Rational points on conic bundle surfaces via additive combinatorics

Lilian Matthiesen

University of Bristol

Joint with T. Browning and A. Skorobogatov

Conic bundle surface over number field k : projective, non-singular surface with dominant k-morphism

$$
\pi: X \rightarrow \mathbb{P}_{k}^{1}
$$

s.t. all fibres are conics.

Conic bundle surface over number field k : projective, non-singular surface with dominant k-morphism

$$
\pi: X \rightarrow \mathbb{P}_{k}^{1}
$$

s.t. all fibres are conics.

Conjecture (Colliot-Thélène \& Sansuc)

Brauer-Manin obstruction is the only obstruction to HP and WA for conic bundle surfaces.

What is known?

Colliot-Thélène \& Swinnerton-Dyer (1994):
Conjecture follows from Schinzel's hypothesis.

What is known?

Colliot-Thélène \& Swinnerton-Dyer (1994):
Conjecture follows from Schinzel's hypothesis.

Unconditional results
Let $r=\#$ degenerate geometric fibres of X.

What is known?

Colliot-Thélène \& Swinnerton-Dyer (1994):
Conjecture follows from Schinzel's hypothesis.

Unconditional results

Let $r=\#$ degenerate geometric fibres of X.

The conjecture holds when $0 \leqslant r \leqslant 5$ and in special cases of $r=6$. (Colliot-Thélène, Salberger, Sansuc, Skorobogatov, and Swinnerton-Dyer)

Main theorem

Theorem (Browning-M-Skorobogatov)

Let X be a conic bundle surface over \mathbb{Q}, assume that it has degenerate geometric fibres and that they are all defined over \mathbb{Q}. Then

- $X(\mathbb{Q})$ is Zariski dense in X, and
- the Brauer-Manin obstruction is the only obstruction to WA.

Main theorem

Theorem (Browning-M-Skorobogatov)

Let X be a conic bundle surface over \mathbb{Q}, assume that it has degenerate geometric fibres and that they are all defined over \mathbb{Q}. Then

- $X(\mathbb{Q})$ is Zariski dense in X, and
- the Brauer-Manin obstruction is the only obstruction to WA.

Proof

Assume that fibre at ∞ smooth
$e_{1}, \ldots, e_{r} \in \mathbb{Q}$ - points which produce degenerate geom. fibres

Main theorem

Theorem (Browning-M-Skorobogatov)

Let X be a conic bundle surface over \mathbb{Q}, assume that it has degenerate geometric fibres and that they are all defined over \mathbb{Q}. Then

- $X(\mathbb{Q})$ is Zariski dense in X, and
- the Brauer-Manin obstruction is the only obstruction to WA.

Proof

Assume that fibre at ∞ smooth
$e_{1}, \ldots, e_{r} \in \mathbb{Q}$ - points which produce degenerate geom. fibres $a_{1}, \ldots, a_{r} \in \mathbb{Q}^{*} / \mathbb{Q}^{* 2}$ s.t. for each i the irred. components of fibre over e_{i} are defined over $\mathbb{Q}\left(\sqrt{a_{i}}\right)$

Proof

$e_{1}, \ldots, e_{r} \in \mathbb{Q}$ - points which produce degenerate geom. fibres $a_{1}, \ldots, a_{r} \in \mathbb{Q}^{*} / \mathbb{Q}^{* 2}$ s.t. for each i the irred. components of fibre over e_{i} are defined over $\mathbb{Q}\left(\sqrt{a_{i}}\right)$

Proof

$e_{1}, \ldots, e_{r} \in \mathbb{Q}$ - points which produce degenerate geom. fibres $a_{1}, \ldots, a_{r} \in \mathbb{Q}^{*} / \mathbb{Q}^{* 2}$ s.t. for each i the irred. components of fibre over e_{i} are defined over $\mathbb{Q}\left(\sqrt{a_{i}}\right)$

Colliot-Thélène \& Sansuc:
Universal torsor over X is \mathbb{Q}-birational to

$$
\mathcal{W}_{\lambda} \times C \times \mathbb{A}_{\mathbb{Q}}^{1}
$$

Proof

$e_{1}, \ldots, e_{r} \in \mathbb{Q}$ - points which produce degenerate geom. fibres $a_{1}, \ldots, a_{r} \in \mathbb{Q}^{*} / \mathbb{Q}^{* 2}$ s.t. for each i the irred. components of fibre over e_{i} are defined over $\mathbb{Q}\left(\sqrt{a_{i}}\right)$

Colliot-Thélène \& Sansuc:
Universal torsor over X is \mathbb{Q}-birational to

$$
\mathcal{W}_{\lambda} \times C \times \mathbb{A}_{\mathbb{Q}}^{1}
$$

where C conic over \mathbb{Q}, and

Proof

$e_{1}, \ldots, e_{r} \in \mathbb{Q}$ - points which produce degenerate geom. fibres $a_{1}, \ldots, a_{r} \in \mathbb{Q}^{*} / \mathbb{Q}^{* 2}$ s.t. for each i the irred. components of fibre over e_{i} are defined over $\mathbb{Q}\left(\sqrt{a_{i}}\right)$

Colliot-Thélène \& Sansuc:
Universal torsor over X is \mathbb{Q}-birational to

$$
\mathcal{W}_{\lambda} \times C \times \mathbb{A}_{\mathbb{Q}}^{1}
$$

where C conic over \mathbb{Q}, and $\mathcal{W}_{\boldsymbol{\lambda}} \subset \mathbb{A}_{\mathbb{Q}}^{2 r+2}$ defined via

$$
\left\{0 \neq u-e_{i} v=\lambda_{i}\left(x_{i}^{2}-a_{i} y_{i}^{2}\right): i=1, \ldots, r\right\}
$$

for suitable $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in\left(\mathbb{Q}^{*}\right)^{r}$.

Proof

$\mathcal{V} \subset \mathbb{A}_{\mathbb{Q}}^{2 r+s}$ defined via

$$
\left\{0 \neq x_{i}^{2}-a_{i} y_{i}^{2}=f_{i}\left(u_{1}, \ldots, u_{s}\right): i=1, \ldots, r\right\}
$$

for homogeneous linear polynomials $f_{i} \in \mathbb{Z}\left[u_{1}, \ldots, u_{s}\right]$ s.t. $f_{i} \neq \alpha f_{j}$ whenever $i \neq j, \alpha \in \mathbb{Q}$.

Proof

$\mathcal{V} \subset \mathbb{A}_{\mathbb{Q}}^{2 r+s}$ defined via

$$
\left\{0 \neq x_{i}^{2}-a_{i} y_{i}^{2}=f_{i}\left(u_{1}, \ldots, u_{s}\right): i=1, \ldots, r\right\}
$$

for homogeneous linear polynomials $f_{i} \in \mathbb{Z}\left[u_{1}, \ldots, u_{s}\right]$ s.t.
$f_{i} \neq \alpha f_{j}$ whenever $i \neq j, \alpha \in \mathbb{Q}$.
Theorem
\mathcal{V} satisfies $H P / W A$, and $\mathcal{V}(\mathbb{Q})$ Zariski dense in \mathcal{V} if non-empty.

Proof

$\mathcal{V} \subset \mathbb{A}_{\mathbb{Q}}^{2 r+s}$ defined via

$$
\left\{0 \neq x_{i}^{2}-a_{i} y_{i}^{2}=f_{i}\left(u_{1}, \ldots, u_{s}\right): i=1, \ldots, r\right\}
$$

for homogeneous linear polynomials $f_{i} \in \mathbb{Z}\left[u_{1}, \ldots, u_{s}\right]$ s.t.
$f_{i} \neq \alpha f_{j}$ whenever $i \neq j, \alpha \in \mathbb{Q}$.
Theorem
\mathcal{V} satisfies $H P / W A$, and $\mathcal{V}(\mathbb{Q})$ Zariski dense in \mathcal{V} if non-empty.
Key ingredient

$$
r_{i}(n)=\#\left\{(x, y) \in \mathbb{Z}^{2} / \sim: x^{2}-a_{i} y^{2}=n\right\}
$$

Proof

$\mathcal{V} \subset \mathbb{A}_{\mathbb{Q}}^{2 r+s}$ defined via

$$
\left\{0 \neq x_{i}^{2}-a_{i} y_{i}^{2}=f_{i}\left(u_{1}, \ldots, u_{s}\right): i=1, \ldots, r\right\}
$$

for homogeneous linear polynomials $f_{i} \in \mathbb{Z}\left[u_{1}, \ldots, u_{s}\right]$ s.t.
$f_{i} \neq \alpha f_{j}$ whenever $i \neq j, \alpha \in \mathbb{Q}$.
Theorem
\mathcal{V} satisfies $H P / W A$, and $\mathcal{V}(\mathbb{Q})$ Zariski dense in \mathcal{V} if non-empty.
Key ingredient

$$
r_{i}(n)=\#\left\{(x, y) \in \mathbb{Z}^{2} / \sim: x^{2}-a_{i} y^{2}=n\right\}
$$

$$
f_{i}(\mathbf{u})
$$

Proof

$\mathcal{V} \subset \mathbb{A}_{\mathbb{Q}}^{2 r+s}$ defined via

$$
\left\{0 \neq x_{i}^{2}-a_{i} y_{i}^{2}=f_{i}\left(u_{1}, \ldots, u_{s}\right): i=1, \ldots, r\right\}
$$

for homogeneous linear polynomials $f_{i} \in \mathbb{Z}\left[u_{1}, \ldots, u_{s}\right]$ s.t.
$f_{i} \neq \alpha f_{j}$ whenever $i \neq j, \alpha \in \mathbb{Q}$.
Theorem
\mathcal{V} satisfies $H P / W A$, and $\mathcal{V}(\mathbb{Q})$ Zariski dense in \mathcal{V} if non-empty.
Key ingredient

$$
r_{i}(n)=\#\left\{(x, y) \in \mathbb{Z}^{2} / \sim: x^{2}-a_{i} y^{2}=n\right\}
$$

$$
r_{i}\left(f_{i}(\mathbf{u})\right)
$$

Proof

$\mathcal{V} \subset \mathbb{A}_{\mathbb{Q}}^{2 r+s}$ defined via

$$
\left\{0 \neq x_{i}^{2}-a_{i} y_{i}^{2}=f_{i}\left(u_{1}, \ldots, u_{s}\right): i=1, \ldots, r\right\}
$$

for homogeneous linear polynomials $f_{i} \in \mathbb{Z}\left[u_{1}, \ldots, u_{s}\right]$ s.t.
$f_{i} \neq \alpha f_{j}$ whenever $i \neq j, \alpha \in \mathbb{Q}$.
Theorem
\mathcal{V} satisfies $H P / W A$, and $\mathcal{V}(\mathbb{Q})$ Zariski dense in \mathcal{V} if non-empty.
Key ingredient

$$
r_{i}(n)=\#\left\{(x, y) \in \mathbb{Z}^{2} / \sim: x^{2}-a_{i} y^{2}=n\right\}
$$

$$
\prod_{i=1}^{r} r_{i}\left(f_{i}(\mathbf{u})\right)
$$

Proof

$\mathcal{V} \subset \mathbb{A}_{\mathbb{Q}}^{2 r+s}$ defined via

$$
\left\{0 \neq x_{i}^{2}-a_{i} y_{i}^{2}=f_{i}\left(u_{1}, \ldots, u_{s}\right): i=1, \ldots, r\right\}
$$

for homogeneous linear polynomials $f_{i} \in \mathbb{Z}\left[u_{1}, \ldots, u_{s}\right]$ s.t.
$f_{i} \neq \alpha f_{j}$ whenever $i \neq j, \alpha \in \mathbb{Q}$.
Theorem
\mathcal{V} satisfies $H P / W A$, and $\mathcal{V}(\mathbb{Q})$ Zariski dense in \mathcal{V} if non-empty.
Key ingredient

$$
\begin{aligned}
& r_{i}(n)=\#\left\{(x, y) \in \mathbb{Z}^{2} / \sim: x^{2}-a_{i} y^{2}=n\right\} \\
& \sum_{\mathbf{u} \in \mathbb{Z}^{\wedge} \cap N \mathcal{K}} \prod_{i=1}^{r} r_{i}\left(f_{i}(\mathbf{u})\right)
\end{aligned}
$$

$\mathcal{K} \subset[-1,1]^{s} \subset \mathbb{R}^{s}$ convex.

Proof

$\mathcal{V} \subset \mathbb{A}_{\mathbb{Q}}^{2 r+s}$ defined via

$$
\left\{0 \neq x_{i}^{2}-a_{i} y_{i}^{2}=f_{i}\left(u_{1}, \ldots, u_{s}\right): i=1, \ldots, r\right\}
$$

for homogeneous linear polynomials $f_{i} \in \mathbb{Z}\left[u_{1}, \ldots, u_{s}\right]$ s.t.
$f_{i} \neq \alpha f_{j}$ whenever $i \neq j, \alpha \in \mathbb{Q}$.
Theorem
\mathcal{V} satisfies $H P / W A$, and $\mathcal{V}(\mathbb{Q})$ Zariski dense in \mathcal{V} if non-empty.
Key ingredient

$$
\begin{gathered}
r_{i}(n)=\#\left\{(x, y) \in \mathbb{Z}^{2} / \sim: x^{2}-a_{i} y^{2}=n\right\} \\
\sum_{\mathbf{u} \in \mathbb{Z}^{s} \cap N \mathcal{K}} \prod_{i=1}^{r} r_{i}\left(f_{i}(\mathbf{u})\right)=\operatorname{vol}(\mathcal{K}) N^{s} \beta_{\infty} \prod_{p} \beta_{p}+o\left(N^{s}\right)
\end{gathered}
$$

$\mathcal{K} \subset[-1,1]^{s} \subset \mathbb{R}^{s}$ convex.

Proof

$\mathcal{V} \subset \mathbb{A}_{\mathbb{Q}}^{2 r+s}$ defined via

$$
\left\{0 \neq x_{i}^{2}-a_{i} y_{i}^{2}=f_{i}\left(u_{1}, \ldots, u_{s}\right): i=1, \ldots, r\right\}
$$

for homogeneous linear polynomials $f_{i} \in \mathbb{Z}\left[u_{1}, \ldots, u_{s}\right]$ s.t.
$f_{i} \neq \alpha f_{j}$ whenever $i \neq j, \alpha \in \mathbb{Q}$.
Theorem
\mathcal{V} satisfies $H P / W A$, and $\mathcal{V}(\mathbb{Q})$ Zariski dense in \mathcal{V} if non-empty.
Key ingredient

$$
r_{i}(n)=\#\left\{(x, y) \in \mathbb{Z}^{2} / \sim: x^{2}-a_{i} y^{2}=n\right\}
$$

Theorem (M, 2012):

$$
\sum_{\mathbf{u} \in \mathbb{Z}^{s} \cap N \mathcal{K}} \prod_{i=1}^{r} r_{i}\left(f_{i}(\mathbf{u})\right)=\operatorname{vol}(\mathcal{K}) N^{s} \beta_{\infty} \prod_{p} \beta_{p}+o\left(N^{s}\right)
$$

$\mathcal{K} \subset[-1,1]^{s} \subset \mathbb{R}^{s}$ convex.

Generalised von Neumann theorem

Replace r_{i} by general $h_{i}: \mathbb{Z} \rightarrow \mathbb{C}$ and consider

$$
N^{-s} \sum_{\mathbf{u} \in(\mathbb{Z} / N \mathbb{Z})^{s}} \prod_{i=1}^{r} h_{i}\left(f_{i}(\mathbf{u})\right)
$$

Generalised von Neumann theorem

If $\left\|h_{i}\right\|_{\infty} \leqslant 1$

$$
N^{-s} \sum_{\mathbf{u} \in(\mathbb{Z} / N \mathbb{Z})^{s}} \prod_{i=1}^{r} h_{i}\left(f_{i}(\mathbf{u})\right)
$$

Generalised von Neumann theorem

If $\left\|h_{i}\right\|_{\infty} \leqslant 1$ then Gowers' work on Szemerédi's theorem shows: If

$$
N^{-s} \sum_{\mathbf{u} \in(\mathbb{Z} / N \mathbb{Z})^{s}} \prod_{i=1}^{r} h_{i}\left(f_{i}(\mathbf{u})\right) \geqslant \delta
$$

Generalised von Neumann theorem

If $\left\|h_{i}\right\|_{\infty} \leqslant 1$ then Gowers' work on Szemerédi's theorem shows: If

$$
N^{-s} \sum_{\mathbf{u} \in(\mathbb{Z} / N \mathbb{Z})^{s}} \prod_{i=1}^{r} h_{i}\left(f_{i}(\mathbf{u})\right) \geqslant \delta
$$

then the Gowers uniformity norms $\left\|h_{i}\right\|_{U^{r-1}}$ are large:

$$
\left\|h_{i}\right\|_{U^{r-1}} \gg f_{f_{1}, \ldots, f_{r}} \delta
$$

Generalised von Neumann theorem

If $\left\|h_{i}\right\|_{\infty} \leqslant 1$ then Gowers' work on Szemerédi's theorem shows: If

$$
N^{-s} \sum_{\mathbf{u} \in(\mathbb{Z} / N \mathbb{Z})^{s}} \prod_{i=1}^{r} h_{i}\left(f_{i}(\mathbf{u})\right) \geqslant \delta
$$

then the Gowers uniformity norms $\left\|h_{i}\right\|_{U^{r-1}}$ are large:

$$
\left\|h_{i}\right\|_{U^{r-1}} \gg f_{f_{1}, \ldots, f_{r}} \delta
$$

Assume $\frac{1}{x} \sum_{n \leqslant x} h_{i}(n)=\delta_{i}+o(1)$ and let $h_{i}^{\prime}=h_{i}-\delta_{i}$.

Generalised von Neumann theorem

If $\left\|h_{i}\right\|_{\infty} \leqslant 1$ then Gowers' work on Szemerédi's theorem shows: If

$$
N^{-s} \sum_{\mathbf{u} \in(\mathbb{Z} / N \mathbb{Z})^{s}} \prod_{i=1}^{r} h_{i}\left(f_{i}(\mathbf{u})\right) \geqslant \delta
$$

then the Gowers uniformity norms $\left\|h_{i}\right\|_{U^{r-1}}$ are large:

$$
\left\|h_{i}\right\|_{U^{r-1}} \gg f_{f_{1}, \ldots, f_{r}} \delta
$$

Assume $\frac{1}{x} \sum_{n \leqslant x} h_{i}(n)=\delta_{i}+o(1)$ and let $h_{i}^{\prime}=h_{i}-\delta_{i}$.

$$
\begin{gathered}
\max _{i}\left\|h_{i}-\delta_{i}\right\|_{U^{r-1}}=o(1) \Longrightarrow \\
N^{-s} \sum_{\mathbf{u} \in(\mathbb{Z} / N \mathbb{Z})^{s}} \prod_{i=1}^{r} h_{i}\left(f_{i}(\mathbf{u})\right)=\delta_{1} \ldots \delta_{r}+o(1) .
\end{gathered}
$$

Gowers uniformity norms

$$
\|h\|_{U^{2}(\mathbb{Z} / N \mathbb{Z})}^{4}=N^{-3} \sum_{n, d_{1}, d_{2} \in \mathbb{Z} / N \mathbb{Z}} h(n) \overline{h\left(n+d_{1}\right) h\left(n+d_{2}\right)} h\left(n+d_{1}+d_{2}\right)
$$

Gowers uniformity norms

$$
\|h\|_{U^{2}(\mathbb{Z} / N \mathbb{Z})}^{4}=N^{-3} \sum_{n, d_{1}, d_{2} \in \mathbb{Z} / N \mathbb{Z}} h(n) \overline{h\left(n+d_{1}\right) h\left(n+d_{2}\right)} h\left(n+d_{1}+d_{2}\right)
$$

Gowers uniformity norms

$$
\|h\|_{U^{2}(\mathbb{Z} / N \mathbb{Z})}^{4}=N^{-3} \sum_{n, d_{1}, d_{2} \in \mathbb{Z} / N \mathbb{Z}} h(n) \overline{h\left(n+d_{1}\right) h\left(n+d_{2}\right)} h\left(n+d_{1}+d_{2}\right)
$$

Gowers uniformity norms

$$
\begin{gathered}
\|h\|_{U^{2}(\mathbb{Z} / N \mathbb{Z})}^{4}=N^{-3} \sum_{n, d_{1}, d_{2} \in \mathbb{Z} / N \mathbb{Z}} h(n) \overline{h\left(n+d_{1}\right) h\left(n+d_{2}\right)} h\left(n+d_{1}+d_{2}\right) \\
\|h\|_{U^{k}(\mathbb{Z} / N \mathbb{Z})}^{2^{k}}=N^{-(k+1)} \sum_{\substack{n, d_{1}, \ldots, d_{k} \\
\in \mathbb{Z} / N \mathbb{Z}}} \prod_{\boldsymbol{\omega} \in\{0,1\}^{k}} \mathcal{C}^{|\boldsymbol{\omega}|} h(n+\boldsymbol{\omega} \cdot \mathbf{d})
\end{gathered}
$$

Gowers uniformity norms

$$
\begin{gathered}
\|h\|_{U^{2}(\mathbb{Z} / N \mathbb{Z})}^{4}=N^{-3} \sum_{n, d_{1}, d_{2} \in \mathbb{Z} / N \mathbb{Z}} h(n) \overline{h\left(n+d_{1}\right) h\left(n+d_{2}\right)} h\left(n+d_{1}+d_{2}\right) \\
\|h\|_{U^{k}(\mathbb{Z} / N \mathbb{Z})}^{2^{k}}=N^{-(k+1)} \sum_{\substack{n, d_{1}, \ldots, d_{k} \\
\in \mathbb{Z} / N \mathbb{Z}}} \prod_{\boldsymbol{\omega} \in\{0,1\}^{k}} \mathcal{C}^{|\boldsymbol{\omega}|} h(n+\boldsymbol{\omega} \cdot \mathbf{d})
\end{gathered}
$$

Important fact:

$$
\|h\|_{U^{2}(\mathbb{Z} / N \mathbb{Z})}=\|\hat{h}\|_{\ell^{4}} .
$$

Gowers uniformity norms

$$
\begin{gathered}
\|h\|_{U^{2}(\mathbb{Z} / N \mathbb{Z})}^{4}=N^{-3} \sum_{n, d_{1}, d_{2} \in \mathbb{Z} / N \mathbb{Z}} h(n) \overline{h\left(n+d_{1}\right) h\left(n+d_{2}\right)} h\left(n+d_{1}+d_{2}\right) \\
\|h\|_{U^{k}(\mathbb{Z} / N \mathbb{Z})}^{2^{k}}=N^{-(k+1)} \sum_{\substack{n, d_{1}, \ldots, d_{k} \\
\in \mathbb{Z} / N \mathbb{Z}}} \prod_{\boldsymbol{\omega} \in\{0,1\}^{k}} \mathcal{C}^{|\boldsymbol{\omega}|} h(n+\boldsymbol{\omega} \cdot \mathbf{d})
\end{gathered}
$$

Important fact: $\quad\|h\|_{U^{2}(\mathbb{Z} / N \mathbb{Z})}=\|\hat{h}\|_{\ell^{4}}$.
Thus, $\|h\|_{U^{2}(\mathbb{Z} / N \mathbb{Z})} \geqslant \delta$ iff h has a large Fourier coefficient:

$$
\left|\frac{1}{N} \sum_{n \in \mathbb{Z} / N \mathbb{Z}} h(n) e(\theta n)\right| \geqslant 2 \delta^{2}
$$

Discussion

Thus, Fourier analysis completely describes functions with large U^{2} norm.

Discussion

Thus, Fourier analysis completely describes functions with large U^{2} norm.
Expected since problems involving the U^{2} norm can be dealt with Fourier analysis / the circle method.

Discussion

Thus, Fourier analysis completely describes functions with large U^{2} norm.
Expected since problems involving the U^{2} norm can be dealt with Fourier analysis / the circle method.

Example:
Let $A \subset\{1, \ldots, N\},|A|=\alpha N$. Then

$$
\begin{aligned}
\#\{3 \text {-term AP's in A }\} & =\sum_{n, d: 1 \leqslant n, n+2 d \leqslant N} 1_{A}(n) 1_{A}(n+d) 1_{A}(n+2 d) \\
& \sim \alpha^{3} N^{2} / 2
\end{aligned}
$$

iff $1_{A}-\alpha$ has no large Fourier coefficient.

If $\frac{1}{x} \sum_{n \leqslant x} h_{i}(n)=\delta_{i}+o(1)$, then

$$
\max _{i}\left\|h_{i}-\delta_{i}\right\|_{U^{r-1}}=o(1) \quad \Longrightarrow
$$

$$
\sum_{\mathbf{u} \in \mathbb{Z} \mathfrak{s} \cap K} \prod_{i=1}^{r} h_{i}\left(f_{i}(\mathbf{u})\right)=\operatorname{vol} K \delta_{1} \ldots \delta_{r}+o\left(N^{s}\right)
$$

$$
\mathbf{u} \in \mathbb{Z}^{s} \cap K i=1
$$

for convex $K \subseteq[-N, N]^{s}$.

Discussion

The same does not hold for 4-term APs [Green]:

Discussion

The same does not hold for 4 -term APs [Green]:

$$
A=\left\{1 \leq n \leq N:\left\{n^{2} \sqrt{2}\right\} \in[-\alpha / 2, \alpha / 2]\right\}
$$

Discussion

The same does not hold for 4-term APs [Green]:

$$
A=\left\{1 \leq n \leq N:\left\{n^{2} \sqrt{2}\right\} \in[-\alpha / 2, \alpha / 2]\right\}
$$

is such that $|A| \sim \alpha N$ and $1_{A}-\alpha$ has no large Fourier coefficients, but nonetheless there are significantly more 4-term APs in A than the expected value of $\alpha^{4} N^{2} / 6$

Discussion

The same does not hold for 4-term APs [Green]:

$$
A=\left\{1 \leq n \leq N:\left\{n^{2} \sqrt{2}\right\} \in[-\alpha / 2, \alpha / 2]\right\}
$$

is such that $|A| \sim \alpha N$ and $1_{A}-\alpha$ has no large Fourier coefficients, but nonetheless there are significantly more 4-term APs in A than the expected value of $\alpha^{4} N^{2} / 6$

$$
(n+3 d)^{2}=n^{2}-3(n+d)^{2}+3(n+2 d)^{2}
$$

Discussion

The same does not hold for 4-term APs [Green]:

$$
A=\left\{1 \leq n \leq N:\left\{n^{2} \sqrt{2}\right\} \in[-\alpha / 2, \alpha / 2]\right\}
$$

is such that $|A| \sim \alpha N$ and $1_{A}-\alpha$ has no large Fourier coefficients, but nonetheless there are significantly more 4-term APs in A than the expected value of $\alpha^{4} N^{2} / 6$ Thus, Fourier analysis does not capture the U^{3} norm.

Discussion

The same does not hold for 4-term APs [Green]:

$$
A=\left\{1 \leq n \leq N:\left\{n^{2} \sqrt{2}\right\} \in[-\alpha / 2, \alpha / 2]\right\}
$$

is such that $|A| \sim \alpha N$ and $1_{A}-\alpha$ has no large Fourier coefficients, but nonetheless there are significantly more 4-term APs in A than the expected value of $\alpha^{4} N^{2} / 6$ Thus, Fourier analysis does not capture the U^{3} norm. Indeed Theorem (Inverse theorem for U^{3}, Green-Tao) If $h:\{1, \ldots, N\} \mapsto \mathbb{C},\|h\|_{\infty} \leqslant 1$ and $\|h\|_{U^{3}} \geqslant \delta$, then there is a generalised quadratic phase

$$
\phi(n)=\sum_{r, s \leqslant C_{1}(\delta)} \beta_{r s}\left\{\theta_{r} n\right\}\left\{\theta_{s} n\right\}+\gamma_{r}\left\{\theta_{r} n\right\}
$$

where $\beta_{r s}, \gamma_{r}, \theta_{r} \in \mathbb{R}$, s.t. $\quad\left|\frac{1}{N} \sum_{n \leqslant N} h(n) e(\phi(n))\right|>_{\delta} 1$.

Nilsequences

G a connected, simply connected k-step nilpotent Lie Group.

Nilsequences

G a connected, simply connected k-step nilpotent Lie Group. Γ a discrete, co-compact subgroup.

Nilsequences

G a connected, simply connected k-step nilpotent Lie Group. Γ a discrete, co-compact subgroup.

Then G / Γ is a k-step nilmanifold. $d_{G / \Gamma}$ a smooth metric.

Nilsequences

G a connected, simply connected k-step nilpotent Lie Group. Γ a discrete, co-compact subgroup.

Then G / Γ is a k-step nilmanifold. $d_{G / \Gamma}$ a smooth metric.

$$
G=G_{0}=G_{1} \geqslant G_{2} \geqslant \ldots \geqslant G_{d}=\{i d\}, \quad\left[G_{i}, G_{j}\right] \leqslant G_{i+j}
$$

Nilsequences

G a connected, simply connected k-step nilpotent Lie Group. Γ a discrete, co-compact subgroup.

Then G / Γ is a k-step nilmanifold. $d_{G / \Gamma}$ a smooth metric.

$$
\begin{aligned}
& G=G_{0}=G_{1} \geqslant G_{2} \geqslant \ldots \geqslant G_{d}=\{i d\}, \quad\left[G_{i}, G_{j}\right] \leqslant G_{i+j} \\
& g: \mathbb{Z} \rightarrow G
\end{aligned}
$$

Nilsequences

G a connected, simply connected k-step nilpotent Lie Group. Γ a discrete, co-compact subgroup.

Then G / Γ is a k-step nilmanifold. $d_{G / \Gamma}$ a smooth metric.

$$
G=G_{0}=G_{1} \geqslant G_{2} \geqslant \ldots \geqslant G_{d}=\{i d\}, \quad\left[G_{i}, G_{j}\right] \leqslant G_{i+j}
$$

For $g: \mathbb{Z} \rightarrow G$ define discrete derivative

$$
\partial_{h} g(n)=g(n+h) g(n)^{-1}
$$

Nilsequences

G a connected, simply connected k-step nilpotent Lie Group. Γ a discrete, co-compact subgroup.

Then G / Γ is a k-step nilmanifold. $d_{G / \Gamma}$ a smooth metric.

$$
G=G_{0}=G_{1} \geqslant G_{2} \geqslant \ldots \geqslant G_{d}=\{i d\}, \quad\left[G_{i}, G_{j}\right] \leqslant G_{i+j}
$$

For $g: \mathbb{Z} \rightarrow G$ define discrete derivative

$$
\partial_{h} g(n)=g(n+h) g(n)^{-1}
$$

g is polynomial if

$$
\partial_{h_{i}} \partial_{h_{i-1}} \ldots \partial_{h_{1}} g(n) \in G_{i} \text { for all } i \in\{1, \ldots, d\} .
$$

Nilsequences

G a connected, simply connected k-step nilpotent Lie Group.
Γ a discrete, co-compact subgroup.
Then G / Γ is a k-step nilmanifold. $d_{G / \Gamma}$ a smooth metric.

$$
G=G_{0}=G_{1} \geqslant G_{2} \geqslant \ldots \geqslant G_{d}=\{i d\}, \quad\left[G_{i}, G_{j}\right] \leqslant G_{i+j}
$$

For $g: \mathbb{Z} \rightarrow G$ define discrete derivative

$$
\partial_{h} g(n)=g(n+h) g(n)^{-1}
$$

g is polynomial if

$$
\partial_{h_{i}} \partial_{h_{i-1}} \ldots \partial_{h_{1}} g(n) \in G_{i} \text { for all } i \in\{1, \ldots, d\}
$$ Nilsequence:

$$
(F(g(n) \Gamma))_{n \leqslant N}
$$

with Lipschitz function $F: G / \Gamma \rightarrow \mathbb{C},\|F\|_{\infty} \leqslant 1$.

Nilsequences

G a connected, simply connected k-step nilpotent Lie Group.
Γ a discrete, co-compact subgroup.
Then G / Γ is a k-step nilmanifold. $d_{G / \Gamma}$ a smooth metric.

$$
G=G_{0}=G_{1} \geqslant G_{2} \geqslant \ldots \geqslant G_{d}=\{i d\}, \quad\left[G_{i}, G_{j}\right] \leqslant G_{i+j}
$$

For $g: \mathbb{Z} \rightarrow G$ define discrete derivative

$$
\partial_{h} g(n)=g(n+h) g(n)^{-1}
$$

g is polynomial if

$$
\partial_{h_{i}} \partial_{h_{i-1}} \ldots \partial_{h_{1}} g(n) \in G_{i} \text { for all } i \in\{1, \ldots, d\}
$$ Nilsequence:

$$
(F(g(n) \Gamma))_{n \leqslant N} \quad(e(\phi(n)))_{n \leqslant N}
$$

with Lipschitz function $F: G / \Gamma \rightarrow \mathbb{C},\|F\|_{\infty} \leqslant 1$.

The general inverse theorem

Theorem (Green-Tao-Ziegler, 2012)

Let $k \geqslant 0$ be an integer, $0<\delta \leqslant 1$. Then there is a finite collection $\mathcal{M}_{k, \delta}$ of k-step nilmanifolds $\left(G / \Gamma, d_{G / \Gamma}\right)$ s.t.:
If $N \geqslant 1, h:\{1, \ldots, N\} \rightarrow \mathbb{C},\|h\|_{\infty} \leqslant 1$ and

$$
\|h\|_{U^{k+1}[N]} \geqslant \delta
$$

then there is a $G / \Gamma \in \mathcal{M}_{k, \delta}$, and a nilsequences $(F(g(n) \Gamma))_{n \leqslant N}$ with $\|F\|_{L i p}=O_{k, \delta}(1)$ s.t.

$$
\left|\frac{1}{N} \sum_{n \leqslant N} h(n) F(g(n) \Gamma)\right|>_{k, \delta} 1
$$

What have we gained?

To obtain an asymptotic formula for

$$
\sum_{\mathbf{u} \in(\mathbb{Z} / N \mathbb{Z})} \prod_{i=1}^{r} h_{i}\left(f_{i}(\mathbf{u})\right), \quad \begin{aligned}
& f_{i} \text { linear polynomials, } \\
& \text { no two proportional }
\end{aligned}
$$

we may, instead of proving that $\left\|h_{i}-\delta_{i}\right\|_{U^{r-1}}$ are small, attempt to show that

$$
\left|\frac{1}{N} \sum_{n \leqslant N}\left(h_{i}(n)-\delta_{i}\right) F(g(n) \Gamma)\right|=o_{G / \Gamma, r}(1)
$$

for each $i=1, \ldots, r$.

What have we gained?

To obtain an asymptotic formula for

$$
\sum_{\mathbf{u} \in(\mathbb{Z} / N \mathbb{Z})^{s}} \prod_{i=1}^{r} h_{i}\left(f_{i}(\mathbf{u})\right), \quad \begin{aligned}
& \quad \begin{array}{l}
f_{i} \text { linear polynomials, } \\
\text { no two proportional }
\end{array}
\end{aligned}
$$

we may, instead of proving that $\left\|h_{i}-\delta_{i}\right\|_{U^{r-1}}$ are small, attempt to show that

$$
\left|\frac{1}{N} \sum_{n \leqslant N}\left(h_{i}(n)-\delta_{i}\right) F(g(n) \Gamma)\right|=o_{G / \Gamma, r}(1)
$$

for each $i=1, \ldots, r$.
Problem:
The h_{i} have to be bounded!

The transference principle

All mentioned results continue to hold for functions $h_{i}:\{1, \ldots, N\} \rightarrow \mathbb{C}$ s.t. $\sum_{n \leqslant x} h_{i}(n)=\delta_{i} x+o(x)$ that, instead of

$$
\left|h_{i}(n)\right| \leqslant 1 \quad \text { for all } n \leqslant N
$$

The transference principle

All mentioned results continue to hold for functions $h_{i}:\{1, \ldots, N\} \rightarrow \mathbb{C}$ s.t. $\sum_{n \leqslant x} h_{i}(n)=\delta_{i} x+o(x)$ that, instead of

$$
\left|h_{i}(n)\right| \leqslant 1 \quad \text { for all } n \leqslant N
$$

satisfy

$$
\left|h_{i}(n)\right| \leqslant \nu(n) \quad \text { for all } n \leqslant N
$$

where $\nu:\{1, \ldots, N\} \rightarrow \mathbb{R}_{>0}$ is a pseudo-random measure.

The transference principle

All mentioned results continue to hold for functions
$h_{i}:\{1, \ldots, N\} \rightarrow \mathbb{C}$ s.t. $\sum_{n \leqslant x} h_{i}(n)=\delta_{i} x+o(x)$ that, instead of

$$
\left|h_{i}(n)\right| \leqslant 1 \quad \text { for all } n \leqslant N
$$

satisfy

$$
\left|h_{i}(n)\right| \leqslant \nu(n) \quad \text { for all } n \leqslant N
$$

where $\nu:\{1, \ldots, N\} \rightarrow \mathbb{R}_{>0}$ is a pseudo-random measure.
Green-Tao transference result
If $h:\{1, \ldots, N\} \rightarrow \mathbb{C}$ has a pseudo-random majorant, then

$$
h=h_{1}+h_{2}
$$

where h_{1} bounded, and h_{2} Gowers uniform.

Summary

In order to apply these methods to the representation functions r_{i} of irreducible binary quadratic forms, we have to

1. construct a pseudo-random majorant
2. show that the r_{i} do not correlate with nilsequences

Further results

Theorem (Browning-M-Skorobogatov)

Let X be a conic bundle surface over \mathbb{Q} and assume that all degenerate geometric fibres are defined over \mathbb{Q}. Then

- $X(\mathbb{Q})$ is Zariski dense in X, and
- the Brauer-Manin obstruction is the only obstruction to WA.

Further results

Theorem (Browning-M-Skorobogatov)

Let X be a conic bundle surface over \mathbb{Q} and assume that all degenerate geometric fibres are defined over \mathbb{Q}. Then

- $X(\mathbb{Q})$ is Zariski dense in X, and
- the Brauer-Manin obstruction is the only obstruction to WA.

Further results

Theorem (Browning-M-Skorobogatov)

Let X be a conic bundle surface over \mathbb{Q} and assume that all degenerate geometric fibres are defined over \mathbb{Q}. Then

- $X(\mathbb{Q})$ is Zariski dense in X, and
- the Brauer-Manin obstruction is the only obstruction to WA.

Let X be a geometrically integral projective 3fold, with a surjective morphism $X \rightarrow \mathbb{P}_{\mathbb{Q}}^{1}$ s.t. fibres are 2-dim. quadrics.

Further results

Theorem (Browning-M-Skorobogatov)

Let X be a conic bundle surface over \mathbb{Q} and assume that all degenerate geometric fibres are defined over \mathbb{Q}. Then

- $X(\mathbb{Q})$ is Zariski dense in X, and
- the Brauer-Manin obstruction is the only obstruction to WA.

Let X be a geometrically integral projective 3fold, with a surjective morphism $X \rightarrow \mathbb{P}_{\mathbb{Q}}^{1}$ s.t. fibres are 2-dim. quadrics.

Theorem (BMS)

If all degenerate geometric fibres are defined over \mathbb{Q}, then the Brauer-Manin obstruction is the only obstruction to WA on any smooth and projective model of X.

Further results

Higher dimensional varieties

$$
X=\left\{f_{1}(\mathbf{t}) X_{1}^{2}+\cdots+f_{n}(\mathbf{t}) X_{n}^{2}=0\right\}
$$

Further results

Higher dimensional varieties

$$
X=\left\{f_{1}(\mathbf{t}) X_{1}^{2}+\cdots+f_{n}(\mathbf{t}) X_{n}^{2}=0\right\}
$$

$f_{1}, \ldots, f_{n} \in \mathbb{Q}[\mathbf{t}]$,

Further results

Higher dimensional varieties

$$
\begin{aligned}
& X=\left\{f_{1}(\mathbf{t}) X_{1}^{2}+\cdots+f_{n}(\mathbf{t}) X_{n}^{2}=0\right\} \\
& f_{1}, \ldots, f_{n} \in \mathbb{Q}[\mathbf{t}], \quad \mathbf{t}=\left(t_{1}, \ldots, t_{m}\right) .
\end{aligned}
$$

Further results

Higher dimensional varieties

$$
\begin{aligned}
& X=\left\{f_{1}(\mathbf{t}) X_{1}^{2}+\cdots+f_{n}(\mathbf{t}) X_{n}^{2}=0\right\} \quad \subseteq \mathbb{P}_{\mathbb{Q}}^{n-1} \times \mathbb{A}_{\mathbb{Q}}^{m} \\
& f_{1}, \ldots, f_{n} \in \mathbb{Q}[\mathbf{t}], \quad \mathbf{t}=\left(t_{1}, \ldots, t_{m}\right) .
\end{aligned}
$$

Further results

Higher dimensional varieties
$n \geqslant 3, m \geqslant 1$

$$
X=\left\{f_{1}(\mathbf{t}) X_{1}^{2}+\cdots+f_{n}(\mathbf{t}) X_{n}^{2}=0\right\} \quad \subseteq \mathbb{P}_{\mathbb{Q}}^{n-1} \times \mathbb{A}_{\mathbb{Q}}^{m}
$$

$f_{1}, \ldots, f_{n} \in \mathbb{Q}[\mathbf{t}], \quad \mathbf{t}=\left(t_{1}, \ldots, t_{m}\right)$.

Further results

Higher dimensional varieties
$n \geqslant 3, m \geqslant 1$

$$
X=\left\{f_{1}(\mathbf{t}) X_{1}^{2}+\cdots+f_{n}(\mathbf{t}) X_{n}^{2}=0\right\} \quad \subseteq \mathbb{P}_{\mathbb{Q}}^{n-1} \times \mathbb{A}_{\mathbb{Q}}^{m}
$$

$f_{1}, \ldots, f_{n} \in \mathbb{Q}[\mathbf{t}], \quad \mathbf{t}=\left(t_{1}, \ldots, t_{m}\right)$.
Theorem (BMS)
Brauer-Manin is the only obstruction to WA on smooth and projective models of X, provided f_{1}, \ldots, f_{n} are products of linear poly's over \mathbb{Q}.

Further results

$$
X=X_{1} \times_{\mathbb{P}_{Q}^{1}} X_{2} \times_{\mathbb{P}_{Q}^{1}} \cdots \times_{\mathbb{P}_{Q}^{1}} X_{n}
$$

Further results

$$
X=X_{1} \times_{\mathbb{P}_{\mathbb{Q}}^{1}} X_{2} \times_{\mathbb{P}_{\mathbb{Q}}^{1}} \cdots \times_{\mathbb{P}_{\mathbb{Q}}^{1}} X_{n}
$$

$X_{i} / \mathbb{P}_{\mathbb{Q}}^{1}$ conic bundle, degenerate geom fibres def $/ \mathbb{Q}$

Further results

$$
X=X_{1} \times_{\mathbb{P}_{Q}^{1}} X_{2} \times_{\mathbb{P}_{Q}^{1}} \cdots \times_{\mathbb{P}_{Q}^{1}} X_{n}
$$

$X_{i} / \mathbb{P}_{\mathbb{Q}}^{1}$ conic bundle, degenerate geom fibres def $/ \mathbb{Q}$
If X_{i}, X_{j} have degenerate fibres over $e \in \mathbb{P}_{\mathbb{Q}}^{1}$, their fibres at e are defined over the same quadratic field.

Further results

$$
X=X_{1} \times_{\mathbb{P}_{\mathbb{Q}}^{1}} X_{2} \times_{\mathbb{P}_{\mathbb{Q}}^{1}} \cdots \times_{\mathbb{P}_{\mathbb{Q}}^{1}} X_{n}
$$

$X_{i} / \mathbb{P}_{\mathbb{Q}}^{1}$ conic bundle, degenerate geom fibres def $/ \mathbb{Q}$
If X_{i}, X_{j} have degenerate fibres over $e \in \mathbb{P}_{\mathbb{Q}}^{1}$, their fibres at e are defined over the same quadratic field.

Theorem (BMS)

Brauer-Manin is the only obstruction to HP/WA on smooth \mathcal{E} projective models of X.

Further results

$$
X=X_{1} \times_{\mathbb{P}_{\mathbb{Q}}^{1}} X_{2} \times_{\mathbb{P}_{\mathbb{Q}}^{1}} \cdots \times_{\mathbb{P}_{\mathbb{Q}}^{1}} X_{n}
$$

$X_{i} / \mathbb{P}_{\mathbb{Q}}^{1}$ conic bundle, degenerate geom fibres def $/ \mathbb{Q}$
If X_{i}, X_{j} have degenerate fibres over $e \in \mathbb{P}_{\mathbb{Q}}^{1}$, their fibres at e are defined over the same quadratic field.

Theorem (BMS)

Brauer-Manin is the only obstruction to HP/WA on smooth \mathcal{E} projective models of X.

Applies to intersections of quadrics:

$$
\left\{\left(u-e_{2 i-1} v\right)\left(u-e_{2 i} v\right)=c_{i}\left(x_{i}^{2}-a_{i} y_{i}^{2}\right), \quad i=1, \ldots, n\right\} \subseteq \mathbb{P}_{\mathbb{Q}}^{2 n+1}
$$

$a_{i} \in \mathbb{Q}^{*} \backslash \mathbb{Q}^{* 2}, \quad c_{i} \in \mathbb{Q}^{*}, \quad$ pairwise distinct $e_{1}, \ldots, e_{2 n} \in \mathbb{Q}$.

Surveys on Green-Tao/Green-Tao-Ziegler material

[1] B.J. Green, Generalising the Hardy-Littlewood method for primes, International Congress of Mathematicians. Vol. II, 373-399, Eur. Math. Soc., Zurich, 2006.
[2] B.J. Green, T. Tao and T. Ziegler, An inverse theorem for the Gowers U^{s+1}-norm (announcement),
Electron. Res. Annouce. Math. Sci. 18 (2011), 69-90.

Pseudo-random majorant

The total mass is roughly 1 :

$$
\frac{1}{N} \sum_{n \leqslant N} \nu(n)=1+o(1)
$$

Pseudo-random majorant

The total mass is roughly 1 :

$$
\frac{1}{N} \sum_{n \leqslant N} \nu(n)=1+o(1)
$$

The D-linear forms condition
For all integers $0<t, d \leqslant D$, we have

$$
\frac{1}{N^{d}} \sum_{\mathbf{u} \in(\mathbb{Z} / N \mathbb{Z})^{d}} \nu\left(f_{1}^{\prime}(\mathbf{u})\right) \ldots \nu\left(f_{t}^{\prime}(\mathbf{u})\right)=1+o(1)
$$

for $f_{1}^{\prime}, \ldots, f_{t}^{\prime}: \mathbb{Z}^{d} \rightarrow \mathbb{Z}^{t}$ linear poly's with bounded coefficients s.t.

$$
f_{i}^{\prime} \neq \alpha f_{j}^{\prime}, \quad i \neq j, \alpha \in \mathbb{Q} .
$$

