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LECTURES ON LINEAR ALGEBRAIC GROUPS
BEIJING LECTURES, MORNING SIDE CENTRE, APRIL 2007

JEAN-LOUIS COLLIOT-THÉLÈNE

These notes were produced as I was lecturing in Beijing in April 2007. A few
misprints have been corrected, but the notes are not in final form.

1. Some general motivation

I described motivation from two sources:
(i) Over an arbitrary field k: the Lüroth theorem for curves and its failure in higher

dimension: there exist k-unirational varieties which are not k-rational.
(ii) Over a number field k, for a given k-variety, the question of density of the

image of the diagonal map
X(k) →

∏
v

X(kv)

where v runs through the set of all places of k, the field kv is the completion of k at v,
each X(kv) is equipped with the topology induced by that of kv, and the right hand
side is given the product topology. Here is the question is to measure the failure of
weak approximation and of the Hasse principle.

These apparently unrelated problems are sometimes connected: some of the invari-
ants used to show that some k-varieties are not k-rational also play a rôle in detecting
the failure of density in the number field situation. Among such invariants, we find
the Galois action of the absolute Galois group on the Picard group of the variety over
an algebraic closure, the Brauer group of the variety, the quotient X(k)/R of the set
of k-rational points of X by R-equivalence.

Connected linear algebraic groups and their homogeneous spaces are (very) special
examples of geometrically rational varieties, in particular they are special cases of
rationally connected varieties (à la Kollár-Miyaoka-Mori).

Connected linear algebraic groups serve both as examples and as building blocks
in the study of the arithmetic of these much more general varieties.

2. Notation and background

Let k be a field.
A k-variety X is a separated scheme of finite type over the field k. One writes

k[X] = H0(X,OX) for the ring of regular functions on X and k[X]∗ = H0(X,O∗X)
for the multiplicative group of invertible functions on X. For any field F containing
k one lets X(F ) = HomSpeck(SpecF, X) be the set of F -rational points of X.

Given two k-varieties X and Y their fibre product over k is denoted X ×k Y . The
subscript k is sometimes omitted when the context is clear. It is most often omitted
when the field k is algebraically closed.

Let X/k be a k-scheme. For any field extension K/k one writes XK for the fibre
product X ×k K = X ×Speck SpecK.

If k is an algebraic closure of k and X is a k-variety one writes X = X ×k k.
We let k[X] = H0(X,OX) and k[X] = H0(X,OX).
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A scheme is called integral if it is irreducible and reduced.
A k-variety X is called geometrically something if if X is. Something can be any

property: connected, reduced, irreducible, integral, normal, regular. A k-variety is
smooth if and only if it is geometrically smooth. A smooth k-variety is regular. The
converse holds if the ground field is perfect.

A smooth connected k-variety is integral but it need not be geometrically con-
nected. A smooth geometrically connected k-variety is geometrically integral.

Over a nonperfect field k there exist normal, regular k-vareties which are not
geometrically normal, hence not geometrically regular, and thus are not smooth over
k.

For an integral k-variety we let k(X) denote the function field of X and for a
geometrically integral variety, i.e. such that X is integral, we let k(X) be the function
field of X.

Two integral k-varieties X and Y are said to be k-birationally equivalent if their
function fields k(X) and (Y ) are isomorphic (over k). This is equivalent to requiring
that there exist nonempty open sets U ⊂ X and V ⊂ Y which are k-isomorphic.

An integral k-variety is called k-rational if it is k-birational to affine space of the
same dimension. This is equivalent to requiring that the function field k(X) of X is
purely transcendental over k.

If a geometrically integral k-variety is geometrically rational, i.e. X is k-rational,
one often simply says that X is rational. It then need not be k-rational (indeed it
might have no k-rational point). For instance a smooth k-conic is a rational variety,
whether it has a rational k-point or not. It is k-rational if and only if it has a k-point.

An integral k-variety is called k-unirational if there exists a nonempty open set U
of affine space An

k for some integer n and a dominant k-morphism U → X. This is
equivalent to requiring that there is a k-embedding of the function field k(X) into a
purely transcendental extension of k of some degree n. If k is infinite, the assumption
for some n implies the same assumption for n = dimX.

I started with a recapitulation of basic definitions on Cartier divisors, Weil divisors
on an integral variety, the class group and the Picard group. For regular varieties,
Cartier divisors and Weil divisors coincide. A good reference for this is a chapter in
Mumford’s book Curves on an algebraic surface.

For a variety X defined over a field k with separable closure k, the absolute Galois
group g = Gal(k/k) acts on to X ×k k hence on various objects attached to X ×k k.
In this section I collect various general results which will be used later on.

Proposition 2.1. Let k be field, k a separable closure of k and g = Gal(k/k). Let
X/k be a smooth geometrically integral k-variety, X = X ×k k.

Assume that X is smooth.
(i) There is a natural exact sequence

1 → H1(g, k[X]∗) → Pic X → (Pic X)g → H2(g, k[X]∗) → H2(g, k(X)∗).

(ii) If k
∗

= k[X]∗ then we have the exact sequence

0 → Pic X → (Pic X)g → H2(g, k
∗
) → H2(g, k(X)∗).

(iii) If k
∗

= k[X]∗ and X has a k-point then the map H2(g, k
∗
) → H2(g, k(X)∗)

is injective and we have

Pic X ' (Pic X)g.
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(iv) Under the same assumptions as in (iii), there is a natural isomorphism

H1(g,Pic X) ' Ker[H2(g, k(X)∗/k
∗
) → H2(g,DivX)].

Proof. On starts from the exact sequence of Galois modules

1 → k[X]∗ → k(X)∗ → DivX → Pic X → 0,

one breaks it up into two short exact sequences and one applies Galois cohomology.
One uses the following facts. We have DivX = (DivX)g. The Galois module DivX

is a direct sum of permutation modules hence satisfies H1(g,DivX) = 0 (Shapiro’s
lemma). We have H1(g, k

∗
) = 0 and H1(g, k(X)∗) = 0 (Hilbert’s theorem 90).

Statement (ii) is a special case of (i). As for (iii), I refer to [13], Prop. 2.2.2, which
proves that for a geometrically integral k-variety with a smooth k-point, the sequence
of Galois modules

1 → k
∗ → k(X)∗ → k(X)∗/k

∗ → 1
is split. That result is also used in the proof of (iv). �

Remark 2.2. For an arbitrary k-variety X, the spectral sequence

Epq
2 = Hp

et(g,Hq(X, Gm)) =⇒ Hn
et(X, Gm)

gives rise to the long exact sequence

0 → H1(g, k[X]∗) → Pic X → (Pic X)g → H2(g, k[X]∗) → Ker[BrX → BrX]

→ H1(g,Pic X) → H3(g, k[X]∗).
Here BrX = H2

et(X, Gm) denotes the Brauer group of the scheme X.
There is a more general result. Let S/k be a multiplicative k-group. Then there is

an exact sequence

0 → H1(k,H0(X,S)) → H1(X, S) → (H1(X,S))g → H2(k,H0(X,S)) → H2(X, S).

Here cohomology is étale cohomology, and the sequence can be extended to a few
more terms, just as the one for S = Gm.

Proposition 2.3. Let X, Y be two smooth, proper, geometrically integral k-varieties.
Let K/k be a Galois extension with group g (finite or not). If X and Y are k-
birationally equivalent. Then:

(i) There exist finitely generated g-permutation modules P1 and P2 and an isomor-
phism of g-modules

Pic XK ⊕ P1 ' Pic YK ⊕ P2.

(ii) For any closed subgroup h ⊂ g, there is an isomorphism

H1(h,Pic XK) ' H1(h, Pic YK).

Proof. See [13], p. 461-463 (the elegant proof, due to Moret-Bailly, is independent of
the rest of the paper [13]). �

In particular, if X/k is smooth, proper, geometrically integral and geometrically
rational, then

(i) For any field extension K/k the group Pic XK is a torsionfree finitely generated
abelian group.

(ii) If X is k-rational, then for any finite Galois extension K/k with group g,
the g-module Pic XK is stably a permutation module, thus H1(h, Pic XK) = 0 for
any closed subgroup of g. Such statements go back to work of Shafarevich, Manin,
Voskresenskĭı.
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3. Units and the Picard group of products

Proposition 3.1. Let k be an arbitrary field.
(i) Let X/k be a geometrically integral k-variety. Then the quotient k[X]∗/k∗ is a

torsionfree abelian group of finite type.
(ii) Let X/k and Y/k be two smooth geometrically integral k-varieties. Then the

natural map k[X]∗/k∗ ⊕ k[Y ]∗/k∗ → k[X ×k Y ]∗/k∗ is an isomorphism.
(iii) If k is algebraically closed and X/k is a smooth integral variety, then for any

field extension K/k the natural map k[X]∗/k∗ → K[X]∗/K∗ is an isomorphism.
(iv) Let X/k and Y/k be two smooth geometrically integral k-varieties. Assume

that Y is k-birational to affine space. Then the natural map

Pic X ⊕ Pic Y → Pic X ×k Y

is an isomorphism.
(v) Let X/k be a smooth geometrically integral variety. Assume that X is k-rational

and that k is algebraically closed. Then for any field extension K/k the natural map
Pic X → Pic XK is an isomorphism.

Proof. (i) To prove the result, one may replace X by a normal affine open set. One
then takes an integral projective model X ⊂ Z and then one replaces Z by its nor-
malisation. This is a proper, normal, geometrically integral variety. It is actually a
projective variety. There are only finitely many points of codimension 1 in Z \X, let
the associated valuation be v1, . . . , vr. One then has the exact sequence

1 → k[Z]∗ → k[X]∗ → ⊕r
i=1Z

and k∗ = k[Z]∗. This proves (i). (Note that the result is false for nonreduced schemes
such as Spec k[t, ε] with t a variable and ε2 = 0.)

(ii) Let us first assume k separably closed. That the map k[X]∗/k∗ ⊕ k[Y ]∗/k∗ →
k[X ×k Y ]∗/k∗ is injective is essentially obvious. Let f(x, y) ∈ k[X × Y ]∗. Since
X/k is smooth the k-points are Zariski dense. Let us pick (a, b) ∈ X(k)× Y (k). Let
F (x, y) = f(a, b)−1.f(x, b).f(a, y). The quotient f(x, y)/F (x, y) takes the value 1 on
a× Y and on X × b. We want to show that the quotient is equal to 1.

Let Xc resp. Yc be normal projective compactifications of X resp. Y (see above).
The divisor ∆ of the rational function F/f on Zc = Xc×Yc is supported in the union
of (Xc \X)× Yc and Xc × (Yc \ Y ). Assume for instance that f/F has a zero along
an irreducible divisor of the shape D × Yc for D a (Weil) divisor of X. Let U be the
complement in Xc × Yc of the union of all the other components of ∆. This open
set contains X × Y and it meets D × b. The function f/F is a regular function on
U which vanishes on the trace of D × Yc on U . In particular the restriction of f/F
on U ∩ (D × b) vanishes. But this restriction is equal to 1. Thus f/F has no zero of
this shape. The same proof, applies to F/f , shows that f/F has no pole along an
irreducible divisor of the shape D × Yc. And the same argument applies to divisors
of the shape Xc × D with D supported in Yc \ Y . Evaluation at (a, b) shows that
f(x, y) = F (x, y), which proves the claim.

It remains to handle the case of an arbitrary ground field. Let ks be a separable
closure of k and g = Gal(ks/k). Hilbert’s theorem 90 applied to the exact sequence
of g-modules

1 → k∗s → ks[X]∗ → ks[X]∗/k∗s → 1
gives k[X]∗/k∗ ' [ks[X]∗/k∗s ]g. Applying this to X, Y and X ×k Y yields the result.

(iii) Since any field K/k is a union of fields of finite type over k it is enough to prove
the statement for K the function field of a smooth k-variety Y . The group K[X]∗ is
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the union of the groups k[U ×X]∗ for U running through the nonempty open sets of
Y . For V ⊂ U open sets of Y the restriction map k[U×X]∗/k[U ]∗ → k[V ×X]∗/k[V ]∗

is an injection. The quotient K[X]∗/K∗ is the direct limit of these quotients. The
statement now follows from (ii).

Statement (iii) is wrong if one does not assume k algebraically closed, the quotient
k[X]∗/k∗ may increase under finite field extensions K/k.

(iv) One proves that the statement is invariant under restriction of X or Y to a
nonempty Zariski open set. One is then reduced to the statement Pic A ' Pic A[t] for
A a regular ring. This statement is reduced to the statement that Pic K[T ] = 0 for
K a field (the fraction field of A).

(v) One argues just as for (iii). The field K is a union of smooth k-algebras of
finite type over k. For any such algebra A statement (iv) gives an isomorphism

Pic X ⊕ Pic A ' Pic (X ×k A).

If one passes over to the limit over all such A’s, one gets

Pic X ' Pic XK .

�

Exercise. Investigate to which extent the previous proposition extends to geomet-
rically normal k-varieties.

We shall be interested in more general situations than products.

Proposition 3.2. Let k be a field, f : X → Y be a faithfully flat k-morphism of
smooth integral k-varieties. Assume all fibres of f are geometrically integral. Let
K = k(X) be the function field of Y . Let Z = X ×Y K be the generic fibre. There is
a natural exact sequence

0 → k[Y ]∗/k∗ → k[X]∗/k∗ → K[Z]∗/K∗ → Pic Y → Pic X → Pic Z → 0.

Proof. Exercise. �

Proposition 3.3. Assume k is algebraically closed. With notation as in the previous
proposition, assume there exists a smooth integral, k-rational variety W/k such that
Z = W ×k K (which is to say that there exists a nonempty open set U ⊂ Y such that
X ×Y U ' W ×k U as varieties fibred over U ⊂ Y ). Then there is a natural exact
sequence

0 → k[Y ]∗/k∗ → k[X]∗/k∗ → k[W ]∗/k∗ → Pic Y → Pic X → Pic W → 0.

Proof. Given the previous proposition, it is enough to assume that X = Y ×k W
and to show that the natural maps k[W ]/k∗ ' K[W ]∗/K∗ and Pic W ' Pic WK are
isomorphisms. These statements have been proven above. �

References for these results: Rosenlicht, Fossum-Iversen [19], Iversen [23], the pa-
pers in [30], [10].

There are further results on the Picard group of fibrations which are not covered
by the above results, because they handle fibrations which in general are not locally
trivial for the Zariski topology.

Proposition 3.4. (Sansuc) Let k be a field. Let H/k be a connected linear algebraic
group, assumed reductive if char(k) > 0. Given a torsor X over a smooth integral
k-variety Y with group H there is a natural exact sequence of abelian groups

1 → k[Y ]∗/k∗ → k[X]∗/k∗ → Ĥ(k) → Pic Y → Pic X → Pic H → Br Y → Br X.
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Here Ĥ(k) is the group of characters of H defined over k.

Proof. See [33], Prop. 6.10. �

The proof is rather abstract. It would be nice to have a concrete description of the
map Pic H → Br Y .

Proposition 3.5. (Sansuc) Let k be a field. Let 1 → G1 → G2 → G3 → 1 be an
exact sequence of connected linear algebraic groups, assumed reductive if char(k) > 0.
The natural maps give rise to a natural exact sequence of Galois modules

0 → Ĝ3(k) → Ĝ2(k) → Ĝ1(k) → Pic G3 → Pic G2 → Pic G1.

If k = k then the last map is onto.

Proof. Sansuc [33], Corollaire 6.11 et Remarque 6.11.3. �

Proposition 3.6. (Knop–Kraft–Vust) Let k be a field of char. zero, G/k a connected
linear algebraic group and H ⊂ G a not necessarily connected closed subgroup. The
natural maps give rise to a natural exact sequence

Ĝ(k) → Ĥ(k) → Pic G/H → Pic G.

Proof. See [29], Prop. 3.2. The ideas in the proof bear some analogy with the
arguments developed in section 4.4 hereafter. �

Remark 3.7. When H is connected, the above result is covered by Sansuc’s general
result on torsors. The case when H is a finite central group of G will be considered
later in these notes. But the case where H is not connected and not central is not
covered by these other methods.

4. Units, Picard groups and isogenies for linear algebraic groups

4.1. Units of a connected linear algebraic group.

Proposition 4.1. Let G/k be a smooth connected linear algebraic group.
(i) The character group Ĝ = Homk−gp(G, Gm,k) is a torsionfree abelian group of

finite type.
(ii) We have k[G]∗ = k∗.Ĝ: any invertible function which takes the value 1 at the

neutral element is a character.

Proof. It is enough to prove that any f ∈ k[G]∗ which takes the value 1 at the neutral
element e ∈ G(k) is a character. By (ii) of proposition 3.1, the function f(g1.g2) on
G×k G may be written as h1(g1).h2(g2) with h1 ∈ k[G]∗ and h2 ∈ k[G]∗. Evaluating
at g2 = e yields h1 = f , evaluating at g1 = e yields h1 = f . �

4.2. A consequence of Bruhat decomposition.

Proposition 4.2. Let G be a connected linear algebraic group over a separably closed
field k. If char(k) > 0, assume G is reductive (hence smooth).

(i) Then there exists a nonempty open set V of G which is isomorphic to a product
of copies of Ga,k’s and Gm,k’s.

(ii) The function field k(G) of the k-variety G is purely transcendental.
(iii) The Picard group Pic G is finitely generated.
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Proof. (i) Let U be the unipotent radical of G and let Gred denote the quotient of
G by U . The group U can be presented as a sucession of extensions by Ga. This
implies that the k-variety G is k-isomorphic to U ×k Gred and that the k-variety U is
k-isomorphic to a product of copies of Ga,k. One is thus reduced to the case where
G is reductive. If one fixes a maximal torus T of G, there is an associated system
of roots. If one fixes an ordering, this determines a system of positive roots and a
system of negative roots, then an associated Borel subgroup B+ of G, its unipotent
radical U+, the opposite Borel subgroup B−, its unipotent radical U−. There is an
open set V of G, called the big cell, which is isomorphic to the product U+×T ×U−,
the map U+ × T × U− → G being the obvious product. The group U+ is isomorphic
to a product of unipotent groups Ga associated to the positive roots, similarly for
the group U− with the negative roots. For more details, see [1], Cor. 14.14, see also
[38], chapter 8, Cor. 8.3.11. This is connected with the topics discussed in Gille’s
lecture 3 (Bruhat decomposition). The big cell in G is Bw0B where w0 is an element
of the Weyl group (the largest element). For instance, for SL2 it is SL2 \ B, where
B denotes the group of upper triangular matrices.

Assertions (ii) and (iii) immediately follow. �

Remark 4.3. Let G be semisimple. The fibration G → G/B is locally trivial for the
Zariski topology. By a proposition seen earlier this leads to an exact sequence

0 → B̂ → Pic G/B → Pic G → 0,

which may be rewitten as

0 → T̂ → Pic G/B → Pic G → 0.

The map of lattices T̂ → Pic G/B is the characteristic map. The dimension of T is
called the rank of G. If one goes more closely into the combinatorial description of the
cells, one shows that the rank of Pic G/B is also r, from which follows that Pic G is a
finite group. We shall see another proof of this finiteness statement below. Suppose
G almost simple. Let R be the root system associated to B. The lattice Pic G/B is
actually the lattice P (R) of weights of the group G with respect to B. The weight
lattice contains the root lattice Q(R), one has inclusions Q(R) ⊂ T̂ ⊂ P (R). One
shows that T̂ = P (R) if and only if G is simply connected, and that Q(R) = T̂ if and
only if G is adjoint.

(In further developments of these notes, various statements in these notes should
receive complements in the light of the present remark.)

Remark 4.4. Over a field k which is not algebraically closed, a reductive k-group is
k-unirational (as may be proved by using the generic torus over the k-rational variety
of maximal tori), but it need not be k-rational (Chevalley). We shall come back to
such problems.

Over a nonperfect field k a k-group may have only finitely many k-points, in which
case it is certainly not k-unirational. Example:

xp − x− typ = 0

over Fp(t) where Fp is the finite field with p elements.

4.3. Commutativity for π1.

Proposition 4.5. Assume char(k) = 0. Let G/k be a connected algebraic group and
let N ⊂ G be a finite normal k-group. Then N is central in G, and in particular it is
a finite diagonalisable group.
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Proof. We may over to an algebraic closure of k. The conjugation action defines a
k-algebraic homomorphism G → Autk(N). Since the characteristic of k is zero, the
last group is an abstract finite group. Since the group G is connected, this map is
trivial. �

Remark 4.6. In this proposition the group G need not be linear: it could be an
extension of an abelian variety by a connected linear algebraic group.

A similar result is

Proposition 4.7. Let G/k be a connected algebraic group and let M ⊂ G be a normal
k-group of multiplicative type. Then M is central in G.

Proof. The proof is similar, the group of automorphisms of such an M is a discrete
group. Indeed in view of the well-known duality between groups of multiplicative type
and finitely generated Galois modules of finite type, this reduces to the statement that
the group of automorphism of an abelian group of finite type is a discrete group. For
M smooth over k, for instance if char(k) = 0, one could also argue as follows. One
may assume that k is algebraically closed. For any positive integer n, the group of
n-torsion points in S is a finite group, hence central in G by the previous result. But
the union of all n-torsion points is Zariski dense in S, thus S is central. �

There is actually a result more general than Prop. 4.5.

Theorem 4.8. (Miyanishi) Let G be a connected linear algebraic group over an alge-
braically closed field k. If char(k) > 0 assume G reductive. Let X → G be a connected,
étale Galois cover, with group g of order prime to the characteristic exponent of k.
Then the group g is abelian.

Remark 4.9. Over a field k of characteristic zero one may reduce the statement to
the case k = C. Since Grothendieck’s fundamental group of G/C is the profinite
completion of the topological fundamental group of G(C), and since G(C) is connected
as soon as the C-variety G is connected, the result follows from the classical statement:
the (topological) fundamental group π1 of a connected Lie group is commutative. Note
that this proof holds for any connected algebraic group, linear or not.

Remark 4.10. Let Fq be a finite field with q elements. On any Fq-scheme X, raising
coordinates to the power q yields an Fq-morphism ϕq : X → X, the Frobenius mor-
phism. Let G be a connected algebraic group over a finite field Fq. The Frobenius
map ϕq : G → G is an Fq-homomorphism. The morphism τ given by x 7→ ϕq(x).x−1

was considered by Lang, It is some generalisation of the Artin-Schreier map. It is not
in general a homomorphism (check on SL2). It makes G into a torsor over G under
the finite split group G(Fq). If we go over to an algebraic closure k of Fq, this provides
a finite, connected étale, Galois cover of G ×Fq k with group G(Fq). Together with
Miyanishi’s theorem this leads to a hilarious proof of the following statement:

Ldet G/Fq be a connected linear algebraic group. Assume that G(Fq) is not com-
mutative, then either it is a p-group or its p-Sylow subgroups are not normal, in other
words there is more than one such subgroup. In particular p divides the order of
G(Fq).

Remark 4.11. Over an abelian variety, the analogue of Miyanishi’s theorem is a the-
orem of Lang and Serre. I do not know if an algebraic proof for the case of arbitrary
connected algebraic groups is available in the literature.
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From now on by an isogeny of connected linear algebraic groups over a field k of
characteristic zero we shall mean a faithfully flat k-homomorphism G1 → G2 with
(automatically) central finite kernel.

4.4. Torsors over a connected linear algebraic group with structural group
a group of multiplicative type.

Theorem 4.12. Let k be a field. Let G/k be a connected linear algebraic group,
assumed reductive if char(k) > 0. Let S be a smooth k-group of multiplicative type.
Let p : H → G be a torsor over G under S. Assume there exists a k-point eH ∈ H(k)
above the unit element eG ∈ G(k). There then exists a structure of linear algebraic
group on H with neutral element eH , such that the map p : H → G is a homomorphism
of linear algebraic groups with central kernel S.

Proof. We shall give the proof of [8], Thm. 5.6, which is adapted from an argument of
Serre in [34] (over an algebraically closed field, see also [28], Lemma 4.3, and Miyanishi
[31]).

Recall that torsors over a k-variety X under S are classified by the étale cohomology
group H1

et(X, S).
Given a torsor Y over X under the commutative group S, any endomorphism of

Y as a torsor over X is an automorphism given by an element of the group S(X) =
Mork(X, S) (proof by faithfully flat descent). Note that the structural map X →
Speck gives rise to an embedding of groups S(k) ⊂ S(X).

We shall be interested in k-varieties equipped with a marked k-rational point x0.
We then consider the subgroup H̃1

et(X, S) ⊂ H1
et(X, S) consisting of classes trivial at

the point x0: this classifies torsors over X under S whose fibre at the point x0 is in
the trivial class, i.e. has a k-point (but the k-point is not fixed, the set of such points
is then a nonempty principal homogeneous space under S(k)).

For S = Gm, one has Pic X = H1
et(X, Gm) (this is one form of Grothendieck’s

Hilbert’s theorem 90). Let ks be a separable closure of k.
Combining Prop. 3.1 (ii) and (iii) over ks, using the Kummer sequence and using

some Galois cohomology, one checks that Prop. 3.1. (iv) extends to the following
statement: if X and Y are two smooth varieties with a k-point and one of the varieties
becomes rational over a separable closure of k then

H̃1
et(X, S)⊕ H̃1

et(Y, S) ' H̃1
et(X × Y, S).

That is to say: any S-torsor over X ×k Y trivial at x0 × y0 is isomorphic (as S-
torsor) to the sum (as S-torsors) of its restriction to X = X × y0 and its restriction
to Y = x0 × Y .

Given our assumptions on G, we know that G becomes rational over a separable
closure of k. Let us consider multiplication on the rational variety G.

From the above isomorphism applied to X = G and Y = G, one concludes that
the inverse image of the torsor H → G by the multiplication map m : G ×k G → G
is an S-torsor over G×k G which is isomorphic as an S-torsor to the “sum” of the S
torsors H → G under S, gotten by restriction to eG×G and to G× eG, each of them
naturally equal to the original H → G. This is sometimes expressed by saying that
any class in H̃1

et(G, S) is “primitive”.
There thus exists a commutative diagram of morphisms of varieties

ϕ : H × H → H
↓ p ↓ p ↓ p

m : G × G → G,
(4.1)
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where m denotes multiplication on G and ϕ is compatible with multiplication S×S →
S, that is

ϕ(t1h1, t2h2) = t1t2ϕ(h1, h2).
Any vertical morphism H → G in this diagram may be modified by composing with

a morphism H → H given by h → f(h).h, where f is the composition of projection
H → G with a morphism of K-varieties G → S. Indeed such an operation does not
change the class of the S-torsor H → G, and it respects the map p. The only thing
it does is that it changes the morphism ϕ.

We need not have ϕ(eH , eH) = eH ∈ H(k). But we may force this (for a new ϕ)
by using multiplication by ϕ(eH , eH)−1 ∈ S(k) ⊂ S(G) on the right hand side H.

The morphism ϕ(eH , h) : H → H is now a morphism of pointed S-torsors over
G. Thus ϕ(eH , h) = χ2(p(h)).h, where p : H → G denotes the natural projection
and χ2 : G → S is a morphism which sends eG to eS ∈ S(k), hence is a character
(Rosenlicht). In a similar fashion, we have ϕ(h, eH) = χ1(p(h)).h, with χ1 : G → S a
character.

If we replace ϕ(h1, h2) by

[(χ1(p(h1)))−1.(χ2(p(h2)))−1].ϕ(h1, h2),

this gives a new morphism ϕ = H ×H → H which satisfies ϕ(eH , h) = h = ϕ(h, eH).
In other words, eH is now a neutral element for ϕ. This morphism still gives rise
to a commutative diagram as above, that is projection H → G is compatible with
ϕ : H×H → H, with the action of S×S → S and it is compatible (under projection)
with multiplication G×G → G.

Let us prove that the map ϕ is associative.
Let h1, h2, h3 ∈ H. If we use the above diagram, the associativity of multiplication

for G and we use Rosenlicht’s lemma, we see that there exists a morphism of groups
σ : H ×k H ×k H → S such that

ϕ(h1, ϕ(h2, h3)) = σ(h1, h2, h3).ϕ(ϕ(h1, h2), h3) ∈ H.

Now ϕ is compatible with the action of S. Thus σ(t1h1, t2h2, t3h3) = σ(h1, h2, h3).
Hence σ mods out by the action S ×k S ×k S, and it is induced by a morphism of
groups τ : G ×k G ×k G → S. Rosenlicht’s lemma then insures that τ(g1, g2, g3) =
χ1(g1).χ2(g2).χ3(g3), where the χi : G → S are characters.

From ϕ(eH , h) = h = ϕ(h, eH), we get τ(eG, g2, g3) = 1 ∈ S. This proves χ2 = 1
and χ3 = 1. By symmetry, we get χ1 = 1. Thus ϕ is associative.

It remains to show that this law has an inverse. We adapt an argument of Serre
([Se59], Chap. VII, §3, no. 15, Théorème 5, p. 183). Let iG : G → G be the morphism
defined by g 7→ g−1. We first show that the map i∗G : H1(G, S) → H1(G, S) is the
map x → −x. This is not formal, for G an elliptic curve this does not hold in general.
Let α ∈ H1(G, S) be the class of the torsor p : H → G. If we compose the map
G → G × G given by u 7→ (u, u−1) with multiplication m : G × G → G we get the
constant map G → eG.

Since any class α ∈ H̃1(G ×k G, S) is equal to p∗1(α1) + p∗2(α2), where α1 is the
restriction to to G = G× eG and α2 is the restriction to G = eG×G, and p1, resp. p2

is the projection of G×G onto the first, resp. the second factor, we get i∗G(α) = −α.
The isomorphism of commutative groups iS : S → S given by s 7→ s−1 induces a

map (iS)∗ : H1(G, S) → H1(G, S) which is clearly x 7→ −x. Thus i∗G(α) = iS∗(α) ∈
H1(G, S). This gives a morphism θ : H → H above the inverse map G → G, and for
this map we have θ(s.h) = s−1.θ(h). As at the beginning of the argument, we may
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modifiy θ so that it sends eH to eH . The morphism λ : x 7→ ϕ(θ(x), x) sends H to the
inverse image of eG under H → G, i.e. into S. It satisfies λ(s.x) = λ(x). It is thus a
pointed morphism from G to S, i.e. a character χ : G → S. Any character χ : G → S
defines an isomorphism of S-torsors H → H under x → χ(p(x)).x. Let us replace the
pointed isomorphism (of varieties) θ by the map ξ : H → H defined by the pointed
isomorphism (of varieties) ξ(x) = χ(p(x))−1.θ(x). We then have ϕ(ξ(x), x) = eH .
This defines a left inverse for the composition law ϕ on H. As is well known, this is
then also a right inverse for ϕ, which is already associative and has a neutral element.

That the morphism p : H → G is a homomorphism follows from the above diagram.
The group H is now an extension of the connected linear algebraic group G by the

k-group S. It is thus a linear algebraic group.
The conjugation action of H on S mods out to define an action of the connected

group G on S. Any such action is trivial. Thus S is central in H. �

Remark 4.13. There is an analogue of the above result for abelian varieties. But here
one has to restrict attention to certain classes. Typically for an elliptic curve E and
S = Gm one would have to restrict attention to elements of H1(E, Gm) = Pic E of
degree 0. For an abelian variety A, one would restrict attention to Pic 0A ⊂ Pic A.

4.5. The Picard group and central extensions of a connected linear alge-
braic group.

4.5.1. Algebraically closed ground field.

Proposition 4.14. Let k be an algebraically closed field of characteristic zeo. Let
G/k be a connected linear algebraic group. The group Pic G is finite.

Proof. Let L be a line bundle on G, which we view as a Gm-torsor over H → G under
Gm,k. By Hilbert’s theorem 90 the fibre above the point e has a rational point. By the
previous theorem we may equip the k-variety H with the structure of a (connected)
linear algebraic group, in such a manner that the map H → G becomes a group
morphism with central kernel Gm,k. The group Gm,k lies in the centre of H. Let
H ⊂ GL(V ) be a faithful representation. The vector space V breaks up as a sum
of vector spaces Wα ⊂ V upon which Gm acts by different characters and which are
respected by the action of H. At least one of them has a nontrivial action of Gm.
Let us choose one such W . The composite map Gm,k → H → GL(W ) → Gm, where
the last map is the determinant map, is nontrivial. Thus the inverse image of SL(W )
in H is a group H1 which does not contain Gm,k ⊂ H hence has a finite intersection
with Gm,k. The image of the composite map H1 → H → G, by dimension reason, is
G. One then has a commutative diagram

1 → A → H1 → G → 1
↓ ↓ ↓

1 → Gm,k → H → G → 1
(4.2)

where A is a finite commutative k-group of multiplicative type. Thus the pull-back
of the Gm-torsor H → G to the finite cover H1 → G has a section. Since the kernel
of the map

Pic G → Pic H1

is killed by the degree of the map H1 → G, as it would be for any finite flat map, this
shows that Pic G is a torsion group. (One could also invoke Prop. 3.6.)

Note that if we replace H1 by its neutral component H2 we find a central isogeny
of connected groups H2 → G such that the inverse image of L in Pic H2 vanishes.
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As we have shown above, the group Pic G is a group of finite type. Thus Pic G is
a finite group. �

Proposition 4.15. Let k be an algebraically closed field of characteristic zero. Let
G be a connected linear algebraic group over k.

(i) Given an exact sequence

1 → M → G1 → G → 1

with M ⊂ G1 a (central) subgroup of multiplicative type, there is a natural exact
sequence

0 → Ĝ → Ĝ1 → M̂ → Pic G → Pic G1 → 0.

In this sequence the map M̂ → Pic G associates to a character χ : M → Gm the class
of the Gm-bundle G1×M Gm, quotient of the product G×k Gm by the diagonal action
of M .

(ii) There exists an exact sequence

1 → µ → G1 → G → 1

with µ ⊂ G1 a finite central subgroup (of multiplicative type) and with G1 connected
satisfying Pic G1 = 0.

Proof. Let f : G1 → G. If B1 ⊂ G1 is a Borel subgroup then B = f(B1) is a Borel
subgroup of G (see [1] 11.14). Conversely, if B ⊂ G is a Borel subgroup of B then
B1 = f−1(B) is a Borel subgroup of G1. This uses the fact that the kernel M is in
the centre of G1. Let us fix B and B1 as above. Let T ⊂ B and T1 ⊂ B1 be the
maximal tori. There is an induced exact sequence of groups of multiplicative type

1 → M → T1 → T → 1.

(See again [1] 11.14). The fibration G → G/B is locally trivial (Gille 3, Thm.
4.1), so is the fibration G1 → G1/B1. Projection induces a natural isomorphism
G1/B1 ' G/B. We have Pic B = 0. The character group of B coincides with the
character group of T . Using results from section 3 (Prop. 3.3) together with Rosen-
licht’s characterisation of units of connected linear algebraic groups we deduce the
commutative diagram of exact sequences:

0 0
↓ ↓

0 → Ĝ → T̂ → Pic G/B → Pic G → 0
↓ ↓ ↓ ' ↓

0 → Ĝ1 → T̂1 → Pic G1/B1 → Pic G1 → 0
↓ ↓
M̂ 0
↓
0

(4.3)

The snake lemma then yields the exact sequence in statement (i).
Let χ : M → Gm be a character. There exists a character χ1 : B1 → Gm which

induces χ on M . The composite map

G1 ×M Gm → G1 ×B1 Gm → G1/B1 → G/B

coincides with the composite map

G1 ×M Gm → G → G/B.
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This implies that the class of Gm-torsor G1 ×M Gm → G over G is isomorphic to the
class of the Gm-torsor obtained by chasing through the diagram. This completes the
proof of (i).

We know that the Picard group of G is finite. Suppose there exists an element z of
prime order p in Pic G. There exists a µp-torsor over G whose image in Pic G is the
given nonzero class z (Kummer exact sequence in étale cohomology). The total space
of this torsor is connected. Indeed if it were not, there would exist two multisections
of coprime order and z would be zero. By the theorem discussed at the beginning
of the subsection one may equip the k-variety X with the structure of an algebraic
group in such a way that the map X → G becomes a homomorphism of algebraic
groups with (central) kernel µp. The sequence in (i) yields an exact sequence

µ̂p → Pic G → Pic X → 0.

The last sentence of statement (ii) shows that the image of the map µ̂p → Pic G
contains z. Thus the size of Pic X is smaller than the size of Pic G.

If we iterate this process, we get a homomorphism of connected algebraic groups
G1 → G with finite kernel, which we know must be central in G1, and with Pic G1=0.
This proves statement (ii).

Here is an alternative argument which copes with positive characteristic. The
group Pic G is finitely generated. Fix a system of generators. Let z be one of them.
Represent it by a Gm-torsor X over G. The same argument as above shows that X,
which is clearly connected, may be equipped with the structure of an algebraic group
with a homomorphism X → G with central kernel Gm, and the map Pic G → Pic X
kills the generator z. If one uses the fact that an extension of tori is a torus, one
produces a homomorphism G1 → G with kernel a central torus T . One then chooses
a homomorphism G1 → GL(V1)⊕ · · ·⊕GL(Vr) such that the torus T acts on each Vi

by a nontrivial character and the product map of these characters has a finite kernel
µ ⊂ T . One then replaces G1 by the connected component of 1 in the inverse image
G2 ⊂ G1 of the product of the SL(Vi). This gives an exact sequence

1 → µ → G2 → G → 1

(the map G2 → G is onto for dimension reasons). From Pic G1 = 0 we conclude that
the map Pic G → Pic G2 is zero. But this map is onto, as seen above. From a previous
proposition we conclude Pic G2 = 0.

�

Remark 4.16. Let
1 → µ → G1 → G → 1

be an isogeny of connected linear algebraic groups. One then has the exact sequence

0 → Ĝ → Ĝ1 → µ̂ → Pic G → Pic G1 → Pic G → 0.

This should be compared with isogenies of abelian varieties. If one has such an isogeny

1 → µ → A1 → A → 1

then there is a dual isogeny

1 → µ̂ → Pic 0A → Pic 0A1 → 1

where Pic 0A denotes the dual abelian variety of an abelian variety A. Its k-points
coincide with the subgroup of Pic A consisting of classes algebraically equivalent to
zero. Thus one has an exact sequence

1 → µ̂ → Pic A → Pic A1
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but the last map is not onto.

Proposition 4.17. Let k be an algebraically closed field of characteristic zero. Let
G be a reductive group over k. The following properties are equivalent:

(i) The group G is semisimple, i.e. there is no nontrivial connected abelian normal
subgroup of G.

(ii) There is no normal subtorus Gm ⊂ G.
(iii) The centre of G is a finite group scheme.
(iv) The group G is equal to its derived group.
(v) The group G is characterfree.
(vi) Any invertible function on G is constant.

Proof. The radical of a reductive group is known to be the maximal central torus.
Thus (i), (ii) and (iii) are equivalent. Assume (ii). The structure theory of semisimple
groups shows that such groups are spanned by images of homomorphisms SL2 → G
corresponding to the unipotent groups associated to roots. Since SL2 is its own
commutator subgroup, this shows (iv). That (iv) implies (v) is clear. If we have an
exact sequence

1 → Gm → G → G1 → 1

then as seen above there is an exact sequence

Ĝ → Z → Pic G1.

Since Pic G1 is torsion (above) this implies Ĝ 6= 0. Thus (v) implies (ii). Equivalence
of (v) and (vi) is a consequence of Rosenlicht’s result (section 1.2). �

Remark 4.18. The derived group of a reductive group G is reductive. Indeed it
is normal in G thus its unipotent radical (= maximal normal connected solvable
subgroup) is contained in the unipotent radical of G, hence is trivial. In particular,
we see that the derived group of a reductive group is a semisimple group.

Proposition 4.19. Let k be an algebraically closed field of characteristic zero. For
a semisimple group G, the following properties are equivalent:

(i) There is no nontrivial isogeny G1 → G.
(ii) Pic G = 0.
(iii) There is no connected finite étale Galois cover X → G.

Such a semisimple group G is said to be simply connected.

Proof. If there is a nontrivial element of primer order p in the finite group Pic G then
as we have seen in the previous proof one may construct a nontrivial isogeny with
kernel µp. Thus (i) implies (ii). Suppose we have a nontrivial isogeny

1 → µ → G1 → G → 1.

Since G is characterfree the exact sequence considered above gives an injection µ̂ ↪→
Pic G. Thus (ii) implies (i). Miyanishi’s result reduces the problem to the case of a
connected abelian covering. One then applies Theorem 4.9 to equip the torsor with
the structure of an isogeny. �

The following result is often stated without proof.

Proposition 4.20. Let k be an algebraically closed field of characteristic zero and let
G/k be a semisimple group.
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(i) There exists a unique semisimple simply connected group G̃ equipped with a
central isogeny

1 → µ → G̃ → G → 1
and the group together with the map G̃ → G is uniquely defined up to unique auto-
morphism.

(ii) This sequence induces an isomorphism µ̂ ' Pic G.
(iii) Given a central isogeny G̃ → G with G̃ simply connected and any isogeny

H → G there is a unique homomorphism G̃ → H such that the composite map
G̃ → H → G is the given isogeny G̃ → G.

Proof. The iterative process described above shows that there exists an isogeny G̃ →
G with Pic G̃ = 0. Statement (ii) has already been established.

If we prove the statement in (iii) this will prove the unicity (up to unique isomor-
phism) of the cover G̃ → G. As for (ii) we have already established it. Let H → G

be an isogeny with kernel ν. The fibre product G̃ ×G H is a finite étale cover of
G̃ with group ν. By the previous results any such cover completely breaks up as
a disjoint union of varieties isomorphic to G̃. Let us choose the component which
contains the elements (1G̃, 1H). The second projection G̃ ×G H → H gives a mor-
phism G̃ → H which sends 1G̃ to 1H . That this map is a homomorphism follows
from the connectedness of G̃ and the fact that the composition G̃ → H → G is a
homomorphism. �

Proposition 4.21. Let k be an algebraically closed field of characteristic zero. Let
G/k be a reductive group. The quotient of G by its centre is a semisimple group which
is centreless. It is called the adjoint group of G.

Proof. Let Z denote the centre of G. It is known to be a group of multiplicative type.
Let Gad denote the quotient of G by Z. We have the exact sequence

1 → Z → G → Gad → 1.

If there was a normal Ga ⊂ Gad then its inverse image H ⊂ G would be a normal
subgroup which would be a central extension

1 → Z → H → Ga → 1.

Any such extension is split (exercise) as a sequence of groups. Thus there would exist
a normal Ga in G, contradiction. Thus Gad is reductive. Suppose it had a nontrivial
centre M . That centre would be a group of multiplicative type. It would contain a
µp for some prime p. The inverse image H of µp in G would be a normal subroup
of G which would be a central extension of a µp (cyclic) by a group of multiplicative
type, hence it would be a commutative group scheme M1, clearly of multiplicative
type, and stricty bigger than M . As a normal subgroup of multiplicative type in the
connected group G, it would be central, contradiction. �

Let us show that the group SLn (n ≥ 2) is a semisimple simply connected group.
First consider GLn. This is an open set of affine space An2

given by the equation
det 6= 0. This immediately implies Pic GLn = 0. The centre of GLn is the diagonal
Gm. Thus GLn is a reductive group.

It is a known fact that the determinant det is an irreducible polynomial. This
implies that any character of GLn is of the shape detn for some n ∈ Z.

We now look at the exact sequence:

1 → SLn → GLn → Gm → 1,
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given by the determinant. The homomorphism GLn → Gm admits a retraction:
send an element λ ∈ k∗ to the diagonal element (λ, 1, . . . , 1) ∈ GLn. There thus
exists an isomorphism of k-varieties GLn ' SLn × Gm. It is even an isomorphism
of SLn-torsors over Gm. Note (exercise) that there can be no group isomorphism
GLn ' SLn ×Gm.

From section 3 we deduce Pic SLn ⊕ Pic Gm ' Pic GLn = 0 hence Pic SLn = 0.
We also deduce ŜLn ⊕ Z ' ĜLn, and s the map Z → ĜLn is identity, thus ŜLn = 0.

The group SLn, which is reductive (as a normal subgroup of a reductive group) is
thus semisimple and simply connected.

The following basic commutative diagram of exact sequences of algebraic groups
should always be kept in mind:

1 1 1
↓ ↓ ↓

1 → µn → SLn → PGLn → 1
↓ ↓ ↓=

1 → Gm → GLn → PGLn → 1
↓ ↓

Gm = Gm

↓ ↓
1 1

(4.4)

The left exact sequence is the Kummer sequence, the map Gm → Gm is x 7→ xn.
The map GLn → Gm is given by the determinant. Hilbert’s theorem 90 ensures
that the two middle exact sequences define fibrations which are locally trivial for the
Zariski topology.

The centre of SLn is the diagonal µn, and the quotient of SLn by its centre is the
centreless adjoint group PGLn.

Exercise Show that SLn,C is not isomorphic to an affine space Ar
C. In the lecture

I gave two methods.
(i) If there were such an isomorphism it would exist over a ring of finite type

over Z and then by specializing at a maximal ideal one would get an isomorphism
SLn,F ' Ar

F over some finite field F = Fq. One would then have a bijection between
SLn(F) and An(F). But the order of SLn(F) is not a power of q. This argument is
clearly useful in other contexts.

(ii) I discussed the example of X = SL2,C, that is the equation ad − bc = 1.
The Bruhat decomposition here is extremely simple. One had an open set U ⊂ X
isomorphic to A2 ×Gm and the complement is a smooth closed set (given by c 6= 0)
isomorphic to A1 × Gm. Among various possible cohomology theory one can take
étale cohomology with coefficients Z/n and investigate Hi(X, Z/n) by means of the
localization sequence (and the purity theorem). Ignoring twists, part of it is

H2(U, Z/n) → H1(F, Z/n) → H3(X, Z/n).

Now H2(U, Z/n) = H2(Gm, Z/n) using homotopy invariance and H2(Gm, Z/n) = 0
for any number of reasons (we are over an algebraically closed field). But H1(F, Z/n) =
H1(Gm, Z/n) by homotopy invariance and H1(Gm, Z/n) = Z/n as one immediately
checks using the Kummer sequence. Thus H3(X, Z/n) 6= 0. Closer examination
shows that the localisation sequence yields H1(X, Z/n) = 0 and H2(X, Z/n) = 0.
Had we started with PGL2 and the Bruhat decomposition corresponding to projec-
tion PGL2 → P1 we would have had the same argument for H3(X, Z/n) but here the
maps H1(U, Z/n) → H0(F, Z/n) would not have been an isomorphism for n even.
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Exercise. Develop the method to handle arbitrary semisimple simply connected
groups and get Elie Cartan’s result that π3(G(C)) = Z.

(iii) A variant is a result in algebraic K-theory, proved I think by various people
(Deligne, Suslin): For G a semisimple simply connected absolutely almost simple split
group G over a field, we have H1

Zar(G,K2) = Z. That result is a building block in the
definition of the Rost invariant H1(k,G) → H3(k, Q/Z(2)) for G an almost simple
semisimple simply connected group over a field k.

(iv) The methods in (i) and (ii) are not totally unrelated ! Indeed one counts the
number of rational points on a variety over a finite field F by computing alternate
sums of traces of Frobenius acting on étale cohomology (with compact supports) of
the variety over an algebraic closure of F, with coefficients Ql for l different from the
characteristic.

4.6. Arbitrary fields of characteristic zero. Let k be a field of characteristic
zero. This hypothesis will remain in force throughout the subsection. Let k denote
an algebraic closure of k.

Let G/k be a connected linear algebraic group over k.
Over a field k of characteristic zero any algebraic k-group is smooth (Cartier).
One has a series of k-groups associated to the k-group G.

The unipotent radical Ru(G) ⊂ G is the maximal normal connected solvable k-
subgroup of G. One shows that Ru(G)×k k = Ru(G).

There is a natural exact sequence

1 → Ru(G) → G → Gred → 1.

This is the definition of the k-group Gred attached to G.
Any Ga,k-torsor over an affine k-variety is trivial. This implies the same statement

for a U -torsor over an affine k-variety.
Any unipotent group U/k is a successive extension by groups Ga,k.
From this we deduce that the underlying k-variety of Ru(G) is k-isomorphic to

affine space Am
k and that the k-variety G is k-isomorphic to the product of Gred and

Ru(G), hence to the product of Gred and an affine space Am
k .

By definition an algebraic k-group G is called reductive if G is reductive.
By the character group Ĝ of a k-group G we shall means the Galois module provided

by the character group of G.
By definition an algebraic k-group G is called semisimple if G is semisimple.
The group Gred is connected. It is reductive (consider the inverse image of a

would-be normal Ga ⊂ G
red

in G).

Let now G be a reductive k-group. To this group we may associate:
The centre Z. This is the maximal central k-subgroup of multiplicative type in G.
The connected centre Z0. This is the maximal normal k-torus T ⊂ G.
The derived group [G, G] ⊂ G, it is a semisimple group, denoted Gss.
The quotient of G by [G, G], denoted Gtor: this is the maximal quotient of G which

is a group of multiplicative type.
The adjoint group Gad, which is the quotient of G by its centre.
The natural map Gss × T → G is a k-isogeny.
All these data are stable under ground field extension, in particular by going over

from k to k. We let g = Gal(k/k) and G = G×k k.

Proposition 4.22. Given a semisimple k-group G there is a uniquely defined isogeny
Gsc → G from a semisimple simply connected group k-group Gsc → G. The kernel of
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this isogeny is the finite k-group µ of multiplicative type whose character group µ̂ is
the Galois module given by Pic G.

Proof. (Sketch)
Let g = Gal(k/k), and let µ as in the Proposition. we have the spectral sequence

Epq
2 = Hp(g,Hq

et(G, µ)) =⇒ Hn
et(G, µ).

Taking into account H0(G, µ) = µ(k) and µ̂ = Pic G we get the long exact sequence

0 → H1(k, µ) → H1(G, µ) → (H1(G, µ))g → H2(k, µ) → H2(G, µ).

The last arrow is an injection since G(k) 6= ∅. We have H1(G, µ) = HomZ(µ̂,Pic G)
as g-modules. In

(H1(G, µ))g = Homg(µ̂, Pic G) = Homg(Pic G, Pic G),

we have the identity map, which corresponds to the simply connected cover of G
(which is uniquely defined). Thus this class comes from an element in H1(G, µ),
which we may modify by adding an element in H1(k, µ) so that its fibre at the point
eG is trivial. Let H → G be a corresponding torsor under µ. By the work in section
4, there is a group structure on H for which the map H → G is an isogeny with kernel
µ. That the cover H → G is the simply connected cover of G is clear by going over
to k.

�

Proposition 4.23. Let G/k be a connected linear algebraic group.
(i) The group Pic G is finite.
(ii) If G is semisimple, the natural map Pic G → Pic G induces an isomorphism

Pic G ' (Pic G)g.
(iii) If G is a k-torus T , the natural map H1(g, k[G]∗) → Pic G induces an iso-

morphism H1(g, T̂ ) ' Pic T .

Proof. From section 2 we get an exact sequence

0 → H1(g, k[G]∗) → Pic G → (Pic G)g → H2(g, k[G]∗) → H2(g, k(G)∗).

From the split exact sequence

1 → k
∗ → k[G]∗ → Ĝ → 1

we deduce H1(g, k[G]∗) = H1(g, Ĝ). Since Ĝ is a finitely generated torsion free g-
module, the group H1(g, Ĝ) is finite. We already know that Pic G is finite. Thus
Pic G is finite. If G is semisimple, then k

∗
= k[G]∗ and since G has a k-point, from

section 2 the above sequence yields (ii). As for (iii) it simply follows from Pic T = 0
for T a torus. �

5. Flasque resolutions of tori

Let g be a profinite group. Given a g-lattice M we have the dual g-lattice M0 =
HomZ(M, Z). The action is given by (σ.f)(m) = f(σ−1.m). The dual lattice of a
permutation lattice is a permutation lattice.

A g-lattice M is called coflasque if H1(h, M) = 0 for any closed subgroup h of g.
A g-lattice M is called flasque if M0 is coflasque.

A permutation lattice is both flasque and coflasque.
Let T be a k-torus and X a smooth k-compactification of T , that is a smooth,

projective k-variety X in which T lies a dense open set.
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It is known that such (equivariant) compactifications exist ([14]) in arbitrary char-
acteristic. (It is much to be regretted that the same statement cannot be written for
an arbitrary reductive k-group, although the experts are convinced it could be put
together from the literature.)

Given the open set T ⊂ X as above we have the basic exact sequence

k[X]∗ → k[T ]∗ → Div∞X → Pic X → Pic T

reduces to the short exact sequence of g-lattices

0 → T̂ → Div∞X → Pic X → 0.

The middle term is a permutation module, it is the finitely generated free abelian
group on the codimension 1 points of X \ T . Let us call it P̂ , and let us write
Pic X = F̂ . We thus have the exact sequence of g-lattices

0 → T̂ → P̂ → Ŝ → 0

and the dual sequence
0 → Ŝ0 → P̂ 0 → T̂ 0 → 0,

where P̂ 0 is a permutation lattice, since P̂ is.
This sequence has been much investigated by Voskresenskĭı.

Theorem 5.1. (Voskresenskĭı) Let k be a field, k a separable closure, g = Gal(k/k).
T a k-torus and X a smooth k-compactification of T . Then the g-lattice Pic X is
flasque.

Proof. For a k-torus T , the following conditions are equivalent: T̂ g = 0 or (T̂ 0)g = 0.
Such a k-torus is called anisotropic (over k).

(a) Let us first assume that the k-torus T is anisotropic. If we apply Galois coho-
mology to the second sequence we find an exact sequence

(T̂ 0)g → H1(g, Ŝ0) → H1(g, P̂ 0)

hence H1(g, Ŝ0) = 0.
(b) Let T be an arbitrary k-torus. It is split by a finite Galois extension K/k

with Galois group G. Let N =
∑

s∈G s. The image of multiplication by N on T̂ is a
sublattice of T̂ with trivial G-action. Its kernel is a lattice L such that LG = 0. Thus
any k-torus T can be put in an exact sequence of k-tori

1 → T0 → T → T1 → 1

where T0 is split, i.e. isomorphic as a k-torus to a product of copies of Gm,k and T1 is
anisotropic. Now Hilbert’s theorem 90 implies that there is a k-birational equivalence
between T and T0×k T1. Let X0, resp X1 be smooth compactifications of T0 resp. T1.
For X0 we may take a projective space. The g-lattice Pic X0 is the trivial g-lattice
Z. By the results in section 2 and 3 there exists an isomorphism of g-lattices

Pic X ⊕ L1 ' Pic X1 ⊕ Z⊕ L2,

where L1 and L2 are permutation g-lattices. From the result for the anisotropic torus
T1 we conclude H1(g, (Pic X)0) = 0.

(c) Let now K ⊂ k be a field extension and let h = Gal(k/K). We may apply the
previous argument to the K-torus TK . This yields H1(h, (Pic X)0) = 0. �

Recall ([10], [12], Gille’s talks):
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Proposition 5.2. Let 0 → L → L1 → M1 → 0 and 0 → L → L2 → M2 → 0 be
exact sequences of g-lattices. If L1 and L2 are permutation lattices and M1 and M2

are flasque then there is an isomorphism of g-lattices

L1 ⊕M2 ' L2 ⊕M1.

Proposition 5.3. (Endo-Miyata) Let G be a finite group. Let L be a G-module of
finite type. For each subgroup H ⊂ G choose a free Z-lattice NH with a surjective
map NH → MH . The kernel of the surjective map of G-lattices

⊕H⊂GZ[G/H]⊗Z NH → M,

where H runs through the subgroups of G and MH is considered as a G-lattice with
trivial action, is a coflasque lattice.

By the duality L 7→ L0 for G-lattices we get a similar systematic way of constructing
a flasque resolution of a given G-lattice M , that is an exact sequence of G-lattices

0 → S → P → M → 0

with S flasque and P permutation.
For later use let us also recall another result of Endo and Miyata. Given a G-module

of finite type M there exists an exact sequence of G-modules

0 → P → S → M → 0

with S a flasque G-lattice and P a permutation lattice.
For all this see [12].
Note also that if G is quotient of g then a flasque resolution of a G-lattice L is a

flasque resolution of L as a g-lattice.

Let g be a profinite group. Given a continuous discrete g-module M and i = 1, 2,
one defines the group Shai

ω(M) as the subgroup of elements of Hi(g,M) which vanish
under restriction to arbitrary procyclic subgroups of g. Suppose g acts on M through
a finite quotient G. Then Sha1

ω(g,M) = Sha1
ω(G, M). If moreover M is a finitely

generated g-lattice, then Sha2
ω(g,M) = Sha2

ω(G, M).

Theorem 5.4. Let k be a field, k/k a separable closure, g = Gal(k/k).
(i) For any k-torus T there exists an exact sequence of g-lattices

0 → T̂ → P̂ → F̂ → 0

where P̂ is a permutation module and F̂ a flasque module.
(ii) The class of the g-lattice F̂ is well defined up to addition of a permutation

lattice. We shall denote it by p(T ) or p(T̂ ).
(iii) The class p(T ) can be computed by a purely algebraic process.
(iv) If X is a smooth compactification of T , the natural sequence

0 → T̂ → Div∞X → Pic X → 0

is a flasque resolution of T̂ . Thus Pic X is in the class p(T ).
(v) Let T1, T2 be k-tori. Then p(T1) = p(T2) if and only if the k-tori T1 and T2

are stably k-rationally equivalent, that is, for some integers r and r, there exists a
k-birational equivalence between T1 ×k Gr

m,k and T2 ×k Gs
m,k.

(vi) Let T1, T2, T3 be k-tori. If T3 is k-birational to T1 ×k T3 then p(T3) = p(T1)⊕
p(T2). In other words, the class p(T ) is additive on k-birational equivalence classes
of k-tori.

(vii) p(T ) = 0 if and only if T is stably k-rational.
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(viii) p(T ) is invertible if and only if there exists a k-torus T1 such that T ×k T1 is
k-birational to affine space.

(ix) Let K/k be the (finite) splitting field of ak-torus T . Let G = Gal(K/k). let
X be a smooth compactification of T . The k-birational invariant H1(g,Pic X) =
H1(g, p(T )) is isomorphic to Sha2

ω(G, T̂ ).

Proof. Points (i) to (iv) have been proved. Points (vi) and (vii) are direct conse-
quences of (v). So is (viii), one one notices that the class of any invertible g-lattice L
is of the shape p(T ) for some torus T (simply take the kernel of a surjection from a
permutation lattice to L, for instance a permutation lattice Lwhich contains L as a
direct factor).

So let us prove (v). If T1×Gr
m is k-birational to T2×Gr

m , then one considers smooth
compactifications X1 of T1 and X2 of T2. One then has a k-birational equivalence of
smooth proper k-varieties between X1 ×K Pr

k and X2 ×K Ps
k. One then applies Prop.

3.3 and get that the Galois modules Pic X1 and Pic X1 are equal up to addition of a
permutation module. By (iv), this proves p(T1) = p(T2).

Conversely, assume p(T1) = p(T2). We can then produce a commutative diagram
of exact sequences

0 0 0
↑ ↑ ↑

0 → T̂1 → P̂1 → Ŝ → 0
↑= ↑ ↑

0 → T̂1 → M̂ → P̂2 → 0
↑ ↑
T̂2 = T̂2 → 0
↑ ↑
0 0

(5.1)

The g-lattice M̂ is the fibre product of P̂1 and P̂2 above Ŝ.
One then goes over to k-tori. One has the commutative diagram of exact sequences

of k-tori

1 1 1
↓ ↓ ↓

1 → S → P1 → T1 → 1
↓ ↓ ↓=

1 → P2 → M → T1 → 1
↓ ↓
T2 = T2

↓ ↓
1 1

(5.2)

The k-tori P1 and P2 are dual of permutation modules. Thus there are quasitrivial
tori, i.e. products of k-tori RK/kGm,K for various finite separable extensions K/k.

Lemma 5.5. Let P be a quasitrivial k-torus.
(i) The k-variety P is an open set of affine space over k, hence is k-rational.
(ii) If Y → X is a torsor over a k-variety under P , then it is Zariski locally trivial.

Proof. The first statement is obvious. Hilbert’s theorem 90 together with Shapiro’s
lemma ensure that for for any field L containing k, and any such k-torus P , one has
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H1(L, P ) = 0. The second statement follows from a variant of this. We use the fact
that the Picard group of a semilocal ring is trivial. �

Thus for any exact sequence of k-tori

1 → P → M → T → 1

with P quasitrivial, the fibration M → T is split over the generic point of T (in fact
everywhere locally) and the k-variety M is k-birational to the product P ×k T .

If we apply this to the middle sequences in the above diagram we find that T1×k P2

is k-birational to M which is k-birational to T2 ×k P1. This proves (v).
Let us prove (ix). Consider a flasque resolution, for instance the one given by

geometry,

0 → T̂ → P̂ → Ŝ → 0.

Since P̂ is a permutation module, we have H1(G, P̂ ) = 0. Given a G-lattice L there
is a duality between the cohomolgy group H1(G, L) and the Tate cohomology group
Ĥ−1(G, L0). For a cyclic group, Tate cohomology is periodic of period 2. From this
we deduce that H1((g), Ŝ) = 0 for any element g ∈ G. One also checks that for a
permutation module P̂

Ker[H2(G, P̂ ) →
∏
g∈G

H2(G, P̂ )] = 0.

Indeed one uses Shapiro’s lemma to reduce to the case P̂ = Z with trivial G-action
and then the statement reduces to the fact that a homomorphism from G to Q/Z
which is trivial on elements of G is trivial. Applying these facts and cohomology to
the flasque resolution yields the result. �

Let us discuss a basic example. Let K/k be a finite Galois extension of fields. Let
G = Gal(K/k). Let T = R1

K/kGm be the norm 1 torus. By definition we have the
exact sequence of k-tori

1 → T → RK/kGm → Gm,k → 1.

The associated sequence of character groups is the sequence of G-lattices

0 → Z → Z[G] → JG → 0,

where the map Z → Z[G] sends 1 to NG =
∑

g∈G g. The dual sequence, in the sense
of L 7→ L0, is the sequence

0 → IG → Z[G] → Z → 0,

where the map Z[G] → Z is the augmentation map sending
∑

g∈G ngg ∈ Z[G] to∑
g∈G ng ∈ Z.
There is a natural map of G-lattices Z[G×G] → Z[G] sending (g, h) to g−h. One

easily checks that the image is IG ⊂ Z[G]. Let QG denote the kernel of this map. We
thus have a long exact sequence

0 → QG → Z[G×G] → Z[G] → Z → 0.

We may also consider the dual sequence, in the sense of lattices. It reads

0 → Z → Z[G] → Z[G×G] → SG → 0.
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Proposition 5.6. With the above notations, we have
(i) The G-lattice QG is coflasque.
(ii)The G-lattice FG is flasque.
(iii) p(R1

K/kGm) = p(JG) = [FG].
(iv) For any subgroup H ⊂ G, we have H1(H, p(R1

K/kGm)) ' H3(H, Z).

Proof. At this point these results easily follow from what we have done. See [10],
Prop. 1, p. 183. Note that statement (iv) directly follows from the formula

H1(H, p(R1
K/kGm)) ' Sha2

ω(G, JG)

and the exact sequence 0 → Z → Z[G] → JG → 0: we do not need to produce the
flasque resolution to get this result. �

As a consequence, if K/k is a biquadratic extension, that is (assuming char(k) 6= 2)
if K = k(

√
a,
√

b) with a, b, ab nonsquare in k, then H1(G, p(R1
K/kGm)) = H3(Z/2×

Z/2, Z) = Z/2. Thus this k-birational invariant is not zero and the k-torus R1
K/kGm)

is not k-rational.
Thus we now have an example of a reductive k-group, in fact a torus, which is

k-unirational (as all are) but which is not k-rational. This example has a long history
(Chevalley, Voskresenskĭı).

Remark 5.7. As Voskresenskĭı remarked, the question of rationality of function fields
of tori turned out to be related with a classical problem, often referred to as the
(Emmy) Noether problem. Let k be a field and G be a finite group. One asks
whether the field of invariants (k(xs)s∈G)G is purely transcendental over k. For G
an abelian group of order prime to the characteristic of k, that field is the function
field of a certain k-torus TG. Thus the technique above may help to decide whether
(k(xs)s∈G)G is purely transcendental or not.

If k is algebraically closed and G abelian then the field of invariants is purely
transcendental.

For k = Q and G = Z/8, Voskresenskĭi showed H1(g, p(TG)) 6= 0, hence the field
of invariants is not purely transcendental over Q.

For k = Q and G = Z/47, Swan showed p(TG) 6= 0. The proof is harder, indeed in
this case p(TG) is invertible.

Let G = Z/n. Fix a primitive n-th root ζ of 1 in k. The character group of the
torus TG is defined by the following exact sequence

0 → T̂G → ⊕i∈Z/nZ.ζi → µn → 0,

where the map ⊕i∈Z/nζi → µn sends
∑

i niζ
i to (ζ)

P
nii. The middle term is clearly

a permutation module for the action of the Galois group of k(ζ)/k. The dual exact
sequence of k-groups of mutiplicative type reads

1 → Z/n → P → TG → 1,

with P a quasitrivial torus. One checks that the field extension k(P )/k(TG) is the field
extension (k(xs)s∈G)/(k(xs)s∈G)G. From this sequence we see that the k-birational
invariants H1(g, p(TG)), which we know is isomorphic to Sha2

ω(g, T̂G), is isomorphic
to Sha1

ω(g, µn).
In the lecture, I explained how for k = Q and G = Z/8 Wang’s counterexample to

Grunwald’s theorem yields a (seemingly) different proof of the non-Q-rationality of
(Q(xg)g∈G)G.
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For more on the whole topic, see Voskresenskĭı’s book [40].

A flasque resolution of a k-torus T is an exact sequence of k-tori

1 → S → P → T → 1,

with P̂ a permutation module and F̂ a flasque module. The existence and near unicity
of such resolutions has been proven above: S is well defined up to multiplication by
a quasitrivial torus.

At this point, let us explain the terminology “flasque”. On smooth integral k-
varieties, the functor X 7→ H1

et(X, Gm) = H1
Zar(X, Gm) satisifies the following prop-

erty: if U ⊂ X is a nonempty open set, then the restriction map Pic X → Pic U
is surjective, i.e. H1

et(X, Gm,k) → H1
et(U, Gm,k) is surjective. In this last state-

ment, we cannot replace Gm,k by an arbitrary k-torus T , as easy examples show.
There are “residues” which may prevent an element of H1

et(U, T ) to come from an
element of H1

et(X, T ). This is analogue to the fact that H1
et(X, µn) may not surject

onto H1
et(U, µn) because k[X]∗/k[X]∗n need not surject onto k[U ]∗/k[U ]∗n (think of

U = Gm ⊂ A1).
But we have

Proposition 5.8. (CT-Sansuc) Let U be an open set of a smooth k-variety X. Let
S/k be a flasque k-torus. Then the restriction map

H1
et(X, S) → H1

et(U, S)

is surjective.

Proof. See [10], Pop. 9 p. 194. �

Thus a torsor over U under a flasque torus S is isomorphic to the restriction of a
a torsor over X under S.

In his lectures, Gille defined R-equivalence on the set of k-rational points of an
arbitrary k-variety. This defines a set X(k)/R. Gille explained that for a connected
k-group G this yields a group G(k)/R.

He also stated one of the main theorems of [10]:

Theorem 5.9. Let
1 → S → P → T → 1

be a flasque resolution of the k-torus T . Then the boundary map in Galois cohomology

T (k) → H1(k, S)

induces an isomorphism of groups

T (k)/R
'→ H1(k, S).

Proof. (Sketch, see [13], Lemme 1.6.2 p. 392) That the map is onto follows from
H1(k, P ) = 0 (Hilbert’s theorem 90), which thus gives an isomorphism T (k)/im(P (k)) '
H1(k, S). Because P is an open set of affine space, there is a surjective homomorphism
T (k)/im(P (k)) → T (k)/R. That the homomorphism T (k)/im(P (k)) ' H1(k, S) fac-
tors through T (k)/R is a consequence of the fact that S is flasque. Indeed the whole
thing reduces to the following statement: for an open set U of affine line A1

k, the
composite map H1(k, S) → H1(A1

k, S) → H1(U, S) is onto. The first map would be
onto for any k-torus F . That the second one is onto is a special case of the previous
proposition. �
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Once one has this result, one immediately the corollary.

Corollary 5.10. Let T/k be a torus. If T (K)/R = 1 for any field K containing k
then there exists a k-torus T ′ such that T ×k T ′ is k-rational.

Proof. Consider a flasque resolution

1 → S → P → T → 1.

Let K be the function field of T . If we apply the hypothesis we find H1(K, F ) = 0
hence P (K) → T (K) onto. But that is saying the torsor P → T admits a section
over an open set, hence the quasitrivial P , which is an open set of affine space, is
k-briational to the product T ×k S. This is enough to conclude. Note that in this
case Ŝ is a direct factor of a permutation module. �

Whether a reductive k-group G which satisfies G(K)/R = 1 for any field K con-
taining k is a k-birational direct factor of a k-rational variety is not known.

While we are on it, let us mention another remarkable property of flasque tori.

Theorem 5.11. Let k be a field finitely generated over the prime field. Let S be a
flasque k-torus. Then the group H1(k, S) is finite.

Proof. See [10], Thm. 1, p. 192. The key ingredients are two classical finiteness
theorems: the generalised unit theorem (combination of Dirichlet’s units theorem and
geometry) and the Mordell-Weil-Néron theorem (incorporating the finite generation
of Néron-Severi groups). �

Remark 5.12. For a recent discussion of the finiteness theorems involved, see Bruno
Kahn, Bulletin SMF, 2007.

Remark 5.13. For a quasitrivial torus P , one has H1(k, P ) = 0 over any field so the
result is trivial. Suppose that K/k is a finite extension of number fields. Let R1

K/kGm

be the k-torus which fits into the exact sequence

1 → R1
K/kGm → RK/kGm → Gm,k → 1,

where the map RK/kGm → Gm,k is given by the norm. Then k∗/NK∗ ' H1(k,R1
K/kGm).

For K/k Galois classical tools of number theory (Chebotarev) show that this quotient
is infinite. (Note: for general K/k it is also known that this quotient is infinite, but
the proof uses the classification of finite simple groups.)

What is striking is that there are tori which lie in between these two extremes:
H1(k, S) is finite, but need not be zero.

Corollary 5.14. Let k be a field finitely generated over the prime field. Then for any
k-torus T the quotient T (k)/R is finite.

We like to view this result as an analogue of the Mordell-Weil theorem.
Whether the same results holds for arbitrary reductive group is an open problem.

The case where k is a number field was established by P. Gille. More on this below.
There are other fields k of interest for which one can prove that H1(k, S) is finite

if S is a flasque torus. See [9], Theorem 3.4.
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6. Flasque resolutions of connected linear algebraic groups

It has turned out relatively recently ([BoKu], [8]) that much of the theory developed
for tori in the 70’s extends to arbitrary connected linear algebraic groups.

For simplicity, we shall from the very beginning restrict attention to fields of charac-
teristic zero. As usual, much of the theory can be developed in positive characteristic
provided one restricts attention to reductive groups.

6.1. The Picard group of a smooth compactification.

Theorem 6.1. (Borovoi–Kunyavskĭı) Let k be a field, char(k) = 0. Let G/k be a
connected algebraic group over k. Let X be a smooth, proper k-compactification of G.
Then the Galois module Pic X is flasque.

Proof. Note that the char. zero assumption enables us to use Hironaka’s theorem:
any smooth k-variety admits a smooth compactification. One immediately reduces to
the case where G is reductive.

If G is quasisplit, i.e. admits a Borel subgroup B defined over k, with maximal torus
T , the Bruhat decomposition shows that G contains an open set k-isomorphic to the
product of the k-torus T and an affine space. Let Y be a smooth k-compactification
of T . By arguments already explained this implies that Galois module Pic X up to
addition of a permutation module is isomorphic to Pic Y . And we know that the
latter one is flasque. Thus Pic X is flasque (this easy argument is already in [10]).

Let now G/k be an arbitrary reductive group. Let Z denote the algebraic k-
variety of Borel subgroups of G. This is k-variety which over k is isomorphic to
G/B for B ⊂ G a Borel subgroup. Let K = k(Z) denote the function field of
this geometrically integral k-variety. Let k(Z) denote the function field of Z. The
Galois group of k(Z)/k(Z) coincides with the Galois group of k over k. Let K be an
algebraic closure of k(Z). Since X is a smooth, projective, rational k-variety, we have
isomorphisms

Pic X ×k k
'→ Pic X ×k k(Z) '→ Pic X ×k K

given by the natural maps. The k(X)-variety Z ×k k(Z) has an obvious rational
point. Thus G ×k k(Z) contains a Borel subgroup over k(Z). It follows that the
The Gal(K/k(Z))-lattice Pic X ×k K is flasque. But the action of Gal(K/k(Z)) on
Pic X ×k K is given by the the action of Gal(k(Z)/k(Z)) on Pic X ×k k(Z), which
is itself given by the action of Gal(k/k) on Pic X ×k k. Thus the Gal(k/k)-lattice
Pic X ×k k is flasque. �

Remark 6.2. The trick of going to the generic point of some auxiliary geometrically
integral k-variety is a very useful one.

We now proceed to the generalisation of flasque resolutions to arbitrary reductive
groups.

6.2. Quasitrivial groups. We need a substitute for the notion of a quasitrivial torus.

Definition 6.3. A smooth geometrically integral k-variety is called quasitrivial if it
satisfies the two properties

(i) The Galois lattice k[X]∗/k
∗

is a permutation lattice.
(ii) Pic X = 0.

Proposition 6.4. Let X be a smooth quasitrivial k-variety.
(i) Any open set of X is quasitrivial.
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(ii) If T is a flasque k-torus or if k
∗ '→ k[X]∗ the restriction map H1(k, T ) →

H1(X, T ) is an isomorphism.
(iii) Under any of the two previous hypotheses any torsor over X under T is iso-

morphic to the product of X and a principal homogeneous space E over k under T .

See [8], §1.

Definition 6.5. A reductive group H/k is called quasitrivial if its underlying k-
variety is quasitrivial. This is equivalent to the combination of the two hypotheses:

(i) The character group Ĥ is a permutation module.
(ii) Pic H = 0.

Condition (i) is equivalent to the condition that Htor is a quasitrivial torus.
Condition (ii) is equivalent to the condition that the semisimple group Hss =

[H,H] is simply connected.
See [8], §2.
A typical example is the group GL(D) for D an arbitrary central simple algebra

over k.

Proposition 6.6. Let
1 → G1 → G2 → G3 → 1

be an exact sequence of reductive groups. If G1 and G3 are quasitrivial, so is G1.

See [8], §2. The proof is a direct application of Sansuc’ exact sequence (§3).

6.3. Flasque resolutions.

Theorem 6.7. Let G be a reductive k-group. There exists a flasque k-torus S, a
quasitrivial linear algebraic group H and a central extension of k-groups

1 → S → H → G → 1.

See [8], §3.
The proof uses the following fact: for an arbitrary k-group of multiplicative type

M there exists an exact sequence of k-groups of multiplicative type

1 → M → S → P → 1

with S a flasque k-torus and P a quasitrivial torus. This is proved by a variant of the
Endo–Miyata argument.

Such an exact sequence is called a flasque resolution of the group G.

Proposition 6.8. Let G be a reductive k-group. Suppose given two flasque resolutions

1 → S1 → H1 → G → 1

and
1 → S2 → H2 → G → 1.

Let Pi denote the quasitrivial torus Htor
i . Then

(i) There exists an isomorphism of k-groups S1 ×k H2 ' S2 ×k H1.
(ii) The semisimple k-groups Hss

1 and Hss
2 are naturally isomorphic.

(iii) There exists an isomorphism of Galois modules

Ŝ1 ⊕ P̂2 ' Ŝ2 ⊕ P̂1.

(iv) Let T∗ denotes the cocharacter group of a k-torus T . There exists a natural
isomorphism between the Galois modules Coker[S1,∗ → P1,∗] and Coker[S2,∗ → P2,∗].
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See [8], §3.

From a flasque resolution 1 → S → H → G → 1 we can recover the group Pic G.

Proposition 6.9. Let G be a reductive k-group. Let 1 → S → H → G → 1 be
a flasque resolution of G. Let P be the quasitrivial torus Htor. The kernel of the
composite map S → H → P is finite and there is a natural exact sequence

P̂ g → Ŝg → Pic G → 0.

Proof. See [8], Prop. 3.3. �

Let 1 → S → H → G → 1 be a flasque resolution of a reductive group G. From
this sequence we deduce a commutative diagram of homomorphisms of k-groups

1 1 1
↓ ↓ ↓

1 → µ → Gsc → Gss → 1
↓ ↓ ↓

1 → S → H → G → 1
↓ ↓ ↓

1 → M → P → Gtor → 1
↓ ↓ ↓
1 1 1

(6.1)

Here P = Htor is a quasitrivial torus, M is the kernel of the natural map Htor →
Gtor. It is a k-group of multiplicative type. Inspection of the diagram shows that it
is a quotient of S, hence is a k-torus.

In the case G = PGLn, we have the flasque resolution

1 → Gm → GLn → PGLn → 1

and the diagram above reduces to the one displayed earlier on: (here PGLtor
n = 1).

1 1 1
↓ ↓ ↓

1 → µn → SLn → PGLn → 1
↓ ↓ ↓=

1 → Gm → GLn → PGLn → 1
↓ ↓

Gm = Gm

↓ ↓
1 1

(6.2)

and for D a central simple algebra over a field k one gets a similar diagram with
G = PGL(D).

Let q be a non degenerate quadratic form of rank at least 3 over a field k of
characteristic different from 2. Another example is the following diagram discussed
in Gille’s lecture, and which involves the Clifford group Γ+(q).
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1 1 1
↓ ↓ ↓

1 → µ2 → Spin(q) → SO(q) → 1
↓ ↓ ↓=

1 → Gm → Γ+(q) → SO(q) → 1
↓ ↓

Gm = Gm

↓ ↓
1 1

(6.3)

In all these cases the k-group H happens to be a k-rational variety. But so do the
groups G in each of these three cases.

When the rank of q is even, Gille also described the diagram

1 1 1
↓ ↓ ↓

1 → µ2 → SO(q) → PSO(q) → 1
↓ ↓ ↓=

1 → Gm → GO+(q) → PSO(q) → 1
↓ ↓

Gm = Gm

↓ ↓
1 1

(6.4)

This is not a diagram associated to a flasque resolution of PSO(q).
Problem Write down a flasque resolution of PSO(q).

6.4. The algebraic fundamental group.

Definition 6.10. Let 1 → S → H → G → 1 be a flasque resolution of the reductive
group G. Let P = Htor. The algebraic fundamental group of G is the Galois module
which is the cokernel of the map S∗ → P∗. It is denoted π1(G).

This definition makes sense since we have seen earlier that this cokernel does not
depend on the flasque resolution of G. One checks that the map S∗ → P∗ is injective.
We thus have:

Proposition 6.11. There is an exact sequence

0 → S∗ → P∗ → π1(G) → 0.

It is a coflasque resolution of the Galois module π1(G).

By definition, π1(G) is a finitely generated Galois module. This is not a profinite
group. There is a connexion with Grothendieck’s profinite group (see below).

Such a group has been considered by Borovoi, with a different definition. One may
show that the two definitions agree.

Proposition 6.12. Let G/k be a reductive group. The finite abelian groups Pic G
and (π1(G)g)tors are dual to each other.

Proof. See [8], Prop. 6.3. �
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Proposition 6.13. Let G/k be a reductive group. Let µ denote the kernel of the
isogeny Gsc → Gss. There is a natural exact sequence of Galois modules

0 → µ(−1) → π1(G) → Gtor
∗ → 0.

Proof. See [8], Prop. 6.4. By definition µ(−1) = Homk(µN , µ) for N a positive
integer which is a multiple of the order of the k-group scheme µ. �

Remark 6.14. Thus for G = T a torus, π1(T ) is the group of cocharacters of T . For G
a semisimple group, the group π1(G) is a twisted version of the group µ. For instance
for G = PGLn, we have π1(G) = Z/n with the trivial action of the Galois group.

Corollary 6.15. Let G/k be a reductive group.
(i) G is semisimple if and only if π1(G) is finite.
(ii) G is (semisimple) simply connected if and only if π1(G) = 0.
(iii) The group π1(Gss) coincides with the torsion of π1(G).
(iv) G is quasitrivial if and only if π1(G) is a permutation module.

Proof. See [8], Prop. 6.5. �

Proposition 6.16. Assume char(k) = 0. The profinite completion of π1(G) is iso-
morphic, as a Galois module, with

πGroth
1 (G)(−1) = Hom(Z(1), πGroth

1 (G)).

Proof. See [8], Prop. 6.7. One proves H1(G, µn) ' HomZ(π1(G), Z/n). �

Let k = C. Xu Fei asks whether there is an isomorphism between π1(G) as defined
above and the topologival πtop

1 (G(C)). This looks likely, the question is then to define
a natural map between the two which will be an isomorphism.

6.5. More geometry. Assume char(k) = 0.
Let G/k be a reductive algebraic group and X a smooth k-compactification of G.

Let 1 → S → H → G → 1 be a flasque resolution of G. We have seen that the class of
the flasque lattice Ŝ is well defined up to addition of a permutation module. On the
other hand by the Borovoi–Kunyavskĭı theorem the Galois lattice Pic X is flasque.
For G a k-torus we have seen that the class of Pic X coincides with that of Ŝ. It is
harder to prove:

Theorem 6.17. The Galois modules Ŝ and Pic X are isomorphic up to addition of
permutation lattices.

Proof. [8], §5. The proof conjugates Theorem 4.11 of the present notes and the
properties of “universal torsors” over rational varieties ([13]). I went through most of
the argument. A key point is that the underlying variety of a universal torsor over X
is a quasitrivial variety ([13]). �

This theorem implies ([8], Thm. 7.1 and Thm. 7.2, see also [Bo–Ku]).

Proposition 6.18. Let G/k be a reductive algebraic group and 1 → S → H → G → 1
a flasque resolution of G Let X be a smooth compactification of G. Then the k-
birational invariant H1(g,Pic X) is isomorphic to

(i) the group H1(g, Ŝ);
(ii) the group Sha1

ω(g,HomZ(π1(G), Q/Z)).
(iii) If G = T is a k-torus, it is isomorphic to Sha2

ω(k, T̂ ).
(iv) If G is semisimple with fundamental group µ, it is isomorphic to Sha1

ω(k, µ̂).
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Remark 6.19. This proposition has several aspects.
(i) In principle, it enables to compute the k-birational invariant H1(k,Pic X) with-

out having to construct an explicit smooth compactification of G.
(ii) It shows that the groups H1(k, Ŝ) and Sha1

ω(g,HomZ(π1(G), Q/Z)) are k-
birational invariants of a k-group G which vanish if G is k-rational. It would be
interesting to give a direct proof of that result.

(iii) Formula (ii) is a common generalisation of formula (iii), which we saw earlier,
and a formula for a semisimple group G, which we now discuss. We start from a
smooth compactification G ⊂ X. One the has the short exact sequence

0 → Div∞X → Pic X → Pic G → 0

which reads
0 → Div∞X → Pic X → µ̂ → 0.

This leads to an isomorphism between Sha1
ω(k,Pic X) and Sha1

ω(k, µ̂. If we know
H1(H,Pic X) = 0 for procyclic closed subgroups H of the Galois group, then we get

H1(k,Pic X) ' Sha1
ω(k, µ̂).

The required vanishing is a consequence of the fact that Pic X is flasque (Borovoi–
Kunyavskĭı, above).

(iv) We have already seen examples of k-tori which are not k-rational. The formula
in (iv) enables us to give examples of semisimple k-groups which are not k-rational.
Indeed let µ be a finite k-group of multiplicative type such that Sha1

ω(k, µ̂) 6= 0. Let
K/k be the (finite) splitting field of µ̂. Then we may embed µK centrally into some
SLn,K , over K. One then central embeddings µ ⊂ RK/k(µK) ⊂ RK/kSLn,K . Let G
be the cokernel of the composed map. Then G is semisimple, its fundamental group
is µ hence the k-birational invariant does not vanish on G, the k-group G is not k-
rational. The nonvanishing of Sha1

ω(k,Pic X) is enough to conclude, one need not
know that Pic X is flasque.

The group which we have produced (using a well known method, see counterexam-
ples to the Hasse principle in Serre’s Cohomologie Galoisienne [35]) is neither simply
connected not adjoint. Indeed in the simply connected case, for any smooth compact-
ification X of G, the Galois module Pic X is a permutation module. In the adjoint
case, one may show that Pic X is a direct factor of a permutation module. I do
not know whether it may fail to be stably a permutation module (which would then
prevent k-rationality).

For directions to totally explicit examples with Sha1
ω(k, µ̂) 6= 0, see [33], p. 35, [8]

p. 188, also my paper in Inventiones math. 159 (2005) p. 601.

6.6. Galois cohomology: arbitrary fields. Let as before G/k be a reductive group
over a field k of characteristic zero. Let

1 → S → H → G → 1

be a flasque resolution of G. The group H fits into the exact sequence

1 → Hss → H → Htor → 1,

the group Hss is simply connected, the torus P = Htor is a quasitrivial torus.
Since S is central in H, the flasque resolution gives rise to an exact sequence of

groups
1 → S(k) → H(k) → G(k) → H1(k, S)
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which is itself part of an exact sequence of pointed Galois cohomology sets

1 → S(k) → H(k) → G(k) → H1(k, S) → H1(k, H) → H1(k,G) → H2(k, S) (8.1)

The fibres of these various applications can be described more precisely (Serre, [35],
chap. I, §5). In particular any fibre of the map H1(k, G) → H2(k, S) either is empty
or is a quotient of a set H1(k, cH) by an action of H1(k, S), the group cH being
obtained from H by torsion by an element c ∈ Z1(k, S). One checks that cH is also
a quasitrivial group.

We also have an exact sequence of groups

1 → Hss(k) → H(k) → Htor(k)

which is part of an exact sequence of pointed sets

1 → Hss(k) → H(k) → Htor(k) → H1(k,Hss) → H1(k,H) → H1(k,Htor).

Hilbert’s theorem 90 enables us to rewrite this sequence of pointed sets as

1 → Hss(k) → H(k) → Htor(k) → H1(k,Hss) → H1(k,H) → 1 (8.2)

Theorem 6.20. Let G/k be a reductive group over a field k.
(i) A flasque resolution 1 → S → H → G → 1 of a reductive k-group G induces

an exact sequence of groups

H(k)/R → G(k)/R → Ker[H1(k, S) → H1(k,H)] → 1.

(ii) The quotient of G(k)/R by the image of H(k), that is the image of G(k) in
H1(k, S), is an abelian quotient of G(k)/R which is independent of the chosen flasque
resolution.

(iii) If k is finitely generated over the prime field, of is finitely generated over an
algebraically closed field of char. zero, then this quotient is finite.

Proof. See [8], Thm. 8.1. The key point is that the map G(k) → H1(k, S) mods out
by R-equivalence, and this follows from the fact that H → G is a torsor over G under
the flasque torus S. �

For G a reductive group over a field as in the previous theorem, it is an open
problem whether the group G(k)/R is finite. The previous proposition reduces the
question to the case of a quasitrivial group. I do not know how to reduce the general
problem to the case of a semisimple group. For a special class of fields, which includes
the case of totally imaginary number fields, we can manage, thanks to work of P. Gille
[15], [16], [17].

6.7. Galois cohomology: good fields of cohomological dimension 2. Let us
start with a definition.

By a good field of cohomological dimension at most 2 we shall mean a field k of
characteristic zero which satisfies the following properties:

(a) The cohomological dimension of k is at most 2.
(b) Over any finite extension K of k, index and exponent of central simple algebras

over K coincide.
(c) The maximal abelian extension of k is of cohomological dimension 1 (this hy-

pothesis is used only when the groups under consideration contain some factor of type
E8).

Totally imaginary number fields satisfy these properties. Nonarchimedan local
fields satisfy these properties. A theorem of de Jong says that function fields in (at
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most) 2 variables over an algebraically closed field satisfy these properties. For each
of these three classes of fields, for any flasque k-torus S, the group H1(k, S) is finite.

The following result is due to Gille ([15], [16], [17]). A minor variation is the general
hypothesis on the field k in (iv) and (v), which appeared in [9] and [8].

Let k be a field. Let F be a covariant functor from k-algebras to sets. Let R0,1

be the semi-local ring of the affine line A1
k at the points 0 and 1. Two elements

a, b ∈ F (k) are called elementarily equivalent if there exists an element α ∈ F (R0,1)
such that α(0) = a and α(1) = b. R-equivalence on F (k) is the equivalence relation
generated by this elementary relation.

Theorem 6.21. (Gille) Let k be a field. Let

1 → G → H → T → 1

be an exact sequence of connected reductive k-groups with T a torus. For any com-
mutative k-algebra let C(A) = Im[H(A) → T (A)] = Ker[T (A) → H1

ét(A,G)].
(i) There is an exact sequence

G(k)/R → H(k)/R → C(k)/RC(k) → 1.

(ii) For any finite field extension L/k we have inclusion of groups NK/k(RC(K)) ⊂
RC(k) ⊂ RT (k) ⊂ T (k).

(iii) If G is simply connected and K/k is a field extension such that GK is quasisplit
then NK/k(RT (K)) ⊂ RC(k) ⊂ C(k) ⊂ T (k).

(iv) Assume that G is simply connected and that k is a good field of cohomolog-
ical dimension at most 2. Then Galois cohomology of the above sequence yields an
isomorphism H(k)/R

'→ T (k)/R.
(v) Let H be a quasitrivial group over a field k which is a good field of cohomological

dimension at most 2. Then H(k)/R = 1.

Proof. (Sketch) I refer to Gille’s last lecture (and the references therein) for the proofs
of (i), (ii), (iii).

For k as in (iv) and (v), Serre’s conjecture II holds, i.e. H1(k,G) = 0 for any
semisimple simply connected group G. For k a p-adic field, this is Kneser’s theorem;
for general fields one uses the Merkur’ev-Suslin theorem. There is work of Suslin,
Bayer-Parimala, Gille, Chernousov. See [9], Thm. 1.2, for more details.

This implies C(k) = T (k).
Given a k-variety X one associates the subgroup NX(k) ⊂ k∗ spanned by the

images of the subgroups NK/kK∗ ⊂ k∗ for all the finite field extensions K/k such
that X(K) 6= ∅. Let XG denote the variety of Borel subgroups of G.

For G = SL(D), with D a central simple algebra, NXG
(k) is the image of the

reduced norm D∗ → k∗. The quotient k∗/NXG
(k) thus coincides with H1(k, SL(D)).

As mentioned above, this set is here reduced to one element. Thus NXG
(k) = k∗.

We have a similar result if we replace Gm,k(k) = k∗ by P (k) for P a quasitrivial
torus: the subgroup of P (k) spanned by the norms of all P (K) for K/k finite with
XG(K) 6= ∅ is the whole of P (k).

For an arbitrary semisimple simply connected group G, Gille [16] shows that Serre’s
conjecture II, known with our hypotheses, implies the same result .

Let
1 → S → P → T → 1

be a flasque resolution of the k-torus T . For any extension K/k, the group RT (K) ⊂
T (K) is the image of P (K).
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If we apply (iii), we see that the subgroup of T (k) spanned by the NK/k(RT (K))
for K/k runnning through the extensions such that GK is quasisplit coincides with
the subgroup of T (k) spanned by the norms in T (k) of the images of P (K) in T (K)
for K/k running through such extensions. By what we have just seen, for k as in the
Theorem, this is the image of P (k) in T (k), thus P (k) = RT (k) is included in RC(k).
But the inclusion RC(k) ⊂ RT (k) is obvious.

Thus C(k)/RC(k) = T (k)/RT (k). Combining this with (i) we get the exact se-
quence

G(k)/R → H(k)/R → T (k)/R → 1.

For a good field of cohomological dimension at most 2, and G a semisimple simply
connected group, one has G(k)/R = 1.This result again has a long history, for which
we refer to [9], Thm. 4.5.

Together with the previous exact sequence, this proves (iv).
As for (v), this is a direct consequence of (iv).

�

The following result is essentially due to Gille.

Corollary 6.22. Let k be a good field of cohomological dimension at most 2. Let
G/k be a reductive group and

1 → S → H → G → 1

be a flasque resolution. Then
(i) The induced map G(k)/R → H1(k, S) is an isomorphism.
(ii) If k a totally imaginary number field, or a p-adic field, or a function field in

at most two variables over an algebraically closed field, the group G(k)/R is a finite
abelian group.

Proof. This immediately follows from the two previous results, and the finiteness of
H1(k, S) for a flasque torus over a field as in (ii), already mentioned. �

Remark 6.23. The flasque resolutions of groups as presented here were defined in [8]
after Gille’s work, so the presentation by Gille was slightly different.

Proposition 6.24. Let k be a field, G a connected reductive group and

1 → S → H → G → 1

a flasque resolution of G. Let P = Htor. Such a resolution induces a map

H1(k, G) → Ker[H2(k, S) → H2(k, P )].

A fibre of this map either is empty or is a quotient of a set H1(k,c Hss) for a suitable
semisimple simply connected group cH

ss. There is a natural map

Ker[H2(k, S) → H2(k, P )] → Hom(Pic G, Br k).

The composite map
H1(k,G) → Hom(Pic G, Br k)

does not depend on the choice of the flasque resolution of G. These maps induce a
complex of pointed sets

H1(k, Hss) → H1(k,G) → Hom(Pic G, Br k).
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Proof. See [8], Prop. 8.2. and Prop. 8.3. Among other things, the proof uses the
exact sequence

(P̂ )g → (Ŝ)g → Pic G → 0

(Prop. 6.9 above). �

A variant of the next proposition first appeared in [2].

Proposition 6.25. Let k be a field, G/k a connected reductive group and

1 → S → H → G → 1

a flasque resolution of G. Let P = Htor. Assume that k is a good field of cohomological
dimension at most 2. Such a resolution induces a bijection between the set H1(k, G)
and the group Ker[H2(k, S) → H2(k, P )].

Proof. See [8], Thm. 8.4. The surjectivity statement requires the work in [9] and
heavy noncommutative Galois cohomology (bands). �

6.8. Galois cohomology: Number fields. Let G be a connected reductive group
over a number field k.

There are three basic topics we are interested in here.
(i) Problems about R-equivalence. Structure of the group G(k)/R, finiteness, size,

comparison between the global group G(k)/R and the local groups G(kv)/R.
(ii) Problems of weak approximation. Given a finite set S of places of k, is the

image of the diagonal map

G(k) →
∏
v∈S

G(kv)

dense (for the product of the local topologies) ?
(iii) The Hasse principle. If a principal homogeneous space (= torsor) E under G

has rational points in all completions kv of k, does it have a point in k ? The set
H1(k,G) classified all such torsors up to nonunique isomorphism. The Hasse principle
holds for all torsors if and only if the natural map

H1(k,G) →
∏

v

H1(kv, G)

is trivial.

6.8.1. Simply connected groups, quasitrivial groups. I will first list the basic arithmetic
tools which will be used as black boxes in the study of this problem for arbitrary linear
algebraic groups. As the reader will see in the next subsubsection, Galois cohomology
together with class field theory reduces the study of the above problem to the case of
semisimple simply connected groups, a case which must be handled by direct methods.

Theorem 6.26. (Kneser, Bruhat–Tits) Let G be a semisimple, simply connected
group over a nonarchimedean local field k. Then H1(k, G) = 0, any torsor under G
is trivial, i.e. has a k-point.

Kneser proved this theorem by a case by case argument. Bruhat and Tits gave a
unified proof. This was discussed by Gille in his lectures.

As indicated in the previous section, the result holds in the more general context of
good fields of cohomological dimension 2 (work of Merkur’ev-Suslin, Bayer–Parimala,
Gille, Chernousov). In this general context only a case by case argument is known.
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Theorem 6.27. (Kneser, Platonov) Let G be a semisimple, simply connected group
over a number field k. Then weak approximation for G holds with respect to an
arbitrary finite set S of places of k.

I will come back to this theorem in a later lecture.

Theorem 6.28. (Eichler, Landherr, Kneser, Harder, Chernousov) Let G/k be a
semisimple, simply connected group over a number field k. Then the Hasse principle
holds for torsors under G. More precisely, the diagonal map

H1(k,G) →
∏

v real

H1(kv, G),

where v runs through the real places of k, is a bijection.

I will not discuss the long proof of this deep theorem, which requires a case by case
discussion. I refer to Kneser’s Tata lecture notes for classical groups and to the book
[32] (Platonov and Rapinchuk) for the general case.

Theorem 6.29. Let H be a quasitrivial reductive group over a field k. Then
(i) For k a p-adic field, H1(k,H) = 1.
(ii) For k a number field, weak approximation holds for H.
(iii) For k a number field, the diagonal map

H1(k,H) →
∏

v real

H1(kv,H)

is a bijection of finite sets.

Proof. See [8], Prop. 9.2. Note that the proof of (ii) is an elementary case of the
fibration method. It uses both the Hasse principle and weak approximation for the
simply connected group Hss, and it uses weak approximation for the quasitrivial torus
P .

�

Theorem 6.30. (Combination of work of many people) Let G be a semisimple, simply
connected group over a number field k.

(i) The group G(k)/R is finite.
(iii) If the group G is almost k-simple and isotropic, G(k)/R = 1.
(iii) If k is totally imaginary, G(k)/R = 1.
(iv) If G has no factor of type E6, then G(k)/R = 1.
(v) For H/k a quasitrivial reductive group over a number field the analogues of

these four results hold.

Proof. (Indications)
(i) This is an immediate consequence of a general (ergodic) theorem of Margulis:

if G/k is an almost simple simply connected group G over a number field k then any
normal subgoup of G(k) either is contained in the centre of G(k) or is of finite index
in G(k).

The next results rely on a case by case discussion.
(ii) This is essentially a consequence of the Kneser–Tits conjecture, according to

which for an isotropic absolutely almost simple group G, the group G(k) is generated
by its unipotent subgroups. Over an arbitrary field, this conjecture is wrong (coun-
terexamples were provided by Platonov). Over a number field it has been proved
for all simple groups except for some of type E6. There is a long history. That
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G(k)/R = 1 also for type E6 was proved by Chernousov and Timoshenko ([3], Thm.
2.12).

(iii) This is a special case of a result which holds for arbitrary good fields of co-
homological dimension at most 2, and which involves the work of many people (for
references see [9], Thm. 4.5.)

(iv) For this result and its relation with the Platonov-Margulis conjecture on the
structure of normal noncentral subgroups of G(k), see [32] and [3].

(v) Starting from the previous results the proof is achieved by a variant of the
method of Thm. 6.21. See [17].

�

A curious question remains: in the E6-case, over a formally real number field k, is
the group G(k)/R commutative ?

6.8.2. General reductive groups. We first discuss R-equivalence. The following theo-
rem, except for the presentation by means of flasque resolutions of groups, is due to
P. Gille ([15], [17]).

Theorem 6.31. Let G be a reductive group over a number field k. The group G(k)/R
is finite. More precisely, a flasque resolution

1 → S → H → G → 1

induces an exact sequence of finite groups

Hss(k)/R → G(k)/R → H1(k, S) → 1,

where Hss, the derived group of H, is a simply connected group.

Proof. See [15], [17] and [8], Thm. 9.3. The Hasse principle for torsors of quasitrivial
groups is used to prove that the map G(k) → H1(k, S) is surjective (only the real
places are involved, and for such a place the flasque kv-torus Skv

is quasitrivial, hence
H1(kv, S) = 0). �

We turn to weak approximation.
The following result elaborates on the one given in [8], Thm. 9.4 (i).

Theorem 6.32. Let G be a reductive group over a number field k. Let

1 → S → H → G → 1

be a flasque resolution of G. Let Σ be a finite set of places of k. Then
(i) The closure of the image of the map G(k) →

∏
v∈Σ G(kv) coincides with the

inverse image under the map
∏

v∈Σ G(kv) →
∏

v∈Σ H1(kv, S) of the image of the map
H1(k, S) →

∏
v∈Σ H1(kv, S).

(ii) The closure of the image of the map G(k) →
∏

v∈Σ G(kv) is a normal subgroup.
The quotient AΣ(G) of

∏
v∈Σ G(kv) by the closure of the diagonal image of G(k) is a

finite abelian group isomorphic to the cokernel of H1(k, S) →
∏

v∈Σ H1(kv, S).
(iii) The set Σ0 of places v such that H1(kv, S) 6= 0 is finite. It is contained in the

set of places which are ramified in the splitting field of the k-torus S.
(iv) For any finite set Σ containing Σ0, the natural projection AΣ(G) → AΣ0(G) is

an isomorphism of finite abelian groups. One therefore writes A(G) = AΣ0(G). The
finite abelian group A(G) is isomorphic to the cokernel of the diagonal map of finite
groups

H1(k, S) →
∏

v∈Σ0

H1(kv, S).
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(v) For any finite set Σ1 of places of k such that Σ0 ∩Σ1 = ∅, weak approximation
holds for Σ1: the diagonal map

G(k) →
∏

v∈Σ1

G(kv)

has dense image.

Proof. One uses the commutative diagram of exact sequences

H(k) → G(k) → H1(k, S) → H1(k,H)
↓ ↓ ↓ ↓∏

v∈Σ H(kv) →
∏

v∈Σ G(kv) →
∏

v∈Σ H1(kv, S) →
∏

v∈Σ H1(kv,H)
(6.5)

The maps G(k) → H1(k, S) and G(kv) → H1(kv, S) are onto. One thus has the
commutative diagram of exact sequences

H(k) → G(k) → H1(k, S) → 1
↓ ↓ ↓∏

v∈Σ H(kv) →
∏

v∈Σ G(kv) →
∏

v∈Σ H1(kv, S) → 1
(6.6)

Weak approximation at any finite set of places for the quasitrivial group H enables
one to prove all statements. For more details, see [8], Thm. 9.4. (i) �

Remark 6.33. (a) The nonobvious fact that the closure of G(k) in
∏

v∈Σ G(kv) is
normal follows directly from our formalism.

(b) Statement (v) says that G satisfies weak-weak approximation, i.e. weak ap-
proximation anywhere outside of a fixed finite set of places of k. This property still
holds for homogeneous spaces of a connected linear algebraic group when the geo-
metric stabilizers are connected. It is an open question whether it holds when the
geometric stabilizers are finite. If the answer were positive, any finite group would be
a Galois group over Q. This is a famous open question.

We now discuss kernel and cokernel of the map

H1(k,G) →
∏
all v

H1(kv, G)

for an arbitrary reductive group G. The question about the kernel is that of the
Hasse principle for torsors of G. The question regarding the cokernel was considered
by Kottwitz around 1986.

Theorem 6.34. Let G be a reductive group over a number field k. Let

1 → S → H → G → 1

be a flasque resolution of G.
(i) This sequence induces a bijection between the set Sha1(k, G) and the finite

abelian group Ker[H2(k, S) →
∏

all v H2(kv, S)].
(ii) This sequence induces an exact sequence of pointed sets

H1(k,G) → ⊕all vH1(kv, G) → Hom(Pic G, Q/Z).

Proof. The injection in (i) follows from what has been done so far. The proof of the
other statements uses further tools, due to Kneser, Harder, Sansuc and Borovoi. See
[8], Thm. 9.4. �
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Remark 6.35. Satement (i) is a variant of a result of Sansuc ([33]).
Statement (ii) is a variant of a theorem of Kottwitz. Its proof builds upon the toric

version of class field theory, due to Tate and Nakayama, as applied to the torus S.
The sequence itself is a “reciprocity sequence” which in the case of G a torus boils
down to a direct consequence of Tate-Nakayama.

Tate-Nakayama is also used in the proof of the following result ([8], Thm. 9.4.)

Corollary 6.36. (Sansuc) Let G be a reductive group over a number field. Let X be
a smooth compactification of G. There is an exact sequence of finite abelian groups

0 → A(G) → Hom(H1(k,Pic X), Q/Z) → Sha1(k,G) → 0.

For G a torus, this sequence was found by Voskresenskĭı. Sansuc extended the
result to arbitrary (connected, linear) groups.

Remark 6.37. The occurrence of the group H1(k,Pic X) is due to the fact that this
group coincides with the group H1(k, Ŝ), as we have seen earlier.

This sequence shows that the purely algebraic group H1(k,Pic X), which appeared
as a k-birational invariant earlier in these notes, controls both weak approximation
for G and the Hasse principle for torsors under G.

When this group vanishes, weak approximation and the Hasse principle holds. Such
is the case for instance for G adjoint.

On the opposite side, if for a given “algebraic” type of G with H1(k,Pic X) 6= 0,
one may expect arithmetic versions of this given algebraic type with lack of weak
approximation and other ones where the Hasse principle for torsors fails.

The simplest example is given by the k-torus T = R1
K/kGm for K/k a biquadratic

extension. In this case BrX/Br k = Z/2. In this case A(T ) = 0 and Sha1(k, T ) = Z/2
if and only if all decomposition groups in Gal(K/k) are cyclic. Example: k = Q and
K = Q(

√
13,

√
17). If one decomposition group is equal to the whole group Gal(K/k),

then A(T ) = Z/2 and Sha1(k, T ) = 0. Example: k = Q and K = Q(
√
−1,

√
2).

Exhibiting totally concrete examples, in this case finding an explicit element in
k = Q which is a norm from K everywhere locally but not globally requires further
work. It is in general easier to give explicit counterexamples to weak approximation,
especially at some (not predetermined) finite set of places (rather than at just one
place). See the exercises at the end of the book “Algebraic number theory” (editors
Cassels and Fröhlich).

As we have already mentioned several times, the group H1(k,Pic X) is related to
the Brauer group of X. In the next section I will discuss the Brauer group of an
arbitrary algebraic variety X and its relation to weak approximation and the Hasse
principle for X.

7. The Brauer-Manin obstruction for arbitrary varieties

Since I have written several surveys on this topic ([4], [5], [6], [7]), I do not write
up detailed notes for this section.

See also a short introduction to the topic by Harari [22].
For futher study, read Skorobogatov’s book [37].

7.1. The Brauer group of a field. Definition. Central simple algebras and Galois
cohomology. For K/k cyclic, isomorphism k∗/NK∗ ' Ker[Br k → Br K].



40 JEAN-LOUIS COLLIOT-THÉLÈNE

7.2. Number fields. The three basic approximation theorems for a number field.

Weak approximation.

Strong approximation (generalization of Chinese remainder theorem for Z).

Theorem 7.1. Let k be a number field, S a finite set of places of k, for each v ∈ S
an element λv ∈ kv, ε > 0. Let v0 be a place of k. Then there exists a λ ∈ k and

(i) |λ− λv|v < ε for all v ∈ S,
(ii) v(λ) ≥ 0 at any finite place v /∈ S ∪ v0.

Note that we have the choice of the v0.

Dirichlet’s theorem on primes in an arithmetic progression.

Theorem 7.2. Let k be a number field, S a finite set of finite places of k, for each
v ∈ S an element λv ∈ k∗v, ε > 0. Then there exists a λ ∈ k∗ and a finite place v0 ∈ k
such that

(i) |λ− λv|v < ε for all v ∈ S,
(ii) λ is positive at all real completions of k,
(iii) λ is a unit at any finite place v /∈ S ∪ v0 and v0(λ) = 1.

Here we do not have the choice of the v0.
There is a further approximation theorem of the last kind which is of interest,

where one approximates at the real places at the expense of losing control at a certain
number of predetermined finite places. The key tool to get this result from Dirichlet’s
result is a theorem of Waldschmidt.

There is another basic tool, it is Tchebotarev’s theorem, a special case of which
asserts the following.

Let K/k be a finite extension of number fields. There are infinitely many places v
of k which are split in K, i.e. the kv-algebra K ⊗k kv is isomorphic to a product of
copies of kv.

7.3. The Brauer group of a local field and of a global field. The fundamental exact
sequence of class field theory:

0 → Br k → ⊕vBr kv → Q/Z → 0.

How this sequence contains the law of quadratic reciprocity. Application to the
Hasse principle for conics. Application to the Hasse principle for Severi-Brauer va-
rieties. Weak approximation for these varieties, since for these X(k) 6= ∅ implies X
isomorphic to projective space.

7.4. Birational invariance of various properties. Lang-Nishimura lemma: Over
any field k, existence of a k-point is a k-birational invariant of smooth proper geo-
metrically integral k-varieties.

Implicit function theorem over a local field: smooth maps induce maps on local
points which locally for the analytic topology admit a section.

Weak approximation is a k-birational invariant of smooth geometrically integral
k-varieties.

Hasse principle is a k-birational invariant of smooth proper geometrically integral
k-varieties.

Insist on assuming existence of nonsingular solutions in all completions kv.
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7.5. Quadratic forms and one-parameter families of quadrics: Hasse’s the-
orem and further positive results. The Hasse principle and weak approximation
for quadrics of arbitrary dimension.

Hasse’s proof for the passage from 3 to 4 variables: use of Dirichlet’s theorem on
primes in an arithmetic progression, in the form mentioned above.

Note that the same proof gives the result for a system

a1x
2
1 + b1y

2
1 = · · · = aix

2
i + biy

2
i = · · · = anx2

n + bny2
n 6= 0

with all ai, bi ∈ k∗. The variety above is a principal homogeneous space under the
k-torus T given by the equation

x2
1 + a1b1y

2
1 = · · · = x2

i + aibiy
2
i = · · · = x2

n + anbny2
n 6= 0.

From the Voskresenskĭı exact sequence we must have the purely algebraic statement
Sha2

ω(T̂ ) = 0. Exercise: prove this directly.
Passage from 4 to more variables.
More generally, proof for affine equations of the type

3∑
i=1

aix
2
i = P (t1, . . . , tn)

with ai ∈ k∗ and P (t1, . . . , tn) 6= 0.
Extending Hasse’s result. Families of quadrics of dimension at least 3.
Equations of the type

n∑
i=1

ai(t1, . . . , tn)x2
i = 0

with all ai ∈ k[t1, . . . , tn] nonzero and n ≥ 5. Proof uses weak approximation for An
k .

Can replace An
k or any base which is smooth and satisfies Hasse principle and weak

approximation.
For n = 4, equations of the type

4∑
i=1

ai(t)x2
i = 0

with all ai(t) ∈ k[t] and the product of the ai(t) squarefree. Then the Hasse principle
and weak approximation hold. Proof uses strong approximation, Tsen’s theorem and
Tchebotarev’s theorem.

7.6. Families of quadrics: counterexamples. For n = 3 and n = 4, there are
counterexamples to the Hasse principle and to weak approximation for equations of
the type

n∑
i=1

ai(t)x2
i = 0

with all ai(t) 6= 0.

Let K = Q(
√
−1).

Counterexample to the Hasse principle

y2 + z2 = (3− t2)(t2 − 2) 6= 0.

Counterexample to weak approximation. Let us consider the surface X

y2 + z2 = t(t− 1)(t− 3) 6= 0.
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There are rational points, for instance with t = 5. The set of Q-rational points on X
is actually Zariski dense on this variety. This may be seen in a number of ways. In
fact it is known that a normal cubic surface in P3

k (k field of char. zero, but the result
is more general) with a nonsingular rational points is unirational over its ground field.
Consider the function t− 1. At all places p but the real and the dyadic place it takes
only the value 1 ∈ Q∗

p/NK∗
p . On the reals it takes the two values in R∗/NC∗. On

the 2-adics it takes the two values in Q∗
2/NK∗

2 . Above t = 7 we find the conic

y2 + z2 = 23.3.7.

This has points in Q2 and R (but not in Q3 and Q7). Let M2 be a Q2-point and M∞
be an R-point. Then the pair (M2,M∞) ∈ X(Q2) ×X(R) cannot be approximated
by a Q-rational point of X.

There are subtler examples of surfaces X/Q with affine model

y2 + z2 = xQ(x)

with Q(x) irreducible polynomial of degree 2 where the topological space X(R) has two
connected components but there are rational points only in one of these components.

From a counterexample to the Hasse principle of the shape y2 − az2 = P (t) one
gets a counterexample to the Hasse principle of the shape x2

1− ax2
2 = P (t)(x2

3− ax2
4).

Mention of existence of many other counterexamples in the literature. Curves of
genus 1, curves of higher genus, cubic surfaces.

7.7. The Brauer group of a scheme: algebra and geometry. Definition. How
to compute the Brauer group. Residues. Purity theorem for the Brauer group. Com-
putation of the Brauer group of a conic bundle. See [7].

Application to a smooth projective model X for surfaces of the shape y2 − az2 =
R(t), with a ∈ k∗.

If R(t) = P (t)Q(t) is separable and P and Q are both of even degree, then the
quaternion algebra (a, P (t) over the surface y2 − az2 = R(t) 6= 0 is unramified above
any smooth model of this surface. Proof by showing that it has residue zero at any
DVR in the function field of the surface and use of purity. If P and Q are irreducible
over k, the class (a, P (t) generates the quotient BrX/Br k.

If R(t) = P (t)Q(t) is separable and P and Q are both irreducible of odd degree,
then BrX/Br k=0.

From now on k denotes a number field.

7.8. The Brauer-Manin obstruction.

Proposition 7.3. For X/k proper and A ∈ Br X for almost all v the image of
evA : X(kv) → Br kv is reduced to 0.

Example: The algebra (a, P (t)) over

y2 − az2 = P (t)Q(t) 6= 0

with PQ separable, P and Q of even degree.
Definition of the Brauer-Manin set X(Ak)Br X for a smooth, projective, geometri-

cally integral k-variety. The basic inclusion

X(k)cl ⊂ X(Ak)Br X ,

where X(k)cl denotes the closure of the set X(k) in the adèles X(Ak) of X.
Comparison with the argument in the two counterexamples above.
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If the equation has solutions in all kv and there is no Brauer-Manin obstruction,
then there exists α ∈ k∗ such that the system

y2
1 − az2

1 = αP (t) 6= 0, y2
2 − az2

2 = α−1Q(t) 6= 0

has solutions in all kv.
The following proposition is in some sense a converse of the above proposition.

Theorem 7.4. (Harari). Let U ⊂ X be a nonempty Zariski open set of a smooth
geometrically integral variety. If A ∈ Br U does not come from Br X then there are
infinitely many places v such that the image of the map evA : U(kv) → Br kv is not
reduced to one element.

Proof. See [20]. A simpler proof is given in [6], §1. �

Two examples:
(i) The quaternion algebra (a, t) over U = Speck[t, t−1], for a ∈ k∗ not a square.
(ii) The quaternion algebra (a, P (t)) over

y2 − az2 = P (t)Q(t) 6= 0

with a not a square, PQ separable , P and Q of odd degree.
Exercise. Let

3∑
i=1

ai(t)x2
i = 0

be a family of conics. If for almost all r ∈ k the equation,
3∑

i=1

ai(r)x2
i = 0

has a nontrivial solution in k then he original equation has a nontrivial solution with
all xi ∈ k[t].

The last proposition may look rather negative. It can be put to good use thanks
to:

Theorem 7.5. (Harari’s formal lemma). Let U be a nonempty Zariski open set of
a smooth geometrically integral variety X. Let B ⊂ Br U be a finite subgroup. Let
{Pv} ∈ U(Ak). Assume that for each α ∈ Br U ∩ Br X we have∑

v∈Ωk

α(Pv) = 0.

Then for any finite set S of places of k there exists {Mv} ∈ U(Ak) such that Mv = Pv

for v ∈ S and such that for each β ∈ B we have∑
v∈Ωk

α(Pv) = 0.

Proof. The proof, indeed, is a formal consequence of the previous result. See [20].
See also [6], §1. �

Example: Equation
y2 − az2 = P (t)Q(t) 6= 0

with PQ separable and irreducible, P and Q of odd degree. In this case, if X is a
smooth projective model, then H1(k,Pic X) = 0.

If the equation has solutions in all kv then there exists α ∈ k∗ such that the system

y2
1 − az2

1 = αP (t) 6= 0, y2
2 − az2

2 = α−1Q(t) 6= 0
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has solutions in all kv.

7.9. The fibration method. From now on k is a number field.
We have a dominant morphism f : X → Y of smooth proper k-varieties, with

(smooth) geometrically integral generic fibre.
We have information on the behaviour of k-points of Y and on the behaviour of

k-points on the fibres of f above k-points of Y . We want to extract information on
the k-points of the total space X.

Example: conic bundles over P1
k.

We assume that the base Y satisfies the Hasse principle and weak approximation.
For instance the case Y = P1

k is already very interesting.
For the fibres of f , on the arithmetic side, we will assume anything between:
(a) The fibres above k-points of a nonempty open set of Y satisfy the Hasse principle

and weak approximation.
(b) There is a Zariski-dense set of k-points m ∈ Y (k) such that for the fibre Xm/k

above m in this set we have Xm(k)cl ⊂ Xm(Ak)Br Xm .
The question is then whether for the total space the Hasse principle and weak

approximation hold, or at least whether for the total space the Brauer-Manin set
coincides with the closure of the set of k-points.

As we shall see, the answer depends very much on the structure of the bad fibres
of f : X → Y .

We start with some easy cases, which were used in [11].

Proposition 7.6. Assume that f has a section over k. If there exists a nonempty
Zariski open set U of Y such that weak approximation holds for the fibres Xm for m
in U(k), then weak approximation holds for the total space X.

Proposition 7.7. Assume that f has a section over k and that Y contain a nonempty
open set U set isomorphic to an open set of An

k . If there exists a Hilbert set H of
points m in U(k) such that the fibres Xm for m ∈ H satisfy weak approximation, then
X satisfies weak approximation.

Indeed, it is known that any Hilbert set in An(k) is dense in any finite product∏
v∈S An(kv). A stonger version (due to T. Ekedahl) asserts a strong approximation

result for any Hilbert set H ⊂ An(k).

Proposition 7.8. Assume that all the fibres of f : X → Y are geometrically integral,
or more generally are split, i.e. contain a component of multiplicity one which is
geometrically integral. Assume the Hasse principle and weak approximation hold for
Y .

(i) If there exists a nonempty open set U ⊂ Y such that the Hasse principle (resp.
weak approximation) hold for Ym with m ∈ U(k) then the Hasse principle (resp. weak
approximation) hold for X.

(ii) Assume that Y is k-rational. If there exists a Hilbert set H of points of points
in Y (k) such that for m ∈ H the Hasse principle (resp. weak approximation) holds
for Ym then the Hasse principle (resp. weak approximation) holds for X.

The proof is not difficult. The hypothesis on the fibres is fundamental. That
statement played an important rôle in [11].

What what one would really like to have, say with Y = P1
k, is a theorem saying

that if the Brauer-Manin obstruction is the only one for the fibres then it is also the
only one for the total space.
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In his thesis [20] and in further work [21], Harari proved the following theorems.
The proof builds up on Harari’s “formal lemma” mentioned earlier.

Theorem 7.9. (Harari) Let X/k be a smooth, proper, geometrically integral k-variety
and f : X → P1

k be a dominant k-morphism with geometrically integral generic fibre.
Assume that all fibres over A1

k ⊂ P1
k are split, which is the case if they are geometrically

integral. Assume that f has a section over k. Assume that the Picard group of the
geometric generic fibre is finitely generated and torsionfree and that the Brauer group
of the geometric generic fibre is a finite group. Assume that for all m in a Hilbert set
H of A1(k) = k we have

Xm(Ak)Br Xm 6= ∅ =⇒ Xm(k) 6= ∅

resp. the stronger hypothesis: Xm(k) is dense in Xm(Ak)Br Xm .
Then

X(Ak)Br Xm 6= ∅ =⇒ X(k) 6= ∅,

resp. X(k) is dense in X(Ak)Br Xm .

The assumption on the Picard group and the Brauer group of generic fibre are
fullfilled by smmoth complete intersections of dimension at least 3 in projective space.
The hypothesis rules out the case of fibrations into curves of genus at least one.

Getting a similar result over Pn
k for n ≥ 2 turned out to be delicate. See [36], [21].

However in the presence of a section, the situation is much simpler.

Theorem 7.10. (Harari)[20][21] Let f : X → Y be a dominant k-morphism of
smooth, projective, geometrically integral varieties, with geometrically integral generic
fibre. Assume that f has a section. Assume that Y is k-rational. Assume that the
Picard group of the geometric generic fibre is finitely generated and torsionfree and
that the Brauer group of the geometric generic fibre is a finite group. Assume there
exists a Hilbert set H of points in Y (k) such that for any m ∈ H the fibre Xm/k
is smooth and satisfies: Xm(k) is dense in Xm(Ak)Br Xm . Then X(k) is dense in
X(Ak)Br X .

7.10. The descent method. This is to some extent the opposite of the previous
method. Typically one starts with a smooth, proper, geometrically integral k-variety
X over a number field k, one assumes the Brauer-Manin set is not empty. One shows
this implies the existence of at least one k-variety Y with a dominant map Y → X
(in practice, Y → X is a torsor under a commutative algebraic group) such that
Y has points in all completions and, although in general of a higher dimension, is
arithmetically simpler than X: in very favourable cases it should satisfy the Hasse
principle.

This has been successful for Châtelet surfaces, i.e. surfaces with affine model

y2 − az2 = P (t)

for P a polynomial of degree 4 [11] and more generally for conic bundles over the
projective line with at most 4 geometric singular fibres. The case of conic bundles
with 5 geometric singular fibres has also been handled (Salberger and Skorobogatov),
the proof uses a further technique, related to the study of zero-cycles of degree 1, due
to Salberger. Some cases of surfaces y2− az2 = P (t) with P (t) of degree 6 have been
handled by Swinnerton-Dyer.
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7.11. The conditional method based on Schinzel’s hypothesis. Schinzel’s hy-
pothesis, an extension of Dirichlet’s theorem on primes in an arithmetic progression.

In 1978, Sansuc and I saw that if one accepted Schinzel’s hypothesis, then one
could prove the Hasse principle for an equation

y2 − az2 = P (t)

with P (t) irreducible, by mimicking Hasse’s proof of the Hasse principle for quadratic
forms in 4 variables starting from the 3 variables case. Extensions were later given by
Serre. The following theorem (CT–Swinnerton-Dyer, Crelle, 1994) is the best result
achieved in this direction.

Theorem 7.11. Assume Schinzel’s hypothesis. Let f : X → P1
k be a flat proper map,

with X/k smooth and generic fibre geometrically integral. Assume:
(i) The Hasse principle and weak approximation hold for smooth fibres of f .
(ii) For each closed point P ∈ P1

k, with residue field kP , there is a component
ZP ⊂ XP of multiplicity one such that the algebraic closure of kP in the function field
k(ZP ) is abelian.

Then X(k) is dense in X(Ak)Br X .

The simplest example. If P (t) ∈ k[t] is an irreducible polynomial, if Schinzel’s hy-
pothesis holds, then the Hasse principle and weak approximation hold for the surface
y2 − az2 = P (t). In the case where P is reducible and has factors of odd degree, the
proof that the Brauer-Manin condition implies the existence of a rational point uses
Harari’s formal lemma.

The theorem applies more generally to conic bundles over P1
k, to families of Severi-

Brauer varieties over P1
k (this case had been considered by Serre).

Here are two serious problems
(1) We have not been able to eliminate the hypothesis of abelianity in the above

theorem.
(2) We do not know how to prove a similar theorem under the weaker assumption

that Xm(k) is dense in Xm(Ak)Br Xm for smooth fibres Xm,m ∈ P1(k) (compare
Harari’s result in the case where all fibres but at most one are split).

The two problems are related.
This is a nuisance. For instance this prevents us from handling such simple equa-

tions as

NK/k(
4∑

i=1

xiωi) = P (t)

for K/k a biquadratic extension with basis ωi, i = 1, . . . , 4 over k and P (t) a polyno-
mial of degree 3.

8. Fibrations on linear algebraic groups
This section will
be improved

Let G be a reductive algebraic group over a field k. There are two natural ways to
fibre the underlying variety.

The first one is via the variety of tori.
The second one is via the adjoint representation of G on itself.
Both have been used in the study of the arithmetic of linear algebraic groups.



LECTURES ON LINEAR ALGEBRAIC GROUPS 47

8.1. The variety of tori. Let G be a reductive group over k. Let T be a fixed
maximal k-torus of G. Let N ⊂ G denote the normalizer of T . let X = N/T . This is
finite étale k-group scheme. Consider the map

ϕ : G/T × T → G/N ×G

defined by
(gT, t) 7→ (gN, gtg−1).

Given an element n ∈ N , the map

(gT, t) 7→ (gn−1T, ntn−1)

induces a left action of W on G/T × T . We have

ϕ(w.(gT, t)) = ϕ((gT, t)).

Let H ⊂ G/N ×G denote the image of ϕ.
The k-variety G/N is the variety of maximal k-tori of G. For any field F containing

k, the set (G/N)(F ) is in bijection with the set of maximal F -tori in G.
The points of H(F ) are given by a pair consisting of a maximal F -torus and an

F -point in that torus. The fibration H → G/N is the family of tori in G.
Inside H we have the open set Hreg whose points are given by a pair consisting of

a maximal torus T1 and a regular (semisimple) element t1 ∈ T1. The centralizer of
such an element x1 is the maximal torus T1. The projection map H → G induces an
open embedding Hreg ⊂ G. Thus H is k-birational to G.

The cover G/T → G/N is a torsor under the finite étale k-group scheme W . So is
the cover G/T × T → H.

One has the cartesian square

G/T × T → H
↓ ↓

G/T → G/N
(8.1)

A theorem of Chevalley asserts that the variety G/N is a k-rational variety (see
Gille’s first lecture).

Suppose that k is algebraically closed. The above diagram shows that the generic
torus Tη splits over a field extension with group W = W (k). It can be showed that
the extension k(G/T )/k(G/N) indeed is the (smallest) splitting field of the generic
torus Tη.

References for this section: Voskresenskĭı’s book.

8.2. The Steinberg map. Let G/k be a semisimple group.
Let k[C] = k[G]G be the ring of invariants under the adjoint action of G on itself:

an element g of G acts by x 7→ gxg−1. We thus have an affine k-scheme C and a
morphism G → C = G//G. This is called the Steinberg map (see [39]).

Simplest example: the map SL2 → A1 sending a matrix to its trace. Next exam-
ple: the map SLn → An−1 sending a matrix to the coefficients of its characteristic
polynomial.

Let T ⊂ G be a maximal torus. There is a natural map k[G]G → k[T ]N = k[T ]W .
This map is an isomorphism (Chevalley). One thus has T/W

'→ C.
One then considers the map

G/T × T → G
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given by

(gT, t) 7→ gtg−1.

One has the commutative diagram

G/T × T → G
↓ ↓
T → T/W

'→ C

(8.2)

Both horizontal maps are generically W -torsors. Over the open set Creg ⊂ C
corresponding to semisimple regular elements of G, all the restrictions of the maps
are smooth. The fibre of G → C over a k-point in this open set is a G-homogeneous
space with geometric stabilizer a torus of maximal rank.

If G is simply connected, the ring k[T ]N is a polynomial ring, that is C is k-
isomorphic to affine space Ar

k, where r is the (geometric) rank of G.
See [39] p. 62 in the split case. See [27] for the nonsplit case.
Question : Over a field k of characteristic zero, is any twisted form of affine space

An
k k-isomorphic to affine space An

k ?
Over a nonperfect field k, there are twisted forms of the affine line which are not

isomorphic to affine line A1
k. Indeed such is the case for the complement in P1

k of a
closed point whose residue field isa nontrivial purely inseparable extension of k.

If the group G/k is split, then the Steinberg map has a section over k. This result
of Steinberg (loc.cit.) is a generalization of the existence of the companion matrix.
The existence of a section over k implies that the group G/k is quasisplit. For most
types of groups this is a sufficient condition. See [39]. (Is this always a suffiicent
condition ?)

Remark There is a Lie algebra version of the Steinberg map, which goes under the
name of adjoint representation, and has been much discussed (Chevalley, Kostant).
One fixes a maximal k-torus T ⊂ G. One lets h ⊂ g be the corresponding Lie algebras.
The group G acts on g by the adjoint representation.

G/T × h → g
↓ ↓
h → h/W

'→ g//G.

(8.3)

The k-variety h/W
'→ g//G is an affine space Ar

k.

8.3. Summary. Let G/k be a semisimple group. We have the basic diagram, where
the upper maps are induced by projection of G/T × T to the first factor and the
bottom maps are induced by the projection to the second factor.

G/T → G/N
↑ ↑

G/T × T → H → G
↓ ↓ ↓
T → T/W

'→ C.

(8.4)

The morphism H → G is birational.
For G simply connected, the K-variety C is k-isomorphic to affine space.
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8.4. The variety of tori and weak approximation.

Theorem 8.1. (Kunyavskĭı–Skorobogatov, appendix to [36])
(i) Let G be a reductive group over a number field k. Let K be the function field

of the variety of tori. Let Tη denote the generic torus. If Sha2
ω(g, T̂η) = 0 then weak

approximation holds for G.
(ii) If G is semisimple and simply connected, then weak approximation holds for

G.

Part (i) follows from the above discussion together with the fact that if T is a torus
over a number field such that Sha2

ω(k, T̂ ) = 0 then weak approximation holds for T
(we have seen this earlier in this lecture course).

Part (ii) follows from the statement that in the simply connected case we have
Sha2

ω(g, T̂η) = 0. This is a result of Kunyavskĭı and Voskresenskĭı in the case An and
of Klyachko [24] in the general case.

This proof looks quite different from the classical proofs of weak approximation
for simply connected groups. The original paper by Kneser [25] gave a case by case
proof for the classical groups. The papers by Kneser [26] and [27] are devoted to the
proof of the strong approximation theorem for simply connected groups, but proves
en route that weak approximation holds ([27] p. 152). Reduction theory is used in
the process. The proof in the book [32] also uses reduction theory, moreover it uses
some measure theory. More on the papers by Kneser below.

Harari’s general theorem on fibrations with a section, applied to the family H →
G/N yields:

Theorem 8.2. (Harari [20]) Let G be a connected linear algebraic group and G ⊂ X
a smooth compactification. Then

(i) X(k) is dense in X(Ak)Br X .
(ii) If H1(k,Pic X) = 0, then G satisfies weak approximation.
(iii) If G is simply connected, or is adjoint, or is absolutely almost simple, weak

approximation holds for G.

Proof. (Sketch) The proof of (i) simply uses the fact that for a smooth compactifica-
tion Tc of a torus T we know that Tc(k) is dense in Tc(Ak)Br Tc . This is essentially a
consequence of Tate-Nakayama theory, together with an easy identification of certain
maps in Galois cohomology.

Since X is a rational variety over k we have BrX/Br k ' H1(k,Pic X). This proves
(ii).

As for (iii) we know that H1(k,Pic X) = 0 holds for each of the given types of
groups. (For G simply connected, Pic X is a permutation module.) �

Note that this proof does not require knowledge of the splitting structure of the
generic torus, as opposed to the proof by Kunyavskĭı and Skorobogatov. Moreover it
gives the best result for arbitrary groups: one can thus do without reductions to the
case of semisimple or quasitrivial groups. No need of flasque resolutions, except for
tori.

8.5. The Steinberg map and strong approximation. In [26] and [27], Kneser
proves the strong approximation theorem for semisimple groups.

The key case of the strong approximation theorem is the following statement.



50 JEAN-LOUIS COLLIOT-THÉLÈNE

Theorem 8.3. Let G be an absolutely almost simple and simply connected group
over a number field k. Let v0 be a place such that G(kv0) is not compact (i.e. Gkv0

is
isotropic). Then the set G(k).G(kv0) is dense in the group G(Ak) of adèles of G.

There are several proofs available, which are not totally independent: Kneser gen-
eralizing earlier results of Eichler; Platonov (see [32]; Margulis (Margulis in his book
takes weak approximation for granted).

I shall describe the main steps of Kneser’s proof in the special case of G = SL(D),
the special linear group of a central simple algebra D over a number field k of degree
n. The result is then a theorem of Eichler. I shall follow Kneser’s proof, as given in
[26]. As Kneser points out, this gives a good idea of the general case, dealt with in
[27]. I will try to point out which arguments extend to general groups.

Kneser’s proof is a fibration method. The fibration is given by the Steinberg map,
which in this case is very classical, it is the map

ϕ : SL(D) → An−1
k

sending an element to the coefficient of the reduced characteristic polynomial. Let us
write G = SL(D) and Y = An−1

k . We thus have the map

ϕ : G → Y.

An element in G(k) is called regular if its reduced characteristic polynomial has no
multiple factor. The set of such elements is a nonempty Zariski open set Greg ⊂ G.
The restriction of ϕ to Greg is smooth. We denote by Y reg the image of Greg in Y .
The fibre of ϕ above a k-point of Y reg is a homogeneous space under G. The geometric
stabilizers are maximal tori in G×k k. Furthermore, if T ⊂ G is a maximal k-torus,
the restriction of ϕ to T reg ⊂ G defines a finite étale map T reg → Y reg. Something
special to the situation is the description of the maximal tori in G = SL(D). They
are of the shape T = R1

F/kGm, where F ⊂ D is a separable commutative subalgebra
of (maximal) rank n. Such algebras are classified by H1(k,Sn). The character
group of a torus RF/kGm is a (direct sum) of permutation modules of Sn, the basis
corresponding to the various k-homomorphisms K → k. The character group of
T = R1

F/kGm is the cokernel of the diagonal inclusion Z → T̂ where the map is
1 → NK/k.

We fix an integral structure on G, over the ring O of integers of k. As usual, Ov

denotes the completion of O at a finite place v.
Let v0 be as in the theorem. Let S be finite set of places of k, v0 /∈ S. Let

U ⊂ G(Ak) be an open set which is a product of open sets Uv ⊂ G(kv), almost all of
them equal to G(Ov). Set Uv0 = G(kv0). To prove the density property we may take
Let Uv for v ∈ S small enough so that all elements in Uv ⊂ G(kv) are regular.

To prove the theorem it is enough to prove the following claim :

Claim There exists a point in G(k) which lies in each Uv ⊂ G(kv).

The proof consists of the following steps.

(1) Find m ∈ Y reg(k) such that the fibre Ym ⊂ G contains points in Uv for each
place v except possibly at the place v0.

(2) Find m ∈ Y reg(k) such that the fibre Ym ⊂ G contains points in Uv for each
place v (that is, it also possesses a point in G(kv0).)

(3) Find m ∈ Y reg(k) such that the fibre Ym ⊂ G contains points gv ∈ Uv for each
place v and contains a k-point g ∈ G(k).
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(4) Show that g and the adèle {gv}v∈Ω are conjugate under the action of the adelic
group D∗

A.

(5) There exists a compact open set K =
∏

v∈Ω Kv ⊂ D∗
A with 1 ∈ Kv for each v

and Kv equal to D∗
Ov

for almost all v, such that D∗
A = D∗.D∗

kv0
.K−1.

(6) There exists a point g ∈ G(k) which for each place v of k belongs to the open
set UKv

v of G(kv) which is the image of the map

Uv ×Kv → G(kv)

(g, k) 7→ kgk−1.

Now for each v 6= v0 the UKv
v as Uv varies are a base of neighbourhoods for

av ∈ G(kv).
Renaming the Uv’ s, this is enough to conclude.

Let us now discuss the various steps.

For almost all places v of k, the algebra Dkv is split. Over such places v, the Stein-
berg map has a section. Thus for such places the map G(kv) → Y (kv) is surjective.
Moreover for almost all places v the map G(Ov) → Y (Ov) is onto.

This argument is general, at least for inner forms. If G is a semisimple simply
connected group, for almost all places v, the variety of Borel subgroups of G has a
kv-point, hence, at least for inner forms, the Steinberg map has a section over kv

([39]). To get the statement over Ov, one looks at the scheme of Borel subgroups over
a suitable open set of SpecO and one applies Hensel’s lemma.

For any place v, the map Greg(kv) → Y (kv) is open. Thus each ϕ(Uv) is open in
Y (kv).

Using strong approximation for affine space we conclude that there exists a k-point
m as in (1).

We could conclude that there is an m as in (2) if we had ϕ(G(kv0)) = Y (kv0). That
is the case for instance if D is split at v0, which indeed would be the case if D was
of prime degree. In the general case, an extra effort is needed to establish (2). The
starting point is that the hypothesis G(kv0) not compact implies the existence of a
kv0-homomorphism of groups

Gm,kv0
⊂ Gkv0

.

In the next instalment of these notes, I will try to explain how this enables one
to establish (2). For the time being I refer to [26] p. 195, Hilfssatz 3.3 for the case
G = SL(D) and to [27] p. 191 for arbitrary simply connected groups.

This gives (2).

Getting from (2) to (3) is a Hasse principle problem. In the present case, the
statement is :

For any k-point m ∈ Y reg(k) the fibre Ym satisfies the Hasse principle.
This is a consequence of Kneser’s Hilfssatz 3.4 ([26]) :
A regular polynom of degree n in k[t] (with leading coefficient s 1 and constant

coefficient (−1)n) is the reduced characteristic polynom of an element of SL(D) if
and only if it is so locally. Kneser proves this by using the purely algebraic fact ([26],
Hilfssatz 4.1):

Over a field k, a regular polynomial P ∈ k[t] is the reduced characteristic polynom
of an element in D if and only if D ⊗k k[t]/P (t) is totally split.
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One then uses the Hasse principle for the Brauer group of finite extension of a
number field.

This gives (2) in the case G = SL(D).
For G/k an arbitrary semisimple simply connected group G one cannot hope for

the Hasse principle for all fibres Ym.
What Kneser shows in [27] is that there are at least many k-points m ∈ Y reg(k)

with the property (2) such that Ym satisfies the Hasse principle.
The proof of Kneser is rather involved (Proof of intermediate step, p. 193-196).
Let us explain how this can be seen from the point of view of the Brauer-Manin

obstruction.
Let m ∈ Y reg(k). The fibre Ym, as explained earlier, is a homogeneous space of G.

The geometric stabilizers are tori.
Given a simply connected group G/k a G-homogeneous space Z whose geometric

stablizers are tori, there is a natural k-torus associated to the situation. Borovoi
has shown (Harari might explain this in his lectures) that if Sha1

ω(k, T̂ ) = 0 then
the Hasse principle (and weak approximation) hold for Z. For this he uses “highly
twisted tori”. These are precisely the tori such that the image of the Galois group
on the character group of T contains the Weyl group of G relative to T . This builds
upon the Hasse principle for H1(k,G).

In the case G = SL(D), for any m ∈ Y reg(k) we have Tm = R1
Fm/kGm for some

separable commutative algebra Fm/k of degree n and one easily proves Sha1
ω(k, T̂m) =

0.
It is very likely that Kneser’s result in the general case (whose details are not given

in [27]) (see p. 194) can be reached by proving:
Let Yη be the generic fibre of G → Y . Let Tη be the associated torus. Then

Sha1
ω(k(An), T̂η) = 0 for G simply connected.

Then an argument combining Hilbert’s irreducibility theorem (the variant with
strong approximation on An, as established by Ekedahl) then produces an m ∈
Y reg(k) such that (3) holds.

This argument is the analogue for the Steinberg fibration of the argument which
Kunyavskĭı and Skorobogatov apply to the torus fibration to prove weak approxima-
tion.

Once we have (3), (4) follows essentially formally, using the fact that two regular
elements in D∗

F with the same reduced characteristic polynomial are conjugate over F .
In [27] there is no indication how to prove an analogous result for arbitrary semisimple
simply connected groups G.

Statement (5) is a consequence of reduction theory.

Statement (6) is an immediate consequence of (5).

This completes the proof.
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Publications mathématiques I.H.É.S 86 (1997), 199–235.

[16] , Cohomologie galoisienne des groupes quasi-déployés sur des corps de dimension coho-
mologique ≤ 2, Compositio Math. 125 (2001), 283-325.

[17] , Appendix to paper by Borovoi and Kunyavskĭı, J. Algebra 276 (2004), 292–339.
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