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Abstract. Let k be a field and X a smooth, projective, stably k-rational surface.
If X is split by a cyclic extension, for instance if the field k is finite or more
generally quasifinite, then the surface X is k-rational.

Soient k un corps et X une k-surface projective, lisse, stablement k-rationnelle.
Si X est déployée par une extension cyclique, par exemple si le corps k est fini ou
plus généralement quasi-fini, alors la surface X est k-rationnelle.

1. Introduction

Most of the following result is well known (cf. [5, §1, §2], [6, §2.A]).

Theorem 1.1. Let k be a field and k a separable closure of k. Let X be a smooth,
projective, geometrically integral k-variety. Assume that X = X ×k k is k-rational,
i.e k-birational to a projective space. Let us consider the following statements:

(i) The k-variety X is k-rational, i.e. k-birational to a projective space Pd
k.

(ii) The k-variety X is stably k-rational, i.e. there exists integers n,m such that
X ×k P

n
k is k-birational to Pm

k .
(iii) The k-variety X is a direct factor of a k-rational variety, i.e. there exists

a smooth, projective, geometrically connected k-variety Y such that X ×k Y is k-
birational to a projective space.

(iv) The Galois lattice Pic(X) is stably permutation, i.e. there exist finitely gen-
erated permutation Galois lattices P1 et P2 and an isomorphism of Galois modules
Pic(X)⊕ P1 ' P2.

(v) The Galois module Pic(X) is a direct factor of a permutation module, i.e. there
exists a Galois module M , a finitely generated permutation Galois lattice P and an
isomorphism of Galois modules Pic(X)⊕M ' P .

(vi) For any finite separable extension of fields k′/k, one has H1(k′,Pic(X)) = 0.
(vii) For any finite separable extension k′/k, the natural map of Brauer groups

Br(k′)→ Br(Xk′) is surjective.
Then: (i) implies (ii), which implies (iii); (ii) implies (iv); (iii) implies (v); (iv)

implies (v); (v) implies (vi); (vi) implies (vii).

Proof. For (i) implies (iv), see [6, Prop. 2A1, p. 461]. That (ii) implies (iv) and (iii)
implies (v) is a consequence of the computation of the Picard group of a product [5,
Lemme 11]. For any Galois permutation module P and any finite separable extension
k′/k, we have H1(k′, P ) = 0. Thus (v) implies (vi). If X is a smooth, projective,
geometrically integral k-variety and k′/k is a finite separable extension, one has an
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exact sequence (cf. [6, (1.5.0), p. 386]):

Br(k′)→ Ker[Br(Xk′)→ Br(X)]→ H1(k′,Pic(X)).

If moreover X is k-rational, then Br(X) = 0. This is well known if char(k) = 0
and this still holds for the `-torsion of Br(X) for ` a prime number not equal to the
characteristic exponent of k. That Br(X) = 0 holds for any separably closed field
k if X is k-rational may be seen by combining [11, Cor. 5.8] and [3, Prop. 2.1.9].
Thus (vi) implies (vii). �

LetK ⊂ k be a Galois subextension. By definition, a smooth, projective, geometri-
cally rational k-surface is split by K if X(K) 6= ∅ and the natural inclusion of lattices
Pic(XK) → Pic(X) is an isomorphism. Under the extra hypothesis X(k) 6= ∅, this
is equivalent to the assumption that Gal(k/K) acts trivially on the lattice Pic(X).

The main result of this paper is the following theorem.

Theorem 1.2. Let k be a field and X a smooth, projective, geometrically ratio-
nal k-surface. Assume X(k) 6= ∅ and X is split by a cyclic extension of k. If X
is not k-rational, then there exists a finite separable field extension k′/k such that
H1(k′,Pic(X)) 6= 0, and the k-variety X is not stably k-rational.

The proof will be given in §4 (Theorem 4.1), where the results of §2 (conic bundle
surfaces) and §3 (del Pezzo surfaces) are gathered. It is a case by case proof which
builds in an essential manner on tables giving the Galois actions on the Picard group
of del Pezzo surfaces of degree 3, 2, 1. These tables are the outcome of the work of
various authors.

When looking at Theorem 1.2 one should keep in mind the following fact. Let
k be a field, char(k) 6= 2, and let P (x) ∈ k[x] be a degree 3 separable, irreducible
polynomial whose discriminant a ∈ k∗ is not a square. In [2], we prove that the
k-surface given by the affine equation y2− az2 = P (x) is stably k-rational but is not
k-rational. There thus exist such surfaces over any field k (char(k) 6= 2) which admits
a Galois field extension with Galois group the symmetric group on three letters S3,
for instance the rational field Q or the field F = C(t) of rational functions in one
variable over the complex field.

By definition, a quasifinite field is a perfect field whose Galois closure is the pro-
cyclic group Ẑ [19, Chap. XIII, §2]. There are two classical examples of such fields:
finite fields and the field of formal power series in one variable over an algebraically
closed field of characteristic zero.

If k is a field of either type, then any smooth, projective, geometrically rational
surface over k has a k-point (Proposition 1.6), any finite field extension K/k is cyclic,
and any smooth conic over k is k-isomorphic to P1

k.
Theorem 1.2 and Theorem 1.1 then give the following result. For a finite field k,

this answers a question raised by B. Hassett and mentioned by A. Pirutka in [18].

Theorem 1.3. Let k be a field and X a smooth, projective, geometrically rational
k-surface. Under any of the following hypotheses:

(i) X(k) 6= ∅ and k is a quasifinite field,
(ii) k is a finite field,
(iii) k = C((t)) is the field of formal power series in one variable over an alge-

braically closed field C of characteristic zero,
the following holds:
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(a) If for any finite field extension k′/k one has H1(k′,Pic(X)) = 0, then X is
k-rational.

(b) For the surface X, conditions (i) to (vii) of Theorem 1.1 are equivalent. In
particular, over a quasifinite field k, any stably k-rational k-surface is k-rational.

Corollary 1.4. Let k be a field and X a smooth, projective, geometrically rational
k-surface. In any of the following three cases:

(i) X(k) 6= ∅ and k is a quasifinite field,
(ii) k is a finite field,
(iii) k = C((t)) is the field of formal power series in one variable over an alge-

braically closed field C of characteristic zero,
if one of the following three hypotheses is fulfilled:

(a) the gcd of degrees of finite field extension K/k such that XK is stably K-rational
is equal to 1,

(b) X is k-unirational and the gcd of degrees of dominant generically separable
rational maps from P2

k to X is equal to 1,
(c) the Chow group of zero-cycles on X is universally trivial,

then the surface X is k-rational.

Proof. Let CH0(X) denote the Chow group of classes of zero–cycles on X, and let
A0(X) denote the subgroup of classes of degree zero. These groups are k-birational
invariants of smooth, projective, geometrically integral k-varieties. Under some res-
trictions, e.g. char(k) = 0, this was proved in [4, Prop. 6.3]. Fulton’s proof [9,
Example 16.1.11] holds over any field.

Hypothesis (c) means: for any field extension F/k, the degree map

degF : CH0(XF )→ Z

is an isomorphism. This holds if X is smooth, projective, geometrically integral and
stably k-rational.

If char(k) = 0, according to [4, Prop. 6.4], either of the hypotheses (a) or (b) for
X implies (c). Via correspondances [9, Chap. 16] this holds over any field.

Under hypothesis (c), the Galois module Pic(X) is a direct factor of a per-
mutation lattice ([10, Appendix A]). For any field extension E/k, one thus has
H1(E,Pic(X)) = 0. Theorem 1.3 then gives the result. �

Let us recall the k-birational classification of smooth, projective, geometrically
rational k-surfaces. This is due to Enriques, Manin, Iskovskikh [14], and Mori. See
[15, Thm. III.2.3].

Theorem 1.5. Let k be a field and X a smooth, projective, geometrically rational
k-surface. Then there exists a k-birational morphism X → Y where Y is a smooth,
projective, k-minimal surface of one of the following types :

(i) Relatively minimal conic bundle over a smooth conic;
(ii) del Pezzo surface of degree d with 1 ≤ d ≤ 9.

As noticed by Manin and the author (cf. [15, Thm. IV.6.8]), this gives a case by
case proof for the following result.

Proposition 1.6. Let k be a field and X a smooth, projective, geometrically rational
k-surface. If k is a C1-field, then X(k) 6= ∅. This holds in particular if k is a finite
field or if k = C((t)).
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For k a finite field, there is a uniform proof (A. Weil, cf. [17, Thm. 27.1, Cor.
27.1.1]).

2. Conic bundles over the projective line

Let k be a field, k a separable closure of k and g = Gal(k/k). If X is a smooth,
projective, geometrically connected k-surface equipped with a relatively minimal k-
morphism f : X → P1

k whose generic fibre is a smooth, genus zero curve, then the
closed points M with nonsmooth fibre XM/k(M) have their residue field k(M) sepa-
rable over k, and over a separable quadratic field extension L(M)/k(M) the singular
fibre XM/k(M) decomposes as the union of two lines P1

L(M) which transversally in-

tersect at a k(M)-point. Such closed points M ∈ P1
k are referred to as the bad

reduction points of the fibration f : X → P1
k. For the proof of these statements, see

[14]. As a consequence, over a separable closure k de k, there exists a blow-down
map X → Y over P1

k
such that the fibres of Y → P1

k
are all isomorphic to P1. Thus

the element in Br(k(P1)) associated to the generic fibre of X ×k k → P1
k

belongs

to Br(P1
k
) = 0. We have Br(P1

k
) ⊂ Br(k(P1)), and Tsen’s theorem implies that

the second group is p-primary for p equal to the characteristic exponent of k. One
actually has Br(P1

k
) = 0 for any separably closed field k (Grothendieck [11, Cor.

5.8]).
Thus the generic fibre of f : X → P1

k
has a rational point. As P1

k
is regular of

dimension 1 and f is a proper morphism, any such point extends to a section of
f : X → P1

k
. The k-variety X is split over k. The generic fibre of f : X → P1

k

is thus associated to a class β ∈ H2(g, k(P1)∗) ⊂ Br(k(P1)). The generic fibre of
X → P1

k is a smooth curve of genus zero over k(P1), hence it admits a point over a
separable, degree 2 extension of k(P1). The class β is thus killed by 2. At a closed,
bad reduction point M ∈ P1

k, the divisor map defines a g-equivariant homomorphism

k(P1)∗ → ⊕k(M)⊂k Z,

where k(M) ⊂ k runs through the k-embeddings of the separable extension k(M)/k
into k. This homomorphism induces a residue map

∂M : H2(g, k(P1)∗)→ H2(g,⊕k(M)⊂k Z) = H2(k(M),Z) = H1(k(M),Q/Z).

The image of β under this map describes the quadratic extension of k(M) corres-
ponding to the bad fibre. For k ⊂ L ⊂ k, with L/k finite, we have the following
commutative diagram:

H2(gk, k(P1)∗) → H1(k(M),Q/Z)
↓ ↓

H2(gL, k(P1)∗) → ⊕N→MH
1(k(N),Q/Z),

where N runs through the closed points of P1
L with image M under the projection

map P1
L → P1

k, the horizontal maps are the above defined residue maps, and the
vertical maps are restriction maps.

Lemma 2.1. Let f : X → P1
k be a relatively minimal conic bundle over a field

k, with smooth generic fibre and smooth total space X/k. Let M ∈ P1
k be a closed

point with residue field k(M) where the fibration f has bad reduction. Let K = k(M)
denote the residue field at M . Let N be a K-point of P1

K over M ∈ P1
k. The fibration

fK : XK → P1
K has bad reduction at N .
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Proof. Let β ∈ H2(gk, k(P1)∗) be associated to the generic fibre of f : X → P1
k. The

fibration f has bad reduction at M if and only if the residue

γ := ∂M(β) ∈ H1(k(M),Q/Z) = H1(K,Q/Z)

is nontrivial. By the above diagram,

∂N(βK) = γ ∈ H1(K(N),Q/Z) = H1(K,Q/Z),

hence the result. �

Iskovskikh proved the following result ([12, Thm. 2], [14, Thm. 4, Thm. 5]).

Proposition 2.2. Let k be a field and X/k a smooth, projective, geometrically con-
nected surface over k, equipped with a relatively minimal conic bundle structure
X → P1

k. If the number of geometric degenerate fibres is at most 3, and if X
has a k-rational point, then X is a k-rational surface.

Proposition 2.3. Let k be a field and X/k a smooth, projective, geometrically con-
nected surface over k, equipped with a relatively minimal conic bundle structure
X → P1

k. Assume that X is split over a cyclic field extension K/k. If the num-
ber of singular geometric fibres of the fibration is at least 4, then there exists a finite
separable extension k′/k such that H1(k′,Pic(X)) 6= 0.

Proof. Let us recall a few facts on the Galois lattices defined by the geometric Picard
group of a surface with a conic bundle structure over P1

k. For more details, see [7,
§2].

Let as above k be a separable closure of k and let X = X ×k k. There is an exact
sequence of Galois modules

0→ P → Z.f ⊕Q→ Pic(X)→ Z→ 0,

where P is the permutation modules on k-points of P1 with singular fibre, Q is the
permutation module on components of the singular fibres over k, and Z.f is spanned
by the fibre over a k-point of P1

k. The map Pic(X)→ Z is induced by restriction to
the generic fibre. 1

Let M denote the kernel of this restriction map. There are short exact sequences
of Galois modules

0→ P → Z⊕Q→M → 0

and

0→M → Pic(X)→ Z→ 0.

Galois cohomology then yields the exact sequences

0→ Z/2→ H1(k,M)→ H1(k,Pic(X))→ 0

and

0→ H1(k,M)→ H2(k, P )→ H2(k,Z⊕Q).

This last sequence gives rise to an exact sequence

0→ H1(k,M)→ ⊕r
i=1Z/2→ H1(k,Z/2),

1(added in the English translation) By hypothesis, X is split by a cyclic extension K/k. This
implies that for each bad reduction point P ∈ P1

k, the residue field k(P ) is a (cyclic) subfield of K

and that the above Gal(k/k)-modules are Gal(K/k)-modules.
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where i runs through the r ≥ 1 closed points Pi of P1
k with singular fibre, split

by a separable quadratic field extension, of class ai ∈ H1(k(Pi),Z/2), and the map
θi : Z/2→ H1(k,Z/2) sends 1 to the norm (from k(Pi) to k) of ai ∈ H1(k(Pi),Z/2).

Furthermore, there is a reciprocity relation [7, §2, Remark] which implies that the
image of (1, . . . , 1) ∈ ⊕iZ/2 is the trivial class in H1(k,Z/2).

We want to show: if the number of degenerate geometric fibres of X → P1
k is at

least equal to 4, then there exists a separable finite field extension k′/k such that
H1(k′,Pic(X)) 6= 0.

If E/k is a separable finite field extension of odd degree, then over E the family
XE → P1

E is still relatively minimal: no residue vanishes. We may thus assume that
the degree of any closed point of bad reduction is either 1 or is of even degree.

Assume there exists a closed point P of bad reduction of even degree at least 4.
Then by Lemma 2.1, after going over from k to the Galois subextension L = k(P )
of the cyclic extension K/k, we reduce to the situation where we have at least 4
rational points P1, P2, P3, P4 with singular fibre. Since the surface is split by a cyclic
extension, the nontrivial classes ai ∈ H1(L(Pi),Z/2) = H1(L,Z/2) all coincide with
a unique nontrivial class a ∈ H1(L,Z/2).

The map ⊕r
i=1Z/2 → H1(L,Z/2) induces a map (Z/2)4 → H1(L,Z/2) which

thus factorizes through (Z/2)4 → Z/2. The group H1(L,M) = Ker[⊕r
i=1Z/2 →

H1(L,Z/2)] thus contains the kernel of a map (Z/2)4 → Z/2, it is or order at least
8, thus H1(L,Pic(X)) has order at least 4.

Let us now assume that all bad reduction closed points Pi have degree 2 or 1 over
k. If there are at least 4 closed points of degree 1 with bad reduction, the above
argument gives H1(k,Pic(X)) 6= 0.

Suppose there are at least two bad reduction closed points P1, P2 of degree 2. Since
X is split by a cyclic extension K/k which contains all k(Pi), the field k(P1) and
k(P2) coincide with the unique quadratic subfield extension L/k of K/k. Applying
Lemma 2.1, one sees that XL → P1

L has singular fibres over at least 4 L-rational
points, and we conclude H1(L,Pic(X)) 6= 0.

To prove the proposition, we are reduced to considering the cases where the set of
degrees of closed points with bad reduction is either (1, 1, 1, 2) or (1, 1, 2).

Let us consider the case (1, 1, 1, 2). Since X is split by a cyclic extension, the
quadratic extensions associated to ai ∈ H1(k(Pi),Z/2) for k-rational points Pi are
all equal a nontrivial class a ∈ H1(k,Z/2). Let R be the degree 2 closed point, and
let b ∈ H1(k(R),Z/2) be the residue at that point. The map ⊕3

i=1Z/2 ⊕ Z/2 →
H1(k,Z/2) send (x, y, z, t) to (x + y + z).a + t.Normk(R)/k(b) ∈ H1(k,Z/2). By
reciprocity, the class (1, 1, 1, 1) has trivial image. Thus 3a+ Normk(R)/k(b) is trivial
in H1(k,Z/2). This implies a = Normk(R)/k(b), and this element is nontrivial in
H1(k,Z/2). The map ⊕3

i=1Z/2⊕Z/2→ H1(k,Z/2) thus sends (x, y, z, t) to (x+y+
z + t).a in H1(k,Z/2). Is is thus the sum (Z/2)4 → Z/2. Its kernel is (Z/2)3, hence
H1(k,Pic(X)) = (Z/2)2.

Let us show that (1, 1, 2) does not occur. Just as above the quadratic extensions
associated to ai ∈ H1(k(Pi),Z/2) for the k-rational points Pi are all equal to a
unique nontrivial class a ∈ H1(k,Z/2). Let Q be the closed degree 2 point and let
b ∈ H1(k(Q),Z/2) be the residue at that point. This corresponds to a separable
quadratic field extension L/k(Q). Under our hypotheses, the field extension L/k is
cyclic with Galois group Z/4. Under this hypothesis, one checks that the norm map
H1(k(Q),Z/2) → H1(k,Z/2) sends the class b to the class a. On the other hand,
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by reciprocity, the class (1, 1, 1) has trivial image under the map Z/2⊕⊕2
i=1Z/2→

H1(k,Z/2). Thus 3a = a ∈ H1(k,Z/2) vanishes, and this is a contradiction. �

3. del Pezzo surfaces

The following result is well known (Châtelet, Manin, Iskovskikh, see [23, Thm.
2.1]):

Proposition 3.1. Let X be a del Pezzo surface of degree d ≥ 5 over a field k. If X
has a k-rational point, then X is k-rational.

Proposition 3.2. Let k be a field and X ⊂ P4
k be a del Pezzo surface of degree 4

over k. Assume that it is k-minimal and that it is split by a cyclic exension K/k.
Then:

(i) There exists a field extension E/k such that H1(E,Pic(X)) 6= 0.2

(ii) The Galois module Pic(X) is not a direct factor of a permutation lattice.
(iii) If X has a k-rational point, then there exists a finite separable field extension

k′/k such that H1(k′,Pic(X)) 6= 0.

Proof. Since the del Pezzo surface X of degree 4 is k-minimal, it is not k-rational
[13, Thm. 2].

If X has a k-point P which is not located on any of the 16 (geometric) exceptional
lines, by blowing up P one produces a smooth cubic surface Y over k equipped with
a conic bundle structure Y → P1

k. This fibration has 5 geometric degenerate fibres.
Under the hypothesis that X is split over a cyclic extension of k, the components of
the bad fibres are all defined over the cyclic extension K/k. If this fibration is not
relatively minimal, let Z → P1

k be a relatively minimal model. Let s be the number
of geometric degenerate fibres. If we had s ≤ 3, then according to Proposition 2.2,
Y and hence X would be k-rational. Thus s ≥ 4. Proposition 2.3 then gives the
existence of a finite separable field extension k′/k such that H1(k′,Pic(Z)) 6= 0. One
goes over from X to Z by blow-ups at separable closed points. The Galois modules
Pic(X) and Pic(Z) are thus isomorphic up to addition of permutation lattices. Thus
H1(k′,Pic(X)) 6= 0.

If X has a k-point and the field k has at least 23 elements, then there exists a
k-point on X outside the 16 lines [17, Chap. 4, §8, Teor. 8.1= Thm. 30.1]. Assume
that k is finite and X is split over the cyclic extension K/k. There exists a finite
extension L/k which is linearly dispoint from K over which X has an L-rational
points outside the 16 lines.

The degree 4 del Pezzo X ×k L over L is L-minimal and is split by the cyclic
extension K.L/L. The above argument then produces a finite field extension k′ of L
such that H1(k′,Pic(X)) 6= 0.

This completes the proof of (iii).
To prove (i), we use the trick of going over to the generic point (cf. [6, Thm.

2.B.1]). Let F = k(X) be the field of rational functions of X. Since k is algebraically
closed in F = k(X), and X is k-minimal, XF is F -minimal. The Galois module
Pic(X) does not change by going over from k to F , it is split by the extension
K/k and by the extension F ′/F , where F ′ := F.K. The generic point of X gives
an F -point of XF which is not located on the (geometric) lines of XF . The F -
minimal surface XF is split by the cyclic extension F ′/F . By (iii), there exists a
finite separable extension E/F such that H1(E,Pic(X)) 6= 0, which gives (i).

2In this statement, E/k need not be a finite field extension.
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This implies that the Galois lattice Pic(X) is not a direct factor of a permutation
lattice (Theorem 1.1), which gives (ii). �

We now turn to del Pezzo surfaces of degree 3, 2 et 1, over a field k, which are
split by a finite, cyclic field extension K/k.

We let Frob denote a generator of the cyclic group Gal(K/k). The possible ac-
tions of the finite cyclic group Gal(K/k) on the group Pic(XK) = Pic(X) were
listed by Frame [8], then Swinnerton-Dyer [21]. They were amended by Manin [17,
Chapitre IV], and further amended and completed by Urabe [22] and more recently
by Banwait, Fité and Loughran [1].

In [17, Chap. IV, Table I, Column 5] and in [1, Table 7.1, Column 5], a surface
is attributed the symbol

∏
mm

nm , with all nm ≥ 0, if, for given m ≥ 1, the Galois
invariant set of primitive m-th roots of unity among the eigenvalues of Frob has
nm elements. In other words, one decomposes the characteristic polynomial of Frob
acting on Pic(X)⊗Z C by grouping together the orbits of roots under the action of
the Galois group. This symbol is called the characteristic symbol of Frob (for its
action on Pic(X)⊗Z C).

Urabe [22, Supplement] uses the Frame symbol [8]. The Frame symbol
∏

mm
nm ,

with nm ∈ Z, corresponds to a rewriting of the characteristic polynomial of Frob
for its action on Pic(X) ⊗Z C. Namely, one writes it as a product

∏
m(tm − 1)nm ,

with nm ∈ Z. There is a unique way to write the characteristic polynomial as such
a product, with distinct integers m > 0, and with nm 6= 0. Let r > 1. To compute
the Frame symbol of Frobr, in the product

∏
m(tm − 1)nm attached to the Frame

symbol
∏

mm
nm of Frob, for each integer m one writes r = uv and m = uw (u, v, w

positive integers) with (v, w) = 1, and one replaces (tm − 1) by (tw − 1)u, then one
gathers the terms together.

In the tables of [22] et [1], the symbols (of either type) associated to different
surfaces may coincide but this seldom happens.

K. Shramov showed me the next proposition.

Proposition 3.3. (A. Trepalin) Let X be a smooth cubic surface over a field k.
Assume that is is k-minimal and is split by a cyclic extension K/k. Then there
exists a finite separable extension of fields k′/k such that H1(k′,Pic(X)) 6= 0.

Proof. We use Table 7.1 in the paper [1]. The actions corresponding to k-minimal
surfaces, i.e. surfaces of index i(X) = 0, are those numbered 1, 2, 3, 4, 5 in Table
7.1 of [1]. For numbers 3 et 5, we have H1(k,Pic(X)) 6= 0. For the other ones, one
has H1(k,Pic(X)) = 0.

For number 1, the eigenvalues of Frob are 1, 32, 124, that is 1, the two primitive
cubic root of 1 and the 4 primitive 12-th roots of 1. If one replaces Frob by Frob4,
i.e. if one goes over to the subfield extension k′/k of K/k of degree 4, the eigenvalues
of Frob4 are 1, 36. In the table, only number 3 has these eigenvalues, and at this
level the table gives H1(k′,Pic(X)) 6= 0.

For number 2, the eigenvalues of Frob are 1, 32, 64. If one replaces Frob by Frob2,
i.e. if one goes over to the subfield extension k′/k of K/k of degree 2, the eigenvalues
of Frob2 are 1, 36. In the table, only number 3 has these eigenvalues, and the table
gives H1(k′,Pic(X)) 6= 0.

For number 4, the eigenvalues of Frob are 1, 96. If one replaces Frob by Frob3,
i.e. if one goes over to the subfield extension k′/k of K/k of degree 3, the eigenvalues
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of Frob3 are 1, 36. In the table, only number 3 has these eigenvalues, and the table
gives H1(k′,Pic(X)) 6= 0. �

Proposition 3.4. Let X be a del Pezzo of degree 2 over a field k. Assume it is
k-minimal and split by a cyclic extension K/k. Then there exists a finite separable
extension of fields k′/k such that H1(k′,Pic(X)) 6= 0.

Proof. Here we use Table 1 in Urabe’s paper [22], and we use Frame symbols.
Surfaces which are k-minimal have the numbers 1 to 19. As Daniel Loughran

pointed out to me, number 1 of Table 1 contains a mistake. Its index is at least 2,
the surface is not k-minimal. We thus only discuss cases numbered 2 to 19.

For surfaces with H1(k,Pic(X)) 6= 0 there is nothing to do.
In each of the following cases, we consider a power Frobr of Frob and we denote

k′ the fixed field of Frobr.
Case 5. Taking Frob5, one finds 1−4.26 as new Frame symbol. The only possibility

is case 2. If k′ is the fixed field of Frob5, one has H1(k′,Pic(X)) 6= 0.
Case 6. Taking Frob2, one finds 42. The only possibility is case 3, one has

H1(k′,Pic(X)) 6= 0.
Case 7. Taking Frob3, one finds 1−4.26. The only possibility is case 2, one has

H1(k′,Pic(X)) 6= 0.
Case 15. Taking Frob9, one finds 1−4.26. The only possibility is case 2, one has

H1(k′,Pic(X)) 6= 0.
Case 16. Taking Frob7, one finds 1−6.27. The only possibility is case 8, one has

H1(k′,Pic(X)) 6= 0.
Case 17. Taking Frob3, one finds 1−2.21.42. The only possibility is case 9, one has

H1(k′,Pic(X)) 6= 0.
Case 18. Taking Frob3, one finds 1−1.22.5−1.101. The only possibility is case 13,

one has H1(k′,Pic(X)) 6= 0.
Case 19. Taking Frob3, one finds 1−6.27. The only possibility is case 8, one has

H1(k′,Pic(X)) 6= 0. �

Remark 3.5. In [16], the author points out three types of degree 2 del Pezzo surface
in Urabe’s Table 1 which would have all their H1(k′,Pic(X)) for varying k′ trivial.
These are the types 1, 5 and 16. In case 1, we have seen that the surface is not
k-minimal. For the two other types, presumably there is a computational mistake
in [16].

Proposition 3.6. Let X be a del Pezzo of degree 1 over a field k. Assume it is
k-minimal and split by a cyclic extension K/k. Then there exists a finite separable
extension of fields k′/k such that H1(k′,Pic(X)) 6= 0.

Proof. Here we use Urabe’s Table 2 in [22]. We only consider surfaces of index 0.
If H1(k,Pic(X)) 6= 0, then the conclusion is clear. If not, then we are in one of
the following cases, for which we use Frame symbols. We consider a power Frobr of
Frob and we denote k′ the fixed field of Frobr.

Case 5. Taking Frob3, one finds 11.2−2.43 as new Frame symbol. The only possi-
bility is case 3, on a H1(k′,Pic(X)) 6= 0.

Case 6. Taking Frob5, one finds 1−3.24.41. The only possibility is case 1, one has
H1(k′,Pic(X)) 6= 0.

Case 7.Taking Frob3, one finds 1−1.23.4−1.81. The only possibility is case 4, one
has H1(k′,Pic(X)) 6= 0.
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Case 29.Taking Frob10, one finds 1−3.34. The only possibility is case 9, one has
H1(k′,Pic(X)) 6= 0.

Case 30.Taking Frob3, one finds 11.4−2.82. The only possibility is case 23, one has
H1(k′,Pic(X)) 6= 0.

Case 31.Taking Frob5, one finds 11.2−4.44. The only possibility is case 17, one has
H1(k′,Pic(X)) 6= 0.

Case 32.Taking Frob3, one finds 11.2−4.44. The only possibility is case 17, one has
H1(k′,Pic(X)) 6= 0.

Case 33.Taking Frob2, one finds 91. The only possibility is case 14, one has
H1(k′,Pic(X)) 6= 0.

Case 34.Taking Frob3, one finds 1−1.52. The only possibility is case 11, one has
H1(k′,Pic(X)) 6= 0.

Case 35.Taking Frob2, one finds 1−1.52. The only possibility is case 11, one has
H1(k′,Pic(X)) 6= 0.

Case 36.Taking Frob3, one finds 1−3.22.42. The only possibility is case 10, one has
H1(k′,Pic(X)) 6= 0.

Case 37.Taking Frob2, one finds 1−3.34. The only possibility is case 9, one has
H1(k′,Pic(X)) 6= 0. �

Remark 3.7. As a referee points out, in Propositions 3.4 and 3.6 a number of cases
may be reduced to the case of conic bundle surfaces, already handled in Proposition
2.3.

Remark 3.8. The statement of Theorem 5.4.3 of [16] is identical to the above state-
ment. One needs however to correct the proof given in [16] for case 6, since the
choice there made of Frob4 leads, as the author writes, to surface number 102, but
this surface has H1(k,Pic(X)) = 0.

4. Conclusion

Let us gather our results together.

Theorem 4.1. Let k be a field and X a smooth, projective, geometrically rational
k-surface. Assume that X has a k-point and is split over a cyclic extension of k. If
X is not k-rational, then:

(i) There exists a finite separable field extension k′/k such that H1(k′,Pic(X)) 6= 0.
(ii) The Galois module Pic(X) is not a direct factor of a permutation lattice.
(iii) The k-variety X is not stably k-rational.

Proof. One may assume that X is k-minimal. Indeed, if f : Y → X is a k-birational
k-morphism between geometrically rational, smooth, projective k-surfaces, if Y is
split by a cyclic extension of k, so is X. According to Theorem 1.5, one may further
assume that X either is a k-minimal del Pezzo surface of degree d with 1 ≤ d ≤ 9
or admits a relatively minimal conic bundle fibration X → P1

k.
If X is a del Pezzo of degree d with 5 ≤ d ≤ 9, then X is k-rational according to

Propositions 1.6 and 3.1.
If X is a k-minimal del Pezzo surface of degree d = 4, resp. d = 3, resp. d = 2,

resp. d = 1, then according to Proposition 3.2, resp. 3.3, resp. 3.4, resp. 3.6, there
exists a finite separable field extension k′/k with H1(k′,Pic(X)) 6= 0.
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If X is a relatively minimal conic bundle X → P1
k, then Propositions 2.2 and 2.3

ensure that X either is k-rational, or there exists a finite separable field extension
k′/k such that H1(k′,Pic(X)) 6= 0.

This gives (i). The other statements follow (Theorem 1.1). �

Remark 4.2. One would wish for a proof of Theorem 4.1 which avoided the case by
case analysis used in this paper, in particular which avoided the use of tables for the
Galois action on geometric Picard groups of del Pezzo surfaces of degree 1,2,3. In
this remark, I freely use notions from [6]. Let k be a quasifinite field and let X be a
smooth, projective, geometrically rational k-surface with a k-point. As the absolute
Galois group of k is a procyclic group, under the hypothesis H1(k′,Pic(X)) = 0 for
any finite extension k′/k, a theorem of Endo and Miyata [5, Prop. 2, p. 184] implies
that the Galois lattice Pic(X) is a direct factor of a permutation lattice. Let S be
the k-torus whose character group is the Galois lattice Pic(X). Is is then a direct
factor of a quasitrivial torus. Since the cohomological dimension of k is 1, up to
isomorphism there exists a unique universal torsor T → X over X. It is a torsor
under the k-torus S. By Hilbert’s theorem 90, any torsor under a direct factor of a
quasitrivial k-torus is generically split. Thus the k-variety T is k-birational to the
product X ×k S. Over any field k, it is an open question whether the underlying
k-variety of a universal torsor over any smooth, projective, geometrically rational
k-surface X, with a k-point, is a (stably) k-rational variety. If that were the case,
then for k quasifinite the above argument would show that under the hypothesis
X(k) 6= ∅ and H1(k′,Pic(X)) = 0 for any finite extension k′/k, the k-variety X is a
direct factor of a k-rational variety.

Thanks. B. Hassett’s question on rational surfaces over a finite field was passed
on to me by Alena Pirutka. I thank her for comments on the paper. K. Shramov
showed me Proposition 3.3 (A. Trepalin) on cubic surfaces. D. Loughran gave me
useful comments on [22]. After he saw a first version of my paper, he pointed out
paper [16]. Some computations in [16] coincide with those of Propositions 3.4 and
3.6. Mistakes in [16] did not enable the author to get the general result on degree
2 del Pezzo surfaces. Finally, I thank the two referees for their (russian) reports,
which helped me clarifying a few points.
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[1] B. Banwait, F. Fité and D. Loughran, Del Pezzo surfaces over finite fields and their Frobe-
nius traces, Mathematical Proceedings of the Cambridge Philosophical Society, to appear.
https://arxiv.org/pdf/1606.00300.pdf

[2] A. Beauville, J.-L. Colliot-Thélène, J.-J. Sansuc et Sir Peter Swinnerton-Dyer, Variétés sta-
blement rationnelles non rationnelles, Ann. of Math. 121 (1985) 283–318.

[3] J.-L. Colliot-Thélène, Birational invariants, purity, and the Gersten conjecture, in K-Theory
and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras, AMS
Summer Research Institute, Santa Barbara 1992, ed. W. Jacob and A. Rosenberg, Proceedings
of Symposia in Pure Mathematics 58.1 (1995) 1–64.

[4] J.-L. Colliot-Thélène et D. Coray, L’équivalence rationnelle sur les points fermés des surfaces
rationnelles fibrées en coniques, Compositio Mathematica 39 no. 3 (979) 301–332.

[5] J.-L. Colliot-Thélène et J.-J. Sansuc, La R-équivalence sur les tores, Ann. sci. Éc. Norm. Sup.
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