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Abstract. Ax gave examples of fields of cohomological dimension
1 which are not C1-fields. Kato and Kuzumaki asked whether a
weak form of the C1-property holds for all fields of cohomological
dimension 1 (existence of solutions in extensions of coprime degree
rather than existence of a solution in the ground field ). Using work
of Merkur’ev and Suslin, and of Rost, D. Madore and I recently
produced examples which show that the answer is in the negative.
In the present note, I produce examples which require less work
than the original ones. In the original paper, some of the examples
were given by forms of degree 3 in 4 variables. Here, for an arbitrary
prime p ≥ 5, I use forms of degree p in p + 1 variables.

1. Introduction

Let X be an algebraic variety over a field k. The index I(X) of X/k
is the greatest common divisor of the degrees over k of the residue fields
at closed points of X:

I(X) = g.c.d.x∈X0
[k(x) : k]

This is also the greatest common divisor of the degrees of finite field
extensions K/k such that the set X(K) of K-rational points of X is not
empty. If X has a k-rational point, then I(X) = 1, but the converse
does not generally hold.

A field k is said to be C1 if any homogeneous polynomial

F (x0, x1, .., xn) ∈ k[x0, x1, ..., xn]

of degree d in n+1 > d variables has a nontrivial zero, that is, there exist
α0, α1, ..., αn in k not all of them zero, such that F (α0, α1, ..., αn) = 0.
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The three basic examples of such fields are:
– Finite fields (Chevalley, Warning, 1935)
– Function fields in one variable over an algebraically closed field

(Tsen, 1933)
– Formal power series field in one variable over an algebraically

closed field (Lang, 1952)
Let k be a perfect field, k an algebraic closure, gk = Gal(k/k). A

perfect field k is of (Galois) cohomological dimension ≤ 1 if any of the
following equivalent properties hold (see [5]):
(i) For any (continuous) finite gk-module M and any integer i ≥ 2,
H i(gk,M) = 0.
(ii) For any finite field extension K ⊂ k, the Brauer group Br(K) =

H2(gK , k
∗
) = 0.

(iii) Any homogeneous space X/k under a connected linear algebraic
group has a k-rational point.

If the group gk is a pro-p-group, and p 6= char.(k), then these con-
ditions are equivalent to the simple condition:
(iv) The p-torsion subgroup pBr(k) of Br(k) is trivial.

If a (perfect) field k is C1, then it is of cohomological dimension at
most 1. In 1965, Ax [1] showed that the converse does not hold. He
produced an example of a field k which is of cohomological dimension
1, and a form F of degree 5 in 10 variables over that field with no
nontrivial zero. However, the very construction of that form shows that
it possesses a zero in field extensions of degrees 2, 3 and 5. If we let
X be the hypersurface in 9-dimensional projective space defined by this
form, we have I(X) = 1. Ax gave other examples, but they all have the
property that the index of the associated hypersurface is 1.

In 1986, Kato and Kuzumaki [3] asked: If a field k is of cohomological
dimension at most 1, and X ⊂ Pn

k is a hypersurface defined by a form
of degree at most n, does it follow that I(X) = 1 ? In other words, is
the field k C1 as far as zero-cycles of degree 1 are concerned (as opposed
to rational points) ?

In a recent article [2], David Madore and I show that the answer to
this question is in the negative. We produce a field k of cohomological
dimension 1 and a cubic surface X ⊂ P3

k such that I(X) = 3. The
geometric Picard group of a smooth cubic surface is of rank 7. This
creates some technical difficulties.

In the present note, where I review the method of [2], I give new
examples which are easier to discuss. The result is the following:
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Theorem 1.1. For each prime p ≥ 5, there exists a field F of char-
acteristic zero, of cohomological dimension 1 and a smooth hypersurface
X ⊂ Pp

F of degree p such that I(X) = p.

2. How to produce fields of cohomological dimension ≤ 1

Let k be a field, n ≥ 2 an integer. A Severi-Brauer variety of index n
over k is a twisted form of projective space Pn−1, that is, it is a k-variety
which after a suitable extension K/k becomes isomorphic to Pn−1

K .
There is a bijection, due to F. Châtelet (1944), between the set of iso-

morphism classes of such k-varieties and the set of isomorphism classes of
central simple k-algebras of index n. In this bijection, projective space
corresponds to matrix algebra; this is referred to as the trivial class.
For n = 2, this bijection is induced by the well known correspondence
between conics and quaternion algebras.

Theorem 2.1. Let k be a field. Let p be a prime which does not
divide the characteristic of k. If one starts from k and one iterates the
following two operations

1) go from a field K to the fixed field of a pro-p-Sylow subgroup of
the absolute Galois group of K,

2) go from a field K to the function field of a nontrivial Severi-
Brauer variety over K of index p,
then one ultimately 1 obtains a field F containing k whose cohomological
dimension is at most 1.

Sketch of proof For the field F one obtains in the limit, the opera-
tions in 1) ensure that the absolute Galois group of F is a pro-p-group.
To show that F is of cohomological dimension 1, it thus suffices to show
that the p-torsion of the Brauer group of F is trivial. The Merkur’ev-
Suslin theorem (1983) implies that for any field K of characteristic dif-
ferent from p containing the p-th roots of 1, the p-torsion of the Brauer
group is generated by the classes of central simple algebras of index p.
But the operations in 2) ensure that over the field F there is no such
nontrivial central simple algebra.

3. Galois action and the Picard group

Proposition 3.1. Let k be a field, k a separable closure of k and
g = Gal(k/k). Let X/k be a smooth, projective, geometrically integral

1(Added October 1st, 2014) As Serre points out, “ultimately” does not make
sense. I refer to section 2 of my paper [2] with D. Madore for a rigorous statement
and proof.
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variety. Write X = X ×k k. Let k(X) be the function field of X. One
then has a natural exact sequence

0→ Pic(X)→ Pic(X)g → Br(k)→ Br(k(X)).

The sequence is functorial contravariant with respect to dominant
k-morphisms.

Here Pic(X) is the Picard group of X. The second and fourth maps
are the obvious restriction maps.

When X is a Severi-Brauer variety corresponding to a central simple
algebra A of index n then Pic(X) = Pic(Pn−1) = ZOPn−1(1) and the
image of OPn−1(1) is the class of A in the Brauer group of k. The
kernel of the restriction map Br(k)→ Br(k(X)) is the finite cyclic group
spanned by the class of A.

Exercise Use the above sequence and its functoriality to establish
the following frequently rediscovered result:

Proposition 3.2. Let f : C → D be a k-morphism of smooth,
projective, geometrically integral k-curves. If C/k is a smooth conic and
if the degree of f is even, then D(k) 6= 0.

(If f is constant, the result is clear. If f is not constant, then by
Lüroth’s theorem, D is of genus zero, hence is a smooth conic.)

Proposition 3.3. Let X ⊂ Pn
k be a smooth hypersurface. If n ≥ 4,

then the restriction map Br(k)→ Br(k(X)) is one-to-one.

Proof Indeed, it is a theorem of Max Noether that under the above
assumptions the group Pic(X) is free of rank one, spanned by the class
of a hyperplane section. Since such hyperplanes are defined over k , the
result follows from Proposition 3.1.

Remark For surfaces in P3, the situation is more complicated. This
accounts for the more elaborate arguments used in [2] to produce exam-
ples with cubic surfaces.

4. Rost’s degree formula

To any prime p and any projective irreducible variety X over a field
k, Rost associates a class ηp(X) ∈ Z/I(X). This class is killed by p. If
X is a nontrivial Severi-Brauer variety of dimension p−1, then I(X) = p
and ηp(X) = 1 ∈ Z/p.

The construction of this invariant belongs to the world of coherent
modules and intersection theory. There is no Galois cohomology here.
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Theorem 4.1. (Rost, cf. [4]). Let f : Z → X be a k-morphism of
proper integral k-varieties of the same dimension. Then I(X) divides
I(Z) and

ηp(Z) = deg(f)ηp(X) ∈ Z/I(X).

When Z is moreover smooth, the same result holds under the mere as-
sumption that f is a rational map from Z to X.

This formula implies in particular that ηp(X) = 0 for any variety
which can be written as a product X = Y ×k Z where Z is a k-variety
of dimension at least one and I(Z) = 1.

Exercise Use Rost’s degree formula to give an alternate proof of
Proposition 3.2.

The formula actually yields the following more general result:

Proposition 4.2. If p is a prime and f : Z → X is a dominant
rational map from a Severi-Brauer variety Z/k of dimension p − 1 to
a projective integral k-variety X, and p divides the degree of f , then
I(X) = 1. This is in particular so if the dimension of X is less than
that of Z.

5. The example

We can now prove Theorem 1.1. More precisely, we shall establish
the following result:

Theorem 5.1. Let p ≥ 5 and l be distinct primes such that p divides
l − 1, that is F∗l /F

∗p
l 6= 1. Let α ∈ Z be such that the class of α in Fl

is not a p-th power. Let X ⊂ Pp
Q be the smooth hypersurface over Q

defined by the equation

xp1 + lxp2 + ...+ lp−1xpp − αx
p
0 = 0.

Then there exists a field F of characteristic zero, of cohomological di-
mension 1, such that the index I(XF ) of the F -variety XF = X ×Q F
is equal to p.

Proof It is clear that I(X) = I(X/Q) divides p. Let K/Ql be an
extension of the l-adic field Ql of degree prime to p. One easily checks
that X(K) = ∅. Thus p = I(XQl

), hence also p = I(X).
Starting from k = Q (or if one wishes k = Ql), one then applies the

process described in Theorem 2.1. To achieve the announced result, one
must check that under each of the changes of fields described in that
theorem, the condition p = I(X) is preserved. This is obvious for the
change 1), which consists in going over to the fixed field of a pro-p-Sylow
subgroup.
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Let p = I(X/K), and let Y/K be a nontrivial Severi-Brauer vari-
ety of dimension p − 1 with associated class AY ∈ pBr(K). Assume
I(XK(Y )) = 1. Then there exist a projective integral K-variety Z of
dimension p−1, a dominant K-morphism f : Z → Y of degree prime to
p and a morphism h : Z → X. Then I(X) divides I(Z) and p = I(Y )
divides I(Z). By Rost’s degree formula (Theorem 4.1) we have

ηp(Z) = deg(f)ηp(Y ) ∈ Z/I(Y ) = Z/p,

and
ηp(Z) = deg(h)ηp(X) ∈ Z/I(X) = Z/p.

Since ηp(Y ) = 1 ∈ Z/p and the degree of f is prime to p, the first
equality implies

ηp(Z) 6= 0 ∈ Z/p.

The second equality then implies that p does not divide the degree of h.
The restriction map of p-torsion groups pBr(K)→ pBr(K(Z)) factorizes
as pBr(K) → pBr(K(X)) → pBr(K(Z)). The first map is injective by
Proposition 3.3. Since the degree of h is prime to p, a corestriction-
restriction argument shows that the second map is also an injection. On
the other hand the factorization pBr(K) → pBr(K(Y )) → pBr(K(Z))
shows that the nonzero class AY ∈ Br(K) vanishes in Br(K(Z)), since it
vanishes in Br(K(Y )). This contradiction shows that I(XK(Y )) = p, and
this completes the proof that for the field F of cohomological dimension
at most 1 which one obtains in the limit, one has p = I(XF ).

I refer to [2] for more detailed literature references and for comments
on the general context in which such problems arise.
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