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ON THE CHOW GROUPS OF CERTAIN RATIONAL
SURFACES" A SEQUEL TO A PAPER OF S. BLOCH

JEAN-LOUIS COLLIOT-THILINE AND JEAN-JACQUES SANSUC

S. Bloch has recently applied the methods of algebraic K-theory to the study of
0-dimensional cycles on rational surfaces, modulo rational equivalence. The best
results are obtained for conic bundles over the projective line [1]. In this paper,
building upon Bloch’s very original ideas and upon some more or less classical
facts pertaining to quadratic forms, we shall refine the results of [1], thereby
answering some of the questions raised there.

Let k be a perfect field, k an algebraic closure of k, and Gal(k/k). Let X
be a rational, proper, smooth, geometrically integral variety over k. We denote
the function field of X, resp. X-- X x kk, by F k(X), resp. F k(X). By the
very definition of a rational variety, the latter field is purely transcendental over
k. Moreover, for such an X, the 6-module PicX is a free Z-module of finite type"
we can regard it as the character group ; of a k-torus S. Following [l] (as
opposed to [2] or [4]) we denote by Ao(X) the group of classes of degree nought
0-dimensional cycles on X with respect to rational equivalence.

In section of this paper, we define a "characteristic" homomorphism

t .Ao(X).--) H’(k,S )
and we show that its image is finite when k is any finitely generated extension of
O. This raises the question: what about the kernel of ? Examples with
dimX > 3 suggest one should not expect a general answer, except in the case of
surfaces.

In this last case, Bloch [1] has produced a K-theoretical interpretation of the
kernel and the cokernel of : starting from another definition of , special to
dimension 2, he constructs the basic exact sequence"

$(k)--> H({,K2/K2)--->Ao(X) .Hl(k,S)---> H2({,K2/K2Z). (,)

He uses this sequence to show that the image of is finite if k is global, and that
the kernel of is finite when X is a conic bundle over la and k is local or global.
This gives the finiteness of Ao(X) for X/[ a conic bundle over a local or a
global field. He also gets Ao(X) ---0 for X/Pk a conic bundle over a C-field.
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The main "technical" result of the present paper is that for X a conic bundle
over P, with k nearly arbitrary, and X(k)v , the map tI) is injective. This is
certainly more than a technical point, but the geometric interpretation of this fact
has so far eluded our efforts. The main "concrete" result is that for X as above
and k any finitely generated extension of O, the group Ao(X) is finite. This last
result relies on the technical one and on the general finiteness statement for the
image of tI). Another important feature of the technical result is that it prompts
us to put forward a conjecture on the precise value of A0(X), when k is a number
field. The main part of this conjecture claims the existence of an exact sequence
of finite abelian groups

Ao(X ) --> IiAo(Xk )--> Hom(H I(k, ), O/Z).
Here Pic, as above, and k runs through all completions of k. In loose

terms: for a given (algebraic) type of rational surface, the fact that many Ao(Xk)
are non-zero should force Ao(X) to be big. Some evidence is provided in the case
of Chtelet surfaces.
Here are the precise statements of our main results.

TH.OREI 1. Let X be a conic bundle over Pk. If k is a finitely generated
extension of Q, and if there is a O-cycle of degree one on X, the group Ao(X) is
finite. If k is a perfect field of characteristic v 2 and of cohomological dimension l,
the group Ao(X) is zero.

Tn.ORM 2. Let k be a perfect field of characteristic v 2, and let X be a conic
bundle over Pk. The homomorphism t’Ao(X)- H (k, S) is injective, provided at
least one of the following assumptions holds:

(i) there is a O-cycle of degree one on X;
(ii) k is a local field;
(iii) k is a number field.
For any conic bundle X/Pk, the group H (k,S) is 2-torsion (2 proposition 1).

As for Ao(X), it was already known to be 2-torsion ([2] 6).
Note that, for k local or global, Bloch [1] gives the bound 2 for the order of

the kernel of , where s is the number of real imbeddings of k.
The paper is organized as follows. The homomorphism is defined in quite

general circumstances in l, where it is shown to agree with several previously
defined homomorphisms, including Bloch’s for rational surfaces. We prove the
finiteness of the image of when k is a finitely generated extension of Omfor
this, no K-theory is needed. Section 2 contains basic facts about conic bundles
over P" although they are essentially well known, no convenient reference is on
hand. These facts aie used in 3, where we prove theorem 2 by a refinement of
Bloch’s fundamental argument ([1] 3). Theorem is then an immediate
corollary of the results of 1. The precise computations made in 3 also allow us
to answer a question of Bloch on the value of H (t;, KE/K2) (theorem 5). In
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4, we discuss the above mentioned conjecture on the precise value of Ao(X)
when k is a number field.
A word of warning: a number of technical difficulties may be avoided if one

assumes that there is a 0-cycle of degree one on X. First, we can study the image
of as in [4]. Second, only a part of 2 and 3 is needed to prove theorem 2(i):
one need not study the upper half of diagram (3.4).
We are grateful to S. Bloch for some very useful conversations" it was he who

pointed out the relevance of Weil’s reciprocity law in the general construction of
given in 1.
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1. The characteristic homomorphism. Let X be a smooth, projective,
geometrically integral variety over the perfect field k. Following a procedure
inspired by classical analogues (Severi, Well, Serre, Tare, cf. a very similar
construction in [9] 3.8), we shall define a "characteristic" homomorphism

"Ao(X ) --> Ext(Pic,,/*).
Let Zo(X) be the group of O-cycles on X, and let Zo(X) be the subgroup of

those of degree zero. Let be a O-cycle of X, let supp(O be its support,
Y X- supp(O and the extension of to k-. In the natural exact sequence of
;-modules

0 -> ), ]//* -> Divy-> Pic->0 (1.1), denotes the group of units of the semi-local ring of at the points of
supp(O, and DivyX is the group of divisors on X, with support in Y. Let
;--inixi, with x . X(k-) and n -7, and let g /()* be a unit at all xi.

When is a degree zero O-cycle, the evaluation formula

[](g) g()----- H g(xi)’
defines a ;-homomorphism []’c,//*->/*. Using it to push out the
extension (1.1), we get an extension of 0-modules

$ "0--> k* --> Ef---> PicX-> O. (1.2)
On letting the support of grow, one checks that this construction defines a
homornorphism Z’o(S)---> Ext(Pie,,/*).
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Let us show that it depends only on rational equivalence classes. This amounts
to proving that, for any non-constant k-morphism C- X from a proper, smooth,
integral k-curve C to X, and any non-constantf k(C)*, the extension g.tdivtf))
is trivial. Now, for Z supp(div(f)), there is a commutative diagram of
g-modules

* /,(9, .(2)/ ) Div-,(2)X

(ge, 2/ ) Dive_2C

[div(f)]v;f
k*

where the skew arrow is given by evaluation. That the triangle commutes is a
consequence of Weil’s reciprocity law (see [1] A.8)---which one must apply to all
components of C (one cannot a priori restrict oneself to geometrically integral
curves in the definition of rational equivalence). The g-homomorphism
[,r.(div(f))]_ =_[div(f)]corr* therefore extends to a g-homomorphism
Div_t2X-> k*, which shows g,.(divtf to be trivial.
One thus gets a canonical homomorphism

Ao(X ) )Ext(Pic.,/*). (1.3)
When X is rational, PicX is a free finitely generated Z-module; for the dual
k-torus S, there is an identification of g-modules S(k)= Homz(PicX, k*), hence

Ext(PicX, k*) H’(g,S(Z))= H’(k,S).

THEOREM 3. Let k be a perfect field and let X be a smooth projective
geometrically integral rational variety over k. Let S be the k-torus dual to Pic X.
The homomorphism

t .Ao(X).-> H’(k,S ) (1.4)
which has just been defined enjoys the following properties:

(i) when there is a universal torseur on X, e.g. X(k) 4 , it coincides with the
homomorphism attached in [4] to such a torseur;

(ii) when X is a surface, it coincides with the map defined by Bloch in [1];
(iii) if dimX--2 or char. k---0, then dp is a k-birational invariant;
(iv) its image is finite if k is finitely generated over O.
The proof will occupy the rest of this section.
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Proof of (i). For facts concerning universal torseurs, we rfer to [4] and the
references therein. Given a (universal) torseur over X, under the torus S, there
is a well defined homomorphism tp "Ao(X)---> H(k,S) which comes from the
linear map Os’Zo(X)---> H (k,S) sending the closed point x, with residue class
field k(x), to Os(x)= COrk<x)/k(Sx), the corestriction of the fibre 5 of - at x.
The identification of q0 with will be deduced from the local description of
universal torseurs ([4] II.C). Let x be a closed point on X, and let U be an open
neighbourhood of x with PicU--0. Upon dualizing the exact sequence of
-modules

0--->/[ U]*//* --> Divy,(--> Pic,---> 0

where Y X- U and where/[ U]* H(, Gin), we get the exact sequence of
k-tod

1---> S---> M--> T---> I. (1.6)
The existence of a universal torseur " implies that of a -section o of the
projection k[U]*--> k[U]*/k*. This defines a k-morphism %" U-> T from
which one regains the restriction of - to U: it is the pull-back through % of
the torseur M over T defined by (1.6). Since Pic 0 andST& (S, lm) O,
easy spectral sequence arguments give canonical isomorphisms (where all Ext
and H are relative to the Otale topology): EXtk(g,/[T]*)Z->Ext(g,m)
<2 H (T, S). We get the commutative diagram

HI(T,S)

COrk(x)/k

H(k,S)

; Ext,(g,/[ rl*)< Ext],(g,/[ U]*//*)

,Extlk(S,(k(x)(R)).) h
It is now clear that the extension of by k"* corresponding to COrk(x)/k(x )
Ht(k,S) is obtained by pushing out the extension (1.5) through the
homomorphism /[U]*//*-/* defined by g-->(o(g))(x). Extending this to
0-cycles and comparing with the above definition of , we get .

Proofof (ii). When X is a surface, the map defined by Bloch in [1] is actually
a homomorp_hism tb"Ao(X)--> H(k,S’), where S’ is the k-torus with S’(/)

PieX-{)z k*. But the intersection form induces a self-duality of Pie, which
defines a canonical isomorphism of S and S’. From now on they will be
identified. The fact that up to this identification and ’ coincide is a
consequence of the Appendix of [1 ], as we shall now see. First recall from [1] that
for U open in X with Pie U 0 and Y X U, there is a commutative diagram
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of exact sequences of -modules

0 Hom(Pic 1"-, k-’*)- Hom(Div X-, k-*) Horn(f[ U]*/f*, k-’*) 0

where D runs through all integral curves on , not in Y-, and where k-(D)
denotes the group of rational functions on D which are invertible at the points of
r-() in the normalisation/ D. The top fight arrow is deduced from the., div
natural map Ilocy k(D)y---> (r Z, whose kernel is Sy and whose image is
((Z)y-->(Z Z’0(). The two fight vertical arrows are given by
evaluation; that the fight square commutes is proven in [1] (A.8). This defines the
left vertical arrow. Going over to cohomology, we obtain the commutativity of
the square in the following diagram"

Here the left diagonal arrow is evaluation, hence the left triangle is commutative.
The right diagonal arrow is deduced from the intersection form on Pic X, and

/* Bloch’s mapis built up from the maps y~->H(,%2)Pic.C)z
restricted to H(,([Z)y) Z0(U), is, b), definition,/3 o 0. On the other hand,
i. is induced by the restriction of to Z0(U), because is the evaluation map
(())(g) g() for g k[ U]*. Since the right triangle commutes ([1] A.11), we
conclude that, for any in (( Z)y), we have O()--.o(O’()). We are thus
reduced to proving the following assertion: for any in Zo(X), there is an open
set U as above, with Y X- U and (Z)y. This fact is also used
implicitly at the end of [1]. Since A_o(X)= O, there is a finite family {(D, f,.)},
where D is an integral curve on X, and f /(D)*, such that --div( flo,).
Letting r’D--> D be the normalizations, we can find an open subset U of X
containing all r(supp(divb,(f))) and such that PicU=0. For this U and
Y X U, we have f /(D), hence (e Z)y.

Proof of (iii). As in [2] (proposition 6.3, birational invariance of Ao(X)), by
known theorems on resolution of singularities, it is enough to study the case of a
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proper birational k-morphism p" X’ X, where X and X’ are both geometrically
integral, projective and smooth. There are non-empty open sets V c U c X,
satisfying the following properties" U contains all points of X with codimension
1, the restriction of p to p-l(u) has a section--we shall call it r (p o r idv)--
and the restriction of p to p-l(v) is an isomorphism. According to Chow’s
moving lemma, any element in Ao(X) can be represented by some O-cycle of
degree zero with support in U. Letting ’ p-l(), taking Y X- supp() and
Y’= X’-supp(’), we have the commutative diagram of exact sequences of
-modules:

0 0

> 9,//* ; Divy, > Pic

>Divy, X’... >PicX’

M M

0 0

Indeed the left vertical arrow is obviously an isomorphism, and the other two
p*’s are split by r*. From this diagram, we deduce p*((’))= (), and we also
deduce that p*" Ext(Pic,’,/*) -> Ext(Pic,/*) is an isomorphism, because the
two vertical sequences are split and Divy, X’ is a permutation fl-module, which
implies (Hilbert 90) Ext(m,/*) 0.

Proof of (iv). When there is a universal torseur over X, for instance when
there is a 0-cycle of degree one on X, it suffices to combine (i) with [4]
(proposition 2). We shall sketch a proof in the general case, referring the reader
to [4] for some details. Given X/k, one can find an integral domain A and a
projective morphism/" X---> SpecA, so that the following holds: A is of finite
type over 7, it is regular and k is its quotient field (this last and obvious
assumption was forgotten in [4] p. 225, dmonstration); the morphism/ is
smooth with geometrically integral fibres (hence 6m,a-%/%, as sheaves for
the tale topology over A), and X/k is its genetic fibre. Since X is rational, the
tale sheaf R Ip.(m,x=qOx/ over k is representable by a finite type torsion
free twisted constant group S over k, the dual of which is the k-torus S. Upon
inverting some element in A, we can assume that the isomorphism of tale
sheaves over k" ,2-> R O.6m, x comes from a homomorphism of tale sheaves
over A" 2- R ’(m,,, where , is a finite ty.pe torsion free twisted constant
group over A, the dual of which is an A-torus S with fibre S over k.

In order to show that (Ao(X)) H (k, S) is finite, it is enough to show that
for every height 1 prime ideal in A, the image of belongs to the image of
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H(A,)-> H(k,S). Indeed, H(k,S) is a torsion group, and an element of
H (k,S) which is in the image of each H l(Ao, ) (for all such 1) is in the image
of H (A,) (because A is regular and is an A-torus). Now this last group is of
finite type, because A is of finite type over Z (this uses the generalized unit
theorem and the Mordell-Weil-N6ron theorem, cf. [4] proposition 2, d6monstra-
tion, p. 226).
We now fix as above, denote A by A, similarly X aA by X, etc Let
j njPj be a degree nought 0-cycle on X, and let K k(Py). The integral closure
By of A in. Ky is a semi-local Dedekind ring, which is a (finite) free A-module.
Since/" X-> SpecA is proper, the k-point Py comes from an A-morphism/y."

Spec Bj -- g
SpecA.

Since/ is projective and A is a discrete valuation ring, we can talk of the
semi-local ring t92, v which is the intersection of the local rings of . at the
(finitely many) points of the union V of the images of the/y.. We shall denote this
ring ), v by R. Each/y factorizes through Spec R"

/ hSpec B, ) Spec R )X

SpecA.

The following exact sequence of 6tale sheaves over X defines 3"

-’>m,Y -’> h*m,n -->o -> 1.

Applying/, and taking cohomology, we get the exact sequence of 6tale sheaves
over A:

0--> G,,, n -> q.G,,,,n __>/.6 __> n .G,,, , -->0 (1.7)

using G,,,,, /%G,,, , and R .(h.G,, n)= 0. This last equality comes from the
oinjection R .(h.G, n) -> R q.G,,, n ispectral sequence attached to/V h q)

and from the vanishing of this last sheaf, which one checks by computing fibres:
since ,4 is normal, it suffices to prove that Pic Un 0 for any open subset U of
Spec,4’ where A’ denotes the integral closure of ,4 in some finite extension k’/k,
and where Us U x sp, Spec R; since A’/A is finite (char. k 0), the ring
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R’ R(, A’ is finite over the semi-local ring R, hence itself semi-local, which
implies PieR’---0; it is also regular, since it is formally smooth over the
Dedekind ring A’; therefore the restriction map 0 Pic R’ --> Pic U is surjective.

From/j’ we get Gin, -->/j.Gm, , which yields q*Gm, t.Gm, upon applying
q.. Since By/A is finite and free, there is a trace map of 6tale sheaves
T. "r. Gm B --> Gm a, which composed with the natural map Gm a --> r Gm yieldsJ’J* J* ’7
exponentiation to the power dima Bj dimk Kj on Gm, a" On taking Xj nj Tj o #j,
one gets a map of sheaves q.Gm, --> Gm, a which composed with Gm, a --> q.Cam,
in (1.7) gives 1, that is we get a map " q.(,/G,a->G,a. From (1.7) one
gets the exact sequence

0--> q (m, l/(m, ,4 -->.o -.> R .G, y: -->0.

On first pulling back this sequence via ," S-> R *(m,.(" and then pushing,out
the resulting sequence via #, one gets an extension of sheaves over A, of S by
13,,,,,, whose restriction to Speck is isomorphic to the extension (1.2) associated
with = ,jnjPj. This last element of ’(k,S)Z->Extlk(,Gm,) therefore comes
from an element of nl(A,,{)-%Exta(,(m.a). ["]

2. Conic bundles over the projective line. Let k be a perfect field of
characteristic 2, and let K= k(t) be the field of rational fractions in the
variable t. The following objects are known to be bijectively associated to one
another (Iskovskih [6], [7], Lam [8])"

(a) Relatively minimal conic bundles X over P, up to k-birational
fibration-preserving isomorphism (recall that a conic bundle X/Pk is a smooth
projective k-surface with a k-morphism to P, the genetic fibre of which is a
smooth conic over k(t))

(b) Smooth complete K-conics, up to K-isomorphism
(c) Quaternion algebras over K, up to K-isomorphism
(d) Rank 4 Pfister forms over K, up to K-isomorphism
(e) Rank 3 quadratic forms over K, with determinant equal to 1, up to

K-isomorphism.
That (e), (d), (e) are equivalent is in [8] (proposition 2.5, p. 57): to the quaternion
algebra A (a’Kb) one associates the Pfister form q ((- a,- b))= (1,- a,

b, ab) which is the reduced norm of A, and one defines qo ( a, b, ab) as
the restriction of q to the pure quaternions. This form in turn defines the conic C
with equation -bx2- ay2 + abz2= O, which is K-isomorphic to z2- ax2- by2

0. Given X as in (a), one defines C as the genetic fibre Xr. That any C comes
from an X as in (a) can be proved by simple direct computations (cf. [6] 3). The
structure of degenerate fibres of a relatively minimal conic bundle is given in [9]
(theorem 1.6, where a known lemma ([11] p. 91-95) is used without warning), in
[6] (lemma 0.9 or, better, explicit proof of theorem 3.2) and in [7] (lemma 6,
corollary). Any such fibre over a closed point y of P is a k(y)-conic Xy with a
single k(y)-rational point, i.e., over a certain quadratic extension k(x)/k(y) it is
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isomorphic to the union of two transversal lines k(x) which the Galois group of
k(x)/k(y) swaps. Given such a relatively minimal conic bundle X/pig, let
be the finite set of closed points of over which the fibre is degenerate. Let
and d be the irreducible components of the fibre of X over one (fixed) geometric
point of la over yi. We thus fix imbeddings k(y)c k(x)c/; let {ii and {i’ be
the respective Galois groups of k/k(y) and k/k(xi). Let f be the divisor on X
defined by the fibre of X above some rational point of P. It is an easy matter to
check the exactness of the following sequence of {I-modules

0-> Z[{i/{i/] ei--> Zf ) D z[{i/{i,] 4 -> Pic, X
PicX--- O. (2.1)

Here K--- k(t), the map , is induced by the restriction to the genetic fibre X,
and the first two terms are {i-submodules of DivX, the first one being generated
by {e =f-di- di}, the second one by {f, di}. Since PicX is the trivial
{i-module 7, upon tensoring over Z by k*, we transform (2.1) into the exact
sequence of k-toil (more precisely into the sequence of their k-points)

--> II Rk(y,)/kGm to >GmX I’[ Rk(x,)/kGm ...>S >Gin--> (2.2)

where we have used the canonical identification of S with S’ (cf. l, proof of
(ii)), and where to((ai)) (lIi Nkty,)/k(ai),’’’, ai-1,..._). Let NO be the kernel of

k* One then deduces fromh, and let So be the k-torus defined by So(k) No(z
(2.2) the exact sequence

0--> H(k, So)--> Brk(yi)
# ;Brk) ) Brk(xi) (2.3)

where #((ai))--(,iCOrk(y)/k(ai),..., --ReSk(y)/k(x)(Oti),... ). It can therefore
be rewritten as

Cor
0--> H (k, So) -> 1"I k(y)*/N(k(x)*) > Br k (2.4)

where Nffi Nktx,)/kty,) and Cori-----COrkty,)/k. This shows H l(k, So) to be
annihilated by 2. So is afortiod H t(k, S), in view of the exact sequence

$(k)
r )k* )H(k, So) )H’(k,S)->O (2.5)

which one also deduces from (2.2). On using the birational invadance of
H t(k,$) (cf. theorem 3 (iii)) to restrict oneself to the case of a relatively minimal
conic bundle, one gets:

PROI,OSITIOI Let X be an), conic bundle over k, and let $ be the k-torus
dual to Pic X-. The group H (k, S) is annihilated by 2.
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There are various algebraic invariants attached to the data (a)-(e):
(al) the collection of quadratic extensions k(xi)/k(yi) defined by the

degenerate fibres of X;
(a2) the class ’x of the 2-extension of g-modules defined by (2.1)

(2.6)

upon using the identifications Ext2(Z,Z[/b])-- H2(t;,Z[/b])-- H2(b,Z)
H (b, Q/Z), this 2-extension gives rise to elements i H (k(xi)/k(.,v),Z/2)
H (;i,Z/2), and lemma will show these ’i to be non-zero;
(b) the class ac ft. BrK of the canonical 2-extension of ;-modules (recall

to= k(t))

O K* --) K(C)* --) Div C. PieC0
which lies in H2(;,/*)--since PicC is the trivial g-module Z;

(c) to any dosed point yP and any imbedding k(y)--)k-’, letting
;y Gal(k-/k(y)), one can associate the Witt invariant xy(A) H (k(y), O/Z)
which is defined by means of the valuation vy at y"

P., s v,,

(cf. [5] proposition 2.1 p. 93 and compl6ments p. 188);
(d) the collection (d_+ (2. y(q)) llyk(Y)*/k(Y).2, where 2, y denotes the

second residue homomorphism ([8] chap. 6, cor. 1.6, p. 145) taken with respect to
a uniformizing parameter ry at),, and d+_ is the signed determinant ([8] p. 38); an
easy computation shows that the definition does not depend on the choice of the
ry; moreover, 02. y(q) is in the fundamental ideal I(k(y))c W(k(y)), and it is
non-zero if and only if its signed determinant is not 1;

(e) the same collection, with q0 in place of q.
LEMMA 1. The various invariants defined above are related as follows"
(i) ac is the class of A in Brk(t);
(ii) the local invariants in (c), (d), (e) are all trivial unless y is one of the Yi; at

Yi, they are all equal and they coincide with those in (a) and (a2)--through the
usual dictionaries" { quadratic and trivial extensions of k(fl)} -> H (y, Z/2)->
k(y)*/k(y).2.

Proof. (i) is [1] lemma 3.14. That the invariants in (a) and (c) coincide at all
y is in [6] (theorem 3.5). Easy residue computations show the invariants in (c),
(d), (e) to coincide---and to vanish at y y. Here is/t typical example. Take
a, b

_
k[t], and assume r try exactly divides b rb’ but does not divide a. The

signed determinant of 02,,(( ( a,- b)))-- b’(y)(- 1,a(y)) is a(y)
k(y)*/k(y)*2; one finds the same result starting from q0--- (- a, -b, ab);
finally, proceeding as in [1] (lemma 3.15), one shows the invariant Xy((k b)) to be
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the quadratic extension k(y)(/a(y) )/k(y). Now it only remains to show that
the ’ in (a) are non-zero.

Let U-- U,. be the complement in X of the union of f (the fixed fibre over a
rational point) and all degenerate fibres except Xy,. It is clear that ’ can also be
defined by the 2-extension

0---> Z[;/t],]. eZ[/’]. 4- Pic -)PicX- 0 (2.7)
defined just as (2.1), with PicX Z and the first non-trivial arrow sending e to
-(d,. + d,.). Let Mi be the image of the middle arrow. Now, ’i is the image of the
extension

0"-> M -’-> Pie U---> 7’ --->0 (2.8)
by the map Ext(Z, Mi)- Ext2  Z, Zt / d) deduced from the exact sequence

Since Ext,(Z, Z[g/g’]) H (g;, Z) 0, p is an injection, and ’ 0 if and only if
(2.8) splits. Let us show it does not. If the restriction Pic-PicX had a
section, there would exist a divisor D on X such that (D.f) and such that, for
all (E , the divisor D D is linearly equivalent to a divisor with support in the
complement of U-. Take o so that Od .. From

) (n.d, ) (-’n.d, ) (n.4 )

we would get (D.f)--(D.(d + )) even! I--I
Remark. From (a_), we see that the element (’) ()H(g,(2/Z) goes to

zero under the transfer map to H (g, G/Z): not all local invariants are possible.
In the simplest case, where all y are k-rational and all extensions k(x)/k
coincide, this implies that the number of degenerate fibres is even; more
generally, if all y are rational, the sum (in H(g, 7/2)) of the quadratic
extensions corresponding to the degenerate fibres is zero (Exercise: build a
complete model ofy- tz-- (t- a)(t- b)(t- c) and check the result). This is
surely related to Scharlau’s reciprocity formula ([8] chap. 9, theorem 4.2, p. 270).

3. Proof of theorems 1 and 2. The notation will be as in the statement of
theorem 2 (of. introduction) and as in 2. We shall assume X/P to be relatively
minimal. This is legitimate, since P’Ao(X)---> H (k, S) is a k-birational invariant
( 1, theorem 3 (iii)), and since condition (i) in theorem 2 is also a k-birational
invariant (as shown by Chow’s moving lemma, or more simply as in [3] lemme
3.1.1).

Let us quickly recall some facts used by Bloeh to establish the exact sequence
(*). Let Z (,, %2) be the kernel of the map

div" ]_I /(’)*-’>I] Z
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where X’ denotes the set of points on X with codimension i. The natural
/* --) H 1(, %) are shown tohomomorphisms K2(k)-)H(, %:)and Pic)z

be isomorphisms. One therefore has the exact sequence of o-modules

0---> K2F/K2k --) ---) PicX (z k*--) O. (3.1)

On the other hand, Milnor’s exact sequence ([10] theorem 2.3) applied first to the
base, then to the generic fbre of X/P,, gives rise to the two exact sequences of
g-modules

0

0--> (f(y)*--> K2P/K2f--) K2/K2, -O (3.2)
Y

0---> K2P/K2K’---> (()* N ; g*---)O. (3.3)

Here y in (3.2) runs through all closed points of P (and/(y) =/_, k(y)), the
symbol 0 denotes the kernel of the sum of norm maps k(y)*--)k*, and , in
(3.3) runs through all closed points of the K-conic Xg (they correspond to
integral non-vertical divisors on X).

(A) The basic diagram.
This subsection will be devoted to the construction and study of the following

diagram

where /and s will only be maps (not necessarily homomorphisms).
The first line is an exact sequence deduced from (2.3) and (2.5) (y runs

through the closed points of P where the fibre of X/pI is degenerate). The last
line is an exact sequence of Milnor’s for powers of the fundamental ideals in the
Witt ring of k(t) ([10] lemma 5.7, [8] theorem 3.1, p. 265); y runs through all
closed points of P, and 02 is defined as the collection of second residues at all y,
with respect to a fixed choice of uniformizing parameters. The maps and j are
the obvious ones. The homomorphism c is the Clifford invariant, which on 12
coincides with the Witt invariant of quadratic forms (cf. [8] chap. 5, 3, pp. 116
and 120). The map 6 is the one appearing in Bloch’s sequence (*); it comes from
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(3.1). The map is defined as the one sending f K* to the class of fq_l_ q in
W(K), where q is any rank 4 Pfister form q ((- a,- b)) corresponding to
x/Plk (cf. beginning of [}2)" one easily checks that this defines a map from
K*/NA* (where N is the reduced norm Nrd of the quaternion algebra A,
actually defined by q) to I3K, and that this map induces a homomorphism
K*/NA*I3K/I4K. The middle line is an exact sequence obtained by
improving on lemma 3.10 of ]:
LnMA 2. Let N: HvK(3,)* K* be the "sum" of the norm homomorphisms

corresponding to all closed points / of the K-conic Xr C. The image of N is
precisely the subgroup Nrd(A *).

Proof. Let % be this image. That Nrd(A*) C % is in [1] (lemma 3.10). Let
be a closed point of Xr, let L--- K(3,), and a Nt/r(fl) with/3 L*. Since
is split, fl, as any other element of L, is represented over L by its reduced norm
q. Applying either Knebusch’s or Scharlau’s norm principle (cf. [8] chap. 7,
4-5), we deduce that a is represented over K by q, i.e., it belongs to Nrd(A*).

Remark. One can give a slightly different proof, based purely on properties
of central simple algebras. Namely, for any such algebra A with center k, the
subgroup Nrd(A*) c k* coincides with the subgroup generated by all Nt/r(L*),
for L running through the finite extensions of k which split A. The proof uses"

(a) if A and B are two similar simple central algebras over k, an argument
involving Dieudonn6 determinants shows Nrd(A*)= Nrd(B*); (b) for L/k a
finite field extension splitting A, there is an algebra B similar to A in which L is a
maximal commutative subring; (c) in the situation of (b), the reduced norm of B
induces on L the usual norm Nt/k; (d) A is similar to a skew field D, and any
maximal commutative subfield of D is a splitting field of D. One can in turn
deduce from the above identification a "norm principle" for the image of the
reduced norm Nrd.
On applying cohomology to (3.3), lemma 2 gives an isomorphism

K*/NA* , ,>H’(,K,_ff/KEg),
which, combined with the cohomology sequence associated to (3.2), yields the
horizontal middle exact sequence in (3.4). All maps but have now been defined.
That l induces (via 0) such a map will be shown at the end of the proof of:

L.MMA 3. Diagram (3.4) is a commutative diagram whose lines are exact
sequences. The map *1 is injective; composing it with reduction modulo I4K, , 3 4even yields an injective homomorphism K /NA -->I K/I K which makes

3 4H (g,K2/K2) into a subgroup of I k/I ’k. The map c is injective on the image
of a2 . rl.

Proof. We already know that the lines are exact sequences. From fq fq’,
with fi f’ K* and q a quatemion form, follows f/f’ NA*: hence *1 is
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injective. The composed map K*/NA*I3K/I4K is a homomorphism; let
f K* with q_l_-fq= (( f, a, b)) 14K; according to Arason and
Pfister ([8] chap. 10, 3, cor. 3.4, p. 290), this 3-fold Pfister form must be
hyperbolic, hence f NA*. We are left with showing commutativities and the
assertion on c.

Restriction to the generic fibre defines a diagram:

0 >K2F/K2k > >Pic X () zk* >0

(3.5)

In this diagram, the first line is exact sequence (3.1), the second one exact
sequence (3.3); the left vertical arrow is the obvious one, the middle one is
obtained by forgetting vertical divisors (recall ; c Hve,/(,)*); the map
PieX)z k* ---> k* is induced by h" PieX PicX Z, and the right vertical
arrow is obtained by composition with the inclusion /--> . The left square
commutes, because both horizontal arrows are defined by tame symbols: one can

/* c to check the commutativity of thetherefore restrict oneself to DivXt) z
fight square, and going both ways sends D (R) a to aw’f. On taking cohomology,
we get the eommutativity of the rectangle in

S(k) ’
o r k*

K*/NA * . H ’(g, K2P/K2g)
where ,r and have already been defined, and where the very definition of 0
shows the lower triangle to commute. The left upper square in (3.4) therefore
commutes.
The map O’k*-ofBrk(y) is the coboundary () coming from the

2-extension (2.2), itself obtained from (2.1) by tensoring over Z with k*. Letting
i H(gi, O/Z) be the quadratic character corresponding to the extension
k(x)/k(yi), and letting ’ n2(gi, 7) be its coboundary, we then see from
lemma that for f k* the cup-product B’i t3 f coincides with 0i(f). Now, for
f k*, the computations in lemma 3.15 of [1] show fly(f) 0 if the closed point
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y is not among the )’i, whereas

v,(f)-- T {cry U 8i f} 8i U f.
This deals with the commutativity of the right upper square in (3.4).

Let y be a closed point of P. The commutativity of the right lower square in
(3.4) follows from that of the big rectangle in the diagram

K* Br k(y)

13K/I4K

k3K

Gal /
;kzk() c

:2, ), I2k(y)/I3k(y)

(3.6)

where the maps with the same label as in (3.4) are induced by the corresponding
maps in (3.4), T2, v is the tame symbol ([10] 2.1), 2, y is the second residue at y
([10] 5.1), s2 and s3 are as in [10] (4.1), Ga! is the Galois symbol ([10] 6.1) and
A(f)--e(f).e(a).e(b) for q ((- a,-b)> or h ("kb). The commutativity of
the two triangles and of the lower trapezium follows from the definitions of the
maps. That of the upper trapezium is dealt with in [1] (lemma 3.15). The big
rectangle therefore commutes.

Finally we show that the map c is injeetive on the image of )2 l. Indeed, a
computation shows that, for any y, the class of O2, y(fq_l_- q), where
q (( a, b)), is the class of a rank 4 quadratic form with determinant 1. But
the formula c((u, v, w, uvw)) (k(y) (see [8] chap. 5, lemma 3.2, p. 116)
ensures injectivity of c on such forms. Hence
into the kernel I3k of the homomorphism 2 ()y O2,y. [’-]

(B) Exploiting the basic diagram.
Given the k(t)-quadratic form q---((- a,- b)) the class of which lies in

12K C W(K), let us denote

K’ {f K* fq_l_ q i(W(k))}

k {a k*laq+/- q i(W(k)))
where i" W(k)---> W(K) is the natural injection. Clearly, k---K N k*, and

K D NA *. Moreover, k is a subgroup of k*, and the next proposition shows K
to be a subgroup of K*.
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PROPOSITION 2.
whole section"

The following equalities hold, where notations are as in the

k im(S(k) r ,k*) ker(k* - H’(k, So))

ker(k*- IIk(yi)*/Ni(k(xi)*)) (3.7)

H (g, K2P/K2/) K/NA *, (3.8)

and there is an exact sequence

0"-’) K/kNA * --) Ao(X )
( 1(,n k,S). (3.9)

Proof. According to lemma 3, the map c in (3.4) is injective on the image of
2 r. Hence the two conditions 2 o l(f)= 0 and if(f)= 0 are equivalent for
f K*. But the first condition precisely describes K (exactness of the lower line
in (3.4)). Whence (3.8), upon using the middle exact sequence in (3.4). The group
k now appears as the kernel of ff o t, hence of , whence (3.7) upon using (2.3),
(2.5), (2.4). We finally deduce (3.9) from the commutative diagram

S(k) H ’(g, K2P/K2/)

k , K/NA*

>Ao(X) >H(k,S)

the first line of which is Bloch’s exact sequence (*), deduced from (3.1) by taking
cohomology and identifying H (,) with Ao(X). [-]

Remark. The proof of this proposition, the full strength of which will only be
used in the proof of theorem 5, uses all the painfully established commutativities
of lemma 3.

An open question: Is K always equal to k.NA*? In other words, given the
quadratic form q--- (( a, -b)) over k(t) and any f k(t)* such that the class
of fq.l. q in W(k(t)) comes from W(k), does there exist a k* such that
is represented by q over k(t)?

After proposition 2, an affirmative answer to this question is equivalent to
being injeetive. Theorem 4 will show the answer to be "yes" in case (i) of theorem
2, and theorem 5 will show it to be "yes" in cases (ii) and (iii). In all these cases,
proposition 2 will even yield the value of H l(g, K2ff/K2), thus answering a
question of Bloeh ([ 3.4).
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LEMMA 4. Let v be a closedpoint of Pk, let r be a uniformizing parameter at r,
let a and b be in k(t) with v(a)= 0 and v(b)= 1, and let q (- a,-b.
There exists u k(fl)* such that for any g k(t)*, the following relation holds in
W(k(y)):

0,,(gq) u.02,,(gq). (3.10)

Proof. Recall 81,, denotes the first residue ([8] chap. 6, 1, pp. 145-146). The
proof is by two computations: v(g) odd or even. Letting b rb’, one finds in
both cases that u--- -b’(y) will do. ["]
THEOREM 4. Let k be a perfect fieM of characteristic :/: 2 and let X be any

conic bundle over Plk. If X has a point in an odd degree extension of k, then
H (, K2ff/K2/) 0 and the map p" Ao(X) --> n (k, S) is injective.

Proof. Since there obviously exist closed points of degree at most 2 on X, the
assumption is tantamount to the existence of a degree one 0-cycle on X. As
mentioned at the beginning of 3, we may assume x/Plk to be relatively minimal.
Let x be a closed point of odd degree on X, and let y be its projection in P.
Clearly, k(x)/k(y) and k(y)/k are odd degree extensions. Denote by R the
local ring of P at y, by r a uniformizing parameter of R. Changing variables if
necessary, we may assume that the generic fibre is given in P2r by an equation

X2- aY2- bZ2= 0 (3.11)
where either (i) a and b are units at r or (ii) a is a unit and v(b)= 1. We can
take q--- ((- a,- b)>, with the same a and b.

Case (i). Since a2,,(q)--0, the fibre of X/Pk is a smooth conic (see [}2,
lemma 1). Let XR ---X v SpecR be the restriction of X/Pk over SpecR.
Equation (3.11) defines a smooth R-curve in p2, call it FR, and the genetic fibres
of these two R-curves are K-isomorphic: Xr Fr. Such a K-birational
isomorphism induces an R-rational map X--> Fs, which on the special fibres
induces a k(y)-rational map Xy--->Fy (since X is regular of dimension 2, and Fs
is proper over R, 0 is defined outside finitely many closed points). Since Xy is a
smooth k(y)-curve, and Fy is a proper k(y)-curve, this induced k(y)-rational
map extends to a k(y)-morphism (which can be the contraction to one point!):
the k(x)-valued point of Xy now defines a k(x)-valued point of the conic defined
by X2 a(y) y2 b(y)Z 2 0 2n Pkty)" Since k(x)/k(y) is an odd degree
extension, this conic also has a k(y)-point (special easy case of Springer’s
theorem), and O,,(q)= (1,-a(y),-b(y),a(y)b(y)) is zero in W(k(y)). A
fortiod B.,,(fq)---0 for any f k(t)*, hence 8,,(fq_t_ q)= O.

Case (ii).
find

Takef K, i.e., fql q i(W(k)). From (3.10) in lemma 4, we

a,.,,(fq+/- q)= u.a2.,,(fq.L q)= 0 W(k(y))

(second residues of constant forms are trivial).
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End ofproof. Take f K. We know that in all cases, 0, (fq_L q) is zero
in W(k(y)). By definition, fq_t. q belongs to i(W(k)), and 0, o =/y is the
natural map W(k)--> W(k(y)), which is an injection by Springer’s theorem ([8]
chap. 7, cor. 2.2, p. 198). Hence fq --q over k(t), and f NA*. We thus have

K NA *, and the proof is completed on using (3.8) and (3.9) in proposition 2.

Remark. Under the assumption of the theorem, Chow’s moving lemma
guarantees the existence of a 0-cycle of degree one, hence of a closed point of
odd degree, in any non-empty open set of X: we could do without the study of
the degenerate fibres. Note also that the proof of this theorem uses only the lower
half of diagram (3.4) and the fact that 2, y(q)--0 implies that the fibre of the
relatively minimal model X/Pk aty is a smooth conic, which is only a small part
of [}2.

Proof of theorem (cf. introduction). The case in which k is a finite type
extension of O immediately follows from the conjunction of theorem 4 and
theorem 3 (iv). If k is of cohomological dimension 1, any fibre of a conic bundle
X/[k over a k-point of P has a k-point! To see this, one may assume X/lk
relatively minimal (since blowing-up and blowing-down preserve existence of
k-points); if such a fibre is smooth, it is a conic, hence has a k-point; if it is
degenerate, its (unique, el. beginning of [}2) singular point is rational. The
assumption of theorem 4 is certainly met, and H (k, S) 0, since k is of
cohomologieal dimension 1. [’-]
THO,EM 5. Let k be a field of characteristic 0, and let X be any conic bundle

over P When k is a local or global field, the map dP Ao(X) ---> H l(k,S) is
injective. Moreover:

(i) if k is a O-adic field, then H (, K2ff/K2/) 0;
(ii) if k [:1, then H (, K2ff/K2/) 0 if X(R) and H (, K2ff/K2/)
Z/2 if X(R) ;
(iii) if k is a number field, H(,Kff/K)--(Z/2)", where s is the number of

real places v of k for which X(kv) .
Proof. (i) This ease is due to Bloeh [1]. Apply lemma 3 and note that 13k 0

for such a field.
(ii) The ease X(I:I) 13 follows from theorem 4. We may assume X/P

relatively minimal to deal with the ease X(I:I) 13 (of. theorem 3 (iii)). Since 12 is
the only proper finite extension of I:1, there cannot exist any degenerate fibre
(after 2, such a fibre would lie over a real point, and its singular point would be
R-rational). Lemma then shows that 2, y(q)--0 for any closed point y of I,
which implies that q i(W([:l)) c W(I:l(t)). Whence q i(qo) with q0 ((1, ),
and X is [:l(t)-birationally equivalent to C RP, where C is the real conic
without real point. Since q is a scalar form, I:1 1:1". Let f be in Iq(t), and let
Y0 I:1 be neither a zero nor a pole of f. From

fq.L q i, ,, yo(fq J- q) f(Yo)q-L q W(FI(t))
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there follows f/f(Yo) NA * and Iq(t) Iq*.NA * I:I.NA *. According to (3.9)
in proposition 2, the map is therefore injective. Since Iq_ c NA* and
(specialization argument) -1 qNA*, we find [q(t)/NA*=Z/2, which,
together with (3.8), gives the last result.
The argument is general" if q i(qo), i.e., if X is k(t)-birationally equivalent to

the product of a k-conic C with la, then HI(,KE/K2) k*/Dk(qo), where
Dk(qO) is the subgroup of k* consisting of the elements represented over k by q0-
Since H(k,S)=O, one can thus check A0(X)=0wa fact which is easy to
establish directly!

(iii) The case where k is totally imaginary is due to Bloch [1]. Let us show that
for k a number field, and f K, there exists a k* such that fq aq in
W(k(t)). Assume X/lak relatively minimal (use theorem 3 (iii)). Since I3kv 0 at
the non-real places v, we deduce from the last line in (3.4) that for such v’s,
fq q in W(kv (t)), and moreoverfq aq in W(kv (t)) for any a kv* q. We have
just seen in (ii) that, for any real place v, there exists av kv* q such that fq avq
in W(kv(t)). Let denote the set of real places of k. The k-torus S is certainly
split over a cyclic extension at the places of o" hence the diagonal image of S(k)
in the product l’IvS(kv) is dense for the real topology. Note that for any
extension k’ of k, the group k* is still the image of the homomorphism
S(k’)- k’* (this is not entirely obvious, since x/Plk might cease being relatively
minimal after going over to k’; however the new S differs from the old one by
factors which are sent by r to k’*" the image of r does not depend on which
model has been taken). One can therefore approximate (av)v in the product

k* by a k r(S(k)) in such a way that fq aq in each W(kv(t)) forHvoo v, q
v oo. We know that fq aq holds in every W(kv(t)) with v non-real, hence at
all v. This is known to imply fq aq over k(t) (see [3] corollaire 1.1.1, p. 154).
We have thus shown K k.NA *, which implies that is injective (proposition
2, (3.9)). From (3.8), we then get"

H’(I,K2/K2) K/NA*= k/k* NA*.

k* /kv* NA* isWe shall show that the diagonal map k/k* tq NA* I’[v v, q
an isomorphism: combined with part (ii), this gives the last statement. From the
above approximation argument, we already know the map to be surjective; if
a k satisfies aq --q in kv (t) for v oo, this is true at all places v of k (since
lakv --0 at the non-real places v), hence ([3] loc. tit.) this is true over k(t), i.e.,
f NA*" the map is injective. [-1

This theorem complements [1] (corollary 3.3).
Remark. In the case where X(kv)v f for all v oo, one need not use the

approximation property for tori: using theorem 4, we find that fq --q over k(t),
for anyf K and any place v oo. As this holds also at the other v’s, one uses
[3] (lot. eit.) to show K NA *.

4. Remarks and conjectures. In this section, we indicate the connection
between the results of this paper and the problems listed in [4] (V, pp. 232-233).
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(a) Geometrical questions.
Let X/k be a conic bundle over P, char.k 0 and X(k):/: O. If Pic, is a

direct summand of a permutation -module, it is an open question whether there
exists a k-variety Y such that X k Y is k-rational (cf. [4] loc. tit., questions (a),
(b), (e)). Now, under this assumption, theorem 2 implies Ao(X) is zero for any
extension L/k. Taking L k(X), and fixing P X(k), we deduce that the
generic point of X is rationally equivalent to P over k(X). Can any information
on the geometry of X be deduced from this fact? More generally, under the
single assumption X(k) :/: (R), can any geometric information be deduced from the
injection Ao(XL) H (L, S)?

In a different direction, theorem 4 raises the question: is H (, K2ff/K_) 0
for any rational surface X with X(k):/: O?

(b) An explicit upper bound for Ao(X).
In the remainder of this section, k will denote a number fieM. Given a k-torus

S, with character group S, and a finite set of places of k, let

and

llli(k, U)= ker(H’(k, U)-> II H’(k, V))all v

for U S or , and 1,2. Note that Ill(k,S)--lll(k,S). All these (finite
abelian) groups can also be computed at the finite level K/k, for K/k any finite
Galois extension which splits $ (use Hilbert’s theorem 90, the Brauer-Hasse-
Noether theorem and (ebotarev’s theorem). Moreover, class field theory (Tate
[12]) identifies lli(k,S) with the dual of 1liE(k, ), and Ill l(k, S)/lll(k,S) with
the dual of the cokemel of the restriction map

Hl(k,g) --> II Hi(k,g)

This permits an effective calculation of the group Ill (k, S).
Let X be a conic bundle over la, let Pie,, and let be the union of the

finite places v of k at which X does not have good reduction and of the real
places v of k such that X(kv) has at least two (real) components.

PROPOSITION 3. (i) Ao(X) is a subgroup of the finite group 111 S).
(ii) If X is split by a cyclic extension of k, the diagonal map

Ao(X) II Ao(X  )
all

is an injection.



442 J.-L. COLLIOT-THLI.NE AND J.-J. SANSUC

Proof. (i) Bloch ([1] theorem 0.4) has shown that Ao(Xk) ---0 if X has good
reduction at the finite place v. When k Iq, and X(kv)= t21, one easily shows
Ao(Xkt.) 0, using A0(Xt.,c) 0. When X(kv) v 0 admits s real components for
the real topology, it is an easy consequence of recent results of Ischebeck that
Ao(Xk,.) (Z/2) . The first assertion now follows from comparing global and
local maps Ao(X)---H(k,S), and using the injectivity of the global one
(theorem 2 (iii)).

(ii) Recall that X is said to be split by the Galois extension K/k if Xr can be
obtained from P by successive blowing up and blowing down at K-points. For
such an extension K/k, the group Gal(k/K) acts trivially on PicX: the
extension K/k splits the k-torus S. Let G Gal(K/k). After theorem 2 (iii), the
kernel of is a subgroup of !11 (k,S), and one knows that this group is dual to
the kernel 1112(K/k, ) of the restriction map H2(G, ) l"Ian v H2(Gv S). Since
G is cyclic, there exists a v such that Gv G (Cebotarev’s theorem), and this
restriction map is an injection. [-]

Example. An instance of surfaces as in (ii) is provided by smooth proper
models of the equation ),2_ dg2 I-I/N_ (x_ ei) as given in [4] ([}IV p. 230).

(c) Conjectures on the exact value of Ao(X).
First recall that class field theory (Tate [12]) gives a long exact sequence

O-m’(k, S)- H’(k,S)--> H H’(kv, S)
all v

Ei >H,(k,g)’-_llll(k,g)’-__>O

(4.1)
and an isomorphism

tU (k, S )
_

ttl ’(k, g )". (4.2)

Here M denotes the dual Hom(M, O/Z) of the finite abelian group M. The maps
iv’H(kv, S)H(k,)-" are obtained by composition of the local isomor-
phisms

(4.3)
and of the duals

n’(kv, g)" (4.4)
of the restriction maps. Although one does not yet know whether Ao(X) is finite
for all rational surfaces over a number field k, there is no harm in stating the
following conjectures for all rational surfaces. Let X be a (smooth,,projective)
rational surface over the number field k. Let jv "Ao(Xk) H(k,S) be the
composition of the local map tYP’Ao(Xk)--> H l(kv, S ), with (4.3) and (4.4).
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COrJECTURE A. For an), rational surface X over a number field k, there is an
exact sequence offinite abelian groups

].I Ao(Xkv ) jv>H ’(k,g )" (4.5)
all v

where is the diagonal map.
Comments. (1) Underlying this conjecture is the fact that Ao(Xk, ) 0 for

almost all v. This we know for conic bundles X/Pk ([1] theorem 0.4). That the
same holds true for all rational surfaces has been shown to us by Bloch (letter).
On the other hand, we do not yet know whether Ao(Xkv) is finite for all rational
surfaces and all v-except for v archimedean (the above result of Ischebeck holds
in fact for any smooth projective rational variety).

(2) Let K/k be a finite Galois extension which splits S, and let G
Gal(K/k). Conjecture A would give bounds of an algebraic nature for the
arithmetic quantity z (1-I #Ao(Xk))/#Ao(X):

< ,r < (4.6)

When K/k is cyclic, z should be an integer and the more precise bounds

(4.7)

would be available.
(3) There is a K-theoretical version of the above conjecture. The notation is as

in 3. Let %(X) be the subgroup of H2(, Kff/K2) consisting of the elements
which go to 0 under all maps H2(t, K2ff/K2k) H2(1;,/(C)*) deduced from the
tame symbols attached to the integral curves C c X, and which vanish in all
H2(;,K2ff/K2),v running through the places of k. It is a consequence of [1]
and of the vanishing of almost all Ao(Xkv) that this group is finite for any rational
surface X.

COJICTUI B. The group 9L(X) is zero for an), rational surface X.

Granted that P’Ao(X)--> H(k,S) is an injection at the local and global
levels, it can easily be shown that this conjecture implies conjecture A. They are
even equivalent in the case of conic bundles over la which have a 0-cycle of
degree one. In the case of arbitrary conic bundles over P, conjecture B also
implies"

CONJICTURE C. Let k be a number field, and let X/k be a rational surface
with H (k, Pic.)--0. If there is a O-cycle of degree one on each Xk (V running
through all places of k), then there is such a O-cycle on X.

This applies in particular to smooth proper models Xd, e of k(X)= k(x, y,z)
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where),2 rig2 P(x) with d k, d k2, and with P an irreducible polynomial
of even degree. In the case when this degree is 4, this would imply the usual
Hasse principle for such equations, in view of Theorem C of [2].

(4) Let us consider Xd, e as above, with P irreducible of the fourth degree.
Assume now X(k)=/: f3. In this case, lll(k,S)= H(k,)= 0, and conjecture A
boils down to: Ao(X)-:-> I.IvAo(Xk). In view of theorem C of [2], this would
indeed hold if we knew that Xd, e satisfies weak approximation, which is an open
question. As a matter of fact, when k--O, Schinzel’s hypothesis (H) (cf. [4] p.
236, and the references therein) does imply weak approximation for Xd, e.

(5) The last map Hall vAo(Xk)-VHl(k,g) in (4.5) need not be surjective
onto the kernel of the natural map H (k, )"->lll(k, )", as exemplified by the
first two numerical examples in the Table below.

(d) On the kernel of the diagonal map A0(X)--I.Iall vho(Xk).
Here X is any rational surface over k. The map :A0(X) H (k, S) clearly

sends ker6 to Ill(k,S). It certainly induces an injection ker6--lll(k,S) when
X is a conic bundle over la (theorem 2 (iii)). Assume X(k)v .

ASSERTION. If the universal torseurs ([4] p. 226) over X satisfy the Hasse
principle, the map t. ker6 lll(k,S) is surjective.

Recall it is an open question whether such torseurs satisfy the Hasse principle
(see [4] II et IV). Let us establish the above assertion. Take P X(k) and let- -t, be the universal torseur with trivial fibre at P. Let a be in Ill(k,S), and
let -a be the universal torseur over X obtained by twisting 0- by -a. Since by
definition the fibre of -a at P is -a H (k, S), hence 0 H (kv, S) for any v,
the universal torseur - has points in all completions of k. If such torseurs satisfy
the Hasse principle, there exists a P X(k) such that (P)ffi 0 H(k,S)
(take for P the projection of a k-point of 0-a ). Hence S(P) a H (k,S), and
a is the image under of the 0-cycle P- P (use theorem 3 (i)), which proves
the assertion. [--I

(e) On the cokernel of 8 :A0(X) ll,nvAo(Xkv) in the case of Chtelet surfaces.
The Chtelet surfaces are conic bundles over P given in affine coordinates by

an equation

ye- dz2= (x- em)(x- e2)(x- e3) (4.8)
with d k, d k2 and e for j. The projection onto la is given by the
x-coordinate. One can give a simple smooth projective model X, which has 4
degenerate fibres ([4] IV). The universal torseurs on X can be described by the
affine equations

0 =/= X e ci(u2i- dv2i) (i 1,2,3; ClC2C3 1) (4.9)
in the variables (x, ui, vi) The computations of [4] (IV p. 231) imply
lli(k,S)=0 and IIl(k,S)---0indeed S is split by the cyclic extension
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k(/-)/k. Moreover, H(k,g)= (Z/2)2, and Hl(kv,)--0 or (Z/2)2, according
as d is or is not a square in kv. The following proposition is proved in [2] (6.7
(iv))"

PROPOSITION 4. Let 0 be the rational point of X/k which lies at infinity on the
model X mentioned above. For any extension L/k, any O-cycle of degree nought on
XL is rationally equivalent to some P- O, over XL, with P X(L). [-]

This proposition and the computations of [4] (IV) enable us to identify the
image of the map Ao(X)H(k,S)=(k*/NK*)2 (here K= k(v/d) and N=
Nr/k) with the image of the map X(k)->(k*/NK*)2 which sends any P with
y2__ dz2 5a 0 to (cl(x el) cl(x e2)). The same holds with kv in place of k. In
this case, ker8 is obviously 0. Some support in favour of Conjecture A is
provided by"

PROPOSITION 5.
sequence

Let X be a Chtelet surface over the number field k. The

0->ao(X)
Y’Y > ].I Ao(Xk ) >H(k,g )- (4.10)

all v

is exact if and only if the universal torseurs over X satisfy the Hasse principle.

Proof. (a) Take {(Pv- O)} HallvAo(Xkv) (proposition 4 allows us to con-
sider only such family of 0-cycles). Assume {(Pv- 0)) goes to 0 H (k, 2)".
According to (4.1), there exists otnl(k,S) with ReS,/ko(a)=dP(P O)
S(P) H(k,S) for each v--here " denotes the universal torseur over X

with trivial fibre at O (given by c in the above explicit model (4.9)). Denote
by -a the torseur obtained by twisting - by a. We find -a (Pv) 0, i.e., ’ has
a kv-point for all v. If the universal torseurs satisfy the Hasse principle, there
exists P X(k) with -(P)=0 n(k,S) (take for P the projection of a
k-point of 3" ). Hence (theorem (3 (i)) a (P O), and (P O) Ao(X) goes
to (Pv O) Ao(Xk) for each v (use theorem 2 (ii)).

(b) Assume now that the sequence (4.10) is exact. Any universal torseur over
X is deduced from " by twisting by some -a H l(k, S), i.e., is of the form -.
If such a -a has points in all completions of k, there exists for each v some
PX(k) with ’(Pv)=0 in n(kv, S), hence Resk/k(a)=dP(Pv--O). By
definition of the J’v, and by thee exactness of (4.1), the point {(Pv- O)}
I.IavAo(Xk) goes to 0 n t(k,S)’’. The vanishing of Ill l(k, S), the exactness of
sequence (4.10) and proposition 4 now imply the existence of P X(k) with
a dp(p-O) n(k,S). Therefore -(P) 0, and - has a k-point (above
P). [-]
When k , any counterexample to the equivalent statements of proposition

5 would provide a counterexample to Schinzel’s hypothesis (H) (cf. [4] p. 236).
The following Table gives some numerical evidence for the truth of both

statements in proposition 5. Here k--(3. We only give those Ao(Xk) which are
non-zero. Write G H(k,2) Z/2 x Z/2, G Z/2 0 c G, G2 0 x Z/2
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Equation

),2_ 17z2--._ x(x- 1)(x- 17)
f12_ 17z2= x(x- 4)(x- 17)
),2_ 5z2= X(X- 1)(X- 5)

f12 + z2___ x(x- 1)(x- 5)

y2 + z2__ x(x- 1)(x- 3)

72 + z2-- x(x- 3)(x- 7)

),2 + z2_ x(x 3)(x 9)

),2 + z2__ x(x- 7)(x- 19)

y2 + z2__ x(x- 1)(x- 9)

y2 + z2__ x(x- 1)(x- 17)

Table 1.

 o{X)  v(Ao(X  ))
0 17 G G
0 17 G G
0 2 G2 G

5 Gt
7/2 oo G2 G

2 G
(Z/2)2 oo G2 G

2 G
3 G

(Z/2)3 G2 G
2 G
3 G3
7 G

(Z/2)3 G2 G
2 G
3 G

(Z/2)4 G2 G
2 G
3 G2
7 G3
19 G

Z/2 G2 G
2 G2
3 G

Z/2 G2 G2
2 G2

C G and write G3 for the diagonal Z/2 in G. The equality Ao(Xkv) G means
that G is the image of the composed injection j"

Ao(Xk ) H’(k,,,S) .H’(k,,g)’--)H’(k,g)’’ffi Z/2 x Z/2= G,

the map

being given by
o(Xkv ) n l(kv, S), (k,v /NU, )2

(P- O)-)(cl(x),cl(x- b))
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for P a rational point on

y2_ dz2_._ x(x- b)(x- c)::/: O.

Let us just mention that the group structure on Ao(X) and the rational points on
the degenerate fibres are of great use in drawing up this Table.

(e) A concluding note on weak approximation.

The surjections X(L)---> Ao(X.) (P->(P- O)), which have been used to draw
up Table 1, show that all surfaces in the Table fail to satisfy weak approximation!
Indeed, this is so as soon as some Ao(Xk) is non-zero. Fix Pro in X(kvo) with
(Po- O)v 0 in Ao(Xkoo), and let Pv 0 at all other v’s with Ao(Xk) v O. The
finite collection P} cannot be simultaneously approximated by points in X(k):
for a closed enough point P X(k), the image of dp(p- O) H(k,S) in
Ilau H(k,S) would have exactly one non-vanishing component (apply
theorem 2 (ii) at v0), but this would contradict the exact sequence (4.1), since for
Chtelet surfaces the restriction map H (k, )---> H (k, S) is the identity as soon
as H (k,)0 (which is certainly the case for Ao(Xk) v O, of. theorem 2 (ii)).
Slightly subtler examples are possible: for the third surface, X(O) is not dense in
X(O2) nor in X(Os).
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