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Let k be a field and X an algebraic variety over k, that is, a
system of polynomial equations with coefficients in k

f1(x1 · · · , xn) = · · · = fr (x1, . . . , xn) = 0.

We write X (k) for the set of solutions with coordinates in k.
The sytem may have no solution with coordinates in k, but unless
it defines the empty variety, there are solutions in finite extension
fields K/k.

Definition The index I (X/k) of a k-variety X is the gcd of the
degrees [K : k] of finite extensions K/k such that X (K ) 6= ∅.

Clearly,

X (k) 6= ∅ =⇒ I (X/k) = 1.



Two problems.

Problem I. Describe classes of varieties X which over any field k
have the property : if I (X/k) = 1, then X (k) 6= ∅.

Problem II. Given a field of number theoretic interest (finite field,
the real field, a p-adic field, a global field (number field, or
function field in one variable over a finite field), and a given class C
of varieties over that field, give necessary and sufficient conditions
for an X in C to satisfy I (X/k) = 1.



If I (X/k) = 1, do we have X (k) 6= ∅ ?



Springer’s theorem (1952). If a quadratic form over a field k has a
nontrivial zero over an odd degree extension K of k, then it has a
solution in k.

Proof : Induction on the degree [K : k]. One may assume
K = k[t]/P(t) where P is a monic polynomial of odd degree d . If
there is a solution in K then there is an equation

q(a1(t), · · · , an(t)) = p(t)r(t) ∈ k[t]

where the ai ∈ k[t] are coprime as a whole and have degree < d ,
hence the LHS has degree ≤ 2d − 2, hence r(t) has degree
≤ d − 2. If q has no zero over k, then the LHS is of even degree,
hence r(t) has an irreducible factor of odd degree ≤ d − 2. Reduce
modulo that factor.



Already for curves of genus 2 over a (small) finite field, I (X/k) = 1
does not imply X (k) = ∅. The question is whether there are
interesting classes of varieties for which the implication holds.

Starting from quadrics, one may try to go into two different
directions :

– Homogeneous spaces of connected linear algebraic groups

– Hypersurfaces of degree d in projective space Pn, with n ≥ d ,
or possibly n bigger than some function of d .



Homogeneous spaces of connected linear algebraic groups

I (X/k) = 1 =⇒ X (k) 6= ∅ ?



For homogeneous spaces of commutative algebraic groups, one can
use a norm formalism to show that the answer is affirmative.

For X/k a principal homogeneous spaces of connected linear
algebraic groups, Serre asked whether I (X/k) = 1 implies
X (k) 6= ∅. This has been established in many cases, but the
question is still open.

Over p-adic fields and number fields, a positive answer was given
by Sansuc (1981).

Over an arbitrary field, this is known for the orthogonal group
(variant of Springer’s result), for the norm 1 group of an algebra
with involution (Bayer-Fluckiger and Lenstra, 1989). A more
general result is due to Gille and Semenov (2010).



For arbitrary homogeneous spaces of connected linear algebraic
groups, there are examples with I (X/k) = 1 but X (k) = ∅.

There are examples over k = Qp (Florence, 2004). Affine
homogenous spaces with finite, noncommutative geometric
isotropy groups.

Projective homogeneous spaces over k = Qp((t)) (Parimala,
2005).



Hypersurfaces, complete intersections

I (X/k) = 1 =⇒ X (k) 6= ∅ ?



The answer is positive for an arbitrary intersection of two quadrics.

q1(x0, · · · , xn) = q2(x0, · · · , xn) = 0.

This is an immediate consequence of Springer’s theorem and the
elegant result (Amer 1976, Brumer 1978) :
The above system has a solution in k if and only if the quadratic
form q1 + tq2 has a zero over k(t).

These results do not extend to the intersection of three quadrics.



The next case after quadrics is that of cubic hypersurfaces X given
by

C (x0, · · · , xn) = 0

in projective space Pn. The problem is open. Some cases are
known.

For n = 2, the answer is affirmative. If X ⊂ P2 is a nonsingular
cubic curve, this follows from the Riemann-Roch theorem. One
may also use the fact that such a curve is a principal homogeneous
space of its jacobian, which is a commutative algebraic group.

For n ≥ 3, Coray (1974) gave an affirmative answer over p-adic
fields. In the case n = 3, over an arbitrary field, he proved the
answer is affirmative if the surface X is singular. When X is
nonsingular, Coray showed that I (X/k) = 1 implies the existence
of a point in a field extension of k of degree either 1, 4 or 10.



Over k = Q(t), Kollár (2002) has shown that there exist
nonsingular quartic hypersurfaces in projective space of arbitrary
dimension with X (k) = ∅ and I (X/k) = 1.

This completely dashed a naive hope that for “rationally
connected” hypersurfaces I (X/k) = 1 =⇒ X (k) 6= ∅.



Deciding if I (X/k) = 1



Finite fields

Theorem (Chevalley, Warning, 1935). Over a finite field, any form
of degree d in n > d variables has a nontrivial zero.

Theorem (Esnault 2003) Over a finite field, any nice
“rationally connected” variety has a rational point.

Theorem (Lang-Weil 1954) For any absolutely irreducible variety X
over a finite field F, there exists an integer n0(X ) such that over
any field extension of F of degree at least n0(X ), the variety X has
a point. In particular I (X/F) = 1.



p-adic fields



Over a p-adic field, there was a conjecture of Artin that any form
of degree d in n > d2 variables has a nontrivial zero. This was
disproved by Terjanian and others. In the Terjanian examples, for
the associated hypersurfaces X , one may check I (X/k) = 1. Kato
and Kuzumaki (1986) made the :

Conjecture For any hypersurface X ⊂ Pn of degree d over a p-adic
field, with n ≥ d2, one has I (X/k) = 1.

They proved this for d prime.
For a complete intersection of quadrics, the natural generalisation
of this conjecture was proved by Heath-Brown in 2009.



In the rest of the talk, I shall use the Brauer group Br(X ) of an
algebraic variety X .
Natural extensions of finite dimensional vector spaces over a field
are finite rank vector bundles over a variety.
Over a field, we have the notion of central simple algebras, which
are twisted forms of algebras of matrices (e.g. the Hamilton
quaternions over the reals). Stable isomorphy classes of such
algebras over a field k build up an abelian group Br(k) (Brauer,
1935).
Over a variety (and more generally a scheme) X , the natural
generalisations of central simple algebras are called Azumaya
algebras. Their stable isomorphy classes build up an abelian group
Br(X ) (Auslander-Goldman, Grothendieck 1968).
This group is functorial contravariant in X .



Over a p-adic field k, a formula for the index of any smooth
projective (geometrically connected) curve X was given by
Lichtenbaum (1969) :

Z/I (X/k) = Ker [Br(k) → Br(X ).]

The Brauer group of a p-adic field k is isomorphic to Q/Z.

Over the reals, the analogous result is due to Witt (1934) : If a
real curve has no real point, then −1 is the sum of two squares in
the function field of X .



For X smooth, projective, of arbitrary dimension, there is an
analogous result (CT/S. Saito 1996; K. Sato/S. Saito 2009 for the
p-part). In Lichtenbaum’s formula, one must replace Br(X ) by the
quotient of Br(X ) by the image of the Brauer group Br(X ) of a
regular proper model X of X over the ring of integers of k
(Br(X ) vanishes for X a curve).

Over the reals, the analogue in higher dimension of Witt’s result is
due to Pfister (1967) : if X/R, of dimension d , has no real point,
then −1 is a sum of 2d squares in the function field of X .



Global fields



Given a variety X over a number field k, a necessary condition for
X (k) 6= ∅ is that for each completion kv of k, p-adic or real,
X (kv ) 6= ∅ (this is the modern form of checking congruences). We
let Ω denote the set of “places” v of k.

Analogously, a necessary condition for I (X/k) = 1 is I (Xv/kv ) = 1
for all v , where Xv denotes the variety X considered over kv .



Let us restrict attention to “nice” varieties (smooth, projective,
absolutely irreducible).
The implication

X (kv ) 6= ∅ for all v ∈ Ω =⇒ X (k) 6= ∅

holds for some families of algebraic varieties (example : quadrics)
but it does not hold in general (example : curves of genus one).

The implication

I (Xv/kv ) = 1 for all v ∈ Ω =⇒ I (X/k) = 1

does not hold either for all classes of varieties (example : curves of
genus one).



In 1970, Manin showed how the notion of Brauer group of schemes
together with class field theory gave a unified explanation for most
counterexamples to the Hasse principle for rational points then
available in the literature.
This was later named “the Brauer–Manin obstruction.”
The necessary condition for X (k) 6= ∅ coined by Manin reads :

There exists a family of local points {Mv} ∈
∏

v∈Ω X (kv ) such
that for any element α ∈ Br(X ), the sum∑

v∈Ω

α(Mv ) = 0 ∈ Q/Z.



There were good reasons not to believe this should be the whole
story. Nevertheless, for nearly thirty years after Manin’s paper, this
necessary condition accounted for all the known counterexamples
to the Hasse principle.

In 1999, Skorobogatov produced a counterexample to the Hasse
principle which could not be accounted for in this manner.
Harari and Skorobogatov (2002) then developed a general
framework (“descent by torsors under arbitrary linear groups”)
which accounts for Skorobogatov’s counterexample, and, as it later
turned out, also accounts for any Brauer–Manin obstruction.

In 2009, Poonen produced new counterexamples to the Hasse
principle. These are not accounted for by the Harari-Skorobogatov
paradigm.



There are still classes of varieties for which one wonders whether
Manin’s necessary condition for X (k) 6= ∅ is sufficient :
– rational surfaces (very likely)
– curves of genus one (very likely)
– curves of arbitrary genus (?)
– Nonsingular hypersurfaces of degree d in Pn with n ≥ 4
and d ≤ n.
– K3-surfaces, e.g. nonsingular quartic surfaces in P3 (??)

For arbitrary (nice) varieties, finding a cohomological substitute for
the Hasse principle seems a very hard problem.



What about the analogous problem for the weaker statement
I (X/k) = 1 ?

It is easy to use the Brauer group Br(X ) to define a Brauer-Manin
obstruction for the implication

I (Xv/kv ) = 1 for all v ∈ Ω =⇒ I (X/k) = 1.

The necessary condition for I (X/k) = 1 here reads :

There exists a family {zv}v∈Ω of “zero-cycles of degree one”,
zv on Xv , such that for any element α ∈ Br(X ), the sum∑

v∈Ω

α(zv ) = 0 ∈ Q/Z.



We here hope that this is also a sufficient conditiion :

Conjecture For any smooth, projective, connected variety over k,
if there exists a family {zv}v∈Ω of “zero-cycles of degree one”,
where zv is on Xv , such that for any element α ∈ Br(X ), the sum∑

v∈Ω

α(zv ) = 0 ∈ Q/Z.

then I (X/k) = 1.

Various versions of the conjecture :
CT/Sansuc 1981 (rational surfaces, with evidence from various
directions), Kato/Saito 1986 (arbitrary varieties, because the world
should be beautiful), Saito 1989, CT 1999



Why should we hope for such a statement when the analogous
result for rational points fails ?
Because the non-Brauer-Manin proofs of nonexistence of a rational
point often involve noncommutative finite Galois covers of the
varieties (as seen in the Harari-Skorobogatov argument; this also
comes up in Grothendieck’s section conjecture for curves).
But torsors under noncommutative groups do not behave well with
respect to 0-cycles, there are no norm maps (= transfer maps),
two rational points may be rationally equivalent and the
evaluations of the torsors on these two points may be different.
So we do not fear too much contradiction from this side !



What do we know ?

For curves of arbitrary genus, the conjecture follows from a famous
conjecture, the finiteness of Tate-Shafarevich groups.

Rational surfaces break up into two big classes: conic bundles and
del Pezzo surfaces.

For conic bundles, the conjecture was proved by Salberger (1988).
Various extensions of his result have been obtained.

The case of Del Pezzo surfaces of low degree, for instance cubic
surfaces, is open.



In the Poonen examples, I (X/k) = 1 (CT, 2009).

The original Skorobogatov example is given by the system of
(affine) equations

(x2 + 1)y2 = (x2 + 2)z2 = 3(t4 − 54t2 − 117t − 243) 6= 0

If the above conjecture on the index is true, this system, which has
no solution in Q, should have a solution in an extension of Q of
odd degree. This is an open question.



One may consider the analogue of the above conjecture over the
other class of global fields : function fields of curves over a finite
field.
A variety X over such a field F(C ) may be viewed as the “generic
fibre” of a fibration f : W → C of varieties over the finite field F .
Let us assume that W and the curve C are nice varieties over F.
Curves on W induce zero-cycles on the generic fibre X/F(C ).
S. Saito (1989) showed:
A integral version of the Tate conjecture for curves on the
F-variety W implies the conjecture for I (X/F(C )).



The integral Tate conjecture is an l-adic analogue of the integral
Hodge conjecture for algebraic cycles. The usual conjectures are
with cohomology with rational coefficients. One knows that both
integral versions are wrong in general.
However, for algebraic cycles of dimension 1, the integral Tate
conjecture is open, and modulo the standard Tate conjecture for
divisors on surfaces, a weak version of it for varieties of arbitrary
dimension was proven by Schoen (1998).



For W a threefold, work in motivic cohomology (Merkurjev-Suslin,
Lichtenbaum, Kahn) enables one to relate the integral Tate
conjecture for cycles of dimension 1 on W to the vanishing of the
third unramified cohomology group of W .

The third unramified cohomology group (with coefficients in
Q/Z(2)) is the natural analogue in cohomological degree 3 of the
Brauer group, which is the second unramified cohomology group
(with coefficients in Q/Z(1)).



For W fibered into conics over a surface over a finite field,
Parimala and Suresh (2010) have proved the vanishing of the third
unramified cohomology group. This leads to function fields
versions of the Salberger theorem mentioned above, and to the
next question :

For W → C a family of cubic surfaces over a curve C over a finite
field F, is the third unramified cohomology group of W zero ?

The analogous statement for families of cubic surfaces over a
complex curve is known, it is in fact a special case of a theorem of
C. Voisin on the integral Hodge conjecture for rationally connected
threefolds.



Theorem (CT, Swinnerton-Dyer 2010). Let F be a finite field, d an
integer prime to the characteristic, k = F(t), and X ⊂ P3 a nice
surface of degree d over k defined by an equation

f + tg = 0

where f and g are forms of degree d over F.
(a) The Brauer-Manin condition for I (X/k) = 1 is a sufficient
condition.
(b) If d = 3, the Brauer-Manin condition for X (k) 6= ∅ is a
sufficient condition.

With W /P1 a nice model of X/F(t), the key point in the proof of
(a) is that W /F is birational to P3 over F, hence the unramified
cohomology of W is trivial.


