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Main theorem

Theorem (Browning–M–Skorobogatov)
Let X be a conic bundle surface over Q, assume that it has degenerate
geometric fibres and that they are all defined over Q. Then
• X(Q) is Zariski dense in X, and
• the Brauer–Manin obstruction is the only obstruction to WA.

Proof
Assume that fibre at∞ smooth
e1, . . . , er ∈ Q — points which produce degenerate geom. fibres
a1, . . . , ar ∈ Q∗/Q∗2 s.t. for each i the irred. components of fibre
over ei are defined over Q(

√
ai)



Main theorem

Theorem (Browning–M–Skorobogatov)
Let X be a conic bundle surface over Q, assume that it has degenerate
geometric fibres and that they are all defined over Q. Then
• X(Q) is Zariski dense in X, and
• the Brauer–Manin obstruction is the only obstruction to WA.

Proof
Assume that fibre at∞ smooth
e1, . . . , er ∈ Q — points which produce degenerate geom. fibres

a1, . . . , ar ∈ Q∗/Q∗2 s.t. for each i the irred. components of fibre
over ei are defined over Q(

√
ai)



Main theorem

Theorem (Browning–M–Skorobogatov)
Let X be a conic bundle surface over Q, assume that it has degenerate
geometric fibres and that they are all defined over Q. Then
• X(Q) is Zariski dense in X, and
• the Brauer–Manin obstruction is the only obstruction to WA.

Proof
Assume that fibre at∞ smooth
e1, . . . , er ∈ Q — points which produce degenerate geom. fibres
a1, . . . , ar ∈ Q∗/Q∗2 s.t. for each i the irred. components of fibre
over ei are defined over Q(

√
ai)



Proof

e1, . . . , er ∈ Q — points which produce degenerate geom. fibres
a1, . . . , ar ∈ Q∗/Q∗2 s.t. for each i the irred. components of fibre
over ei are defined over Q(

√
ai)

Colliot-Thélène & Sansuc:
Universal torsor over X is Q-birational to

Wλ × C× A1
Q

where C conic over Q, and Wλ ⊂ A2r+2
Q defined via

{0 6= u− eiv = λi(x2
i − aiy2

i ) : i = 1, . . . , r}

for suitable λ = (λ1, . . . , λr) ∈ (Q∗)r.



Proof

e1, . . . , er ∈ Q — points which produce degenerate geom. fibres
a1, . . . , ar ∈ Q∗/Q∗2 s.t. for each i the irred. components of fibre
over ei are defined over Q(

√
ai)

Colliot-Thélène & Sansuc:
Universal torsor over X is Q-birational to

Wλ × C× A1
Q

where C conic over Q, and Wλ ⊂ A2r+2
Q defined via

{0 6= u− eiv = λi(x2
i − aiy2

i ) : i = 1, . . . , r}

for suitable λ = (λ1, . . . , λr) ∈ (Q∗)r.



Proof

e1, . . . , er ∈ Q — points which produce degenerate geom. fibres
a1, . . . , ar ∈ Q∗/Q∗2 s.t. for each i the irred. components of fibre
over ei are defined over Q(

√
ai)

Colliot-Thélène & Sansuc:
Universal torsor over X is Q-birational to

Wλ × C× A1
Q

where C conic over Q, and

Wλ ⊂ A2r+2
Q defined via

{0 6= u− eiv = λi(x2
i − aiy2

i ) : i = 1, . . . , r}

for suitable λ = (λ1, . . . , λr) ∈ (Q∗)r.



Proof

e1, . . . , er ∈ Q — points which produce degenerate geom. fibres
a1, . . . , ar ∈ Q∗/Q∗2 s.t. for each i the irred. components of fibre
over ei are defined over Q(

√
ai)

Colliot-Thélène & Sansuc:
Universal torsor over X is Q-birational to

Wλ × C× A1
Q

where C conic over Q, and Wλ ⊂ A2r+2
Q defined via

{0 6= u− eiv = λi(x2
i − aiy2

i ) : i = 1, . . . , r}

for suitable λ = (λ1, . . . , λr) ∈ (Q∗)r.



Proof

V ⊂ A2r+s
Q defined via

{0 6= x2
i − aiy2

i = fi(u1, . . . ,us) : i = 1, . . . , r}

for homogeneous linear polynomials fi ∈ Z[u1, . . . ,us] s.t.
fi 6= αfj whenever i 6= j, α ∈ Q.

Theorem
V satisfies HP/WA, and V(Q) Zariski dense in V if non-empty.

Key ingredient
ri(n) = #{(x, y) ∈ Z2/ ∼: x2 − aiy2 = n}

Theorem (M, 2012):∑
u∈Zs∩NK

r∏
i=1

ri(fi(u)) = vol(K)Nsβ∞
∏

p

βp + o(Ns)

K ⊂ [−1, 1]s ⊂ Rs convex.
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Generalised von Neumann theorem

Replace ri by general hi : Z→ C and consider

If ‖hi‖∞ 6 1 then
Gowers’ work on Szemerédi’s theorem shows: If

N−s
∑

u∈(Z/NZ)s

r∏
i=1

hi(fi(u))

> δ

then the Gowers uniformity norms ‖hi‖Ur−1 are large:

‖hi‖Ur−1 �f1,...,fr δ.

Assume 1
x
∑

n6x hi(n) = δi + o(1) and let h′i = hi − δi.

max
i
‖hi − δi‖Ur−1 = o(1) =⇒

N−s
∑

u∈(Z/NZ)s

r∏
i=1

hi(fi(u)) = δ1 . . . δr + o(1).
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Gowers uniformity norms

‖h‖4
U2(Z/NZ) = N−3

∑
n,d1,d2∈Z/NZ

h(n)h(n + d1)h(n + d2)h(n+d1+d2)

‖h‖2k

Uk(Z/NZ) = N−(k+1)
∑

n,d1,...,dk
∈Z/NZ

∏
ω∈{0,1}k

C|ω|h(n + ω · d)

Important fact: ‖h‖U2(Z/NZ) = ‖ĥ‖`4 .

Thus, ‖h‖U2(Z/NZ) > δ iff h has a large Fourier coefficient:∣∣∣ 1
N

∑
n∈Z/NZ

h(n)e(θn)
∣∣∣ > 2δ2
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Thus, ‖h‖U2(Z/NZ) > δ iff h has a large Fourier coefficient:∣∣∣ 1
N

∑
n∈Z/NZ

h(n)e(θn)
∣∣∣ > 2δ2



Gowers uniformity norms

‖h‖4
U2(Z/NZ) = N−3

∑
n,d1,d2∈Z/NZ

h(n)h(n + d1)h(n + d2)h(n+d1+d2)

‖h‖2k

Uk(Z/NZ) = N−(k+1)
∑

n,d1,...,dk
∈Z/NZ

∏
ω∈{0,1}k

C|ω|h(n + ω · d)

Important fact: ‖h‖U2(Z/NZ) = ‖ĥ‖`4 .
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Discussion

Thus, Fourier analysis completely describes functions with
large U2 norm.

Expected since problems involving the U2 norm can be dealt
with Fourier analysis / the circle method.

Example:
Let A ⊂ {1, . . . ,N}, |A| = αN. Then

#{3-term AP’s in A} =
∑

n,d:16n,n+2d6N

1A(n)1A(n + d)1A(n + 2d)

∼ α3N2/2

iff 1A − α has no large Fourier coefficient.
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If 1
x
∑

n6x hi(n) = δi + o(1), then

max
i
‖hi − δi‖Ur−1 = o(1) =⇒

∑
u∈Zs∩K

r∏
i=1

hi(fi(u)) = vol K δ1 . . . δr + o(Ns)

for convex K ⊆ [−N,N]s.



Discussion

The same does not hold for 4-term APs [Green]:

A = {1 ≤ n ≤ N : {n2
√

2} ∈ [−α/2, α/2]}

is such that |A| ∼ αN and 1A − α has no large Fourier
coefficients, but nonetheless there are significantly more 4-term
APs in A than the expected value of α4N2/6
Thus, Fourier analysis does not capture the U3 norm. Indeed

Theorem (Inverse theorem for U3, Green–Tao)
If h : {1, . . . ,N} 7→ C, ‖h‖∞ 6 1 and ‖h‖U3 > δ, then there is a
generalised quadratic phase

φ(n) =
∑

r,s6C1(δ)

βrs{θrn}{θsn}+ γr{θrn}

where βrs, γr, θr ∈ R, s.t.
∣∣∣ 1

N
∑

n6N h(n)e(φ(n))
∣∣∣�δ 1.
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Nilsequences

G a connected, simply connected k-step nilpotent Lie Group.

Γ a discrete, co-compact subgroup.

Then G/Γ is a k-step nilmanifold.
dG/Γ a smooth metric.

G = G0 = G1 > G2 > . . . > Gd = {id}, [Gi,Gj] 6 Gi+j

For g : Z→ G define discrete derivative

∂hg(n) = g(n + h)g(n)−1

g is polynomial if ∂hi∂hi−1 . . . ∂h1g(n) ∈ Gi for all i ∈ {1, . . . , d}.
Nilsequence:

(F(g(n)Γ))n6N

(e(φ(n)))n6N

with Lipschitz function F : G/Γ→ C, ‖F‖∞ 6 1.
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The general inverse theorem

Theorem (Green-Tao-Ziegler, 2012)
Let k > 0 be an integer, 0 < δ 6 1. Then there is a finite collection
Mk,δ of k-step nilmanifolds (G/Γ, dG/Γ) s.t.:
If N > 1, h : {1, . . . ,N} → C, ‖h‖∞ 6 1 and

‖h‖Uk+1[N] > δ ,

then there is a G/Γ ∈Mk,δ, and a nilsequences (F(g(n)Γ))n6N with
‖F‖Lip = Ok,δ(1) s.t.∣∣∣ 1

N

∑
n6N

h(n)F(g(n)Γ)
∣∣∣�k,δ 1 .



What have we gained?

To obtain an asymptotic formula for

∑
u∈(Z/NZ)s

r∏
i=1

hi(fi(u)),
fi linear polynomials,
no two proportional

we may, instead of proving that ‖hi − δi‖Ur−1 are small, attempt
to show that∣∣∣ 1

N

∑
n6N

(hi(n)− δi)F(g(n)Γ)
∣∣∣ = oG/Γ,r(1)

for each i = 1, . . . , r.

Problem:
The hi have to be bounded!



What have we gained?

To obtain an asymptotic formula for

∑
u∈(Z/NZ)s

r∏
i=1

hi(fi(u)),
fi linear polynomials,
no two proportional

we may, instead of proving that ‖hi − δi‖Ur−1 are small, attempt
to show that∣∣∣ 1

N

∑
n6N

(hi(n)− δi)F(g(n)Γ)
∣∣∣ = oG/Γ,r(1)

for each i = 1, . . . , r.

Problem:
The hi have to be bounded!



The transference principle

All mentioned results continue to hold for functions
hi : {1, . . . ,N} → C s.t.

∑
n6x hi(n) = δix + o(x) that, instead of

|hi(n)| 6 1 for all n 6 N

satisfy
|hi(n)| 6 ν(n) for all n 6 N,

where ν : {1, . . . ,N} → R>0 is a pseudo-random measure.

Green-Tao transference result
If h : {1, . . . ,N} → C has a pseudo-random majorant, then

h = h1 + h2

where h1 bounded, and h2 Gowers uniform.
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Summary

In order to apply these methods to the representation functions
ri of irreducible binary quadratic forms, we have to

1. construct a pseudo-random majorant
2. show that the ri do not correlate with nilsequences



Further results

Theorem (Browning–M–Skorobogatov)
Let X be a conic bundle surface over Q and assume that all degenerate
geometric fibres are defined over Q. Then
• X(Q) is Zariski dense in X, and
• the Brauer–Manin obstruction is the only obstruction to WA.

Let X be a geometrically integral projective 3fold, with
a surjective morphism X→ P1

Q s.t. fibres are 2-dim. quadrics.

Theorem (BMS)
If all degenerate geometric fibres are defined over Q,
then the Brauer–Manin obstruction is the only obstruction to WA on
any smooth and projective model of X.
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Further results

Higher dimensional varieties

n > 3, m > 1

X =
{

f1(t)X2
1 + · · ·+ fn(t)X2

n = 0
}

⊆ Pn−1
Q × Am

Q

f1, . . . , fn ∈ Q[t] , t = (t1, . . . , tm).

Theorem (BMS)
Brauer–Manin is the only obstruction to WA on
smooth and projective models of X,
provided f1, . . . , fn are products of linear poly’s over Q.
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Q, their fibres at e are

defined over the same quadratic field.

Theorem (BMS)
Brauer–Manin is the only obstruction to HP/WA on smooth &
projective models of X.

Applies to intersections of quadrics:{
(u− e2i−1v)(u− e2iv) = ci(x2
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Q

ai ∈ Q∗ \Q∗2, ci ∈ Q∗, pairwise distinct e1, . . . , e2n ∈ Q.
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Pseudo-random majorant

The total mass is roughly 1:

1
N

∑
n6N

ν(n) = 1 + o(1)

The D-linear forms condition
For all integers 0 < t, d 6 D, we have

1
Nd

∑
u∈(Z/NZ)d

ν(f ′1(u)) . . . ν(f ′t (u)) = 1 + o(1)

for f ′1, . . . , f
′
t : Zd → Zt linear poly’s with bounded coefficients

s.t.
f ′i 6= αf ′j , i 6= j, α ∈ Q.
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