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Introduction. Let X/k be a smooth, projective, geometrically con-
nected variety over a number field k. Assume that we are given a proper flat
morphism p : X → P1

k with (smooth) geometrically integral generic fibre.
In a series of recent papers ([R], [CT/SwD], [SwD], [Sk], [CT/Sk/SwD.1],

[CT/Sk/SwD.2]), under specific assumptions on the pencil, various authors
have investigated the Zariski density of the set X(k) of k-rational points
and its topological density with respect to some embedding X(k) ⊂ X(kv),
where kv denotes a completion of k.

In these various papers, the assumptions made imply that no fibre of p
is multiple. In the present paper, we go the other way. We look at pencils
which possess multiple fibres, and we investigate the consequences for the
rational points of the total space X. In the interest of simplicity, we restrict
attention to fibres which are double. A fibre XP = p−1(P ) over a closed
point P ∈ P1

k is called double if as a divisor on X it is a double.
Here are the main results:

1. If there are at least 5 geometric double fibres, then the k-rational
points are not dense for the Zariski topology on X; more precisely, they lie
in the union of finitely many fibres of p.

2. This easily leads to examples of surfaces over a number field which
do not dominate any variety of general type, but which nevertheless do not
acquire Zariski-dense K-rational points over any finite extension K of the
ground field (question raised by J. Harris).

3. We give examples of (connected, smooth, projective) surfaces X over
the rationals Q, whose set of rational points X(Q) is dense for the Zariski
topology on X, and indeed is topologically dense in one connected com-
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ponent of the set X(R) of real points (equipped with the real topology),
whereas the closure of X(Q) in X(R) (for that topology) is not the union
of finitely many components of X(R), thereby contradicting a conjecture of
B. Mazur.

1. Unramified double covers

Proposition 1.1. Let k be a field , char(k) 6= 2, and let X/k be a
smooth, integral k-variety. Let k(X) be its function field.The natural map
H1

ét(X,Z/2) → H1
ét(k(X),Z/2) = k(X)∗/k(X)∗2 of étale cohomology

groups induces a bijection between the group of isomorphism classes of
Z/2-torsors over X (which coincides with H1

ét(X,Z/2)) and the subgroup of
k(X)∗/k(X)∗2 consisting of classes of functions whose divisor on X is a
double. Let T /X be a Z/2-torsor , and let f ∈ k(X)∗ correspond to T under
the above map. Let V ⊂ X be an open set where f is invertible. Then the
restriction TV /V of T to V is isomorphic to the Z/2-torsor over V given as
the fibre product V ×GmGm, where V → Gm,k is given by f , and Gm → Gm
is given by x 7→ x2.

Informally speaking, TV is given by the equation f = u2 over V .

P r o o f. This is well known, and may be viewed as a very special case of
[CT/S.2], Thm. 2.3.1, p. 421. A direct proof runs as follows. Let T /X be a
Z/2-torsor. If the projection q : T → X has a section at the generic point of
X, then since q is a finite morphism, it has a section over an open set which
contains all codimension one points of X. Since X is normal, such a section
extends to a section of q. Thus the map H1

ét(X,Z/2) → H1
ét(k(X),Z/2) is

injective. Using the Kummer sequence

1→ Z/2→ Gm
x 7→x2

−−−−→ Gm → 1

and the triviality of H1
ét(A,Gm) for A a local ring, one then completes the

proof of the proposition.

Given a k-variety and a Z/2-torsor q : T → X over X, we have the
evaluation map θ = θT : X(k) → H1

ét(k,Z/2) = k∗/k∗2. This evaluation
map induces a decomposition of the set X(k) of k-rational points:

X(k) =
⋃

α∈Im θ

θ−1
T (α),

which may be rewritten as

X(k) =
⋃

α∈Im θ

qα(T α(k))

where qα : T α → X denotes a Z/2-torsor with class [T ]− α in H1
ét(X,Z/2)

([CT/S.2], (2.7.2), p. 443). For V and f ∈ k[V ]∗ as in Proposition 1.1, and
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a ∈ k∗ a representative of α ∈ k∗/k∗2, the restriction of T α over V is
isomorphic to the Z/2-torsor given by f = au2.

Proposition 1.2. Let k be a field finitely generated over Q, let X/k be
an integral , smooth, proper k-variety. Let T /X be a Z/2-torsor. Then the
image of the evaluation map θT : X(k) → H1

ét(k,Z/2) = k∗/k∗2 is finite.
With notation as above, this induces a finite decomposition

X(k) =
⋃

α∈Im θ

qα(T α(k))

of the set of rational points of X.

P r o o f. This is well known for k a number field. The theorem holds with
Z/2 replaced by an arbitrary k-group of multiplicative type (see [CT/S.1],
Prop. 2, and [CT/S.2], Théorème 2.7.3, p. 444). The proof may be phrased
in a number of ways, for instance as an application of Weil’s theory of
distributions [W.2], which formalizes some of the arguments in the weak
Mordell–Weil theorem. We shall give a proof in this spirit in a more com-
plicated situation in Theorem 2.3 below. That the result holds over a field
finitely generated over Q is also well known (this uses the finiteness theorems
of Severi, Néron and Roquette).

Let k be a number field. Decompositions

X(k) =
⋃

α∈Im θ

qα(T α(k))

as in the above proposition are usually referred to as “descents”. Namely, the
study of the set of rational points on X is reduced to the study of rational
points on the finite number of auxiliary varieties T α (see [Ca.2], [CT/S.2]).
This may be used in a number of ways:

1. To discuss the very existence of k-rational points on X, from the
point of view of the Hasse principle. Let kv denote the completion of k at
the place v. It may happen that for each place v of k, the set X(kv) is not
empty, but nevertheless that X(k) is empty. Such is the case if for each
auxiliary T α there exists a place v of k with T α(kv) = ∅. It is quite likely
that such an obstruction to the Hasse principle may be accounted for by the
Brauer–Manin obstruction (cf. [CT/S.2], Chap. 3).

2. To discuss the Zariski density of X(k) in X. The problem may turn
out to be easier on the auxiliary varieties than on the original X. In some
of our earlier work on rational varieties, specific descents led to examples
where it was obvious that T α(k) was Zariski-dense on T α whenever it was
not empty, thereby yielding the analogous result for X. Further below, we
shall go the other way round and give examples where k-points are not
Zariski-dense on any of the T α. In the situation under consideration here,
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where the projection maps T α → X are finite, Proposition 1.2 implies that
X(k) is not Zariski-dense in X (see Section 3).

3. To discuss density properties of X(k) in finite products
∏
v∈S X(kv),

where S denotes a finite set of places of k and each X(kv) is equipped with
the topology coming from kv. Here we shall restrict the discussion to the
very specific case where k = Q and S consists of one place, the real place.
One then asks for a description of the topological closure of X(Q) in X(R).

In the situation described above, we have the clearly finite decomposition

X(R) =
⋃

α∈Im θR

qα(T α(R))

as well as the finite decomposition

X(Q) =
⋃

α∈Im θQ

qα(T α(Q)).

Since the map θR : X(R)→ R∗/R∗2 is continuous, each qα(T α(R)) = θ−1(α)
is open. We thus get a decomposition of X(R) into a disjoint union of two
open sets X(R)+ and X(R)− (some of them possibly empty), each of which
is a union of connected components of X(R). Since the decompositions over
Q and over R are compatible, we see that the set of Q-points lying in X(R)+

admits the finite disjoint decomposition

X(Q)+ =
⋃

α∈Im θQ, α>0

qα(T α(Q))

whereas the set of Q-points lying in X(R)− admits the finite disjoint de-
composition

X(Q)− =
⋃

α∈Im θQ, α<0

qα(T α(Q)).

Now the description of the topological closure of the set of Q-points may
be easier to handle on the T α than on X itself. Suppose that the following
three conditions hold:

(a) There exists α ∈ Im θQ, α > 0, such that T α(Q) is Zariski-dense
in T α.

(b) There exists α ∈ Im θQ, α < 0, such that T α(Q) 6= ∅.
(c) For all α ∈ Im θQ, α < 0, the set T α(Q) is not Zariski-dense in T α.

Then X(Q) is Zariski-dense in X, but the topological closure of X(Q)
in X(R) does not consist of a union of connected components of X(R),
thereby contradicting a conjecture of B. Mazur [Maz.1]. Actual examples
will be constructed in Section 5.
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2. Double fibres. Let k be a field. In this paper, we shall say that
a fibration p : X → P1

k over the projective line is standard if it has the
following properties: The k-variety X is geometrically integral, smooth and
projective; the map p : X → P1

k is a surjective morphism whose (smooth)
generic fibre is geometrically integral.

Given a closed point P ∈ P1
k, with residue field k(P ), we denote by XP

the fibre of p above P . This is a k(P )-scheme. It also defines a divisor [XP ]
on the variety X. The fibre XP will be called a double fibre if the divisor
[XP ] is the double of a divisor on X: there exists a divisor ∆P on X such
that [XP ] = 2∆P . The divisor ∆P is effective, but we do not demand that
it be irreducible or reduced (multiplicity free).

Theorem 2.1. Let k be a field finitely generated over Q. Let p : X → P1
k

be a standard fibration. Let f ∈ k(P1)∗ be a rational function. Assume that
for each closed point P of P1 where the order of f is odd , the fibre XP is
a double fibre. Given α ∈ k∗/k∗2, let a ∈ k∗ be a lift of α, and let Cα/P1

k

denote the smooth projective curve which is k-birational to the double cover
of P1 with equation f = au2. Then there exists a finite set I ⊂ k∗/k∗2 of
Z/2-torsors qα : T α → X, each equipped with a dominant k-rational map
T α → Cα, and a finite decomposition

X(k) =
⋃

α∈I
qα(T α(k)).

Any point of p(X(k)) ⊂ P1(k) either is in the image of one of the finitely
many projections Cα(k)→ P1(k) (α ∈ I), or is a zero or a pole of f .

P r o o f. Let U ⊂ P1 be the open set where f is invertible, and let
V = XU be its inverse image on X. The assumption on f ensures that the
divisor of this function, viewed as a divisor on X, is a double. Proposition
1.1 then shows that there exists a Z/2-torsor T over the whole of X whose
restriction to V is given by the equation f = u2. Since X/k is proper,
Proposition 1.2 ensures that the image of the evaluation map θT is finite.
We thus have the above finite decomposition. It remains to note that if
a ∈ k∗ is a representative of α ∈ k∗/k∗2, the restriction T αV of T α to V is
isomorphic to the Z/2-cover of V defined by f = au2. In other words, T αV is
the fibre product of V and CαU over U .

R e m a r k 2.1.1. One may check that the normalisation of the fibre
product X ×P1 Cα is unramified over X at all codimension one points of
X. It is thus unramified over the whole of X, hence is none other than T α.
This shows that the morphism T αV → CαU extends to a morphism T α → Cα,
such that the composite T α → Cα → P1

k coincides with the composite
T α → X → P1

k. Thus p(X(k)) ⊂ P1(k) is contained in the union of the
images of the projections Cα(k)→ P1(k).
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Corollary 2.2. Let k be a field finitely generated over Q. Let p : X →
P1
k be a standard fibration. Assume that the number s of geometric double

fibres is at least 6. Then the k-points of X are all located on finitely many
fibres of p. In particular , they are not dense for the Zariski topology on X.

P r o o f. Recall that a geometric fibre is a fibre of the fibration X → P1
k̄

obtained by going over to an algebraic closure k of k. To prove the corollary,
we may replace the ground field k by a finite extension. We may thus assume
that there are 6 k-rational points of P1

k whose fibre is a double fibre. Let
f ∈ k(P1) be a rational function whose divisor on P1 is the sum of these 6
points, with multiplicity one, minus 6 times some other rational point. The
curves Cα in Theorem 2.1 are double covers of P1 ramified in 6 points. They
are thus of genus 2. By Faltings’ theorem (quondam Mordell’s conjecture)
([F], [MD]) they have finitely many k-rational points. The result now follows
from Theorem 2.1.

At the price of some complication, one can reduce the 6 in the last
corollary down to 5.

Theorem 2.3. Let k be a field finitely generated over Q. Let p : X → P1
k

be a standard fibration. Assume that there exist r ≥ 2 geometric double
fibres. Then there exist finitely many curves Cα, each of them a smooth
complete intersection of r−2 quadrics in Pr−1

k , and surjective k-morphisms
pα : Cα → P1

k, such that any k-point M ∈ p(X(k)) either has its fibre double
or lies in the image of one of the finitely many projection maps Cα(k) →
P1(k).

P r o o f. Let {Pi}, i ∈ S, be the set of closed points with double fibre,
which we may assume all lie in A1

k ⊂ P1
k. Let ki be the residue field at Pi.

We have r =
∑
i∈S degk(ki). We may and will write ki = k[t]/Nki/k(t− ei)

with ei ∈ ki such that ki = k(ei).
Let U ⊂ A1

k be the complement of S, and let V = XU = p−1(U). Let

V (k)→
(∏

i∈S
k∗i /k

∗2
i

)/
Im k∗

be the map which sends a k-point M with projection t ∈ U(k) ⊂ A1(k) to
the class of {t − ei}i∈S in the quotient of the product

∏
i∈S k

∗
i /k
∗2
i by the

image of the diagonal map k∗ →∏
i∈S k

∗
i /k
∗2
i .

We claim that the image of V (k) under this map is finite.
There exists a regular, integral ring O, of finite type over Z (as an alge-

bra), and an integral, regular, proper model X̃/Spec(O), equipped with a
map π : X̃ → P1

O, whose restriction to Spec(k) is p : X → P1
k. For any point

Pi, let P̃i be the closure of Pi in P1
O. Let P̃∞ be the closure in P1

O of the
point at infinity of P1

k. Let ∆ ⊂ X̃ be the divisor π−1(P̃∞).
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By shrinking O, we may ensure that the following properties hold:

(a) For each i, the integral closure Oi of O in ki is regular and of finite
type over Z.

(b) The Picard group Pic(O) is trivial, and so is the Picard group of each
of the Oi (this uses the finiteness of class groups of number fields together
with the finiteness theorems of Severi, Mordell and Néron).

(c) The unit group O∗ and each of the unit groups O∗i are finitely gen-
erated abelian groups.

(d) The projection map X̃ → Spec(O) is proper. Thus for any k-rational
point M ∈ X(k) there exists an open set UM ⊂ Spec(O) which contains all
codimension one points, such that M extends to a section M̃ ∈ X̃(UM ) over
UM . We shall refer to M̃ as the closure of M .

(e) For any given i, the divisor of the rational function t−ei on X̃×OOi
is of the shape 2∆i −∆×O Oi.

Let now M ∈ V (k) ⊂ X(k) be an arbitrary point, and let M̃ ∈ X̃(UM )
be its closure. The divisor of (t− ei)(M) ∈ k∗i on Spec(Oi) is

2σ∗M (∆i)− σ∗M (∆×O Oi)
(since Oi is regular, Cartier divisors and Weil divisors coincide, and are
computed on codimension one points).

Using the commutative diagram of exact sequences:

O∗/O∗2 k∗/k∗2 Div(O)/2Div(O) 0

∏
i∈S O

∗
i /O

∗2
i

∏
i∈S k

∗
i /k
∗2
i

∏
i∈S Div(Oi)/2Div(Oi) 0

//

²²

//

²²

//

²²
// // //

and the finite generation of the unit groups O∗i , we conclude that the image
of {(t− ei)(M)}i∈S in the quotient (

∏
i∈S k

∗
i /k
∗2
i )/ Im k∗ is finite.

Thus there exist finitely many elements a = {ai} ∈
∏
i∈S k

∗
i such that

for any k-point of V , with projection t ∈ A1(k), there exists one a = {ai}i∈S
such that the system of equations

t− ti = aiv
−1.ξ2

i 6= 0 (i ∈ S)

has a solution with v ∈ k∗ and each ξi ∈ k∗i . Viewing each ki as the set
of k-points of an affine space over k of dimension equal to the degree of ki
over k, such a system of equations defines an algebraic k-variety T aV . It is
k-isomorphic to the open set v 6= 0 of the k-variety given by the system

u− tiv = aiξ
2
i 6= 0 (i ∈ S).

The projection map to A1
k now reads t = u/v. The variety given by the
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system
u− tiv = aiξ

2
i (i ∈ S)

is k-isomorphic, as one readily sees, to the cone over a curve Ca which is
a smooth complete intersection of r − 2 quadrics in projective space Pr−1

(smoothness is most easily seen by going over to the algebraic closure).
Projection down to A1

k is given by t = u/v, where u and v are both quadratic
forms in the variables of Pr−1. The map given by t = u/v thus induces a
dominant k-rational map, hence a morphism Ca → P1

k, and the theorem
follows.

R e m a r k 2.3.1. When k is a number field, the finiteness theorems used
in the proof are just the finiteness of the class groups of rings of integers
and the finite generation of the unit groups. Since the ring of integers O of
a number field is of dimension one, points of X(k) extend in this case to
actual sections of X̃/Spec(O).

R e m a r k 2.3.2. The proof we have given above is in the spirit of Weil’s
theory of distributions (“Arithmetic mirrors algebra”, see [W.1], [W.2]). One
may give a more abstract proof, in which one recognizes that the map

V (k)→
(∏

i∈S
k∗i /k

∗2
i

)/
Im k∗

studied above is the restriction to V (k) ⊂ X(k) of the evaluation map
θT : X(k) → H1

ét(k, S) attached to a torsor T over X under a certain k-
group of multiplicative type S. The interested reader is referred to [CT/S.2],
Thm. 2.3.1, p. 420, and [CT/S.1], Prop. 2, p. 225.

Corollary 2.4. Let k be a field finitely generated over Q, and let X/P1
k

be a standard fibration. Assume that the number r of geometric double fibres
is at least 5. Then the k-rational points of X are not dense for the Zariski
topology , but are concentrated on a finite number of fibres of p.

P r o o f. This is again an immediate consequence of Faltings’ theorem
([F], [MD]). Indeed, a simple computation shows that for r ≥ 4, the genus g
of a smooth complete intersection of r − 2 quadrics in Pr−1 is given by the
formula

2g − 2 = 2r−2(r − 4).

Thus g ≥ 5 if r ≥ 5. (For r = 4, the genus is one, for r = 3 or r = 2, the
genus is zero.)

3. Hyperelliptic surfaces. Pencils with double fibres have long been
known in algebraic geometry. Most of the following proposition can be read
off from [Sh], Chap. VII, [B], Chap. VI and [BPV], p. 148 and p. 189.
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Proposition 3.1. Let k be a field , char(k) 6= 2. Let k be an algebraic
closure of k. Let D/k be a curve of genus one equipped with a fixed point free
involution %. Let C/k be a smooth, projective, geometrically integral curve
equipped with a morphism C → P1

k of degree 2. Let σ denote the associated
involution of C. Let τ be the involution on Y = D ×k C which is given by
the diagonal action (M,N) 7→ (%(M), σ(N)). Let X be the quotient of Y by
this action. Then:

(1) The k-surface X is smooth, projective and geometrically integral.
(2) The quotient map Y → X makes Y into a Z/2-torsor over X.
(3) Let D → D1 be the unramified double cover defined by quotienting D

by the action of %. Projection D×k C → D induces a k-morphism X → D1

which is an Albanese map of X. Its geometric fibres are all smooth and
isomorphic to C ×k k.

(4) Projection D ×k C → C induces a k-morphism p : X → P1
k which

makes X into a pencil of curves of genus one. The geometric fibres of p are
either smooth and isomorphic to D×k k or they are double, the reduced fibre
being then isomorphic to D1 ×k k. The double fibres occur exactly over the
ramification points of the covering C → P1

k.
(5) The surface X is geometrically minimal , and has the following geo-

metric invariants: K2
X = 0, pg = 0, q = 1.

(6) The Kodaira dimension of X is 1, 0 or −∞, depending on whether
the genus of C is at least 2, equal to 1, or equal to 0.

(7) There is no dominant rational map from X = X ×k k to a variety of
general type.

Let us only comment on (7). By definition, a variety of dimension d is
of general type if its Kodaira dimension is equal to d (see [BPV], p. 189).
Suppose there is a dominant rational map from X to a surface of general
type Z. Then there is a generically finite morphism from a blow-up Y of X
to Z. This implies that Y is of general type ([BPV], I.(7.4), p. 23). By the
birational invariance of plurigenera ([BPV], I.(9.1)(viii), p. 28), this implies
that X is of general type, contradicting (6). It only remains to show that
there is no dominant map from X to a curve of genus at least two. But this
follows from q = 1.

Note that if D has a k-rational point, then one may use this point to
make D and D1 into elliptic curves, and the map D → D1 into a k-isogeny
whose kernel is a k-point of order 2 on the elliptic curve D.

We are now in a position to refute a conjecture attributed to J. Harris
by D. Abramovich ([A]):

Corollary 3.2. Let k be a field finitely generated over Q, let D/k be a
curve of genus one equipped with a fixed point free involution %, let C/k be
a hyperelliptic curve of genus at least 2, and let σ denote the hyperelliptic
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involution on C. Let τ be the involution on Y = D ×k C which is given by
the diagonal action (M,N) 7→ (%(M), σ(N)). Let X be the quotient of Y by
this action. Then:

(1) If K/k is a field finitely generated over k, the set X(K) is not Zariski-
dense in X ×k K.

(2) There is no dominant rational map from X ×k k to a variety of
general type.

P r o o f. With notation as in the previous proposition, and as in Proposi-
tion 1.2, let θY : X(k)→ k∗/k∗2 be the evaluation map associated with the
torsor Y/X. According to Proposition 1.2, X(k) is the union of the projec-
tions of the k-points on finitely many Z/2-torsors Yα/X. Each Yα becomes
isomorphic to Y = D × C after a finite extension of the ground field k. By
Faltings’ result ([F], [MD]), we conclude that the k-points on Yα are not
Zariski-dense. Thus the same holds for X. This proves (1). (One may also
observe that according to Proposition 3.1(4), the fibration X/P1

k has at least
6 geometric double fibres; one then applies Corollary 2.2.) As for (2), this
has already appeared in the previous proposition.

Explicit affine equations for surfaces birational to X as above will be
given in the next section (see Examples 4.1.1 and 4.2.1, as well as Re-
mark 4.2.2).

R e m a r k 3.2.1. Proposition 1.2 is a special case of a general theorem.
Let k be a number field, and let Y → X be a finite étale cover of smooth,
projective, integral k-varieties. Assume that there is no finite field extension
L/k such that Y (L) is Zariski-dense (such is the case if Y dominates a curve
of genus at least two [F]). Then the same property holds for X. This is a
direct consequence of Weil’s “théorème des extensions non ramifiées” ([W.1],
1935). This result of Weil should be kept in mind when trying to amend the
above mentioned conjecture.

4. Some explicit pencils of curves of genus one with double fi-
bres. In this section, we describe some explicit pencils of curves of genus
one with double fibres. The generic fibre of such a pencil is a curve of genus
one over the field K = k(P1) = k(t), without a k(t)-rational point. The sim-
plest curves of genus one which do not obviously possess a rational point are
smooth intersections of two quadrics in P3. The intersections of two quadrics
which we describe arise naturally in classical descents on elliptic curves hav-
ing at least one of their 2-torsion points rational over the ground field.

Let k be a field, char(k) = 0. We shall consider surfaces W given in affine
space A4

k with affine coordinates x, y, z, t by a system of equations

f(x, y, z, t) = 0, g(x, y, z, t) = 0,
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where f and g are polynomials, f and g each of total degree 2 in the variables
x, y, z. There is a natural projection W → A1

k given by the t-coordinate. The
generic fibre of this projection is thus an intersection of two quadrics in affine
space A3

k(t). The assumptions we shall make on f and g will guarantee that
this generic fibre is a geometrically integral curve whose projective model is
a curve of genus one. We shall let X be a smooth, projective, geometrically
integral k-surface, k-birational to W , and equipped with a flat morphism
p : X → P1

k birational to the projection W → A1
k.

Proposition 4.1. Let f(t) be a squarefree polynomial of even degree.
Let c(t), d(t) be nonzero polynomials, and assume that f(t) and c(t)− d(t)
are coprime. Let W be the affine variety defined by the system of equations

x2 − c(t) = f(t)y2, x2 − d(t) = f(t)z2.

Let p : X → P1
k be a model as above. Then the divisor of f(t) on X is a

double, and all the fibres of p over the zeros of f are double fibres. If k is
a field finitely generated over Q, and the degree of f is at least 6, then the
k-points of W and X are not dense for the Zariski topology.

P r o o f. Let v be a discrete rank one valuation on the function field
k(X) of X. If it induces the trivial valuation on k(t) ⊂ k(X), then certainly
v(f) = 0 is even. Assume v induces a nontrivial valuation w on k(t). If w is
the valuation at infinity, w(f) is then the opposite of the degree of f , hence
is even, hence so is also v(f). Now assume that v is positive or zero on the
ring k[t]. In the function field k(X), we have the two equations

x2 − c(t) = f(t)y2 6= 0,(4.1.1)

x2 − d(t) = f(t)z2 6= 0.(4.1.2)

If v(x) < 0, then v(x2 − c(t)) = 2v(x) is even, hence v(f) is even. Assume
v(x) ≥ 0. Now v(x2−c(t)) ≥ 0 and v(x2−d(t)) ≥ 0. If either v(x2−c(t)) = 0
and v(x2 − d(t)) = 0, then (4.1.1) or (4.1.2) shows that v(f) is even. If
v(x2 − c(t)) > 0 and v(x2 − d(t)) > 0, then v(c(t)− d(t)) > 0. Since f and
c − d are coprime, this implies v(f) = 0. Corollary 2.2 now gives the last
part of the proposition.

More generally, one may consider varieties W given by a system of equa-
tions

x2 − c(t) = f(t)y2, x2 − d(t) = g(t)z2,

where one assumes f(t)g(t)c(t)d(t)(c(t) − d(t)) 6= 0. Let p(t) ∈ k[t] be an
irreducible polynomial. Let vp be the associated valuation on k(t). Assume
vp(f) = 1, vp(g) = 1, vp(c − d) = 0. Then the fibre of X/P1

k over the closed
point of A1

k defined by p = 0 is double.
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In [CT/Sk/SwD.1], we study pencils of curves of genus one given by
equations

x2 − c(t) = f(t)y2, x2 − d(t) = g(t)z2.

The algebraic conditions we impose precisely rule out the existence of p(t)
as above (namely vp(f) = 1, vp(g) = 1, vp(c− d) = 0).Taking some difficult
but standard conjectures for granted, we then give sufficient conditions for
k-rational points to be Zariski-dense on X.

In the situation of Proposition 4.1, the Z/2-coverings of Proposition 1.2
and Theorem 2.1 are easy to describe, at least birationally. Namely, letting
α ∈ k∗ denote a lift of the class α ∈ k∗/k∗2, the variety T α is k-birational
to the variety given in affine space A5

k with affine coordinates x, Y, Z, t, u by
the system

x2 − c(t) = αY 2, x2 − d(t) = αZ2, f(t) = αu2.

The system
x2 − c(t) = αY 2, x2 − d(t) = αZ2

is a pencil of curves of genus one over A1
k = Spec(k[t]), and T α is the pull-

back of this pencil under the projection of the hyperelliptic curve f(t) = αu2

down to A1
k = Spec(k[t]).

Some particular cases are of interest.

Example 4.1.1. Assume that c(t) = c ∈ k and d(t) = d ∈ k are constant
(cd(c − d) 6= 0). In this case Proposition 4.1 also holds for f(t) separable
of odd degree. The k-variety T α is k-birational to the product of a smooth
projective curve Dα/k of genus one given in affine space A3

k by the equation

x2 − c = αY 2, x2 − d = αZ2

and a smooth projective hyperelliptic curve Cα given in affine coordinates
by f(t) = αu2.

The involution (x, Y, Z) 7→ (x,−Y,−Z) induces a fixed point free involu-
tion % on Dα. As for Cα, it comes equipped with a hyperelliptic involution σ.
One immediately checks that the diagonal involution τ on Dα×kCα induces
the birational involution of T α corresponding to the projection T α → X.
Thus up to a birational equivalence, the case where c and d are constant
leads to a special case of the situation described in Section 3.

An easy birational transformation turns the surface defined by the equa-
tion

x2 − c = f(t)y2, x2 − d = f(t)z2

into the surface defined by

Y 2 = f(t)(x2 − c), w2 = (x2 − c)(x2 − d).
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Let E/k be the smooth projective curve of genus one, with a k-rational
point, defined by the affine equation w2 = (x2−c)(x2−d). The above system
of equations enables us to define a dominant k-rational map X → E, the
general geometric fibre of which is birational to the affine curve Y 2 = f(t).
The quotient of Dα by % is k-isomorphic to E. The rational map X → E
is k-birational to the projection (Cα ×k Dα)/τ → Dα/(%) ' E, which is an
Albanese map (Section 3).

Note that we have a dominating map Dα → E, which can be made into
an isogeny if Dα(k) 6= ∅.

Example 4.1.2. Another case of interest is the following. Assume that
f(t)c(t)d(t)(c(t) − d(t)) is separable, each of the polynomials f, c, d, c − d
being of degree 2. Then one checks that the relatively minimal fibration
X → P1

k this leads to, when considered over an algebraic closure k, has
two double fibres and 6 other singular fibres, each of these being the union
of two smooth conics in P3 intersecting transversally in two points. The
Z/2-coverings T α this leads to (via f(t) = αu2) are surfaces fibred into
curves of genus one over the curve of genus zero Cα. This last fibration is
equipped with exactly twelve singular geometric fibres, all of them of the
type just described. One checks that X is an Enriques surface, and that each
T α is a K3-surface. Such fibrations T α/Cα are studied in [CT/Sk/SwD.1].

Here is another series of examples, which as a matter of fact is just a
generalization of the previous series.

Proposition 4.2. Let f, a, b, c ∈ k[t] be polynomials in k[t] with f sep-
arable of even degree and f and ac coprime (hence in particular fac 6= 0).
Assume b2− 4ac 6= 0. Consider the surface W given in affine space A4

k with
coordinates t, x, y, z by the system

(4.2.1) y2 = f(t)x,

(4.2.2) z2 = f(t)(a(t)x2 + b(t)x+ c(t)).

Let p : X → P1
k be a model as above. Then the divisor of f(t) on X is a

double, and all the fibres of p over the zeros of f are double fibres. If k is
a field finitely generated over Q, and the degree of f is at least 6, then the
k-points of W and X are not dense for the Zariski topology.

P r o o f. To prove the proposition, it is enough to show that for any
discrete rank one valuation v on the field of functions k(W ) of W , the
valuation v(f) is even. We may restrict attention to valuations v which
induce a nontrivial valuation on the subfield k(t) of k(W ).

If v(t) < 0, then v(f) is even since the degree of f is even. Assume
v(t) ≥ 0. Then v(f) ≥ 0. If v(f) = 0, we are done. Assume v(f) > 0. Then
v(a) = 0 and v(c) = 0 by the coprimality assumption (since v(t) ≥ 0, the
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valuation v induces a valuation of k(t) attached to a prime ideal of k[t]).
If v(x) < 0, then v(ax2 + bx + c) = 2v(x) and (4.2.2) implies v(f) even. If
v(x) > 0, then v(ax2 + bx + c) = v(c) = 0 and (4.2.2) implies v(f) even.
If v(x) = 0, then (4.2.1) implies v(f) even. This completes the proof of the
first statement. Corollary 2.2 now gives the last part of the proposition.

In the situation of Proposition 4.2, the Z/2-coverings of Proposition 1.2
and Theorem 2.1 are easy to describe, at least birationally. Namely, letting
α ∈ k∗ denote a lift of the class α ∈ k∗/k∗2, the variety T α is k-birational
to the variety given in affine space A5

k with affine coordinates x, y, z, t, u by
the system

y2 = f(t)x, z2 = f(t)(a(t)x2 + b(t)x+ c(t)), f(t) = αu2.

Under the change of variables Y = y/u, Z = z/u, this is k-birational to the
variety defined by

Y 2 = αx 6= 0, Z2 = α(a(t)x2 + b(t)x+ c(t)) 6= 0, f(t) = αu2 6= 0.

Let Cα be the smooth projective curve given by the affine equation f(t) =
αu2. It comes equipped with the hyperelliptic map Cα → P1

k extending the
projection to A1

k given by (u, t) 7→ t. On the other hand, we have the variety
defined by the system

Y 2 = αx, Z2 = α(a(t)x2 + b(t)x+ c(t)),

which is a pencil of curves of genus one over A1
k. Thus the descent variety

T α is described k-birationally as the pull-back to the smooth, projective,
hyperelliptic curve Cα, via its natural projection Cα → P1

k, of a P1
k-pencil

of curves of genus one.

Example 4.2.1. Just as before, some special cases are of interest. Assume
a(t) = a, b(t) = b, c(t) = c with a, b, c ∈ k, ac 6= 0 and b2 − 4ac 6= 0. In this
case, Proposition 4.2 also holds for f separable of odd degree. As above, we
shall see that this special case is of the kind described in Section 3.

Any T α is k-birational to the product of the smooth, projective, hyperel-
liptic curve Cα with affine equation f(t) = αu2 and the smooth, projective
curve of genus one Dα ⊂ P3 with affine model in A3

k given by the system of
equations

Y 2 = αx, Z2 = α(ax2 + bx+ c).

This birational description will suffice for most purposes, but there may
be some interest, at least from an aesthetic point of view, in giving nice
smooth projective models for X and the T α. Models for the T α we already
have, namely Cα ×k Dα. There is a fixed point free involution % on Dα,
defined by (x, Y, Z) 7→ (x,−Y,−Z). We also have the hyperelliptic involution
σ on Cα given by (t, u) → (t,−u). We thus have a diagonal involution
τ = (%, σ) on Cα ×k Dα, which we recall is k-birational to Tα. On the
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above equations, one immediately sees that the diagonal action on Cα×kDα

reads as the nontrivial involution of the cover Tα/X. In particular, X is k-
birational to the quotient of Cα ×k Dα by the fixed point free action of %:
this provides a beautiful model for X, equipped with a projection X → P1

k.
Setting w = zx/y, we see that the surface given by

y2 = f(t)x, z2 = f(t)(ax2 + bx+ c)

(with a, b, c ∈ k and ac(b2 − 4ac) 6= 0) is k-birational to the surface

y2 = f(t)x, w2 = x(ax2 + bx+ c).

The last equation is the equation of an elliptic curve E with a 2-torsion point.
This gives a presentation of the surfaceX as a fibration over the elliptic curve
E, the generic fibre being a conic when deg(f(t)) is 2, a curve of genus one
when deg(f(t)) is 4, a hyperelliptic curve in general. The projection X → E
is an Albanese map (Section 3). We thus have dominating maps from the
covering varieties Cα × Dα to E. Recall that Cα is given by f(t) = αu2

and Dα is the curve of genus one given by the system z2 = α(ax2 + bx+ c),
y2 = αx. A direct computation shows that the map Cα×Dα → E is given by
(x, y, z, t, u) 7→ (w, x) with w = zx/y, hence this map factorizes through Dα:

Cα ×Dα → Dα → E.

In particular, if Dα(k) 6= ∅, then the map Dα → E can made into a k-
isogeny.

R e m a r k 4.2.2. Suppose E/k is an elliptic curve equipped with a non-
trivial point A ∈ E(k) of order 2. Let % be the translation by A. Let C
be a smooth, projective, geometrically integral curve equipped with a mor-
phism C → P1

k of degree 2, with affine model u2 = f(t), and let σ be the
hyperelliptic involution. Let X be the quotient of E ×k C by the diagonal
involution τ (see Proposition 3.1). As a partial converse to what was done in
4.2.1, the reader will check that X admits a birational model given in affine
coordinates by a system y2 = f(t)x, w2 = x(x2 + bx + c), with b, c ∈ k∗,
c(b2 − 4c) 6= 0.

5. A conjecture of B. Mazur. In his papers [Maz.1] and [Maz.2],
Mazur has proposed the following conjecture:

Conjecture 1. Let X/Q be a smooth integral variety. Assume that
X(Q) is dense for the Zariski topology on X. Then the topological closure
of X(Q) in X(R) (for the euclidean topology) is a union of connected com-
ponents of X(R).

We shall now disprove this conjecture. We shall offer different types
of counterexamples. The method followed is that suggested at the end of
Section 1. For the rest of this section, we take k = Q, the rational field.
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The simplest counterexamples are found among surfaces of the type de-
scribed in Section 3, more precisely among the examples of such surfaces
described in Section 4, Examples 4.1.1 and 4.2.1. As explained there, each
variety T α is Q-birational to Cα ×Q Dα, where Dα, if it has a Q-point, is
Q-isogenous to the elliptic curve E (which is the Albanese variety of X).
Since existence of a rational point and Zariski density of such points are
birational invariants of smooth projective varieties, it is enough to establish
properties (a), (b), (c) of Section 1 for the products Cα ×Q Dα.

We thus want:

(a) There is at least one α ∈ Q∗ with α > 0 and both Cα(Q) and Dα(Q)
infinite.

(b) There exists at least one α ∈ Q∗ with α < 0 and Cα(Q) and Dα(Q)
not empty.

(c) For any α ∈ Q∗ with α < 0, the set Cα(Q) × Dα(Q) of k-points is
not Zariski-dense in Cα ×Q Dα.

Since we have finite maps Dα → E for any α, in order to ensure these
conditions, we need E(Q) to be infinite. This then implies that any Dα(Q)
which is not empty is infinite. We also need some Cα(Q) to be infinite, and
some other Cα(Q) to be not empty and finite. Since Cα has affine equation
f(t) = αu2, this forces us to take f of degree 3 or 4, i.e. the Cα’s must be
curves of genus one.

We first develop Example 4.1.1.

Proposition 5.1. Let f(t) ∈ Q[t] be a separable polynomial of degree
3 or 4. Assume that the curve of genus one y2 = f(t) has infinitely many
rational points, and that the curve y2 = −f(t) has rational points but only
finitely many. Let r > 0 be an integer such that the elliptic curve w2 =
u(u − 1)(u + r2) has positive rank over Q. Let W ⊂ A4

Q be the surface
defined by the system of equations

x2 − r2 = f(t)y2, x2 − (r2 + 1) = f(t)z2.

Let X/Q be a smooth projective model of W/Q. Then the closure of X(Q)
in X(R) contains one connected component of X(R) but does not consist of
a union of connected components of X(R).

P r o o f. The divisor of the function f(t) onX is a double (Proposition 4.1
and remark at the beginning of 4.1.1). It thus defines a Z/2-torsor T /X.
Let us compute the image of the associated map θ : X(Q) → Q∗/Q∗2. For
a given prime p, the image of the local map X(Qp)→ Q∗p/Q∗2p can be read
off on any U(Qp) for U ⊂ X Zariski-open, not empty. We are thus free to
argue with the variety defined by the system

x2 − r2 = f(t)y2 6= 0, x2 − (r2 + 1) = f(t)z2 6= 0.
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Let (x, y, z, t) be a Qp-point on this variety. If vp(x) < 0, then vp(x2 − r2)
is even, hence also vp(f(t)). Assume vp(x) ≥ 0. Now vp(x2 − r2) ≥ 0 and
vp(x2−(r2 +1)) ≥ 0 and both cannot be strictly positive since the difference
of their arguments is 1. Thus either vp(x2− r2) = 0 or vp(x2− (r2 + 1)) = 0,
and we deduce again that vp(f(t)) is even.

Thus the image of θQp in Q∗p/Q∗2p consists of elements with even val-
uation. Since this holds for any prime p, the image of θQ is contained in
±1 ∈ Q∗/Q∗2.

Now T = T +1, which we simply write T +, is birational to the product
of the smooth projective curve C+ with affine equation y2 = f(t) (on which
rational points are Zariski-dense by assumption) by the curve D+ given in
affine space A3

Q by the system

x2 − r2 = y2, x2 − (r2 + 1) = z2.

This last curve has obvious rational points (at infinity), and it may easily
be shown to be Q-isogenous (and even Q-isomorphic) to the curve w2 =
u(u−1)(u+r2). Our assumptions thus imply that Q-points are Zariski-dense
on T +.

As for T −1, denoted by T −, it is Q-birational to the product of the
smooth, projective curve C− with affine equation y2 = −f(t), on which
rational points exist but are finitely many by assumption, and of the curve
D− given in affine space A3

Q by the system

x2 − r2 = −y2, x2 − (r2 + 1) = −z2.

This has the rational point (x, y, z) = (r, 0, 1).

Example 5.1.1. For f(t), we may take f(t) = t3 −D with D = −3 (or
any of D = −5, 7,−8,−9,−10, . . . , see Cassels’ tables [Ca.1], p. 268/269).
As for r, just take r = 3. Observe that the elliptic curve y2 = x(x−1)(x+9)
has the rational point (x, y) = (25/16, 195/64), which by the Lutz–Nagell
criterion ([K], Thm. 5.1, p. 130) is not a torsion point. (The above point is
just the double of the more obvious point (x, y) = (9, 36), as may be readily
computed, see [K], p. 57 and p. 76.)

In a similar fashion, starting from Example 4.2.1, we obtain:

Example 5.2. Let W ⊂ A4
Q be the surface defined by the system of

equations

y2 = (4t4 + t2 − 4)x, z2 = (4t4 + t2 − 4)(x2 + 4x− 1).

Let X/Q be a smooth projective model of W/Q. Then X(Q) is Zariski-dense
in X. The space X(R) has two connected components. In one of them ratio-
nal points are dense for the real topology , in the other one their topological
closure is contained in finitely many curves defined over Q.
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The proof is similar to the previous one. We are indebted to Dr R. G.
Pinch, whose computer calculations confirmed the relevant properties on the
curves of genus one involved, which we had originally established by hand.
Let T /X be the Z/2-torsor attached to the function f(t) = 4t4 + t2 − 4,
whose divisor is a double on X (Proposition 4.2). One shows that the image
of the associated map X(Q)→ Q∗/Q∗2 consists of ±1.

The torsor T = T +1, denoted by T +, is Q-birational to the product of
the elliptic curve C+, with affine model y2 = 4t4 +t2−4, which has infinitely
many rational points, by the curve of genus one D+ given by the system

y2 = x, z2 = x2 + 4x− 1.

This curve has Q-points, and may thus be made into an elliptic curve
isogenous to the elliptic curve y2 = x(x2 + 4x − 1), which has infinitely
many rational points (it has a point with x = 1/4, which is of infinite
order by the Nagell–Lutz criterion). One easily checks that C+(R) and
D+(R) are connected. Thus C+(Q)×D+(Q) is dense in the connected space
C+(R) × D+(R). Since T + is smooth and projective and Q-birational to
C+ ×Q D+, we also see that T +(R) is connected, and that T +(Q) is dense
in T +(R).

The torsor T −1, denoted by T −, is Q-birational to the product of the
elliptic curve D−, with affine model y2 = −(4t4 + t2−4), which has rational
points but only finitely many, by the curve of genus one C− given by the
system

y2 = −x, z2 = −(x2 + 4x− 1).

This last curve has rational points (e.g. x = 0), hence may be made into
an elliptic curve isogenous to the elliptic curve y2 = x(x2 + 4x− 1); it thus
has infinitely many Q-points. One easily checks that C−(R) and D−(R) are
connected. Thus C−(R) ×D−(R) is connected, but the topological closure
of the set of Q-rational points on C−×QD− lies on finitely many Q-rational
curves. Since the smooth projective Q-variety T − is Q-birational to the va-
riety C−×QD−, the same properties hold for T −. From the decompositions

X(Q) = q+(T +(Q)) ∪ q−(T −(Q))

and
X(R) = q+(T +(R)) ∪ q−(T −(R))

the result now follows.

R e m a r k 5.2.1. Just as in Proposition 5.1, one may generate more
examples by looking at surfaces given in affine space by a system

y2 = f(t)x, z2 = f(t)(x2 + rx− 1),

with r ∈ Z and f(t) ∈ Q[t] separable of degree 3 or 4. Suitable examples of
f(t) are f(t) = t3 −D for D = −3,−5, 7,−8,−9,−10, . . . (see 5.1.1).
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R e m a r k 5.2.2. At the expense of some direct computations, the torsor
theoretic language can be eliminated. Starting from the equations of W , the
problem one faces is to construct a smooth projective model X/Q, or at
least a model V/Q, such that the real points of V are smooth and V (R) is
compact, so as to control the decomposition of X(R) into connected com-
ponents.

We now want to give an example of a different nature, which cannot be
produced with the kind of surfaces considered in Section 3.

Example 5.3. There exists a smooth projective surface X/Q such that
X(R) consists of two components, one in which Q-rational points are dense
and one which contains some but only finitely many Q-rational points.

The surface X will be a suitable smooth projective model of the surface
W given in affine space A4

k with affine coordinates x, y, z, λ by the system
of equations

y2 = (4λ4 + λ2 − 4)x,

z2 = 2(4λ4 + λ2 − 4)((λ4 − 2λ2 + 2)x2 + (λ2 + 2)x− 2).

Since we will want to say that there are only finitely many rational
points in a given real component, it will be important to have a precise
model (blowing up a rational point would ruin this property).

Start with the surface Z1 given in A1×P3 with coordinates (λ;x, y, z, t)
by the system

y2 = xt, z2 = 2((λ4 − 2λ2 + 2)x2 + (λ2 + 2)xt− 2t2).

Let the surface Z2 ⊂ A1 × P3 with coordinates (µ;x, y, z, t) be defined by
the system

y2 = xt, z2 = 2((1− 2µ2 + 2µ4)x2 + (1 + 2µ2)xt− 2t2).

Letting µ = 1/λ, one easily patches up these two surfaces into a proper
surface Z+ equipped with a projection Z+ → P1

Q. One checks that the
surface Z+/Q is smooth (one may show it is the blow-up of a Del Pezzo
surface of degree 2 in two points). The singular geometric fibres of Z+ → P1

Q
are located over the zeros of (λ2 +2)2 +8(λ4−2λ2 +2) (the fibres are unions
of two smooth conics in P3 meeting transversally in two points), and over the
zeros of λ4− 2λ2 + 2 (the fibres are irreducible intersections of two quadrics
in P3, with a simple node).

Let C+/Q be the smooth projective curve with affine equation w2 =
4λ4 + λ2− 4. Projection via the coordinate λ makes this curve of genus one
into a double cover C+ → P1

Q which is ramified at the zeros of 4λ4 +λ2− 4.
Note that these points are distinct from the points where Z+ → P1

Q has
nonsmooth fibres. Thus the fibre product T + = Z+ ×P1

Q
C+ is a smooth
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and proper surface. On Z1, there is an involution defined by (λ;x, y, z, t) 7→
(λ;x,−y,−z, t). One checks that it extends to an involution on Z+. We
also have the hyperelliptic involution on C+/P1

Q. We thus get a diagonal
involution σ on T +. One checks that this involution has no fixed point. We
then let X be the quotient T +/σ. This is a smooth proper surface, equipped
with a fibration p : X → P1

Q (quotient of the fibration T + → C+).
One easily checks that the fibration X/P1

Q is Q-birational to the fibration
W/A1

Q described above. In particular, T +/X is the Z/2-torsor attached to
the rational function f(λ) = 4λ4 + λ2 − 4, whose divisor is a double on X.

Factorization arguments over the rationals, of the kind we have seen
several times, show that the image of the map X(Q)→ Q∗/Q∗2 associated
with the torsor T +/X, and which on a suitable open set is given by the
function f , has image contained in {±1} ⊂ Q∗/Q∗2.

Thus we have the decompositions

X(Q) = q+(T +(Q)) ∪ q−(T −(Q))
and

X(R) = q+(T +(R)) ∪ q−1(T −(R)).

Here T − denotes the Z/2-torsor over X which is given generically by the
equation f(λ) = −u2.

Let us first discuss T +(Q) and T +(R). Direct computation shows that
the projection Z+(R) → P1(R) is surjective and that all the fibres are
connected and topologically isomorphic to circles S1. One also checks that
C+(R) is connected. Therefore the fibres of T +(R)→ C+(R) are connected
and T +(R) is connected.

The generic fibre Z+
η of the fibration Z+ → P1

Q is a smooth projective
curve of genus one over Q(λ). We claim that Z+

η has infinitely many Q(λ)-
points. There is a dominant Q(λ)-map from Z+

η to the elliptic curve with
affine equation

y2 = 2x((λ4 − 2λ2 + 2)x2 + (λ2 + 2)x− 2),

hence Z+
η , which has a rational point with t = 1, x = 1/λ2, can be viewed as

an elliptic curve isogenous to the one we just wrote. Now this latter curve
has the Q(λ)-point x = 1/λ2, y = 2/λ3. But this curve has good reduction at
λ = 0. A classical argument then shows that torsion points of this curve with
values in Q((λ)) have coordinates in Q[[λ]] (see [S], Chap. VII, Prop. 3.1).
Thus the point (x, y) = (1/λ2, 2/λ3) is of infinite order. Choosing an origin
on Z+

η now makes it into an elliptic curve with a point of infinite order. By
a result of Silverman ([S], Appendix C, Thm. 20.3), for almost all points M
in P1(Q), the fibre Z+

M/Q is also of positive rank. Therefore for such M , the
group Z+

M (Q) is topologically dense in Z+
M (R) (which is connected, as seen

above).
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As we have mentioned in Example 5.2, the elliptic curve C+/Q whose
affine equation is y2 = 4λ4+λ2−4 has positive rank, and C+(R) is connected,
so C+(Q) is topologically dense in C+(R). It now follows that T+(Q) is
topologically dense in the connected space T+(R).

Let us now discuss T −. One may construct a smooth proper surface Z−

just as above, starting with the surface defined in A1 × P3 with coordinates
(λ;x, y, z, t) by the system

y2 = −xt, z2 = −2((λ4 − 2λ2 + 2)x2 + (λ2 + 2)xt− 2t2).

This surface comes equipped with a projection Z− → P1
Q. Let C−/Q be

the smooth projective curve with affine equation y2 = −(4λ4 + λ2 − 4).
Projection via the coordinate λ makes this curve of genus one into a double
cover C+ → P1

Q which is ramified at the zeros of 4λ4 + λ2 − 4. These points
are distinct from the points where Z− → P1

Q has nonsmooth fibres. Thus
the fibre product Z−×P1

Q
C− is a smooth and proper surface. Just as above

one produces a fixed point free involution on Z− ×P1
Q
C−. Let X ′ be the

quotient of this involution. One easily checks that it is Q-birational to X,
and that the fibration Z− ×P1

Q
C− → X ′ is Q-birational to the fibration

T − → X. Going over to the algebraic closure of Q, one finds that these
birational equivalences are isomorphisms, hence they are isomorphisms over
Q. Thus X ′ = X and T− = Z− ×P1

Q
C−. The smooth projective curve C−

with affine equation y2 = −(4λ4 + λ2 − 4) has only the two rational points
(y, λ) = (2, 0) and (y, λ) = (−2, 0). The fibre of T−/C− above either of these
points is the curve of genus one given in P3

Q by the system of equations

y2 = −xt, z2 = −2(2x2 + 2xt− 2t2).

In affine coordinates, this is z2 = −4(y4−y2−1). One checks that this curve
has only finitely many rational points over Q. Thus T −(Q) is finite, and so
is q−(T −(Q)).

R e m a r k 5.3.1. One cannot produce examples as 5.3 starting from
bielliptic surfaces as in Section 3 or Examples 4.1.1 and 4.2.1. It is an in-
teresting question whether one could do this starting from Example 4.1.2.
One however runs into the problem that we do not know a single example
of a K3-surface over a number field on which rational points exist without
being Zariski-dense.

There are various ways of amending Mazur’s conjecture. Two of them
have been proposed by Mazur himself ([Maz.1] and [Maz.2], Conjectures 2
and 3). One may ask whether the topological closure of the set of Q-rational
points is always a semi-algebraic subset of X(R). We would like to propose:
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Conjecture 4. Let X be a smooth, integral variety over Q, and let
U be a connected component of X(R). If W is the topological closure of
X(Q) ∩ U in U , then there is a Zariski-closed set Y ⊂ X defined over Q
such that W is a (finite) union of connected components of Y (R).

This would imply the weaker

Conjecture 5. Let X be a smooth, integral variety over Q, and let U
be a connected component of X(R). If X(Q) ∩ U is Zariski-dense in X,
then it is topologically dense in U .
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[CT/SwD] J.-L. Col l iot -Th é l ène and Sir Peter Swinnerton-Dyer, Hasse
principle and weak approximation for pencils of Severi–Brauer and sim-
ilar varieties, J. Reine Angew. Math. 453 (1994), 49–112.

[F] G. Fal t ings, Complements to Mordell , in: Rational Points, Seminar
Bonn/Wuppertal 1983/1984, G. Faltings, G. Wüstholz et al. (eds.),
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