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Let X be a smooth projective (geom. connected) variety over a
finite field IF of char. p. Unless otherwise mentioned, cohomology is
étale cohomology.

We have CH(X) = Pic(X) = H}ar(X,Gm) = HY(X,G,).

For r prime to p, the Kummer exact sequence of étale sheaves
associated to x — x"

1=y —>GHr—->G6GH—1

induces a map Pic(X)/r = HY(X,Gn)/r — H?*(X, ).
Let r = £", with £ # p. Passing over to the limit in n, we get the
{-adic cycle class map

Pic(X) ® Zy — H?(X, Z(1)).



Around 1960, Tate conjectured

(TY) For any smooth projective X /F, the map
Pic(X) ® Z¢ — H*(X,Z(1))

is surjective.

Via the Kummer sequence, one easily sees that this is equivalent to
the finiteness of the ¢-primary component Br(X){¢} of the Brauer
group Br(X) := H%(X,Gp,) (finiteness which itself is related to
the conjectured finiteness of Tate-Shafarevich groups of abelian
varieties over a global field F(C)).

The conjecture is known for geometrically separably unirational
varieties (easy), for abelian varieties (Tate) and for most
K3-surfaces.



For any i > 1, there is an f-adic cycle class map
CH'(X) ® Zy — H? (X, Zy(i))

from the Chow groups of codimension i cycles to the projective
limit of the (finite) étale cohomology groups H? (X, ,u%’), which is
a Zg-module of finite type.

For i > 1, Tate conjectured that the cycle class map
CH'(X) ® Qp — H* (X, Qq(i)) := H* (X, Ze(i)) @z, Q¢

is surjective. Very little is known.



For i > 1, ne may give examples where the statement with Z,

coefficients does not hold. However, for X of dimension d, it is
unknown whether the integral Tate conjecture Ty = T~ for

I-cycles holds :

(T1) The map CHY"Y(X) ® Zy — H?>I=2(X,Zy(d — 1)) is onto.

Under T1 for X, the cokernel of the above map is finite.
Under T for all surfaces, a limit version of Ty, over an algebraic
closure of I, holds for any X (C. Schoen 1998).



For d =2, Ty = T, original Tate conjecture.

For arbitrary d, the integral Tate conjecture for 1-cycles holds for
X of any dimension d > 3 if it holds for any X of dimension 3.
This follows from the Bertini theorem, the purity theorem, and the
affine Lefschetz theorem in étale cohomology.

For X of dimension 3, some nontrivial cases have been established.
e X is a conic bundle over a geometrically ruled surface (Parimala
and Suresh 2016).

e X is the product of a curve of arbitrary genus and a
geometrically rational surface (Pirutka 2016).



For smooth projective varieties X over C, there is a formally
parallel surjectivity question for cycle maps

CH'(X) — Hdg*(X,Z)

where Hdg?/(X,Z) C HZ....(X,Z) is the subgroup of rationally
Hodge classes. The surjectivity with Q-coefficients is the famous
Hodge conjecture. With integral coefficients, several
counterexamples were given, even with dim(X) = 3 and 1-cycles.
A recent counterexample involves the product X = E x S of an
elliptic curve E and an Enriques surface. For fixed S, provided E is
“very general”, the integral Hodge conjecture fails for X
(Benoist-Ottem). The proof uses the fact that the torsion of the

Picard group of an Enriques surface is nontrivial, it is Z/2.



It is reasonable to investigate the Tate conjecture for cycles of
codimension i > 2 assuming the original Tate conjecture :

TL, : The surjectivity conjecture T1 is true for cycles of
codimension 1 over any smooth projective variety.

Theorem (CT-Scavia 2020). Let IF be a finite field, F a Galois
closure, G = Gal(F/F). Let E/F be an elliptic curve and S/F be
an Enriques surface. Let X = E xy S. Let £ be a prime different
from p = char.(F). Assume T},.

If ¢ 2, orif £ =2 but E(IF) has no nontrivial 2-torsion, then the
map CH?(X) ® Zy — H*(X,Z(2)) is onto.



We actually prove a general theorem, for the product X = C x §
of a curve C and a surface S which is geometrically CHy-trivial,
which here means :

Over any algebraically closed field extension Q of F, the degree
map CHy(Sq) — Z is an isomorphism.

In that case Pic(Sq) is a finitely generated abelian group.

For F a Galois closure of F, G = Gal(FF/F), and J the jacobian of
C, still assuming T2, we prove that CH*(X) ® Z¢ — H*(X, Z(2))
is onto under the condition Homg (Pic(Sz){¢}, J(F)) = 0.

We do not know whether this condition is necessary.

The case Pic(S5){¢} = 0 is a theorem of A. Pirutka (2016).



In the rest of the talk, | shall sketch some ingredients of the proof.




Let M be a finite Galois-module over a field k. Given a smooth,
projective, integral variety X/k with function field k(X), and i > 1
an integer, one lets

Har(k(X), M) := Ker[H'(k(X), M) = @, exay H'™ (k(x), M(~1))]

Here k(x) is the residue field at a codimension 1 point x € X, the
cohomology is Galois cohomology of fields, and the maps on the
right hand side are “residue maps"”.

One is interested in M = u?ﬁj =Z/0"(j), hence M(—-1) = uﬁ(kl),
and in the direct limit Q;/Z,(j) = limju?;j, for which the
cohomology groups are the limit of the cohomology groups.



The group H}, (k(X),Q¢/Z¢) = HL(X,Qq¢/Zy) classifies £-primary
cyclic étale covers of X.

The group
Han(K(X), Qe/Ze(1)) = Br(X){¢}

turns up in investigations on the original Tate conjecture for
divisors.

As already mentioned, its finiteness for a given X is equivalent to
the /-adic Tate conjecture for codimension 1 cycles on X.



The group H3,(k(X),Q¢/Z¢(2)) is mysterious. It turns up when
investigating cycles of codimension 2.

For k = F a finite field, examples of X with dim(X) > 5 and
H3,(F(X), Q¢/Ze(2)) # 0 are known (Pirutka 2011).

Open questions :

Is H3.(F(X), Q¢/Z(2)) of cofinite type?
Is H3.(F(X), Q¢/Z(2)) finite?
2))

Is H3,(F(X), Q/Z(2)) = 0 if dim(X) =37
[Known for a conic bundle over a surface, Parimala—Suresh 2016]



Theorem (Kahn 2012, CT-Kahn 2013) For X /F smooth, projective
of arbitrary dimension, the torsion subgroup of the (conjecturally
finite) group

Coker[CH?*(X) ® Zy — H*(X, Z¢(2))]

is isomorphic to the quotient of H3.(F(X), Q¢/Z¢(2)) by its
maximal divisible subgroup.

There is an analogue of this for the integral Hodge conjecture
(CT-Voisin 2012).



A basic exact sequence (CT-Kahn 2013). Let F be an algebraic
closure of F, let X = X xp FF and G = Gal(F/F).

For X/IF a smooth, projective, geometrically connected variety over
a finite field, long exact sequence

0 — Ker[CH?(X){t} — CH*(X){£}] — HY(F, H*(X,Q¢/Z(2)))
— Ker[H3,(F(X), Qe/Z(2)) — H3(F(X),Qu/Z(2))]
— Coker[CH?(X) — CH?*(X)®]{¢} — 0.

The proof relies on early work of Bloch and on the
Merkurjev-Suslin theorem (1983). Via Deligne's theorem on the
Weil conjectures, one has

HY(F, H*(X, Q¢/Z4(2))) = H'(F, H*(X, Z4(2))ors)

and this is finite.



For X a curve, all groups in the sequence are zero.
For X a surface, H3(F(X), Q¢/Z¢(2)) = 0.
For X /F a surface, one also has

This vanishing was remarked in the early stages of higher class field
theory (CT-Sansuc-Soulé, K. Kato, in the 80s). It uses a theorem
of S. Lang, which relies on Tchebotarev's theorem.



For our 3-folds X = C x S, S as above, we have an isomorphism
of finite groups

Coker[CH?(X) @ Zy — H* (X, Zy(2))] ~ H3 (F(X), Q¢/Z(2)),

and, under the assumption T! for all surfaces over a finite field, a
theorem of Chad Schoen implies H3 (F(X), Q¢/Z¢(2)) = 0.

Under T for all surfaces, for our threefolds X = C x S with S
geometrically CHy-trivial, we thus have an exact sequence of finite
groups

0 — Ker[CH*(X){t} — CH*(X){£}] = HY(F, H3(X, Z¢(2))tors)

Ox, H3 (F(X),Q;/Z¢(2)) — Coker[CH?*(X) — CH?*(X)C]{¢} — 0.



Under T for all surfaces, for our threefolds X = C x S with S
geometrically CHy-trivial, the surjectivity of

CH*(X) ® Z¢ — H*(X, Z¢(2))

(integral Tate conjecture) is therefore equivalent to the
combination of two hypotheses :

Hypothesis 1
The composite map

px + HY(F, H (X, Qe/Z4(2))) = H>(F(X), Qe/Z4(2))

of Ox and H3 (F(X),Q¢/Z¢(2)) C H3(F(X),Q¢/Z¢(2)) vanishes.
Hypothesis 2 Coker[CH?(X) — CH?(X)€¢]{¢} = 0.



Hypothesis 1 is equivalent to each of the following hypotheses :

Hypothesis 1a. The (injective) map from
Ker[CH?(X){¢} — CH*(X){¢}]
to the (finite) group
HY(F, H?(X, Qe/Z4(2))) = H'(F, H*(X, Z4(2)) tors)

is onto.

HypotheS|s lb For any n > 1, if a class £ € H3(X, u& %) vanishes
in H3(X, 11532), then it vanishes after restriction to a suitable
Zariski open set U C X.



For all we know, these hypotheses 1,1a,1b could hold for any
smooth projective variety X over a finite field.

For X of dimension > 2, we do not see how to establish them
directly — unless of course when the finite group H3(X, Z¢(2))tors
vanishes.

The group H3(X, Z(1))tors is the nondivisible part of the
¢-primary Brauer group of X.

The finite group HY(FF, H3(X, Z¢(1))tors) is thus the most easily
computable group in the 4 terms exact sequence.

For char(F) # 2, £ =2, X = E xg S product of an elliptic curve E
and an Enriques surface S, one finds that this group is
E(M[2]e®Z)2.



Discussion of Hypothesis 1 : The map
px + HY(F, H2(X,Q¢/Z¢(2))) — H3(F(X), Q¢/Z¢(2)) vanishes.

This map is the composite of the Hochschild-Serre map
HY(F, H*(X,Qe/Ze(2))) — H(X, Qe/Ze(2)))

with the restriction to the generic point of X.

We prove :

Theorem. Let Y and Z be two smooth, projective geometrically
connected varieties over a finite field F. Let X = Y Xy Z. Assume
that the Néron-Severi group of Z is free with trivial Galois action.
If the maps py and pz vanish, then so does the map px.



On must study H(F, H2(X, u?ﬁz)) under restriction from X to its
generic point.

As may be expected, the proof uses a Kiinneth formula, along with
standard properties of Galois cohomology of a finite field.

As a matter of fact, it is an unusual Kiinneth formula, with
coefficients Z/£", n > 1. That it holds for H? of the product of
two smooth, projective varieties over an algebraically closed field, is
a result of Skorobogatov and Zarhin (2014), who used it in an
other context (the Brauer-Manin set of a product).

Corollary. For the product X of a surface and arbitrary many
curves, the map px vanishes.

This establishes Hypothesis 1 for the 3-folds X = C xg S under
study.



Discussion of Hypothesis 2 :
Coker[CH?(X) — CH?(X)¢]{¢} = 0.
For X of dimension at least 5, A. Pirutka gave counterexamples.

Here we restrict to the special situation : C is a curve, S is
geometrically CHop-trivial surface, and X = C xp S.

One lets K = F(C) and L = F(C).

On considers the projection X = C x § — C, with generic fibre
the K-surface Sk. Restriction to the generic fibre gives a natural
map from

Coker[CH?(X) — CH*(X)®]{¢}

to
Coker[CH?(Sk) — CH?(S.)C]{¢}.



Using the hypothesis that S is geometrically CHp-trivial, which
implies by = 0 and by — p = 0 (Betti number b;, rank p of
Néron-Severi group), one proves :

Theorem. The natural, exact localisation sequence
Pic(C) @ Pic(S) — CH?*(X) — CH?*(S.) — 0.

may be extended on the left with a finite p-group.



To prove this, we use correspondences on the product X = C x S,
over F.

We use various pull-back maps, push-forward maps, intersection
maps of cycle classes :

Pic(C) ® Pic(S) — Pic(X) ® Pic(X) — CH?(X)
CH?(X)®Pic(S) — CH?*(X)®@Pic(X) — CH3(X) = CHo(X) — CHo(C)
Pic(C) @ Pic(S) — CH?(X) = CHy(X) — CHy(S) = Pic(S)



Not completely standard properties of G-lattices for G = Gal(F/F)
applied to the (up to p-torsion) exact sequence of G-modules

0 — Pic(C) ® Pic(S) — CH?*(X) — CH?*(S.) — 0

then lead to :

Theorem. The natural map from Coker[CH?(X) — CH?(X)¢]{¢}
to Coker[CH?(Sk) — CH?(S.)®]{¢} is an isomorphism.

(Recall K =F(C) and L =TF(C).)

One is thus left with controlling this group. Under the
CHo-triviality hypothesis for S, it coincides with

Coker[CH?(Sk){¢} — CH?(S.){¢}°].



At this point, for a geometrically CHp-trivial surface over

L= F(C) which is a field of cohomological dimension 1, like T,
using the K-theoretic mechanism, one may produce an exact
sequence parallel to the basic four-term exact sequence over F
which we saw at the beginning. In the particular case of the
constant surface S; = S Xy L, the left hand side of this sequence
gives an injection

0— AO(SL){E} — Hé’alois(Lv H3(§7 Zf(z){g})

where Ag(S.) C CH?(S.) is the subgroup of classes of zero-cycles
of degree zero on the L-surface S;.



Study of this situation over completions of F(C) (Raskind 1989)
and a good reduction argument in the weak Mordell-Weil style, plus
a further identification of torsion groups in cohomology of surfaces
over an algebraically closed field then yield a Galois embedding

Ao(S){¢} — Homy(Pic(S){¢}, J(C)(F)),
hence an embedding

Ao(SL){C}E — Homg(Pic(S){£}, J(C)(F)).



If this group Homg(Pic(S){¢}, J(C)(F)) vanishes, then
Coker[CH?(Sk){¢} — CH?*(S.){¢}°] =0

hence
Coker[CH?(X) — CH*(X)®]{¢} =0,

which is Hypothesis 2, and completes the proof of the theorem :




Theorem (CT/Scavia) Let F be a finite field, G = Gal(F/F). Let ¢
be a prime, { # char.(F). Let C be a smooth projective curve over
F, let J/F be its jacobian, and let S/F be a smooth, projective,
geometrically CHy-trivial surface. Let X = C X S.

Assume the usual Tate conjecture for codimension 1 cycles on
varieties over a finite field.

Under the assumption

(++)  Homg(Pic(S5){¢}, J(F)) = 0,

the cycle class map CH?(X) ® Zy — H2.(X, Z¢(2)) is onto.

Basic question : Is the assumption (x%) necessary ?



Concrete case

Let p # 2 and let E be an elliptic curve defined by the affine
equation y? = P(x) with P € F[x] a separable polynomial of
degree 3.

Let S/ be an Enriques surface. Then Pic(Sz)tors = Z/2,
automatically with trivial Galois action.

The assumption (xx) reads : E(F)[2] = 0, which translates as :
P € F[x] is an irreducible polynomial. .

Thus, for p # 2 and P(x) € F[x] reducible, the integral Tate
conjecture T1(X,Zy) for X = E X S remains open.



What we have done should be confronted with the situation over
the complex field, which actually stimulated our work.
For X a smooth projective variety over C there is a cycle map

CH'(X) — Hdg*(X,Z) C Hpi(X, 7).

whose cokernel is conjecturally finite (Hodge conjecture). If the
map is onto, one says the integral Hodge conjecture holds.

Theorem (Benoist-Ottem 2018). Let S be an Enriques surface over
C. Then the integral Hodge conjecture for codimension 2 cycles
fails for the product X = E x S of S and a “very general * elliptic
curve.

The proof uses a degeneration technique of E to G, which one
may already find in a paper of Gabber (2002).



Using earlier joint work with C. Voisin on the connexion between
the integral Hodge conjecture for codimension 2 cycles and
unramified H3, | could extend the result of Benoist-Ottem. In
particular :

Theorem (CT, 2018). Let Y be a smooth projective variety over C
with Br(Y) # 0. Assume that Y is a geometrically CHy-trivial
variety. Then there exists an elliptic curve E such that the integral
Hodge conjecture for codimension 2 cycles fails on X = E x Y. If
Y is defined over a number field, it fails for X if the j-invariant of
E is transcendental.



