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2-5 January 2018



The Brauer group of varieties may detect nonrationality of
varieties. It may also prevent local-global principles for rational
points of projective varieties and for integral points of affine
varieties. There are “higher” analogues of the Brauer group.



Let X be an algebraic variety, or more generally a scheme.
On X , we have the Zariski topology. We also have the étale
topology.
The functor which to a sheaf of abelian groups F for one of these
topologies associates the group of global sections H0(X ,F ) is only
left exact for short exact sequences of sheaves.
This gives rise to higher cohomology groups H i

Zar (X ,F ) and
H i

ét(X ,F ).



On any scheme X we have the sheaf Gm of invertible elements
which to an open set U (Zariski or étale) associates the group
H0(U,Gm) of invertible functions on U.
Grothendieck’s Hilbert’s theorem 90 asserts
H1
Zar (X ,Gm

'→ H1
ét(X ,Gm).

This group, which is also the group of isomorphism classes of
invertible line bundles on X , is the Picard group of X , it is denoted
Pic(X ) and has been the object of much study.
For regular integral varieties over a field, it is also the quotient of
the group of Weil divisors (free abelian group on irreducible
codimension 1 closed subvarieties) by the subgroup of principal
divisors, i.e. divisors of nonzero rational functions on X .



For X a regular scheme, one has H2
Zar (X ,Gm) = 0.

Definition (Grothendieck).
Let X be a scheme. The Brauer group H2

ét(X ,Gm) is called the
Brauer group of X and is denoted Br(X ).

If X = Spec(k) for k a field, then Br(X ) is the classical Brauer
group of the field k, built from classes of central simple algebras
over k .

If X is a smooth connected variety over a field, with function field
k(X ), then there is a natural embedding

Br(X ) ⊂ Br(k(X ))

and Br(X ) is a torsion group.



Two reasons for being interested in the Brauer
group of schemes

• Variations on the Lüroth problem : which complex varieties are
rational ?

• The Brauer-Manin obstruction : trying to decide if a variety
defined over a number field has a rational point (cf. Hilbert’s 10th
problem over a number field)



Variations on the Lüroth problem over C

A smooth, projective, connected, complex algebraic variety X is
called rational if if it birational to projective space, i.e. if it field of
rational functions C(X ) is purely transcendental over C.

It is called unirational if there is a dominant rational map from
some projective space Pn to X , i.e. if there is an inclusion
C(X ) ⊂ C(t1, . . . , tn).

A smooth, projective, connected, complex algebraic variety X is
called rationally connected if any two general points of X (C)
may be connected by a chain of curves of genus zero (actually, for
given two points, one curve is then enough). This important
notion came up in the classification of higher dimensional varieties
in the late 80s.



Unirational clearly implies rationally connected. The converse is a
big open question.

Connected linear algebraic groups are rational.
Homogeneous spaces of connected linear algebraic groups are
unirational.
Smooth cubic surfaces are rational.
Smooth cubic hypersurfaces of dimension at least 2 are unirational.
Rationality for odd dimensional cubic hypersurfaces is a totally
open problem.
Smooth hypersurfaces X ⊂ Pn of degree d are known to be
unirational if n is much bigger than the degree d . It is an open
question whether n ≥ d implies unirationality.



In general, proving rationality or unirationality of a variety can only
be done by ad hoc methods.

Rational connectedness, on the other hand, has been established
for vast classes of naturally defined varieties (Campana,
Kollár-Miyaoka-Mori).



Some important theorems

• (Graber, Harris and Starr) If f : X → Y is a dominant morphism
of irreducible complex varieties, if Y is rationally connected, and if
the general fibre of f is rationally connected, then X is rationally
connected.

Easy case, modulo Tsen : if X → Pn is a family whose general
fibre is a smooth quadric of dimension at least one, then X is
rationally connected.

• (Kollár–Miyaoka–Mori, Campana) If X ⊂ Pn, n ≥ 2, is a smooth
Fano variety (−KX ample), then X is rationally connected.

Thus if X ⊂ Pn, n ≥ 2, is a smooth hypersurface of degree d ≤ n,
then X is rationally connected.
Other examples are given by cyclic covers of Pn whose ramification
locus has low enough degree.



The Lüroth problem asked whether unirational (complex) varieties
are rational.

The generalized Lüroth problem asks whether specific classes of
rationally connected (complex) varieties are rational.

Rather than asking for rationality, one may ask for stable
rationality.
An irreducible complex variety X is called stably rational if there
exists positive integers n,m such that X × Pn is birational to Pm.
It is known since 1985 that stable rationality does not imply
rationality.



The answer to the Lüroth problem is negative, as was shown
around 1972 by
• Clemens–Griffiths (cubic threefolds, none rational, all unirational)
• Iskovskikh–Manin (quartic threefolds, none rational, some of
them unirational, all rationally connected)
• Artin–Mumford (special conic bundles over P2, also double
covers of P3 ramified along a singular quartic surface, some of
them unirational, all rationally connected)

The question then became : For specific classes of rationally
connected varieties, can we disprove (stable) rationality ?
In many cases, one has to be satisfied with the weaker answer that
“very general elements” in the class are not (stably) rational.



How the Brauer group (and higher variants) comes in.

The Brauer group is a stable birational invariant :
If X and Y are smooth, connected projective complex varieties and
X × Pn is birational to Y × Pm then Br(X ) ' Br(Y ). In
particular, if X is stably rational, then Br(X ) = 0.
The Artin-Mumford example may be interpreted from this point of
view : for any smooth, projective model X of the threefold they
consider, one has Br(X ) 6= 0. More below.



At first sight, the Brauer group is useless for the other two 1972
counterexamples, since we have :

Theorem. For any smooth hypersurface X ⊂ Pn, if n ≥ 4, then
Br(X ) = 0.

This is a consequence of a general theorem.

Theorem. For X a smooth, projective, complex variety X , the
Brauer group of X is an exension of the finite group
H3
Betti (X (C),Z)tors by the divisible group (Q/Z)b2−ρ, where b2 is

the second Betti number and ρ is the rank of the Néron-Severi
group of X .



But it is difficult to produce explicit smooth projective models of :
• homogeneous spaces of connected linear algebraic groups
• singular hypersurfaces in projective space
• singular quadric bundles over projective space
• singular cyclic coverings of projective space.

In each of these cases, the “Brauer group of a smooth projective
model” is a natural group attached to the variety, if it is nonzero,
it tells us that the variety is not rational.
Can one compute this group without actually producing a
smooth projective model ?



A further reason why one is interested in such question is that in
the last four years, a whole industry has developed which aims at
proving nonrationality of some classes of (very general) smooth
projective varieties by letting them degenerate to singular
projective varieties which admit a (nice enough) desingularization
with e.g. nontrivial Brauer group, whereas the general variety in
the family has trivial Brauer group.

This specific specialization technique was started by C. Voisin, who
applied it to double covers of P3 ramified along a smooth quartic
surface. A. Pirutka and I developed it shortly thereafter and applied
it to smooth quartic hypersurfaces in P4 – the Iskovskikh–Manin
example – and proved nonstable rationality for very general such
quartic hypersurfaces. In both cases, the computation of the
Brauer group of a smooth model of a singular variety is crucial.



Let us repeat.

Can one compute the Brauer group of a smooth projective
model of a variety without actually producing a smooth
projective model ?



Given a discrete valuation ring A with field of fractions K and
residue field κ of char. zero, there is a residue map
∂A : Br(K )→ H1(κ,Q/Z) with values in the first Galois
cohomology group of κ with coefficients in Q/Z : this associates
to an element of Br(K ) a finite cyclic extension of κ and a choice
of generator of the Galois group. This invariant has a long history,
in particular in class field theory. It measures how an element
α ∈ Br(K ) is “ramified” with respect to the valuation. It fits into
an exact sequence

0→ Br(A)→ Br(K )→ H1(κ,Q/Z)→ 0.



Unramified cohomology

Given a smooth projective irreducible variety X over C, the
following subgroups of Br(C(X )) coincide :

• Br(X )

• Brnr (C(X )/X ) := Ker[Br(C(X ))→ ⊕x∈X (1)H1(κ(x),Q/Z)],
where the maps are given by the residue maps ∂x associated to the
valuation rings defined by the local rings OX ,x at points x of
codimension 1 of X , whose residue fields are denoted κ(x).

• Brnr (C(X )) := Ker[Br(C(X )→
∏

A⊂C(X ))H
1(κA,Q/Z)],

where A runs through all discrete, rank one, valuation rings of the
function field C(X ), and ∂A is the residue map.



Note that
Brnr (C(X )) := Ker[Br(C(X ))→

∏
A⊂C(X ))H

1(κA,Q/Z)]
is defined purely in terms of the function field of X , hence is
obviously a birational invariant. By defining variants over an
arbitrary field, and studing the specific case of the projective line
over an arbitrary field, one checks that his group vanishes if C(X )
is purely transcendental over C.



The unramified Brauer group was put to gut use by D. Saltman
and by F. Bogomolov in the 80s.

Saltman found the first examples of a linear action of a finite
group G on a finite dimensionsal complex vector space V with field
of invariants C(V )G not purely transcendental. Bogomolov gave a
close-cut formula for Brnr (C(V )G ).
Bogomolov proved that Brnr (C(X )) = 0 for a homogeneous space
X of a complex, connected linear algebraic group with connected
isotropy groups. The question of rationality of any such X is still
an open question.



There are higher degree variants of the unramified Brauer group
(joint work with Ojanguren, 1988, at the time of my previous visit
to Santiago).
For K a field of char. zero, a positive integer n > 0 and µn the
group of n-th roots of unity, Kummer theory identifies the
n-torsion subgroup of Br(K ) with the second Galois cohomology
group of K with values in µn :

H2(K , µn) = Br(K )[n].

If K is the field of fractions of a dvr A with residue field κ of char.
zero, and i > 0 is an integer there is a residue map

∂A : H i+1(K , µ⊗in )→ H i (κ, µ⊗i−1n )

which generalizes the residue map for the Brauer group.



If C(X ) is the field of rational functions of an irreducible complex
variety X , for any i > 0 and any integer n > 1, one is thus led to
define

H i
nr (C(X ),Z/n) := Ker[H i (C(X ), µ⊗i−1n )→

∏
A⊂C(X )

H i−1(κA, µ
⊗i−2
n )]

This is obviously birational invariant. As above, there is a more
general definition for varieties over a field, and by computations for
the projective line, one shows that H i

nr (C(X ),Z/n) = 0 is C(X ) is
purely transcendental.



Ojanguren and I (1989) reinterpreted the Artin-Mumford example
from the point of view of the unramified Brauer group, produced
more examples, then produced new examples of unirational,
nonrational varieties by using H3

nr . Our examples are fibrations into
quadrics over P3

C, with general fibre defined by a 3-Pfister
neighbour.



For the Artin-Mumford example, the argument runs as follows.
One has a fibration X → Y = P2

C of complex varieties whose
generic fibre is a conic Z over the function field C(Y ). Assume
this conic does not have a rational point. Let β 6= 0 be the class of
the associated quaternion algebra in Br(C(Y ))[2].
• The kernel of the map Br(C(Y )→ Br(C(X )) is just Z/2.β
(Witt).
• One produces an element α ∈ Br(C(Y ))[2] whose degeneracy on
Y is “smaller” than the degeracy of α, while not being empty.

Then the image of α in Br(C(X )) becomes unramified, and is
nonzero.
Hence Brnr (C(X )) 6= 0, and X is not stably rational.



One may try to produce similar examples using unramified Galois
cohomology H i with coefficients Z/n for fibrations X → Y when
one can control the kernel of the restriction map

H i (C(Y ),Z/n)→ H i (C(X ),Z/n).

Such is the case for
• i = 2 and the generic fibre is a Severi-Brauer variety (Châtelet,
Amitsur)
• i = 3, n = 2 and the generic fibre is a quadric defined by a
neighbour of a 3-Pfister form (Arason) (used by CT-Ojanguren)
• i > 1 arbitrary, n = 2 and the generic fibre is a quadric defined by
a neighbour of an i-Pfister form (Orlov-Vishik-Voevodsky 2007).



The idea in CT-Ojanguren was later used by Asok, and most
recently by S. Schreieder. This author produced new types of
quadric bundles over projective space Pn

C with general fibre a
quadric defined by a (very special) n-Pfister neighbour. He
managed to combine this with the specialisation method to show
that “very general” quadric bundles of many different “types” over
Pn
C with fibre a quadric defined by a quadratic form in at most 2n

variables and with total space a smooth variety flat over Pn
C are

not (stably) rational.
Note that 2n is the maximum not excluded by Tsen’s theorem.



The theorem below computes the exact value of Brnr (C(X )).
When the ramification locus

⋃
i Ci is smooth, the result has been

known for a long time (Iskovskikh).
To produce nonrational conic bundles X over P2, as in the
Artin-Mumford case, the full strength of the theorem is not
needed, since all one needs if Brnr (C(X )) 6= 0.



Theorem. Let X be a smooth threefold equipped with a dominant
morphism π : X → P2

C whose generic fibre is a smooth conic. Let
α ∈ Br(C(S))[2] be the associated quaternion algebra class.
Assume that α 6= 0. Let C1, . . . ,Cn be all the integral curves in S
such that the residue of α at the generic point of Ci is non-zero:

0 6= ∂Ci
(α) ∈ H1(C(Ci ),Z/2) = C(Ci )

∗/C(Ci )
∗2.

Assume that each Ci is smooth and that the ramification locus
C = ∪ni=1Ci of α is a curve with at most ordinary quadratic
singularities. Consider the subgroup H ⊂ (Z/2)n consisting of the
elements (r1, . . . , rn) with the property that for i 6= j we have
ri = rj when there is a point p ∈ Ci ∩ Cj , necessarily smooth on Ci

and on Cj , with the property that ∂p(∂Ci
(α)) = ∂p(∂Cj

(α)) ∈ Z/2
and the common value is non-zero. Then Br(X ) is the quotient of
H by the diagonal element (1, . . . , 1) which is the image of α.



Starting from this result, one may show the existence of threefolds
X with a conic bundle structure over P2

C with ramification locus
the (singular !) union of 6 lines in general position in P2, and such
that Brnr (C(X )) 6= 0, hence X is not stably rational.
One breaks the 6 lines into two triples, then on each line L in a
triple one considers the class in C(L)∗/C(L)∗2 = H1(C(L),Z/2) of
a function with divisor AL − BL, where AL and BL are the points of
intersection of L with the other two lines in the triple.
General theory (Bloch-Ogus) shows that the associated family of
residues is the total residue of an element α of order 2 in
Br(C(P2)). Then Merkurjev’s theorem on K2 of a field mod. 2
combined with the fact that over C(P2) the tensor product of two
quaternion algebras is the class of a quaternion algebra gives that
α is the class of a quaternion algebra over C(P2), which produces
the desired (birational) conic bundle over P2.



One may check that 6 is the lowest number of lines for which one
may produce such a construction.

Starting from the above theorem, and using the specialisation
method of Voisin et al., one may show that the very general
smooth threefold with a conic bundle structure over P2

C and with
degeneracy locus a smooth curve of degree at least 6 is not stably
rational.
This is a special case of a result of Hassett and Kresch.



For fields of invariants C(V )G with a linear action of a finite
group G on a finite dimensional vector space, E. Peyre produced a
closed cut formula for the odd part of the finite group
H3
nr (C(V )G ),Z/n).

Merkurjev has studied H3
nr (C(X ),Z/n) for homogeous spaces of

the shape SLm/G with G a complex, connected linear algebraic
group. He proved its vanishing in many cases.



The Brauer group, rational points and integral
points

Let k be a number field. For each place v of k, let kv denote the
completion. Class field theory produces embeddings

Br(kv ) ↪→ Q/Z

(isomorphisms for v non archimedean) and an exact sequence

0→ Br(k)→ ⊕vBr(kv )→ Q/Z→ 0.

This sequence contains among others :
• Gauss’s reciprocity laws and other reciprocity laws
• Hasse’s principle for norms of cyclic extensions of k



Let X be an algebraic variety over k . We have inclusions

X (k) ⊂ X (Ak) ⊂
∏
v

X (kv )

of the set X (k) of rational points into the set X (Ak) of adèles
of X . For X projective, X (Ak) =

∏
v X (kv ).

There is a natural pairing

X (Ak)× Br(X )→ Q/Z

({Pv}, α) 7→
∑
v

α(Pv ) ∈ Q/Z.

We let X (Ak)Br ⊂ X (Ak) denote the left kernel of this pairing. By
the above exact sequence, the diagonal image of X (k) in X (Ak)
lies in X (Ak)Br (Manin 1970).



We have X (Ak) = ∅ if and only if
∏

v X (kv ) = ∅, if and only if, for
some place v , X (kv ) = ∅. For v non archimedean, the latter
condition means that by using suitable v -congruences we may
decide that there is no solution.

It may happen that X (Ak) 6= ∅ (no congruence impossibility, no
real impossibility) and nevertheless X (Ak)Br = ∅. This then
implies X (k) = ∅. In that case, we say that there is a
Brauer–Manin obstruction to the local-global principle.



There is a natural topology on X (Ak). The set X (Ak)Br is closed
in X (k). The closure X (k)cl of X (k) in X (Ak) thus lies in
X (Ak)Br.
In 1970, one might have asked the general question : do we have
equality

X (k)cl = X (Ak)Br ?

Is this at least true for smooth, projective varieties X ?
Skorobogatov answered this question in the negative in 1999
(elliptic surface). Since then, simpler negative examples were given
(Poonen; Harpaz–Skorobogatov; CT–Pál–Skorobogatov;
A. Smeets).
Here is one of the simplest examples (CT–Pál–Skorobogatov).



Let f : X → P1
Q be quadric bundle of relative dimension at least 3,

with smooth total space.
For instance it may be given by an equation

4∑
i=1

X 2
i + t(t − 2)X 2

0 = 0

in P4 × A1. All fibres are smooth except those at t = 0 and t = 2.
For each prime p we have f (X (Qp)) = P1(Qp) because quadratic
forms in at least 5 variables over a p-adic field have a nontrivial
zero over that field. The image of X (R) is the interval 0 ≤ t ≤ 2.



Let C/Q be a smooth projective curve with only one rational point
A ∈ C (Q). (One knows how to produce elliptic curves with this
property). Let q : C → P1

Q be étale at A. There is an open interval
I ⊂ C (R) around A which is sent isomorphically to an open
interval J ⊂ A1(R) around B = q(A). One may assume that B is
given by t = −1 in A1 and that t = 1 is in J. Let D ∈ I be the
inverse image of t = 1. One then consider the fibre product
Y := X ×P1 C . We have the projection map g : Y → C . Provided
q was chosen general enough, Y is smooth. There exists
P∞ ∈ Y (R) with image D ∈ I . The (smooth) fibre YB of g above
the point B has Qp-points Pp for all finite primes p. We have
YB(Q) = ∅ since there is no R-point of X above t = −1.



Claim : the adèle {Pp,P∞} ∈ Y (AQ) is orthogonal to Br(Y ) for
the Brauer-Manin pairing.
Proposition : The pull-back map g∗ : Br(C )→ Br(Y ) is an
isomorphism. (This uses the fact that Y → C is a quadric bundle
of relative dimension (at least) 3.)
Let α ∈ Br(Y ). By the above proposition, α = g∗(β) with
β ∈ Br(C ). Now∑

p

α(Pp) + α(P∞) =
∑
p

β(g(Pp)) + β(g(P∞))

=
∑
p

β(B)p + β(D)∞.

But B and D lie in the same (connected) interval inside C (R). By
continuity of the Brauer pairing, β(B)∞ = β(D)∞. Thus the
above sum equals

∑
p β(B))p + β(B)∞ = 0 by the law of

reciprocity.



For smooth, absolutely irreducible projective varieties, one may still
ask whether

X (k)cl = X (Ak)Br

(possibly ignoring the archimedean places)
for :
• Curves of arbitrary genus
• Geometrically rationally connected varieties
• K3-surfaces
In these three cases, people have been as far as conjecturing
X (k)cl = X (Ak)Br, and even proving it for some geometrically
rationally connected varieties.
The most ancient results are on rational points of homogeneous
spaces of connected linear algebraic groups. The most recent,
impressive results are due to Harpaz and Wittenberg. Some of the
proofs involve results from analytic number theory.



To test on a given X whether the left kernel X (Ak)Br of the pairing

X (Ak)× Br(X )→ Q/Z

is not empty, one must in principle know explicit elements in
Br(X ) which generate the quotient Br(X )/Br(k).

This question is basic both from a theoretical point of view and
from a practical point of view : even if we abstractly prove that for
a certain class of varieties, X (Ak)Br 6= ∅ implies X (k) 6= ∅, if we
want to prove X (k) 6= ∅ for a given such X , one must be able to
decide if X (Ak)Br 6= ∅, and for this one needs to compute a
complete list of explicit representants of Br(X )/Br(k) in Br(X ).



For a smooth, projective, rationally connected variety over an
arbitrary field k of char. zero, the quotient Br(X )/Br(k) is finite,
for purely algebraic reasons, and it is relatively easy to compute.
Finding representants in Br(X ) may be difficult – already for cubic
surfaces.

For a (smooth) K3 surface over a number field the quotient
Br(X )/Br(k) is finite (Skorobogatov and Zarhin). Actually
computing the group is very delicate (work of Skorobogatov and
others on specific Kummer surfaces).



Integral points

For projective varieties X over a number field k, one is interested
in rational points. For e.g. affine varieties X over a number field, a
more natural question is that of integral points. For instance, one
has a polynomial P(x1, . . . , xn) ∈ Z[x1, . . . , xn]. The vanishing of
this polynomial defines an affine hypersurface X in An

Z. The set
X (Z) is the set of integral points. It diagonally lies in the left
kernel of the pairing∏

p prime or ∞
X (Zp)× Br(XQ)→ Q/Z,

where X (Zp) for p finite is the set of solutions of P(x1, . . . , xn) = 0
with coordinates in the ring of p-adic integers and X (Z∞) = X (R).



For some classes of polynomials, one may ask whether
[
∏

p prime or ∞ X (Zp)]Br 6= ∅ implies X (Z) 6= ∅.

This is a special case of the general question whether

X (k)cl = X (Ak)Br

for X/k a smooth, not necessarily projective, variety.



The problem has been studied for X a homogeneous space of a
connected linear algebraic group, and for closely related varieties.
Classical results go back to theorems such as Eichler and Kneser’s
theorem that the local-global principle holds for integral solutions
of equations q(x1, . . . , xn) = a, with a ∈ Z, where q is an integral
quadratic form nondegenerate over Q and indefinite over R, in at
least 4 variables.
Over the last 10 years, there have been many works proving
Brauer-Manin type results for integral points of homogeneous
spaces of the above type (CT-Xu, Harari, Borovoi, Demarche, Xu,
Yang Cao).



Here is a very special case.
Let a, b ∈ Z, both nonzero. Consider the scheme X over Z defined
by the Pell type equation

x2 − ay2 = b

Theorem. If [
∏

p prime or ∞ X (Zp)]Br(XQ) 6= ∅ then X (Z) 6= ∅.
This result, also proved by F. Xu and D.Wei, is just a special case
of a theorem of Harari on principal homogeneous spaces of
algebraic tori over a number field. That theorem builds upon class
field theory.
Warning : to decide whether X (Zp)]Br(XQ) 6= ∅ one would need to
compute Br(XQ)/Br(Q). But this is an infinite group !
There are ways to reduce this to a finite amount of computations
(see the book by Cox on primes of the shape x2 + ny2, and papers
of Fei and Wei).



Integral points : beyond homogeneous spaces

From a geometric point of view, the Pell type equation above is
the complement of 2 points in the projective line. The relevant
canonical bundle is zero, just like the canonical bundle of a
projective elliptic curve.
In higher dimension, one should first inverstigate the analogue of
projective surfaces with trivial canonical bundle.
From this point of view, the complement of a hyperplane section in
a cubic surface is such an analogue. They are sometimes called
“log-K3 surfaces”.
Here are two such cases where people have been interested in
integral points on such schemes.



A very ancient one is

n = x3 + y3 + z3

with n 6= 0.
This is the famous question whether any integer n which is not
congruent to ±4 modulo is a sum of three cubes of relative
integers.
CT-Wittenberg proved [

∏
p prime or ∞ X (Zp)]Br(XQ) 6= ∅ for any

integer n not congruent to ±4.
The proof involves the nontrivial task of computing the group
Br(XQ)/Br(Q) which turns out to be finite – but not zero in
general. That computation uses the knowledge of the curves of
genus one (defined over Q) isogenous to the curve “at infinity”

x3 + y3 + z3 = 0.



Another interesting case is that of Markoff type equations

x2 + y2 + z2 − xyz = n

with n ∈ Z, n 6= 0, n 6= 4. This has been recently investigated by
Ghosh and Sarnak, who think that the Brauer-Manin condition
should not be the only obstruction to existence of integral points.
Note that projection to the coordinate z makes this surface into a
fibration over A1 with fibres affine conics.
Other integral equations with such a structure are provided by
affine Châtelet surfaces x2 − ay2 = P(z) with a ∈ Z and
P(x) ∈ Z[x ].
Some families of affine conic bundles have been studied by Harpaz.


