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This talk will have two parts.

I. On the integral Tate conjecture over a finite field (work with
Federico Scavia)
II. On the integral Hodge conjecture

This file (January 25th) is slightly edited.



Let X be a smooth projective (geom. connected) variety over a
finite field F of char. p. Unless otherwise mentioned, cohomology is
étale cohomology (Galois cohomology over a field).
We have CH1(X ) = Pic(X ) = H1

Zar (X ,Gm) = H1(X ,Gm). Also
Br(X ) := H2(X ,Gm).
For r prime to p, the Kummer exact sequence of étale sheaves
associated to x 7→ x r

1→ µr → Gm → Gm → 1

induces an exact sequence

0→ Pic(X )/r → H2(X , µr )→ Br(X )[r ]→ 0.

Let r = `n, with ` 6= p. Passing over to the limit in n, we get the
`-adic cycle class map

Pic(X )⊗ Z` → H2(X ,Z`(1)).



Around 1960, Tate conjectured

(T 1) For any smooth projective X/F, the map

Pic(X )⊗ Z` → H2(X ,Z`(1))

is surjective.

Via the Kummer sequence, one easily sees that this is equivalent to
the finiteness of the `-primary component Br(X ){`} of the Brauer
group Br(X ) := H2

et(X ,Gm). [Known : If true for one ` 6= p then
true for all ` 6= p and Br(X ){`} = 0 for almost all p.]
This finiteness is closely related to the conjectured finiteness of
Tate-Shafarevich groups of abelian varieties over a global field
F(C ).
The conjecture is known for geometrically separably unirational
varieties (easy), for abelian varieties (Tate) and for all K3-surfaces.



For any i ≥ 0, let CH i (X ) denote the Chow group of codimension
i cycles modulo rational equivalence. For any i ≥ 1, there is an
`-adic cycle class map

CH i (X )⊗ Z` → H2i (X ,Z`(i)),

with values in the projective limit of the (finite) étale cohomology
groups H2i (X , µ⊗i`n ), which is a Z`-module of finite type.

For i > 1, Tate conjectured that the cycle class map

CH i (X )⊗Q` → H2i (X ,Q`(i)) := H2i (X ,Z`(i))⊗Z`
Q`

is surjective. Very little is known.



For i = 1, the surjectivity conjecture with Z` coefficients is
equivalent to the conjecture with Q` coefficients.
For i > 1, one may give examples where the surjectivity statement
with Z` coefficients does not hold. However, for X of dimension d ,
it is unknown whether the (strong) integral Tate conjecture
T1 = T d−1 for 1-cycles holds :

(T1) The map CHd−1(X )⊗ Z` → H2d−2(X ,Z`(d − 1)) is onto.

Under T 1 for X , the cokernel of the above map is finite (proof
using Deligne’s theorem on the Weil conjectures, including the
hard Lefschetz theorem).



For d = 2, T1 = T 1, original Tate conjecture.

For arbitrary d , the integral Tate conjecture for 1-cycles holds for
X of any dimension d ≥ 3 if it holds for any X of dimension 3.
This follows from the Bertini theorem, the purity theorem, and the
affine Lefschetz theorem in étale cohomology.
We shall write T 1

surf for the conjecture T 1 restricted to surfaces.

For X of dimension 3, some nontrivial cases of T1 have been
established.
• X is a conic bundle over a geometrically ruled surface (Parimala
and Suresh 2016).
• X is the product of a curve of arbitrary genus and a
geometrically rational surface (Pirutka 2016).



Let F be the algebraic closure of F and G = Gal(F/F).
Theorem (C. Schoen, 1998)
Let X/F be smooth, proj., geom. connected. Let ` 6= char(F). Let
X = X ×F F. If T 1

surf holds, then the map

CHd−1(X )⊗ Z` →
⋃
U⊂G

H2d−2(X ,Z`(d − 1))U ,

where U ⊂ G run through the open subgroups of G, is onto.



Corollary. Let X/F be smooth, proj., geom. connected of
dimension d. Let X = X ×F F. Suppose Br(X ){`} is finite. If T 1

surf

holds, then the cycle class map

CHd−1(X )⊗ Z` → H2d−2(X ,Z`(d − 1))

is onto.

Remark. The condition Br(X ){`} finite is a positive characteristic
version of H2(X ,OX ) = 0.

What about the situation over a finite field F itself ?



Definition. A smooth, projective, connected variety S over a field k
is called geometrically CH0-trivial if for any algebraically closed
field extension Ω of k , the degree map CH0(SΩ)→ Z is an
isomorphism.
Examples : Rationally connected varieties. Enriques surfaces. Some
surfaces of general type.



Theorem A (main theorem of the talk) (CT/Scavia)
Let F be a finite field, G = Gal(F/F). Let ` be a prime,
` 6= char.(F). Let C be a smooth projective curve over F, let J/F
be its jacobian, and let S/F be a smooth, projective, geometrically
CH0-trivial surface.
Let X = C ×F S.
Assume T 1

surf . Under the assumption

(∗∗) HomG (Pic(SF){`}, J(F)) = 0,

the cycle class map CH2(X )⊗ Z` → H4
et(X ,Z`(2)) is onto.



Concrete case

Let p = char(F) 6= 2 and let E/F be an elliptic curve defined by
the affine equation y2 = P(x) with P ∈ F[x ] a separable
polynomial of degree 3.
Let S/F be an Enriques surface. This is a geometrically CH0-trivial
variety.
One has Pic(SF)tors = Z/2, automatically with trivial Galois action.
The assumption (∗∗) reads : E (F)[2] = 0, which translates as :
P ∈ F[x ] is an irreducible polynomial.

For ` = 2, p = char(F)) 6= 2 and P(x) ∈ F[x ] reducible, the
integral Tate conjecture T1(X ) with Z2 coefficients for
X = E ×F S remains open.



Unramified cohomology, cycles of codimension 2

I first recall various results, in particular from a paper with Bruno
Kahn (2013).



Let M be a finite Galois-module over a field k . Given a smooth,
projective, integral variety X/k with function field k(X ), and i ≥ 1
an integer, one lets

H i
nr (k(X ),M) := Ker[H i (k(X ),M)→ ⊕x∈X (1)H i−1(k(x),M(−1))]

Here k(x) is the residue field at a codimension 1 point x ∈ X , the
cohomology is Galois cohomology of fields, and the maps on the
right hand side are “residue maps”.
For ` 6= char.(k), one is interested in M = µ⊗j`n = Z/`n(j), hence

M(−1) = µ
⊗(j−1)
`n , and in the direct limit Q`/Z`(j) = limjµ

⊗j
`n , for

which the cohomology groups are the limit of the cohomology
groups. By Voevodsky, for j ≥ 1 and any field F of char. 6= `,

H j(k ,Q`/Z`(j − 1)) =
⋃
n

H j(F , µ⊗j−1
`n ).



The group H1
nr (k(X ),Q`/Z`) = H1

et(X ,Q`/Z`) classifies `-primary
cyclic étale covers of X .

One has
H2
nr (k(X ),Q`/Z`(1)) = Br(X ){`}.

For k = F a finite field, this turns up in investigations on the Tate
conjecture for divisors. As already mentioned, its finiteness for a
given X is equivalent to the `-adic Tate conjecture for codimension
1 cycles on X .



The group H3
nr (k(X ),Q`/Z`(2)) turns up when investigating cycles

of codimension 2. It vanishes for dim(X ) ≤ 2 (higher class field
theory, 80s).

Let k = F. Open questions :

Is H3
nr (F(X ), µ⊗2

` ) finite ?
(Equivalent question : is CH2(X )/` finite ?)

Is H3
nr (F(X ),Q`/Z`(2)) of cofinite type ?

Is H3
nr (F(X ),Q`/Z`(2)) finite ?

Do we have H3
nr (F(X ),Q`/Z`(2)) = 0 for any threefold X ?

[Known for a conic bundle over a surface, Parimala–Suresh 2016]

Examples of X/F with dim(X ) ≥ 5 and H3
nr (F(X ),Q`/Z`(2)) 6= 0

are known (Pirutka 2011).



Theorem B (Kahn 2012, CT-Kahn 2013) For X/F smooth,
projective of arbitrary dimension, the torsion subgroup of the
(conjecturally finite) group

Coker[CH2(X )⊗ Z` → H4(X ,Z`(2))]

is isomorphic to the quotient of H3
nr(F(X ),Q`/Z`(2)) by its

maximal divisible subgroup.

There is an analogue of this for the integral Hodge conjecture
(CT-Voisin 2012).



A basic exact sequence (CT-Kahn 2013). Let F be an algebraic
closure of F, let X = X ×F F and G = Gal(F/F).
Theorem C. For X/F a smooth, projective, geometrically
connected variety over a finite field, there is a long exact sequence

0→ Ker[CH2(X ){`} → CH2(X ){`}]→ H1(F,H2(X ,Q`/Z`(2)))

→ Ker[H3
nr(F(X ),Q`/Z`(2))→ H3

nr(F(X ),Q`/Z`(2))]

→ Coker[CH2(X )→ CH2(X )G ]{`} → 0.

Moreover H1(F,H2(X ,Q`/Z`(2))) = H1(F,H3(X ,Z`(2))tors) and
this is a finite group.
The proof relies on early work of Bloch and on the
Merkurjev-Suslin theorem (1983).
The last statement follows from Deligne’s theorem on the Weil
conjectures.



For X/F a curve, all groups in the sequence are zero.

For X/F a surface, trivially H3(F(X ),Q`/Z`(2)) = 0. One actually
has H3

nr(F(X ),Q`/Z`(2)) = 0. This vanishing was remarked in the
early stages of higher class field theory (CT-Sansuc-Soulé, K. Kato,
in the 80s). It uses a theorem of S. Lang, which relies on
Tchebotarev’s theorem. The above exact sequence then gives the
prime-to-p part of the main theorem of unramified class field
theory for surfaces over a finite field (studied by Parshin, Bloch,
Kato, Saito).



For a 3-fold X = C ×F S as in Theorem A, Theorem B gives an
isomorphism of finite groups

Coker[CH2(X )⊗ Z` → H4(X ,Z`(2))] ' H3
nr(F(X ),Q`/Z`(2)),

and, under the assumption T 1
surf , Chad Schoen’s theorem implies

H3
nr(F(X ),Q`/Z`(2)) = 0. Thus :

Under T 1
surf , for our threefolds X = C ×F S with S geometrically

CH0-trivial, there is an exact sequence of finite groups

0→ Ker[CH2(X ){`} → CH2(X ){`}]→ H1(F,H2(X ,Q`/Z`(2)))

θX−→ H3
nr(F(X ),Q`/Z`(2))→ Coker[CH2(X )→ CH2(X )G ]{`} → 0.



Under T 1
surf , for our threefolds X = C ×F S with S geometrically

CH0-trivial, the surjectivity of CH2(X )⊗ Z` → H4(X ,Z`(2))
(integral Tate conjecture for 1-cycles) is therefore equivalent to the
combination of two hypotheses :

Hypothesis 1 The composite map

ρX : H1(F,H2(X ,Q`/Z`(2)))→ H3(F(X ),Q`/Z`(2))

of H1(F,H2(X ,Q`/Z`(2)))→ H3(X ,Q`/Z`(2)) and
H3(X ,Q`/Z`(2))→ H3(F(X ),Q`/Z`(2)) vanishes.

Hypothesis 2 Coker[CH2(X )→ CH2(X )G ]{`} = 0.



Results with Federico Scavia



On Hypothesis 1

Hypothesis 1. Let X/F be a smooth projective, geometrically
connected variety. The map

ρX : H1(F,H2(X ,Q`/Z`(2)))→ H3(F(X ),Q`/Z`(2))

vanishes.

This map is the composite of the Hochschild-Serre map

H1(F,H2(X ,Q`/Z`(2)))→ H3(X ,Q`/Z`(2))

with the restriction map to the generic point of X .



Hypothesis 1 is equivalent to each of the following hypotheses :

Hypothesis 1a. The (injective) map from

Ker[CH2(X ){`} → CH2(X ){`}]

to the (finite) group

H1(F,H2(X ,Q`/Z`(2))) ' H1(F,H3(X ,Z`(2))tors)

is onto.

Hypothesis 1b. For any n ≥ 1, if a class ξ ∈ H3(X , µ⊗2
`n ) vanishes

in H3(X , µ⊗2
`n ), then it vanishes after restriction to a suitable

Zariski open set U ⊂ X .



For all we know, these hypotheses 1,1a,1b could hold for any
smooth projective variety X over a finite field.

For X of dimension > 2 , we do not see how to establish them
directly – unless of course when the finite group H3(X ,Z`(2))tors
vanishes.
The group H3(X ,Z`(1))tors is the nondivisible part of the
`-primary Brauer group of X .
The finite group H1(F,H3(X ,Z`(1))tors) is thus the most easily
computable group in the 4 terms exact sequence.
For char(F) 6= 2, ` = 2, X = E ×F S product of an elliptic curve E
and an Enriques surface S , one finds that this group is isomorphic
to E (F)[2]⊕ Z/2. How can one lift elements of this group to
cycles in Ker[CH2(X ){`} → CH2(X ){`}] ?



We prove :
Theorem. Let Y be a smooth, projective geometrically connected
varieties over a finite field F. Let C be a smooth projective curve
over F. Let X = C ×F Y . If the maps ρY vanishes, then so does
the map ρX .



One must study H1(F,H2(X , µ⊗2
`n )) under restriction from X to its

generic point.
As may be expected, the proof uses a specific Künneth formula,
along with standard properties of Galois cohomology of a finite
field.

Corollary. For the product X of a surface and arbitrary many
curves, the map ρX vanishes.
This establishes Hypothesis 1 for the 3-folds X = C ×F S under
study.



On Hypothesis 2

Hypothesis 2. Let X/F be a smooth projective, geometrically
connected variety. If dim(X ) = 3, then

Coker[CH2(X )→ CH2(X )G ]{`} = 0.

[For X of dimension at least 5, A. Pirutka gave counterexamples.]



Here we restrict to the special situation : C is a curve, S is
geometrically CH0-trivial surface, and X = C ×F S .
One lets K = F(C ) and L = F(C ).
On considers the projection X = C × S → C , with generic fibre
the K -surface SK . Restriction to the generic fibre gives a natural
map from

Coker[CH2(X )→ CH2(X )G ]{`}

to
Coker[CH2(SK )→ CH2(SL)G ]{`}.



Using the hypothesis that S is geometrically CH0-trivial, which
implies b1 = 0 and b2 − ρ = 0 (Betti number bi , rank ρ of
Néron-Severi group), one proves :

Theorem. The natural, exact localisation sequence

Pic(C )⊗ Pic(S)→ CH2(X )→ CH2(SL)→ 0.

may be extended on the left with a finite p-group.



To prove this, we use correspondences on the product X = C × S ,
over F.
We use various pull-back maps, push-forward maps, intersection
maps of cycle classes :

Pic(C )⊗ Pic(S)→ Pic(X )⊗ Pic(X )→ CH2(X )

CH2(X )⊗Pic(S)→ CH2(X )⊗Pic(X )→ CH3(X ) = CH0(X )→ CH0(C )

Pic(C )⊗ Pic(S)→ CH2(X ) = CH1(X )→ CH1(S) = Pic(S)



Not completely standard properties of G -lattices for G = Gal(F/F)
applied to the (up to p-torsion) exact sequence of G -modules

0→ Pic(C )⊗ Pic(S)→ CH2(X )→ CH2(SL)→ 0

then lead to :

Theorem. The natural map from Coker[CH2(X )→ CH2(X )G ]{`}
to Coker[CH2(SK )→ CH2(SL)G ]{`} is an isomorphism.

(Recall K = F(C ) and L = F(C ).)

One is thus left with controlling this group. Under the
CH0-triviality hypothesis for S , it coincides with

Coker[CH2(SK ){`} → CH2(SL){`}G ].



At this point, for a geometrically CH0-trivial surface over
L = F(C ), which is a field of cohomological dimension 1, like F,
using the K -theoretic mechanism, one may produce an exact
sequence parallel to the basic four-term exact sequence over F
which we saw at the beginning. In the particular case of the
constant surface SL = S ×F L, the left hand side of this sequence
gives an injection

0→ A0(SL){`} → H1
Galois(L,H3(S ,Z`(2){`})

where A0(SL) ⊂ CH2(SL) is the subgroup of classes of zero-cycles
of degree zero on the L-surface SL.



Study of this situation over completions of F(C ) (Raskind 1989)
and a good reduction argument in the weak Mordell-Weil style, plus
a further identification of torsion groups in cohomology of surfaces
over an algebraically closed field then yield a Galois embedding

A0(SL){`} ↪→ HomZ(Pic(S){`}, J(C )(F)),

hence an embedding

A0(SL){`}G ↪→ HomG (Pic(S){`}, J(C )(F)).



If the group HomG (Pic(S){`}, J(C )(F)) vanishes, then
A0(SL){`}G = CH2(SL){`}G vanishes, and since SK obviously has
a K -rational point, then trivially

Coker[CH2(SK ){`} → CH2(SL){`}G ] = 0,

from which one then deduces

Coker[CH2(X )→ CH2(X )G ]{`} = 0,

which is Hypothesis 2, and this completes the proof of Theorem A.

One has actually proved :



Theorem Let F be a finite field, G = Gal(F/F). Let ` be a prime,
` 6= char.(F). Let C be a smooth projective curve over F, let J/F
be its jacobian, and let S/F be a smooth, projective, geometrically
CH0-trivial surface. Let X = C ×F S.
Assume

(∗∗) HomG (Pic(SF){`}, J(F)) = 0,

Then Ker[H3
nr (F(X ),Q`/Z`(2)→ H3

nr (F(X ),Q`/Z`(2))] = 0.

If moreover T 1
surf holds, then H3

nr (F(X ),Q`/Z`(2)) = 0 and the
cycle class map CH2(X )⊗ Z` → H4

et(X ,Z`(2)) is onto.

Basic question : Is the assumption (∗∗) necessary ?



Over the complex field

The situation over finite fields should be confronted with the
situation over the complex field, which actually stimulated the
work with F. Scavia.



For smooth projective varieties X over C, the integral Tate
conjecture admits an earlier, formally parallel surjectivity question,
the integral Hodge conjecture (known to fail in general) for the
Betti cycle maps

CH i (X )→ Hdg2i (X ,Z),

where Hdg2i (X ,Z) ⊂ H2i
Betti (X ,Z) is the subgroup of rationally

Hodge classes. The surjectivity with Q-coefficients is the classical
(rational) Hodge conjecture.
For i = 1, the integral Hodge conjecture is known (Lefschetz
(1,1)-theorem).
By the Lefschetz hyperplane theorem it implies the rational Hodge
conjecture for for i = d − 1.



With integral coefficients, counterexamples to the integral Hodge
conjecture for 1-cycles on threefolds have been constructed.

Kollár : “very general” hypersurface in P4
C of degree d = p3.n with

p prime, p 6= 2, 3).

A recent counterexample (Benoist-Ottem 2018) involves the
product X = E × S of an elliptic curve E and an Enriques surface.
For fixed S , provided E is “very general”, the integral Hodge
conjecture fails for X .

In both cases, we have H2(X ,OX ) = 0 and Br(X ) finite.
(Compare with the Schoen result on F, depending on Tsurf .)



Theorem (CT-Voisin 2012).
Let X/C be a smooth, projective, connected variety.
The following finite groups are isomorphic :
(i) The torsion subgroup of Coker [CH2(X )→ H4(X ,Z(2))]
(ii) The torsion subgroup of the conjecturally finite group
Coker [CH2(X )→ Hdg4(X ,Z(2))]
(iii) The quotient of H3

nr (C(X ),Q/Z(2)) by its maximal divisible
subgroup.

These groups are birational invariants.



Corollary. Let X/C be a smooth, projective, connected variety.
Suppose that the Chow group of zero-cycles is representable by a
surface, that is to say, there exists a morphism f : S → X from a
smooth, projective, connected surface S such that the induced
map f∗ : CH0(S)→ CH0(X ) is surjective.
Then the following groups are finite and isomorphic :
(i) The torsion subgroup of Coker [CH2(X )→ H4(X ,Z(2))].
(ii) The group Coker [CH2(X )→ Hdg4(X ,Z(2))].
(iii) The group H3

nr (C(X ),Q/Z(2)).



There is in general no “simple formula” for the value of
H3
nr (C(X ),Q/Z(2)), in contrast with H1

nr (C(X ),Q/Z) and
H2
nr (C(X ),Q/Z(1)).

In some cases, one may compute these groups by using complex
algebraic geometry, in some other cases by using algebraic
K -theory.
Voisin 2006 proved that these groups are zero for any uniruled
threefold, and also for Calabi-Yau threefolds.
Examples of unirational varieties X with dim(X ) ≥ 6 and
H3
nr (C(X ),Q/Z(2)) 6= 0 were given by CT-Ojanguren 1989 (talk at

the Shafarevich seminar, Moscow 1988).
Examples with dim(X ) ≥ 4 were recently given by Schreieder.



In 2002 I asked the following question. Let E1,E2,E3 be elliptic
curves. Let X = E1 × E2 × E3. Let ξi ∈ H1(Ei ,Z/2) be nonzero
elements. Consider the image of the cup-product
ξ1 ∪ ξ2 ∪ ξ3 ∈ H3(X ,Z/2). Can its image in H3(C(X ),Z/2) be
nonzero ?
Gabber immediately showed how, in the “very general” case, the
answer is yes. I recently used his technique to prove a result which,
via the above theorem with Voisin, extends the Benoist–Ottem
result.



Proposition (Gabber 2002). Let π : W → U be a smooth morphism
of integral noetherian schemes with geometrically connected fibres.
Let α ∈ H i (W ,Z/`)). The set of (scheme-theoretic) points s ∈ U
such that the restriction of α to the generic point of the geometric
fibre of π at s vanishes is a countable union of closed subsets of U.

(The property is stable under specialisation.)

As a consequence, if U is a variety over C ; if there exists one point
s ∈ U(C) such that αs ∈ H i (C(Ws),Z/`) does not vanish, then
the set of such points s ∈ U(C) is Zariski dense in U(C).



The following theorem (CT 2018) is a variant of a result of Gabber
(2002).

Theorem. Let X/C be smooth, projective, connected variety. Let `
be a prime number. Let α ∈ H i (X ,Z/`) have a nonzero image in
H i (C(X ),Z/`).
There exist an elliptic curve E/C and β ∈ H1(E ,Z/`) such that
the image of α∪ β ∈ H i+1(X × E ,Z/`) in H i+1(C(X × E ),Z/`) is
nonzero. In particular the groups H i+1

nr (C(X × E ),Z/`) and
H i+1
nr (C(X × E ),Q/Z) are nonzero.

(Passing from Z/` to Q/Z uses Voevodsky.)

The idea is to use a family of elliptic curves over an open set
U ⊂ P1 which degenerates to a nodal curve over a point
P ∈ U(C). The same idea is used in the paper by Benoist–Ottem.



Proof. One produces an exact sequence of abelian U-group
schemes

1→ (Z/`)U → E ′ → E → 1

which on U \ P is an isogeny of elliptic curves over U and whose
fibre above the point P is 1→ Z/`→ Gm → Gm → 1, where
x 7→ x`. Let EP = Gm ⊂ P1. Let β ∈ H1(E ,Z/`) be the class
associated to the first sequence. It induces a class in
H1(EP ,Z/`) = H1(Gm,Z/`) which is ramified at ∞ ∈ P1.
Consider the cup-product α ∪ β ∈ H i+1(X × E ,Z/`). On the
subvariety X ×Gm = X × EP ⊂ X × E , it induces a class whose
residue at the generic point of X ×∞ is the image of α in
H i (C(X ),Z/`). Thus the image of α ∪ β in H i+1(C(X × EP),Z/`)
is nonzero. The previous proposition implies that the same holds
for the image of α ∪ β in H i+1(C(X × Es),Z/`) for s in a Zariski
dense subset of U(C).



Corollary. Let X/C be smooth, projective, connected variety with
nontrivial Brauer group. Then there exists an elliptic curve E/C
and a nonzero class in H3

nr (C(X × E ),Q/Z).
If the Chow group of zero-cycles on X is supported on a curve,
then the integral Hodge conjecture for codimension 2 cycles fails
on X × E.

Indeed, since Br(X )→ Br(C(X )) is injective, one produces a class
α ∈ H2(X ,Z/`) with nontrivial image in H2(C(X ),Z/`). The
previous proposition then gives an elliptic curve E with
H3
nr (C(X × E ),Q/Z) 6= 0. The additional hypothesis implies that

the Chow group of zero-cycles on X × E is supported on a surface.
The corollary of the CT–Voisin result then gives the failure of the
integral Hodge conjecture.



If X = S is an Enriques surface, then Br(S) = Z/2 and
CH0(S) = Z. There thus exist elliptic curves E such that the
integral Hodge conjecture fails for the 3-fold S × E . One recovers
the Benoist-Ottem examples.

Konec


