On the integral Tate conjecture for 1-cycles on the product of a curve and a surface over a finite field

Joint work with Federico Scavia (UBC, Vancouver)

Jean-Louis Colliot-Thélène (CNRS et Université Paris-Sud ⊂ Paris-Saclay)

AMS sectional meeting, Charlottesville Special session "Algebraic Groups : Arithmetic and Geometry" Friday, March 13th, 2020 Let X be a smooth projective variety over a finite field \mathbb{F} of char. p. Let ℓ be a prime, $\ell \neq p$. For any $i \geq 0$, there is a cycle map

$$CH^{i}(X)\otimes \mathbb{Z}_{\ell} \to H^{2i}(X,\mathbb{Z}_{\ell}(i))$$

from the Chow groups of codimension *i* cycles to the projective limit of the étale cohomology groups $H^{2i}(X, \mu_{\ell^n}^{\otimes i})$, which is a \mathbb{Z}_{ℓ} -module of finite type.

For i = 1, this map reads

$$\operatorname{Pic}(X)\otimes \mathbb{Z}_\ell o H^2(X,\mathbb{Z}_\ell(1))$$

and Tate conjectured that it is always surjective. This is related to the conjectured finiteness of Tate-Shafarevich groups of abelian varieties over a global field.

It is known for geometrically separably unirational varieties (easy), for abelian varieties (Tate) and for most K3-surfaces.

For i > 1, Tate conjectured that the cycle map

$$CH^i(X)\otimes \mathbb{Q}_\ell \to H^{2i}(X,\mathbb{Q}_\ell(i))$$

is surjective. Very little is known. One may give examples where the statement with integral coefficients does not hold. However, for X of dimension d, it is unknown whether the Integral Tate conjecture for 1-cycles, henceforth denoted $T_1 = T^{d-1}$

 (T_1) The cycle map $CH^{d-1}(X)\otimes \mathbb{Z}_\ell \to H^{2d-2}(X,\mathbb{Z}_\ell(d-1))$ is onto.

may fail.

For d = 2, this is a special case of the Tate conjecture.

For arbitrary d, the integral Tate conjecture for 1-cycles holds for X of any dimension $d \ge 3$ if it holds for any X of dimension 3.

For X of dimension 3, some nontrivial cases have been established.

• X is a conic bundle over a geometrically ruled surface (Parimala and Suresh).

• X is the product of a curve of arbitrary genus and a geometrically rational surface (Pirutka).

For smooth projective varieties X over \mathbb{C} , there is a formally parallel conjecture for cycle maps

 $CH^i(X) \to Hdg^{2i}(X,\mathbb{Z})$

where $Hdg^{2i}(X, \mathbb{Z}) \subset H^{2i}_{Betti}(X, \mathbb{Z})$ is the subgroup of rationally Hodge classes. The conjecture with \mathbb{Q} -coefficients is a famous open problem. With integral coefficients, several counterexamples were given, even with dim(X) = 3 and 1-cycles.

A recent counterexample involves the product $X = E \times S$ of an elliptic curve E and an Enriques surface. For fixed S, provided E is "very general", then the integral Hodge conjecture fails for X (Benoist-Ottem). The proof uses the fact that the torsion of the Picard group of such a surface is nontrivial, it is $\mathbb{Z}/2$.

It is reasonable to investigate the Tate conjecture for cycles of codimension $i \ge 2$ assuming T^1 : The conjecture is true for cycles of codimension 1 over any smooth projective variety.

Theorem (CT-Scavia 2020). Let \mathbb{F} be a finite field, $\overline{\mathbb{F}}$ a Galois closure, $G = Gal(\overline{\mathbb{F}}/\mathbb{F})$. Let E/\mathbb{F} be an elliptic curve and S/\mathbb{F} be an Enriques surface. Let $X = E \times_{\mathbb{F}} S$. Let ℓ be a prime different from $p = \operatorname{char.}(\mathbb{F})$. Assume T^1 . If $\ell \neq 2$, or if $\ell = 2$ but $E(\mathbb{F})$ has no nontrivial 2-torsion, then the map $CH^2(X) \otimes \mathbb{Z}_{\ell} \to H^4(X, \mathbb{Z}_{\ell}(2))$ is onto. We actually prove a general theorem, for the product $X = C \times S$ of a curve *C* and a surface *S* which is *geometrically* CH_0 -*trivial*, which here means :

Over any algebraically closed field Ω of \mathbb{F} , the degree map $CH_0(S_{\Omega}) \to \mathbb{Z}$ is an isomorphism.

In that case $Pic(S_{\Omega})$ is a finitely generated abelian group.

For $\overline{\mathbb{F}}$ a Galois closure of \mathbb{F} , $G = \operatorname{Gal}(\overline{\mathbb{F}}/\mathbb{F})$, and J the jacobian of C, still assuming T^1 , we prove that $CH^2(X) \otimes \mathbb{Z}_{\ell} \to H^4(X, \mathbb{Z}_{\ell}(2))$ is onto under the condition $\operatorname{Hom}_G(\operatorname{Pic}(S_{\overline{\mathbb{F}}})_{\operatorname{tors}}, J(\overline{\mathbb{F}})) = 0$.

We do not know whether this condition is necessary.

In the rest of the talk, I shall sketch some ingredients of the proof.

Ξ.

Let *M* be a finite Galois-module over a field *k*. Given a smooth, projective, integral variety X/k with function field k(X), and $i \ge 1$ an integer, one lets

$$H^{i}_{nr}(k(X), M) := \operatorname{Ker}[H^{i}(k(X), M) \to \bigoplus_{x \in X^{(1)}} H^{i-1}(k(x), M(-1))]$$

Here k(x) is the residue field at a codimension 1 point $x \in X$, the cohomology is Galois cohomology of field, and the maps on the right hand side are "residue maps".

One is interested in $M = \mu_{\ell^n}^{\otimes j}$, for which $M(-1) = \mu_{\ell^n}^{\otimes (j-1)}$ and in the direct limit $\mathbb{Q}_{\ell}/\mathbb{Z}_{\ell}(j) = \lim_{j \in \mathcal{U}_{\ell^n}} j \mu_{\ell^n}^{\otimes j}$, for which the cohomology groups are the limit of the cohomology groups.

Theorem (Kahn, CT-Kahn) For X/\mathbb{F} smooth, projective of arbitrary dimension, the torsion subroup of the (conjecturally finite) group

$$\operatorname{Coker}[CH^2(X)\otimes \mathbb{Z}_\ell \to H^4(X,\mathbb{Z}_\ell(2))]$$

is isomorphic to the quotient of $H^3_{nr}(\mathbb{F}(X), \mathbb{Q}_{\ell}/\mathbb{Z}_{\ell}(2))$ by its maximal divisible subgroup.

A basic exact sequence (Kahn, CT-Kahn). Let $\overline{\mathbb{F}}$ be an algebraic closure of \mathbb{F} , let $\overline{X} = X \times_{\mathbb{F}} \overline{\mathbb{F}}$ and $G = \operatorname{Gal}(\overline{\mathbb{F}}/\mathbb{F})$.

For X/\mathbb{F} a smooth, projective, geometrically connected variety over a finite field, long exact sequence

$$0 \to \operatorname{Ker}[CH^{2}(X)\{\ell\} \to CH^{2}(\overline{X})\{\ell\}] \to H^{1}(\mathbb{F}, H^{2}(\overline{X}, \mathbb{Q}_{\ell}/\mathbb{Z}_{\ell}(2)))$$
$$\to \operatorname{Ker}[H^{3}_{\operatorname{nr}}(\mathbb{F}(X), \mathbb{Q}_{\ell}/\mathbb{Z}_{\ell}(2)) \to H^{3}_{\operatorname{nr}}(\overline{\mathbb{F}}(X), \mathbb{Q}_{\ell}/\mathbb{Z}_{\ell}(2))]$$
$$\to \operatorname{Coker}[CH^{2}(X) \to CH^{2}(\overline{X})^{G}]\{\ell\} \to 0.$$

The proof relies on work of Bloch and on the Merkurjev-Suslin theorem. Via Deligne's theorem on the Weil conjectures, one has

$$H^1(\mathbb{F}, H^2(\overline{X}, \mathbb{Q}_{\ell}/\mathbb{Z}_{\ell}(2))) = H^1(\mathbb{F}, H^3(\overline{X}, \mathbb{Z}_{\ell}(2))_{\mathrm{tors}})$$

and this is finite.

For X a curve, all groups are zero. For X a surface, $H^3(\overline{\mathbb{F}}(X), \mathbb{Q}_{\ell}/\mathbb{Z}_{\ell}(2)) = 0$. For X/\mathbb{F} a surface, one also has

$$H^3_{\mathrm{nr}}(\mathbb{F}(X),\mathbb{Q}_\ell/\mathbb{Z}_\ell(2))=0.$$

This vanishing was remarked in the early stages of higher class field theory (CT-Sansuc-Soulé, K. Kato, in the 80s). It uses a theorem of S. Lang, which relies on Tchebotarev's theorem.

For our 3-folds $X = C \times S$, S as above, we have an isomorphism of finite groups

$$\operatorname{Coker}[\mathit{CH}^2(X)\otimes \mathbb{Z}_\ell o \mathit{H}^4(X,\mathbb{Z}_\ell(2))]\simeq \mathit{H}^3_{\operatorname{nr}}(\mathbb{F}(X),\mathbb{Q}_\ell/\mathbb{Z}_\ell(2)),$$

and, under the assumption T^1 for all surfaces over a finite field, a theorem of Chad Schoen implies $H^3_{nr}(\overline{\mathbb{F}}(X), \mathbb{Q}_{\ell}/\mathbb{Z}_{\ell}(2)) = 0.$

Under T^1 for all surfaces, for our threefolds $X = C \times S$ with S geometrically CH_0 -trivial, we thus have an exact sequence of finite groups

 $0 \to \operatorname{Ker}[CH^{2}(X)\{\ell\} \to CH^{2}(\overline{X})\{\ell\}] \to H^{1}(\mathbb{F}, H^{2}(\overline{X}, \mathbb{Q}_{\ell}/\mathbb{Z}_{\ell}(2)))$ $\xrightarrow{\theta_{X}} H^{3}_{\operatorname{nr}}(\mathbb{F}(X), \mathbb{Q}_{\ell}/\mathbb{Z}_{\ell}(2)) \to \operatorname{Coker}[CH^{2}(X) \to CH^{2}(\overline{X})^{G}]\{\ell\} \to 0.$ Under these hypotheses, the surjectivity of

$$CH^2(X)\otimes \mathbb{Z}_\ell \to H^4(X,\mathbb{Z}_\ell(2))$$

(integral Tate conjecture) is therefore equivalent to the combination of two hypotheses :

Hypothesis 1

The composite map

 $\rho_X: H^1(\mathbb{F}, H^2(\overline{X}, \mathbb{Q}_{\ell}/\mathbb{Z}_{\ell}(2))) \to H^3(\mathbb{F}(X), \mathbb{Q}_{\ell}/\mathbb{Z}_{\ell}(2))$

of θ_X and $H^3_{\mathrm{nr}}(\mathbb{F}(X), \mathbb{Q}_{\ell}/\mathbb{Z}_{\ell}(2)) \subset H^3(\mathbb{F}(X), \mathbb{Q}_{\ell}/\mathbb{Z}_{\ell}(2))$ vanishes. Hypothesis 2 Coker $[CH^2(X) \to CH^2(\overline{X})^G]{\ell} = 0.$ (Optional slide)

Hypothesis 1 is equivalent to :

Hypothesis 1a. The (injective) map from

 $\operatorname{Ker}[CH^2(X)\{\ell\} \to CH^2(\overline{X})\{\ell\}]$

to the (finite) group

$$H^1(\mathbb{F}, H^2(\overline{X}, \mathbb{Q}_{\ell}/\mathbb{Z}_{\ell}(2))) \simeq H^1(\mathbb{F}, H^3(\overline{X}, \mathbb{Z}_{\ell}(2))_{tors})$$

is onto.

In dimension > 2, we do not see how to establish the validity of this hypothesis directly – unless of course when the finite group $H^3(\overline{X}, \mathbb{Z}_{\ell}(2))_{tors}$ vanishes. The group $H^3(\overline{X}, \mathbb{Z}_{\ell}(1))_{tors}$ is the nondivisible part of the ℓ -primary Brauer group of \overline{X} .

Discussion of Hypothesis 1 : The map $\rho_X : H^1(\mathbb{F}, H^2(\overline{X}, \mathbb{Q}_{\ell}/\mathbb{Z}_{\ell}(2))) \to H^3(\mathbb{F}(X), \mathbb{Q}_{\ell}/\mathbb{Z}_{\ell}(2))$ vanishes.

This map is the composite of the Hochschild-Serre map

$$H^1(\mathbb{F}, H^2(\overline{X}, \mathbb{Q}_{\ell}/\mathbb{Z}_{\ell}(2))) o H^3(X, \mathbb{Q}_{\ell}/\mathbb{Z}_{\ell}(2)))$$

with the restriction to the generic point of X.

We prove :

Theorem. Let Y and Z be two smooth, projective geometrically connected varieties over a finite field \mathbb{F} . Let $X = Y \times_{\mathbb{F}} Z$. Assume that the Néron-Severi group of Z is free with trivial Galois action. If the maps ρ_Y and ρ_Z vanish, then so does the map ρ_X .

Corollary. For the product X of a surface and arbitrary many curves, the map ρ_X vanishes.

On must study $H^1(\mathbb{F}, H^2(\overline{X}, \mu_{\ell^n}^{\otimes 2}))$ under restriction from X to its generic point.

As may be expected, the proof uses a Künneth formula, along with standard properties of Galois cohomology of a finite field. As a matter of fact, it is an unusual Künneth formula, with coefficients \mathbb{Z}/ℓ^n , n > 1. That it holds for H^2 of the product of two smooth, projective varieties over an algebraically closed field, is a recent result of Skorobogatov and Zarhin, who used it in an other context (the Brauer-Manin set of a product). Discussion of Hypothesis 2 :

$$\operatorname{Coker}[CH^2(X) \to CH^2(\overline{X})^G]\{\ell\} = 0.$$

Here we restrict to the special situation : C is a curve and S is geometrically CH_0 -trivial surface.

One lets
$$K = \mathbb{F}(C)$$
 and $L = \overline{\mathbb{F}}(C)$.

On considers the projection $X = C \times S \rightarrow C$, with generic fibre the *K*-surface S_K . Restriction to the generic fibre gives a natural map from

$$\operatorname{Coker}[CH^2(X) \to CH^2(\overline{X})^G]{\ell}$$

to

$$\operatorname{Coker}[CH^2(S_{\mathcal{K}}) \to CH^2(S_L)^G]\{\ell\}.$$

Using the hypothesis that S is geometrically CH_0 -trivial, which implies $b_1 = 0$ and $b_2 - \rho = 0$ (Betti number b_i , rank ρ of Néron-Severi group), one proves :

Theorem. The natural, exact localisation sequence

$$\operatorname{Pic}(\overline{C}) \otimes \operatorname{Pic}(\overline{S}) \to CH^2(\overline{X}) \to CH^2(S_L) \to 0.$$

may be extended on the left with a finite p-group.

(Optional slide)

To prove this, we use correspondences on the product $C \times S$, over $\overline{\mathbb{F}}$.

We use various pull-back maps, push-forward maps, intersection maps of cycle classes :

$$\operatorname{Pic}(\mathcal{C}) \otimes \operatorname{Pic}(\mathcal{S}) \to \operatorname{Pic}(X) \otimes \operatorname{Pic}(X) \to CH^2(X)$$

 $CH^2(X) \otimes \operatorname{Pic}(\mathcal{S}) \to CH^2(X) \otimes \operatorname{Pic}(X) \to CH^3(X) = CH_0(X) \to CH_0(\mathcal{C})$
 $\operatorname{Pic}(\mathcal{C}) \otimes \operatorname{Pic}(\mathcal{S}) \to CH^2(X) = CH_1(X) \to CH_1(\mathcal{S}) = \operatorname{Pic}(\mathcal{S})$

Not completely standard properties of *G*-lattices for $G = \operatorname{Gal}(\overline{\mathbb{F}}/\mathbb{F})$ applied to the (up to *p*-torsion) exact sequence of *G*-modules

$$0 \to \operatorname{Pic}(\overline{C}) \otimes \operatorname{Pic}(\overline{S}) \to CH^2(\overline{X}) \to CH^2(S_L) \to 0$$

then lead to :

Theorem. The natural map from $\operatorname{Coker}[CH^2(X) \to CH^2(\overline{X})^G]\{\ell\}$ to $\operatorname{Coker}[CH^2(S_K) \to CH^2(S_L)^G]\{\ell\}$ is an isomorphism.

One is thus left with controlling this group. Under the CH_0 -triviality hypothesis for S, it coincides with

$$\operatorname{Coker}[CH^2(S_{\mathcal{K}})\{\ell\} \to CH^2(S_L)\{\ell\}^G].$$

At this point, for a geometrically CH_0 -trivial surface over $L = \overline{\mathbb{F}}(C)$, which is a field of cohomological dimension 1, using the *K*-theoretic mechanism, one may produce an exact sequence parallel to the basic exact sequence over \mathbb{F} which we saw at the beginning. In the particular case of the constant surface $S_L = S \times_{\mathbb{F}} L$, the left hand side of this sequence gives an injection

$$0 \to A_0(S_L)\{\ell\} \to H^1(L, H^3(\overline{S}, \mathbb{Z}_{\ell}(2)\{\ell\})$$

where $A_0(S_L) \subset CH^2(S_L)$ is the subgroup of classes of zero-cycles of degree zero on the *L*-surface S_L .

Study of this situation over completions of $\overline{\mathbb{F}}(C)$ (Raskind) and a good reduction argument in the weak Mordell-Weil style, plus a further identification of torsion groups in cohomology of surfaces over an algebraically closed field then yield a Galois embedding

$$A_0(S_L)\{\ell\} \hookrightarrow \operatorname{Hom}_{\mathbb{Z}}(\operatorname{Pic}(\overline{S})\{\ell\}, J(\mathcal{C})(\overline{\mathbb{F}})),$$

hence an embedding

 $A_0(S_L)\{\ell\}^G \hookrightarrow \operatorname{Hom}_G(\operatorname{Pic}(\overline{S})\{\ell\}, J(C)(\overline{\mathbb{F}})).$

If this group $\operatorname{Hom}_{G}(\operatorname{Pic}(\overline{S})\{\ell\}, J(C)(\overline{\mathbb{F}}))$ vanishes, then $\operatorname{Coker}[CH^{2}(S_{K})\{\ell\} \to CH^{2}(S_{L})\{\ell\}^{G}] = 0$

hence

$$\operatorname{Coker}[CH^2(X) \to CH^2(\overline{X})^G]{\ell} = 0,$$

which is Hypothesis 2, and completes the proof of the theorem :

Theorem (CT/Scavia) Let \mathbb{F} be a finite field, $G = \operatorname{Gal}(\overline{\mathbb{F}}/\mathbb{F})$. Let ℓ be a prime, $\ell \neq \operatorname{char.}(\mathbb{F})$. Let C be a smooth projective curve over \mathbb{F} , let J/\mathbb{F} be its jacobian, and let S/\mathbb{F} be a smooth, projective, geometrically CH_0 -trivial surface. Assume the usual Tate conjecture for codimension 1 cycles on varieties over a finite field. Under the assumption

 $\operatorname{Hom}_{G}(\operatorname{Pic}(S_{\overline{\mathbb{F}}})\{\ell\}, J(\overline{\mathbb{F}})) = 0,$

the cycle class map $CH^2(X) \otimes \mathbb{Z}_{\ell} \to H^4_{et}(X, \mathbb{Z}_{\ell}(2))$ is onto.