Low degree unramified cohomology of generic diagonal hypersurfaces

J.-L. Colliot-Thélène and A.N. Skorobogatov

August 15, 2023

Abstract

We prove that the *i*-th unramified cohomology group of the generic diagonal hypersurface in the projective space of dimension $n \ge i+1$ is trivial for $i \le 3$.

1 Introduction

Let k be a field with separable closure k_s and absolute Galois group $\Gamma = \operatorname{Gal}(k_s/k)$. Let μ be a finite étale commutative group k-scheme of order not divisible by $\operatorname{char}(k)$. The datum of such a group k-scheme μ is equivalent to the datum of the finite Γ -module $\mu(k_s)$. For an integer $m \geq 2$ we denote by μ_m the group k-scheme of m-th roots of unity. If N is a positive integer not divisible by $\operatorname{char}(k)$ such that $N\mu = 0$, then $\mu(-1)$ denotes the commutative group k-scheme $\operatorname{Hom}_{k-\operatorname{gps}}(\mu_N,\mu)$. In terms of Galois modules, $\mu(-1)$ is $\operatorname{Hom}_{\mathbb{Z}}(\mu_N(k_s),\mu(k_s))$ with the natural Galois action.

Let X be a smooth integral variety over k. We denote by $X^{(n)}$ the set of points of X of codimension n. In this paper, the unramified cohomology group $H^i_{nr}(X,\mu)$, where i is a positive integer, is defined as the intersection of kernels of the residue maps

$$\partial_x \colon \mathrm{H}^i(k(X), \mu) \to \mathrm{H}^{i-1}(k(x), \mu(-1)),$$

for all $x \in X^{(1)}$. For equivalent definitions, see [CT95, Thm. 4.1.1]. Restriction to the generic point of X gives rise to a natural map

$$\mathrm{H}^{i}_{\mathrm{\acute{e}t}}(X,\mu) \to \mathrm{H}^{i}_{\mathrm{nr}}(X,\mu).$$

Purity for étale cohomology implies that it is an isomorphism for i = 1 and surjective for i = 2, see [CT95, §3.4]. In the case i = 2 with $\mu = \mu_m$, where m is not divisible by char(k), this gives a canonical isomorphism

$$\operatorname{Br}(X)[m] \xrightarrow{\sim} \operatorname{H}^{2}_{\operatorname{nr}}(X, \mu_{m}),$$

see [CT95, Prop. 4.2.1 (a), Prop. 4.2.3 (a)]. If X/k is smooth, proper, and integral, then $\mathrm{H}^{i}_{\mathrm{nr}}(X,\mu)$ does not depend on the choice of X in its birational equivalence class, see [CT95, Prop. 4.1.5] and [R96, Remark (5.2), Cor. (12.10)].

Let $n \geq 2$ and let $K = k(a_1, \ldots, a_n)$ be the field of rational functions in the variables a_1, \ldots, a_n . Let $X_K \subset \mathbb{P}^n_K$ be the hypersurface with equation

$$x_0^d + a_1 x_1^d + \ldots + a_n x_n^d = 0,$$

where d is not divisible by char(k). In this paper, for i = 1, 2, 3 and $n \ge i + 1$, we prove that the natural map

$$\mathrm{H}^{i}(K,\mu) \to \mathrm{H}^{i}_{\mathrm{nr}}(X_{K},\mu)$$

is an isomorphism, see Theorem 4.8. In the case when i=2 and $\mu=\mu_m$ with $m\geq 2$, this gives that the natural map of Brauer groups ${\rm Br}(K)\to {\rm Br}(X_K)$ is an isomorphism of subgroups of elements of order not divisible by ${\rm char}(k)$, see Corollary 4.9. In the case when k has characteristic zero, this result was obtained as [GS, Thm. 1.5] by a completely different method, using results on the topology of the Fermat surface as a complex manifold.

In this paper we use the formalism proposed by M. Rost in [R96] which applies *inter alia* to Galois cohomology [R96, Remarks (1.11), (2.5)]. We do not use the Gersten conjecture for étale cohomology [BO74].

Let us describe the structure of this note. In Section 2 we recall some basic facts about unramified cohomology including a functoriality property of the Bloch-Ogus complex with respect to faithfully flat morphisms with integral fibres. In Section 3 we show that for smooth complete intersections $X \subset \mathbb{P}^n_k$ there are canonical isomorphisms $H^i(k,\mu) \xrightarrow{\sim} H^i_{nr}(X,\mu)$ for i=1,2 when $\dim(X) \geq i+1$. Generic diagonal hypersurfaces are studied in Section 4. The easy proof of the main theorem in the case i=1 is given in Section 4.1. This is used in the proof in the case i=2 in Section 4.3, after some preparations in Section 4.2. Finally, in Section 5 we use a similar idea to give a short proof of the triviality of the Brauer group of certain surfaces in $\mathbb{P}^3_{k(t)}$ defined by a pair of polynomials with coefficients in k, see Theorem 5.1, which was proved in [GS] when $\operatorname{char}(k) = 0$.

Our proof in this note develops a geometric idea suggested by Mathieu Florence during the second author's talk at the seminar "Variétés rationnelles" in November 2022. The authors are very grateful to Mathieu Florence for his suggestion.

2 Functoriality of the Bloch-Ogus complex

For any smooth integral variety X over k and any $i \geq 2$ there is a complex

$$0 \longrightarrow \mathrm{H}^{i}(k(X), \mu) \xrightarrow{(\partial_{x})} \bigoplus_{x \in X^{(1)}} \mathrm{H}^{i-1}(k(x), \mu(-1)) \xrightarrow{(\partial_{y})} \bigoplus_{y \in X^{(2)}} \mathrm{H}^{i-2}(k(y), \mu(-2)),$$

which we call the Bloch-Ogus complex. The maps in this complex are defined in [R96, (2.1.0)]. (The map ∂_x is the residue defined for discrete valuation rings by Serre [S03], see also [CTS21, Def. 1.4.3].) The proof that the resulting sequence is a complex is given in [R96, Section 2]. If $y \in X^{(2)}$ is a regular point of the closure of $x \in X^{(1)}$, then the map $\partial_y : H^{i-1}(k(x), \mu(-1)) \to H^{i-2}(k(y), \mu(-2))$ is the residue map for the local ring of y in the closure of x, which is a discrete valuation ring.

The unramified cohomology group $H^i_{nr}(X,\mu)$ is the homology group of this complex at the term $H^i(k(X),\mu)$, i.e., the intersection of $Ker(\partial_x)$ for all $x \in X^{(1)}$.

Let $p: X \to Y$ be a faithfully flat morphism of smooth integral k-varieties with integral fibres. By [R96, Section (3.5); Prop. (4.6)(2)], there is a chain map of complexes

$$0 \longrightarrow \mathrm{H}^{i}(k(X),\mu) \longrightarrow \bigoplus_{v \in X^{(1)}} \mathrm{H}^{i-1}(k(x),\mu(-1)) \longrightarrow \bigoplus_{x \in X^{(2)}} \mathrm{H}^{i-2}(k(x),\mu(-2))$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \downarrow$$

The middle vertical map is the natural one if p(x) = y, otherwise it is zero, and similarly for the right-hand vertical map.

The morphism $X \to Y$ is called an *affine bundle* if Zariski locally on Y, it is isomorphic to $Y \times_k \mathbb{A}^n \to Y$ with affine transition morphisms. In this case the vertical maps in the above diagram induce isomorphisms on the left-hand and middle homology groups, see [R96, Prop. (8.6)]. In particular, we have an isomorphism

$$H^i_{nr}(X,\mu) \cong H^i_{nr}(Y,\mu).$$
 (1)

Combined with [R96, Cor. (12.10)], this implies that $H_{nr}^i(X,\mu)$ is a stable birational invariant of smooth and proper integral k-varieties.

3 Low degree unramified cohomology of complete intersections

For a variety X over a field k we write $X^{s} = X \times_{k} k_{s}$.

Proposition 3.1 Let X be a smooth, projective, geometrically integral variety over a field k such that the natural map $\operatorname{Pic}(X) \to \operatorname{Pic}(X^s)$ is an isomorphism of finitely generated free abelian groups. Then for any k-group of multiplicative type M the natural map

$$\mathrm{H}^2(k,M) \to \mathrm{H}^2(k(X),M)$$

is injective.

Proof. We have a commutative diagram with exact rows and natural vertical maps

$$0 \longrightarrow k_{s}^{\times} \longrightarrow k_{s}(X)^{\times} \longrightarrow \operatorname{Div}(X^{s}) \longrightarrow \operatorname{Pic}(X^{s}) \longrightarrow 0$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \qquad \cong \uparrow \qquad \qquad (2)$$

$$0 \longrightarrow k^{\times} \longrightarrow k(X)^{\times} \longrightarrow \operatorname{Div}(X) \longrightarrow \operatorname{Pic}(X) \longrightarrow 0$$

The abelian group $\operatorname{Pic}(X)$ is free, so the homomorphism $\operatorname{Div}(X) \to \operatorname{Pic}(X)$ has a section. Then our assumption implies that the map of Γ -modules $\operatorname{Div}(X^s) \to \operatorname{Pic}(X^s)$ has a section. By definition, the elementary obstruction $e(X) \in \operatorname{Ext}_k^2(\operatorname{Pic}(X_{\bar{k}}), \bar{k}^{\times})$ is the class of the 2-extension of Γ -modules given by the upper row of (2). Thus we have e(X) = 0. The result now follows from [CTS87, Prop. 2.2.5].

Lemma 3.2 Let $X \subset \mathbb{P}^n_k$ be a complete intersection.

- (a) If dim $(X) \ge 2$, then the natural map $H^1(k,\mu) \to H^1_{\text{\'et}}(X,\mu)$ is an isomorphism.
- (b) If $\dim(X) \geq 3$, then the natural map $\mathrm{H}^2_{\mathrm{\acute{e}t}}(\mathbb{P}^n_k, \mu) \to \mathrm{H}^2_{\mathrm{\acute{e}t}}(X, \mu)$ is an isomorphism.

Proof. A combination of the weak Lefschetz theorem with Poincaré duality gives that the map $H^i_{\text{\'et}}(\mathbb{P}^n_{k_s}, \mu) \to H^i_{\text{\'et}}(X^s, \mu)$ is an isomorphism for $i < \dim(X)$, see [K04, Cor. B.6]. In particular, if $\dim(X) \geq 2$, then $H^1_{\text{\'et}}(X^s, \mu) = 0$. Then the spectral sequence

$$E_2^{p,q} = \mathrm{H}^p(k, \mathrm{H}^q_{\mathrm{\acute{e}t}}(X^\mathrm{s}, \mu)) \Rightarrow \mathrm{H}^{p+q}_{\mathrm{\acute{e}t}}(X, \mu)$$

implies the first claim.

If $\dim(X) \geq 3$, then $\mathrm{H}^2_{\mathrm{\acute{e}t}}(\mathbb{P}^n_{k_s}, \mu) \to \mathrm{H}^2_{\mathrm{\acute{e}t}}(X^s, \mu)$ is an isomorphism of Γ -modules. The above spectral sequence gives rise to the following commutative diagram with exact rows

$$0 \longrightarrow \mathrm{H}^{2}(k,\mu) \longrightarrow \mathrm{H}^{2}_{\mathrm{\acute{e}t}}(X,\mu) \longrightarrow \mathrm{H}^{2}_{\mathrm{\acute{e}t}}(X^{\mathrm{s}},\mu)^{\Gamma} \longrightarrow \mathrm{H}^{3}(k,\mu)$$

$$\downarrow \mathrm{id} \qquad \qquad \downarrow \qquad \qquad \downarrow \mathrm{id} \qquad \qquad \downarrow \mathrm{H}^{2}_{\mathrm{\acute{e}t}}(\mathbb{P}^{n}_{k},\mu) \longrightarrow \mathrm{H}^{2}_{\mathrm{\acute{e}t}}(\mathbb{P}^{n}_{k_{s}},\mu)^{\Gamma} \longrightarrow \mathrm{H}^{3}(k,\mu)$$

By the 5-lemma we deduce that $\mathrm{H}^2_{\mathrm{\acute{e}t}}(\mathbb{P}^n_k,\mu)\to\mathrm{H}^2_{\mathrm{\acute{e}t}}(X,\mu)$ is an isomorphism. \square

Proposition 3.3 Let $X \subset \mathbb{P}^n_k$ be a smooth complete intersection of dimension $\dim(X) \geq 3$. Then the natural map

$$\mathrm{H}^2(k,\mu) \to \mathrm{H}^2_{\mathrm{nr}}(X,\mu)$$

is an isomorphism.

Proof. The map $\mathbb{Z} \cong \operatorname{Pic}(\mathbb{P}^n_{k_s}) \to \operatorname{Pic}(X^s)$ is an isomorphism by [H70, Ch. IV, Cor. 3.2], hence $\operatorname{Pic}(X) \to \operatorname{Pic}(X^s)$ is an isomorphism. By Proposition 3.1 it is thus enough to prove that the map $\operatorname{H}^2(k,\mu) \to \operatorname{H}^2_{\operatorname{nr}}(X,\mu)$ is surjective.

Choose an affine subspace $\mathbb{A}_k^n \subset \mathbb{P}_k^n$ such that $X \cap \mathbb{A}_k^n \neq \emptyset$. Our map is the composition of maps in the top row of the following natural commutative diagram:

$$H^{2}(k,\mu) \longrightarrow H^{2}_{\text{\'et}}(\mathbb{P}^{n}_{k},\mu) \xrightarrow{\cong} H^{2}_{\text{\'et}}(X,\mu) \longrightarrow H^{2}_{\text{nr}}(X,\mu)$$

$$\downarrow_{\text{id}} \qquad \qquad \downarrow \qquad \qquad \downarrow_{\text{ret}}$$

$$H^{2}(k,\mu) \xrightarrow{\cong} H^{2}_{\text{\'et}}(\mathbb{A}^{n}_{k},\mu) \longrightarrow H^{2}_{\text{\'et}}(X \cap \mathbb{A}^{n}_{k},\mu) \longrightarrow H^{2}(k(X),\mu)$$

In the top row, the middle map is an isomorphism by Lemma 3.2 (b), and the right-hand map is surjective, as was recalled in the introduction. Thus any $a \in \mathrm{H}^2_{\mathrm{nr}}(X,\mu)$ can be lifted to an element $b \in \mathrm{H}^2_{\mathrm{\acute{e}t}}(\mathbb{P}^n_k,\mu)$. The image of b in $\mathrm{H}^2_{\mathrm{\acute{e}t}}(\mathbb{A}^n_k,\mu)$ comes from a unique element $c \in \mathrm{H}^2(k,\mu)$. The commutativity of the diagram gives that the image of c in $\mathrm{H}^2(k(X),\mu)$ is equal to the image of a. But the right-hand vertical map is injective, hence c is a desired lifting of a to $\mathrm{H}^2(k,\mu)$.

4 Generic diagonal hypersurfaces

Let Π_1 (respectively, Π_2) be the projective space with homogeneous coordinates x_0, \ldots, x_n (respectively, t_0, \ldots, t_n). Write $K = k(\Pi_2)$. Let $X \subset \Pi_1 \times \Pi_2$ be the hypersurface

$$t_0 x_0^d + \ldots + t_n x_n^d = 0. (3)$$

Let p be the projection $X \to \Pi_1$, and let f be the projection $X \to \Pi_2$. The generic fibre X_K of f is a smooth diagonal hypersurface of degree d in the projective space $(\Pi_1)_K \cong \mathbb{P}^n_K$.

Lemma 4.1 With notation as above, the following statements hold.

- (i) The fibres of f at codimension 1 points of Π_2 are integral if $n \geq 2$ and geometrically integral if n > 3.
- (ii) The fibres of f at codimension 2 points of Π_2 are integral if $n \geq 3$ and geometrically integral if $n \geq 4$.

Proof. One only needs to check this for the singular fibres, which are the fibres above the generic points of the projective subspaces given by $t_i = 0$ or by $t_i = t_j = 0$.

4.1 Unramified cohomology in degree 1

Lemma 4.2 Let $f: X \to Y$ be a proper, dominant morphism of smooth and geometrically integral varieties over a field k. Write K = k(Y) and let X_K be the generic

fibre of f. Assume that the fibres of f over the points of Y of codimension 1 are integral and X_K is geometrically integral. Let $m \geq 2$ be an integer. Then the map $f^* : \operatorname{Pic}(Y)/m \to \operatorname{Pic}(X)/m$ is injective if and only if $\operatorname{Pic}(X)[m] \to \operatorname{Pic}(X_K)[m]$ is surjective.

Proof. In our situation we have an exact sequence

$$0 \to \operatorname{Pic}(Y) \xrightarrow{f^*} \operatorname{Pic}(X) \to \operatorname{Pic}(X_K) \to 0. \tag{4}$$

Exactness at $\operatorname{Pic}(X_K)$: since X is smooth, the Zariski closure in X of a Cartier divisor in X_K is a Cartier divisor in X. Exactness at $\operatorname{Pic}(X)$: if $D \in \operatorname{Div}(X)$ restricts to a principal divisor in X_K , then D is the sum of a principal divisor in X and a divisor contained in the fibres of f, which by our assumption is contained in $f^*\operatorname{Div}(Y)$. Exactness at $\operatorname{Pic}(Y)$: if $D \in \operatorname{Div}(Y)$ is such that $f^*D = \operatorname{div}_X(\phi)$, where $\phi \in k(X)^\times$, then the restriction of ϕ to X_K is a regular function. Since X_K proper and geometrically integral, we must have $\phi \in K^\times$. Then $D - \operatorname{div}_Y(\phi) \in \operatorname{Div}(Y)$ goes to zero in $\operatorname{Div}(X)$, so $D = \operatorname{div}_Y(\phi)$ is a principal divisor in Y.

Applying the snake lemma to the commutative diagram obtained from (4) and multiplication by m, proves the lemma.

Proposition 4.3 Let $m \ge 2$ be an integer. Let k be a field of characteristic exponent coprime to m. Let $f: X \to Y$ be a proper, dominant morphism of smooth and geometrically integral varieties over k such that

- (i) the fibres of f over the points of Y of codimension 1 are integral and the generic fibre X_K is geometrically integral (where K = k(Y));
 - (ii) Pic(X) is torsion-free;
 - (iii) $f^* : Pic(Y)/m \to Pic(X)/m$ is injective.

Then $\mathrm{H}^1(K,\mu_m) \to \mathrm{H}^1_{\mathrm{\acute{e}t}}(X_K,\mu_m)$ is an isomorphism.

Proof. The Kummer sequence gives rise to an exact sequence

$$0 \to K^{\times}/K^{\times m} \to \mathrm{H}^1_{\mathrm{\acute{e}t}}(X_K, \mu_m) \to \mathrm{Pic}(X_K)[m] \to 0.$$

By Lemma 4.2 we have $Pic(X_K)[m] = 0$.

Theorem 4.4 Let $n \geq 2$. Let Π_1 , Π_2 , X, $K = k(\Pi_2)$ be as above. Then the map $H^1(K, \mu) \to H^1_{\text{\'et}}(X_K, \mu)$ is an isomorphism.

Proof. Let us first prove the statement for $\mu = \mu_m$ with m not divisible by $\operatorname{char}(k)$. Let us check the assumptions of Proposition 4.3 for $f: X \to \Pi_2$. By Lemma 4.1, assumption (i) is satisfied. The projection $p: X \to \Pi_1$ is a projective bundle over Π_1 . We have a commutative diagram with exact rows

The right-hand vertical map is induced by the inclusion of a projective hyperplane in a projective space, so it is an isomorphism. Hence (ii) holds and the restriction map $\operatorname{Pic}(\Pi_1 \times \Pi_2) \to \operatorname{Pic}(X)$ is an isomorphism. It follows that $\operatorname{Pic}(\Pi_2) \to \operatorname{Pic}(X)$ is split injective, hence (iii) holds.

For an arbitrary group μ , let E/k be a finite Galois extension, with Galois group G, such that $\mu_E = \mu \times_k E$ is isomorphic to a finite product of groups $\mu_{m,E}$ where m is coprime to char(k). Let L be the compositum of the linearly disjoint field extensions K/k and E/k. We have $\mu(E) = \mu(L) = \mathrm{H}^0_{\mathrm{\acute{e}t}}(X_L, \mu)$. The Hochschild–Serre spectral sequence gives rise to the following commutative diagram with exact rows

Since the result is already proved for μ_m , all vertical maps, except possibly the map $H^1(K,\mu) \to H^1_{\text{\'et}}(X_K,\mu)$, are isomorphisms. Hence so is this map.

Remark 4.5 The geometric argument based on the projective bundle structure of $X \subset \Pi_1 \times \Pi_2$ over Π_1 in the proof of Theorem 4.4 is needed only in the case n = 2, that is, when the hypersurface $X_K \subset \mathbb{P}^2_K$ is a smooth curve of degree d. When $n \geq 3$ and $X \subset \mathbb{P}^n_K$ is an arbitrary smooth hypersurface, we have $H^1(K, \mu) \cong H^1(X_K, \mu)$ by Lemma 3.2 (a).

4.2 Basic diagram

We now assume $n \geq 3$ and $i \geq 2$. Recall the Bloch-Ogus complex from Section 2:

$$\mathrm{H}^{i}(k(X),\mu) \xrightarrow{(\partial_{x})} \bigoplus_{x \in X^{(1)}} \mathrm{H}^{i-1}(k(x),\mu(-1)) \to \bigoplus_{x \in X^{(2)}} \mathrm{H}^{i-2}(k(x),\mu(-2)).$$

Since the fibres $X_y = f^{-1}(y)$ over $y \in \Pi_2^{(1)}$ are integral (which holds for $n \geq 2$, see Lemma 4.1) we obtain a complex

$$\mathrm{H}^{i}_{\mathrm{nr}}(X_{K},\mu) \xrightarrow{(\partial_{y})} \bigoplus_{y \in \Pi^{(1)}_{2}} \mathrm{H}^{i-1}(k(X_{y}),\mu(-1)) \to \bigoplus_{x \in X^{(2)}} \mathrm{H}^{i-2}(k(x),\mu(-2)).$$

To simplify notation, in what follows we do not write the coefficients of cohomology groups. One should bear in mind that there is a change of twist when the codimension of points increases.

Since this is a complex, the image of ∂_y is unramified over the smooth locus of X_y . If X_y is smooth we write $X'_y = X_y$. In the opposite case, X_y is the projective cone over the hyperplane section of X given by some $t_i = 0$, and then we denote by

 X_y' this hyperplane section, which is smooth since $n \geq 3$. In this case, the smooth locus $X_{y,\text{sm}} \subset X_y$ is an affine bundle over X_y' , so we have $H_{\text{nr}}^{i-1}(X_{y,\text{sm}}) \cong H_{\text{nr}}^{i-1}(X_y')$ by (1). Thus $\text{Im}(\partial_y)$ is contained in $H_{\text{nr}}^{i-1}(X_y')$. Since the fibres X_y over $y \in \Pi_2^{(2)}$ are integral (note that they need not be geometrically integral if n=3), from the diagram in Section 2 we obtain a commutative diagram of complexes

where the vertical maps are induced by f. Note that since X is a projective bundle over the projective space Π_1 , the maps $H^i(k) \to H^i(k(X))$ is injective. So is the map $H^i(k) \to H^i(K) = H^i(k(\Pi_2))$.

Let $Y = \mathbb{A}^n_k \subset \Pi_2$ be the affine space given by $t_0 \neq 0$. From the previous diagram we then get a commutative diagram of complexes

$$0 \longrightarrow \operatorname{H}^{i}_{\operatorname{nr}}(X_{K})/\operatorname{H}^{i}(k) \longrightarrow \bigoplus_{y \in Y^{(1)}} \operatorname{H}^{i-1}_{\operatorname{nr}}(X'_{y}) \longrightarrow \bigoplus_{y \in Y^{(2)}} \operatorname{H}^{i-2}(k(X_{y}))$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

Since $Y \cong \mathbb{A}^n_k$, the bottom complex is exact by [R96, Prop. 8.6].

The homology group of the top complex at the first term is $\mathrm{H}^i_{\mathrm{nr}}(X_Y)/\mathrm{H}^i(k)$, where $X_Y=f^{-1}(Y)\subset X$. Let us show that this group is zero. The fibres of $p\colon X\to\Pi_1$ are hyperplanes in Π_2 . The map $p\colon X_Y\to U$ is an affine bundle, and $p(X_Y)=U$, where $U=\mathbb{P}^n_k\setminus\{(1:0:\ldots:0)\}$. By (1) the map $p^*\colon\mathrm{H}^i_{\mathrm{nr}}(U)\to\mathrm{H}^i_{\mathrm{nr}}(X_Y)$ is an isomorphism. Since U is the complement to a k-point in $\Pi_1\cong\mathbb{P}^n_k$, and $n\geq 2$, we have

$$\mathrm{H}^{i}(k,\mu) \cong \mathrm{H}^{i}_{\mathrm{nr}}(\Pi_{1},\mu) \cong \mathrm{H}^{i}_{\mathrm{nr}}(U,\mu).$$

The following lemma is proved by a straightforward diagram chase.

Lemma 4.6 Suppose that we have a commutative diagram of abelian groups

$$A \xrightarrow{i} B \xrightarrow{j} C$$

$$a \downarrow \qquad b \cong \qquad c \downarrow$$

$$0 \longrightarrow D \longrightarrow E \longrightarrow F$$

where i is injective, b is an isomorphism, c is injective, the top row is a complex, and the bottom row is exact. Then a is an isomorphism.

From Lemma 4.6 we conclude:

Proposition 4.7 With notation as above, if the middle vertical map in diagram (5) is an isomorphism and the right-hand vertical map is injective, then $f^* : H^i(K, \mu) \to H^i_{nr}(X_K, \mu)$ is an isomorphism.

4.3 Unramified cohomology in degrees 2 and 3

The main result of this paper is the following

Theorem 4.8 Let Π_1 (respectively, Π_2) be the projective space with homogeneous coordinates x_0, \ldots, x_n (respectively, t_0, \ldots, t_n). Write $K = k(\Pi_2)$. Let $X \subset \Pi_1 \times \Pi_2$ be the hypersurface

$$t_0 x_0^d + \ldots + t_n x_n^d = 0. (6)$$

Let $f: X \to \Pi_2$ be the natural projection, and let X_K be the generic fibre of f. Let μ be a finite étale commutative group k-scheme of order not divisible by $\operatorname{char}(k)$.

- (i) If $n \geq 3$, then $f^* \colon H^2(K, \mu) \to H^2_{nr}(X_K, \mu)$ is an isomorphism.
- (ii) If $n \ge 4$, then $f^* : H^3(K, \mu) \to H^3_{nr}(X_K, \mu)$ is an isomorphism.
- *Proof.* (i) Consider diagram (5) for i = 2. Then the middle vertical map of the diagram is an isomorphism. This follows from Theorem 4.4 when X_y is singular, which happens exactly when the codimension 1 point y is given by $t_i = 0$ for some i = 1, ..., n. (Note that if n = 3 we then need Theorem 4.4 in the case n = 2.) If X_y is smooth, the isomorphism follows from Lemma 3.2 (a). By Lemma 4.1, each fibre X_y at a codimension 2 point y is integral, hence the right hand vertical map is injective. By Proposition 4.7, this proves (i).
- (ii) Consider diagram (5) for i=3. For $y \in Y^{(1)}$ such that X_y is singular, the vertical map $H^2(k(y)), \mu(-1)) \to H^2_{nr}(X'_y, \mu(-1))$ is an isomorphism by (i). For $y \in Y^{(1)}$ such that X_y is smooth, the map $H^2(k(y), \mu(-1)) \to H^2_{nr}(X_y, \mu(-1))$ is an isomorphism by Proposition 3.3. For $y \in \Pi_2^{(2)}$ the fibre X_y is geometrically integral over k(y) by Lemma 4.1, hence k(y) is separably closed in $k(X_y)$. Thus the restriction map $H^1(k(y), \mu(-2)) \to H^1(k(X_y), \mu(-2))$ is injective, so the right-hand vertical map in the diagram is injective. By Proposition 4.7, this proves (ii).

Corollary 4.9 For $n \geq 3$, the map $Br(K) \to Br(X_K)$ induces an isomorphism of subgroups of elements of order not divisible by char(k).

Proof. This follows from Theorem 4.8 (i) by taking $\mu = \mu_m$ for each integer m not divisible by $\operatorname{char}(k)$.

Remark 4.10 Only the case n=3 of this corollary requires the above proof. For $n \geq 4$ and any smooth hypersurface in \mathbb{P}^n , we have the general Proposition 3.3.

5 Pairs of polynomials

In this section we give a short elementary proof that the Brauer group of the surface given by the equation (7) below over the field of rational functions K = k(t), with $t = \lambda/\mu$, is naturally isomorphic to Br(K) (away from p-primary torsion if char(k) = p). In the case when k has characteristic zero, this follows from more general results of [GS], namely, the combination of [GS, Thm. 1.1 (i)] and [GS, Thm. 1.4].

Theorem 5.1 Let k be a field. Let d be a positive integer. Let f(x,y) and g(z,t) be products of d pairwise non-proportional linear forms. Let $X \subset \mathbb{P}^1_k \times_k \mathbb{P}^3_k$ be the hypersurface given by

$$\lambda f(x,y) = \mu g(z,t),\tag{7}$$

where $(\lambda : \mu)$ are homogeneous coordinates in \mathbb{P}^1_k and (x : y : z : t) are homogeneous coordinates in \mathbb{P}^3_k . Let $K = k(\mathbb{P}^1_k)$ and let X_K be the generic fibre of the projection $f : X \to \mathbb{P}^1_k$. Then the natural map $Br(K) \to Br(X_K)$ induces an isomorphism of subgroups of elements of order not divisible by char(k).

Proof. The singular locus X_{sing} is contained in the union of fibres of f above $\lambda=0$ and $\mu=0$. The fibre above $\mu=0$ is given by f(x,y)=0. It is a union of d planes in \mathbb{P}^3_k through the line x=y=0. The intersection of X_{sing} with the fibre above $\mu=0$ is the zero-dimensional scheme given by x=y=g(z,t)=0. The situation above $\lambda=0$ is entirely similar. Let $Y=X\setminus X_{\text{sing}}$ be the smooth locus of X/k. The projection $p\colon X\to \mathbb{P}^3_k$ is a birational morphism which restricts to an isomorphism $Y_V\overset{\sim}{\longrightarrow} V$ on the complement V to the curve in \mathbb{P}^3_k given by f(x,y)=g(z,t)=0. We have

$$\operatorname{Br}(k) \cong \operatorname{Br}(\mathbb{P}^3_k) \cong \operatorname{Br}(V) \cong \operatorname{Br}(Y_V),$$

where the first isomorphism is by [CTS21, Thm. 6.1.3] and the second one is by purity for the Brauer group [CTS21, Thm. 3.7.6]. Since $Y(k) \neq \emptyset$, we have $Br(k) \subset Br(Y) \subset Br(Y_V)$ where the second inclusion is by [CTS21, Thm. 3.5.5]. We conclude that $Br(Y) \cong Br(k)$.

Let $m \geq 2$ be an integer not divisible by $\operatorname{char}(k)$. If a closed fibre $X_M = f^{-1}(M)$ is smooth, then X_M is a smooth surface in $\mathbb{P}^3_{k(M)}$, thus we have

$$\mathrm{H}^{1}_{\mathrm{\acute{e}t}}(X_{M},\mathbb{Z}/m) \cong \mathrm{H}^{1}(k(M),\mathbb{Z}/m)$$
 (8)

by Lemma 3.2 (a). The smooth locus of the fibre of f above $\mu = 0$ is a disjoint union of d affine planes \mathbb{A}^2_k . We have

$$\mathrm{H}^{1}_{\mathrm{\acute{e}t}}(\mathbb{A}^{2}_{k},\mathbb{Z}/m) \cong \mathrm{H}^{1}(k,\mathbb{Z}/m)$$
 (9)

since char(k) does not divide m.

Without loss of generality we can write

$$f(x,y) = c \prod_{i=1}^{d} (x - \xi_i y),$$
 $g(z,t) = c' \prod_{j=1}^{d} (z - \rho_j t),$

where $c, c' \in k^{\times}$ and $\xi_i, \rho_j \in k$ for i, j = 1, ..., d. We note that for each pair (i, j) the map $s_{ij}: (\lambda : \mu) \to ((\lambda : \mu), (\xi_i : 1 : \rho_j : 1))$ is a section of the morphism $f: X \to \mathbb{P}^1_k$.

Each section s_{ij} gives a K-point of X_K . Thus the natural map $Br(K) \to Br(X_K)$ is injective.

Let $\alpha \in Br(X_K)[m]$. Evaluating α at the K-point of X_K given by $s_{1,1}$ gives an element $\beta \in Br(K)[m]$. We replace α by $\alpha - \beta$.

Note that each section $s_{ij}(\mathbb{P}^1_k)$ meets every closed fibre of f at a smooth point. The new element $\alpha \in \operatorname{Br}(X_K)[m]$ has trivial residue on the irreducible component of the smooth locus of every fibre of f that $s_{1,1}(\mathbb{P}^1_k)$ intersects. Indeed, by (8) and (9) this residue is constant, but specialises to zero at the intersection point with $s_{1,1}(\mathbb{P}^1_k)$. In particular, α has trivial residues at the smooth fibres of f, as well as at the affine plane given by $x - \xi_1 y = 0$ in the fibre $\mu = 0$ and the affine plane given by $z - \rho_1 t = 0$ in the fibre $\lambda = 0$.

We now evaluate α at the K-point of X_K given by $s_{1,j}$, where $j=2,\ldots,d$. The result is an element of $\operatorname{Br}(K)$ which is unramified everywhere except possibly at the k-point of \mathbb{P}^1_k given by $\lambda=0$. By Faddeev reciprocity, the residue at that point must be zero, too. This implies that α is unramified at the smooth locus of the fibre at $\lambda=0$. A similar argument using sections $s_{i,1}$ for $i=2,\ldots,d$ shows that α is unramified at the smooth locus of the fibre at $\mu=0$.

We see that the residue of α at every point of codimension 1 of Y is zero. Thus α belongs to Br(Y), hence to Br(k). We conclude that $Br(K)[m] \xrightarrow{\sim} Br(X_K)[m]$. \square

References

- [BO74] S. Bloch and A. Ogus. Gersten's conjecture and the homology of schemes. Ann. Sci. École Norm. Sup. (4) 7 (1974), 181–201 (1975).
- [CT95] J.-L. Colliot-Thélène. Birational invariants, purity and the Gersten conjecture. K-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, 1992), Proc. Sympos. Pure Math. 58, Part 1, Amer. Math. Soc., 1995, pp. 1–64.
- [CTS87] J.-L. Colliot-Thélène and J.-J. Sansuc. La descente sur les variétés rationnelles, II. *Duke Math. J.* **54** (1987) 375–492.
- [CTS21] J.-L. Colliot-Thélène and A.N. Skorobogatov. *The Brauer-Grothendieck group*. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 71, Springer, 2021.
- [GS] D. Gvirtz-Chen and A.N. Skorobogatov. Surfaces defined by pairs of polynomials. arXiv:2305.08632
- [H70] R. Hartshorne. Ample subvarieties of algebraic varieties. Lecture Notes in Mathematics 156, Springer-Verlag, 1970.
- [K04] N.M. Katz. Applications of the Weak Lefschetz Theorem. Appendix to: B. Poonen and J.F. Voloch. Random Diophantine equations. *Arithmetic of*

higher-dimensional algebraic varieties (Palo Alto, 2002), Progress in Mathematics **226**, 175–184, Birkhäuser, 2004.

[R96] M. Rost. Chow groups with coefficients. Doc. Math. 1 (1996) 319–393.

[S03] J.-P. Serre. Cohomological invariants, Witt invariants, and trace forms. Notes by S. Garibaldi. *Cohomological invariants in Galois cohomology*, University Lecture Series **28**, American Mathematical Society, 2003, pp. 1–100.

Université Paris-Saclay, CNRS, Laboratoire de mathématiques d'Orsay, 91405, Orsay, France.

jean-louis.colliot-thelene@universite-paris-saclay.fr

Department of Mathematics, South Kensington Campus, Imperial College London, SW7 2BZ England, U.K. – and – Institute for the Information Transmission Problems, Russian Academy of Sciences, 19 Bolshoi Karetnyi, Moscow, 127994 Russia

a.skorobogatov@imperial.ac.uk