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Introduction

Let P1
k be the projective line over a number field k. In a series of earlier papers, rational

points and zero-cycles on the total space of certain fibrations f : X → P1
k have been studied.

A first series builds upon Schinzel’s hypothesis (H). This starts with [CT/S82] and goes on
with [SwD94], [Se94], [CT/SwD94], [CT/Sk/SwD97b]. Taking hypothesis (H) for granted, one
obtains sufficient conditions for the existence of rational points on X, as well as density results
for these points (weak approximation).

A second line of investigation starts with Salberger’s article [Sal88], whose work was continued
in [CT/SwD94]. Here one obtains unconditional results on the existence of zero-cycles of degree
one, as well as quantitative information on the Chow group of zero-cycles on X.

These techniques have originally been used in the context of pencils of conic bundles
([CT/S82], [Sal88]), pencils of Severi-Brauer varieties (Serre [Se94]) and generalizations thereof
([SwD94], [CT/SwD94]), and they have recently been applied to pencils of curves of genus one
([SwD95], [CT/Sk/SwD97b]).

In the present paper, we spell out general theorems which lie at the heart of these various
papers. The proof of these theorems does not require much more effort than has already
been made in [CT/SwD94], but it is interesting to see how far one can get. The main results
are Theorem 1.1 (rational points, assuming (H)), Theorems 2.2.1 and 2.2.2 (rational points),
Theorem 4.1 (zero-cycles of degree one) and Theorem 4.8 (Chow groups of zero-cycles). A key
technical assumption has to do with the reducible fibres : for each closed point M ∈ P1

k, we want
the fibre XM = f−1(M) to contain at least one irreducible component YM of multiplicity one
such that the algebraic closure of the residue field k(M) in the function field of YM is abelian
over k(M).

In Section 3, we give a self-contained version of a device originally due to Salberger [Sal88].
Our presentation makes it clear that this device is a perfect analogue of Schinzel’s hypothesis
[Sch/Sie58], leading to actual proofs of existence of zero-cycles of degree one ([Sal88]), whereas
Schinzel’s hypothesis leads to conditional proofs of the existence of rational points ([CT/S82],
[CT/SwD94]). The parallel between the two methods was blatant in [CT/SwD94], but it is only
in the present paper that the quintessence of Salberger’s device is revealed.

Since much of this text is an elaboration of the previous paper [CT/SwD94], we refer to that
paper, and in particular to its introduction, for motivation, historical background and some
standard arguments. We also refer to that paper for the statement of Schinzel’s hypothesis
(H) (over the rationals) and its extension (H1) to number fields (pointed out by Serre, see
[CT/SwD94], Section 4).

Notation and preliminaries

Let k be a field and k an algebraic closure of k. We let A1
k = Spec(k[t]), resp. P1

k, denote
the affine line, resp. the projective line over k. Given X a k-variety, i.e. a separated k-scheme
of finite type, we let X = X ×k k. Given a field extension K/k, we let XK = X ×k K. If X is
integral, we let k(X) denote its function field.
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Following [Sk96], we shall say that a k-variety Y is split if it contains a non-empty smooth
open set U which is geometrically integral over k (i.e. U is integral and k is algebraically closed
in k(U)). The k-variety Y is geometrically split if Y /k is split : such is the case if and only if Y
contains a non-empty smooth open set.

Let X/k be a smooth, proper, geometrically integral k-variety, and let f : X → P1
k be a

flat k-morphism. Its generic fibre Xη is regular ; if char(k) = 0, it is therefore smooth over
the function field k(t) of P1

k. Given M a closed point of P1
k, with residue field k(M), we let

XM = f−1(M)/k(M) denote the fibre of f at M . The k(M)-variety XM is split if and only if
if there exists at least one irreducible component YM of XM which is generically reduced (i.e.
of multiplicity one in the divisor XM ⊂ X) and such that k(M) is algebraically closed in the
function field of YM .

For basics on the Brauer group, the reader is referred to [Gr68] and to Section 1 of
[CT/SwD94]. The vertical subgroup Brvert(X) of the Brauer group Br(X) of X with respect to
f is defined by the equality :

Brvert(X) = Br(X) ∩ f∗(Br(k(P1))) ⊂ Br(X) ⊂ Br(k(X)).

Assume char(k)=0. If all fibres of f are geometrically split, i.e. if each fibre of f : X → P1
k

contains a component of multiplicity one, then the quotient of Brvert(X) by the image of Br(k)
is finite (cf. [Sk96], Cor. 4.5). It is actually enough to assume that all geometric fibres but one
possess a component of multiplicity one.

Given a number field k, we let Ω = Ωk denote the set of places of k and we let kv be the
completion of k at the place v. Given a finite place v of k, we let Ov be the ring of integers of
kv and Fv be the (finite) residue field. For a proper k-variety Y , the topological space of adèles
Y (Ak) of Y coincides with the product

∏
v∈Ω Y (kv) equipped with the product topology.

For any element A ∈ Br(X), the map which sends the adèle {pv} to
∑
v∈Ω invv(A(pv)) ∈ Q/Z

is a continuous function θA : X(Ak) → Q/Z with finite image. Given B ⊂ Br(X), we let
X(Ak)B ⊂ X(Ak) denote the closed subset which is the intersection of the kernels θ−1

A (0) for
A ∈ B. By global reciprocity, we have X(k) ⊂ X(Ak)B . The (Brauer-Manin) B-obstruction to
the existence of a rational point is the condition X(Ak)B = ∅. For f : X → P1

k as above, the
Brvert(X)-obstruction X(Ak)Brvert = ∅ is simply called the vertical obstruction. If the image of
B in the quotient Br(X)/Br(k) is finite, then X(Ak)B is open in X(Ak). For a more detailed
discussion of the Brauer-Manin obstruction, see [CT/SwD94], Section 3, and [CT97].

§1. Local-global properties for rational points, conditional on Schinzel’s hypothesis

The following theorem extends Theorem 4.2 of [CT/SwD94], to which we shall refer for some
standard arguments.

Theorem 1.1 Let X be a smooth, projective, geometrically integral variety over a number
field k, equipped with a flat k-morphism f : X → P1

k with (smooth) geometrically integral
generic fibre. Assume :

(i) For each closed point M ∈ P1
k, there exists a multiplicity one irreducible component

YM ⊂ XM such that the algebraic closure of k(M) in the function field of YM is an abelian
extension of k(M).

(ii) Schinzel’s hypothesis (H) holds.
Let R ⊂ P1(k) be the set of k-points m with smooth fibre Xm such that Xm(Ak) 6= ∅. Then :

(a) The closure of R in P1(Ak) coincides with f(X(Ak)Brvert).
(b) Assume X(Ak)Brvert 6= ∅. Then for any finite set S ⊂ Ω, the closure of R in

∏
v∈S P1(kv)

contains a non-empty open set. In particular R is Zariski-dense in P1
k.
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(c) Assume X(Ak)Brvert 6= ∅. Then there exists a finite set S0 ⊂ Ω such that for any finite set
S ⊂ Ω with S ∩ S0 = ∅, the closure of R under the diagonal embedding P1(k)→

∏
v∈S P1(kv)

coincides with
∏
v∈S f(X(kv)).

(d) Assume that the Hasse principle holds for smooth fibres of f . Then f(X(k)) is dense in
f(X(Ak)Brvert) : the vertical Brauer-Manin obstruction to the existence of a rational point on
X is the only obstruction. Assume moreover X(Ak)Brvert 6= ∅. Then for any finite set S ⊂ Ω,
the closure of f(X(k)) in

∏
v∈S P1(kv) contains a non-empty open set. Moreover there exists a

finite set S0 ⊂ Ω such that for any finite set S ⊂ Ω with S ∩ S0 = ∅, the closure of f(X(k)) in∏
v∈S P1(kv) coincides with

∏
v∈S f(X(kv)). In particular, f(X(k)) is Zariski-dense in P1

k.
(e) Assume that the Hasse principle and weak approximation hold for smooth fibres of f . Then

the vertical Brauer-Manin obstruction to weak approximation on X is the only obstruction :
The closure of X(k) in X(Ak) coincides with the open and closed set X(Ak)Brvert .

Proof. Let U ⊂ P1
k be the complement of the set of points M whose fibre XM is singular.

Thus the restriction fU : XU → U is smooth. Given A ∈ Brvert(X), by definition one may
find βA ∈ Br(k(P1)) such that f∗(βA) = A ∈ Br(k(X)). An easy computation with residues
([CT/SwD94], Prop. 1.1.1) shows that βA lies in Br(U). Let m ∈ U(k), assume Xm(Ak) 6= ∅,
and let {pv} ∈ Xm(Ak) be an arbitrary adèle. We then have∑

v∈Ω

invv(A(pv)) =
∑
v∈Ω

invv(β(m))

and this last sum is zero by the reciprocity law of class field theory. We thus have R ⊂
f(X(Ak)Brvert). This last set, which is the image under f of the compact set X(Ak)Brvert , is
closed in P1(Ak). Thus the closure of R in P1(Ak) lies in f(X(Ak)Brvert). The main result in
the above theorem is (a), which claims that under hypotheses (i) and (ii), this inclusion is an
equality.

Assumption (i) implies that all fibres of f are geometrically split, hence, as recalled in the
introduction, the quotient Brvert(X)/Br(k) is finite. Let Al ∈ Br(X), l = 1, . . . , n be a finite
set of representatives for the elements of Brvert(X)/Br(k). By a good reduction argument, there
exists a finite set S0 of places of k, which we may assume to contain all archimedean places, such
that for any v /∈ S0, any point pv ∈ X(kv), and any l ∈ {1, . . . , n}, we have Al(pv) = 0 ∈ Br(kv).

If X(Ak)Brvert = ∅, there is nothing to prove. Hence we shall assume X(Ak)Brvert 6= ∅. Let
{pv} ∈ X(Ak)Brvert , i.e. assume that for all A ∈ Brvert(X) we have

(1.1)
∑
v∈Ω

invv(A(pv)) = 0.

This is equivalent to assuming

(1.2) ∀l ∈ {1, . . . , n},
∑
v∈Ω

invv(Al(pv)) = 0,

which in turn is equivalent to

(1.3) ∀l ∈ {1, . . . , n},
∑
v∈S0

invv(Al(pv)) = 0.

Note that in (1.1), (1.2) and (1.3) we are free to replace pv for v /∈ S0 by an arbitrary point in
X(kv). Set γv(l) = Al(pv) ∈ Br(kv).

Let mv = f(pv) ∈ P1(kv) for v ∈ Ω, and let S ⊂ Ω be a finite set of places containing S0.
For each v ∈ S, let Nv ⊂ P1(kv) be a neighbourhood of mv. We now use the continuity of the
evaluation maps X(kv)→ Q/Z given by p 7→ invv(A(p)) and the implicit function theorem for

3



the map XU (kv) → U(kv) induced by the smooth map fU : XU → U . For each place v ∈ Ω,
this enables us to find a non-empty open subset Wv ⊂ Nv ∩U(kv) (which need not contain mv)
such that the following properties hold : the map XU (kv) → U(kv) admits an analytic section
σv : Wv → XU (kv) over Wv, hence in particular f−1(Wv) 6= ∅ ; on Wv, each βAl

(l ∈ {1, . . . , n})
takes the constant value γv(l), hence each Al takes the constant value γv(l) on f−1(Wv) ⊂ X(kv).

We shall show that there exists m ∈ U(k) satisfying Xm(Ak) 6= ∅ and such that m lies in Wv

for v ∈ S. This will prove (a).
At this point, in (1.1), (1.2), (1.3), we may replace pv by an arbitrary point in f−1(Wv) for

v ∈ S, and by an arbitrary point in X(kv) for v /∈ S0. The proof below will therefore give
statements (b) and (c) at the same stroke. Statement (d) is an obvious reformulation of the
previous statements in the case where the Hasse principle holds for the fibres of f . As for (e),
let {pv} ∈ X(Ak)Brvert , and let S be a finite set of places containing S0. For each place v ∈ S,
let us choose Wv and the analytic section σv above such that σv(Wv) contains a new point pv
very close to the original point pv. The proof of (a) will enable us to find a point m ∈ U(k) such
that Xm(Ak) 6= ∅ and such that for each v ∈ S the point σv(m) and the new point pv are very
close on X(kv). If the Hasse principle and weak approximation hold for Xm, one may then find
a k-point on Xm which is very close to each σv(m) ∈ Xm(kv) for each v ∈ S, hence is very close
to the original point pv ∈ X(kv) for each v ∈ S.

Let us now proceed with the proof of (a).
For each real place v, we may assume that Wv is a connected open interval of kv ' R. For

each such real place v, let us choose three distinct points av, bv, cv ∈Wv \mv such that mv lies
between av and cv, and such that bv lies between av and mv. For each complex place v, let us
choose cv ∈Wv \mv. Using the weak approximation theorem on P1

k, we may find four distinct
k-points a, b,m, c in P1(k) lying in each Wv for v non-archimedean and close enough to each
av, bv,mv, cv for v real that the same inclusions hold between the images of a, b,m, c in kv as
for av, bv,mv, cv.

We now choose c as the point at infinity on P1
k, and normalize the coordinate t on

Spec(k[t]) = A1
k = P1

k \ ∞ so that a = 0 and b = 1. Since the places v /∈ S0 do not play
a rôle in (1.1), (1.2), (1.3), while keeping f(pv) in Wv for each place v ∈ Ω we may and shall
assume mv = f(pv) 6=∞ for all v ∈ Ω. For later use, let us replace U by U \∞.

Let P (t) be the monic separable polynomial which describes all the closed pointsM ∈ A1
k such

that the fibre XM is not split (note that the fibre X∞ is smooth, hence split). This polynomial
may be written as a product of irreducible monic polynomials P (t) =

∏n
i=1 Pi(t). Each of them

corresponds to a closed point Mi of the affine line. Use assumption (i) : for each such Mi, let
ki = k(Mi) and let Zi/ki be a multiplicity one irreducible component of XMi

such that the
algebraic closure Ki of ki in the function field of Zi is an abelian extension of ki. Write Ki/ki as
a composite of cyclic extensions Ki,j/ki. Let ei ∈ ki denote the class of t under the identification
ki = k[t]/Pi(t). Let k(t) be the function field of A1

k = Spec(k[t]). Define Ai,j ∈ Br(k(t)) by

Ai,j = Coreski/k(Ki,j/ki, t− ei).

We are making here a slight abuse of notation : in order to define an element in the Brauer
group, one needs to fix a generator of the Galois group of the cyclic extension Ki,j/ki. Here and
later on we shall always assume that this has been done.

Let us now increase the finite set S of places so that it also includes finite primes where
some Pi is not integral, finite primes where all Pi are integral but the reduction of the product
P (t) =

∏
i Pi(t) is not separable, finite places above a prime p less than or equal to the degree

of the polynomial Nk/Q(
∏
i Pi(t)) (this will be required when applying (H1), see [CT/SwD94],

beginning of Section 4) and primes ramified in one of the extensions Ki,j/k.
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Let O denote the ring of integers of k with primes in S inverted, and let Oi denote the
integral closure of O in Ki. By enlarging S we may also assume that the fibration f : X → P1

k

extends to a projective, flat fibration g : X → P1
O. Let T ⊂ P1

O be the closed subset defined by
P (t) = 0 in A1

O, and let Ti be the analogous closed subset defined by Pi(t) = 0. By enlarging
S, we may assume that the points of P1

O with non-split fibre are all contained in T (note that
the set of points of P1

O whose fibre is geometrically split is the projection of the smooth locus
of the morphism g).

Lemma 1.2 Let k be a number field and let Spec(O) be an open set of the ring of integers
of k. Let g : X → P1

O be a flat, projective morphism with X regular and smooth over O. Let
f : X → P1

k be the restriction of g over Spec(k) ⊂ Spec(O). Let T ⊂ P1
O be a closed subset,

finite and étale over O, such that fibres of g above points not in T are split. Let T = ∪i∈ITi be
the decomposition of T into irreducible closed subsets, and let ki be the field of fractions of Ti.

After inverting finitely many primes in O, the following holds.
(a) Given any closed point u ∈ P1

O, if the fibre Xu over the finite field κ(u) is split, then it
contains a smooth κ(u)-point.

(b) Given any rational point m ∈ P1(k), with closure Spec(O) ' m̃ ⊂ P1
O, if u ∈ m̃ ⊂ P1

O is
a closed point such that Xu/κ(u) is split, then Xm contains a smooth kv-point.

(c) Let u belong to one of the Ti’s, thus defining a place vi of ki. Assume that there exists a
component Z of the fibre of f at Ti ×O k = Spec(ki) which has multiplicity one. Let Ki denote
the algebraic closure of ki in the function field of Z. If the place vi splits completely in the ring
of integers Oi ⊂ Ki, then Xu/κ(u) is split.

(d) Assume that for each i there exists at least one component of f−1(Spec(ki)) which has
multiplicity one. Then given any finite field extension L/k, there exist infinitely many places v
of k which are totally decomposed in L and are such that for any finite extension Kw of kv the
induced map f : X(Kw)→ P1(Kw) is surjective.

The proof is postponed. In the case under consideration here, we have Ti = Spec(O[t]/Pi(t)).
We shall henceforth assume that S is chosen big enough so that the statements in Lemma 1.2
hold for O = OS the ring of integers of k where finite primes of S have been inverted.

By assumption, for all A ∈ Brvert(X), we have∑
v∈Ω

invv(A(pv)) = 0.

In particular, for the adèle {pv} ∈ X(Ak), there is no Brauer-Manin obstruction to weak
approximation attached to the intersection of the Brauer group of X with the subgroup of
Br(k(X)) spanned by the images of the Ai,j ’s under the natural map Br(k(t)) → Br(k(X)). A
key result in Harari’s thesis ([Ha94], Cor. 2.6.1, reproduced as [CT/SwD94], Thm. 3.2.1), then
ensures that there exist a finite set of places S1 of k containing S, and points p′v ∈ XU (kv) for
v ∈ S1, with p′v = pv for v ∈ S, such that for all {i, j},

(1.4)
∑
v∈S1

invv(Ai,j(m′v)) = 0

where as above m′v = f(p′v).
At this point let us modify the open sets Wv for v ∈ S1 \ S. For such v, we choose open

neighbourhoods Wv ⊂ U(kv) of m′v such that the map XU (kv) → U(kv) admits an analytic
section over Wv.

For each v ∈ S1, let us denote by λv ∈ kv the t-coordinate of m′v. We can now copy most
of the proof of Theorem 4.2 from [CT/SwD94]. Applying Schinzel’s hypothesis (H), or rather
its consequence (H1) ([CT/SwD94], Prop. 4.1), we produce a parameter λ ∈ k lying in each
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Wv for v ∈ S1 (for v a complex place, this holds as soon as the absolute value |λ|v is big
enough), satisfying λv > 0 for v real, integral away from S1, such that each Pi(λ) is a unit in
the completion kv for each finite place v /∈ S1 except perhaps in one finite place vi where Pi(λ)
is a uniformizing parameter. Let m ∈ U(k) be the point with t-coordinate λ.

The fibre Xm is smooth. For v ∈ S1, it contains the kv-point σv(m).
If v /∈ S1 is a finite place distinct from the place vi, then Pi(λ) is a unit at v. For any place

v /∈ S1 ∪ v1 ∪ . . . ∪ vn, Lemma 1.2 (b) then shows that Xm(kv) is not empty.
By good reduction one gets invv(Ai,j(λ)) = 0 for each finite place v /∈ (S1∪vi). By the choice

we made of the three points 0, 1,∞, for each real place v, none of the Ai,j(t) has a pole on the
open connected interval 0 < t <∞ of kv = R. In particular for each such v, each invv(Ai,j(t))
is constant on ]0,∞[ ⊂ kv, and for λ as above, we have invv(Ai,j(λ)) = invv(Ai,j(m′v)). (The
present choice of 0, 1,∞ and the argument just given should have been made in [CT/SwD94] to
ensure that (iii) p. 76 op. cit. holds at the real places.)

Using (1.4) above, the remarks just made and the global reciprocity law of class field theory
as in [CT/SwD94, p. 76], one then gets invvi

(Ai,j(λ)) = 0, i.e. :

invvi
(Coreski/k(Ki,j/ki, λ− ei)) = 0,

which is equivalent to : ∑
w∈Ωki

,w|vi

invw(Ki,j/ki, λ− ei) = 0.

Now (λ − ei) ∈ ki is integral at all places w above vi, and the norm of that element from ki
to k has vi-adic valuation one in k. This implies that in the decomposition of ki ⊗k kvi

into a
product of local fields ki,w, λ − ei goes to a unit into all local fields ki,w but one, call it ki,wi

,
which is of degree one over kvi

and in which λ − ei becomes a uniformizing parameter. In the
above sum, all terms but one then vanish. Thus the remaining one invwi(Ki,j/ki, λ − ei) also
vanishes. Since λ− ei is a uniformizing parameter of ki,wi and since Ki,j/ki is unramified at wi,
this implies that wi is totally split in the Galois extension Ki,j/ki. Applying this for each j, we
conclude that wi is totally split in the composite extension Ki/ki. By (b) and (c) of Lemma 1.2
we thus have Xm(kvi

) 6= ∅.
Thus Xm has points in all completions of k, which completes the proof since m lies in Wv for

each v ∈ S.

Proof of Lemma 1.2 Let T1 ⊂ P1
O be a proper closed subset, containing T and all the points

with singular fibre, equipped with its reduced subscheme structure. By shrinking Spec(O), we
may assume that T1 is finite and étale over O, and by Lemma 1.3 below we may assume that
(a) holds for all closed points in T1. The restriction h of the fibration g : X → P1

O over the
complement of T1 is projective and smooth, hence flat. The Hilbert polynomial is constant in
projective flat families with connected parameter space. Hence all the fibres of h are geometrically
integral, projective and smooth of fixed dimension d and degree n in a projective space of a fixed
dimension r. The fibre over a closed point u /∈ T1 is a projective, smooth, geometrically integral
variety over the finite field κ(u). By the Lang-Weil estimates [L/W54], if the order of κ(u) is
bigger than a constant depending only on d, n, r, such a fibre has a (smooth) κ(u)-point. We
now invert the finitely many primes in O whose residue field is smaller than this constant. This
proves (a). Statement (b) then follows by an application of Hensel’s lemma. Statement (c) is a
purely algebraic statement which follows from the definition of split fibres.

With Spec(O) as above, let us prove (d). Tchebotarev’s density theorem implies that there
exist infinitely many primes v in Spec(O) which are totally split in the compositum over k of
L and the fields Ki. Given any closed point u ∈ P1

O above such a place v, the fibre Xu/κ(u)
is split by (c), hence contains a smooth κ(u)-point by (a). Let Kw/kv be a finite extension,
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Ow the ring of integers of Kw and Fw/Fv the extension of residue fields. Let m be any point
in P1(Kw) = P1(Ow). Let u ∈ P1

O be the closed point above v which is the image of the
specialization of m at w under the map P1

Ow
→ P1

O. The Kw-variety Xm has a proper model
over the ring of integers Ow whose special fibre Xu×Fv

Fw has a smooth Fw-point. By Hensel’s
lemma, Xm contains a (smooth) Kw-point : the map X(Kw)→ P1(Kw) is surjective.

It remains to prove :

Lemma 1.3 Let Spec(O) be a non-empty open set of the spectrum of the ring of integers
of a number field k, and let X → Spec(O) be a flat, quasiprojective O-scheme. Let X/k be the
generic fibre of X → Spec(O). Then there exists a finite set S of points of Spec(O) such that
the following holds. If v is a closed point of Spec(O) not in S, and if the fibre Xκ(v)/κ(v) is split,
then Xκ(v) contains a smooth κ(v)-point and X contains a smooth kv-point.

Proof Let U ⊂ X be the biggest open set of X on which the induced map U → Spec(O) is
smooth. Then U is regular. Let us decompose it into a finite union of disjoint integral open sets :
U =

⋃
i∈I Ui. For each i ∈ I, let Ui → Spec(Oi)→ Spec(O) be the Stein factorization of the map

Ui → Spec(O). Since Ui is regular, each ring Oi is a Dedekind domain and is quasifinite over
O. By definition, the quasiprojective map Ui → Spec(Oi) has smooth, geometrically integral
fibres. Because of the Lang-Weil estimates [L/W54], there exists a finite set S of places of k
such that for any closed point w of Spec(Oi) not above S, the fibre of Ui → Spec(Oi) has a
smooth κ(w)-point.

Let now v /∈ S be a point of Spec(O) whose fibre is split. This implies that the fibre of
U → Spec(O) above v is not empty, and that there exists at least one i ∈ I and vi ∈ Spec(Oi)
above v of degree one. It is then clear that the fibre Xv/κ(v) contains a smooth κ(v)-point. By
Hensel’s lemma, such a point can be lifted to a smooth kv-point of X.

Remark 1.4 : The geometric conditions on reducible fibres
Hypothesis (i) of Theorem 1.1 implies in particular that each fibre contains a component

of multiplicity one. It seems quite unlikely that one can get results without an assumption of
that kind (for example, in the case when there are at least 5 double fibres, then the k-rational
points cannot be Zariski-dense, see [CT/Sk/SwD97a]). However, in many interesting cases, for
example if the generic fibre is k(t)-birational to a homogeneous space of a connected linear
algebraic group, or if it is a rational surface, it automatically possesses a k(t)-point, hence the
multiplicity one condition is satisfied.

The abelianness condition in hypothesis (i) is a much more serious problem. Can one dispense
with it ? The problem is to find a substitute for the algebras Ai,j = Coreski/k(Ki,j/ki, t − ei)
in the above proof. If we could get rid of the abelianness condition, then, under (H), we would
have a proof that the (vertical) Brauer-Manin obstruction is the only obstruction for X/P1

k

when the generic fibre is a projective homogenous space under a connected linear algebraic
group G over k(P1

k). Indeed, the Hasse principle is known to hold for such varieties over a
number field (Harder). This would generalize Theorem 4.2 of [CT/SwD94] (see Remark 4.2.1 of
[CT/SwD94]). We would have similar results for pencils of Del Pezzo surfaces of degree 6.

Remark 1.5 : The arithmetic hypotheses on smooth fibres
To prove (d) and (e), it is enough to assume that the Hasse principle (resp. weak approxima-

tion) hold for fibres of f over rational points in a non-empty Zariski open set U ⊂ P1
k.

Let U be a non-empty Zariski open set of P1
k Assume hypotheses (i) and (ii) of Theorem 1.1.

Suppose that for each m ∈ U(k) with smooth fibre Xm, the closure of Xm(k) in Xm(Ak)
coincides with Xm(Ak)Br(Xm). Does it follow that the closure of X(k) in X(Ak) coincides
with X(Ak)Br(X) ? If there is no Brauer-Manin obstruction to the Hasse principle (resp. weak
approximation) for X at all (i.e. for the whole group Br(X)), and if one already knows that the
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Brauer-Manin obstruction to the Hasse principle (resp. weak approximation) is the only one for
the smooth fibres, under hypotheses (i) and (ii) of Theorem 1.1, can one conclude that X(k) 6= ∅
(resp. X satisfies weak approximation) ?

Under suitable additional conditions on the geometry of the generic fibre, results of this kind
have been obtained by Harari [Ha94] in the special case where all fibres over A1

k are geometrically
integral.

To conclude this remark, and to give a measure of our ignorance, let us point out that even
under Schinzel’s hypothesis (H), we do not know whether the Brauer-Manin obstruction to the
Hasse principle is the only obstruction for (smooth projective models of) varieties given by an
affine equation

NK/k(x1ω1 + . . .+ ωnxn) = P (t)

with K/k a biquadratic extension, i.e. a Galois extension with Gal(K/k) = (Z/2)2, and
P (t) ∈ k[t] a polynomial of degree at least two.

Examples 1.6
In order to apply Theorem 1.1 to a pencil X/P1

k, one needs to check the abelianness condition
(i). The assumption and the conclusion of the theorem do not change if f is replaced by a fibration
f ′ which is birationally equivalent to f over P1

k.
If the generic fibre of f is a Severi-Brauer variety, there exist explicit models X/P1

k (Artin
models, see Frossard [Fr96b]) : for these models, assumption (i) of Theorem 1.1 is satisfied.
From Schinzel’s hypothesis we thus get statements (a) to (e) in the theorem for Artin models,
hence also for all other models. This special case of Theorem 1.1 was established in Section 4 of
[CT/SwD94].

A case where condition (i) is immediate is that of a suitable model X/P1
k of a variety given

by an affine equation
NK/k(x1ω1 + . . .+ ωnxn) = P (t)

with K/k an abelian extension, ω1, . . . , ωn a basis of the extension K/k, and P (t) a separable
polynomial of degree at least two. We let f : X → P1

k be a model extending the projection to
the t coordinate. Schinzel’s hypothesis gives statement (a) to (c) in the theorem. If moreover
K/k is cyclic, then the Hasse principle and weak approximation hold for the smooth fibres (over
the k-points of a non-empty Zariski open set) hence Schinzel’s hypothesis also gives (d) and (e).
In this case the generic fibre is actually birational to a Severi-Brauer variety, and we recover the
case handled in [CT/SwD94].

One may check the abelianness condition in the case of a pencil of 2-dimensional quadrics
([Sk90b]). In this case, Schinzel’s hypothesis gives statements (a) to (e) (see [CT/SwD94],
Theorem 4.2).

In the paper [SwD95], a special one-parameter family of curves of genus one X/P1
k is studied.

It has exactly three singular fibres XM , each of them integral and of multiplicity one ; for each
such closed point M , the algebraic closure of k(M) in the function field of XM is a quadratic
extension of k(M). Statements (a), (b) and (c) in Theorem 1.1 therefore apply. In the case
considered in [SwD95], one has Brvert(X)/Br(k) = 0. Thus in this case X(Ak) = X(Ak)Brvert ,
and Schinzel’s hypothesis (H) implies that R is dense in p(X(Ak)). In particular, if X(Ak) 6= ∅,
then from (H) one deduces the existence of m ∈ P1(k) with smooth fibre Xm having points in
all completions of k.

§2. The case of few non-split fibres : unconditional results

2.1 The case where at most one fibre is non-split

Let f : X → P1
k be as in Theorem 1.1. If all fibres of f except possibly one at a k-rational

point are split, Theorem 1.1 yields an unconditional result, since the special case of Schinzel’s
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hypothesis then used is Dirichlet’s theorem on primes in an arithmetic progression (the degree
of P (t) is one). We have here Brvert(X)/Br(k) = 0, and the theorem reads : the set of points
m ∈ P1(k) whose fibre Xm is smooth over k and contains points in all completions of k is dense
in the product

∏
v∈Ω f(X(kv)) ⊂ P1(Ak).

A more general result can however be given a simpler proof, which does not use Dirichlet’s
theorem. Namely, under the assumption that the fibres XM for M closed point of A1

k ⊂ P1
k are

split and that the fibre X∞ possesses at least one component of multiplicity one, the set of points
m ∈ P1(k) whose fibre Xm is smooth and contains points in all completions of k is dense in the
product

∏
v∈Ω f(X(kv)) ⊂ P1(Ak). The proof uses Lemma 1.2 and weak approximation (when

all fibres are split) or strong approximation (when one fibre is non-split). This formalization of
the technique used first in [CT/S/SwD87] (in the case where all fibres over A1

k are geometrically
integral) has been known for some time (see [Sk90], [CT92], [Ha94], [Sk96]).These various papers
actually make the additional assumption that f admits a section over an algebraic closure k
of k, but this assumption may be replaced by the weaker hypothesis that the only possibly
non-split fibre is geometrically split (i.e. possesses a component of multiplicity one). Indeed, the
assumption that all fibres of f : X → P1

k possess one component of multiplicity one is enough to
ensure the existence of infinitely many places v of k such that the induced map X(kv)→ P1(kv)
is surjective (Lemma 1.2 (d)).

2.2 The case where exactly two k-fibres are non-split

In this case, we have the unconditional result :

Theorem 2.2.1 Let k be a number field and X a smooth, projective, geometrically integral
variety over k, equipped with a flat k-morphism f : X → P1

k with geometrically integral generic
fibre. Assume :

(i) All fibres of f are split, except for the fibres at two distinct k-points A and B, and the
fibres at these two points are geometrically split, i.e. contain at least one irreducible component
of multiplicity one.

(ii) There exists a multiplicity one irreducible component Z ⊂ XA such that the algebraic
closure kZ of k = k(A) in the function field of Z is an abelian extension of k.
Let R ⊂ P1(k) be the set of k-points m with smooth fibre Xm such that Xm(Ak) 6= ∅. Then :

(a) Given {pv} ∈ X(Ak)Brvert and a finite set S of places of k, there exists m ∈ P1(k) such
that the fibre Xm/k is smooth and has points in all completions of k, and the point m can be
chosen as close as one wishes to each f(pv) ∈ P1(kv) for v ∈ S.

(b) Assume X(Ak)Brvert 6= ∅. Then for any finite set S of places of k, the closure of R in∏
v∈S P1(kv) contains a non-empty open set. In particular R is Zariski-dense in P1

k.
(c) Assume X(Ak)Brvert 6= ∅. Then there exists a finite set S0 ⊂ Ω such that for any finite set

S ⊂ Ω with S ∩ S0 = ∅, the closure of R under the diagonal embedding P1(k)→
∏
v∈S P1(kv)

coincides with
∏
v∈S f(X(kv)).

(d) Assume that the Hasse principle holds for smooth fibres of f . Then the vertical Brauer-
Manin obstruction to the existence of a rational point on X is the only obstruction. More
precisely, if X(Ak)Brvert 6= ∅, then for any finite set S of places of k, the closure of f(X(k)) in∏
v∈S P1(kv) contains a non-empty open set. In particular f(X(k)) is Zariski-dense in P1

k.
(e) Assume that the Hasse principle and weak approximation hold for smooth fibres of f .

Then the Brauer-Manin obstruction to weak approximation on X is the only obstruction : The
closure of X(k) in X(Ak) coincides with the open and closed set X(Ak)Brvert .

Proof Let us prove (a). Changing coordinates on P1
k and then A1

k, we may assume that
A is given by t = 0 and B by t = ∞. Let U ⊂ A1

k be the complement of the points with
singular fibre. Let {pv} ∈ X(Ak)Brvert , and let mv = f(pv). Since all geometric fibres are split,
the quotient Brvert(X)/Br(k) is finite. One thus produces finitely many elements Al ∈ Brvert(X)
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whose images span the previous quotient, and an associated finite set S0 of places as in Theorem
1.1. We may assume that S0 contains all the archimedean places and all the places of k ramified
in kZ , and that the set S in (a) contains S0. Using continuity of the Brauer pairing, one may
assume that mv 6= 0 and mv 6= ∞, and that each pv lies in XU . For each v ∈ Ω one then
produces open sets Wv ⊂ U(kv) and sections σv : Wv → XU (kv) of XU (kv) → U(kv) as in
Theorem 1.1.

Let Y ⊂ X∞ be an irreducible component of multiplicity one. One enlarges S so that Lemma
1.2 holds. We here have T = T0 ∪ T∞, and Lemma 1.2 (c) applies to closed points in T0, the
field K0 of Lemma 1.2 being kZ , and to closed points in T∞, the field K∞ of Lemma 1.2 being
the algebraic closure kY of k in the function field k(Y ).

Let us write kZ as a composite of cyclic extensions Kj/k, and define

Aj(t) = (Kj/k, t) ∈ Br(k(t)).

Using Cor. 2.6.1 of [Ha94], one finds a finite set of places S1 containing S, and points p′v ∈ XU (kv)
for v ∈ S1, with p′v = pv for v ∈ S, such that for each j∑

v∈S1

invv(Aj(m′v)) = 0,

where m′v = f(p′v), hence mv = m′v for v ∈ S1. Let λv ∈ k∗v be the t-coordinate of m′v. Let V
be an infinite set of finite places v of k lying over primes of Q which are totally split in kZ and
in kY (such a set exists by Tchebotarov’s theorem). We assume V ∩ S1 = ∅. We now apply a
modified form ([San82], Cor. 4.4) of Dirichlet’s theorem on primes in an arithmetic progression
in the number field case ; the modified form, which builds upon a theorem of Waldschmidt, is
required if one wants to approximate at the archimedean places.

This enables us to find λ ∈ k as close as we wish to each λv for v ∈ S1 (in particular λv ∈Wv),
and such that λ is a unit at any place v of k away from S1 ∪ V , except at one place w, where it
is a uniformizing parameter.

For each j, we thus have : ∑
v∈S1

invv((Kj/k, λ)) = 0.

By the global reciprocity law and the properties of λ, this implies invw((Kj/k, λ)) = 0. Since
λ is a uniformizing parameter at w, this implies that w splits in Kj/k. This holds for each j,
hence w splits in the composite kZ of the fields Kj .

Let m ∈ U(k) be the k-point with coordinate λ. The fibre Xm is smooth. It has points in kv
for v ∈ S1 (use the sections σv). It has points in kv for v /∈ S1 ∪ V ∪ {w} by Lemma 1.2, (a)
and (b). It has points in kv for v ∈ V by Lemma 1.2 ,(b) and (c), since places in V are split in
kZ and in kY , and both Z and Y have multiplicity one. Finally, Xm has points in kw also by
Lemma 1.2 (b) and (c), since Z has multiplicity one, w is split in kZ , and valw(λ) = 1 > 0.

This completes the proof of statement (a). As explained at the beginning of the proof of
Theorem 1.1, the other statements follow easily.

When k is totally imaginary, we have the following variant :
Theorem 2.2.2 Let k be a totally imaginary number field and X a smooth, projective,

geometrically integral variety over k, equipped with a flat k-morphism f : X → P1
k with

geometrically integral generic fibre. Assume :
(i) All fibres of f are split, except for the fibres at two distinct k-points A and B.
(ii) There exists a multiplicity one irreducible component Z ⊂ XA such that the algebraic

closure kZ of k = k(A) in the function field of Z is an abelian extension of k.
Let R ⊂ P1(k) be the set of k-points m with smooth fibre Xm such that Xm(Ak) 6= ∅. Then :
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(a) Given {pv} ∈ X(Ak)Brvert and a finite set S of finite places of k, there exists m ∈ P1(k)
such that the fibre Xm/k is smooth and has points in all completions of k, and the point m can
be chosen as close as one wishes to each f(pv) ∈ P1(kv) for v ∈ S.

(b) Assume X(Ak)Brvert 6= ∅. Then for any finite set S of finite places of k, the closure of R
in

∏
v∈S P1(kv) contains a non-empty open set. In particular R is Zariski-dense in P1

k.
(c) Assume X(Ak)Brvert 6= ∅. Then there exists a finite set S0 ⊂ Ω such that for any finite set

S ⊂ Ω with S ∩ S0 = ∅, the closure of R under the diagonal embedding P1(k)→
∏
v∈S P1(kv)

coincides with
∏
v∈S f(X(kv)).

(d) Assume that the Hasse principle holds for smooth fibres of f . Then the vertical Brauer-
Manin obstruction to the existence of a rational point on X is the only obstruction. More
precisely, if X(Ak)Brvert 6= ∅, then for any finite set S of finite places of k, the closure of f(X(k))
in

∏
v∈S P1(kv) contains a non-empty open set. In particular f(X(k)) is Zariski-dense in P1

k.
(e) Assume that the Hasse principle and weak approximation hold for smooth fibres of f .

Given {pv} ∈ X(Ak)Brvert , and S a finite set of finite places of k, there exists a point p ∈ X(k)
as close as one wishes to each pv for v ∈ S.

Proof We only give the points where the proof of (a) differs from the previous ones, and
we leave the details of the other statements to the reader. We may assume that A is given by
t = 0 and B by t = ∞. Let U ⊂ A1

k be the complement of the points with singular fibre.
Let {pv} ∈ X(Ak)Brvert , and let mv = f(pv). We define a set S0 as in the previous theorem,
containing all the places of k ramified in kZ . We may assume that S contains the finite places
in S0. One may assume that mv 6= 0 and mv 6=∞, and that each pv lies in XU . For each v ∈ Ω
one then produces open sets Wv ⊂ U(kv) and sections σv : Wv → XU (kv) of XU (kv)→ U(kv).
One now enlarges S so that Lemma 1.2 (a) to (c) holds. We here have T = T0∪T∞, and Lemma
1.2 (c) applies to closed points in T0, the field K0 of Lemma 1.2 being kZ .

Let us write kZ as a composite of cyclic extensions Kj/k, and define

Aj(t) = (Kj/k, t) ∈ Br(k(t)).

Using Cor. 2.6.1 of [Ha94], one finds a finite set of places S1 containing S, and points p′v ∈ XU (kv)
for v ∈ S1, with p′v = pv for v ∈ S, such that for each j∑

v∈S1

invv(Aj(m′v)) = 0,

where m′v = f(p′v), hence mv = m′v for v ∈ S1. Let λv ∈ k∗v be the t-coordinate of m′v. We then
apply Dirichlet’s theorem on primes in an arithmetic progression in the number field case, as in
[CT/S82, p. 39]. This produces λ ∈ k, λ as close as we wish to λv for v finite in S1 and such
that λ is a unit away from S1, except at one place w /∈ S1, where λ is a uniformizing parameter.
For each j, we thus have ∑

v∈S1

invv(Aj(λ)) = 0

and by the law of reciprocity this implies invw(Aj(λ)) = 0, hence w splits in Kj/k for each j.
Thus w splits in the composite kZ .

Let m ∈ P1(k) be the point with affine coordinate λ. The smooth k-variety Xm has points in
the completions kv for finite places v ∈ S1 by the implicit function theorem, it has kv-points for
finite places v /∈ S1 by Lemma 1.2 (b), it has kv-points for v archimedean, hence complex, for
trivial reasons. Finally it has kw-points because Z is a multiplicity one component of the fibre
at t = 0, the place w splits in kZ and valw(λ) = 1 > 0 : we may thus apply Lemma 1.2, (b) and
(c).
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Remarks 2.2.3
(a) In contrast with Theorem 1.1, the results here are unconditional : indeed, Dirichlet’s

theorem on primes in an arithmetic progression is the special case of hypothesis (H) which is
known.

(b) Theorem 2.2.1 and 2.2.2 should be compared with [Sk96], which deals with applications
of the descent method to one-parameter families of varieties, in the case where the sum of the
degrees of the closed points with non-split fibres is at most two, and the Hasse principle and
weak approximation hold for the fibres. In that case, an unconditional proof of statements (d)
and (e) of Theorem 1.1 is given in [Sk96] (no mention of Schinzel’s hypothesis), under the further
assumptions that all components of all fibres are of multiplicity one, and that there is a section
of the fibration f over an algebraic closure k of k (this last assumption can presumably be
dispensed with). Thus [Sk96] does not require the abelianness assumption which we make in
2.2.1 and 2.2.2. But the theorems above do not require that all components of the fibres XA

and XB be of multiplicity one, and when k is totally imaginary, at the expense of losing control
of approximation at the archimedean (complex) places, we impose no multiplicity one condition
at all on XB .

(c) Let us come back to the case considered in Section 2.1, namely the case where just the
fibre X∞ is non-split. In Section 2.1, we assumed X∞ to be geometrically split, in other words
we assumed that X∞ contains a component of multiplicity one. Let us drop this assumption,
but restrict attention to the case where k is totally imaginary. Using Dirichlet’s theorem as in
Theorem 2.2.2 (rather than strong approximation as in 2.1), we conclude that for any finite set S
of finite places of k, the image of f(X(k)) in the product

∏
v∈S f(X(kv)) is dense (in particular

the Hasse principle holds for X). If we also assume weak approximation for the smooth fibres,
then for any finite S of finite places of k, the diagonal map X(k) →

∏
v∈S X(kv) has dense

image : weak approximation holds at the finite places.

§3. Salberger’s device

Salberger’s device [Sal88] can be described in the following free-standing fashion, which clearly
displays the fact that it is a substitute for Schinzel’s hypothesis, or rather for its variant (H1).

Theorem 3.1 Let k be an algebraic number field. Let Pi(t), i = 1, . . . , n be distinct
irreducible monic polynomials in k[t]. Let S be a finite set of places of k which contains
all the archimedean places, all the finite places v of k for which some polynomial Pi(t) has
some coefficient not integral at v, and all the finite places v such that all Pi(t) have v-integral
coefficients, but such that the product R(t) =

∏
i Pi(t) does not remain separable when reduced

modulo v.
Let L be a finite extension of k in which all the polynomials Pi split completely, and which

is Galois over Q. Let V be an infinite set of finite primes of k lying over primes in Q which are
totally split in L (the existence of such a set is guaranteed by Tchebotarov’s density theorem).
Suppose that we are given an integer

N ≥
∑
i

deg(Pi)

and for each v ∈ S a non-empty open set Uv of separable monic polynomials in kv[t] of degree
N . Then we can find an irreducible monic polynomial G(t) ∈ k[t] of degree N such that if
k(θ) = k[t]/G(t),

(i) the class θ of t is an integer in k(θ) = k[t]/G(t), except perhaps at some of the primes in
k(θ) above those in S ∪ V ;

(ii) G(t) is in Uv for each v ∈ S ;
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(iii) for each i there is a finite prime wi in k(θ), of absolute degree one, such that Pi(θ) is a
uniformizing parameter for wi and a unit except at wi and possibly at primes above those in
S ∪ V .

Proof Let Ri(t) =
∏
j 6=i Pj(t). Any polynomial G(t) ∈ k[t] may be written in a unique way

as
G(t) = R(t)Q(t) +

∑
i

Ri(t)ψi(t)

with
deg(ψi) < deg(Pi).

If G(t) is monic and of degree at least equal to that of R(t), then Q(t) is non-zero and monic.
This corresponds to the isomorphism

k[t]/R(t) '
∏
i

k[t]/Pi(t).

We have a similar isomorphism if we go over to each kv. For each v ∈ S, let Gv(t) be a polynomial
of degree N in Uv. We may thus write

Gv(t) = R(t)Qv(t) +
∑
i

Ri(t)ψi,v(t) ∈ kv[t]

with each Qv(t) monic of degree N − deg(R) and deg(ψi,v) < deg(Pi).
We build a polynomial G(t) close to each Gv(t) for v ∈ S in the following manner.
We choose a prime v0 ∈ V away from S. We also fix a monic irreducible polynomial

Gv0 ∈ kv0 [t], prime to R(t) =
∏
i Pi(t), and of degree N (irreducible polynomials of all degrees

exist over a p-adic field).
We choose a second prime v′0 ∈ V away from S ∪ v0. We may find a monic polynomial Q(t)

as close as needed to each Qv(t) for v ∈ S ∪ {v0}, in such a way that all coefficients of Q have
positive valuation at all places v /∈ S∪v0∪v′0 : this is achieved by applying strong approximation
in k to the coefficient of each power of t.

We then choose each ψi(t) as follows. Recall ki = k[t]/Pi(t). Consider the diagonal map

k∗i −→
∏

v∈S∪v0

(ki ⊗k kv)∗.

For each place v ∈ S ∪ v0 and each i let γi,v be the class of ψi,v(t) in kv[t]/Pi(t) = ki ⊗k kv.
According to Cor. 4.4 of [San82], we may find a γi ∈ k∗i such that its image under this diagonal
map is very close to each element γi,v for v ∈ S ∪ v0 and such that the decomposition of γi into
prime ideals in the ring of integers of ki reads

(γi) = pi.
∏

w∈(V ∪S)ki

pnw
w ,

i.e. consists of primes in the set (V ∪ S)ki
of places of ki lying above S or above primes in V

(the integers nw lie in Z), and of one prime pi of absolute degree 1, away from Ski . Let vi be the
place of k lying below the place pi of ki. (If we were only to approximate at the finite places,
Dirichlet’s theorem on primes in arithmetic progression would be enough. But if we want to
approximate at the archimedean places too, then we need Cor. 4.4 of [San82].)
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The element γi ∈ k∗i is represented in a unique way as the class of a polynomial ψi(t) ∈ k[t]
of degree strictly smaller than Pi(t). Let

G(t) = R(t)Q(t) +
∑
i

Ri(t)ψi(t) ∈ k[t].

Because the polynomial G(t) may be made arbitrarily close to Gv0(t) ∈ kv0 [t], and because this
last polynomial was chosen irreducible, we may ensure that G(t) is irreducible in kv0 [t] (Krasner’s
lemma), hence also in k[t]. We now let K be the field k[t]/G(t). This is a field extension of k of
degree N .

Note that the coefficients of the monic polynomial G(t) are integral at finite places of k which
do not belong to S ∪ V . In the field K = k(θ) = k[t]/G(t), the element θ which is the class of
t is therefore integral at finite places of K which do not lie over those of S ∪ V , as claimed in
(i). Because of the approximation conditions we put on the places in S, we can certainly ensure
condition (ii). It only remains to check (iii). If the trace on k of a place w of K does not belong
to S ∪ V , then clearly Pi(θ) ∈ K is integral at w. Let us compute the norm NK/k(Pi(θ)). The
formula for the resultant of two polynomials shows that

NK/k(Pi(θ)) = ±Nki/k(G(θi)),

where ki = k[t]/Pi(t) = k(θi) (here θi denotes the class of t in ki = k[t]/Pi(t)). A glance at the
equation defining G(t) shows :

G(θi) = Ri(θi)γi ∈ k∗i .

Thus
Nki/k(G(θi)) = Nki/k(Ri(θi)).Nki/k(γi) ∈ k∗.

Given the enlargement of S we made at the outset, the element Nki/k(Ri(θi)) ∈ k∗ is a unit at
any place v /∈ S. As for Nki/k(γi), it is a unit at all places of k outside S∪V , except at the place
vi (which has absolute degree one over Q), where it has valuation exactly one (recall that pi is
a place of absolute degree one of ki). We thus conclude that NK/k(Pi(θ)) ∈ k∗ is a unit away
from S ∪ V ∪ {vi}, and that vi(NK/k(Pi(θ))) = 1. Since Pi(θ) ∈ K is integral away from the
places above S ∪ V , we conclude that Pi(θ) is a unit at places of K not above S ∪ V , except for
just one place wi of absolute degree one (lying over vi), where it is a uniformizing parameter.

§4. Local-global properties for zero-cycles

Let X be a variety over a field k. We refer to [CT/SwD94], Section 3.1, for the definition and
properties of the pairing between the Brauer group of X and zero-cycles on X, sending a class
A ∈ Br(X) and a zero-cycle z on X to < A, z >∈ Br(k). We also refer to [CT/SwD94], Section
3.1, for the definition of the Brauer-Manin obstruction in this context.

Proceeding as in Section 5 of [CT/SwD94], we shall now replace Schinzel’s hypothesis by
Salberger’s device and prove the (unconditional) generalization of Theorem 1.1 (d) for zero-
cycles of degree one instead of rational points. We then go on and prove the generalization
of one of the local-global exact sequences for zero-dimensional Chow groups in Section 6 of
[CT/SwD94].

Theorem 4.1 Let X be a smooth, projective, geometrically integral variety over a number
field k, equipped with a flat morphism f : X → P1

k with geometrically integral generic fibre.
Assume :

(i) If M is a closed point of P1
k and XM denotes the fibre over M , then there exists a

multiplicity one irreducible component Z ⊂ XM such that the algebraic closure of k(M) in the
function field of Z is an abelian extension of k(M).
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(ii) There is no vertical Brauer-Manin obstruction to the existence of a zero-cycle of degree
one on X.

(iii) The Hasse principle for the existence of zero-cycles of degree one holds for all smooth
fibres of f (over all closed points with smooth fibre).

Then there exists a zero-cycle of degree one on X.

Proof. We start just as in the proof of Theorem 1.1. We repeat some of the preliminaries.
We may assume that the fibre of f at infinity is smooth. Let V ⊂ A1

k be the complement of the
set of closed points of A1

k with singular fibre and let U = f−1(V ) ⊂ X. Its complement F ⊂ X
is the union of the fibre at infinity of f and of the singular fibres of f .

Let P (t) be the monic separable polynomial which describes all the closed points M such that
the fibre XM is not split. This polynomial may be written as a product of irreducible monic
polynomials P (t) =

∏n
i=1 Pi(t). Each of them corresponds to a closed point Mi of the affine

line. Use assumption (i) : for each such Mi, let ki = k(Mi) and let Zi/ki be a multiplicity one
irreducible component of XMi

such that the algebraic closure Ki of ki in the function field of
Zi is an abelian extension of ki. Write Ki/ki as a composite of cyclic extensions Ki,j/ki. Let
ei ∈ ki denote the class of t under the identification ki = k[t]/Pi(t). Let k(t) be the function
field of A1

k = Spec(k[t]). Define Ai,j ∈ Br(k(t)) by

Ai,j = Coreski/k(Ki,j/ki, t− ei).

Let s be the least common multiple of the orders of the Ai,j ∈ Br(k(t)).
Let S0 be a finite set of places of k containing all the archimedean places and all the bad

finite primes in sight : finite primes where one Pi is not integral, finite primes where all Pi are
integral but the reduction of the product P (t) =

∏
i Pi(t) is not separable, primes ramified in

one of the extensions Ki,j/k. We want S0 to be big enough for the fibration f : X → P1
k to

extend to a (projective, flat) fibration g : X → P1
O, where O denotes the ring of integers of k

with primes in S0 inverted, and X is regular. We also enlarge the finite set S0 so that Lemma
1.2 applies.

Having repeated these preliminaries, we now proceed as follows. Let N0 be a closed point of
U ⊂ X and let d = [k(N0) : k] be its degree over k.

Since we assume that there is no vertical Brauer-Manin obstruction to the existence of a
zero-cycle of degree one, an obvious variant of Harari’s result ([CT/SwD94], Thm. 3.2.2) implies
that we may find a finite set S1 of places of k containing S0 and for each v ∈ S1 a zero-cycle zv
of degree one with support in U ×k kv ⊂ X ×k kv such that

(4.1) ∀ {i, j},
∑
v∈S1

invv(< Ai,j , zv >) = 0.

Let us write the zero-cycle zv as z+
v − z−v , with z+

v and z−v effective cycles. Let z1
v be the

effective cycle z+
v + (ds− 1)z−v . We have zv = z1

v − dsz−v , hence < Ai,j , zv >=< Ai,j , z
1
v > since

each Ai,j is killed by s. We thus have

(4.2) ∀ {i, j},
∑
v∈S1

invv(< Ai,j , z
1
v >) = 0.

Similarly < Ai,j , sN0 >= 0. The degree of z1
v is congruent to 1 modulo ds. The cycle sN0 has

degree ds. Adding suitable multiples of sN0 to each z1
v for v in the finite set S1, we then find

effective cycles z2
v , all of the same degree 1 +Dsd for some D > 0, and such that

(4.3) ∀ {i, j},
∑
v∈S1

invv(< Ai,j , z
2
v >) = 0.
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We claim that in (4.3), for each v ∈ S1, each effective cycle z2
v may be assumed to be a sum

of distinct closed points (i.e. there are no multiplicities) whose images under fkv : Ukv → P1
kv

are also distinct. Indeed, if P is a closed point of Ukv , with residue field F = kv(P ), and A is
a class in Br(U), the map U(F )→ Br(F ) ⊂ Q/Z given by evaluation of A is continuous. Since
X is smooth, the point P defines a non-singular F -point of U ×k F . The statement now follows
from the implicit function theorem.

We claim that while keeping (4.3) we can moreover assume that, for each z2
v and each closed

point P in the support of z2
v , the field extension map kv(f(P )) ⊂ kv(P ) is an isomorphism. Once

more, it is enough to replace P by a suitable, close enough, kv(P )-rational point on Ukv(P ) : the
argument for this appears on the bottom of p. 89 of [CT/SwD94].

Each of the zero-cycles f(z2
v) is now given by a separable monic polynomial Gv(t) ∈ kv[t] of

degree 1 + Dds, prime to P (t) and with the property that the (smooth) fibres of f above the
roots of Gv have points rational over their field of definition.

According to Krasner’s lemma, any monic polynomial H(t) close enough to Gv(t) for the
v-adic topology on the coefficients will be separable, with roots ‘close’ to those of Gv. Thus the
fibres above the roots of the new polynomial are still smooth and still possess points rational
over their field of definition.

Let L be the Galois closure, over Q, of the composite of the field extensions Ki/Q. By Lemma
1.2 (d) (here we are using hypothesis (i) in Theorem 4.1, at least to the extent that each fibre
contains a component of multiplicity one), there exists an infinite set S2 of places v of k, away
from S1, lying over primes totally decomposed in L, such that for any v ∈ S2 and any finite
field extension Kw/kv the map fKw

: X(Kw)→ P1(Kw) is surjective.
We now choose the irreducible polynomial G(t) as given by Salberger’s device (with V of

Section 2 being the present S2, and S of Section 2 being the present S1). Thus G(t) is very
close to each Gv(t) for v ∈ S1. The irreducible polynomial G defines a closed point M of degree
1 + Dds on A1

k. Let K = k(M) = k[t]/G(t). For each polynomial Pi(t) there is an associated
finite place wi of K.

We claim that the fibre XM/K has points in all completions of K. Talking about the reduction
of this variety makes sense at finite primes of K which do not lie above primes in S1 ∪ S2.

At primes w of K above a prime v of S2, the existence of a Kw-point on XM is clear, since
fKw is surjective on Kw-points. At primes w above primes in S1, the existence of Kw-points on
XM follows from the fact that G is very close to each Gv for v ∈ S1. At finite primes w of K
which do not lie above S1 ∪ S2 and are distinct from w1, . . . , wn, the reduction of XM over the
finite field κ(M)w is split, hence possesses a smooth rational point, hence XM has a Kw-point
(Lemma 1.2 (b) is stated for rational points of P1

k but also holds for closed points).
Let us now consider a prime wi (compare [CT/SwD94], proof of Theorem 5.1, p. 83 to 85).

We let Ei = ki ⊗kK and Fi,j = Ki,j ⊗kK. These Artinian algebras need not be fields, but this
does not matter. Using equation (4.3), the continuity of the local invariant of class field theory,
its behaviour under corestriction and global reciprocity, we end up with

(4.4) invwi
CoresEi/K(Fi,j/Ei, θ − ei) = 0

while NEi/K(θ − ei) = Pi(θ) has wi-valuation

(4.5) wi(NEi/K(θ − ei)) = 1.

From equality (4.5) follows that in the decomposition of Ei ⊗K Kwi
as a product of field

extensions of Kwi , there is just one of these field extensions, call it Ei,w, in which (θ− ei) ∈ Ei
is not sent to a unit, and in that particular extension (θ−ei) becomes a uniformizing parameter.
Moreover, Ei,w is a trivial extension of Kwi

.
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From (4.4) now follows
(Fi,j/Ei, θ − ei)⊗Ei Ei,w = 0.

Since (θ− ei) is a uniformizing parameter in Ei,w, this implies that the cyclic extension Fi,j/Ei
becomes trivial when tensored with Ei,w. Since this holds for all j, we conclude that the reduction
of XM at wi is split. Hence XM/K possesses a Kwi

-point (use the closed point variant of Lemma
1.2, (b) and (c)).

This completes the proof that XM has points in all completions of K = k(M). Since we had
postulated the Hasse principle for zero-cycles of degre one on smooth fibres (hypothesis (iii)),
we conclude that XM/K contains a zero-cycle of degree one. The degree of K over k is 1 +Dds,
hence X/k contains a zero-cycle of degree 1+Dds. Since it also contains the zero-cycle N0 which
is of degree d, we conclude that there exists a zero-cycle of degree one on X.

Remarks 4.2
(a) If we drop assumption (iii) in the theorem, i.e. if we do not assume the Hasse principle

in the fibres, but keep assumptions (i) and (ii), the above proof shows that, given any positive
integer d, there exists a closed point M of P1

k of degree prime to d such that the fibre XM/k(M)
is smooth and has points in all completions of k(M). In other words, the greatest common
divisor of the degrees [k(M) : k] of such points is equal to one.

(b) The (simple) techique used at the beginning of the proof to reduce the problem to effective
zero-cycles of a fixed degree represents an improvement upon the technique used in [CT/SwD94],
p. 79 (which in turn improved upon Salberger’s original argument for conic bundles, see Remark
5.1.1 of [CT/SwD94]).

(c) An obvious but seemingly difficult question is whether one can get rid of the abelianness
condition in the theorem above.

(d) The result raises the question what families of varieties over k have the property that if
a variety V in the family contains a zero-cycle of degree one defined over k then it possesses a
k-point. This is known to hold, for example, for any intersection of two quadrics in projective
space, but it is in general false for pencils of conics. For cubic surfaces the question is open.

We now address the generalization of Section 6 in [CY/SwD94]. We shall need some lemmas.

Lemma 4.3 Let X be a geometrically integral variety over a number field k, let A ∈ Br(X).
Then for almost all places v of k there exists Pv ∈ X(kv) such that A(Pv) = 0 ∈ Br(kv).

Proof We may assume that X/k is affine. There exists a non-empty open set Spec(O) of
the ring of integers of k and an affine integral scheme X over Spec(O) such that the projection
X → Spec(O) is flat with non-empty smooth geometrically integral fibres, and with generic
fibre X/k, and such that moreover there exists A ∈ Br(X ) which restricts to A over X. By
Lemma 1.3 for all closed points v ∈ Spec(O) away from a finite set S the corresponding closed
fibre of U/Spec(O) has a rational point which lifts to a kv-point on U . By Lemma 1.3 for all
closed points v ∈ Spec(O) away from a finite set S the corresponding closed fibre of X/Spec(O)
has a rational point, and such a point lifts to an Ov-point Mv on X , giving rise to a kv-point
Pv ∈ X(kv). Now A(Pv) ∈ Br(kv) is the restriction of A(Mv) ∈ Br(Ov) = 0.

Lemma 4.4 Let X be a smooth geometrically integral variety over a number field k, let
U ⊂ X be a non-empty open set, and let A ∈ Br(U). Assume A /∈ Br(X). Then :

(a) There exist infinitely many places v of k such that the map U(kv) → Br(kv) given by
evaluating A at kv-points of U takes at least two different values, one of them zero.

(b) Given any integer r ≥ 1, for infinitely many places v, the map from effective zero-cycles
of degree r on U ×k kv to Br(kv) given by evaluation of A contains both zero and a non-zero
value in its image.
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Proof Thm. 2.1.1 of [Ha94] asserts that the map U(kv) → Br(kv) takes a non-zero value
for infinitely many places v. Statement (a) then follows from the previous lemma. As for (b),
it follows from (a) by considering effective zero-cycles defined by a suitable sum of r points of
U(kv).

This lemma allows us to get rid of the restriction on the degree in the 0-cycle variant of
Harari’s theorem ([CT/SwD94], Thm. 3.2.2).

Lemma 4.5 Let X be a smooth, projective, geometrically integral variety over a number
field k, let U ⊂ X be a non-empty open set of X and {A1, . . . , An} ∈ Br(U) ⊂ Br(k(X)). Let
r ≥ 1 be a positive integer. Assume that X contains 0-cycles (resp. effective 0-cycles) uv of
degree r over each completion kv of k. Let B be the intersection of Br(X) with the subgroup
generated by the Ai’s, i = 1, . . . , n, in Br(k(X)). Assume that the subgroup B ⊂ Br(X) creates
no obstruction to the Hasse principle for the existence of 0-cycles (resp. effective 0-cycles) of
degree r on X. Then for any finite set of places S one can find a bigger finite set of places S1,
S ⊂ S1, and 0-cycles (resp. effective 0-cycles) zv of degree r with support in Ukv

, for v ∈ S1,
such that for each i = 1, . . . , n one has∑

v∈S1

invv(< Ai, zv >) = 0 ∈ Q/Z.

If B creates no obstruction to weak approximation for the family of 0-cycles (resp. effective
0-cycles) {uv}v∈Ω of degree r, then one can moreover choose zv = uv for v ∈ S.

Proof This follows from Lemma 4.4 by Harari’s formal argument (Cor. 2.6.1 of [Ha94]).

Given X/k a projective variety, one denotes by CH0(X) the Chow group of zero-cycles of X,
and by A0(X) ⊂ CH0(X) the subgroup of classes of zero-cycles of degree zero. For any field
extension K/k, the Brauer pairing defines a homomorphism CH0(XK)→ Hom(Br(XK),Br(K)).

Lemma 4.6 Let k be a number field. Let X be a smooth, projective, geometrically
integral variety over a number field k, equipped with a flat morphism f : X → P1

k with
geometrically integral generic fibre. Assume that all geometric fibres of f are split. For v ∈ Ωk,
let Xv = X ×k kv. Then for almost all places v of k, the pairing A0(Xv)×Brvert(Xv)→ Br(kv)
is trivial.

Proof Let g = Gal(k/k). Let T̂ be the g-submodule of Pic(X) which is spanned by the
classes of vertical divisors on X, i.e. divisors which are components of the fibres of f . This is
a torsion-free abelian group of finite type (cf. [Sk96], Prop. 3.2.3). Let λ : T̂ ⊂ Pic(X) be the
obvious inclusion. Let T be the k-torus whose character group is T̂ . We may consider the subset
of H1(X,T ) = H1

ét(X,T ) consisting of isomorphism classes of torsors over X under the k-torus T
which have image λ under the natural map H1(X,T )→ Homg(T̂ ,Pic(X)). By [CT/S87] (Prop.
2.2.8 (v) and Thm. 2.3.1) and [Sk96] (Lemma 3.2.1), this subset is not empty. Let T /X be a
torsor whose class lies in this subset. There exists an open set Spec(O) of the ring of integers of
k over which T extends to an O-torus T̃ , the k-variety X to a (smooth) projective O-scheme X̃
and T to a T̃ -torsor over X̃. Since H1 of a ring Ov with values in an Ov-torus is trivial (Hensel’s
lemma together with Lang’s theorem on principal homogeneous spaces of connected algebraic
groups over a finite field), we conclude that for v ∈ Spec(O), the map CH0(Xv) → H1(kv, T )
defined by T is zero.

Let K be any overfield of k. We may define the composite map

η1 : A0(XK)→ H1(K,T )→ (H1(K, T̂ ))˜,
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where for any abelian group C, we let C˜ = Hom(C,Br(K)). The first map is defined by T .
The second map comes from the cup-product H1(K,T )×H1(K, T̂ )→ Br(K).

Let Br1(XK) = Ker[Br(XK) → Br(XK ×K K)]. If K is a number field or a local field there
is a well-known natural isomorphism

Br1(XK)/Br(K) '→ H1(K,Pic(XK ×K K))

(this uses the vanishing of H3(K,K
∗
) provided by class field theory). Let us consider the inverse

isomorphism H1(K,Pic(XK ×K K)) '→ Br1(XK)/Br(K). Under this isomorphism, the image
of H1(K, T̂ ) under λ maps onto the group Brvert(XK)/Br(K) ([Sk96], Cor. 4.5). We thus get
an injective map ρ : (Brvert(XK)/Br(K))˜ ↪→ (H1(K, T̂ ))˜. Pairing of A0(XK) with the Brauer
group induces a map A0(XK)→ (Brvert(XK)/Br(K))˜ which composed with the map ρ defines
η2 : A0(XK)→ (H1(K, T̂ ))˜. Proposition 2.7.10 in [CT/S87] (stated for rational points, but the
proof immediately extends to zero-cycles) shows that η1 and η2 coincide (up to a sign). Since
ρ is injective, we conclude that the kernel of η1 (defined by the torsor T ) is contained in the
kernel of the map A0(XK) → (Brvert(XK)/Br(K))˜. We now apply this to K = kv for each
v ∈ Spec(O).

As already mentioned in the proof of Theorem 1.1, a consideration of residues ([CT/SwD94],
Prop. 1.1.1 ; [Sk96], Lemma 4.4) gives the easy :

Lemma 4.7 Let X be a smooth, projective, geometrically integral variety over a field
k, equipped with a flat morphism f : X → P1

k with geometrically integral generic fibre. Let
W ⊂ P1

k be the Zariski open set which is the complement of points with singular fibre. If the
image of a class A ∈ Br(k(t)) in the Brauer group of k(X) lies in Br(X), then A belongs to
Br(W ).

The following theorem generalizes Theorem 6.2 (i) of [CT/SwD94].

Theorem 4.8 Let X be a smooth, projective, geometrically integral variety over a number
field k, equipped with a flat morphism f : X → P1

k with geometrically integral generic fibre.
Assume :

(i) If M is a closed point of P1
k and XM denotes the fibre over M , then there exists a

multiplicity one irreducible component Z ⊂ XM such that the algebraic closure of k(M) in the
function field of Z is an abelian extension of k(M).

(ii) The Hasse principle for the existence of zero-cycles of degree one holds for all smooth
fibres of f (over all closed points with smooth fibre).

Then there is a natural exact sequence

A0(X)→
⊕
v∈Ω

A0(Xv)/Brvert → Hom(Brvert(X)/Br(k),Q/Z)

where the second and last groups are finite.
Here the left hand side map is induced by the diagonal map, A0(Xv)/Brvert denotes

the image of A0(Xv) under the natural map A0(Xv) → Hom(Brvert(Xv)/Br(kv),Q/Z), and
the maps A0(Xv)/Brvert → Hom(Brvert(X)/Br(k),Q/Z) are induced by the Brauer pairing
A0(Xv)× Brvert(X)→ Br(kv) ↪→ Q/Z.

Proof Since all the geometric fibres of f are split, for any field L containing k, the group
Brvert(XL)/Br(L) is finite (cf. [Sk96], Cor. 4.5). The finiteness statement in the theorem now
follows from Lemma 4.6. That the composite map is zero is an immediate consequence of the
global reciprocity law.
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We may assume that the fibre of f over the point ∞ is smooth. Let F ⊂ P1
k be the union of

∞ and the closed points with singular fibre. Let W ⊂ P1
k be the Zariski open set complement

of F . Let U = f−1(W ) ⊂ X. Let N0 be a closed point in U and let d be its degree.
By Lemma 4.7 we have

Brvert(XL) = Br(XL) ∩ f∗Br(WL) ⊂ Br(UL).

For each place v ∈ Ω, let us fix a finite set Bv of elements of Br(Wv) whose images
under f∗ generate Brvert(Xv) modulo algebras coming from Br(kv) under the natural map
Br(kv)→ Br(Xv).

Keep notation as in Theorem 4.1, but assume that the finite set S also contains all places
with A0(Xv)/Brvert 6= 0 (see Lemma 4.6).

Let {cv} be a family of zero-cycles of degree zero, and assume that for all A ∈ Brvert(X), one
has ∑

v∈Ω

invv(A(cv)) = 0.

Moving cv in its class for rational equivalence, which does not affect the above equality, we may
arrange that the support of each cv lies in U .

Let zv be the zero-cycle of degree d defined by zv = cv + N0. By the global reciprocity law
and functoriality of corestrictions, for all A ∈ Brvert(X), we have∑

v∈Ω

invv(A(zv)) = 0.

By the zero-cycle version of Harari’s result (Lemma 4.5 above), we may find a finite set S1

of places of k containing S and zero-cycles z′v of degree d with support in U , with z′v = zv for
v ∈ S, such that

∀ {i, j},
∑
v∈S1

invv(< Ai,j , z
′
v >) = 0.

Let s be an integer which kills all the Ai,j , and also all the elements of the finite set Bv for
v ∈ S. Proceeding as in the proof of Theorem 4.1, for each v ∈ S1, we find an effective zero-cycle
z2
v , of degree d+Dds (same positive integer D for all v ∈ S1), with support in U , such that

∀ {i, j},
∑
v∈S1

invv(< Ai,j , z
2
v >) = 0

and such that the class z′v − z2
v is divisible by s in CH0(Xv).

Using the implicit function theorem as in the proof of Theorem 4.1, one then replaces z2
v by

an effective zero-cycle z3
v of the same degree, with multiplicities all equal to one (or zero), close

enough to z2
v , and such that f induces an isomorphism between the subscheme z3

v ↪→ Xv and
f(z3

v) ↪→ P1
kv

. For z2
v close enough to z3

v , we have

∀ {i, j},
∑
v∈S1

invv(< Ai,j , z
3
v >) = 0.

By Salberger’s device, one then produces a closed point M of degree d+Dds on P1
k defining a

cycle very close to each f(z3
v) for v ∈ S1, and such that the fibre XM has points in all completions

of K = k(M). Since we assume that the Hasse principle for zero-cycles of degree one holds on
the smooth fibres of f , we ultimately find a zero-cycle ρ of degree 1 on XM/K, hence of degree
d+Dds on X/k, such that f∗(ρ) = M .
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Let us consider the zero-cycle of degree 0 defined by c = ρ− (1 +Ds)N0, and let v be a place
in S. For any α = f∗(β) with β ∈ Bv ⊂ Br(Wv) we have the following equalities in Br(kv).
Firstly,

< α, c >=< α, ρ > − < α,N0 >

since s kills all the elements of Bv. Then

< α, ρ >=< f∗(β), ρ >=< β, f∗(ρ) >=< β,M >=< β, f∗(z3
v) >,

the second equality by functoriality of the Brauer pairing, the last equality because M could be
chosen close enough to f(z3

v) (the elements β belong to the finite set Bv). Then

< β, f∗(z3
v) >=< f∗(β), z3

v >=< α, z3
v >=< α, z2

v >

the last equality because z3
v could be chosen close enough to z2

v (there are only finitely many
α’s). Then

< α, z2
v >=< α, z′v >

since z2
v − z′v is divisible by s in CH0(Xv) and α ∈ f∗(Bv) is killed by s. Finally

< α, z′v >=< α, zv >

since zv = z′v for v in S and

< α, zv >=< α, cv +N0 >=< α, cv > + < α,N0 > .

All in all, we find
< α, c >=< α, cv >

for all α ∈ f∗(Bv), hence also for all α ∈ Brvert(Xv), since c and cv have the same degree (zero).
In other words, the class of c coincides with the class of cv in A0(Xv)/Brvert.

Remark 4.9 Let f : X → P1
k be as in Theorem 4.8. Let T be the k-torus described in Lemma

4.6. As in that lemma, there is a natural map

ϕ : A0(X)→ H1(k, T )

induced by a torsor over X of type λ. Similarly, we have a local map

ϕv : A0(Xv)→ H1(kv, T )

for each place v ∈ Ω. Global class field theory gives rise to an exact sequence (cf. [CT/S87]
(3.0.7) or [Sal88], (7.4)) :

0→X1(k, T )→ H1(k, T )→ ⊕v∈ΩH
1(kv, T )→ Hom(H1(k, T̂ ),Q/Z),

where the right hand side map is induced by the local pairings

H1(kv, T )×H1(kv, T̂ )→ Q/Z

Using the same arguments as in Lemma 4.6, together with the fact that each of these local
pairings induces a perfect duality of finite abelian groups (local class field theory), one may
reformulate Theorem 4.8 as follows :

The above exact sequence induces an exact sequence

Im(ϕ)→ ⊕v∈ΩIm(ϕv)→ Hom(H1(k, T̂ ),Q/Z).
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In the case of conic bundles, the exactness of this sequence was proved by Salberger [Sal88].
There is an obvious embedding

Ker[Im(ϕ)→ ⊕v∈ΩIm(ϕv)] ↪→X1(k, T ).

In the case of conic bundles, Salberger [Sal88] also proved that this embedding is an isomorphism,
i.e. there is in this case an exact sequence :

0→X1(k, T )→ Im(ϕ)→ ⊕v∈ΩIm(ϕv)→ Hom(H1(k, T̂ ),Q/Z).

Going back to the ideas in [Sal88], and combining them with the general formalism described
in [CT/Sk93] and [Fr96a], one may obtain the same results, provided one makes two additional
assumptions on X/P1

k. For each closed point M ∈ P1
k, let kM be the residue field at M , and

let NM ⊂ k∗M be the subgroup
∏
Z⊂XM

NkZ/kM
(k∗Z)nZ , where Z runs through the irreducible

components of XM , kZ denotes the algebraic closure of kM in the function field k(Z) of Z and
nZ denotes the multiplicity of Z in XM . The two additional assumptions are :

(i) ([Fr96a]) For each closed point M ∈ P1
k whose fibre is not integral, the composite map

A0(XM )→ A0(X)
ϕ→ H1(k, S) is zero (e.g. A0(XM ) = 0).

(ii) For each closed point M ∈ P1
k whose fibre is non-split, there exists a cyclic extension

KM/kM of the residue field at M such that NM ⊂ k∗M coincides with the norm group
NKM/kM

(K∗M ).
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les fibrés en quadriques, K-Theory 7 (1993) 477-500.

[CT/Sk/SwD97a] J.-L. Colliot-Thélène, A. N. Skorobogatov and Sir Peter Swinnerton-Dyer,
Double fibres and double covers : paucity of rational points, Acta Arithmetica LXXIX.2 (1997)
113-135.

[CT/Sk/SwD97b] J.-L. Colliot-Thélène, A. N. Skorobogatov and Sir Peter Swinnerton-Dyer,
Hasse principle for pencils of curves of genus one whose Jacobians have rational 2-division points
(preprint, April 1997).

22



[CT/SwD94] J.-L. Colliot-Thélène and Sir Peter Swinnerton-Dyer, Hasse principle and weak
approximation for pencils of Severi-Brauer and similar varieties, J. für die reine und angew.
Math. (Crelle) 453 (1994) 49-112.

[Fr96a] E. Frossard, Groupe de Chow de dimension zéro des fibrations en variétés de Severi-
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premiers, Acta Arith. 4 (1958) 185-208.

[Se94] J.-P. Serre, Cohomologie galoisienne, 5ème édition, Lecture Notes in Mathematics 5,
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