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In the previous lecture, I mentioned the fibration
method for studying the question whether the set of
rational points X(k) is dense in the Brauer-Manin sub-
set X(Ak)Br of the adèles of a nonsingular, projective
variety X over a number field k.

The theorems quoted in the first lecture led to ac-
tual results for the total space of one-parameter families
of conics, and there is scope for applying them to the
total space of one-parameter families of varieties, when
the generic member of the family is birational to a ho-
mogeneous space of a connected linear algebraic group.

What if one considers one-parameter families of ho-
mogeneous spaces of abelian varities, for instance one-
paramer families of curves of genus one ?

This is a very natural question. For instance, if one
wishes to study the Hasse principle for a cubic surface
in P3, the natural thing to do is to fix a line in P3,
to consider the pencil of planes through this line: they
cut out on the surface a pencil of curves of genus one.
Can one use the conjectural results for each curve of
genus one in the pencil (built upon finiteness of the
Tate-Shafarevich group) to gather a global information
on the rational points of the surface ?
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In 1994, Swinnerton-Dyer took the first serious step
in this direction, and in 1998 CT/Skorobogatov/Swin-
nerton-Dyer produced a suitable general format for the
method. Since then Swinnerton-Dyer and various col-
laborators have produced a series of results – most of
them, but not all, conditional on Schinzel’s hypothesis
and on the finiteness of Tate-Shafarevich groups.

It is not clear at this point what the final format
for the (rather involved) method will be. In this lecture
I will describe some of the key steps.

Before I do this, let me list a series of concrete
results obtained.
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Two simultaneously diagonal quadratic forms

Theorem
Let k be a number field and ai, bi ∈ k∗, i = 0, . . . , 4.
Let X ⊂ P4

k be defined by

4∑

i=0

aix
2
i = 0,

4∑

i=0

bix
2
i = 0.

Assume:
(i) Tate-Shafarevich groups are finite;
(ii) Schinzel’s hypothesis holds.
If the ai, bi are general enough, then the Hasse prin-

ciple holds for X.

(Swinnerton-Dyer 1995, CT/Skorobogatov/Swinner-
ton-Dyer 1998)

General enough: independence of various products
aibj − ajbi in k∗/k∗2. The hypothesis implies
X(Ak)Br = X(Ak).

Should be enough to imply Hasse principle for∑n
i=0 aix

2
i = 0,

∑n
i=0 bix

2
i = 0 as soon as n = 5.

Previous results: unconditional Hasse principle
for
∑n
i=0 aix

2
i = 0,

∑n
i=0 bix

2
i = 0 for n ≥ 7 (method

as in CT/Sansuc/Swinnerton-Dyer 1987)
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Special diagonal quartic surfaces

Theorem Let k be a number field and X ⊂ P3
k be

a quartic surface defined by a diagonal equation

3∑

i=0

aix
4
i = 0.

Assume
(i) Tate-Shafarevich groups are finite.
(ii) Schinzel’s hypothesis holds.
(iii) The product a0a1a2a3 is a square in k, but is

not a fourth power, and none of the ±aiaj (i 6= j) is a
square.

(iv) X(Ak)Br 6= ∅.
Then X(k) 6= ∅.
(Swinnerton-Dyer 2000)
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General diagonal cubic surfaces over the rationals

Theorem
Let X ⊂ P3

Q be a cubic surface defined by a diago-
nal equation

3∑

i=0

aix
3
i = 0,

where one may assume all ai in Z and cubefree. Assume

(i) Tate-Shafarevich groups of elliptic curves are
finite.

(ii) There exists a prime p 6= 3 such that 3 | vp(a0)
and p - ai, i 6= 0, and there exists a prime q 6= 3 such
that 3 | vq(a1) and q - ai, i 6= 1.

or
(ii’) There exists a prime p 6= 3 such that 3 | vp(a0)

and p - ai, i 6= 0, and the classes of a1, a2, a3 ∈ F∗p/F
∗3
p

are not all equal.

(iii) X(AQ) 6= ∅.
Then X(Q) 6= ∅.
(Swinnerton-Dyer 2000)
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The proof extends to any number field k which does
not contain all cubic roots of 1.

In the proof one uses finiteness of Tate-Shafarevich
groups of elliptic curves over arbitrary quadratic exten-
sions of the ground field.

Comment. Each of the hypotheses (ii) or (ii’) im-
plies X(AQ)Br 6= ∅ (CT/Kanevsky/Sansuc 1987).

Basic comment on this theorem : it does not refer
to Schinzel’s hypothesis. The proof uses it, but in the
only known case, namely it uses Dirichlet’s theorem on
primes in an arithmetic progression.
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An easy application of the fibration method (in the
spirit of Hasse’s proof for quadratic forms in 5 variables
once the 4 variables case is known) then yields:

Theorem
Assume that Tate-Shafarevich groups are finite.

Then the Hasse principle holds for diagonal cubic hy-
persurfaces in Pn

Q, n ≥ 4.
(Swinnerton-Dyer 2000)

For n ≥ 6, this is a known result, proved uncondi-
tionnally by means of the circle method (R. C. Baker
1989; Davenport 1959 for n ≥ 8).
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In the well-known analogy between number fields
and function fields in one variable over a finite field, the
finiteness of Tate-Shafarevich groups of elliptic curves
over a number field translates as the finiteness of the
Brauer group of certain surfaces over a finite field. This
finiteness is known in some cases (Tate). Mimicking
Swinnerton-Dyer’s argument, I obtained the uncondi-
tional result:

Theorem
Let k = Fq(C) be a function field in one variable

over the finite field Fq. Assume q odd, q ≡ 2 mod. 3.
The Hasse principle holds for diagonal cubic hypersur-
faces in Pn

k , n ≥ 4.
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A first idea of the method

Let X be a nonsingular, projective, absolutely ir-
reducible surface over a number field k. Assume it is
equipped with a dominant k-morphism p : X → P1

k

whose generic fibre is absolutely irreducible.
Under suitable hypotheses on the fibres (in partic-

ular, one should assume that each of them contains a
component of multiplicity one), and upon application
of Schinzel’s hypothesis, from the hypothesis

X(Ak)Br 6= ∅

one manages to conclude that there exist infinitely many
points M ∈ P1(k) whose fibre XM satisfies

XM (Ak) 6= ∅.

10



       

If the fibre XM satisfies the Hasse principle, this is
enough to conclude XM (k) 6= ∅, hence X(k) 6= ∅. Such
is the case if the generic fibre is a conic. But if it is a
curve of genus one, which I now assume, then we face
the problem: the Hasse principle generally does not hold
for curves of genus one over a number field. There even
exist one parameter families of such counterexamples !

One could dream of using the method of Harari’s
theorem described in the previous lecture to produce
a fibre XM such that XM (Ak)Br 6= ∅. Not only is the
“abelian difficulty” in the way, but for families of curves
of genus one there is no hope to produce rational points
M ∈ P1(k) such that the (reduced) Brauer group of
XM is covered by the specialization of the (reduced)
Brauer group of the generic fibre – which is what Harari
proveswhen the generic fibre is a rationally connected
variety.

What has been successful could probably be best
described as going though a rat’s hole.
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Let me first recall the Selmer calculus in the sim-
plest set-up. Let k be a field, char.k = 0,

E : y2 = (x− e1)(x− e2)(x− e3)

an elliptic curve with ei ∈ k, so that all 2-torsion of E
is rational. We have the exact sequence

0→ E[2]→ E
x 7→2x−→ E → 0

where E[2] ∼= (Z/2)2. The long exact sequence in Galois
cohomology gives

0→ E(k)/2E(k)→ H1(k,E[2])→ H1(k,E)[2]→ 0

where H1(k,E[2]) ∼= (k∗/k∗2)2 classifies 2-covers: that
is, given (α1, α2) ∈ (k∗/k∗2)2, we have the 2-cover of E
defined by the set of affine equations:

x− e1 = α1u
2
1, x− e2 = α2u

2
2, x− e3 = (α1α2)−1u2

3.

The group H1(k,E) classifies curves of genus one whose
jacobian is E : these are the principal homogeneous
spaces under E.
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Let now k be a number field.
The 2-Selmer group Sel(E, 2) of E is the subgroup

of H1(k,E[2]) consisting of classes whose associated 2-
cover contains points in all completions kv of k.

The Tate-Shafarevich group X(E) is the kernel of
the diagonal map H1(k,E)→∏

v∈ΩH
1(kv, E). It clas-

sifies principal homogeneous spaces under E which have
points in all kv’s.

The previous sequence induces a basic exact se-
quence

0→ E(k)/2→ Sel(E, 2)→X(E)[2]→ 0.

Cassels defined an alternate pairing on the group
X(E), with values in Q/Z. He proved that if X(E) is
finite, then this pairing is nondegenerate. The abelian
group X(E) must then be a sum of groups of the shape
(Z/n)2. In particular its order must be a square, and
so must be the order of e.g. X(E)[2].
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We thus get a Hasse principle for some very special
curves of genus 1.

Proposition
Suppose that E(k)[2] = (Z/2)2 and injects into

E(k)/2, and suppose that the order of Sel(E, 2) is 8.
If the Tate-Shafarevich group of E is finite, then
X(E)[2] = 0, the Hasse principle holds for 2-covers
of E, and the rank of E(k) is 1.
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Let now X → P1
k be a family of curves of genus

one. Assume that the generic fibre Xη is a 2-cover of its
jacobian Eη. Assume that the 2-torsion of Eη is entirely
rational over K = k(P1). (This is not a simplifying
assumption: at present, for the method to work, we
need some nontrivial “constant” torsion in Eη(K).)

Assume X(Ak)Br 6= ∅.

Suppose one can find a point M ∈ P1(k) such that

(i) the fibre XM/k satisfies XM (Ak) 6= ∅
(ii) the order of Sel(EM , 2) is 8.

If the Tate-Shafarevich group of EM is finite, the
above proposition implies XM (k) 6= ∅, hence XM iso-
morphic to EM , and EM (k) infinite, hence XM (k) infi-
nite.

As already mentioned, under reasonable (algebraic)
assumptions on the reducible fibres, (i) may be ensured
by a suitable application of the fibration method (use
of Harari’s formal lemma, together with Schinzel’s hy-
pothesis).

I now have to explain how (ii) can be – simultane-
ously – achieved.
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For the present method to work, we have to re-
strict attention to families X → P1

k such that a certain
algebraico-geometric group associated to the generic fi-
bre is of order 8 (a more precise condition to be given
below).

In a very vague fashion, the result is reminiscent
of a Hilbert irreducibility theorem : because a kind of
algebraic Selmer group is small, one is able to find a spe-
cialized arithmetic Selmer group which is just as small.

Given an elliptic curve Eη over the field K = k(t),
one defines the algebraico-geometric Tate-Shafarevich
group H1

nr(K,Eη) as the subgroup of H1(K,E) con-
sisting of elements whose image in H1(k(t), E) van-
ishes when further restricted to all completions of k(t),
namely k((t− a)) for a ∈ k and k((1/t)).

One may then define an algebraico-geometric 2-
Selmer group S(Eη, 2) which fits into an exact sequence

0→ Eη(K)/2Eη(K)→ S(Eη, 2)→ H1
nr(K,Eη)[2]→ 0

which is one analogue of the Selmer sequence.

16



        

There is a well-known theory (Kodaira, Néron) of
minimal models of elliptic curves over discrete valuation
rings.

Let E/P1
k the Néron minimal model of Eη/k(P1).

It is a smooth group scheme over P1
k. There is a short

exact sequence of group schemes

0→ E∗ → E → ⊕QiQ∗FQ → 0,

where E∗/P1
k has all its fibres connected, Q runs

through the finitely many closed points of P1
k where

Eη has bad reduction, and FQ is a finite group scheme
over the residue field kQ.

One shows that H1
nr(K,Eη) = H1

ét(P
1
k, E).

We thus have induced maps

δQ : H1
nr(K,Eη)→ H1(kQ, FQ).

We now restrict attention to the case where the
bad reduction of Eη is multiplicative and of type I2. In
that case, each FQ = Z/2. We have induced maps

∂Q : S(Eη, 2)→ H1(kQ,Z/2).
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Let us come back to a family X → P1
k of curves of

genus one.
Let Xη be the generic fibre and Eη its jacobian.

We assume that Eη has all the previous properties.
We assume that Xη is a 2-cover of its jacobian Eη,

and that it defines a nontrivial class mX ∈ S(Eη, 2),
hence that the class [Xη] ∈ H1(K,Eη) belongs to
H1
nr(K,Eη)[2] (this amounts to restrictions on the pos-

sibilities for the singular fibres of X/P1
k).

We now make the crucial assumption that the
kernel of the composite map ∆ :

S(Eη, 2)→ ⊕QH1(kQ,Z/2)→ ⊕Q
H1(kQ,Z/2)

∂Q(mX)

is of order 8, spanned by mX and the image of Eη(K)[2].

Theorem
Let X/P1

k satisfy the above assumptions. Assume
(i) Tate-Shafarevich groups are finite.
(ii) Schinzel’s hypothesis holds.
(iii) X(Ak)Br 6= ∅.
Then X(k) is Zariski dense in X.

(CT/Skorobogatov/Swinnerton-Dyer 1998)
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Comment on the crucial assumption

The “crucial assumption” implies that the
2-primary torsion part of the Brauer group of X is
“vertical”, i.e. its image in the Brauer group of the
generic fibre Xη comes from the Brauer group of k(P1).

As a matter of fact, in the proof, the only part
of assumption (iii) which is used is the fact that there
exists an adèle orthogonal to the vertical part of the
Brauer group.

One could dream that the theorem above holds
as it stands even if one does not make the “crucial
assumption” on the kernel of ∆. But I have no idea
how to proceed.

The rôle of the nonvertical part of the Brauer group
is rather mysterious.

For the time being, all we have at our disposal is an
example, due to O. Wittenberg, of an elliptic surface for
which the nonvertical, hence “transcendental” part of
the Brauer group leads to a lack of weak approximation.
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Further indications on the proof of the Theorem

Under the assumption mX ∈ S(Eη, 2), the singular
fibres XQ occur over the same set T of closed points Q
where Eη has bad reduction, and there exists a trivial
or quadratic extension lQ/kQ such that the fibre XQ

consist of two nonsingular conics, each defined over lQ,
meeting transversally in 2 (geometric) points.

We may assume ∞ /∈ T . Each closed point Q is
then defined by a monic irreducible polynomials rQ(t) ∈
k[t]. For simplicity, let me assume here that all rQ have
even degree.

Let r(t) :=
∏
Q rQ(t).

Associated to the whole situation X → P1
k there is

a natural finite set of bad places S0 of k, containing the
archimedean and dyadic places, and such that the class
group of the ring OS0 of S0-integers is trivial.
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Using the hypothesis X(Ak)Br 6= ∅, one produces
elements λv ∈ kv for v ∈ S0 such that if λ ∈ k is close
enough to each λv fro v ∈ S0 and if each rQ(λ) is a unit
at all places away from the union of S0 and a unique
place vQ, then the fibre Xλ/k is nonsingular and has
points in all completions. That is, it defines an element
of the 2-Selmer group Sel(Eλ, 2) of its jacobian Eλ.

That such λ exist is guaranteed by Schinzel’s hy-
pothesis. The vQ’s will be referred to as the “Schinzel
primes”.

There is here some flexibility: one may impose dis-
tinct additional finite sets SQ (Q ∈ T ) of places v away
from S0 such that v(rQ(λ)) = 1 for v ∈ SQ, provided
each such place v (of degree one over k) splits in the
extension lQ/kQ. This flexibility is crucial for the argu-
ment to follow.

We let S(λ) = S0 ∪ (∪QSQ) ∪ (∪Q{vQ}).
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For any commutative normal ring A, let

H(A) = (A∗/A∗2)2 ⊂ H1(A, (Z/2)2).

This is an isomorphism if the class group of A is trivial.
For such λ as above, evaluation at λ yields an iso-

morphism between a group of algebraic nature and a
group of arithmetic nature:

θλ : H(OS [t][1/r(t)]) ' H(OS(λ)),

where S is the union of S0 and the SQ for all Q ∈ T ,
S(λ) as above is the union of S and the vQ’s and for
any finite set S of places, OS is the ring of S-integers.

We have :

Sel(Eλ, 2) ⊂ H(OS(λ)).

H(OS [t][1/r(t)]) ⊂ H(k[t][1/r(t)]).

S(Eη, 2) ⊂ H(k[t][1/r(t)]).

Under the isomorphism θ−1
λ , the group Sel(Eλ, 2)

is mapped into S(Eη, 2).

Eλ[2] + Z/2.[Xλ] ' (Z/2)3 ⊂ Sel(Eλ, 2) is mapped
isomorphically to EK [2] + Z/2.mX ⊂ H(k[t][1/r(t)]).
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One wants to use the “crucial hypothesis” to ex-
hibit a λ as above such that

Eλ[2] + Z/2.[Xλ] = Sel(Eλ, 2).

For any element in H1(k[t][1/r(t)], (Z/2)2) not in
the kernel of ∆, there is one of two types of maps over
a closed point of A1

k which detects this. And one wants
to use this to choose auxiliary sets SQ in such a way
that any element of H(OS(λ)) except for the obvious 8
elements is ruled out as an element of Sel(Eλ, 2).

To rule out an element ξ ∈ H(OS(λ)) means to find
a place v and an element of Eλ(kv) such that in the
pairing

H1(kv, Eλ[2])×H1(kv, Eλ[2])→ Z/2

induced by the Weil pairing Eλ[2] × Eλ[2] → µ2,
the class of ξ is not orthogonal to the image of
Eλ(kv)/2 ⊂ H1(kv, Eλ[2]) (here one uses a theorem of
Tate). The only obvious elements of Eλ(kv)/2 which we
have at our disposal are the classes of the four 2-torsion
elements.
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Roughly speaking, if one starts with a given λ and
the 2-Selmer group is too big, the “crucial assumption”
enables us to produce a λ1 ∈ k very close to the original
λ at the places of S(λ) ⊂ S(λ1), in such a way that the
bad classes in Sel(Eλ, 2) ⊂ H(OS(λ)) ⊂ H(OS(λ1)) do
not belong to Sel(Eλ1 , 2).

This does not seem to lead anywhere, because in
the process new classes have appeared in H(OS(λ1))
which one now has to rule out.

The process turns out to work all the same.
A key ingredient is a symmetrized Selmer calculus.
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Symmetrization of the Selmer calculus

Let E be an elliptic curve over a local field kv.

Let Vv = H1(kv, E[2]) and Wv = E(kv)/2.

Cassels and Tate proved that the Kummer map
E(kv)/2 ↪→ H1(kv, E[2]) makes Wv into a maximal
isotropic subgroup of Vv equipped with the non-dege-
nerate alternate pairing induced by the Weil pairing.

Let now E be an elliptic curve over a number field.
Suppose it has good reduction outside a finite set S of
places of k, where S includes the archimedean primes,
the dyadic primes and suppose the class group of OS is
trivial. Suppose E[2] = (Z/2)2.

Let VS := ⊕v∈SVv and WS := ⊕v∈SWv.

The pairings Vv × Vv → Z/2 add up to a non-
degenerate, alternate pairing

VS × VS → Z/2.
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Under our assumptions on S, class field theory
implies that the diagonal map H(OS) → ∏

v∈S H(kv)
is an embedding which makes H(OS) into a maximal
isotropic group of VS = ⊕v∈SVv.

The Kummer embeddings Wv ↪→ Vv add up to cre-
ate another maximal isotropic subgroup WS ⊂ VS .

The 2-Selmer group may now be identified with the
left kernel of the induced pairing

H(OS)× ⊕v∈SE(kv)/2→ Z/2.

Both sides have the same F2-dimension.

By linear algebra, one shows that there exist max-
imal isotropic subspaces Kv ⊂ Vv such that the space
KS := ⊕v∈SKv is a supplementary space of H(OS) in
VS . For v outside a fixed set independent of E, one may
take Kv = H(Ov).

Under projection of VS onto H(OS) along KS , the
above pairing induces a pairing between

IS := H(OS) ∩ (WS +KS)

and

WS := WS/(WS ∩KS) = ⊕v∈SWv/(Wv ∩Kv).
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Proposition
(i) Projection VS → H(OS) induces an isomor-

phism τ :WS ' IS.
(ii) Both the left and right kernel of the pairing

IS ×WS → Z/2 are isomorphic to the 2-Selmer group
of E.

(iii) Under the isomorphism τ , this pairing defines
a symmetrical bilinear form onWS, hence also on IS.

In the situation under study, namely bad reduction
is of type I2, for v not in S0, each group

Wv(Eλ)/(Wv(Eλ) ∩Kv)

is either 0 (case of good reduction for Eλ at v) or
Z/2 (whereas Wv(Eλ) ' (Z/2)2.)
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End of the proof (sketch)

Recall the isomorphism

θλ : H(OS [t][1/r(t)]) ' H(OS(λ)).

One now shows that, for any λ as above, the group
WS(Eλ) is isomorphic to the direct sum B0 ⊕B1 ⊕B2

of three vector spaces over F2, where

B0 = Eλ[2] + Z/2.[Xλ] ' (Z/2)3,

B1 corresponds to a fixed part (independent of λ)
having to do with the bad reduction of X and with the
Schinzel primes vQ’s,

B2 is a vector space with a basis indexed by the
elements of ∪QSQ.

This decomposition can be arranged in such a way
that the symmetric pairing on WS(Eλ) induces a pair-
ing on B0 ⊕ B1 which is independent of the choice of
λ.

This is quite subtle, since the Schinzel primes,
which depend on λ, which itself depends on the choice
of the SQ’s, contribute to B1. In the proof of this fact,
the reciprocity law of class field theory is systematically
used.
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Let B′1 ⊂ B1 be the left kernel of the induced
pairing B1×B1 → Z/2, and let B′′1 be a supplementary
space of B′1 in B1.

On then uses the “crucial assumption” along with
the isomorphism θλ to produce, for each nontrivial class
in B′′1 , a suitable Q and a prime v of degree one split in
the extension lQ/kQ such that the pairing of the group
Wv/(Wv ∩Kv) = Z/2 with this class is nontrivial. By
linear algebra, taking a subset of all these v’s, one finds
that the symmetric pairing given by the refined Selmer
calculus is given by a matrix of the following type:

B0 B′1 B′′1 B2

0 0 0 0

0 0 0 n.s.

n.s.

0 n.s.

(n.s = nonsingular)

Symmetry gives the n.s. in the right hand side up-
per corner. Thus the corank of the matrix is 3, which
completes the proof.
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Concrete applications of the method

Special intersections of two quadrics in P4

(Swinnerton-Dyer, CT/Skorobogatov/Swinnerton-
Dyer)

Let X ⊂ P4
k be given by the simultaneously diago-

nal quadratic equations:

4∑

i=0

aix
2
i = 0,

4∑

i=0

bix
2
i = 0.

If one cuts out X by x4 = tx3, then one gets the
pencil of curves of genus one defined by

∑2
i=0 aix

2
i + (a3 + t2a4)x2

3 = 0,
∑2
i=0 bix

2
i + (b3 + t2b4)x2

3 = 0.

On checks that the jacobian Eη of the curve Xη

(over k(t)) has all its 2-torsion rational, that any bad
reduction is of type I2, that Xη is a 2-cover of Eη and
that its class belongs to the group S(Eη, 2).
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In a paper with Bender, Swinnerton-Dyer considers
a system of two quadratic forms which are only partially
simultaneously diagonal, namely

a0x
2
0 + a1x

2
1 + a2x

2
2 + q1(x3, x4) = 0,

b0x
2
0 + b1x

2
1 + b2x

2
2 + q2(x3, x4) = 0.

One transforms this surface into a fibration over
P1
k by setting x4 = tx3. In this more general case,

the jacobian of the generic fibre has only one nontrivial
rational point of order 2.

Using isogenies of degree 2 rather than multiplica-
tion by 2, one also manages to prove a theorem like the
main theorem.

Further work might ultimately lead to a proof
(assuming the Schinzel hypothesis and finiteness of X)
of the well-known

Conjecture
For any nonsingular complete intersection of two

quadrics in Pn
k , n ≥ 5, the Hasse principle holds.
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Special diagonal quartic surfaces
(Swinnerton-Dyer)

A diagonal quartic surface X ⊂ P3
k

3∑

i=0

aix
4
i = 0

has a natural projection onto the quadric Y ⊂ P3
k given

by
3∑

i=0

aiy
2
i = 0.

Assume a0a1a2a3 is a square in k.

If X has points in all completions of the number
field k, then the quadric Y is isomorphic to P1

k ×k P1
k.

This gives two fibrations of X over P1
k into curves of

genus 1, and one checks that each of them has its bad
fibres of type I4 (four projective lines Li, i ∈ Z/4, with
Li and Li+1 meeting transversally in one point). One
again checks that the jacobian of the generic fibre has
all its 2-torsion rational.
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Diagonal cubic surfaces over Q
(Swinnerton-Dyer, no use of Schinzel’s hypothesis)

The starting point (already used by Heath-Brown
in a special case) is to consider the equation

a1x
3
1 + a2x

3
2 = t = a3x

3
3 + a4x

3
4.

That is, one looks at the affine cone over the original
cubic surface. Because the surface is diagonal, one may
rewrite this cone (birationally) as the fibre product over
P1
k of two families of curves of genus one over P1

k, with
bad reduction only at 0 and∞. The generic fibre is the
product of two curves of genus one.

The jacobian of each of these curves contains a con-
stant torsion subgroup, namely µ3. One then uses 3-
isogenies, but simultaneously for each of the two curves
of genus one.

Finding a λ ∈ k∗ such that the equation

a1x
3
1 + a2x

3
2 = λ = a3x

3
3 + a4x

3
4

has solutions in all kv is easy. The hard work consists in
finding such a λ for which the part of the (two) relevant
Tate-Shafarevich groups killed by the 3-isogenies is too
small to be nonzero. It is in this process that one has to
impose that the ground field contain no nontrivial cube
root of 1.
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