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§0. Introduction

Let K be the field of fractions of a two-dimensional, excellent, henselian, local domain with
algebraically closed residue field of characteristic zero. In this introduction, we shall refer to
such a field as a two-dimensional, strictly henselian field (indeed a henselian local ring with a
separably closed residue field is called a strictly henselian local ring). An example of such a field
is the field of fractions C((X,Y )) of the formal power series ring C[[X,Y ]].

In the paper [CTOP], Ojanguren and two of the authors investigated quadratic forms over
such a field K, and established properties analogous to those familiar over number fields. An
analogue of the local-global principle for the Brauer group (going back to work of M. Artin) was
also established.

In the present paper, we show that most well-known properties of linear algebraic groups and
of their homogeneous spaces over totally imaginary number fields have counterparts for such
groups over a two-dimensional strictly henselian field.

To prove this, we recall (§1) that both types of fields share a number of properties :
(i) their cohomological dimension is two ;
(ii) index and exponent of central simple algebras coincide ;
(iii) for any semisimple simply connected group G over K, we have H1(K,G) = 1 ;
(iv) on fields of either type, there is a natural set of rank one discrete valuations (i.e. with

values in Z), with respect to which one can take completions and then investigate such natural
questions as the local-global principle and weak approximation for homogeneous spaces of linear
algebraic groups.

We recall how properties (i) and (ii) are enough to deduce (iii) for groups without E8-factors.
Properties (i), (ii) and (iii) are satified by other fields of interest, such as the Laurent series

field l((t)) over a field l (of characteristic zero) of cohomological dimension one (such fields occur
as completions of two-dimensional strictly henselian fields).

For function fields in two variables over an algebraically closed field of characteristic zero, (i)
holds and (ii) is known for algebras of 2-primary or 3-primary index(1).

In §2, we show that if a field K satifies properties (i) and (ii), then for the standard isogeny

1 → µ→ Gsc → Gad → 1

between a simply connected algebraic group and its adjoint group, the associated boundary map
H1(K,Gad) → H2(K,µ) is onto. This is a generalization of a classical result over number fields.
Using the results from §1, we simultaneously prove that if a semisimple group G over such a
field K is not purely of type A, then it is isotropic. Again this is the generalization of a classical
result over number fields.

In §3, for tori over two-dimensional strictly henselian fields, we establish the analogues of
results of [CTS1] for tori over number fields : finiteness of R-equivalence on the set of rational
points, computation of groups measuring the failure of weak approximation and of the Hasse

(1) This actually holds for any index, as recently proved by A. J. de Jong. For most problems
studied in our paper, only the 2-primary and 3-primary parts of Brauer groups are relevant. One
notable exception is Theorem 2.1, which by de Jong’s theorem now applies to function fields in
two variables over an algebraically closed field of characteristic zero.
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principle for homogeneous spaces. Finiteness of R-equivalence holds for higher dimensional local
henselian fields, and also for function fields.

In §4, we study the same problems for arbitrary connected linear algebraic groups. Here the
restriction to fields of cohomological dimension two is crucial. We first discuss semisimple simply
connected groups. Using a series of earlier works and the isotropy result of §2, we show that
if the field K satisfies properties (i) and (ii) (and an additional property if factors of type E8

are allowed) then for any semisimple simply connected connected group G over K, the group
G(K)/R is trivial. If K is a two-dimensional strictly henselian field, then weak approximation
holds for such a group G. We then go on to study arbitrary linear algebraic groups over a two-
dimensional strictly henselian field. The analysis of [Gi1] and [Gi2] can be carried out : we thus
show that for such a group G, the group G(K)/R is finite, and we give formulas for that group
and for the group measuring the lack of weak approximation on G (with respect to a finite set
of places). For G without E8-factor, a number of properties, in particular finiteness of G(K)/R,
also hold for K a two-dimensional function field.

In §5, we study the Hasse principle for homogeneous spaces. We prove that the Hasse principle
holds for principal homogeneous spaces of a semisimple group G over a two-dimensional strictly
henselian field, if G is adjoint or if the underlying K-variety of G is K-rational. The main result
is a proof of the Hasse principle for projective homogeneous spaces of an arbitrary connected
linear group over such a field. The proof uses the surjectivity statement established in §2, which
enables us to adapt Borovoi’s proof in the number field case to the present context.

The main results of the paper were announced in the note [CTGP].

R-equivalence
Let F be a covariant functor from commutative k-algebras to sets. Let O denote the semilocal

ring of the polynomial algebra k[t] at the points t = 0 and t = 1. Let us say that two elements
a, b ∈ F (k) are elementarily related if there exists ξ ∈ F (O) such that ξ(0) = a and ξ(1) = b.
By definition, R-equivalence on F (k) is the equivalence relation generated by the previous
elementary relation. Thus two elements a, b ∈ F (k) are R-equivalent if and only if there exists a
finite set of elements x0, . . . , xn+1 ∈ F (k), with x0 = a and xn+1 = b, such that xi is related to
xi+1 for 0 ≤ i ≤ n. One lets F (k)/R denote the quotient set for this equivalence relation. For any
field K containing k, one defines a similar equivalence relation on F (K) by using the semilocal
ring ofK[t] at the points t = 0 and t = 1. There is a natural, functorial map F (k)/R→ F (K)/R.

If F = FX is the functor associated to a k-variety X, namely FX(A) = X(A), we get the
R-equivalence on X(k), as defined by Manin. Suppose F = FG, where G/k is a linear algebraic
group (see [CTS1], [Gi1]). Then the set of k-points R-equivalent to 1 ∈ G(k) is a normal
subgroup ; if k is infinite, then any k-point R-equivalent to 1 ∈ G(k) is elementarily related to 1
([Gi1], Lemme II.1.1). The quotient G(k)/R is thus equipped with a natural group structure. For
G linear connected, it is an open question whether this group is commutative (commutativity
is known for simply connected groups of classical type).

In these notes, as in [Gi2], we shall also be concerned with the functors F defined by
F (A) = H1

ét(A, S), where S is a commutative k-group scheme.

Weak approximation

Let K be a field equipped with a set Ω of rank one discrete valuations (i.e. valuations the value
group of which is Z). For each v ∈ Ω, let Kv denote the completion of K at v. For any K-variety
X, and for any v ∈ Ω, the topology on Kv induces a topology on X(Kv). One says that weak
approximation holds for X and a finite set S ⊂ Ω if the diagonal map X(K) → ∏

v∈S X(Kv)
has dense image.
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§1. The fields under consideration and their basic properties (a review)

Let k be an algebraically closed field of characteristic zero. We shall mainly be interested in
fields of one of the following types :

(gl) a function field K in two variables over k, i.e. the function field of a smooth, projective,
connected surface over k ;

(ll) the field of fractions K of a henselian, excellent, two-dimensional local domain A with
residue field k ;

(sl) the Laurent series field l((t)) over a field l of characteristic zero and cohomological
dimension 1.

For the definition of an excellent ring, see [EGA IV2] 7.8.2 and 5.6.2 (and refer to [EGA IV1]
16.1.4 and 14.3.2 for the definition of a “catenary” ring). See also [Ma], chap. 13.

Note that any finite field extension of a field of one of these types is of the same type.
For type (sl), we shall mainly be interested in the case where l is either the function field of

a curve over k, or is itself a Laurent series field in one variable k((u)).

Let us now consider the following properties of a field K, which we assume to be of
characteristic 0.

(a) The field K has the C2 property : that is, for any r ≥ 1 and any system of homogeneous
forms fj(X1, . . . , Xn) (j = 1, . . . , r) with coefficients in K, if n >

∑
j d

2
j , where dj is the degree

of fj , then there is a nontrivial common zero in Kn for these r forms. This property is preserved
under finite field extensions ([Pf], Chap. 5, Thm. 1.3).

(b) The cohomological dimension cd(K) is at most 2. This property is preserved under
algebraic field extensions ([Se2] §I.3.3, Prop. 14 p. 17).

(c) The reduced norm is surjective. That is, for any finite field extension L/K and any central
simple algebra D/L, the reduced norm map Nrd : D∗ → L∗ is surjective.

(d) For a given prime p, index and exponent of p-primary algebras coincide : That is, for any
finite field extension L/K, and any central simple p-primary division algebra D/L, the index of
D, i.e. the square root of its dimension, and the exponent of D, i.e. the order of its class in the
Brauer group of L, coincide. (An algebra is called p-primary if its order in the Brauer group is
a power of p ; equivalently, it is equivalent to a central simple algebra of index a power of p.)

(e) For a given prime p, over any finite field extension L of K, the tensor product of two
central simple algebras of index p is of index at most p.

(f) Over any finite field extension L/K, any quadratic form in at least 5 variables has a
nontrivial zero.

(g) The cohomological dimension cd(Kab) of the maximal abelian extension of K is at most
one (this property is stable under algebraic field extensions).

Here are the known relations between these various properties.

Theorem 1.1 Let K be a field of characteristic zero. The following implications hold :
(i) (a) implies (b)
(ii) (b) is equivalent to (c).
(iii) (a) implies (f).
(iv) (d) is equivalent to (e).
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(v) (f) implies (d) for p = 2.
(vi) (a) implies (d) for p = 2 and p = 3.
(vii) the combination of (b) and (e) for p = 2 implies (f).
Proof Statement (ii) is a consequence of the Merkurjev-Suslin results ([Su], Thm. 24.8).

Statement (i) is a direct consequence of (ii). Statement (iii) is trivial. For statement (iv), which
also relies on results of Merkurjev and Suslin, we refer to the proof of Prop. 7 in [CTG] and the
references given there. Statement (v) follows from a well-known criterion of Albert (see [CTG])
together with Statement (iv) for p = 2. For the proof of (vi), see [CTG], Prop. 7. For the proof
of (vii), see [CTOP], proof of Theorem 3.4.

Recall Serre’s conjecture II : for a perfect field K of cohomological dimension 2 and a simply
connected group G/K, the set H1(K,G) is reduced to one element. The following theorem
gathers results known in that direction.

Theorem 1.2 Let K be a field of characteristic zero and of cohomological dimension at
most 2. Let G/K be a simply connected group.

(i) If G is absolutely almost simple of classical type, or is of type G2 or F4, then H1(K,G) = 1.
(ii) Suppose that index and exponent coincide for 2-primary algebras over finite field exten-

sions of K. Then H1(K,G) = 1 for G of trialitarian type D4 and for G of type E7.
(iii) Suppose that index and exponent coincide for 3-primary algebras over finite field

extensions of K. Then H1(K,G) = 1 for G of type E6.
(iv) Suppose that the cohomological dimension of Kab is at most one. If G is of type E8, then

H1(K,G) = 1.
(v) Suppose that index and exponent coincide for 2-primary and 3-primary algebras over finite

field extensions of K. If G has no factor of type E8, then H1(K,G) = 1, and the same holds in
general if moreover the cohomological dimension of Kab is at most one.

Proof For G of type 1An, statement (i) is a consequence of the Merkurjev-Suslin theorems, as
noticed by Suslin [Su]. For the other groups of classical type, the result is due to Bayer-Fluckiger
and Parimala [BFP]. When exponent and index of algebras coincide, note that the proofs of
[BFP] may be shortened. Statements (ii), (iii), (iv) are due to Gille. For trialitarian type D4,
this is [Gi2], Thm. 8 p. 313. For E6 (either 1E6 or 2E6), this is [Gi2], Thm. 9. p. 314. For
E7, this is [Gi2], Thm. 10 p. 316. The argument for the E8 case (briefly sketched on p. 322 of
[Gi2]) is inspired by the number theory case (Chernousov). Let G0 be the split group of type
E8. Over any field K, any element of H1(K,G0) is in the image of H1(K,T ) for the natural
embedding T ⊂ G0 of a suitable maximal torus T of G (Steinberg, see [Se2], §III.2.3, Corollaire,
p. 140). For T ⊂ G0 a maximal torus, the group H1(K,T ) is killed by a power of 2.3.5 (Harder,
Tits, cf. [Se3], Thm. 3 p. 234). Under the assumption that cd(Kab) ≤ 1, this implies that any
element of H1(K,G0) belongs to the image of H1(L/K,G0) for some finite abelian extension of
degree 2a.3b.5c. Theorem 11, p. 317 of [Gi2], states that for G0 split of type E8 over a field K of
characteristic zero and of cohomological dimension at most 2, and L/K cyclic of degree 2, 3 or
5, we have H1(L/K,G0) = 1. By induction, we conclude that H1(K,G0) = 1. Since the centre
of G0 is trivial and there are no outer automorphisms, we conclude that the only form of G0 is
the split form, which completes the proof of (iv).

The proof of (v) involves a well-known result, which will be used a number of times in this
paper, and which we shall refer to as the standard reduction to the almost simple case. Here
is the statement : If a semisimple group G/K is simply connected, resp. adjoint, then it is
K-isomorphic to a product

∏
iRKi/KGi, where the Ki/K are finite field extensions, RKi/K

denotes the Weil restriction of scalars, and each Gi is an absolutely almost simple Ki-group
which is simply connected, resp. adjoint. In the simply connected case, the centre of G is the
product of the RKi/KCi, where Ci denotes the centre of Gi.
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Statement (v) now follows from the other statements thanks to the Shapiro type formula
H1(K,G) =

∏
iH

1(Ki, Gi).

Remark For the exceptional groups, an independent proof of Theorem 1.2 has been given by
Chernousov [Ch].

We now specialize to the fields of “geometric type” of interest in this paper.

Theorem 1.3 (case (gl)) Let K be a function field in two variables over an algebraically
closed field k of characteristic zero. The field K is a C2-field, it has cd(K) = 2. Over K, index
and exponent of a 2-primary or a 3-primary algebra coincide (2). If G/K is a semisimple simply
connected group without E8-factor, then H1(K,G) = 1.

Proof That K is a C2-field is a special case of the Tsen-Lang theorem (see [Pf], Chap. 5).
That K has cohomological dimension 2 is a consequence of Theorem 1.1 (i) above, but it had
been known from the very beginning of Galois cohomology ([Se2], II.4.2, Corollaire, p. 95). The
rest of the theorem follows from Theorems 1.1 and 1.2.

Theorem 1.4 (case (ll)) Let K be the field of fractions of a two-dimensional, excellent,
henselian local domain A with residue field k algebraically closed of characteristic zero. The field
K has cd(K) = 2. All central simple algebras over K are cyclic, of exponent equal to the index.
Quadratic forms in at least 5 variables have a nontrivial zero. The cohomological dimension
cd(Kab) of the maximal abelian extension of K is one. For any semisimple simply connected
group G/K, we have H1(K,G) = 1.

Proof That cd(K) = 2 is a special case of result of M. Artin ([SGA 4] XIX Cor. 6.3). That
index and exponent coincide is also a result of M. Artin ([A], Theorem 1.1). That algebras are
cyclic (of index equal to the exponent) is a result of T. Ford and D. Saltman in the geometric
case, see Thm 2.1 of [CTOP] for the general statement. That cd(Kab) ≤ 1 is Thm. 2.2 of
[CTOP]. The rest of the theorem follows from Theorems 1.1 and 1.2.

Theorem 1.5 (case (sl)) Let K be the Laurent series field l((t)) over a field l of characteristic
zero and cohomological dimension 1. Such a field is of cohomological dimension 2. Quadratic
forms in at least 5 variables have a nontrivial zero. Index and exponent of algebras coincide. For
any semisimple simply connected group G/K, we have H1(K,G) = 1.

Proof For the property cd(K) = 2, see [Se2], II.4.3, Prop. 12 p. 95. The proof of the statement
for quadratic forms is well-known ([Sc], §6.2, Corollary 2.6.(iv), p. 209). Any central simple
algebra over K = k((t)) is similar to a cyclic algebra (K/k, σ, t), where K/k is a finite cyclic
field extension and σ is a generator of the Galois group of K/k. Such an algebra being clearly a
division algebra, its index is equal to its exponent. That Serre’s conjecture H1(K,G) = 1 holds
in this context is a theorem of Bruhat and Tits ([BT], Théorème 4.7).

Remark Fields of type (sl) were studied by J.-C. Douai in his thesis (Lille, 1976). Building
upon the work of Bruhat and Tits, for such fields he established Theorem 2.1 (a), Prop. 5.3 and
Prop. 5.4 of the present paper.

For fields of type (gl), there are various natural completions. More generally, let K be a
function field of transcendence degree d over k (we shall mostly be interested in the case d = 2).
For X/k a smooth projective model of K, let X1 denote the set of codimension 1 points on X,
and let ΩX denote the set of discrete valuations v associated to points x ∈ X1. The completion
Kx = Kv of K at such a discrete valuation ring is isomorphic to l((t)), where l = κ(x) is the

(2) This actually holds for arbitrary algebras, as recently proved by A. J. de Jong.
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residue field at v = vx, which is a function field in d− 1 variables. One then denotes by Ω the
union over all models X of the ΩX .

For any X, the kernel of the diagonal restriction map on Brauer groups

Br(K) → ⊕v∈ΩX
Br(Kv)

is contained in the subgroup Br(X) ⊂ Br(K), and it is equal to that subgroup in the (gl) case
under consideration above, namely if d = 2. The same two statements hold for the kernel of the
diagonal restriction map

Br(K) →
∏

v∈Ω

Br(Kv).

This torsion group is an extension of a finite group by a group of the shape (Q/Z)r. For all this,
see Grothendieck [Gr].

Similarly, for fields of type (ll), there are various natural completions. Let K be the field of
fractions of a strictly henselian, two-dimensional, excellent, local domain A with residue field k
algebraically closed of characteristic zero.

Let X be a regular, integral, two-dimensional scheme equipped with a proper birational
morphism X → Spec(A). Such schemes exist (for references, see [CTOP]). The function field of
X is K. Let ΩX denote the set of discrete valuations v associated to points x ∈ X1. If x lies
above a codimension 1 point on Spec(A), then Kv is isomorphic to Fv((x)), where the field Fv

is the field of fractions of a discrete, henselian valuation ring with residue field k. If x lies above
the closed point of Spec(A), then Kv is isomorphic to Fv((x)), and Fv is the function field of a
smooth, projective curve over k. In both cases, Theorem 1.5 ensures that Kv satisfies properties
(a) to (g) listed before Theorem 1.1.

Given A ⊂ K as above, we let Ω = ΩA be the union of all ΩX for X varying among the
regular integral schemes X equipped with a proper birational morphism X → Spec(A).

We refer to §1 of [CTOP] for the proof of the following theorem.

Theorem 1.6 Let K be the field of fractions of a strictly henselian two-dimensional local
domain A with residue field k. Let X → Spec(A) be a regular proper model. With notation as
above, the kernel of the diagonal restriction map on Brauer groups

Br(K) → ⊕v∈ΩX
Br(Kv)

is trivial. So is a fortiori the kernel of the diagonal restriction map on Brauer groups

Br(K) →
∏

v∈Ω

Br(Kv).

§2. Surjectivity of the boundary map and isotropy

Part (a) of the following theorem was stated as Conjecture 5.4 in [CTOP]. It will play a key
rôle in §5 (Hasse principle for projective homogeneous spaces over fields of type (ll)). Part (b)
will play a key rôle in §4 (R-equivalence and weak approximation).

Theorem 2.1 Let k be a field of characteristic zero. Assume :
(i) the cohomological dimension cd(k) of k is at most 2 ;
(ii) for central simple algebras over any finite field extension of k, index coincides with

exponent.
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Let G be a semisimple, simply connected group over k. If G has some factor of type E8,
assume that the cohomological dimension of the maximal abelian extension kab of k is at most
one. Let

1 → µ→ G→ Gad → 1

be the central isogeny associated to the centre µ of G. Then :
(a) The boundary map δ : H1(k,Gad) → H2(k, µ) is a bijection.
(b) If the group G is not purely of type A, then it is isotropic.
(c) Groups of type F4, G2, E8 are split, and groups of type 3,6D4,

1,2E6, E7 which are not
split have the following Tits indices :

3,6D4

1,2E6

E7

Proof The proof will occupy the whole section.
By the standard reduction recalled in the proof of Theorem 1.2, to prove the theorem one

may assume that G is absolutely almost simple.
By Theorem 1.2, we have H1(k,G) = 0 for any semisimple simply connected group G. This

already implies that the connecting map H1(k,Gad) → H2(k, µ) is one-to-one.
Let G0, resp. Gad

0 be the unique, inner quasisplit form of G, resp. Gad. We have the two exact
sequences

1 → µ→ G0 → Gad
0 → 1

and
1 → µ→ G→ Gad → 1.

Let γ ∈ Z1(k,Gad
0 ) be a cocycle such that the twist G0,γ is equal to G. Let ε ∈ H2(k, µ) be

the image of the class of γ under the connecting map δ0 : H1(k,Gad
0 ) → H2(k, µ). We have

a bijection θγ : H1(k,Gad) → H1(k,Gad
0 ) sending the trivial class to the class of γ. From the

commutative diagram (28.12) p. 388 of [KMRT], we draw the following two conclusions :
(1) Surjectivity of the map δ0 : H1(k,Gad

0 ) → H2(k, µ) is equivalent to surjectivity of the
map δ : H1(k,Gad) → H2(k, µ).

(2) The Tits class tG of G (cf. [KMRT] p. 426) is the image under δ0 of the class of γ.
By statement (1), to prove the theorem we may restrict to the case where the absolutely

almost simple simply connected group G is quasisplit, G = G0.
For several types, the surjectivity statement in (a) and the isotropy statement in (b) (in the

cases where (b) holds) will be proved simultaneously. What we shall prove is that for any class
c ∈ H2(k, µ) there exists an explicit isotropic internal form G of G0, whose class in H1(k,Gad

0 )
has image c under the boundary map δ0. That will clearly be enough to prove surjectivity and
isotropy, because δ0 is one-to-one.
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Groups of type 1An

Let m = n+ 1. The basic exact sequence here is

1 → µm → SLm → PGLm → 1

and the boundary map δ0 sends the isomorphy class of a central simple algebra A/k of degree
m to its class in the m-torsion subgroup mBr(k). Hypothesis (ii) of the theorem guarantees that
δ is onto.

Groups of type Bn (n ≥ 2)
Here µ = µ2 and G0 is the split group. By hypothesis (ii), H2(k, µ2) = 2Br(k) consists of

classes of quaternion algebras. Let D/k = (a, b) be a quaternion algebra. We have to show that
the class [D] of D in Br(k) is equal to the Tits class tG ([KMRT], p. 426) for some (automatically
internal) form G of G0.

By [KMRT] (31.9) p. 427, given q a quadratic form of dimension 2n + 1, the Tits class of
Spin(q) is the class of the even Clifford algebra C0(q). Let q be the (isotropic) quadratic form
〈a, b,−ab〉 ⊥ (n − 1)H, where H = 〈1〉 ⊥ 〈−1〉 and 〈a, b,−ab〉 is the standard notation for the
quadratic form aX2 + bY 2−abZ2. Since C0(〈a, b,−ab〉) = (a, b), then [C0(q)] = [(a, b)] (see [Sc],
Chap. 9, §2). The associated group Spin(q) is isotropic, and its Tits class is [C0(q)] ([KMRT],
p. 378), hence equal to [D].

Groups of type Cn (n ≥ 2)
Here again µ = µ2, and the group G0 is split (all forms are inner). By hypothesis, any class

in 2Br(k) is represented by a quaternion algebra D. There is a unique symplectic involution γ
on the quaternion algebra D/k ([KMRT], Prop. 2.21). Let P ∈Mn(k) be the symmetric matrix
with associated quadratic form 2x1x2 +

∑n
i=3 x

2
i . The tensor product of the involution γ on D

and the involution X 7→ −P tXP on Mn is an isotropic symplectic involution on Mn(D), which
we denote by γ̃. The group Sp(Mn(D), γ̃) is then an isotropic group of type Cn with Tits class
[D] ([KMRT] (31.10) p. 427).

Groups of type 3D4 or 6D4

Let G0 have type 3D4 or 6D4, with associated cubic field extension L/k. The associated exact
sequence of quasisplit groups

1 → µ→ G0 → Gad
0 → 1

is sequence (44.11) of [KMRT], p. 563. The centre µ of G0 (which is denoted Cδ in [KMRT]) is
the group µ = R1

L/k(µ2) ([KMRT], p. 564). Since the degree of L over k is 3, the composite of

the diagonal embedding µ2 → RL/k(µ2) and of the norm map RL/k(µ2) → µ2 is identity. Thus
the exact sequence

1 → R1
L/k(µ2) → RL/k(µ2) → µ2 → 1

is split, hence induces an isomorphism

H2(k, µ) = ker[Cores : 2Br(L) → 2Br(k)].

By hypothesis (ii) of the Theorem, an element in H2(k, µ) is represented by a quaternion algebra
D over L whose corestriction in k is trivial in the Brauer group of k. The main Theorem of [Ga]
states that there exists a unique (simply connected) trialitarian group G/k with Allen algebra
M4(D). This is an internal form of G0 and its Tits index of the type described in the Theorem.
Let ξ ∈ H1(k,Gad

0 ) represent G/k. The map δ0 is the map denoted by Sn1 in sequence (44.12)
of [KMRT]. The image of ξ under δ0 is called the Clifford invariant of G, it is the class of the
Allen algebra, and is equal in that case to [D] ∈ Br(L).

Statements (b) and (c) now follow from the general argument mentioned before the discussion
of case 1An.
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Groups of type E6

Let G0 be the split simply connected group of type E6. Its centre is the group µ3. Fix a (split)
Borel subgroup. Deleting the central root from the extended Dynkin diagram, we see that there
is a natural k-homomorphism of split k-groups (SL2)

3 → Gad
0 with finite kernel. Let H ⊂ G0

denote its image. One shows (see [Ti1], §6.4.4 and [Ti2], §1.2) that this homomorphism induces
a commutative diagram

1 −→ µ3 −→ G0 −→ Gad
0 −→ 1

x
x

x

1 −→ ((µ3)
3)0 −→ (SL3)

3 −→ H −→ 1.

Here ((µ3)
3)0 is the kernel of the product map (µ3)

3 → µ3 sending (λ, µ, ν) to λ.µ.ν, and the
map ((µ3)

3)0 → µ3 in the diagram is the map which sends an element (λ, µ, ν) ∈ ((µ3)
3)0 to

λ/µ = µ/ν = ν/λ. Note that this map is split. Applying Galois cohomology to the above
diagram, one sees that the image of δ0 in H2(k, µ3) contains the image of the composite
map H1(k,H) → H2(k, ((µ3)

3)0) → H2(k, µ3). Because of the splitting mentioned above,
the last map is surjective. Now the image of the first map consists exactly of the triples
([D1], [D2], [D3]) ∈ H2(k, ((µ3)

3)0) ⊂ 3Br(k) with sum zero, each Di being a central simple
algebra over k of degree 3. By our assumption on the field k, any class in H2(k, ((µ3)

3)0) is of
this shape. This concludes the proof of surjectivity in the 1E6 case. For the isotropy, and the
possible Tits indices, see [Gi2], Thm. 9. p. 314.

There is a natural action of the group Z/2 on the above diagram of morphisms of groups.
On the upper row, it is given by the “opposition involution” associated to the nontrivial
automorphism of the Dynkin diagram of E6 ([Ti1], 1.5.1) which induces the inverse map x→ x−1

on the centre µ3 ([Ti1], 1.5.3 (c)). This involution respects the exended Dynkin diagram deprived
of its central point. It thus gives rise to an automorphism of the group H which lifts to an
automorphism of the group (SL3)

3 which is given by (x, y, z) → (x, z, y). Let K/k be a quadratic
field extension. One can twist the above diagram by means of the obvious nontrivial cocyle in
H1(Gal(K/k),Z/2). This gives rise to the commutative diagram

1 −→ R1
K/k(µ3) −→ G′

0 −→ G
′ad
0 −→ 1

x
x

x

1 −→ (µ3 ×RK/kµ3)
0 −→ SL3 ×RK/k(SL3) −→ H −→ 1,

where G′
0 is the quasisplit form 2E6 corresponding to the extension K/k and (µ3 × RK/kµ3)

0

denotes the kernel of the map µ3 ×RK/kµ3 → µ3 given by (λ, ξ) 7→ λ.NK/k(ξ). The left vertical
map sends (λ, ξ) to ξ/λ. This map is clearly split. To prove that δ0 is onto, it thus suffices to
show that the boundary map H1(k,H) → H2(k, (µ3 × RK/kµ3)

0) is onto. The target of this
map consists of pairs (a, b) ∈ 3Br(k)⊕3Br(K) such that a+NK/K(b) = 0. The image of the map
H1(k,H) → H2(k, (µ3 × RK/kµ3)

0) consists of such pairs (a, b) having the additional property
that a ∈ 3Br(k) is represented by an algebra over k of degree 3 and b ∈ 3Br(K) is represented
by an algebra over K of degree 3. Under hypothesis (ii) of the Theorem, this last property is
always satisfied.

For statements (b) and (c), see [Gi2], Thm. 9 p. 314.
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Groups of type E7

Let G0 be the simply connected split form of E7. The centre of G0 is µ2. Consideration of the
extended Dynkin diagram and of [Ti2], §1.2 shows (see [MPW], §8.II, p. 156) that there exists
a commutative diagram

1 −→ µ2 −→ G0 −→ Gad
0 −→ 1

∥∥∥ ∪ ∪
1 −→ µ4/µ2 −→ SL8/µ2 −→ SL8/µ4 −→ 1.

The diagonal map SL4 → SL4 × SL4 ⊂ SL8 induces the commutative diagram of exact
sequences (where the last vertical arrow is an embedding)

1 −→ µ4/µ2 −→ SL8/µ2 −→ SL8/µ4 −→ 1
x

x
x

1 −→ µ4 −→ SL4 −→ PGL4 −→ 1.

Combining these two diagrams and taking the boundary map, we get the commutative diagram

H1(k,Gad
0 )

δ0−→ H2(k, µ2)x ×2

x

H1(k, PGL4) −→ H2(k, µ4).

Since the cohomological dimension of k is at most 2, the induced map H2(k, µ4) → H2(k, µ2)
is onto. The boundary map H1(k, PGL4) → H2(k, µ4) = 4Br(k) has image the set of classes of
algebras of degree 4. Under the assumption that index coincides with exponent, that boundary
map is surjective. Hence so is the map δ0 : H1(k,Gad

0 ) → H2(k, µ2).
For the isotropy statement and the more precise description of the possible Tits indices, we

refer to [Gi2], Thm. 10 p. 316.

Groups of type G2, F4, E8

In this case µ = 1 and forms are classified by H1(k,G0), where G0 is the simply connected
split group. By Theorem 1.2, H1(k,G0) = 1, hence any group of this type is split and in
particular isotropic.

Groups of type 2An

Let K/k denote a quadratic field extension ; assume char(k) 6= 2.
Lemma 2.2 Let k be a field such that quadratic forms of dimension 5 over k are isotropic.

Let B be a quaternion algebra over K equipped with a K/k-involution τ . Given any λ ∈ k∗ there
exists x ∈ B∗ such that τx = x and Nrdx = λ.

Proof Let τ0 denote the nontrivial automorphism of K/k. There exists a k-quaternion
subalgebra B0 ⊂ B such that B = B0.K and τ restricted to B0 is the canonical involution
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σ on B0. (The algebra B0 is the fixed ring of the product στ , where σ denotes the canonical
involution on the K-quaternion algebra B.) Let K = k(

√
a). A τ -symmetric element of B is

of the form µ + y
√
a with µ ∈ k, y ∈ B0 satisfying σy = −y. We then have Nrd(µ + y

√
a) =

µ2 − y2a = µ2 + aN ′(y), where N ′ denotes the restriction of the reduced norm on B0 to trace
zero elements. By the hypothesis on k, any 4-dimensional quadratic form over k represents any
nonzero element in k.

Lemma 2.3 Let B/K be a central simple algebra with a K/k-involution τ . Let x ∈ B∗ be
an element such that τx = −x and x2 = ν ∈ k∗. Let ε ∈ k∗ be a norm from the quadratic

extension k(x)/k. Then the matrix

(
0 ε
1 0

)
in M2(B) is conjugate to a τ -hermitian symmetric

matrix.
Proof Let ε = c2 − νd2, c, d ∈ k. Then the product

(
1 c
0 xd

) (
0 ε
1 0

) (
1 c
0 xd

)−1

=

(
c −xd
xd −c

)

is hermitian symmetric with respect to τ .

Lemma 2.4 Let B be a central division algebra over K, of degree 2n, n ≥ 1. Let ε ∈ k∗

be the reduced norm of a symmetric element with respect to some K/k-involution on B. Then
there exist an odd degree field extension F/k, a KF/F -involution τ on B⊗k F and x ∈ B⊗k F
such that τx = −x, x2 ∈ F ∗ and ε is a norm from the quadratic extension F (x)/F .

Proof Let τ1 be a K/k-involution on B such that there exists u ∈ B∗ with τ1u = u
and Nrd(u) = ε. There exists a maximal subfield E of B/K such that u belongs to E and
NE/K(u) = ε. Since the degree [k(u) : k] is a power of 2, after replacing k by an odd degree
extension, we may assume that k(u) contains a quadratic extension k(x)/k with x2 ∈ k. Let η
be the automorphism of K(x)/k which restricts to the nontrivial automorphism of K/k and to
the nontrivial automorphism of k(x)/k. Then η extends to a K/k-involution τ on B such that
τ(x) = −x ([Kn1], Theorem on p. 37). Let w = NE/K(x)(u). Since K(x) is stable under τ1, we
have τ1w = w. Since k(x) is the field of τ1-invariant elements in K(x), this implies w ∈ k(x)
and Nk(x)/k(w) = ε.

To any central simple algebra B/K equipped with a K/k-involution τ there is an associated
central simple algebra over k, called the discriminant algebra, denoted D(B, τ) ([KMRT],
Definition 10.28 p. 128).

Lemma 2.5 Let B/K be a central division algebra with a K/k-involution τ . Let H2n, n ≥ 1
be the standard hyperbolic form and τH2n

the involution on M2n(B) adjoint to H2n. Then the
discriminant algebra of (M2n(B), τH2n

) is a matrix algebra over k.
Proof Let X/K be the Severi-Brauer variety attached to B and Y = RK/k(X) be its Weil

restriction of scalars to k. The restriction map from Br(k) to Br(k(Y )) is injective ([MT]). To
prove the lemma, we may replace k by k(Y ) and thus assume that B/K is split. In this case
the result follows from [KMRT] (10.35) p. 131.

Lemma 2.6 Let B/K be a central division algebra with a K/k-involution τ . Let τ̃ be the
involution on M2(B) given by x 7→ (τx)t. If the cohomological dimension of k is at most 2, then
the discriminant algebra of (M2(B), τ̃) is a matrix algebra over k.

Proof The involution τ̃ is adjoint with respect to the hermitian form

(
1 0
0 1

)
over (B, τ)

([KMRT] (4.1) and (4.2) pp. 42, 43). Since this hermitian form has the same dimension and

discriminant as

(
0 1
1 0

)
and cd(k) ≤ 2, the two forms

(
1 0
0 1

)
and

(
0 1
1 0

)
are isometric

11



([BFP]). Thus the adjoint involutions with respect to these two forms are isomorphic. The
result now follows from Lemma 2.5.

We record the following well known result (cf. [CTG], Prop. 7).

Proposition 2.7 Let k be a field, char(k) 6= 2, such that every 5-dimensional quadratic
form over every finite extension of k is isotropic. Then over any finite extension of k, for an
algebra of exponent a power of 2, the exponent is equal to the index.

Theorem 2.8 Let B/K be a central simple algebra with a K/k-involution τ . Suppose :
(a) cd(k) ≤ 2 ;
(b) every 5-dimensional quadratic form over every finite extension of k is isotropic.
Then every element of k∗, up to a square, is the reduced norm of a τ -symmetric element.
Proof Let λ ∈ k∗.
Suppose the theorem is true for division algebras. Write B = Mn(D), with D/K a central

division algebra equipped with a K/k-involution τ0 ([KMRT], (3.1)). There exists a τ0-hermitian
symmetric matrix H ∈ B∗ such that τ is the adjoint involution τ0,H with respect to H. Since
H is a hermitian symmetric matrix, NrdB(H) ∈ K∗ actually belongs to k∗. By the assumption,
there exists u ∈ D∗ such that τ0(u) = u and λ.NrdBH = NrdD(u).µ2 ∈ k∗ with µ ∈ k∗.
Let U be the diagonal matrix < 1, · · · , 1, u > and let X = U.H−1. Then τ(X) = X and
NrdB(X) = NrdD(u).NrdB(H−1) = λ.µ−2. We are reduced to the case where B is a central
division algebra.

Suppose the theorem is true for division algebras with degree a power of 2. Write B =
B1 ⊗K B2 with degK(B1) a power of 2 and degK(B2) = m with m odd. By the characterisation
of K/k-involutions (KMRT], (3.1)), CoresK/k(B) = 0. The algebras B1 and B2 being of coprime
order in the Brauer group, CoresK/k(Bi) ∼ 0 for i = 1, 2. By the quoted characterisation,
there exists a K/k-involution τi on Bi for i = 1, 2. By [KMRT] (2.7) there exists u ∈ B∗

with τu = u and τ = Int(u) ◦ (τ1 ⊗ τ2). By the assumption, there exists v ∈ B∗
1 such

that τ1v = v and NrdB1
(v) = NrdB(u).ν2 for some ν ∈ k∗. Let τ ′1 = Int(v) ◦ τ1. Then

τ = Int(u) ◦ Int(v−1 ⊗ 1) ◦ (τ ′1 ⊗ τ2). By the assumption, there exists w ∈ B1 with τ ′1w = w and
NrdB1

(w) = λδ2 for some δ ∈ k∗. The element (w ⊗ 1)(u.(v−1 ⊗ 1))−1 is τ -invariant. We have

NrdB((w ⊗ 1)(u.(v−1 ⊗ 1))−1) = NrdB1
(w)m.NrdB1

(v)m.NrdB(u)−1

which is λ up to squares.
We are reduced to the case where B/K is a central division algebra of degree 2n. In this case

we prove more : every λ ∈ k∗ is the norm of a τ -symmetric element.
Note that, by Proposition 2.7, the exponent of B in Br(K) is 2n. The proof is by induction

on n. For n = 1, the theorem follows from Lemma 2.2. Suppose n > 1. Let D(B, τ) be the
discriminant algebra of (B, τ). Its class is of order 2 in the Brauer group of k. Since every 5-
dimensional quadratic form is isotropic, the tensor product of two quaternion algebras is the
class of a quaternion algebra. Combining this with Merkurjev’s theorem we conclude that the
class of D(B, τ) in Br(k) is represented by a quaternion algebra A/k. The class of AK in the

Brauer group of K coincides with that of B⊗2n−1

([KMRT], Prop. 10.30 p. 129). By Proposition
2.7, the index of the latter is equal to its exponent, which is 2. Thus AK and therefore A are
division algebras.

Write K = k(
√
a) with a ∈ k∗. Let N ′

A denote the restriction of the reduced norm of A to
trace zero elements of A. By hypothesis (b), the 5-dimensional quadratic form N ′

A ⊥ a < 1,−λ >
is isotropic over k. There exists ε = x2 − λy2 ∈ k∗, with x, y ∈ k, such that −aε is a value of
N ′

A. Since A is a quaternion division algebra, aε is not a square and k(
√
aε) splits A. Since ε is
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a norm from k(
√
λ), λ is a norm from k(

√
ε). Let η ∈ k(

√
ε) be such that Nk(

√
ε)/k(η) = λ. In

the Brauer group of K(
√
ε) = k(

√
a,
√
ε), we have

B2n−1 ⊗K K(
√
ε) ∼ A⊗k K ⊗K K(

√
ε) ∼ A⊗k k(

√
aε) ⊗k(

√
aε) K(

√
ε) ∼ 0.

Hence the exponent of B ⊗K K(
√
ε) is at most 2n−1. By Proposition 2.7 and hypothesis (b),

the index of B ⊗K K(
√
ε) is also at most 2n−1 ; it is in fact equal to 2n−1, because the index

can be divided at most by 2 under a quadratic extension. Hence K(
√
ε) embeds into B over

K. The nontrivial automorphism of K(
√
ε)/k(

√
ε) extends to a K/k-involution τ1 on B with

τ1(
√
ε) =

√
ε (Kneser, cf. [Sch], Chap. 8.10, Thm. 10.1 p. 311). Let C be the commutant of

K(
√
ε) in B. Then τ1 restricts to a K(

√
ε)/k(

√
ε) involution on C. The index of C/K(

√
ε) is

2n−1. By the induction hypothesis applied to C/k(
√
ε) and τ1, there exists x ∈ C with τ1x = x

and NrdC(x) = η. We have

NrdB(x) = NK(
√

ε)/K(NrdC(x)) = Nk(
√

ε)/k(η) = λ.

There exists u ∈ B∗ such that τ1 = Int(u) ◦ τ with τ1u = u. Let t = NrdB(u). Then τ(xu) = xu
and NrdB(xu) = λt.

Our next step is to get rid of t by replacing k(
√
ε) by a conjugate field yk(

√
ε)y−1 for a

suitable y ∈ B∗.
For y ∈ B∗ to be chosen later, let τ ′1 = Int(y) ◦ τ1 ◦ Int(y)−1 and u′ = yuτ(y). Then

τ ′1 = Int(u′) ◦ τ . We look for y such that there exists x′ ∈ yCy−1 which is τ ′1-symmetric and
NrdB(x′u′) = λ. This will complete the proof of the theorem because x′u′ is τ -symmetric.

Suppose we have y and x′ as above. Then

Nyk(
√

ε)y−1/k(NrdyCy−1(x′)).NK/k(NrdB(y)).t = λ.

As quadratic forms, we have Nyk(
√

ε)y−1/k '< 1,−ε > and NK/k '< 1,−a > .
The existence of y and x′ guarantees the existence of a nontrivial zero of the quadratic form

q = t < 1,−ε >⊥ −λ < 1,−a >

over k.
Conversely, isotropy of q would give µ ∈ yk(

√
ε)∗y−1 and ν ∈ K∗ such that

t.Nyk(
√

ε)∗y−1/k(µ).NK/k(ν) = λ.

Since cd(k) ≤ 2, there exists y ∈ B∗ such that NrdB(y) = ν. Let τ ′1 = Int(y) ◦ τ1 ◦ Int(y)−1 and
u′ = yuτ(y). By the induction hypothesis, there exists x′ ∈ yCy−1 such that τ ′1(x

′) = x′ and
NrdyCy−1(x′) = µ. Then τ(x′u′) = x′u′ and NrdB(x′u′) = λ.

Thus we need only to show that q is isotropic over k. It suffices to show that q is isotropic
over the discriminant extension k(

√
aε).

By base change we replace k by k(
√
aε), K by K(

√
aε) = k(

√
a,
√
ε).

Over these new fields k and K, we have B = M2(B1) for B1/K a central division algebra
of degree 2n−1 which admits a K/k-involution. By the induction hypothesis, given any K/k-
involution on B1, ε is the reduced norm of an element which is symmetric with respect to this
involution.

To prove isotropy of q over k we may go over to an odd-degree extension of k. Using Lemma
2.4 we replace k by an odd-degree extension and assume that there exist a K/k-involution τ0
on B1 and x ∈ B∗

1 such that τ0(x) = −x, x2 = d ∈ k∗ and ε = ξ21 − dξ22, with ξ1, ξ2 ∈ k. The
involution τ on B is adjoint with respect to a τ0-hermitian form W ∈M2(B1), i.e. (τ0W )t = W .

Let τ̃0 be the involution on B adjoint to

(
1 0
0 1

)
.
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By [KMRT] (10.36) p. 131, in the Brauer group of k, we have

D(B, τ) ∼ ((NrdBW ) ∪ (a)) ⊗k D(B, τ̃0).

By Lemma 4, D(B, τ̃0) ∼ 0. We note that D(B, τ) ∼ A is split over k(
√
aε) = k by our new

choice of k. Hence NrdBW ∈ NK/kK
∗. Let NrdBW = NK/k(θ), θ ∈ K∗.

Since q is isotropic if ε is a square in k, we may assume that ε is not a square. The element
√
ε ∈ B is conjugate to

(
0 ε
1 0

)
in B (Skolem-Noether). By Lemma 2.3,

(
0 ε
1 0

)
is conjugate

to a τ0-hermitian symmetric matrix in B = M2(B1). Hence there exists X ∈ GL2(B1) such that

τ0(X
√
εX−1)t = X

√
εX−1

i.e.
W−1τ(X

√
εX−1)W = X

√
εX−1.

We have τ(
√
ε) = u−1τ1(

√
ε)u = u−1

√
εu, so that

W−1(τ(X))−1u−1
√
εuτ(X)W = X

√
εX−1.

Thus the element b = uτ(X)WX commutes with k(
√
ε) hence belongs to C. From τ(X).WX =

u−1b we get
NK/k(NrdB(X)).NrdB(W ) = t−1.NK(

√
ε)/K((NrdC(b)) ∈ K∗.

Since W is τ -symmetric, and τ1 = Int(u) ◦ τ , the element b = uτ(X)WX is τ1-symmetric. Thus
NrdC(b) lies in k(

√
ε) and NK(

√
ε)/K((NrdC(b)) = Nk(

√
ε)/k((NrdC(b)). We now have

NK/k(NrdB(X)).NK/k(θ) = t−1.Nk(
√

ε)/k(NrdC(b)) ∈ k∗.

Thus q is isotropic over k.

Let n = 2m be an even integer and let k be a field, with char(k) prime to n. Let K be a
separable field extension of k, let Γ = Gal(K/k) = {1, σ} and let µ be the kernel of the norm
map RK/k(µn) → µn ; this is the group denoted µn[K] in the book [KMRT].

Lemma 2.9 For µ as above, there is an exact sequence of k-groups of multiplicative type

1 → µ→ RK/kGm × Gm → RK/kGm × Gm → 1,

where the map RK/kGm × Gm → RK/kGm × Gm is given by

(α, b) 7→ (b.αm, NK/k(α)).

Proof Let µ̂ be the character group of µ. The dual of the sequence of k-groups

1 → µ→ RK/k(µn) → µn → 1

is the sequence
0 → Z/n→ Z/n[Γ] → µ̂→ 0

where the map Z/n → Z/n[Γ] is given by 1 7→ 1 + σ. As an abelian group, µ̂ is isomorphic to
Z/n.

The map
M1 = Z[Γ] ⊕ Z →M2 = Z[Γ] ⊕ Z
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given by (a + bσ, c) 7→ ((ma + c) + (mb + c)σ, a + b) is dual to the map RK/kGm × Gm →
RK/kGm × Gm given in the proposition.

Consider the additive map Z[Γ]⊕Z → Z/n[Γ] given by (a+ bσ, c) 7→ (a+ bσ+ cm) modulo n.
Composition with the projection Z/n[Γ] → µ̂ produces a Γ-invariant, surjective homomorphism
M2 → µ̂. One checks that the composite map M1 →M2 → µ̂ is zero and that the determinant
of M1 →M2 has absolute value n. This gives the exact sequence of Γ-modules of finite type

0 → Z[Γ] ⊕ Z → Z[Γ] ⊕ Z → µ̂→ 0.

Dualizing gives the lemma.

Proposition 2.10 Let K/k and µ be as above. Then the group H2(k, µ) is isomorphic to
the subgroup of Br(K)⊕Br(k) consisting of pairs (x, y) satisfying Resk/K(y)+mx = 0 ∈ Br(K)
and CoresK/k(x) = 0.

Proof This follows from the Galois cohomology of the exact sequence given in Lemma 2.9,
noting that H1

(
k,RK/k(Gm) × Gm

)
= 0 by Hilbert’s Theorem 90.

Remark Let n > 1 be an odd integer. One easily checks that the sequence

1 → µ→ RK/k(µn) → µn → 1

is split. From this one identifies H2(k, µ) with the kernel of the corestriction map nBr(K) →
nBr(k). One can use the same argument to compute H1(k, µ) (compare [KMRT] (30.13) p. 418).

Theorem 2.11 Let n > 1 be an integer, let k be a field of characteristic prime to n, let G
be a semisimple, simply connected, absolutely simple group of k of type 2An−1. Let G→ Gad be
the isogeny whose kernel is the center µ of G. Assume that k satisfies the two conditions :

(a) cd(k) ≤ 2 ;
(b) over any finite extension of k, the index of a central simple algebra coincides with its

exponent.
Then the induced map H1(k,Gad) → H2(k, µ) is surjective.
Remark Condition (b) implies that over any finite extension of k, 5-dimensional quadratic

forms are isotropic.
Proof of Theorem 2.11 It is enough to prove the theorem when G = G0 is quasisplit.
The group G0 determines a quadratic extension K/k. To any ξ ∈ H1(k,Gad

0 ) there is an
associated central simple algebra B/K of degree n, equipped with a K/k-involution τ . The
group G0,ξ is isomorphic to SU(B, τ).

Suppose that n is odd. Let x be an element of H2(k, µ), identified with the kernel of
the corestriction map nBr(K) → nBr(k). By assumption (b), there exists a central simple
algebra B/K of degree n which in view of CoresK/k(B) ∼ 0 admits a K/k-involution τ . Let

G = SU(B, τ)ad. Then δ0(G) = tG which is equal to the class of B ∈ H2(k, µ) ([KMRT] (31.8)
p. 427).

Suppose now that n = 2m. Under the identification of Proposition 2.10, the element
δ0(ξ) = tG ∈ H2(k, µ) is the pair ([B], D(B, τ)) ([KMRT] (31.8)).

By Proposition 2.10, any element of H2(k, µ) is represented by a pair (x, y) ∈ Br(K)⊕Br(k)
such that Resk/K(y)+mx = 0 in Br(K) and CoresK/k(x) = 0. Observe that 2y = 0 and 2mx = 0.
By assumption (b), there exists a central simple algebra B/K of degree n which represents x.
In view of CoresK/k(B) ∼ 0, it admits a K/k-involution τ . The discriminant algebra D(B, τ) is
of exponent 2 hence is represented by a quaternion algebra A/k. From D(B, τ)⊗kK ∼ B⊗m we
deduce that y− [A] ∈ Br(k) vanishes in Br(K). Let K = k(

√
a). There exists a λ ∈ k∗ such that

y = [A]+(a, λ) ∈ Br(k). By Theorem 2.8, there exists u ∈ B∗ which is τ -symmetric and such that
NrdB(u) = λ.µ2 for some µ ∈ k∗. Let τ ′ = Int(u) ◦ τ . Then D(B, τ ′) ∼ (NrdB(u), a)⊗D(B, τ)
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by [KMRT] 10.36 p. 131, hence D(B, τ ′) ∼ (NrdB(u), a) ⊗ A which coincides with the class of
y in Br(k). We have now written (x, y) as δ0(G), where is G is the group adjoint to SU(B, τ ′).

Nontrialitarian groups of type Dm (m ≥ 2)

Let G0/k be a quasisplit, semisimple, simply connected of type Dm, m ≥ 2. The group G0/k
is isomorphic to Spin(A0, σ0) where A0 = M2m(k) is the split algebra and σ0 is an orthogonal
involution corresponding to a quasisplit quadratic form q0 = (m − 1) < 1,−1 >⊥< 1,−d >.
Let K be the centre of the Clifford algebra C(A0, σ0). This is a quadratic étale algebra over k
isomorphic to k[x]/(x2 − d).

Let µ be the centre of G0. If m is odd, µ = R1
K/k(µ4) ; if m is even, then µ = RK/k(µ2)

([KMRT], p. 371).
Let

1 → µ→ G0 → Gad
0 → 1

be the standard isogeny.
For any ξ ∈ H1(k,Gad

0 ), there is an associated central simple algebra A/k of degree 2m and an
orthogonal involution σ on A such that the twisted group G = G0,ξ is isomorphic to Spin(A, σ).
Let C(A, σ) denote the Clifford algebra of (A, σ) ([KMRT], p. 91). The cocycle ξ gives rise to
an isomorphism η of its centre with K. Conversely, a triple (A, σ, η), where A is a central simple
algebra over k of degree 2m with an orthogonal involution σ and an isomorphism η of the centre
of C(A, σ) with K, determines a class ξ ∈ H1(k,Gad

0 ) (cf. [KMRT] p. 409).
Suppose m is odd. By Proposition 2.10, H2(k, µ) is isomorphic to the group of pairs

(x, y) ∈ Br(K) ⊕ Br(k) such that Resk/K(y) + 2x = 0 ∈ Br(K) and CoresK/k(x) = 0. The
element δ0(ξ) = tG is the pair (η∗[C(A, σ)], [A]), where η∗ is the induced map from the Brauer
group of the centre of C(A, σ) to the Brauer group of K ([KMRT] (31.13) p. 428).

Suppose m is even. Then H2(k, µ) = 2Br(K) and δ0(ξ) = tG is the class of η∗([C(A, σ)]) in

2Br(K).

Proposition 2.12 Let m > 1 be an integer, k a field of characteristic prime to 2, and G a
semisimple, quasisplit, simply connected group over k, of nontrialitarian type Dm. Let G→ Gad

be the isogeny whose kernel is the center µ of G. Assume that k satisfies the two conditions :
(a) cd(k) ≤ 2 ;
(b) over any finite extension of k, every 5-dimensional quadratic form is isotropic.
Then the induced map H1(k,Gad) → H2(k, µ) is surjective. Moreover, if m ≥ 4, then G is

isotropic.
Proof
Suppose m = 2. Because D2 = A2

1 (for a rational description, see [KMRT] (15.B)), this case
follows by the standard reduction from the case of A1 (over a field extension), handled earlier on.
More explicitly, let x ∈ 2Br(K). By hypothesis (b) we may represent x as the class of a degree 2
central separable algebra B over K. The construction in [KMRT] (15.B) p. 210 yields a degree 4
algebra A over k and an orthogonal involution σ on A such that C(A, σ) is k-isomorphic to B. A
suitable choice of an isomorphism of the centre of C(A, σ) with K defines a class ξ ∈ H1(k,Gad)
with δ0(ξ) = B.

Suppose m = 3. We have D3 = A3 (for a rational description, see [KMRT] (15.D) p. 220).
This case has already been handled.

Suppose m ≥ 4 and for m = 4 exclude the trialitarian case.
Suppose m is odd. Let 2m = 6 + 4l for l ≥ 1. Let (x, y) ∈ Br(K) ⊕ Br(k) be an element

representing a class in H2(k, µ). By the case m = 3, there exists a degree 6 algebra D/k with an
orthogonal involution σ such that the Tits class of Spin(A, σ) is (x, y). There exists a quaternion
algebra A/k such thatD = M3(A). We fix an orthogonal involution τ on A. Then σ is the adjoint
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involution τh to a τ -hermitian form h on A3. Let hl be the hyperbolic hermitian form on A2l.
Let σ′ be the orthogonal involution on A′ = M3+2l(A) which is adjoint to h ⊥ hl. A suitable
choice of an isomorphism of the centre of C(A′, σ′) with K defines a class ξ′ ∈ H1(k,Gad

0 ) with
δ0(ξ

′) = (x, y) ([DLT], Proposition 3). By construction, the group Spin(A′, σ′) = SU(A, h ⊥ hl)
is isotropic.

Suppose m is even. Let 2m = 4 + 4l for l ≥ 1. Let x ∈ 2Br(K) be an element representing a
class in H2(k, µ). By the case m = 2, there exists a degree 4 algebra D/k with an orthogonal
involution σ such that the Tits class of Spin(A, σ) is x. There exists a quaternion algebra A/k
such that D = M2(A). We fix an orthogonal involution τ on A. Then σ is the adjoint involution
τh to a τ -hermitian form h on A2. Let hl be the hyperbolic hermitian form on A2l. Let σ′ be
the orthogonal involution on A′ = M2+2l(A) which is adjoint to h ⊥ hl. A suitable choice of an
isomorphism of the centre of C(A′, σ′) with K defines a class ξ′ ∈ H1(k,Gad

0 ) with δ0(ξ
′) = x

([DLT], Proposition 3).
By the general argument given at the beginning of the proof, we conclude that any group of

type 1,2Dm, m ≥ 4 is isotropic.

§3 Groups of multiplicative type

§3.1 Tori and groups of multiplicative type : reminders.

We briefly recollect results from [CTS1] and [CTS2]. Given a finite group G, a G-lattice M
is called coflasque if H1(H,M) = 0 for all subgroups H ⊂ G. A G-lattice M is called flasque
if the G-lattice M0 := HomZ(M,Z) is coflasque. If H is a normal subgroup of G, and if M
is coflasque, then the G/H-lattice MH is coflasque. If M is a coflasque G/H-module, it is a
coflasque G-module. The notions thus extend to lattices equipped with a continuous action of
a profinite group. Obvious examples of flasque and coflasque modules are the direct factors of
permutation modules. If G is a metacyclic group, i.e. is a finite group all Sylow subgroups of
which are cyclic, then a basic result of Endo and Miyata (cf. [CTS1], Prop. 2 p. 184) states that
any flasque or coflasque G-lattice is a direct factor of a permutation module.

Given a G-module M of finite type over Z, there exists an exact sequence of G-modules

0 →M2 →M1 →M → 0,

where M1 is a G-permutation module and M2 is a coflasque G-lattice, and the isomorphism
class of the G-lattice M2 is determined up to addition of a G-permutation module.

Given a G-module M of finite type over Z, there exists an exact sequence of G-modules

0 →M4 →M3 →M → 0,

with M4 a G-permutation module and M3 a flasque G-lattice, and the isomorphism class of M3

is determined up to addition of a G-permutation module.
Let now k be a field. A k-group of multiplicative type is an algebraic k-group which after a

separable field extension of k becomes isomorphic to a closed subgroup of a product of copies
of the multiplicative group Gm. The map which to a k-group of multiplicative type associates
its character group (over a separable closure of k) defines an antiduality between k-groups
of multiplicative type and finitely generated discrete Galois modules. In this antiduality, tori
correspond to torsionfree Galois modules. If the character group of a k-torus is a permutation
module, then the k-torus is quasitrivial : it is a product of Weil restrictions of scalars of the group
Gm. A torus is called flasque, resp. coflasque, if its character group is flasque, resp. coflasque.
Flasque k-tori F satisfy the following basic property : given any smooth connected k-variety
X and any nonempty open set U ⊂ X, the restriction map H1

ét(X,F ) → H1
ét(U, F ) is onto

([CTS1]). One can actually define flasque tori over an arbitrary base scheme, and the same
surjectivity property holds over regular schemes ([CTS2], Thm. 2.2).
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Given any k-torus T , there exists an exact sequence of k-tori

1 → F → P → T → 1,

with P a quasitrivial k-torus and F a flasque k-torus. Such a sequence induces an isomorphism
T (k)/R ' H1(k, F ) ([CTS1]).

Given any k-group of multiplicative type µ, there exists an exact sequence of k-groups of
multiplicative type

1 → µ→ F → P → 1,

with F a flasque k-torus and P a quasitrivial torus ([CTS2], Prop. 1.3). Such a sequence induces
an isomorphism H1(k, µ)/R ' H1(k, F ) (cf. [Gi2]).

The following lemma should have been recorded along with Lemme 2 of [CTS1]. Recall that
for a finite group G, with group ring Z[G], one writes NG =

∑
g∈G g ∈ Z[G] and one denotes

by IG the ideal of the group ring Z[G] generated by all g − 1 for g ∈ G.

Lemma 3.1 Let G be a finite group and H ⊂ G a normal subgroup. Let M be a flasque
G-module. Then the G/H-module M/IHM is naturally isomorphic to the Z-free G/H-module
NHM , and it is a flasque G/H-module.

Proof The G-module R = HomZ(M,Z) is coflasque. By [CTS1], Lemme 2, the G/H-module
RH is a coflasque G/H-module. Now RH = HomH(M,Z) = HomZ(M/IHM,Z). Multiplication
by NH on M induces a natural surjective map of G/H-modules from M/IHM to the Z-
torsionfree submoduleNHM ofM . The kernel of this map is Ĥ−1(H,M), the torsion subgroup of
M/IHM . The hypothesis that M is flasque implies that this map is an isomorphism. The G/H-
module HomZ(M/IHM,Z) is G/H-coflasque, hence the Z-free G/H-module M/IHM = NHM
is flasque.

§3.2 Finiteness results

In [CTS1] and [CTS2], finiteness of H1(K,F ) for F a flasque torus over a function field K
over k (i.e. a field K finitely generated over the ground field k), was proved when k is of one of
the following types : a finite field, a number field, a p-adic field, a real closed field, a separably
closed field, with immediate application to the finiteness of T (K)/R and of H1(K,µ)/R for T
an arbitrary K-torus and µ an arbitrary K-group of multiplicative type.

In this section, we establish the finiteness of H1(K,F ) for F a flasque torus over some more
fields K, thereby proving the finiteness of T (K)/R for T a K-torus and of H1(K,µ)/R for µ a
K-group of multiplicative type over such fields.

Note the following easy remark. If H1(K,F ) is finite for all flasque K-tori F , then for any
finite separable field extension L/K, and any flasque L-torus F , H1(L, F ) is finite. The point
is that the K-torus RL/KF is then a flasque K-torus and H1(F,RL/KT ) ' H1(L, T ) for any
L-torus T .

Theorem 3.2 Let k be a field of characteristic zero, and let K = k((t)) be the Laurent
series field. If H1(k, F ) is finite for any flasque torus F over k, then H1(K,F ) is finite for any
flasque torus F over K.

Proof Let F be a flasque k((t))-torus. There exists a finite Galois extension l/k and an integer
n > 0 such that the field M = l((t1/n)) defines a Galois extension of K which splits the K-torus
F . Let L = l((t)) ⊂ M . Let G = Gal(M/K). Let H = Gal(M/L) ' Z/n be the inertia group.
This is a normal subgroup of G, and G/H = Gal(l/k). Let U = l[[t1/n]]∗. Valuation defines a
G-equivariant exact sequence

0 → U →M∗ → Z → 0.
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Evaluation at t = 0 defines a G-equivariant, G-split exact sequence

0 → U1 → U → l∗ → 1.

The groupe U1 of Einseinheiten is uniquely divisible.
The character group F̂ of the K-torus F is a finitely generated, Z-free G-module. By standard

arguments, H1(G,HomZ(F̂ ,M∗)) = H1(K,F ).
The first exact sequence is Z-split, hence we have the exact sequence

0 → HomZ(F̂ , U) → HomZ(F̂ ,M∗) → HomZ(F̂ ,Z) → 0.

The G-cohomology of this sequence yields the exact sequence

H1(G,HomZ(F̂ , U)) → H1(G,HomZ(F̂ ,M∗)) → H1(G,HomZ(F̂ ,Z)).

The finite group H1(G,HomZ(F̂ ,Z)) is zero since the K-torus F is flasque.
Let us now study H1(G,HomZ(F̂ , U)). The second exact sequence is a split exact sequence

of G-modules and the left term is uniquely divisible. We thus get an isomorphism

H1(G,HomZ(F̂ , U)) '−→ H1(G,HomZ(F̂ , l∗)).

We have the restriction-inflation sequence associated to the normal subgroup H of G :

0 → H1(G/H,HomH(F̂ , l∗)) → H1(G,HomZ(F̂ , l∗)) → H1(H,HomZ(F̂ , l∗))G/H .

Since H acts trivially on l, we have HomH(F̂ , l∗) = HomZ(F̂ /IH F̂ , l
∗). Since F̂ is G-flasque,

Lemma 3.1 implies that F̂ /IH F̂ is a (torsionfree) flasque G/H-module. Let F0 be the flasque
k-torus with character group F̂ /IH F̂ . We have

H1(G/H,HomH(F̂ , l∗)) = H1(G/H,HomZ(F̂ /IH F̂ , l
∗)) = H1(k, F0),

and by the hypothesis of the theorem this group is finite.
Let us now study the right hand side group H1(H,HomZ(F̂ , l∗))G/H in the restriction-

inflation exact sequence. Since F̂ isG-flasque, henceH-flasque, and sinceH is cyclic, the theorem
of Endo and Miyata implies that the H-module F̂ is a direct factor of a permutation H-module,
i.e. of a direct sum of modules Z[H/H1] for various subgroups H1 of H. Now

H1(H,HomZ(Z[H/H1], l
∗)) ' H1(H,Z[H/H1] ⊗ l∗) ' H1(H1, l

∗) = Hom(H1, l
∗)

and this last group is clearly finite. Hence H1(H,HomZ(F̂ , l∗)) is finite, which concludes the
proof.

Remarks
1) The case where F has good reduction over K, i.e. comes from a k[[t]]-torus, hence from a

k-torus, necessarily flasque, is clear, since in this case flasqueness of F implies H1(k[[t]], F ) =
H1(k((t)), F ), and then H1(k[[t]], F ) = H1(k, F ).

2) Inspection of the proof shows that if one assumes finiteness of H1(k, T ) for arbitrary k-
tori, then one has finiteness of H1(K,T ) for any K-torus T which becomes flasque after an
unramified extension of K.

3) Again, inspection of the proof shows that if one assumes H1(k, T ) finite for an arbitrary
k-torus T , and one assumes that for each finite extension l of k, each quotient l∗/l∗n is finite
(both assumptions being covered by the mere assumption H1(k,M) finite for any k-group M
of multiplicative type), then H1(k((t)), T ) is finite for any k((t))-torus T .

4) For the K-torus T = R1
L/KGm, with L = k((t1/2)), one easily computes H1(K,T ) =

k∗/k∗2.
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Let us say that a field k has finite cohomology if for any finite continuous Galois module M
over the absolute Galois group of k, the Galois cohomology groups Hn(k,M) are finite for all
n. Examples of such fields are the separably closed or real closed fields, the finite fields, finite
extensions of a p-adic field Qp. If k satisfies the property, then k((t)) also satisfies it.

Proposition 3.3 Let k be a field of characteristic zero with finite cohomology. Let A be an
integral domain with fraction field K. Assume that A is of one of the following types

(a) a k-algebra of finite type over k ;
(b) an excellent, henselian, local domain with residue field k.
Let U ⊂ Spec(A) be a nonempty open set and let T be a U -torus. Then the image of the

restriction map H1
ét(U, T ) → H1

ét(K,T ) is finite.
Proof (suggested by O. Gabber) To prove the theorem, one may shrink U . We may thus

assume that U is regular and of finite type over Spec(A). By considering character groups, one
may easily produce an exact sequence

1 → F → P → T → 1

over U with P quasitrivial and F a U -torus (see [CTS2], Prop. 1.3), all being trivialized by a
finite, connected, étale, Galois cover U ′ → U with group G. Going over to character groups, and
using the semisimplicity of Q[G], one sees that there exists a homomorphism of k-tori T → P
such that the composite T → P → T (the last arrow being as in the exact sequence above)
is multiplication by some positive integer n. The image of H1

ét(U, P ) → H1
ét(K,P ) is trivial,

since H1
ét(K,P ) = 0 by Hilbert’s theorem 90. To prove the result it is thus enough to know the

finiteness of H2
ét(U, nT ), where nT denotes the n-torsion subgroup of T . The finite group scheme

nT/U is a twisted locally constant group, split by the Galois cover U ′ → U . Here U ′ is an
open set of finite type of Spec(A′), where A′ is the integral closure of K in a finite Galois (field)
extension K ′ of K. Such a ring has the same property as A. Use of the Hochschild-Serre spectral
sequence reduces the proof to that of the finiteness of the groups H1

ét(U
′, µn) and H2

ét(U
′, µn)

for U ′ regular open in Spec(A′). In case (a), we recognize a standard finiteness property of étale
cohomology of k-varieties ([SGA 4], XVI, Thm. 5.1). In case (b), the finiteness follows from
[SGA 4] XIX, Thm. 5.1.

Theorem 3.4 Let k be a field of characteristic zero with finite cohomology.
Let A be an integral domain with fraction field K. Assume that A is of one of the following

types
(a) a k-algebra of finite type ;
(b) an excellent, henselian, local domain with residue field k.
Then
(i) For any flasque torus F over K, the group H1(K,F ) is finite.
(ii) For any K-torus, the groupe T (K)/R is finite.
(iii) For any K-group of multiplicative type µ, the quotient H1(K,µ)/R is finite.
Proof According to the reminders in §3.1, it is enough to prove (i). In case (a), there exists an

integral regular affine k-variety X, with fraction field K, over which the flasque torus F extends
to a flasque torus F/X. In case (b), there exists a nonempty regular open set X ⊂ Spec(A) over
which F extends to a flasque torus. Because F/X is flasque and X regular, the restriction map
H1

ét(X,F ) → H1
ét(K,F ) is onto ([CTS2], Thm. 2.2). The result now follows from the previous

proposition.

Remark If K is a function field over a number field, and F a flasque K-torus, then one
may find a regular Z-algebra A of finite type over Z with fraction field K. Let us localize this
algebra by inverting the primes dividing n. By a theorem of Deligne, the étale cohomology
groups Hr

ét(A, µn) are finite. The same proof as above now gives the finiteness of H1(K,F ). The
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original proofs of that result ([CTS1], [CTS2]) used reduction to finite generation of the unit
groups (Dirichlet) and finite generation of the Picard group, which if the transcendence degree
of K/k is not zero involves the Mordell-Weil theorem.

§3.3. Weak approximation and Hasse principle for tori

In §4 and §5, weak approximation and the Hasse principle will be discussed for arbitrary linear
algebraic groups over fields of type (gl) or (ll), i.e. in an essentially 2-dimensional situation. The
case of tori is however particularly simple, and some of the results hold without the 2-dimensional
restriction.

Let K be a field and S a finite set of distinct rank one discrete valuations on K. Let Kv

denote the completion of K at v ∈ S. Let T be a K-torus and let

1 → F → P → T → 1

be a flasque resolution of T . We have the obvious diagram

P (K) −→ T (K) −→ H1(K,F ) −→ 0
y

y
y

∏
v∈S P (Kv) −→ ∏

v∈S T (Kv) −→ ∏
v∈S H

1(Kv, F ) −→ 0,

The quasitrivial torus P is a Zariski open set of an affine space, hence it satisfies weak
approximation. Since the morphism P → T is smooth, the induced maps on topological groups
P (Kv) → T (Kv) are open ([Se1], Part II, Lie Groups, Chap. 3, §10.2). In particular, the image
of P (Kv) in T (Kv) is open.

If we equip each H1(Kv, F ) with the discrete topology, each map T (Kv) → H1(Kv, F ) is
continuous, and so is the induced map

ϕ :
∏

v∈S

T (Kv) →
∏

v∈S

H1(Kv, F )/δ(H1(K,F )),

where δ denotes the diagonal map H1(K,F ) → ∏
v∈S H

1(Kv, F ), and the quotient group∏
v∈S H

1(Kv, F )/δ(H1(K,F )) is again equipped with the discrete topology. We have the
straightforward :

Proposition 3.5 Let AS(T ) denote the quotient of the product
∏

v∈S T (Kv) by the closure
of the image of T (K) under the diagonal map. The map ϕ induces an isomorphism between the
(discrete) groups AS(T ) and

∏
v∈S H

1(Kv, F )/δ(H1(K,F )).

Let K be a function field (of arbitrary transcendence degree) over the ground field k. For each
smooth projective model X/k of K, let ΩX be the set of discrete valuations on K associated to
the codimension 1 points on X. Let Ω be the union of all ΩX .

Theorem 3.6 Let k be a field of characteristic zero with finite cohomology. Let K/k be a
function field. Let

1 → F → P → T → 1

be an exact sequence of K-tori, with P quasitrivial and F flasque. Then
(a) For any finite set S ⊂ Ω, the induced map AS(T ) → ∏

v∈S H
1(Kv, F )/δ(H1(K,F )) is an

isomorphism of finite groups.
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(b) For any smooth model X/k of K/k, and any K-torus T , the kernel X
1
X(K,T ) of the

diagonal map H1(K,T ) → ∏
v∈ΩX

H1(Kv, T ) is a finite group. It embeds naturally into the

kernel X
2
X(K,F ) of the map H2(K,F ) → ∏

v∈ΩX
H2(Kv, F ).

(c) The kernel X
1(K,T ) of the map H1(K,T ) → ∏

v∈ΩH
1(Kv, T ) is finite. It embeds

naturally into the kernel X
2(K,F ) of the map H2(K,F ) → ∏

v∈ΩH
2(Kv, F ).

Proof For any v ∈ S, the field Kv is isomorphic to the field k(Y )((t)) of Laurent series over
the function field of a k-variety Y of dimension one less than that of X. Combining Theorems
3.2 and 3.4 (a), we see that for any flasque torus F over K, and any v, the group H1(Kv, F ) is
finite (by Theorem 3.4, the group H1(K,F ) itself is also finite.) The rest of statement (a) is a
special case of Proposition 3.5.

To prove (b), which clearly implies (c), we may restrict X to a smooth affine open set U
over which the torus T extends to a U -torus. The kernel of the above map is contained in
the image of H1

ét(U, T ) → H1(K,T ) (this well-known purity statement follows from the exact
sequence at the bottom of page 163 of [CTS2]). Finiteness then follows from Proposition 3.3. The
embedding statements in (b) and (c) are clear, since P being quasitrivial implies H1(K,P ) = 0
and H1(Kv, P ) = 0.

We now consider the local henselian case. Let k be a field of characteristic zero. Let A be
an excellent, henselian, local domain with residue field k. Let K be its field of fractions. For a
regular integral scheme X equipped with a proper birational map X → Spec(A), we let ΩX be
the set of discrete valuations on K associated to the codimension 1 points on X. We let Ω be
the union of all ΩX .

Theorem 3.7 Let k be a field of characteristic zero with finite cohomology. Let A be a
two-dimensional, excellent, henselian, local domain with residue field k and let K be its fraction
field. Let

1 → F → P → T → 1

be an exact sequence of K-tori, with P quasitrivial and F flasque. Then
(a) For any finite set S ⊂ Ω, the induced map AS(T ) → ∏

v∈S H
1(Kv, F )/δ(H1(K,F )) is an

isomorphism of finite groups.
(b) For any regular proper model X → Spec(A), and any K-torus T , the kernel X

1
X(K,T )

of the diagonal map H1(K,T ) → ∏
v∈ΩX

H1(Kv, T ) is a finite group. It embeds naturally into

the kernel X
2
X(K,F ) of the map H2(K,F ) → ∏

v∈ΩX
H2(Kv, F ).

(c) The kernel X
1(K,T ) of the map H1(K,T ) → ∏

v∈ΩH
1(Kv, T ) is finite. It embeds

naturally into the kernel X
2(K,F ) of the map H2(K,F ) → ∏

v∈ΩH
2(Kv, F ).

(d) Assume moreover that k is algebraically closed. Then there is an isomorphism of finite
groups between the kernel X

1(K,T ) of the map H1(K,T ) → ∏
v∈ΩH

1(Kv, T ) and the kernel
X

2(K,F ) of the map H2(K,F ) → ∏
v∈ΩH

2(Kv, F ).
(e) Under the same assumptions as in (d), if T/K is split by a metacyclic extension, more

generally if T is a birational direct factor of a K-rational variety, then for any finite set S ⊂ Ω,
we have AS(T ) = 0, and we have X

1(K,T ) = 0.
Proof For v ∈ S, the field Kv is isomorphic to a Laurent series field L((t)) over a field L

which is either a function field in one variable over k or is itself a Laurent series field k((u)).
Combining Theorems 3.2 and 3.4, we see that for any flasque torus F over K, and any v,
the group H1(Kv, F ) is finite. By Theorem 3.4, the group H1(K,F ) itself is also finite. The
rest of statement (a) is a special case of Proposition 3.5. To prove (b), which clearly implies
(c), we may restrict X to a smooth affine open set over which the torus T extends to a U -
torus. By the purity statement referred to in the previous proof, the kernel of the above map
is contained in the image of H1

ét(U, T ) → H1(K,T ). Finiteness then follows from Proposition
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3.3. The embedding statements in (b) and (c) are clear, since P being quasitrivial implies
H1(K,P ) = 0 and H1(Kv, P ) = 0. To prove (d), it is enough to know that X

2(K,P ) = 0 and
that is an immediate consequence of Corollary 1.10 (c) of [CTOP] (Theorem 1.6 of the present
paper). The case of an arbitrary quasitrivial torus reduces immediately to that statement. If T
is split by a metacyclic extension, then one may assume that the flasque resolution of T has the
same property, hence by the Endo-Miyata theorem, there exists a K-torus F ′ such that F ×K F ′

is a quasitrivial torus Q. This implies (Hilbert’s theorem 90) that the torsor P → T has a section
over an open set, hence that T ×K F is K-birational to P . Since weak approximation holds for
P , it holds for T . We have X

2(K,F )⊕ X
2(K,F ′) = X

2(K,Q) and this last group is trivial by
the argument given in the proof of (d). Statement (c) then yields X

1(K,T ) = 0.

Remark Assume that k is algebraically closed, i.e. one is in the (ll) case. For X → Spec(A)
a regular model of A, and F a flasque K-torus, for almost all points v ∈ ΩX , one has
H1(Kv, F ) = 0. Indeed F extends to a flasque torus over an open set U ⊂ X. For any v ∈ U (1), let
Ov be the completion of the local ring of X at v and let H1(Ov, F ) = H1

ét(Spec(Ov), F ). Then
the restriction map H1(Ov, F ) → H1(Kv, F ) is surjective. By Hensel’s lemma, H1(Ov, F ) '
H1(k(v), Fk(v)), where k(v) denotes the residue field at v ([SGA3], Exp. XXIV, Prop. 8.2.(ii).
But any such field k(v) is a field of cohomological dimension one, hence H1(k(v),M) = 0 for
any k(v)-torus M .

For any K-torus T over K, with flasque resolution 1 → F → P → T → 1 and any regular
model X → Spec(A), this enables us to produce the finite group

AX(T ) = Coker[H1(K,F ) →
∏

v∈ΩX

H1(Kv, F )]

which measures the lack of weak approximation with respect to all places in ΩX . But if we
consider the union Ω of all ΩX , we have no such result. It seems hard to define an analogue of
the Brauer-Manin obstruction to weak approximation in the present context.

§3.4. A counterexample to weak approximation

In the number field case, examples of K-tori with AS(T ) 6= 0 or with X
1(K,T ) 6= 0 have

been known and discussed for a long time. One may wonder whether such examples exist in our
context. The next proposition handles weak approximation.

Proposition 3.8 Let A = C[[x, y]] ⊂ B = C[[x1/2, y1/2]], and let K ⊂ L be the inclusion of
fraction fields. Let T be the K-torus R1

L/KGm. Let Ax, resp. Ay, be the discrete valuation ring
which is the completion of A at the prime ideal x, resp. y ; let Kx, resp. Ky, be the associated
(topological) fraction field. The group T (K) of K-rational points is dense in each of T (Kx) and
T (Ky), but its image under the diagonal embedding T (K) ⊂ T (Kx) × T (Ky) is not dense.

Proof Let G = Gal(L/K). Proposition 15 of [CTS1] states that for any Galois extension
L/K with group G, for the K-torus R1

L/KGm there is a natural isomorphism T (K)/R '
Ĥ−1(G,L∗) = NL∗/IGL

∗, where NL∗ denotes the kernel of the norm map N : L× → K×.
In the particular case under study, namely G ' Z/2×Z/2, a transfer argument shows that the
group Ĥ−1(G,L∗) is killed by 2.

The diagonal map T (K) → T (Kx) × T (Ky) induces the natural maps Ĥ−1(G,L∗) →
Ĥ−1(G,L∗

x) and Ĥ−1(G,L∗) → Ĥ−1(G,L∗
y). We shall show that each of Ĥ−1(G,L∗),

Ĥ−1(G,L∗
x) and Ĥ−1(G,L∗

y) is isomorphic to Z/2, each of the maps Ĥ−1(G,L∗) → Ĥ−1(G,L∗
x)

and Ĥ−1(G,L∗) → Ĥ−1(G,L∗
y) being an isomorphism. The proposition will then follow from

the quoted result of [CTS1].
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The ring B is a unique factorization domain. Hence the map which to an element in L∗

associates its divisor defines a short exact sequence of G-modules

1 → B∗ → L∗ → Div(B) → 0.

Since Div(B) is a direct sum of G-permutation modules, one has Ĥ−1(G,Div(B)) = 0, hence
a surjection from Ĥ−1(G,B∗) to Ĥ−1(G,L∗). The G-module B∗ is the direct product of C∗

(with trivial action) and of the multiplicative group of series with value 1 at the origin, and the
latter group is clearly uniquely divisible. Thus the inclusion C∗ ⊂ B∗ induces an isomorphism
Ĥ−1(G,C∗) = Ĥ−1(G,B∗). One easily checks that Ĥ−1(G,C∗) = NC∗/IGC∗ = µ4, the
generator being the class of a primitive 4-th root of unity i. All in all, the inclusion C∗ ⊂ L∗

induces a surjection µ4 → Ĥ−1(G,L∗), the last group being of order at most 2, spanned by the
class of i.

We have Kx = C((y))((x)), and Lx := L ⊗K Kx = C((y1/2))((x1/2)). This is a field
extension of group G ' Z/2 × Z/2. Let G =< σ, τ >, with σ(x1/2) = −x1/2, σ(y1/2) = y1/2,
τ(x1/2) = x1/2, τ(y1/2) = −y1/2. The multiplicative group of Lx = C((y1/2))((x1/2)) may
be written as a direct product C∗.(x1/2)Z.(y1/2)Z.U with U a uniquely divisible G-module
(namely the subgroup spanned by the Einseinheiten of C((y1/2))[[x1/2]]∗ and the Einseinheiten
of C[[y1/2]]∗). As a G-module, L∗

x is the direct product of its two subgroups C∗.(x1/2)Z.(y1/2)Z

and U .
One then has

Ĥ−1(G,C((y1/2))((x1/2))∗) = Ĥ−1(G,C∗.(x1/2)Z.(y1/2)Z).

One easily computes N (C∗.(x1/2)Z.(y1/2)Z) = µ4 ⊂ C∗ and IG(C∗.(x1/2)Z.(y1/2)Z) =< −1 >⊂
C∗, so that Ĥ−1(G,C∗.(x1/2)Z.(y1/2)Z) = Z/2 spanned by the class of i ∈ C∗.

It is then clear that the map Ĥ−1(G,L∗) → Ĥ−1(G,L∗
x) is the identity on Z/2 induced

by the identity on Z/2{i} = Ĥ−1(G,C∗). Permuting x and y yields the same result for
Ĥ−1(G,L∗) → Ĥ−1(G,L∗

y).
The map T (K)/R → T (Kx)/R × T (Ky)/R therefore reads as the diagonal map Z/2 →

Z/2⊕Z/2, and weak approximation fails for T . More precisely, the pair (i, 1) is not in the closure
of T (K) (we use the fact, clear from a flasque resolution, that the set of points R-equivalent to
1 on T (Kx) is an open subgroup, and similarly for T (Ky)).

There remains the following open question (to which we expect a negative answer) :

Question Let A be a two-dimensional, excellent, henselian, local domain with algebraically
closed residue field k and let K be its fraction field. Let T be a K-torus. Is the group X

1(K,T )
trivial ? That is, over such a field K, and with respect to the valuations in Ω, does the Hasse
principle hold for principal homogeneous spaces under tori ?

Remarks
1) A closely related question is whether there exists a field K as above and a finite

commutative K-group µ such that X
2(K,µ) 6= 0.

2) Jaworski [Ja] has an interesting, explicit counterexample to the Hasse principle for
H1(K,Z/2) = K∗/K∗2. His (slightly generalized) example is as follows. Let

A = C[[x, y, z]]/(z2 − (x2 − yp)(y2 − xq)),

where the integers p, q satisfy pq ≥ 5. Let K be the field of fractions of the normal ring A. Then
each of the classes (x2 − yp), (y2−xq) is a square in any completion Kv of K at a discrete, rank
one valuation. But one easily checks that neither of these is a square in K. In [CTOP], Remark
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3.1.2, yet another (less explicit) example is given. O. Gabber points out that this example can
be made explicit, for instance by taking A = C[[x, y, z]]/(xyz+ x4 + y4 + z4).

3) For the case considered in Proposition 3.8, using the triviality of the Picard group of B,
one sees that X

1(K,T ) = 0.

§4. R-equivalence and weak approximation on linear algebraic groups

In this section, unless otherwise mentioned, the ground field is assumed to be of characteristic
0. We first recall a series of basic results on simply connected semisimple groups.

Let K be a field and G/K be a simply connected group of type 1An. Let B/K be a central
simple algebra such that G = SL1,B. Let B∗1 ⊂ B∗ be the group of elements of reduced norm
1. The commutator subgroup [B∗, B∗] ⊂ B∗1 is a normal subgroup of B∗1, all elements of
which are R-equivalent to 1 ∈ G(K). We therefore have a clearly surjective homomorphism
ϕ : SK1(B) := B∗1/[B∗, B∗] → G(K)/R, and both groups are abelian. This homomorphism is
functorial in the field K.

Theorem 4.1 Let G = SL1,B be a simply connected K-group of type 1An. With notation
as above :

(i) (Voskresenskǐı, [Vo1], [Vo2] p. 186) The homomorphism ϕ is an isomorphism.
(ii) (Yanchevskǐı, [Ya2]) Suppose that over any finite field extension E of K, and any central

simple algebra C/E, the reduced norm map Nrd : C∗ → E∗ is onto. Then B∗1/[B∗, B∗] = 1,
hence also G(K)/R = 1.

(iii) If cd(K) ≤ 2, then B∗1/[B∗, B∗] = 1, hence also G(K)/R = 1.

Statement (iii) is a consequence of (ii) and the Merkurjev-Suslin theorem ([Su], Thm. 24.8).

Let K be a field and G/K be a group of type 2An. Then G = SU(B, τ) where L/K is a
quadratic, separable, field extension of K, and B/L is a central simple algebra equipped with
an involution of the second kind τ . We have the natural exact sequence of algebraic groups over
K :

1 → SU(B, τ) → U(B, τ) → R1
L/KGm → 1.

The homomorphism B∗ → L∗ defined by b 7→ Nrd(b)/τNrd(b) defines another exact sequence
of algebraic groups over K :

1 → H → RL/K(GL1,B) → R1
L/KGm → 1.

The group H(K) of K-rational points of H is the preimage in B∗ of K∗ ⊂ L∗ under the reduced
norm map B∗ → L∗. Any τ -symmetric element in B∗ belongs to H(K), and it is R-equivalent to
1 on H since (B∗)τ is the set of k–rational points of an open set of an affine space. Let Σ ⊂ H(K)
be the (normal) subgroup spanned by the τ -symmetric elements. There is an obvious surjective
homomorphism ψ : H(K)/Σ → H(K)/R, and that homomorphism is functorial in the field K.

The following theorem is the result of successive efforts by Yanchevskǐı, Monastyrnǐı, Merku-
rjev, Chernousov (see [CM]).

Theorem 4.2 Let G = SU(B, τ) be a simply connected K-group of type 2An. With notation
as above :

(i) The underlying K-varieties of G and H are stably K-birationally equivalent.
(ii) There is a natural group isomorphism H(K)/R ' G(K)/R ; that isomorphism is

functorial in the field K.
(iii) The surjective homomorphism ψ : H(K)/Σ → H(K)/R is an isomorphism.
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(iv) Suppose that over any finite field extension E of K, and any central simple algebra C/E,
the reduced norm map Nrd : C∗ → E∗ is onto. Then H(K)/Σ = 1, hence also G(K)/R = 1.

(v) If cd(K) ≤ 2, then H(K)/Σ = 1, hence also G(K)/R = 1.

Proof Results (i) to (iii) may be read off from [CM]. A key property is that over any
field extension F of K, the maps induced on F -points by U(B, τ) → R1

L/KGm and by

RL/K(GL1,B) → R1
L/KGm have the same image (a result of Merkurjev, see [CM], Prop.

5.2). Denote by M the K-group which is the fibre product of U(B, τ) and RL/K(GL1,B) over
R1

L/KGm. One then has two natural exact sequences of K-groups

1 → SU(B, τ) →M → RL/K(GL1,B) → 1

and
1 → H →M → U(B, τ) → 1,

and the above property implies that each of the morphisms M → RL/K(GL1,B) and M →
U(B, τ) admits a section over an open set. Each of the K-groups RL/K(GL1,B) and U(B, τ)
is a K-rational variety. This immediately gives statement (i). It also implies that each of the
homomorphisms SU(B, τ) → M and H → M induces group isomorphisms SU(B, τ)(K)/R→
M(K)/R and H(K)/R → M(K)/R. This is statement (ii) in the theorem. For (iii), see [CM],
Lemma 5.1 (in the isotropic case, see [Ya3], Remark p. 537). Result (iv) is due to Yanchevskǐı
([Ya1], Thm. 1). Result (v) follows from (iv) by the Merkurjev-Suslin results.

Theorem 4.3 (Chernousov-Platonov) Let K be a field of characteristic zero with cd(K) ≤ 2.
Assume that over any finite field extension of K, index and exponent coincide for 2-primary and
for 3-primary central simple algebras. Let G/K be a simply connected semisimple group without
factor of type An. If G contains a factor of type E8, assume cd(Kab) ≤ 1. Then the K-variety
G is K-rational, i.e. birational to affine space over K.

Proof In [CP], Chernousov and Platonov state the theorem for p-adic and totally imaginary
number fields. Let us indicate how their arguments (easily) extend to the present situation. For
L/K a finite field extension and X an L-rational L-variety, the K-variety RL/KX is K-rational.
By the standard reduction, we may thus assume that G is absolutely almost simple, simply
connected, and not of type An.

Case Bn (n ≥ 2). Then G is the spinor group of a nondegenerate quadratic form q of rank
2n+1 ≥ 5 over K. Under our assumption on K, any quadratic form of rank at least 5 is isotropic
(Theorem 1.1 (f)). The statement is now a special case of the general result : Over any field
F of characteristic not 2, for any isotropic quadratic form q over F the group Spin(q) is an
F -rational variety (Platonov). This result may be proved in a number of ways ([CP], Prop. 4 ;
[Me2], Prop. 6.1). One may give a proof by induction. Let us write the underlying vector space
V as an orthogonal sum W ⊥ K.v, in such a manner that a = q(v) 6= 0 and the restriction q0 of
q to W is still isotropic. Let X be the affine quadric defined by q(x) = a. The group Spin(q) acts
on X, the isotropy group of v ∈ X being Spin(q0). The isotropy assumption ensures that over
any field extension F of K this action is transitive on F -points. This implies that the morphism
g 7→ g.v admits a rational section, and Spin(q) is F -birational to the product of Spin(q0) and
the F -rational quadric X.

Case Cn. Over any field F , any simply connected group of type Cn is a (connected) unitary
group, which is F -rational (Cayley transform) ([CP], Lemma 5).

Case of nontrialitarian Dn (n ≥ 4). Over any field F , any simply connected group of this type
can be realized as the spinor group Spin(D, h) associated to a nondegenerate hermitian form
over a central division algebra D of degree d with an orthogonal involution of the first kind.
Chernousov and Platonov prove that if the index of D is at most 4 and G is isotropic, then G
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is F -rational ([CP], Cor. 5, Prop. 8 for inner forms, Prop. 10 and Prop. 11 for outer forms).
Over the field K, the algebra D, which is of exponent 2, is of index at most 2, and the group
G is isotropic by Theorem 2.1 (b) (see also Prop. 2.12). The result of Chernousov and Platonov
therefore applies.

Case of trialitarian Dn. Over any field F , any isotropic group of that type is F -rational ([CP],
Prop. 13). Over the field K, any such group is isotropic (Theorem 2.1).

Cases E6 and E7. Over any field F , any F -isotropic group of type E6 or E7 with Tits index as
described in Theorem 2.1 is F -rational ([CP], Prop. 14 for inner forms of E6, Prop. 16 for outer
forms of E6, Prop. 17 for E7). Over the field K, Theorem 2.1 says that either G is quasisplit,
or it has the quoted Tits index, hence in particular is isotropic.

Cases F4, G2, E8. In these cases, the centre is trivial, hence all forms of the split group G are
classified by H1(K,G), which by Theorem 1.2 is trivial. Thus any such group over K is K-split,
hence K-rational.

Remark Chernousov and Platonov also investigate the rationality properties of arbitrary
absolutely almost simple groups. In most cases, over p-adic and totally imaginary number fields,
they establish the rationality when the group is not of type An. Presumably most of their results
hold for our more general fields. Beware however of an inaccuracy in [CP] : In the main theorem,
one must exclude adjoint outer forms of type Dn related to a quaternion division algebra A and
a skew-hermitian form h over A whose anisotropic part has dimension 3 (this may occur over a
totally imaginary number field).

Corollary 4.4 Let K be a field of type (ll), (sl) or (gl). Let G/K be a simply connected
group without factor of type An. In the (gl) case, assume that G contains no E8-factor. Then
the underlying K-variety of the group G is K-rational, i.e. it is K-birational to an affine space
over K.

Collecting the previous results, we obtain a general statement regarding R-equivalence on
simply connected groups.

Theorem 4.5 Let G/K be a semisimple, simply connected group over a field K of
characteristic zero. Assume cd(K) ≤ 2. Assume that over any finite field extension of K, index
and exponent coincide for 2-primary and for 3-primary central simple algebras. If G/K contains
a factor of type E8, assume cd(Kab) ≤ 1. Then G(K)/R = 1.

Proof The assumptions on the ground field k are stable by finite field extension. If L/K is a
finite field extension and H/L is a linear algebraic group, then there is a natural isomorphism
of groups RL/K(K)/R ' H(L)/R. By the standard reduction, we may thus assume that G is
an absolutely almost simple group. In the An case, G(K)/R = 1 by Theorems 4.1 and 4.2. In
the other cases, G/K is a K-rational variety by Theorem 4.3, hence G(K)/R = 1.

Corollary 4.6 Let G/K be a semisimple, simply connected group over a field K of type
(ll), (sl) or (gl). In the (gl) case, assume that G has no simple factor of type E8. Then G(K)/R
is trivial.

Remarks
(i) Note the big difference between simply connected groups of type An and other (absolutely

almost simple) simply connected groups over fields of one of our three types (excluding E8 in
case (gl)). For a group G not of type An, R-equivalence is universally trivial, i.e. G(F )/R = 1
for any field extension F/K. For a group of type An, we claim G(F )/R = 1 only for finite
extensions of K. Merkurjev [Me1] has given examples with G(F )/R 6= 1 for G/K of type 1An

and F/K a suitable function field.
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(ii) For all we know, Theorem 4.5 might hold under the assumption cd(K) ≤ 3. Indeed the
cohomological invariants on SK1(B) = SL1,B(K)/R studied by Suslin and later Merkurjev
and Rost take their values in cohomology groups H i(K, .) for i ≥ 4. The question whether
SK1(B) = 1 if cd(K) ≤ 3 was explicitly raised by Suslin.

(iii) Theorem 4.5 applies to p-adic fields : for such fields, the result had already been proved
by Voskresenskǐı. The theorem also applies to totally imaginary number fields. This algebraic
proof of the triviality of G(K)/R for G simply connected should be compared with the available
proof of finiteness of G(K)/R when K is an arbitrary number field (see [Gi1]) : that proof
appeals to an ergodic result of Margulis.

We now consider the problem of weak approximation, and restrict attention to fields K of
type (gl) or (ll). Recall from §1 that in each of these cases, there is an associated set Ω of places
of K. For each place v ∈ Ω, the completion Kv is of the shape l((t)), where l is either a function
field in one variable over the algebraically closed field k, or is a Laurent series field k((u)). For
each v ∈ Ω, the topology on the local field Kv induces a topology on the group G(Kv).

Theorem 4.7 Let G/K be a simply connected group over a field K which is of type (gl) or
(ll). In the (gl) case, assume that G has no E8-factor. Then for any finite set of places S ⊂ Ω,
the diagonal map G(K) → ∏

v∈S G(Kv) has dense image.
Proof The standard reduction allows us to assume that G/K is absolutely almost simple.

If G is not of type An, then under our assumptions, the K-variety G is K-rational and weak
approximation follows.

Suppose that G is of type 1An, i.e. G = SL1,B for B/K a central simple algebra. Let
{gv}v∈S ∈ ∏

v∈S B
∗1
Kv

. Each field Kv is a C2-field ([Pf], Chap. 5, Thm. 2.32 p. 70). By
Yanchevskǐı’s results (Theorem 4.1.(ii)), each gv is a product of commutators in B∗

Kv
. Since

there are only finitely many places v ∈ S, there is an integer n > 0 such that each gv for v ∈ S is
a product of exactly n commutators in B∗

Kv
. Since B∗ is the set of K-points of an open subvariety

of an affine space over K, the diagonal map B∗ → ∏
v∈S B

∗
Kv

has dense image. Approximating
all entries in the n commutators, we conclude that G(K) is dense in

∏
v∈S G(Kv).

Suppose that G is of type 2An, i.e. G = SU(B, τ) where L/K is a quadratic, separable, field
extension of K, and B/L is a central simple algebra equipped with an involution of the second
kind τ . We refer to the discussion before Theorem 4.2 for the definition of the algebraic group
H/K. Since G and H are stably K-birationally equivalent K-varieties, weak approximation for
one of them is equivalent to weak approximation for the other. Let v be a place of K. Let
{gv}v∈S ∈ ∏

v∈S H(Kv). By Theorem 4.2 (iv) applied to the completion Kv, any element of
H(Kv) is a product of τ -symmetric elements in B∗

Kv
. Since S is finite, there is an integer n > 0

such that each gv for v ∈ S is a product of exactly n τ -symmetric elements in B∗
Kv

. The set of
τ -symmetric elements in B∗ is the set of K-points of a Zariski open set in an affine space over
K. Thus weak approximation holds for such elements, and we conclude that H(K) is dense in∏

v∈S H(Kv).

Remark In the 2An case, the above proof essentially goes back to Yanchevskǐı ([Ya3],
Proposition following Thm. 5, p. 545). Use of [CM] enables one to streamline it.

We now discuss arbitrary connected linear algebraic groups. Recall the basic theorem ([Gi2],
Thm. 6 p. 308).

Theorem 4.8 Let K be a field of characteristic zero such that cd(K) ≤ 2. Let

1 → µ→ G′ → G→ 1
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be a K-isogeny of connected linear algebraic groups, where G′ is the product of a semisimple
simply connected group and a quasitrivial torus. Let

1 → µ→ F → P → 1

be a flasque resolution of µ (the torus F is flasque and the torus P is quasitrivial). The associated
Galois cohomology sequences induce an exact sequence

G′(K)/R −→ G(K)/R −→ H1(K,F ) −→ 1.

We may now conclude :

Theorem 4.9 Let K be a field of characteristic zero such that cd(K) ≤ 2. Assume that over
any finite field extension of K, index and exponent coincide for 2-primary and for 3-primary
central simple algebras. Let

1 → µ→ G′ → G→ 1

be a K-isogeny of connected linear algebraic groups, where G′ is the product of a semisimple
simply connected group and a quasitrivial torus. Let

1 → µ→ F → P → 1

be a flasque resolution of µ (the torus F is flasque and the torus P is quasitrivial). If G′ contains
a factor of type E8, assume cd(Kab) ≤ 1. Then the Galois cohomology sequences induce an
isomorphism :

G(K)/R
∼−→ H1(K,F ).

Proof A quasitrivial K-torus T is a K-rational variety, hence T (K)/R = 1. For G′/K as
above, we have G′(K)/R = 1 by Theorem 4.5.

Corollary 4.10 Let K be a field of characteristic zero such that cd(K) ≤ 2. Assume that
over any finite field extension of K, index and exponent coincide for 2-primary and for 3-primary
central simple algebras. Let G/K be a connected linear algebraic group. If G contains a factor
of type E8, assume cd(Kab) ≤ 1. Then the group G(K)/R is abelian.

Proof By a known reduction, one may assume that G is reductive. By Lemme 1.10 of [Sa],
there then exists an isogeny 1 → µ→ G′ → Gm × T → 1, with T a quasitrivial K-torus, m > 0
and G′ the product of a quasitrivial torus by a simply connected group with the same (absolute)
simple factors as G. Let 1 → µ→ F → P → 1 be a flasque resolution of µ. By Theorem 4.9, we
have a group isomorphism (G(K)/R)m = (G(K)/R)m × T (K)/R ' H1(K,F ), hence G(K)/R
is an abelian group.

Corollary 4.11 Let K be as in Theorem 4.9 and let G/K be a semisimple group. Under
any of the following assumptions :

(i) G is simply connected,
(ii) G is adjoint,
(iii) G is absolutely almost simple,
(iv) G is an inner form of a group which is split by a metacyclic extension of K,

we have G(K)/R = 1.
Proof Recall that a finite field extension L/K is called metacyclic if it is Galois and each

Sylow subgroup of the Galois group is cyclic. We follow Sansuc’s argument [Sa, Cor. 5.4]. Case
(i) has already been handled (Theorem 4.5). If G is adjoint, then it is a product of restrictions of
scalars of groups of type (iii) over finite extensions of K. Thus (ii) reduces to (iii). An absolutely
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almost simple K-group is an inner form of an absolutely almost simple quasisplit K-group.
The latter is split by a metacyclic extension, the automorphism group of the Dynkin diagram
being either 0, Z/2 or S3. One is thus reduced to case (iv). Let µ be the fundamental group
of G. There exists a flasque resolution 1 → µ → F → P → 1 where F and P are split by the
minimal splitting field of the multiplicative group µ (which by definition is the splitting field of
the character group of µ). If a semisimple group is split, then its fundamental group µ is split
(that is, the absolute Galois group acts trivally on the character group of µ). An inner twist
does not affect the fundamental group. Thus F is split by a metacyclic extension, hence is a
direct factor of a quasitrivial torus (theorem of Endo and Miyata), hence H1(K,F ) = 0. The
triviality of G(K)/R now follows from Theorem 4.9.

Specializing to the fields of main interest in this paper, we have

Theorem 4.12 Let K be a field of type (ll), (sl) or (gl). Let G/K be a connected linear
algebraic group. In the (gl) case, assume G has no E8 factor. Then

(i) The quotient G(K)/R is a finite abelian group.
(ii) Suppose the group G has a presentation

1 → µ→ G′ → G→ 1

where G′ is the product of a semisimple simply connected group and a quasitrivial torus, and
G′ → G is an isogeny with kernel µ. Let

1 → µ→ F → P → 1

be a flasque resolution of µ (the torus F is flasque and the torus P is quasitrivial). Then the
Galois cohomology sequences induce an isomorphism of finite groups G(K)/R ' H 1(K,F ).

Proof For part (ii), simply combine Theorems 4.6, 4.8 and the finiteness results 3.2 and 3.4.
To prove the finiteness of G(K)/R in the general case, proceeding as in Corollary 4.10 above,
one shows that for some m > 0, (G(K)/R)m is finite.

We now consider weak approximation for fields of type (ll) or (gl), and the associated set Ω
of discrete valuations.

Theorem 4.13 Let K be a field of type (ll) or (gl). Let S ⊂ Ω be a finite set. Let G/K be
a connected linear group. In the case (gl), assume that G has no factor of type E8.

(i) The closure G(K) of the image G(K) under the diagonal map G(K) → ∏
v∈S G(Kv) is a

normal subgroup, and the quotient AS(G) =
∏

v∈S G(Kv)/G(K) is a finite abelian group.
(ii) Suppose the group G has a presentation 1 → µ → G′ → G → 1 where G′ is the product

of a semisimple simply connected group and a quasitrivial torus, and G′ → G is an isogeny
with kernel µ. Let 1 → µ → F → P → 1 be a flasque resolution of µ (the torus F is flasque
and the torus P is quasitrivial). Then the composite maps G(K) → H1(K,µ) → H1(K,F ) and
G(Kv) → H1(Kv, µ) → H1(Kv, F ) induce isomorphisms of finite abelian groups

AS(G) ' Coker[H1(K,F ) →
∏

v∈S

H1(Kv, F )]

and
AS(G) ' Coker[G(K)/R→

∏

v∈S

G(Kv)/R].

Proof The arguments due to Kneser [Kn2] and Sansuc ([Sa], §3) (for the last isomorphism,
see also [N]) in the number field context may be adapted to our context, one key remark being
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that they do not involve any class field theory (for a minor difference between the two set-ups,
see remark after the proof).

Using Proposition 3.2 and Lemme 1.10 of [Sa], one reduces the proof of (i) to that of (ii).

Let H be the group F
µ
× G′, i.e. the contracted product of H and G′ relatively to µ. There is a

commutative diagram of exact sequences of algebraic groups

1 1y
y

1 −→ µ −→ G′ −→ G −→ 1y
y

∥∥∥
1 −→ F −→ H −→ G −→ 1y

y
P = Py

y
1 1

The middle vertical sequence induces the following diagram, where horizontal maps are diagonal
maps :

G′(K) −→ ∏
v∈S G

′(Kv)y
y

H(K) −→ ∏
v∈S H(Kv)y

y

P (K) −→ ∏
v∈S P (Kv)y

H1(K,G′)

By our assumptions, H1(K,G′) = 1. Since P is a quasitrivial torus, the bottom horizontal map
has dense image. By Theorem 4.7, the top horizontal map has dense image. The vertical maps
on the right hand side are continuous. Since the K-morphism H → P is smooth, each projection
map H(Kv) → P (Kv) is open ([Se1], Part II, Lie Groups, Chap. 3, §10.2). All these statements
put together imply that the diagonal map H(K) → ∏

v∈S H(Kv) has dense image.
We have exact sequences of pointed sets

H1(K,G′) → H1(K,H) → H1(K,P )

and
H1(Kv, G

′) → H1(Kv, H) → H1(Kv, P ).
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Since P is quasitrivial, H1(K,P ) = 0 and H1(Kv, P ) = 0. By our assumptions on G, hence
G′, and on the field K, we have H1(K,G′) = 1 and H1(Kv, G

′) = 0. Thus H1(K,H) = 1 and
H1(Kv, H) = 1 for any v ∈ Ω.

From the initial diagram we deduce another commutative diagram, where the vertical maps
are diagonal maps :

H(K) −→ G(K) −→ H1(K,F ) −→ 0
y

y
y

∏
v∈S H(Kv) −→ ∏

v∈S G(Kv) −→ ∏
v∈S H

1(Kv, F ) −→ 0,

where the right hand side zeroes have just been explained.
By Theorems 3.4 and 3.2, the groups H1(K,F ) and

∏
v∈S H

1(Kv, F ) are finite. Let AS(µ) =
Coker[H1(K,F ) → ∏

v∈S H
1(Kv, F )]. Let ϕ :

∏
v∈S G(Kv) → AS(µ) be the obvious composite

homomorphism. We have shown that the diagonal map H(K) → ∏
v∈S H(Kv) has dense image.

An easy diagram chase now shows that the closure of G(K) in
∏

v∈S G(Kv) coincides with the

subgroup ϕ−1(1), which is clearly normal, and we have
∏

v∈S G(Kv)/G(K) ' AS(µ).

Remark The above proof also works for a totally imaginary number field K and a finite
set of completions Kv. In the number field case ([Sa], §3), one usually identifies AS(G) with
the cokernel of H1(K,µ) → ∏

v∈S H
1(Kv, µ). This is all right because for a (usual) local field

H1(Kv, µ) is finite. But for a field Kv with residue field a function field in one variable over an
algebraically closed field, a group H1(Kv, µ) need not be finite. The replacement of H1(Kv, µ)
by H1(Kv, F ) does not however enable a total analogy. In the number field case, we have
H1(Kv, F ) = 0 for almost all v. This enables one to define a finite abelian group A(G) which
covers the defect of weak approximation at any finite set of places. In the (gl) and (ll) case, for
a given model X, H1(Kv, F ) = 0 for almost all v ∈ ΩX (remark after Theorem 3.7), hence a
finite group measures the lack of weak approximation with respect to all places in ΩX . As for
the whole set Ω, we have the same comments as in the quoted remark.

The same arguments as in Corollary 4.11 above now yield :

Corollary 4.14 Let K be a field of type (ll) or (gl). Let G/K be a semisimple group. In the
case (gl), assume that G has no factor of type E8.

Under any of the following assumptions :
(i) G is simply connected,
(ii) G is adjoint,
(iii) G is absolutely almost simple,
(iv) G is an inner form of a group which is split by a metacyclic extension of K,

for any finite S ⊂ Ω, we have AS(G) = 0 : weak approximation holds for G.

Remark In the (ll) case, starting from the example in Proposition 3.8, one may easily produce
a finite abelian K-group µ and a sequence 1 → µ → F → P → 1 such that for suitable S ⊂ Ω,
the quotient AS(µ) is not trivial. Starting from µ, one may then produce a semisimple group G
such that AS(G) 6= 0.

§5. Hasse principle

The following theorem is an analogue of a result of Borel for number fields.
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Theorem 5.1 Let K be a field of type (ll) or (gl). Let Ω be its associated set of places. Let
G/K be a connected linear algebraic group. If K is of type (gl), assume that G has no E8-factors.
The set

X
1(K,G) = ker[H1(K,G) →

∏

v∈Ω

H1(Kv, G)]

is a finite set.
Proof One reduces to the case where G is reductive. Using Lemme 1.10 of [Sa], one is reduced

to the case of a group G equipped with an isogeny

1 → µ→ G′ → G→ 1

with G′ the product of a semisimple simply connected group (with the same factors as G) by
a quasitrivial torus. By Theorems 1.3 and 1.4 we have H1(K,G′) = 1, and this also holds true
for all the twisted forms of G′, hence we have an injective map X

1(K,G) ↪→ X
2(K,µ).

In the (gl) case, let X/k be an integral surface with function field K. In the (ll) case, let A
be the defining strictly henselian local domain for K, and let X = Spec(A). In both cases, over
a suitable nonempty regular open set U ⊂ X of finite type over X, there exists a commutative,
finite étale group scheme µU/U whose generic fibre is our given µ. The elements of H2(K,µ)
with trivial restriction to H2(Kv, µ) for each v ∈ U1 belong to the image of the restriction map
H2(U, µU ) → H2(K,µ) (purity, [SGA4] XVI 3.7 and XIX 3.2) and the group H2(U, µU ) is finite
(see the proof of Prop. 3.3).

The following theorem is an analogue of results of Sansuc ([Sa], Cor. 5.4 and Cor. 5.9) for
number fields.

Theorem 5.2 Let K be a field of type (ll) and Ω be its associated set of places. Let G/K
be a connected semisimple group of fundamental group µ.
a) The boundary H1(K,G) → H2(K,µ) induces a bijection X

1(K,G)
∼−→ X

2(K,µ).
b) In either of the following cases :

(i) G is adjoint or G is absolutely almost simple,
(ii) G is semisimple and is a direct factor of a K-rational variety, i.e. there exists a

K-variety Y such that G×K Y is K-birational to affine space over K,
we have X

1(K,G) = 1.
Proof a) Since G is semisimple, we have the standard sequence

1 → µ→ G′ → G→ 1

with G′ simply connected. By Theorems 2.1 and 2.2, the map H1(K,G) → H2(K,µ) is bijective,
and the same hold for the Kv. So X

1(K,G) → X
2(K,µ) is bijective.

b) Let us discuss case (i). By the standard reduction, we may assume that G is absolutely almost
simple. As explained in the proof of Corollary 4.11, for such a G, the finite abelian K-group µ
is then split by a metacyclic extension. The last property implies that we can find a sequence

1 → µ→ F → P → 1

with P quasitrivial and F a direct factor of a quasitrivial torus : there exists a K-torus F ′ such
that F ×K F ′ ' Q with Q =

∏
iRKi/KGm. We then have

X
1(K,G) ↪→ X

2(K,µ) ⊂ X
2(K,F ) ⊂

∏

i

X
2(Ki,Gm).

By Corollary 1.10 of [CTOP] (Theorem 1.6 in the present paper), the latter group vanishes.
This completes the proof in case (i).
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Let us consider case (ii). Let X be a smooth compactification of G. Let K be an algebraic

closure of K and Γ = Gal(K/K). Because G is semisimple, the natural map K
∗ → K[G]∗ is

a bijection (the only units are the constants). On the other hand, for the semisimple group
G, there is a natural Γ-isomorphism between the character group µ̂ and the Picard group of
G = G×K K. The natural sequence of Γ-modules :

0 → K[G]∗/K
∗ → Div∞(X) → Pic(X) → Pic(G) → 0,

where Div∞(X) is the permutation module on the irreducible components of the complement
of G in X therefore reads

0 → Div∞(X) → Pic(X) → µ̂→ 0.

Under assumption (ii), there exists a Γ-module M , such that the Γ-module Pic(X) ⊕ M is
Γ-isomorphic to a permutation Γ-module ([CTS3], Prop. 2.A.1 p. 461). Dualizing the exact
sequence above, we find an exact sequence

1 → µ→ F → P → 1

with P a quasitrivial torus and F a direct factor (as a torus) of a quasitrivial torus. As above,
this implies X

2(K,µ) = 0, hence X
1(K,G) = 1.

Remarks
(i) It is likely that X

1(K,G) = 1 holds for an arbitrary K-rational group. In the number field
case, this is a result of Sansuc ([Sa], Cor. 9.7).

(ii) For an arbitrary connected linear algebraic group G over K of type (ll), one does not
expect X

1(K,G) = 1 to always hold. But we have not been able to produce a counterexample
(this is very closely connected with the Question and Remarks following Prop. 3.8).

We now follow Borovoi’s paper [Bo1] extremely closely. The aim is to show how Theorem 2.1
(conjecture 5.3 of [CTOP]) implies Conjecture 5.4 of [CTOP] (Corollary 5.7 below).

Borovoi’s paper elaborates on earlier work of Springer and of Douai. One preprint quoted in
[Bo1] has since appeared ([Bo2]). A useful complement to Borovoi’s paper is the article [FSS].

Let k be a field of characteristic zero, and k an algebraic closure of k. Let G be a connected
linear k-group and L = (G, κ) a k-kernel (otherwise known as k-band or k-lien). To G one

associates a k-torus G
tor

([Bo1], Notation p. 218).
To the k-kernel L one associates the second cohomology set H2(k, L). This set may or may

not be empty. Inside this set one defines special classes called neutral classes ([Bo1] 1.6). There
may exist none, one, or more such classes. If G is reductive, then H2(k, L) contains a neutral

element ([Bo1] Prop. 3.1). In general, if we let G
red

be the quotient of G by its unipotent

radical, then there are an induced k-kernel Lred = (G
red
, κred) and a canonical map of sets

r : H2(k, L) → H2(k, Lred). An element η ∈ H2(k, L) is neutral if and only r(η) ∈ H2(k, Lred) is
neutral ([Bo1], Prop. 4.1). When G is reductive, one defines an abelian group H2

ab(k, L) ([Bo1],
5.1) and an abelianization map ab2 : H2(k, L) → H2

ab(k, L) ([Bo1], 5.3). This map sends the
neutral classes to zero. For an arbitrary connected linear k-group, and a k-kernel L, one sets
H2

ab(k, L) = H2
ab(k, L

red) and one defines the abelianization map to be the compositum

ab2 : H2(k, L) → H2(k, Lred) → H2
ab(k, L

red) = H2
ab(k, L).

Neutral elements are sent to zero.
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Proposition 5.3 Let L = (G, κ) be a connected k-kernel. Assume cd(k) ≤ 2, and assume
that for central simple algebras over finite field extensions of k, index and exponent coincide.
Then an element η ∈ H2(k, L) is neutral if and only if ab2(η) = 0.

Proof See the proof of Theorem 5.5 of [Bo1] (p. 229, Section 5.8). In our context, the rôle of
[Bo1], Lemma 5.7 for number fields (surjectivity of the boundary map) is played by our Theorem
2.1.

Remark As in [Bo1], Cor. 5.6, when G is semisimple simply connected, this implies that any
element of H2(k, L) is neutral.

There is a natural homomorphism of k-algebraic groups t∗ : G → G
tor

, where G
tor

is the

biggest quotient torus of G. The k-kernel L induces a k-kernel Ltor = (G
tor
, κtor) on the

(commutative) k-torus G
tor

: this defines a k-torus Gtor, k-form of G
tor

([Bo1] 1.4, 1.7, 6.1).
There is an identification H2(k, Ltor) = H2(k,Gtor), where the latter set is the usual second
abelian cohomology group. There is a natural map

t∗ : H2(k, L) → H2(k, Ltor) = H2(k,Gtor),

referred to as the canonical map.
As explained in [Bo1], 6.1, for L = (G, κ) with G connected, there is an exact sequence ([Bo1],

(6.1.1))

H3(k, µ) → H2
ab(k, L)

tab→ H2(k,Gtor),

where µ is a finite abelian k-group (in the notation of [Bo1], section 5,1, µ is the kernel of
the homomorphism of k-groups Z(sc) → Z) and the composite map H2(k, L) → H2

ab(k, L) →
H2(k,Gtor) is the canonical map t∗.

We now have the analogue of Proposition 6.2 of [Bo1].

Proposition 5.4 Assume cd(k) ≤ 2, and assume that for central simple algebras over finite
field extensions of k, index and exponent coincide. Let L = (G, κ) be a connected k-kernel. Then
an element η ∈ H2(k, L) is neutral if and only if t∗(η) = 0, where t∗ is the canonical map.

Proof Since k has cohomological dimension 2, we have H3(k, µ) = 0, hence the map
H2

ab(k, L) → H2(k,Gtor) is injective. Thus t∗(η) = 0 implies that the image of η under
ab2 : H2(k, L) → H2

ab(k, L) is zero. By Proposition 5.3 this implies that η is neutral. The
converse statement is obvious.

Let X be a smooth variety over k which is a right homogeneous space of a semisimple simply
connected k-group H. Let G be the isotropy group of a k-point x of X(k), and assume that
this isotropy group is connected. Since the homogeneous space X is defined over k, there is an
associated connected k-kernel L = (G, κ) ([Bo1], 7.1), and an associated k-torus Gtor. These
data are functorial in the ground field k. By cocycles computations, one may show that up to
k-isomorphism the k-torus Gtor does not depend on the choice of the point x. If X has a k-point
x, and Gx is its stablizer, then Gtor is the maximal torus quotient of Gx, i.e. the character group
of Gtor coincides with the Galois module of characters of Gx ×k k.

Associated to the homogeneous space X there is a class η = η(X) ∈ H2(k, L) ([Bo1],
7.7) which is neutral if and only if the homogeneous space X comes from a right principal
homogeneous space under H, i.e. there exists such a space Y and a H-equivariant map Y → X.

We are now in a position to prove the analogue of a result of Borovoi ([Bo1], Thm. 7.3).

Theorem 5.5 Let A be an excellent henselian two-dimensional local domain, let K be its
field of fractions and k its residue field. Assume that k is algebraically closed of characteristic
zero. Let Ω be the set of all rank one discrete valuations on K. For v ∈ Ω, let Kv be the
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completion of K at v. Let X be a smooth variety over K which is a right homogeneous space
of a semisimple simply connected group H over K. Assume that the geometric stabilizers are
connected. Let Gtor be the associated K-torus. Assume that one of the following holds :

(i) X
2(K,Gtor) = 0 ;

(ii) the torus Gtor is the kernel of a surjective map of direct factors of quasitrivial tori ;
(iii) the torus Gtor is split by a metacyclic extension of K ;
(iv) the torus Gtor has dimension at most one.
Then the Hasse principle holds for X : if for each v ∈ Ω the set X(Kv) is not empty, then

X has a K-rational point.
Proof Let L = (G, κ) be the K-kernel associated to the homogeneous space X. Consider

the class η = η(X) ∈ H2(K,L). By Proposition 5.4 and Theorem 2.1, η is neutral if and
only if t∗(η) ∈ H2(K,Gtor) is trivial. For any place v, the assumption X(Kv) 6= ∅ implies
that ηv is neutral, hence tv∗(η) ∈ H2(Kv, G

tor) is trivial. Thus t∗(η) lies in X
2(K,Gtor) =

Ker[H2(K,Gtor) → ∏
v∈ΩH

2(Kv, G
tor).

Over any field, any 1-dimensional torus is split by a quadratic extension of the ground field.
Over any field, for a K-torus T which is split by a metacyclic extension of K, there exists an
exact sequence of K-tori

1 → T → P1 → P2 → 1,

where P1 and P2 are direct factors of quasitrivial tori (this uses the Endo-Miyata theorem,
see §3). For the torus T = Gtor over the field K, this sequence induces an embedding
X

2(K,Gtor) ↪→ X
2(K,P1) and the latter group vanishes by Theorem 1.6 (applied to finite

field extensions of K).
Thus η is neutral, hence X comes from a right principal homogeneous space Y under H.

But H1(K,H) is trivial (Theorem 1.4), i.e. any principal homogeneous space under H has a
K-point. Hence Y (K) 6= ∅, hence also X(K) 6= ∅.

The following lemma appears in the literature, but it is hard to locate a proof.
Lemma 5.6 Let k be a field and X a smooth projective k-variety which is a homogeneous

space of a semisimple simply connected k-group H. With notation as above, the k-torus Gtor is
a quasitrivial torus.

Proof Let F = k(X) be the function field of X. Since X is absolutely irreducible, the field
k is algebraically closed in F . Let L denote the field F ⊗k k. The extension L/F is Galois,
and the natural map Gal(L/F ) → Gal(k/k) = Γ is an isomorphism. Let Gη ⊂ HF denote the
stabilizer of the generic point of X, viewed as an F -point of X. By the functoriality mentioned
before Theorem 5.5, the character group of the F -torus Gtor ×k F , which splits over the field L,
coincides, as a Γ-module, with the character group Ĝη(L) of the F -group Gη. The map h 7→ h.η
makes HF into a torsor over XF under the group GF . There is an associated exact sequence of
Γ-modules ([Sa], Prop. 6.10)

0 → L[X]∗ → L[H]∗ → Ĝη(L) → Pic(XL) → Pic(HL).

Since H is semisimple, L∗ = L[H]∗, and since H is simply connected, Pic(HL) = 0. The exact
sequence above reduces to an isomorphism Ĝη(L) ' Pic(XL). The Galois module Pic(X×k k) is
a permutation module : it is the permutation module with basis the points of codimension
1 on X ×k k which are in the complement of the big cell, which is an affine space over
k (see [H2], proof of Satz 1.3.1 p. 118). This implies that the natural Γ-equivariant map
Pic(X ×k k) → Pic(XK ×K L) is an isomorphism. We conclude that the character group of
Gtor is a permutation module.

The following result is the analogue of a result of Harder over number fields ([H1] ; [Bo1],
Cor. 7.5). It was put forward as a conjecture in §5 of [CTOP].
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Corollary 5.7 Let K be as in Theorem 5.5 and let X be a smooth projectiveK-variety which
is a homogeneous space of a connected linear algebraic K-group H. Then the Hasse principle
holds for X.

Proof Let R ⊂ H be the radical of H, i.e. the maximal connected solvable normal subgroup of
H. Let G be the isotropy point of aK-point ofX. This is a parabolic group, hence it is connected.
Its contains R. It follows that the action of H on X factorizes through the semisimple group
Hss = H/R. Thus X is a homogeneous space under Hss. Let λ : Hsc → Hss be the universal
covering of H. As λ is a surjective morphism, X is a homogeneous space under H sc. We may thus
assume that H is a semisimple simply connected group. The result now follows from Theorem
5.5 (ii) and Lemma 5.6.

We also have the analogue of Corollary 7.6 of [Bo1] (a generalization of a result of Rapinchuk) :
Corollary 5.8 Let K be as above and let X be a symmetric homogeneous space of an

absolutely simple simply connected K-group H (i.e. the geometric isotropy group is the group of
invariants of an involution of H ×K K). Then the Hasse principle holds for X.

Proof As Borovoi remarks, under the above assumption, the dimension of Gtor is at most
one, hence the result by Theorem 5.5 (iv).
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[CTOP] J.-L. Colliot-Thélène, M. Ojanguren and R. Parimala, Quadratic forms over fraction

fields of two-dimensional henselian rings and Brauer groups of related schemes, to appear in
Algebra, Arithmetic and Geometry, Proceedings of the Mumbai Colloquium 2000.

[CTGP] J.-L. Colliot-Thélène, P. Gille et R. Parimala, Arithmétique des groupes algébriques
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(1993-1994), Astérisque 227 (1995).

[Su] A. A. Suslin, Algebraic K-theory and norm residue homomorphism, Journal of Soviet
mathematics 30 (1985) 2556-2611.

[SGA 3] M. Demazure et A. Grothendieck, Schémas en groupes, Lecture Notes in Mathematics
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