of DL, for a quadratic extension

L/K ).

If dim q ≥ 5, the group K∗/K∗2

Sn(qK ) is in fact trivial for our base field. This

is not too difficult to show since we know the u-invariant of K .

(Consider the isotropy of q − α.q for α ∈ K ∗.)
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Theorem (Parimala–Suresh, 2007)

The u-invariant of a finite extension K of Qp(t) for p an odd prime is

u(K ) = 8 (⇒ every quadratic form of rank ≥ 9 over K has a nontrivial

zero).

Two other proofs : Harbater–Hartmann–Krashen, 2008 (for p odd) and

Leep, 2009 (for p arbitrary).
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For groups of the form

Spin(h) (∈ D∗
n , h over a quaternion division algebra with an orthogonal

involution) ; and

SU(h) (type 2A∗
n of odd index, h over a unitary pair (D, τ) with ind(D) odd and

square-free) :

(1) Relative versions of the Clifford invariant and the Rost invariant for

hermitian forms (with respect to involutions of appropriate types).

(2) An exact sequence of Witt groups of Parimala–Sridharan–Suresh, or at

least its simplest form due to Scharlau.

These have been used (and developed) by Bayer-Fluckiger–Parimala in a series of

papers on Serre’s conjecture II and some similar Hasse principle conjectures.
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(3) Merkurjev’s norm principle (for spinor norms of an orthogonal pair) ;

and

(4) A theorem of Bayer-Fluckiger–Lenstra (needed for the case of 2A∗n of

odd index) : the natural map on the Witt groups of a unitary pair induced

by the base change to an odd degree extension is injective.
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The most complicated case turns out to be the case 2A∗n of even index.

Essentially we have to solve the problem for the group G = SU(h), where

h is a hermitian form over a unitary pair (D, τ) of the following form :

D = D0 ⊗K K (
√

d) for a quaternion division algebra D0 = (a, b)K over

K ; τ = τ0 ⊗ ι, where τ0 is the canonical (symplectic) involution of D0 and

ι is the nontrivial element of Gal(K (
√

d)/K ).
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A basic tool : Suresh’s exact sequence (which was used in a paper of

Parimala and Preeti on a similar HP conjecture over functions fields of

curves over number fields)

W (L)
π1−→W (D0 , τ0)

ρ−→W (D , τ)
p2−→W−1(D0, τ0) .

(Here W−1=Witt group of skew-hermitian forms.)
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Construction of the maps in Suresh’s sequence

Since D = D0 ⊕ D0

√
d , for any (V , h) over (D, τ), we may write

h(x , y) = h1(x , y) + h2(x , y)
√

d with hi (x , y) ∈ D0 , for i = 1, 2 .

The projection h 7→ h2 defines a group homomorphism

p2 : W (D, τ) −→W−1(D0 , τ0) .

Similarly, we have projections

π̃i : W (L) = W (K (
√

d)) −→W (K ) ; q 7−→ qi , i = 1, 2 .

We denote by π1 : W (L)→W (D0, τ0) the composite map

W (L)
π̃1−→W (K ) −→W (D0, τ0)

where the map W (K )→W (D0, τ0) is induced by base change.
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Finally, for a hermitian form (V0, f ) over (D0, τ0), set

V = V0 ⊗D0 D = V0 ⊗K L = V0 ⊕ V0

√
d

and let ρ(f ) : V × V → D be the map extending f : V0 × V0 → D0 by

τ -sesquilinearity. One checks that this defines a group homomorphism

ρ : W (D0, τ0) −→W (D, τ) ; (V0, f ) 7−→ (V0 ⊕ V0

√
d , ρ(f )) .

We thus obtain the sequence

W (L)
π1−→W (D0 , τ0)

ρ−→W (D , τ)
p2−→W−1(D0, τ0) ,

which is exact as proved by Suresh.
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Proof of the HP for the group G = SU(h) (of type 2A∗n, with h over

(D, τ) defined as before).

Let T = R1
L/KGm be the norm 1 torus associated to the quadratic

extension L/K := K (
√

d)/K , i.e.,

T := Ker

(
RL/KGm, L

NL/K−→ Gm,K

)
where RL/K denotes the Weil restriction functor.

The exact sequence

1 −→ SU(h) −→ U(h)
Nrd−→ T −→ 1

yields an exact sequence

1 −→ T (K )

Nrd(U(h)(K ))
−→ H1(K , SU(h))

η−→ H1(K , U(h)) −→ 1 .
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First step. The HP for Ker(η) ∼= T (K)
Nrd(U(h)(K)) :

Fact (Merkurjev) : letting h0 =
(

0 1
1 0

)
, one has

Nrd(U(h)(K )) = Nrd (U(h0)(K )) .

=⇒
T (K )

Nrd(U(h)(K ))
↪→ H1(K , SU(h0)) = H1(K , Spin(q)) ,

where

q := 〈1, −d〉 ⊗ nD0 = 〈1, −d〉 ⊗ 〈1 , −a , −b , ab〉 .

The result follows from the HP for the group Spin(q).
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Now it suffices to prove :

Let ξ ∈ H1(K , SU(h)), [h′] := η(ξ) ∈ H1(K , U(h)) and h2 := h′⊥(−h).

Assume ξv = 1 , ∀ v .

Then h′ ∼= h over K , or equivalently, [h2] = 0 in the Witt group W (D , τ)

(of hermitian forms over the unitary pair (D, τ)).

We use Suresh’s exact sequence

W (L)
π1−→W (D0 , τ0)

ρ−→W (D , τ)
p2−→W−1(D0, τ0) ,
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Second step. Prove p2([h2]) = 0 ∈W−1(D0, τ0).

Idea : Use the commutative diagram

W (D, τ)
p2−−−−→ W−1(D0, τ0)y y

W (D ⊗K K (C ) , τ)
p2−−−−→ W−1(D0 ⊗K K (C ) , τ0)

where C ⊆ P2
K is the plane conic associated to the quaternion algebra

D0/K . The vertical map on the right is injective

(Parimala–Sridharan–Suresh). It suffices : [h2] = 0 over K (C ).
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Since D0 splits over K (C ), the question can be transformed into a question

about quadratic forms over K (C ). Recall that h2 comes from a locally

trivial class ξ ∈ H1(K , SU(h)). It turns out that the injectivity of the map

I 4(K (C )) −→
∏
v

I 4(Kv (C ))

yields the desired result.

This HP for I 4 can be proved using :

A Hochschild-Serre spectral sequence+ Merkurjev–Suslin, Voevodsky +

Kato’s theorem.

(The situation here is simplified a lot as C is simply a plane conic !)
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Recall (once again) Suresh’s exact sequence

W (L)
π1−→W (D0 , τ0)

ρ−→W (D , τ)
p2−→W−1(D0, τ0) ,

Step 2 =⇒ [h2] = ρ([h0]) for some [h0] ∈W (D0, τ0). [h2] is locally trivial,

so [h0] lies locally in the image of π1.

Step 3.

Key Lemma

For a hermitian form h0/(D0, τ0) of even rank 2n, one has [h0] ∈ Im(π1) if

and only if the Pfaffian norm Pf(h0) ∈ K ∗/Nrd(D∗0 ) lies in the subgroup

generated by NL/K (L∗).
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Proof of the key lemma :

The “only if” part follows from direct computation.

For the “if” part, use induction on the rank rank(h0) = 2n. If n = 1,

direct computation. When n ≥ 2, one can show that ρ(h0) must be

isotropic using u(K ) < 12. (Restricting ρ(h0) to the 3-dimensional

subspace K .i
√

d + K .j
√

d + K .ij
√

d ⊆ Sym(D , τ) yields a quadratic form

of rank 3.rank(h0).) Then split out a hyperbolic factor from h0 and use

induction hypothesis to conclude.
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Last step (Step 4) : Known [h0] ∈ Im(π1) locally. To Prove :

h0 ∈ Im(π1) = Ker(ρ) (=⇒ [h2] = ρ([h0]) = 0 !)

Proof : λ := Pf(h0) ∈ Nrd(D∗0 ).NL/K (L∗) if and only if the 6-dimensional

form

λ.〈1, −d〉 − nD0

is isotropic.

Immediate from the following

Theorem (CT-P-S, 2008)

The HP for the isotropy of quadratic forms of rank ≥ 3 over K holds.
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Final remarks

In the theorem we have only used local assumptions at divisorial

valuations : v divisorial ⇔ ∃ X regular proper model over Spec(OF ),

such that v = vx for some x ∈ X (1). (Here F is the field of constants

of K , i.e., K = F (C ) for a geometrically integral curve C/F .)

It seems unlikely that the HP conjecture of CT-P-S holds for an

arbitrary reductive (or semisimple) group G , for instance a torus. But

no counterexample is known.
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Using their patching method, Harbater, Hartmann and Krashen

proved a local-global principle with respect to some other families of

overfields than the family {Kv } we consider here. Their results apply

to function fields over a general completely valued field and assume

the group G has some rationality property.

For example, if K = Qp(t) and G is a connected K -rational group, then a

G -torsor over K is trivial if and only if it is trivial over the following two

fields :

K1=the fraction field of the p-adic completion of the ring Zp[t−1] ;

K2 = Frac(Zp[[t]]). (Here the family {K1, K2 } of overfields of K = Qp(t) is

the simplest one, but there are many other choices for the family, even over

a fixed model.)
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Open question : does the HP with respect to discrete valuations hold for

torsors under connected rational groups over K = Qp(t) ?
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Our proof of the main theorem makes use of the following special

properties of p-adic function fields :

(1) Kato’s theorem about the HP for H3(Q/Z(2)) ;

(2) u(K ) = 8 ;

(3) the HP for smooth quadrics of dimension ≥ 1 (i.e. for quadratic

forms of rank ≥ 3). In fact, this last property is only used to treat the

case 2A∗n of even index and only the case of 6-dimensional forms is

needed.
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It is known that properties (1) and (2) also hold in a more local situation :

Let K = Frac(R), R=2-dimensinoal, henselian, excellent local domain

with finite residue field of characteristic p.

Example : R = Zp[[t]], R = Fp[[x , y ]], R=henselization at a closed point of

an algebraic surface over Fp, or R=henselization at a closed point of a

relative curve over Zp.

In this local henselian case, (suppressing mention of characteristic

restrictions)

property (1) : S. Saito (+ ε) ; and property (2) [H., 2011].

If R = A[[t]] (with A=complete DVR with finite residue field), property (3)

is also known ([H., 2010]).
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So, in the local henselian case, (under mild restriction on the residue

characteristic) the HP for G -torsors is true, if G is of one of the following

types :

1A∗n ,
2A∗n of odd index , Bn , C ∗n , D∗n , F red

4 , G2 .

If moreover the HP for 6-dimensional quadratic forms holds over K (e.g.

K = Frac(Zp[[t]]) or K = Fp((x , y))), then the case 2A∗n of even index is

also OK.
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The End !

Thank you !
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