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The Hasse principle in a pencil of algebraic varieties

J.-L. Colliot-Thélène

Abstract. Let k be a number field, X/k a smooth, projective, geometrically
connected variety and p : X → P1

k
a flat morphism from X to the projective

line, with (smooth) geometrically integral generic fibre. Assume that X has
points in all completions of k. Does there exist a k-rational point m of P1

k
with

smooth fibre Xm = p−1(m) having points in all completions of k ? This may
fail, but known counterexamples can be interpreted by means of the subgroup
of the Brauer group of X whose restriction to the generic fibre of p comes
from the Brauer group of the function field of P1

k
. This fibred version of the

Brauer–Manin obstruction has been at the heart of recent investigations on
the Hasse principle and weak approximation. Work in this area is surveyed in
the present text, which develops the talk I gave at Tiruchirapalli.

1. The Hasse principle, weak approximation
and the Brauer–Manin obstruction

Let k be a number field, let Ω be the set of its places and Ω∞ the set of
archimedean places. Let k denote an algebraic closure of k, and let kv the com-
pletion of k at the place v. Let X/k be an algebraic variety, i.e. a separated
k-scheme of finite type. Given an arbitrary field extension K/k, one lets X(K) =
HomSpec(k)(Spec(K), X) be the set of K-rational points of the k-variety X , and

one writes XK = X ×k K and X = X ×k k. We have obvious inclusions

X(k) →֒ X(Ak) ⊂
∏

v∈Ω

X(kv),

the first one being the diagonal embedding into the set X(Ak) of adèles of X . The
set X(Ak) is empty if and only if the product

∏

v∈Ω X(kv) is empty. When X/k
is proper, e.g. projective, we have X(Ak) =

∏

v∈Ω X(kv). If X is smooth over k
and irreducible, and if U ⊂ X is a non-empty Zariski open set of X , the conditions
X(Ak) 6= ∅ and U(Ak) 6= ∅ are equivalent. Deciding whether the set X(Ak) is
empty or not is a finite task. This prompts:
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Definition 1. The condition X(Ak) = ∅ is the local obstruction to the exis-
tence of a rational point on X. A class C of algebraic varieties defined over k is
said to satisfy the Hasse principle (local-to-global principle) if the local obstruction
to the existence of a rational point on a variety of C is the only obstruction, i.e. if
for X in C the (necessary) condition X(Ak) 6= ∅ implies X(k) 6= ∅.

A ‘counterexample to the Hasse principle’ is a variety X/k such that X(Ak) 6= ∅
but X(k) = ∅.

Classes of varieties known to satisfy the Hasse principle include: quadrics (Le-
gendre, Minkowski, Hasse), principal homogeneous spaces of semisimple, simply
connected (linear) algebraic groups (Kneser, Harder, Tchernousov), projective va-
rieties which are homogenous spaces under connected linear algebraic groups (a
corollary of the previous case, as shown by Harder), varieties defined by a norm
equation NK/k(Ξ) = c for c ∈ k∗ and K/k a finite, cyclic extension (Hasse).
The arithmetic part of the proof of these results is encapsulated in the injection
Br(k) →֒ ⊕v∈Ω Br(kv), which is part of the basic reciprocity sequence from class
field theory:

(1) 0 → Br(k) −→
⊕

v∈Ω

Br(kv)

P

v∈Ω
invv

−−−−−−→ Q/Z → 0

Here Br(F ) denotes the Brauer group of a field F , i.e. the second (continuous)
cohomology group of the absolute Galois group Gal(Fs/F ) acting on the multi-
plicative group F ∗

s of a separable closure Fs of F , viewed as a discrete module. For
each place v, the map invv : Br(kv) →֒ Q/Z is the embedding provided by local
class field theory (an isomorphism with Q/Z if v is a finite place, an isomorphism
with Z/2 if v is a real place, zero if v is complex).

Given a variety X over the number field k, for each place v, the set X(kv) is
naturally equipped with the topology coming from the topology on kv. Given any
set Ω1 ⊂ Ω of places of k, we then have a topology on the product

∏

v∈Ω1
X(kv), a

basis of which is given by open sets of the shape
∏

v∈S Uv ×
∏

v∈Ω1\S X(kv), where

S is a finite subset of Ω1 and Uv ⊂ X(kv), v ∈ S is open. If X/k is proper, hence
X(Ak) =

∏

v∈Ω X(kv), this gives the usual topology on the set of adèles X(Ak).
For any finite set S ⊂ Ω, the projection map

∏

v∈Ω X(kv) →
∏

v∈S X(kv) is open.

Definition 2. Let X/k be a variety over the number field k. One says that
weak approximation holds for X if the diagonal map X(k) →

∏

v∈Ω X(kv) has
dense image, which is the same as requiring: for any finite set S of places of k, the
diagonal map X(k) →

∏

v∈S X(kv) has dense image.

If X/k is proper, this condition is also equivalent to the density of X(k) in
X(Ak) for the adèle topology (but if X/k is not proper, these conditions are far
from being equivalent – think of the case where X is the additive group Ga or the
multiplicative group Gm). If X is smooth over k and irreducible, and if U ⊂ X is a
non-empty Zariski open set of X , then X satisfies weak approximation if and only
if U does.

According to this definition, if X satisfies weak approximation, then it satisfies
the Hasse principle. The reader should be aware that in many earlier papers, weak
approximation is defined only under the additional assumption X(k) 6= ∅.
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In parallel with the Hasse principle, one studies weak approximation, for a
number of reasons:

(a) the techniques are similar ;
(b) proofs of the Hasse principle often yield a proof of weak approximation

at the same stroke (taking S = Ω∞, for specific classes of varieties, one thus gets
positive answers to questions raised by Mazur [Maz2], even in cases where the group
of birational automorphisms does not act transitively on rational points);

(c) weak approximation on a smooth irreducible variety implies Zariski density
of rational points, as soon as there is at least one such point;

(d) proofs of the Hasse principle often rely on the weak approximation property
for some auxiliary variety.

Weak approximation holds for affine space An
k and projective space Pn

k . More
generally, it holds for any smooth irreducible k-variety which is k-birational to affine
space, for instance for varieties defined by a norm equation NK/k(Ξ) = 1 when K/k
is a finite, cyclic extension of k (this is a consequence of Hilbert’s theorem 90). It
also holds for semisimple, simply connected (linear) algebraic groups ([Pl/Ra] VII.3,
Prop. 9).

Once the Hasse principle has been defined, one cannot but admit: it very rarely
holds ! Indeed, (subtle) counterexamples to the Hasse principle for smooth, irre-
ducible varieties have been exhibited among: varieties defined by a norm equation
NK/k(Ξ) = c when K/k is not cyclic, e.g. when K/k is Galois with group (Z/2)2

(Hasse and Witt in the 30’s), curves of genus one (Reichardt and Lind in the 40’s),
in particular the curve defined by the famous diagonal equation 3x3 +4y3+5z3 = 0
(Selmer in the 50’s), principal homogeneous spaces under some semisimple algebraic
groups (Serre in the 60’s, [Se1], III.4.7), smooth cubic surfaces (Swinnerton-Dyer,
1962), then the diagonal cubic surface 5x3 + 9y3 + 10z3 + 12t3 = 0 (Cassels and
Guy, 1966), conic bundles over the projective line, such as the surface given by
y2 + z2 = (3− x2)(x2 − 2) (Iskovskikh, 1970), smooth intersections of two quadrics
in P4

k (Birch and Swinnerton-Dyer, 1975), singular intersections of two quadrics in
P5

k.
Similarly, even under the additional assumption X(k) 6= ∅ and X smooth and ir-

reducible, weak approximation quite often fails. Counterexamples have been found
among varieties defined by a norm equation NK/k(Ξ) = 1 when K/k is not cyclic,

e.g. when K/k is Galois with group (Z/2)2, curves of genus one (even when ratio-
nal points are Zariski dense on them), principal homogeneous spaces under some
semisimple algebraic groups (Serre), smooth cubic surfaces (Swinnerton-Dyer). Af-
ter Faltings’ theorem (Mordell’s conjecture), weak approximation clearly fails for
any curve of genus at least 2 possessing at least one rational point.

As it turns out, the arguments underlying the counterexamples just listed can
all be cast in a common mould, namely the Brauer–Manin obstruction to the Hasse
principle, described by Manin [Ma1] in his talk at the ICM in 1970. A similar
obstruction (the same indeed) accounts for the quoted counterexamples to weak
approximation ([CT/San3]).

Let Br(X) denote the (Grothendieck) Brauer group of a scheme X , namely
H2

ét(X,Gm). If X = Spec(F ) is the spectrum of a field F , then Br(X) = Br(F ).
If X is a k-variety, F/k a field extension, and A ∈ Br(X) an element of the Brauer
group, functoriality yields an evaluation map evA : X(F ) → Br(F ), sending the
point P ∈ X(F ) to the fibre A(P ) of A at P .
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Lemma 1. Let X/k be a smooth, proper, irreducible variety over the number
field k, and let A ∈ Br(X).

(i) For each place v ∈ Ω, the evaluation map evA : X(kv) → Br(kv) ⊂ Q/Z is
continuous and has finite image.

(ii) There exists a finite set SA ⊂ Ω of places of k such that for v /∈ SA, the
evaluation map evA : X(kv) → Br(kv) ⊂ Q/Z is zero.

Let X/k be a variety over k, and let A ∈ Br(X). We have the basic commutative
diagramme:

X(k) −֒−−−→ X(Ak)





y

evA





y

evA

Br(k) −−−−→
⊕

v∈Ω

Br(kv) −−−−→ Q/Z

H
H

H
HHj

θA

where the vertical map lands in the direct sum by the lemma. That sequence (1) is
exact says in particular that the bottom composite map is zero (this is a general-
ization of the classical quadratic reciprocity law). As indicated in the diagramme,
we denote by θA the composite map

θA : X(Ak) →
⊕

v∈Ω

Br(kv) → Q/Z.

We let Ker(θA) ⊂ X(Ak) denote the inverse image of 0 ∈ Q/Z. By lemma 1, this
is a closed and open set of X(Ak).

Let B ⊂ Br(X) be a subgroup of the Brauer group. Let us define

X(Ak)B =
⋂

A∈B

Ker(θA) ⊂ X(Ak)

and X(Ak)Br = X(Ak)Br(X). Because of the continuity statement in Lemma 1, the
closure X(k)cl of X(k) in X(Ak) is contained in X(Ak)Br. Let us state this as:

Proposition 2. Let X/k be a smooth, proper, irreducible variety over a num-
ber field k, and let B ⊂ Br(X) be a subgroup of the Brauer group of X. We have
the natural inclusions

X(k)cl ⊂ X(Ak)Br ⊂ X(Ak)B ⊂ X(Ak)

of closed subsets in X(Ak) =
∏

v∈Ω X(kv).

Clearly, if X(Ak) 6= ∅ but X(Ak)B = ∅ for some B, then we have a coun-
terexample to the Hasse principle. What Manin [Ma1] noticed in 1970 was that
this simple proposition accounts for most counterexamples to the Hasse principle
hitherto known – the Cassels and Guy example awaited 1985 (work of Kanevsky,
Sansuc and the author) to be fit into the Procustean bed without damage. In these
counterexamples, the rôle of sequence (1) is played by some explicit form of the reci-
procity law. Clearly again, if X/k is proper and the inclusion X(Ak)B ⊂ X(Ak) is
strict, i.e. if X(Ak)B 6= X(Ak), then weak approximation fails for X : that most
known counterexamples to weak approximation can be explained in this fashion
was pointed out in 1977 (see [CT/San3]).
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Several remarks are in order.
(i) The set X(Ak)B only depends on the image of B under the projection map

Br(X) → Br(X)/Br(k). More precisely, if Ai ∈ B, i ∈ I, generate the image
of B in Br(X)/Br(k), then X(Ak)B = ∩i∈IKer(θAi

). If the set I is finite, then
the closed subset X(Ak)B ⊂ X(Ak) is also open. If the geometric Picard group
Pic(X) is torsionfree, which implies that the coherent cohomology group H1(X, OX)
vanishes, and if the coherent cohomology group H2(X, OX) also vanishes, then the
quotient Br(X)/Br(k) is finite, hence X(Ak)Br is open in X(Ak).

(ii) From a theoretical point of view, the best choice for B ⊂ Br(X) is Br(X)
itself. However, for concrete computations, one prefers to use only finitely many
elements in Br(X).

(iii) Suppose X(Ak)B 6= X(Ak). Then we may be more precise about the
set of places where weak approximation fails. Indeed, there then exists a family
{Mv}v∈Ω ∈ X(Ak), and an A ∈ B ⊂ Br(X) such that

∑

v∈Ω invv(A(Mv)) 6= 0. If
we let SA be as in lemma 1 (ii), then the diagonal map X(k) →

∏

v∈SA
X(kv) does

not have dense image.
(iv) One may formulate a version of Lemma 1 and Proposition 2 for the set

of adèles X(Ak) of a not necessarily proper variety X/k, but until now this has
been of little use. Even when one studies homogeneous spaces of a linear algebraic
group, as Sansuc [San2] and Borovoi [Bo] do, the elements of the Brauer group of
such a space E which turn out to play the main rôle may be shown to lie in the
image of the Brauer group of smooth compactifications of E.

From now on we shall assume X/k smooth, proper, and geometrically irre-
ducible. Let us recall some terminology. The condition X(Ak)Br = ∅ is the
Brauer–Manin obstruction to the existence of a rational point on X . The condition
X(Ak)B = ∅ is the Brauer–Manin obstruction to the existence of a rational point
on X attached to B ⊂ Br(X). We shall sometimes refer to it as the B-obstruction
to the existence of a rational point on X . When we already know X(Ak) 6= ∅,
the condition X(Ak)Br = ∅ is also referred to as the Brauer–Manin obstruction to
the Hasse principle. For a class C of algebraic varieties over k, suppose that we
have a standard way of defining a subgroup B(X) ⊂ Br(X) for any X ∈ C (e.g.
B(X) = Br(X)). We say that the Brauer–Manin obstruction to the existence of
a rational point attached to B is the only obstruction for C if, for X ∈ C, the
conditions X(k) 6= ∅ and X(Ak)B(X) 6= ∅ are equivalent.

Similarly, the condition X(Ak)Br 6= X(Ak) is the Brauer–Manin obstruction to
weak approximation on X . The condition X(Ak)B 6= X(Ak) is the Brauer–Manin
obstruction to weak approximation on X attached to B. We shall sometimes refer
to it as the B-obstruction to weak approximation on X . We say that the Brauer–
Manin obstruction attached to B is the only obstruction to weak approximation
for X if the inclusion X(k)cl ⊂ X(Ak)B is an equality. This then implies X(k)cl =
X(Ak)Br = X(Ak)B . It also implies that the B-obstruction to the existence of a
rational point on X is the only obstruction.

Suppose that the image of B in Br(X)/ Br(k) is finite and X(k)cl = X(Ak)B .
Assume X(k) 6= ∅. Then:

(i) For any finite set S of places of k, the closure of the image of the diagonal
map X(k) →

∏

v∈S X(kv) is open. In particular X(k) is Zariski-dense in X .
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(ii) There exists a finite set of places S0 of k such that for any finite set of
places S of k with S ∩S0 = ∅, the image of the diagonal map X(k) →

∏

v∈S X(kv)
is dense, i.e. weak weak approximation holds (cf. [Se2]).

Two theorems are particularly noteworthy. The first one is Manin’s reinterpre-
tation ([Ma2], VI.41.24, p. 228) of results of Cassels and Tate.

Theorem 3 (Manin). Let X/k be a curve of genus one. Assume that the Tate–
Shafarevich group of the Jacobian of X is a finite group. Then the Brauer–Manin
obstruction to the existence of a rational point on X is the only obstruction: if
X(Ak)Br 6= ∅, then X(k) 6= ∅. More precisely, let Br0(X) ⊂ Br(X) be the kernel
of the map Br(X) →

∏

v∈Ω Br(Xkv
)/ Br(kv). The Br0(X)-obstruction is the only

obstruction: if X(Ak)Br0(X) 6= ∅, then X(k) 6= ∅.

Conjecturally, the Tate–Shafarevich group of any abelian variety is a finite
group (remarkable results in this direction are due to Rubin and to Kolyvagin,
see [Maz1].) The theorem can be extended to cover principal homogeneous spaces
of abelian varieties. Lan Wang [W] has established an analogous result for weak
approximation on an abelian variety A, namely that the closure of A(k) in A(Ak)
coincides with A(Ak)Br, under some additional condition. She still assumes the
finiteness of the Tate–Shafarevich group of A, but there is a well-known additional
difficulty here. Over the real or the complex field kv, the Brauer group of a variety X
over kv cannot make any difference between two points in the same connected com-
ponent of X(kv). Thus for an abelian variety A over a number field k, a statement
like Theorem 4 below can hold only if one makes the additional assumption that
the closure of the image of the diagonal map A(k) →

∏

v∈Ω∞
A(kv) contains the

connected component of identity (if A were a connected linear algebraic group, this
would be automatic). This is precisely the additional assumption which L. Wang
makes. Waldschmidt [Wald] has given sufficient conditions for this to hold. This
problem is related to questions raised by Mazur [Maz2] [Maz3].

The second theorem builds upon work of Kneser, Harder, and Tchernousov
for principal homogeneous spaces under semisimple, simply connected groups, and
of Sansuc [San2], who handled the case of principal homogeneous spaces under
arbitrary connected linear groups.

Theorem 4 (Borovoi) [Bo]. Let G be a connected linear algebraic group over
k, let Y be a homogeneous space under G, and let X be a smooth, projective com-
pactification of Y (i.e. Y is a dense open set in the smooth, projective variety X).
Assume that the geometric stabilizer (isotropy group of an arbitrary k-point of Y )
is a connected group. Then the Brauer–Manin obstruction to weak approximation,
and in particular to the existence of a rational point on X, is the only obstruction
for X. More precisely, let Br0(X) ⊂ Br(X) be the kernel of the map

Br(X) →
∏

v∈Ω

Br(Xkv
)/ Br(kv).

The Br0(X)-obstruction to weak approximation, and in particular to the existence
of a rational point on X, is the only obstruction.

These two theorems should not lead one to hasty generalizations: many coun-
terexamples, such as Swinnerton-Dyer’s cubic surface, or Iskovskih’s conic bundle,
depend on bigger subgroups of the Brauer group. This is clearly also the case for
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Harari’s ‘transcendental example’ [Ha3]: here the obstruction involves an element
of Br(X) which does not vanish in Br(X).

These two theorems could nevertheless induce us into asking the question:
Is the Brauer–Manin obstruction the only obstruction to the existence of a

rational point (resp. to weak approximation) for arbitrary smooth projective vari-
eties ?

For arbitrary varieties, the answer to that question is presumably NO. Indeed,
a positive answer would imply that the Hasse principle and weak approximation
hold for smooth complete intersections of dimension at least 3 in projective space,
e.g. non-singular hypersurfaces f(x0, x1, x2, x3, x4) = 0 in projective space P4, of
arbitrary degree d. The weak approximation statement would contradict the gener-
alization of Mordell’s conjecture to higher dimension, which predicts in particular
that rational points on such hypersurfaces are not Zariski-dense as soon as d ≥ 6.
As for the Hasse principle, Sarnak and Wang [S/W], using the (elementary) fibra-
tion method (Theorem 6 below), have shown that this would contradict Lang’s
conjecture (a variation on the Mordell conjecture theme) that a smooth, projective
variety X/Q such that X(C) is hyperbolic has only finitely many Q-rational points.

One should also bear in mind some examples of curves of genus at least two
given by Coray and Manoil [Co/Ma]. The principle of their counterexamples to
the Hasse principle is simple: they produce curves X/k equipped with a dominant
k-morphism f : X → Y to a curve of genus one such that Y (k) is non-empty, finite
and explicitly known, f−1(Y (k)) = ∅ by inspection, and X(Ak) 6= ∅ (easy to check).
The problem here is that the group Br(X)/ Br(k) is huge, and we do not have a
finite algorithm for computing the Brauer–Manin obstruction.

On the basis of Theorems 3 and 4, and of the various results to be discussed
later, it nevertheless makes sense to put forward:

Conjecture 1. Let X/k be a smooth, projective, geometrically irreducible va-
riety, and let p : X → P1

k be a dominant (flat) morphism. Assume:
(α) the generic fibre of p is birational to a homogeneous space Y of a connected

algebraic group G over k(P1), and the geometric stabilizer of the action of G on Y
is connected.

(β) For any closed point M ∈ P1
k, the fibre XM = p−1(M) contains a compo-

nent of multiplicity one.
Then the Brauer–Manin obstruction to the existence of a rational point on X

is the only obstruction. If G is a linear group, the Brauer–Manin obstruction to
weak approximation for X is the only obstruction.

The geometric stabilizer is the isotropy group of an arbitrary geometric point
of the homogeneous space. The connectedness assumption for this stabilizer may
be necessary. Indeed, Borovoi and Kunyavskǐı [Bo/Ku] have recently produced a
homogeneous space of a connected linear algebraic group with (non-commutative)
finite geometric stabilizer, which is a counterexample to the Hasse principle, and
for which it is unclear whether the Brauer–Manin obstruction holds.

Condition (β) is equivalent to condition

(β′) For any point m ∈ P1(k), the fibre Xm contains a component of multiplicity
one.
This condition in turn is implied by condition

(γ) The map p has a section over k.



8 J.-L. COLLIOT-THÉLÈNE

This last condition is automatically satisfied if G in (α) is a connected linear
algebraic group (indeed, in that case, the fibration p admits a section over k, by a
theorem of Serre). On the other hand, if one drops condition (β), and G is an elliptic
curve, then it may happen that X(k) is not Zariski-dense in X ([CT/Sk/SD2]).

2. Fibrations

We shall explore ways of proving the Hasse principle (and weak approximation)
by fibring a variety into hopefully simpler smaller dimensional varieties. Let us
first fix standard assumptions. Let X/k be a smooth, projective, geometrically
irreducible variety over the field k. In this survey, we shall say that p : X → P1

k is
a fibration if the map p is dominant (hence flat) and the generic fibre Xη over the
field k(P1) is smooth (automatic if char(k)= 0) and geometrically irreducible.

Let k be a number field and p : X → P1
k be a fibration. A näıve question would

be: Assume that the Hasse principle (resp. weak approximation) holds for (smooth)
fibres Xm = p−1(m) for m ∈ P1(k); does it follow that the Hasse principle (resp.
weak approximation) holds for X ?

Iskovskih’s example, a one parameter family of conics, shows that the answer
in general is in the negative: in this case, X has points in all completions of k,
but for each fibre Xm over a k-point m ∈ P1(k), there is at least one completion
kv (depending on m) such that Xm(kv) = ∅ (otherwise, from the Hasse principle
for conics, we would conclude X(k) 6= ∅). There are similar examples which give a
negative answer to the question on weak approximation even when X(k) 6= ∅.

Before we raise what we feel are the relevant questions, we need a definition
(see [Sk2]). Let p : X → P1

k a fibration. Let Brvert(X) ⊂ Br(X) be the subgroup
consisting of elements A ∈ Br(X) whose restriction to the generic fibre Xη lies in
the image of the map Br(k(P1

k)) → Br(Xη). If the map p does not have a section
(over k), this group may be bigger than the image of Br(k) = Br(P1

k) under p∗.
By ‘vertical’ Brauer–Manin obstruction to the existence of a rational point (resp.
weak approximation), we shall mean the obstruction attached to the subgroup
Brvert(X) ⊂ Br(X). We have a fibred version of Proposition 2 :

Proposition 5. Let p : X → P1
k be a fibration. Let R ⊂ P1(k) be the set

of points m ∈ P1(k) whose fibre Xm is smooth and satisfies Xm(Ak) 6= ∅. Let
R1 ⊂ R be the set of points m ∈ P1(k) whose fibre Xm is smooth and satisfies
Xm(Ak)Br(Xm) 6= ∅.

Let Rcl, resp. Rcl
1 , be the closure of R, resp. R1, under the diagonal embedding

P1(k) →֒ P1(Ak). We then have inclusions of closed subsets:

Rcl ⊂ p(X(Ak)Brvert) ⊂ p(X(Ak)) ⊂ P1(Ak)

and
Rcl

1 ⊂ p(X(Ak)Br) ⊂ p(X(Ak)) ⊂ P1(Ak).

In particular, if there exists a point m ∈ P1(k) whose fibre Xm is smooth and
satisfies Xm(Ak) 6= ∅, then X(Ak)Brvert 6= ∅ : there is no vertical Brauer–Manin
obstruction to the existence of a rational point on X.

In the light of the work to be discussed in the next subsections, and of Propo-
sition 5, it seems natural to raise the following general questions (for pencils of
Severi-Brauer varieties, see also [Se1, p. 125]). We shall restrict attention to fibra-
tions satisfying condition
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(β) For any closed point M ∈ P1
k, the fibre XM contains a component of

multiplicity one.

Using the Faddeev exact sequence for the Brauer group of the function field of
k(P1

k), we see that, under (β), the quotient Brvert(X)/ Br(k) is finite and essentially
computable (cf. [Sk2]). Finiteness of that quotient then implies that the (closed)
set X(Ak)Brvert is open in X(Ak).

Question 1. Let k be a number field, and let p : X → P1
k be a fibration

satisfying (β). Let R ⊂ P1(k) be the set of points m ∈ P1(k) whose fibre Xm is
smooth and satisfies Xm(Ak) 6= ∅. Do we have Rcl = p(X(Ak)Brvert) ?

In other words, let {Mv} ∈ X(Ak)Brvert , and let mv = p(Mv). Is the family
{mv} in the closure of the set T of m ∈ P1(k) such that Xm is smooth and has
points in all completions ? In particular, if X(Ak)Brvert 6= ∅, i.e. if there is no
vertical Brauer–Manin obstruction to the existence of a rational point on X , does
there exist a rational point m ∈ P1(k) whose fibre Xm is smooth and has points in
all completions of k ?

Question 2. Let k be a number field, and let p : X → P1
k be a fibration

satisfying (β). Let R1 ⊂ P1(k) be the set of points m ∈ P1(k) whose fibre Xm is
smooth and satisfies Xm(Ak)Br(Xm) 6= ∅. Do we have Rcl

1 = p(X(Ak)Br) ?

In particular, if X(Ak)Br 6= ∅, i.e. if there is no Brauer–Manin obstruction
to the existence of a rational point on X , does there then exist an m ∈ P1(k)
with smooth fibre Xm, such that Xm(Ak)Br(Xm) 6= ∅, i.e. such that there is no
Brauer–Manin obstruction to the existence of a rational point on Xm?

Giving even partial answers to these questions becomes harder and harder as the
number of reducible geometric fibres of p grows. Let us be more precise. Following
Skorobogatov [Sk2], given an arbitrary closed point M ∈ P1

k, let us say that the
fibre XM over the field kM (residue field of P1

k at M) is split if there exists at least
one component Y of XM in the divisor XM = p−1(M) ⊂ X , satisfying the two
conditions:

(i) its multiplicity in XM is one ;
(ii) the kM -variety Y/kM is geometrically irreducible, i.e. kM is algebraically

closed in the function field kM (Y ) of Y .
As we shall now see, the difficulty to answer the above questions grows with

the integer

δ = δ(p) =
∑

M∈P
1

k
,XMnon-split

[kM : k].

Here M runs through the set of closed points of P1
k, and [kM : k] is the degree

of the finite extension kM/k. If we let δ1(p) be the number of geometric fibres
which are reducible, then we have δ ≤ δ1. In several papers, the invariant δ1 was
used. However, as pointed out by Skorobogatov, it is really δ which measures the
arithmetic difficulty.
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2.1 The case δ ≤ 1.

Let p : X → P1
k be a fibration. If δ(p) = 0, all fibres are split. If δ(p) = 1,

there is one non-split fibre, and it lies over a k-rational point m0 (usually taken as
the point at infinity).

The following theorem admits several variants ([CT/San/SD1] p. 43; Skorobo-
gatov [Sk1]; [CT2]). There are useful extensions of the result over Pn

k rather than
P1

k, see [Sk1].

Theorem 6. Let k be a number field, and let p : X → P1
k be a fibration.

Assume:
(i) δ ≤ 1 ;
(ii) the map p has a section over k.
Then Question 1 has a positive answer. More precisely, let R ⊂ P1(k) be the

set of points m ∈ P1(k) whose fibre Xm is smooth and satisfies Xm(Ak) 6= ∅. Let
H ⊂ P1(k) be a Hilbert subset of P1(k). Then:

(a) The closure of R∩H in P1(Ak) coincides with p(X(Ak)).
(b) If smooth fibres of p over H ⊂ P1(k) satisfy the Hasse principle, then X

satisfies the Hasse principle: it has a k-point provided X(Ak) 6= ∅; more precisely,
p(X(k)) is then dense in p(X(Ak)) ⊂ P1(Ak).

(c) If smooth fibres of p over H ⊂ P1(k) satisfy weak approximation, then X
satisfies weak approximation: X(k) is dense in X(Ak).

As a matter of fact, it was recently realized that assumption (ii) can be replaced
by the weaker assumption (β) (see section 2).The same remark most certainly also
holds for a number of results down below, but the (easy) details have not yet
been written down. As already mentioned, some such condition is necessary (see
[CT/Sk/SD2]).

In the case under consideration here, assumption (β) holds automatically for
M 6= m0. We could therefore replace (ii) by the simple assumption: there exists a
component Y0 ⊂ Xm0

of multiplicity one (we do not require that k be algebraically
closed in the function field k(Y0)).

This ‘fibration technique’ was first used in [CT/San/SD1,2] to prove the Hasse
principle and weak approximation for certain intersections of two quadrics. It was
then used by Salberger and the author to prove the Hasse principle and weak
approximation for certain cubic hypersurfaces, and formalized by Skorobogatov
[Sk1], who studied weak approximation on certain intersections of three quadrics.
The problem in these various papers is to produce fibrations such that the fibres,
which are the basic building blocks, satisfy the Hasse principle (and possibly weak
approximation). In [CT/San/SD1,2], the main building blocks are non-conical,
integral, complete intersections of two quadrics in P4

k, containing a set of two skew
conjugate lines. For such surfaces, the Hasse principle and weak approximation hold
([Ma2], IV.30.3.1). In my joint paper with Salberger, the basic building blocks are
cubic surfaces with a set of three conjugate singular points – here the Hasse principle
is a result of Skolem (1955). In [Sk1], the building blocks are the intersections of two
quadrics for which the Hasse principle and weak approximation had been proved
in [CT/San/SD1,2]. As is clear on these examples, when discussing concrete cases,
one is soon led to consider ‘fibrations’ whose generic fibre need not be smooth. This
can be obviated in a number of ways, for which we refer the reader to the original
papers.
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In the theorem above, no mention is made of the Brauer group. As a matter
of fact, the assumption δ ≤ 1 implies Brvert(X)/ Br(k) = 0, and the conclusion of
the theorem is concerned with the existence of fibres Xm with points everywhere
locally (compare Question 1).

In the next theorem, we still have δ ≤ 1, hence Brvert(X)/ Br(k) = 0, but this
time the whole Brauer group Br(X) is taken into account, and the theorem provides
a positive answer to Question 2 for some fibrations. The following statement is a
slight reformulation of Harari’s result.

Theorem 7 (Harari) [Ha2], [Ha4] . Let k be a number field, and let p : X → P1
k

be a fibration. Let Xηs
denote the geometric generic fibre of p over a separable

closure of k(P1). Assume:
(i) δ ≤ 1 ;
(ii) p admits a section over k ;
(iii) Pic(Xηs

) is torsionfree ;
(iv) the Brauer group of Xηs

is finite ;
Let R1 ⊂ P1(k) be the set of points m ∈ P1(k) whose fibre Xm is smooth and
satisfies Xm(Ak)Br 6= ∅. Let H ⊂ P1(k) be a Hilbert subset. Then:

(a) (R1 ∩H)cl = p(X(Ak)Br).
(b) If the Brauer–Manin obstruction to the existence of a rational point is the

only obstruction for smooth fibres over H, then p(X(k)) is dense in p(X(Ak)Br).
In particular the Brauer–Manin obstruction to the existence of a rational point on
X is the only obstruction: X has a k-point provided X(Ak)Br 6= ∅.

(c) If the Brauer–Manin obstruction to weak approximation on Xm for m ∈ H
is the only obstruction, then the Brauer–Manin obstruction to weak approximation
on X is the only obstruction: X(k) is dense in X(Ak)Br.

It is worth noticing that hypotheses (ii), (iii) and (iv) together imply that the
group Br(X)/ Br(k) is finite.

Hypotheses (iii) and (iv) in Theorem 7 hold for instance if the generic fibre is
geometrically unirational, or if it is a smooth complete intersection of dimension at
least three in projective space.

In specific cases, for purely algebraic reasons, the quotient Br(X)/ Br(k) van-
ishes (whereas it need not vanish for the fibres Xm for general m ∈ P1(k)). In
this case, to assume that there is no Brauer–Manin obstruction to the existence
of a rational point on X is simply to assume that there is no local obstruction:
X(Ak) 6= ∅. One thus gets the corollary (a special case of which had been obtained
by D. Kanevsky in 1985):

Corollary 8 [Ha2]. If the Brauer–Manin obstruction to the existence of a
rational point (resp. to weak approximation) is the only obstruction for smooth
cubic surfaces in P3

k, then the Hasse principle (resp. weak approximation) holds
for smooth cubic hypersurfaces in Pn

k for n ≥ 4.

The assumption made in this corollary is an open question, and the conclusion
a well-known conjecture for n ≤ 7 (using the circle method, Heath-Brown and
Hooley have proved such results for n ≥ 8).

Similarly, one obtains the Corollary (Sansuc and the author, 1986):
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Corollary 9 (see [Ha2]). If the Brauer–Manin obstruction to the existence
of a rational point is the only obstruction for smooth complete intersections of two
quadrics in P4

k, then the Hasse principle holds for smooth complete intersections of
two quadrics in Pn

k for n ≥ 5.

The assumption made in this corollary is an open question (but see section
2.4 below). The conclusion is known to hold for n ≥ 8 ([CT/San/SD2]). Assume
X(k) 6= ∅. Then weak approximation for a smooth complete intersection X in
Pn

k is completely under control: for n ≥ 5, weak approximation holds by an easy
application of Theorem 6 ([CT/San/SD1]), and for n = 4, the Brauer–Manin ob-
struction to weak approximation is the only obstruction. This last statement is a
delicate theorem of Salberger and Skorobogatov [Sal/Sk], which builds upon [Sal1]
and [CT/San3].

The proof of Theorem 7 involves a number of novel ideas. One is a systematic
use of Hilbert’s irreducibility theorem: one looks for points m ∈ P1(k) such that
the action of Gal(k/k) on the geometric Picard group of the fibre Xm is controlled
by the situation over the generic fibre. Another one is a very useful ‘formal lemma’
formulated by Harari ([Ha2], 2.6.1), which is a variant, for arbitrary (ramified)
classes of the Brauer group of the function field k(X) of X , of the Brauer–Manin
condition X(Ak) ⊂ Ker(θA) for unramified classes A ∈ Br(X), and which elaborates
on the following theorem, a kind of converse to Lemma 1 above:

Theorem 10 [Ha2]. Let X/k be a smooth, geometrically irreducible variety
over a number field k. Let U ⊂ X be a non-empty open set of X. If A ∈ Br(U) is
not the restriction of an element of Br(X), then there exists infinitely many places
v ∈ Ω such that the evaluation map evA : U(kv) → Br(kv) ⊂ Q/Z is not constant.

2.2 The case where δ is small.

When the number of ‘degenerate’ fibres is small, a combination of the fibration
method just described and of the descent method developed by Sansuc and the
author ([CT/San2], [CT/San3]) has led to some general results.

Theorem 11 [CT4] [Sal2] . Let k be a number field, and let p : X → P1
k be a

fibration. Assume
(i) The generic fibre Xη is a smooth conic ;
(ii) δ ≤ 4.
Then the Brauer–Manin obstruction to weak approximation (hence to the exis-

tence of a rational point) on X is the only obstruction: X(k) is dense in X(Ak)Br.

For Châtelet surfaces, given by an affine equation y2 − az2 = P (x), with
a ∈ k∗ and P (x) ∈ k[x] a separable polynomial of degree 4, this is a result of
[CT/San/SD2]. For the general case, the proof in [CT4] is also based on descent.
Salberger’s results in [Sal1] (independent of the descent method) led him to an
earlier proof (see [Sal2]) of the result on the existence of a rational point. As for
the weak approximation statement when existence of a k-point is known, see also
[Sal/Sk].

Skorobogatov used the descent technique to study pencils of 2-dimensional
quadrics when the number of reducible fibres is small (general results for δ ≤ 2,
special results for δ = 3). He more recently proved a general result for δ = 2, which
may be reformulated as a positive answer to Question 1 in the case under study:
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Theorem 12 (Skorobogatov) [Sk2]. Let k be a number field and p : X → P1
k

a fibration. Assume:
(i) p admits a section over k ;
(ii) δ = 2 ;
(iii) if a fibre XM/kM over a closed point M is not split, then all its components

have multiplicity one.
Let R ⊂ P1(k) be the set of points m ∈ P1(k) whose fibre Xm is smooth and

satisfies Xm(Ak) 6= ∅. Let H ⊂ P1(k) be a Hilbert set. Then:
(a) The inclusion (R∩H)cl ⊂ p(X(Ak)Brvert) is an equality.
(b) If smooth fibres of p over H satisfy the Hasse principle, then p(X(k)) is

dense in p(X(Ak)Brvert). In particular, the vertical Brauer–Manin obstruction to
the existence of rational points on X is the only obstruction: if X(Ak)Brvert 6= ∅,
then X(k) 6= ∅.

(c) If smooth fibres of p over H also satisfy weak approximation, then X(k)
is dense in X(Ak)Brvert , which then coincides with X(Ak)Br : the vertical Brauer–
Manin obstruction to weak approximation on X is the only obstruction.

When the set of closed points with non-split fibre consists of two rational points
of P1(k), most of the above results can also be obtained by an (unconditional)
application of the technique of the next section (see [CT/Sk/SD1]) – except that
assumption (iii) above has to be replaced by assumption (i) in Theorem 13. The
application is unconditional, because the special case of Schinzel’s hypothesis (H)
it uses is Dirichlet’s theorem on primes in an arithmetic progression.

It would be nice to find a common generalization of Theorem 7 and Theorem 12.

2.3 δ arbitrary (conditional results).

To prove that four-dimensional quadratic forms over a number field k have a
non-trivial zero over k as soon as they have one over each kv for v ∈ Ω, Hasse used
the result for three-dimensional quadratic forms (a consequence of exact sequence
(1)) combined with the generalization for the number field k of Dirichlet’s theorem
on primes in an arithmetic progression. In 1979, Sansuc and the author [CT/San1]
noticed that if one is willing to use a bold generalization of Dirichlet’s theorem,
and of the conjecture on twin primes, namely the conjecture known as Schinzel’s
hypothesis (H), then Hasse’s technique could be pushed further. For instance, this
would show that equations of the shape y2 − az2 = P (x) with a ∈ Q∗ and P (x)
an arbitrary irreducible polynomial in Q[x] satisfy the Hasse principle. Further
developments are due to Swinnerton-Dyer [SD2], Serre (a lecture at Collège de
France, see [Se1], p. 125), and Swinnerton-Dyer and the author [CT/SD].

Schinzel’s hypothesis (H) claims the following. Let Pi(t), i = 1, . . . , n be ir-
reducible polynomials in Z[t], with positive leading coefficients. Assume that the
g.c.d. of the

∏n
i=1 Pi(m) for m ∈ Z is equal to one. Then there exist infinitely

many integers m ∈ N such that each Pi(m) is a prime number. In his talk, Serre
formulated a convenient analogue of Schinzel’s hypothesis (H) over an arbitrary
number field, and showed that the hypothesis over Q implies this generalization
over any number field (see [CT/SD]).



14 J.-L. COLLIOT-THÉLÈNE

The most general result is:

Theorem 13 [CT/Sk/SD1]. Let k be a number field, and let p : X → P1
k be a

fibration. Assume:
(i) for each closed point M ∈ P1

k, there exists a multiplicity one component
YM ⊂ XM such that the algebraic closure of kM in the function field k(YM ) is
abelian over kM ;

(ii) Schinzel’s hypothesis (H) holds over Q.
Let R ⊂ P1(k) be the set of points m ∈ P1(k) whose fibre Xm is smooth and
satisfies Xm(Ak) 6= ∅. Then:

(a) The inclusion Rcl ⊂ p(X(Ak)Brvert) is an equality.
(b) If the Hasse principle holds for smooth fibres of p, then p(X(k)) is dense

in p(X(Ak)Brvert). In particular, the vertical Brauer–Manin obstruction to the ex-
istence of rational points on X is the only obstruction: if X(Ak)Brvert 6= ∅, then
X(k) 6= ∅.

(c) If weak approximation holds for smooth fibres of p, then X(k) is dense
in X(Ak)Brvert , which then coincides with X(Ak)Br : the vertical Brauer–Manin
obstruction to weak approximation on X is the only obstruction.

A Severi–Brauer variety over a field F is an F -variety which becomes isomorphic
to a projective space after a finite separable extension of the ground field. These
varieties were studied by Severi and by F. Châtelet. One-dimensional Severi–Brauer
varieties are just smooth projective conics in P2

F . Severi and Châtelet proved that a
Severi–Brauer variety Y over F is isomorphic to projective space over F as soon as
it has an F -point. Châtelet proved that Severi–Brauer varieties over a number field
satisfy the Hasse principle. Weak approximation then follows. Degenerate fibres
of standard models of pencils of Severi–Brauer variety have multiplicity one, and
they split over a cyclic extension of the ground field. We thus have the following
corollary (see [CT/SD]), which extends the original result of [CT/San1] and [SD2]:

Corollary 14 (Serre). Let k be a number field, and let p : X → P1
k be a fibra-

tion. Assume that the generic fibre Xη is a Severi–Brauer variety. Under Schinzel’s
hypothesis (H), the vertical Brauer–Manin obstruction to weak approximation on
X is the only obstruction. In particular the vertical Brauer–Manin obstruction to
the existence of a rational point is the only obstruction to the existence of a rational
point.

For Y/F a Severi–Brauer variety, the map Br(F ) → Br(Y ) is surjective. Thus in
the case discussed in the Corollary, the inclusion Brvert(X) ⊂ Br(X) is an equality.

We do not see how to dispense with the abelianness requirement in assumption
(i) of Theorem 13, and this is quite a nuisance. Indeed, this prevents us from
producing a (conditional) extension of Theorem 7 (Harari’s result, which takes into
account the whole Brauer group of X) to the case where δ is arbitrary. The simplest
case which we cannot handle, even under (H), is the following. Let K/k be a
biquadratic extension of number fields (i.e. K/k is Galois, and Gal(K/k) = (Z/2)2).
Let P (t) ∈ k[t] be a polynomial. Is the Brauer–Manin obstruction to the existence
of a rational point the only obstruction for a smooth projective model of the variety
given by the equation NK/k(Ξ) = P (t) ? The abelianness condition also prevents
us from stating the analogue of Corollary 14 for fibrations whose generic fibre is an
arbitrary projective homogeneous space of a connected linear algebraic group.
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Before closing this subsection, let us recall how far we are from unconditional
proofs. If we grant Schinzel’s hypothesis, then for X as in Corollary 14, the assump-
tion X(k) 6= ∅ implies that p(X(k)) is Zariski-dense in P1. But already for pencils
of conics, there is an unconditional proof of this result only under the assumption
δ(p) ≤ 5; in special cases, this may be extended to δ(p) ≤ 8, as shown by Mestre
[Mes]. Upper bounds for the number of points of p(X(k)) of a given height have
been given by Serre (see [Se1] p. 126).

2.4 Pencils of curves of genus one (Swinnerton-Dyer’s recent pro-
gramme).

Let k be a number field, and let p : X → P1
k be a fibration. Assume X(Ak) 6= ∅.

Suppose the generic fibre of p is a curve of genus one, and Hypothesis (i) of Theorem
13 is fulfilled. If all the geometric fibres are irreducible, or if one is willing to take
Schinzel’s hypothesis (H) for granted as in the previous section, and one assumes
that there is no Brauer–Manin obstruction to the existence of a rational point on
X , the previous techniques lead us to the existence of k-points m ∈ P1(k) such that
the fibre Xm/k is smooth, hence is a curve of genus one, and has points everywhere
locally. Since the Hasse principle need not hold for curves of genus one (the Tate–
Shafarevich group of the Jacobian of Xm is in the way), we cannot conclude that
Xm has a k-point. One may however observe that the previous techniques only
take into account the ‘vertical’ part of the Brauer group. One exception is Harari’s
technique, but until now that technique only applies to pencils of varieties such
that the generic fibre Y = Xη satisfies H1(Y, OY ) = 0 (among other conditions),
and the dimension of the vector space H1(Y, OY ) is one for a curve of genus one.

In the course of the study of a special case, taking some difficult conjectures for
granted, Swinnerton-Dyer [SD3] managed to overcome the difficulty. His method
has very recently been expanded in the joint work [CT/Sk/SD3], and many of
the mysterious aspects of [SD3] have now been put in a more general context.
In the present report, I will satisfy myself with an informal description of the
results in [SD3], and with a very short indication of the progress accomplished in
[CT/Sk/SD3].

In [SD3], the ground field k is the rational field Q. Let ai, bi, i = 0, . . . , 4 be
elements of Q∗ such that aibj − ajbi 6= 0 for i 6= j. Let S ⊂ P4

Q be the smooth
surface defined by the system of homogeneous equations

4
∑

i=0

aix
2
i = 0,

4
∑

i=0

bix
2
i = 0.

Setting x4 = tx0 defines a pencil of curves of genus one on S. A suitable blowing-up
transforms the surface S into a surface X equipped with a fibration p : X → P1

Q,
the general fibre of which is precisely the hyperplane section of Y given by x4 = tx0

(for t ∈ A1(Q)).
The general fibre of this fibration is thus a curve of genus one. Associated

to such a fibration we have a jacobian fibration q : E → P1
Q. For a closed point

M ∈ P1
Q with smooth fibre XM = p−1(M), the fibre EM/kM of the jacobian

fibration is an elliptic curve, which is the jacobian of XM . The special shape of the
intersection of two quadrics (simultaneously diagonal equations) ensures that the
generic fibre (hence the general fibre) of q has its 2-torsion points rational. Thus
the 2-torsion subgroup of the generic fibre Ek(P1) is (Z/2)2, with trivial Galois
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action. For m ∈ P1(Q) with smooth fibre Xm, there is a natural map Xm → Em,
which makes Xm into a 2-covering of Em; here we are using the classical language
of descent on elliptic curves, as in Cassels’ survey [Cass].

Swinnerton-Dyer throws in two hypotheses which we have already encountered:
(i) The hypothesis that the Tate–Shafarevich group of elliptic curves over k = Q

is finite;
(ii) Schinzel’s hypothesis (H).

He then makes a further algebraic assumption, referred to as (D), on the ai ∈ Q∗.
Roughly speaking, these elements are supposed to be in general position (some field
extensions of Q which depend on them are linearly independent). This condition
implies the vanishing of Br(S)/ Br(Q) = Br(X)/ Br(Q), but it is not equivalent to
the vanishing of this quotient.

Under these three assumptions, assuming that S has points in all completions
of Q, he proves that there exists at least one m ∈ P1(Q) such that the fibre Xm

is smooth and has points in all completions of Q (this is shown by the general
technique described in section 2.3), and such that moreover the 2-Selmer group
Sel(2, Em) of Em has order at most 8 (the argument here is extremely elaborate). By
the general theory of elliptic curves, the 2-Selmer group fits into an exact sequence

0 → Em(Q)/2 → Sel(2, Em) → 2X(Em) → 0

where 2X(Em) denotes the 2-torsion subgroup of the Tate–Shafarevich group of the
elliptic curve Em. Now the order of Em(Q)/2 is at least 4, since all 2-torsion points
are rational. Thus the order of 2X(Em) is at most 2. If we assume that the Tate–
Shafarevich group X(Em) is finite, then, by a result of Cassels, this finite abelian
group is equipped with a non-degenerate alternate bilinear form. In particular the
order of its 2-torsion subgroup must be a square. Since this order here is at most 2,
it must be 1, and 2X(Em) = 0. But the 2-covering Xm has points in all completions
of Q and defines an element of 2X(Em). This element must therefore be trivial:
Xm has a Q-rational point. The argument actually yields infinitely many such
m, and it also shows that for such m the rank of Em(Q) is one, hence Xm(Q) is
infinite.Thus Q-rational points are Zariski-dense on X (in the case under study in
[SD3], this follows from general properties of intersections of two quadrics as soon
as X(Q) 6= ∅, but the argument is general.)

In [CT/Sk/SD3], with input from class field theory and the duality theory of
elliptic curves over local fields, we unravel some of the ad hoc computations of [SD3].
This enables us to extend the argument to arbitrary number fields, and to obtain
similar conditional results (under Schinzel’s hypothesis (H) and the assumption
that Tate–Shafarevich groups of elliptic curves over number fields are finite) for
many pencils of curves of genus one such that the (generic) jacobian has all its 2-
torsion points rational. Among the surfaces controlled by these methods there are
in particular some K3-surfaces. For such surfaces virtually nothing in the direction
of the Hasse principle was known or conjectured until now.

We have a generalized condition (D). The theory of Néron minimal models and
computations of Grothendieck enable us to relate condition (D) to the vanishing
of the 2-torsion subgroup of Br(X)/ Brvert(X); however the two conditions are not
exactly equivalent.
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3. Zero-cycles of degree one

Let k be a field and X a k-variety. A zero-cycle on X is a finite linear com-
bination with integral coefficients of closed points of X . It is thus an element
∑

nMM ∈ ⊕M∈X0
Z, where X0 denotes the set of closed points of X . The residue

field kM of a closed point M is a finite field extension of k. One defines the degree
(over k) of a zero-cycle

∑

M∈X0
nMM by the formula

deg(
∑

M∈X0

nMM) =
∑

M∈X0

nM [kM : k] ∈ Z.

The following conditions are (trivially) equivalent:
(i) There exists a zero-cycle of degree one on X .
(ii) The greatest common divisor of the degrees of finite field extensions K/k

such that X(K) 6= ∅ is equal to one.
Thus the condition that there exists a zero-cycle of degree one is a weakening

of the condition that X possesses a k-rational point. For certain varieties (Severi–
Brauer varieties, quadrics, curves of genus one and more generally principal homo-
geneous spaces of commutative algebraic groups, pencils of conics over P1 with at
most 5 reducible geometric fibres), these conditions are equivalent, but in general
they are not.

Let X/k be a smooth, projective, irreducible variety over a number field k.
Using the corestriction (norm map) on Brauer groups, one may easily define a
Brauer–Manin obstruction to the existence of a zero-cycle of degree one on X
(see [Sai], [CT/SD]). As explained in section 1, we do not expect the Brauer–
Manin obstruction to the existence of a rational point to be the only obstruction
for arbitrary (smooth, projective) varieties. However, for zero-cycles of degree one,
the following general conjecture still looks reasonable:

Conjecture 2. Let X/k be an arbitrary smooth, projective, irreducible variety
over the number field k. If there is no Brauer–Manin obstruction to the existence
of a zero-cycle of degree one on X, then there exists a zero-cycle of degree one on
X.

For curves of genus one, this conjecture amounts to the conjecture on rational
points, as discussed by Manin (Theorem 3 above). For rational surfaces, the special
case where Br(X)/ Br(k) = 0 was conjectured by Sansuc and the author in 1981.
For conic bundles over P1

k with at most 4 degenerate geometric fibres, it follows
from the result on rational points (Theorem 11 above). In 1986, Kato and Saito put
forward a very general conjecture (see [Sai]). The statement above itself is raised
as a question by Saito ([Sai], § 8), and as a conjecture in the survey [CT3], to which
I refer for zero-cycles analogues of weak approximation.

Here is some evidence for the conjecture. The first theorem specializes to
Theorem 3 when X is a curve of genus one.

Theorem 15 (S. Saito) [Sai]. Let X/k be a smooth, projective, geometrically
irreducible curve over the number field k. Assume that the Tate–Shafarevich group
of the jacobian of X is a finite group. Then the Brauer–Manin obstruction to the
existence of a zero-cycle of degree one on X is the only obstruction.
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Theorem 16 [CT/Sk/SD1]. Let k be a number field, and let p : X → P1
k be a

fibration. Assume that X has a zero-cycle of degree one over each completion kv.
Assume:

(i) for each closed point M ∈ P1
k, there exists a multiplicity one component

YM ⊂ XM such that the algebraic closure of kM in the function field k(YM ) is
abelian over kM ;

(ii) the Hasse principle for zero-cycles of degree one holds for smooth fibres
XM/kM (where M is a closed point of P1

k);
(iii) there is no vertical Brauer–Manin obstruction to the existence of a zero-

cycle of degree one on X.
Then there exists a zero-cycle of degree one on X.

The main technique used in the proof of Theorem 16 is due to Salberger [Sal1],
who proved the theorem for conic bundles (in [Sal1], the theorem is proved explicitly
under the additional assumption Br(X)/ Br(k) = 0, in which case it reduces to a
Hasse principle for zero-cycles of degree one). The theorem was then generalized
to pencils of Severi–Brauer varieties and ‘similar’ varieties (including quadrics) in
[CT/SD] and independently in [Sal2]. The above statement encompasses these
previous results.

The reader will notice the striking analogy between Theorem 13, which is a
statement for rational points but is conditional on Schinzel’s hypothesis, and The-
orem 16, which is a statement on zero-cycles of degree one, and is unconditional.
As a matter of fact, the proofs of these two theorems run parallel. With hindsight,
it appears that the key arithmetic idea of Salberger in [Sal1] is a substitute for
Schinzel’s hypothesis. Salberger’s trick is explained in detail in [CT/Sk/SD1], to
which I refer for a general statement. Let me here explain this simple but powerful
idea on a special case, the case of twin primes.

Take k = Q. The conjecture on twin primes predicts that there are infinitely
many integers n such that n and n + 2 are both prime numbers.

Proposition 17. For any integer N ≥ 2, there exist infinitely many field
extensions K/Q of degree N for which there exists an integer θ ∈ K, prime ideals
p and q in the ring of integers OK of K, and prime ideals p2 and q2 of OK above
the prime 2, such that we have the prime decompositions

(θ) = pp2, (θ + 2) = qq2

in OK .

Proof. Choose arbitrary prime numbers p and q. Let R(t) ∈ Z[t] be a monic
polynomial of degree N − 2. Let P (t) = R(t)t(t + 2) + qt + p(t + 2). For R, p and
q general enough, this is an irreducible polynomial. Let K = Q[t]/P (t), and let
θ ∈ K be the integer which is the class of t. Let NK/Q denote the norm map from
K to Q. We clearly have NK/Q(θ) = ±2p and NK/Q(θ + 2) = ±2q. �

In other words, in the field K, each of θ and θ+2 is a prime up to multiplication
by primes in a fixed bad set. The bad factors p2 and q2 above 2 are not a serious
problem, but for the actual twin prime conjecture, we would want to take N = 1 !

In the proof, the 2 coming in the inequality N ≥ 2 is the sum of the degrees of
the polynomials t and t + 2. As for the second 2, the one coming in the result (the
bad set), it appears because t(t + 2) is not separable modulo 2, and it also appears
as a ‘small’ prime (smaller than the sum of the degrees of t and t + 2).
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In many cases, Salberger’s trick replaces Schinzel’s hypothesis, if one is satisfied
with finding zero-cycles of degree one rather than rational points. Our next hope
is that we shall be able to proceed along this way with the results of [CT/Sk/SD3].
In the original case considered by Swinnerton-Dyer [SD3], namely smooth complete
intersections of two simultaneously diagonal quadrics in P4

k, with some algebraic
conditions on the coefficients, this would ultimately lead to a proof of the existence
of rational points which would ‘only’ depend on the finiteness assumption of Tate–
Shafarevich groups.
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sur un corps de nombres, J. für die reine und ang. Math. (Crelle) 327 (1981),
12-80.

[Sk1] A. N. Skorobogatov, On the fibration method for proving the Hasse principle
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