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For any scheme Y , let Pic(Y ) ' H1
ét(Y ,Gm) be its Picard group

and let Br(Y ) = H2
ét(X ,Gm) be its Brauer group. These are

abelian groups.

Let k be a field, k be a separable closure of k and G = Gal(k/k).
Let X be a smooth, projective, geometrically integral variety over k
and X = X ×k k .



We have a natural map

α : Br(X )→ Br(X )G .

The kernel of α, denoted Br1(X ), is called the “algebraic Brauer
group” of X .
The image of α, i.e. the quotient Br(X )/Br1(X ), is called the
“transcendental Brauer group” of X and denoted Brtr (X ).

Main Theorem. Assume char(k)=0 and X/k smooth, projective,
and geometrically integral. The cokernel of α, in other words the
quotient Br(X )G/Brtr (X ), is finite.



Reminders from Grothendieck’s Le groupe de Brauer, I,II,III.

The Brauer group Br(Y ) of a smooth k-variety Y /k is a torsion
group.
If k is algebraically closed, for any prime `, the `-primary
component of Br(Y ) is a group of cofinite type, extension of a
finite group by a finite sum of copies of Q`/Z`.

To prove the theorem, it is thus enough to prove that the exponent
of Coker(α) is finite.
A corestriction argument shows that to prove this one may allow
for a finite field extension of k , hence one may assume X (k) 6= ∅.



Let X/k be proper, geometrically integral.
The first terms in the Hochschild-Serre spectral sequence

Epq
2 = Hp(G ,Hq

ét(X ,Gm)) =⇒ Hn
ét(X ,Gm)

gives a well known seven term exact sequence which if X (k) 6= ∅
gives

Pic(X ) ' Pic(X )G (Galois descent for the Picard group)

and

Br1(X )/Br(k) ' H1(G ,Pic(X )).



Simple and key observation :

Looking further in the spectral sequence gives a complex

Br(X )
α−→ Br(X )G → H2(G ,Pic(X ))

which is an exact sequence as soon as X (k) 6= ∅ or H3(k ,Gm) = 0
(which holds if k is a number field.)

That sequence, which we shall here call the basic exact sequence,
is functorial in X .



FIRST PROOF of main theorem, via the Grothendieck-Tsen
theorem for curves

The key idea is to consider the restriction of the basic exact
sequence to a suitable, finite set of curves.



If C → X is a k-morphism from a smooth, geometrically integral
curve, then since Br(C ) = 0 (Grothendieck-Tsen theorem), the
image of Coker(α) in H2(G ,Pic(X )) lies in the kernel of the
restriction map

H2(G ,Pic(X ))→ H2(G ,Pic(C )),

hence also in the kernel of the composite map

H2(G ,Pic(X ))→ H2(G ,Pic(C ))→ H2(G ,Z)

where the last map is induced by the degree Pic(C )→ Z.



After replacing k by a finite extension one may assume
(a) X (k) 6= ∅, hence Coker(α) ↪→ H2(G ,Pic(X )).
(b) The Galois group G acts trivially on the finitely generated
Néron-Severi group NS(X ) = Num1(X ), hence also on the finitely
generated group Num1(X ).
(c) There exists a finite set of smooth, geometrically integral
k-curves Ci , i = 1, . . . , n with k-morphisms Ci → X whose images
generate the group Num1(X ).
(d) (Bertini) There exists a smooth, geometrically integral linear
curve section C0 ⊂ X , which then (Lefschetz) satisfies
H1

ét(X ,Q/Z) ↪→ H1
ét(C 0,Q/Z).



The maps Ci → X induce a surjective, G -split map
Zn → Num1(X ).
The following maps

NS(X )→ Num1(X )→ Hom(Num1(X ),Z))→
n⊕

i=1

Z

each have kernel killed by a positive integer.
There thus exists a positive integer n0 which sends the kernel of

H2(G ,Pic(X ))→
n⊕

i=1

H2(G ,Z))

to the kernel of

H2(G ,Pic(X ))→ H2(G ,NS(X )).



Upon using the exact sequence

0→ Pic0(X )→ Pic(X )→ NS(X )→ 0

one is reduced to showing that the kernel of

H2(G ,Pic0(X ))→ H2(G ,Pic(C 0))

is of finite exponent. This follows from the fact that the map

Pic0(X )→ Pic0(C 0)

is injective (Lefschetz) and from Poincaré complete reducibility
theorem, which then gives a near-retraction at the level of abelian
varieties.



The method just described yields

a bound for the exponent of Coker(α).

If X (k) 6= ∅, a bound is the product of the following integers :
(a) The exponent ν of the torsion subgroup of NS(X ).
(b) The exponent δ of the finite cokernel of the intersection map

Num1(X )→ Hom(Num1(X ),Z).

(c) The degree of a “splitting field” for Num1(X ).
(d) The integer appearing in a near retraction for
H2(k ,Pic0(X ))→ H2(k ,Pic0(C 0)). This is no problem if
H2(k ,Pic0(X )) = 0, which is the case if either H1(X ,OX ) = 0 or
k is a totally imaginary number field.



SECOND PROOF of main theorem, via comparison of
numerical and homological equivalence, together with some
homological algebra

The surface case

Let X/k be a smooth, projective, geometrically connected surface
such that NS(X ) is torsionfree. This last hypothesis implies that
H3(X ,Z)tors = 0, hence that Br(X ) is divisible.
Intersection on NS(X ) gives an exact sequence

0→ NS(X )→ Hom(NS(X ),Z)→ D → 0.

Let δ be the exponent of D. For a Z`–module M denote
M0 = HomZ`

(M,Z`). From the commutative diagram of exact
sequences:



0 0
↓ ↓

0 → NS(X )⊗ Z` → H2(X ,Z`(1)) → T`(Br(X )) → 0
↓ ↓ '

0 → [NS(X )⊗ Z`]0 ← [H2(X ,Z`(1))]0

↓
D{`}
↓
0

(1)
where the Tate module T`(Br(X )) of Br(X ) is a torsionfree group,



we get a G -equivariant map σ : H2(X ,Z`(1))→ NS(X )⊗ Z` such
that the composite with NS(X )⊗ Z` → H2(X ,Z`(1)) is
multiplication by δ.
Fir each `, we tensor the upper line of (1) by Q`/Z` and take
direct sums. This gives an exact sequence equipped with the
near-retraction σ.

0→ NS(X )⊗Q/Z→ H2(X ,Q/Z(1))→ Br(X )→ 0

and then a 2-extension

0→ NS(X )→ NS(X )⊗Q→ H2(X ,Q/Z(1))→ Br(X )→ 0.



From this 2-extension we get a map

β : Br(X )G → H2(G ,NS(X ))

which is annihilated by multiplication by δ.
Expected but nontrivial CLAIM:

Up to a sign, the map β coincides with the composite of the map
Br(X )G → H2(G ,Pic(X )) (in the Hochschild-Serre spectral
sequence) with the natural map H2(G ,Pic(X ))→ H2(G ,NS(X )).



Assume either X (k) 6= ∅ or H3(k,Gm) = 0.
One then concludes that δ.Coker(α) ⊂ H2(G ,Pic(X )) is in the
image of H2(G ,Pic0(X )).
Hence if H1(X ,OX ) = 0 or if k is a totally imaginary number field,
then

δ.Coker(α) = 0.

In the bound, there is no mention any more of the degree of a
splitting field for NS(X ). If one allows for torsion in NS(X ), and
lets ν denote the exponent of the torsion subgroup, the method
gives

δ.ν2.Coker(α) = 0.



In the above proof for surfaces, one uses Matusaka’s theorem that
numerical and homological equivalence coincide on divisors.
When extending this second proof to higher dimension, one needs
both this statement of Matsusaka for divisors and the analogous
statement on numerical and homological equivalence, for 1-cycles.
This last statement fortunately is known, this is a theorem of
Lieberman (1968) for which an algebraic proof is available
(Kleiman).



For X/k be of arbitrary dimension d , one issue one has to deal
with is that the image of the étale cycle map

CH1(X )⊗ Z` → H2d−2
ét (X ,Z`(d − 1))

need not be saturated.



Let ν be the exponent of NS(X )tors , and let γ be the exponent of
H3(X ,Z)tors . (For surfaces, γ = ν.)
If either X (k) 6= ∅ or H3(k ,Gm) = 0, a suitable extension of the
argument given above for surfaces yields:

The subgroup δ.ν.γ.Coker(α) ⊂ H2(G ,Pic(X )) lies in the image
of H2(G ,Pic0(X )).

When H1(X ,OX ) = 0 or k is a totally imaginary number field, one
then gets

δ.ν.γ.Coker(α) = 0.



K 3-surfaces

Such a surface X has H1(X ,OX ) = 0 and it has no torsion in its
Néron-Severi group. Over a number field, one thus finds
δ.Coker(α) = 0. A formal argument then shows that the order of
Coker(α) divides δb2−ρ.

For a diagonal quartic surface in P3
k , the second proof shows that

any element of odd order in Br(X )G is in the image of Br(X ).
More precisely, Coker(α) is a subgroup of (Z/8)2.



Product of two curves

Following the first proof, one gets the following result.

Let X = C1 × C2 be the product of two curves with a rational
point. Assume that over k here is no nontrivial homomorphism
between the jacobians of the two curves.
Then Br(X )

α−→ Br(X )G is onto.

There exist many elliptic curves E/Q such that for X = E × E the
map Br(X )

α−→ Br(X )G is not onto (Skorobogatov and Zarhin).



T. Szamuely has asked us whether the main theorem extends to
smooth open varieties: if X/k is a smooth, geometrically integral
variety over a field k of char. zero, is Br(X )G/Im(Br(X )) finite ?

We could prove this for k of finite type over Q.



Motivation for the study of Br(X ) and of Br(X )/Br1(X ) ⊂ Br(X ).



The Brauer-Manin set

Let X/k be a variety over a number field.
Let X (Ak) be the space of adèles of X with its usual topology and
let X (Ak)• be the analogous space where the connected
components at infinity have each been collapsed to one point.
Class field theory induces a pairing

X (Ak)• × Br(X )→ Q/Z,

and implies that the closure of the diagonal image of X (k) in
X (Ak) lies in the left kernel X (Ak)Br

• of this pairing, which is a
closed subset of X (Ak)•, called the Brauer-Manin set of X .

This is a very slight reformulation of Manin’s 1970 observation.



For certain classes of smooth, geometrically connected varieties,
one proves or tries to prove:

The closure of X (k) in X (Ak)• coincides with X (Ak)Br
• .

Such a statement includes a Brauer-Manin variant of the Hasse
principle. For open varieties it includes a Brauer-Manin variant of
strong approximation. For proper varieties it includes a
Brauer-Manin variant of weak approximation.

Either to prove or to test the statement above it is useful to be able
to compute the groupe Br(X ) or rather the quotient Br(X )/Br(k).



For the statement

The closure of X (k) in X (Ak)• coincides with X (Ak)Br
• .

there is evidence, both theoretical and numerical, when X is a
smooth, geometrically rational surface.
There is also evidence for homogeneous spaces of abelian varieties.



For smooth, projective, geometrically connected varieties, the
statement is open for :

• Rationally connected varieties (known for hypersurfaces with
many variables, via the circle method)
• Curves of arbitrary genus g (for g ≥ 2, exploratory work of
Scharaschkin, Skorobogatov, Stoll, Bruin, ...)
• K 3-surfaces, for instance quartics in P3.



For a smooth, projective, geometrically integral variety X over a
number field k , with X (Ak) 6= ∅, the quotient Br(X )/Br(k) fits
into the exact sequence

0→ H1(G ,Pic(X ))→ Br(X )/Br(k)→ Brtr (X )→ 0,

where Brtr (X ) ⊂ Br(X )G is the group

Br(X )/Br1(X ) = Im[Br(X )→ Br(X )] = Im[Br(X )
α−→ Br(X )G ].

The group H1(k ,Pic(X )) may be infinite. But if Pic(X ) is free of
finite type, as is the case for a rationally connected variety and for
a K 3-surface, then it is finite.



Two basic questions :
For an arbitrary smooth, projective, geometrically connected
variety over a finitely generated field k,
(i) Is the group Brtr (X ) ⊂ Br(X )G finite ?
(ii) Is the group Br(X )G finite ?
The second question is closely connected with the Tate conjecture
for divisors.

The Main Theorem of this talk (valid over any field of char. zero)
shows that

The two questions boil down to one.



Theorem (Skorobogatov and Zarhin, 2008)
For a K 3-surface X over a field k finitely generated over Q, the
quotient Br(X )/Br(k) is finite.

They actually prove that Br(X )G is finite. The proof builds upon
elaborate integral variants of the Tate conjecture for abelian
varieties (Faltings, Zarhin) and on Deligne’s method (Kuga-Satake
varieties) for reducing problems on K 3-surfaces to statements on
abelian varieties.



Can we numerically test the validity of the statement

The closure of X (k) in X (Ak)• coincides with X (Ak)Br
•

for (suitable families of) K 3-surfaces ?

Computing Br1(X )/Br(k) = H1(k ,Pic(X )) is in principle an
algorithmic process. But there seems to be no systematic way to
compute the finite group Brtr (X ).



For diagonal quartics in P3
Q,

a0X 4
0 + a1X 4

1 + a2X 4
2 + a3X 4

3 = 0,

some tests have been made on the statement

?? The closure of X (Q) in X (AQ)• coincides with X (AQ)Br
•

Work of Swinnerton-Dyer; Martin Bright; Ieronymou,
Skorobogatov, Zarhin.



There is the Hasse principle aspect.

If the product of the ai is a square, and the ai/aj ’s are general
enough (in Q×/Q×4) then under two standard conjectures
(Bouniakowsky-Dickson-Schinzel and finiteness of X of elliptic
curves)
X (AQ)Br

• 6= ∅ implies X (Q) 6= ∅ (Swinnerton-Dyer, 2004)



In his thesis (2002), M. Bright considered quartic surfaces X
over Q given by a diagonal equation with integral coefficients

a0X 4
0 + a1X 4

1 + a2X 4
2 + a3X 4

3 = 0.

He listed such surfaces with bounded integer coefficients for which
• There are points in all completions
• There is no Brauer-Manin obstruction coming from the algebraic
part of the Brauer group.
He found some surfaces, such as (7, 15,−2,−6), for which he
could not find any rational point in the height range where he
could search.
The suspicion is then that in these cases there are elements in
Brtr (X ) which are responsible for the phenomenon.



Theorem (Bright 2010) Let H be the subgroup of Q×/Q×4

generated by −1, 4, and the quotients ai/aj .
Suppose that the following conditions are satisfied:
(1) X (AQ) 6= ∅.
(2) H ∩ {2, 3, 5} = ∅ (Ieronymou, Skorobogatov, Zarhin : this
implies Br(X ) = Br1(X ))
(3) H is of maximal order, i.e. |H| = 256.
(4) there is some odd prime p which divides precisely one of the
coefficients ai , and does so to an odd power; moreover, if
p ∈ {7, 11, 17, 41}, then the reduction of X modulo p is not
equivalent to x4 + y 4 + z4 = 0.
Then BrX/BrQ has order 2, and X (AQ)Br 6= ∅.



There is also the weak approximation aspect. Assume there are
points everywhere locally.

Since Br(X )/Br(k) is finite, there is a finite set S0 of places of k
such that X (Ak)Br

• projects onto
∏

v /∈S0
X (kv ). Thus if the closure

of X (k) in X (Ak)• coincides with X (Ak)Br
• , then weak

approximation should hold for X away from S0 (hence X (k) should
be Zariski dense, a well known open problem !).
Skorobogatov and I (2010) have given a precise description for a
set S0 as small as possible. Here is a concrete example, further
building on the results of Ieronymou, Skorobogatov, Zarhin on
Brtr (X ) for diagonal quartic surfaces.



Let X be the diagonal quartic surface over Q given by

a0X 4
0 + a1X 4

1 + a2X 4
2 + a3X 4

3 = 0,

with ai ∈ Z. Let S0 be the set of primes consisting of 2 and the
primes dividing some ai .
Let Z be the image of the projection

X (AQ)Br → X (R)×
∏
p∈S0

X (Qp).

Then X (AQ)Br = Z ×
∏

p 6∈S0
X (Qp).



For diagonal quartic surfaces with the product of the ai a square,
work on proving density of X (Q) in various completions X (Qv ) has
been done by Logan, McKinnon, van Luijk, and by
Swinnerton-Dyer.


