The Newhouse phenomenon*

Sylvain Crovisier

We build an open set of non-hyperbolic C^2 -diffeomorphisms of a surface:

Theorem 1 (Newhouse [N1]). Let M be a compact surface. There exists a non-empty open set $\mathcal{U} \subset \text{Diff}^2(M)$ of non-hyperbolic diffeomorphisms. Moreover any diffeomorphism in a dense G_{δ} -subset of \mathcal{U} has infinitely many sinks.

In contrast with hyperbolic diffeomorphisms, the generic systems in \mathscr{U} have infinitely many chain-recurrent classes.

Recall that in dimension d = 1, the Morse-Smale diffeomorphisms are dense in Diff^{*r*}(*M*) for any $r \ge 1$. In dimension $d \ge 3$, there exists a non-empty open set $\mathcal{U} \subset \text{Diff}^1(M)$ of non-hyperbolic diffeomorphisms [N2]. One question remains about the density of hyperbolicity:

On a surface M, is the set of hyperbolic diffeomorphisms dense in $\text{Diff}^1(M)$?

Remark 1. The proof of Newhouse's theorem we present in this chapter is due to N. Gourmelon and myself. It shows the following stronger version on any compact surface *M*:

For any $\alpha \in (0,1)$ and for C > 0 large enough, let $\operatorname{Diff}_{C}^{1+\alpha}(M)$ be the set of $C^{1+\alpha}$ diffeomorphisms g such that the α -Hölder norms of Dg, Dg^{-1} are bounded by C > 0, endowed with the C^{1} -topology. It contains a non-empty open set \mathcal{U} of non-hyperbolic diffeomorphisms. Moreover any diffeomorphism in a dense G_{δ} -subset of \mathcal{U} has infinitely many sinks.

1 Dynamics of the horseshoe

We consider the classical construction of the horseshoe.

a) The horseshoe. We consider a $C^{1+\alpha}$ -diffeomorphism f of a surface M and a rectangle R diffeomorphic to $[0,1]^2$ and we assume that the cone field criterion is satisfied: there exist $\lambda, \beta \in (0,1)$ such that for any $x \in R \cap f^{-1}(R)$, we have:

$$- Df_x(\mathbb{R}^2 \setminus \mathscr{C}^s) \subset \mathscr{C}^u$$

- for any $v \in \mathscr{C}_x^u$, $||Df_x \cdot v|| \ge \lambda^{-1} ||v||$,

- for any
$$v \in \mathscr{C}^s_{f(x)}$$
, $\|Df_{f(x)}^{-1}, v\| \ge \lambda^{-1} \|v\|$,

where

$$\begin{aligned} \mathscr{C}_x^s &= \{ v = v_1 + v_2 \in \mathbb{R}^2, \, \beta \| \, v_2 \| > \| \, v_1 \| \}, \\ \mathscr{C}_x^u &= \{ v = v_1 + v_2 \in \mathbb{R}^2, \, \beta \| \, v_1 \| > \| \, v_2 \| \}. \end{aligned}$$

^{*(}Draft) notes written for a Master 2 course at Orsay in 2013.

Let us consider two vertical strips $P_1, P_2 \subset R$, i.e. two disjoint rectangles whose horizontal boundaries are contained in the two horizontal boundaries of R and whose vertical boundaries are graphs of the form {($\psi(t), t$), $t \in [0, 1]$ }, disjoint from the vertical boundaries of R. (We take P_1 to the left of P_2 .)

Similarly we consider two disjoint horizontal strips $Q_1, Q_2 \subset R$ (with Q_1 below Q_2) and we suppose:

$$f^{-1}(R) \cap R = P_1 \cup P_2,$$

 $f(P_1) = Q_1, \quad f(P_2) = Q_2$

The maximal invariant set *K* in *R* is contained in $(P_1 \cup P_2) \cup (Q_1 \cup Q_2)$ and is hyperbolic. (See figure 1.)

Figure 1: The horseshoe map.

b) Local invariant manifolds. For any $x \in K$, the connected component of $W^u(x) \cap R$ containing x is a graph of the form $\{(s, \varphi(s)), s \in [0, 1]\}$, tangent to \mathscr{C}^u (the function φ is C^1 and β -Lipschitz). We denote it by $W^u_{loc}(x)$.

Similarly, the connected component of $W^{s}(x) \cap R$ containing x is a graph of the form $\{(\psi(t), t), t \in [0, 1]\}$, tangent to \mathscr{C}^{s} (the function ψ is C^{1} and β -Lipschitz). We denote it by $W^{s}_{loc}(x)$.

For any $x, y \in K$, we have the following properties:

- $f(W^{s}_{loc}(x)) \subset W^{s}_{loc}(f(x)) \text{ and } f^{-1}(W^{u}_{loc}(x)) \subset W^{s}_{loc}(f^{-1}(x)).$
- $W_{loc}^{s}(x), W_{loc}^{s}(y)$ (resp. $W_{loc}^{u}(x), W_{loc}^{u}(y)$) are either disjoint or equal.
- $W_{loc}^{s}(x), W_{loc}^{u}(y)$ intersect in a unique point. The intersection is transverse and contained in *K*.

– In particular, *K* is transitive, hence it is a basic set.

c) Folding region. We introduce two open sets $L_s \subset (P_1 \cup P_2) \setminus (Q_1 \cup Q_2)$ and $L_u \subset (Q_1 \cup Q_2) \setminus (P_1 \cup P_2)$ and an integer $N \ge 2$ such that $f^N(L_s) = L_u$. (See figure 2.) We are aimed to describe the dynamics inside

$$R \cup f(L_s) \cup \cdots \cup f^{N-1}(L_s)$$

Figure 2: The folding region.

d) **Construction.** One can build such a dynamics by deformation of the classical hyperbolic diffeomorphism of the sphere S^2 built by Smale [S, pages 770–773], as it is picture in figure 3.

These properties are C^1 -robust.

Lemma 1. Any diffeomorphism g that is C^1 -close to f satisfies the same properties, when one replaces P_1, P_2 by the new connected components of $R \cap g^{-1}(R)$ and replace Q_1, Q_2, L_u by the new images $g(P_1), g(P_2), g^N(L_s)$.

2 Transverse combinatorial structure

Let us denote by \mathcal{W}^u the union of the local unstable manifolds $W_{lot}^u(x)$ with $x \in K$. It is a closed subset of R. We describe the transverse structure of \mathcal{W}^u . One can note (but we will not use it) that \mathcal{W}^u intersect each vertical line of R as a Cantor set.

The connected components of $Int(R) \setminus W^u$ are open rectangles *G* bounded by two local unstable manifolds: G^+ (above) and G^- (below).

The connected component G which contains the region between Q_1 and Q_2 is called *generation* 0 *component* and denoted by G_0 . The union of $\mathcal{W}^u \cap Q_1$ with the components G contained in Q_1 and the union of $\mathcal{W}^u \cap Q_2$ with the components G contained in Q_2 are two closed rectangles denoted as B_1 and B_2 respectively. (See figure 4.)

We immediately get:

Figure 3: The standard horseshoe (above). The realization of the horseshoe map with a folding (below).

Lemma 2. For any component G different from G_0 , the pre image $f^{-1}(G)$ is contained in a component G'. There exists an integer $n \ge 1$ such that $f^{-n}(G) \subset G_0$, which is called the generation of G.

To any such component *G* we associate the rectangles B^+ , B^- , which are the connected components of $f^n(B_1)$ and $f^n(B_2)$ that are adjacent to *G*. (The rectangle B^+ is above and B^- is below.) In the following we sometimes denotes B_0^+ the rectangle B_1 or B_2 which contains $f^{-n}(B^+)$; the other one is denoted B_0^- .

The same structure holds for the union \mathcal{W}^s of the local stable manifolds $W_{lot}^s(x)$.

3 Stable and unstable holonomies

The stable and unstable manifolds are as smooth as the diffeomorphism, but in general they do not belong to a smooth foliation. For a surface diffeomorphism and a $C^{1+\alpha}$ -diffeomorphism, the transverse smoothness, that is the smoothness of the holonomy of the local stable and unstable manifolds, is however Lipschitz.

Definition 1. Let γ , γ' be two transverse arcs to a local unstable manifold $W_{loc}^{u}(x)$. The *holon*-

Figure 4: Combinatorics of components.

omy between γ , γ' is the map which associates to any intersection z between γ and $W^u_{loc}(x')$ close to $W^u_{loc}(x)$ the unique point $z' \in \gamma' \cap W^u_{loc}(x')$.

For any $x, y \in K$ we estimate the distance between the unstable leaves $W_{loc}^{u}(x)$ and $W_{loc}^{u}(y)$ by considering vertical graphs $\gamma = \{(\psi(t), t), t \in [0, 1]\}$ associated to a β -Lipschitz function ψ and the distance between $W_{loc}^{u}(x) \cap \gamma$ and $W_{loc}^{u}(y) \cap \gamma$ along γ . It is denoted $d_{\gamma}(W_{loc}^{u}(x), W_{loc}^{u}(y))$.

We then define

$$d^{+}(W_{loc}^{u}(x), W_{loc}^{u}(y)) = \sup_{\gamma} d_{\gamma}(W_{loc}^{u}(x), W_{loc}^{u}(y)),$$
$$d^{-}(W_{loc}^{u}(x), W_{loc}^{u}(y)) = \inf_{\gamma} d_{\gamma}(W_{loc}^{u}(x), W_{loc}^{u}(y)).$$

Proposition 1. Let us assume that f is a $C^{1+\alpha}$ -diffeomorphism and consider some C > 0. Then, there exists $\Delta > 1$ and a C^1 -neighborhood \mathcal{U} of f with the following property.

For any $C^{1+\alpha}$ -diffeomorphism $g \in \mathcal{U}$ such that the α -Hölder norms of Dg, Dg^{-1} are bounded by C > 0, for any x, y in the hyperbolic continuation K_g of K we have:

$$d^{+}(W_{loc}^{u}(x), W_{loc}^{u}(y)) \leq \Delta . d^{-}(W_{loc}^{u}(x), W_{loc}^{u}(y)).$$

Proof. Let us consider two local unstable manifolds $W_{loc}^{u}(x)$ and $W_{loc}^{u}(y)$, two transverse graphs γ, γ' and the subintervals I, I' inside γ, γ' which connect $W_{loc}^{u}(x)$ and $W_{loc}^{u}(y)$. We have to show that $|I| \leq \Delta |I'|$, where $\Delta > 0$ is a uniform constant and |I| is the length of the arc I.

Note that the backward iterates of the endpoints of I, I' are contained in R and tangent to the cone \mathscr{C}^s . The length of $f^{-k}(I), f^{-k}(I')$ increases exponentially as n growths, whereas they are tangent to the thiner cone fields $Df^{-n}.\mathscr{C}^s$.

Let J_1, J_2 be the arcs of $W^u_{loc}(x)$ and $W^u_{loc}(y)$ which connect γ, γ' . Their backward iterates are all contained in *R* and their length decreases exponentially. One deduces that there exists $N \ge 0$ such that $f^{-N}(I), f^{-N}(I'), f^{-N}(J_1), f^{-N}(J_2)$ have the same length (up to a multiplicative constant depending on β, λ). See figure 5.

Lemma 3. There exists a foliation of the subrectangle of R bounded by $W_{loc}^{u}(f^{-N}(x))$ and $W_{loc}^{u}(f^{-N}(y))$, whose leaves are tangent to \mathcal{C}^{u} . Its holonomy defines a homeomorphism Π_{N} between the transverse arcs $f^{-N}(I)$ and $f^{-N}(I')$, which is bi-Lipschitz with a uniform constant $Lip(\Pi_{N}) > 0$.

Figure 5: Image of the unstable strip by the iterate f^{-N} .

Proof. The two leaves $W_{loc}^{u}(f^{-N}(x))$ and $W_{loc}^{u}(f^{-N}(y))$ are the graphs of two β -Lipschitz functions φ_1, φ_2 . For $u \in [1, 2]$, the functions

$$\varphi_u := (2 - u)\varphi_1 + (u - 1)\varphi_2$$

are β -Lipschitz and their graphs define the leaves of the foliation. We denote by Π_N the holonomy map between $f^{-N}(I)$ and $f^{-N}(I')$.

Let $z \in f^{-N}(I)$ and $z' = \prod_N(z)$. Let V, V' be two vertical segments which connect the local unstable manifolds of $f^{-n}(x)$, $f^{-n}(y)$ and which contain z and z' respectively. The holonomy $\prod_{V,V'}$ between V and V' is linear since the leaves φ_t have been obtained as barycenters. As a consequence, $\prod_{V,V'}$ is a Lipschitz map whose constant $\frac{|V'|}{|V|}$ is bounded since $f^{-N}(I)$, $f^{-N}(I')$, $f^{-N}(J_1)$, $f^{-N}(J_2)$ have comparable lengths.

The holonomy map Π_N may be decomposed as

$$\Pi_N = \Pi_{V', f^{-N}(I')} \circ \Pi_{V, V'} \circ \Pi_{f^{-N}(I), V}$$

The holonomy map $\Pi_{f^{-N}(I),V}$ fixes z. In a small neighborhood of z, the slopes of the leaves of the foliation are close to a constant with norm smaller than β and the slope of $f^{-N}(I)$ above the second coordinate is close to a constant with norm smaller than β . Hence the Lipschitz constant of $\Pi_{f^{-N}(I),V}$ at z is uniformly bounded. One argues similarly for $\Pi_{V',f^{-N}(I')}$. This gives the conclusion of the lemma.

From the previous lemma we obtain a bi-lipschitz homeomorphism $\Pi_{I,I'}$ between *I* and *I'* defined by

$$\Pi_{I,I'} = f^N \circ \Pi_N \circ f^{-N}.$$

Its Lipschitz constant at $\zeta \in I$ is bounded by

$$\|Df_{|f^{-N}(I')}^{N}(\Pi_{N} \circ f^{-N}(\zeta))\| \operatorname{Lip}(\Pi_{N}) \|Df_{|I}^{-N}(\zeta)\|$$

We thus have to bound the following quantity for $z \in f^{-N}(I)$:

$$\frac{\|Df_{|f^{-N}(I')}^{N}(\Pi_{N}(z))\|}{\|Df_{|f^{-N}(I)}^{N}(z)\|} = \prod_{i=0}^{N-1} \frac{\|Df_{|f^{i-N}(I')}(f^{i} \circ \Pi_{N}(z))\|}{\|Df_{|f^{i-N}(I)}(f^{i}(z))\|}.$$
(1)

Lemma 4. There exists C' > 0 and $\lambda' \in (0, 1)$ such that if $p_i, p'_i \in (-\beta, \beta)$ denote the slope of $f^{i-N}(I), f^{i-N}(I')$ (above the vertical) at $f^i(z)$ and $f^i(\Pi_n(z))$, then

$$|p_i' - p_i| \le C' {\lambda'}^{N-i}.$$

Proof. Let L > 0 bounds the length of local unstable manifolds. Since z and $\Pi_N(z)$ belong to a same leaf tangent to \mathscr{C}^u , the cone field criterion gives:

$$d(f^i(\Pi_N(z)), f^i(z)) \leq \lambda^{N-i} d(f^N(\Pi_N(z)), f^N(z)) \leq \lambda^{N-i}.L.$$

By the cone field criterion, if we consider two vectors at a same point *x* with slopes *p*, *p'*, then their images Df^{-1} will have slopes \bar{p} , \bar{p}' satisfying

$$|\bar{p}' - \bar{p}| \le \lambda^2 |p' - p|.$$

This gives

$$\begin{split} |p'_{i-1} - p_{i-1}| &\leq |p'_{i-1} - \bar{p}| + |\bar{p} - p_{i-1}| \\ &\leq \lambda^2 |p'_i - p_i| + C.d(f^i(z), f^i(\Pi_N(z)))^\alpha \\ &\leq \lambda^2 |p'_i - p_i| + C.L^\alpha.\lambda^{(N-i)\alpha}, \end{split}$$

where \bar{p} is the slope of the image of the vectors with slope p_i by $Df^{-1}(f^i(\Pi_N(z)))$ (rather than by $Df^{-1}(f^i(z))$).

Since $|p'_N - p_N| \le 2\beta$, we thus obtain:

$$|p_i' - p_i| \le C' \lambda^{\alpha(N-i)},$$

where C' > 0 is a uniform constant.

One deduces that there exists C'' > 0 uniform such that:

$$\log \frac{\|Df_{|f^{i-N}(I')}(f^{i} \circ \Pi_{N}(z))\|}{\|Df_{|f^{i-N}(I)}(f^{i}(z))\|} \leq C'' d(f^{i} \circ \Pi_{N}(z), f^{i}(z)) + C'' \|p_{i} - p_{i}'\|,$$

which is exponentially small in N - i. One deduces that (1) is uniformly bounded by a constant $\Delta > 0$.

Any $C^{1+\alpha}$ -diffeomorphism g which is C^1 -close to f and such that the $C^{1+\alpha}$ -norm of Dg, Dg^{-1} is bounded by C satisfies the same estimates.

Remark 2. When the lengths of *I*, *I'*, *J*₁, *J*₂ are small and the slopes of γ , γ' are close to a same constant, we get $|I'| \le \Delta |I|$ for a constant Δ arbitrarily close to 1.

4 Thickness

Let us consider a local stable manifold $W_{loc}^s(x)$ and an open connected component U of $W_{loc}^s(x) \setminus K$: it is the intersection of a component G with $W_{loc}^s(x)$. We are aimed to compare U with the sizes along $W_{loc}^s(x)$ of the adjacent rectangles B^+, B^- to G.

Definition 2. The *stable thickness* of *K* at *U* is

$$\tau(K, U) = \frac{\min(|B^- \cap W^s_{loc}(x)|, |B^+ \cap W^s_{loc}(x)|)}{|U|}.$$

The *stable thickness of K* is

$$\tau^{s}(K) = \inf_{U} \tau(K, U).$$

	-	-	-
L			1
L			1
L			1

Let *z* be a point on an unstable leaf $W^{u}(x)$, $x \in K$, and let γ be a C^{1} -arc at *z* transverse to $W^{u}(x)$.

Lemma 5. There exists $N \ge 1$ such that $f^{-N}(z)$ belongs to $W^u_{loc}(f^{-N}(x))$ and $T_{f^{-N}(z)}f^{-N}(\gamma)$ is contained in \mathscr{C}^s .

Proof. Let us consider N_0 such that $f^{-N_0}(z)$ belongs to $W^u_{loc}(f^{-N_0}(x))$. For $N_1 \ge 0$ large enough, the complement of the cone $Df^{N_1}(f^{-(N_1+N_0)}(z))$. \mathcal{C}^s is arbitrarily thin and contains $T_{f^{-N_0}(x)}W^u_{loc}(f^{-N_0}(x))$. It is thus transverse to $f^{N_0}(\gamma)$. One deduces that $Df^{-N}(\gamma)$ is tangent to \mathcal{C}^s at $f^{-N}(z)$.

Definition 3. The *local thickness at z* is:

$$\tau^{s}(z) = \liminf_{U_{z} \to z} \frac{\min(|B_{z}^{+} \cap \gamma|, |B_{z}^{-} \cap \gamma|)}{|U_{z}|}$$

where U_z is the image by f^N of a connected component of $f^{-N}(\gamma) \setminus \mathcal{W}^u$ (i.e. there exists a component *G* such that $U_z = \gamma \cap f^N(G)$) and B_z^{\pm} are the image by f^N of the rectangles B^{\pm} that are adjacent to *G*.

The following shows that the definition does not depend from *N* or γ .

Proposition 2. *a*) $\tau^{s}(K) > 0$.

b) $\tau^{s}(z) = \tau^{s}(K)$.

c) The stable thickness $\tau^{s}(K_{g})$ of the hyperbolic continuation K_{g} depends continuously on g for the C^{1} -topology on the space of $C^{1+\alpha}$ diffeomorphisms such that the α -norm of Dg, Dg^{-1} is bounded by C > 0.

We will use the following lemma.

Lemma 6. For any $\Delta > 1$ and C > 0, there exists $\varepsilon > 0$ such that any diffeomorphism g that is C^1 -close to f and such that the α -norm of Dg, Dg^{-1} is bounded by C > 0 has the following property.

For any C^1 -graph $\sigma = \{(\psi(t), t)\}$ which intersects \mathcal{W}^u , any $n \ge 0$ such that:

- the slopes $\{D\psi(t)\}\$ are contained in an interval smaller than ε and included in $(-\beta, \beta)$,

- the length of $f^{-n}(\sigma)$ is smaller than ε ,

and for any $y_1, y_2 \in \sigma$, we have

$$\Delta^{-1} < \frac{\|Df^{n}(y_{1})|_{\sigma}\|}{\|Df^{n}(y_{2})|_{\sigma}\|} < \Delta.$$

Proof. The proof is similar than for lemma 4. We denote p_i , p'_i the slope of $f^i(\sigma)$ at $f^i(y_1)$ and $f^i(y_2)$. The distance $d(f^i(y_1), f^i(y_2))$ is smaller than $\varepsilon \lambda^i$

This gives

$$|p_{i-1}' - p_{i-1}| \le \lambda^2 |p_i' - p_i| + C \varepsilon^{\alpha} \lambda^{i\alpha}.$$

We thus obtain:

$$|p_i' - p_i| \leq \begin{cases} C' \varepsilon^{\alpha} \lambda^i & \text{if } \varepsilon^{\alpha} \lambda^i \geq \varepsilon \lambda^{2(N-i)}, \\ C' \varepsilon \lambda^{2(N-i)} & \text{otherwise,} \end{cases}$$

where C' > 0 is a uniform constant.

One deduces that

$$\log \frac{\|Df_{|f^{-i}(\gamma)}(f^{i}(y_{1}))\|}{\|Df_{|f^{-i}(\gamma)}(f^{i}(y_{2}))\|}$$

is smaller than $C'' \varepsilon^{\alpha}(\lambda'')^{\min(i,N-i)}$, where C'' > 0 and $\lambda'' \in (0,1)$ are uniform constants. One concludes as for lemma 4.

Proof of proposition 2. Let us consider x, U, B^{\pm} as in the definition of $\tau(K, U)$. Note that one can assume that the point x belongs to the boundary of U. The diffeomorphism f^n sends $G_0 \cap W^s_{loc}(f^{-n}(x))$, $B^{\pm}_0 \cap W^s_{loc}(f^{-n}(x))$ on U and $B^{\pm} \cap W^s_{loc}(x)$. This shows that there exists $y_1 \in B^+_0 \cap W^s_{loc}(f^{-n}(x))$ and $y_2 \in G_0 \cap W^s_{loc}(f^{-n}(x))$ such that

$$\frac{|B^+ \cap W^s_{loc}(x)|}{|U|} = \frac{|B^+_0 \cap W^s_{loc}(f^{-n}(x))|}{|G_0 \cap W^s_{loc}(f^{-n}(x))|} \cdot \frac{\|Df^n_{|W^s_{loc}(x)}(y_1)\|}{\|Df^n_{|W^s_{loc}(x)}(y_2)\|}.$$

From the previous lemma, the right hand is uniformly bounded from below. A similar property holds for $\frac{|B^- \cap W_{loc}^s(x)|}{|U|}$. This gives the property a).

Let us consider z, N, γ as in the definition of local thickness. Since $||Df|_{\gamma}^{-N}(\zeta)||$ is arbitrarily close to $||Df|_{\gamma}^{-N}(z)||$ as ζ is close to z, the local thickness at z (along γ) and at $f^{-N}(z)$ (along $f^{-N}(\gamma)$) coincide. One can thus assume in the following that N = 0. Let us fix $\delta > 0$. There exists ℓ such that for any interval U of generation larger than ℓ in definition 2, we have $\tau(U, K) > \tau^{s}(K) - \delta$.

Let us consider the ratio $|B_z^+ \cap \gamma|/|U_z|$ which appears in the definition of the local thickness. As before there exists $n \ge 0$ such that $f^{-n}(U_z)$ and $f^{-n}(B_z^+)$ coincide with the intersections of $f^{-n}(\gamma)$ with *G* of generation ℓ and B^+ adjacent to *G*. One deduces that there exists $y_1 \in B^+ \cap f^{-n}(\gamma)$ and $y_2 \in f^{-n}(U_z)$ such that denoting $\sigma = f^{-n}(\gamma)$ we have:

$$\frac{|B_z^+ \cap \gamma|}{|U_z|} = \frac{|B^+ \cap \sigma|}{|G \cap \sigma|} \cdot \frac{\|Df_{|\gamma}^n(y_1)\|}{\|Df_{|\gamma}^n(y_2)\|} \ge \Delta^{-1}(\tau^s(K) - \delta).$$

Note that Δ is arbitrarily close to 1 as U_z converges to z. Arguing similarly with $|B_z^- \cap \gamma|/|U_z|$ one deduces $\tau^s(z) \ge \tau^s(K)$.

Let us prove the other inequality. One considers $\bar{x} \in K$, a component $\bar{U} = G \cap W^s_{loc}(\bar{x})$ of $W^s_{loc}(\bar{x}) \setminus W^u$ which is small, and the interval $B^{\pm} \cap W^s_{loc}(\bar{x})$ adjacent. One can assume that \bar{x} is a boundary point of \bar{U} . Since K is transitive, there exists $y \in K$ close to x and negative iterates $f^{-n}(y)$ arbitrarily close to \bar{x} . One can replace \bar{x} by the intersection point between $W^u_{loc}(\bar{x})$ and $W^s_{loc}(f^{-n}(y))$: this changes the ratios $|B^{\pm} \cap W^s_{loc}(\bar{x})|/\bar{U}$ only a little. We are now reduced to the case there exist iterates $f^n(\bar{x})$ arbitrarily close to x with ℓ arbitrarily large. One deduces that there exists B^{\pm}_n and G_n close to $W^u_{loc}(f^n(\bar{x}))$ which are mapped by f^{-n} inside B^{\pm} and G. As before we have

$$\frac{|B_n^{\pm} \cap \gamma|}{|G_n \cap \gamma|} \leq \Delta \frac{|B^{\pm} \cap \sigma|}{|G \cap f^{-n}(\sigma)|}$$

where σ is the connected component of $f^{-n}(\gamma) \cap R$ containing $f^{-n}(z)$. Arguing as in the proof of the inclination lemma, we deduces that σ and $W^s_{loc}(\bar{x})$ are arbitrarily close for the C^1 -topology when n is large. One deduces also that Δ is arbitrarily close to 1. This proves $\tau^s(z) \leq \tau^s(K)$ and concludes the proof of the b).

The lemma 6 (and the arguments above) show that

$$\tau_n^s(K) := \inf_{U \text{ of generation } n} \tau(K, U)$$

for *n* large is close to $\tau^{s}(K)$, uniformly in the diffeomorphism *g* that is C^{1} -close to *f* and such that the C^{α} -norm of Dg, Dg^{-1} is bounded by C > 0. Since $\tau_{n}^{s}(K_{g})$ depends continuously on *g* for the C^{1} -topology, one gets the property c).

5 Robust tangencies

Definition 4. *K* has a *homoclinic tangency* if there exists a periodic orbit $O \subset K$ such that $W^{s}(O)$ and $W^{u}(O)$ have a non-transverse intersection.

K has a *generalized homoclinic tangency* if there exist $x, y \in K$ such that $W^{s}(x)$ and $W^{u}(y)$ have a non-transverse intersection.

K has a C^r -*robust generalized homoclinic tangency* if there exists a neighborhood \mathcal{U} of *f* in Diff^{*r*}(*M*) such that any $g \in \mathcal{U}$ has a generalized homoclinic tangency associated to the hyperbolic continuation K_g of *K*.

Theorem 2. For any C^2 diffeomorphism f with a horseshoe K exhibiting a homoclinic tangency and satisfying $\tau^s(K) \cdot \tau^u(K) > 1$, then there exists a diffeomorphism g close to f in $\text{Diff}^2(M)$ which exhibits a C^2 -robust generalized homoclinic tangency.

6 Proof of Theorem 2

a) **Preparation.** Let us consider $x, y \in K$ and $z \in W^{s}(x) \cap W^{u}(y)$ a non-transverse intersection outside *R*.

We choose local coordinates (s, t) near the point z such that:

- $W^{s}(x)$ coincides locally with the graph {t = 0},
- − $W^{u}(x)$ coincides locally with the graph of a function $\phi \ge 0$ which take the values 0 only at 0.

This last property is obtained after a small C^k -perturbation in a neighborhood of $f^{-1}(z)$ (so that K, $W_{loc}^s(K)$, $W_{loc}^u(K)$ are not modified).

Let $\gamma = \{s = 0\}$ be a small vertical transversal through *z*. By lemma 5, there exists $N \ge 1$ such that $f^N(\gamma)$ is a graph $\{(s, \varphi(s)\} \text{ and } f^{-N}(\gamma) \text{ is a graph } \{(\psi(t), t)\} \text{ where } \varphi, \psi \text{ are } \beta$ -Lipschitz.

We will study the transverse structure of $f^N(\mathcal{W}^u)$ and $f^{-N}(\mathcal{W}^s)$ near *z*, using the results proved in the previous sections:

- If one chooses two small vertical transversals $\{s = s_1\}$ and $\{s = s_2\}$, close to *z*, the holonomy of the local stable and local unstable laminations $f^N(\mathcal{W}^u)$ and $f^{-N}(\mathcal{W}^s)$ are Lipschitzian with a constant $\Delta > 1$ close to 1.
- Reducing γ if necessary, the norm of the derivatives $||Df^N(\zeta)|_{\gamma}||$ and $||Df^{-N}(\zeta)|_{\gamma}||$ are almost constant for $\zeta \in \gamma$.
- If $\varepsilon > 0$ has been fix and γ is small enough, one deduces that for any component G^u of Int(R) \ \mathcal{W}^u and any adjacent rectangle R^u , one has:

$$\frac{|\gamma \cap f^N(B^u)|}{|\gamma \cap f^N(G^u)|} \ge (1-\varepsilon).\tau^u.$$

– A similar estimate for the components G^s of $Int(R) \setminus \mathcal{W}^s$. By the Lipschitz control of the holonomies, these estimates are still valid for verticals $\{s = s_0\}$ close to γ .

b) Robust overlapping. We modify f again near $f^{-1}(z)$, in order to modify $f^{N}(\mathcal{W}^{u})$ in a neighborhood of z without modifying $f^{-N}(\mathcal{W}^{s})$.

The two tangent leaves $W^{s}(x)$ and $W^{u}(y)$ are limit in a neighborhood of z of leaves $G^{s,\pm}$ and $G^{u,\pm}$ respectively: G^{s} is the image by f^{-N} of a components of $Int(R) \setminus \mathcal{W}^{s}$ and $G^{s,\pm}$ are its boundary leaves; similarly G^{u} is the image by f^{N} of a components of $Int(R) \setminus \mathcal{W}^{u}$ and $G^{u,\pm}$ are its boundary leaves. See figure 6.

Figure 6: The overlapping between the stable and unstable laminations.

The perturbation is done in order that the following assumptions are satisfied in a neighborhood $(-\varepsilon, \varepsilon)^2$ of *z*, for two components G^u, G^s and for any diffeomorphism *g* in an open set $\mathcal{U} \subset \text{Diff}^k(M)$ close to the initial diffeomorphism *f*:

- (01) $G^{u,-}$ meets $G^{s,-}$,
- (O2) $G^{u,+}$ meets $G^{s,+}$,
- (O3) $G^{u,+}$ does not meet $G^{s,-}$.
- (And necessarly, $G^{u,-}$ meets $G^{s,+}$.)

We have to prove that any diffeomorphism $g \in \mathcal{U}$ has a generalized homoclinic tangency.

c) The induction.

Lemma 7. Let us assume that the components G^s , G^u satisfy the assumptions (O1-3) of the previous section for a diffeomorphism g. Then either g has a generalized homoclinic tangency, or there exists components \hat{G}^s , \hat{G}^u satisfying also assumptions (O1-3) such that:

- either $G^s = \hat{G}^s$ and the generation of \hat{G}^u is larger than the one of G^u ,
- or $G^u = \widehat{G}^u$ and the generation of \widehat{G}^s is larger than the one of G^s .

Proof. Let us introduce two rectangles B^s , B^u adjacent to G^s , G^u and such that $B^{s,+} = G^{s,-}$ and $B^{u,-} = G^{u,+}$ (see figure 7).

Figure 7: Overlapping between components and rectangles (1).

Claim 1. One of the following properties holds:

- (a) $B^{s,-} < G^{u,-}$,
- (b) $B^{u,+} > G^{s,+}$.

Proof. If one supposes by contradiction that these properties are not satisfied, there exists a vertical γ_1 close to *z* such that

$$(\gamma_1 \cap G^u) \supset (\gamma_1 \cap B^s),$$

and there exists a vertical γ_2 close to *z* such that

$$(\gamma_2 \cap G^s) \supset (\gamma_2 \cap B^u).$$

One deduces:

$$|\gamma_2 \cap G^u| \simeq |\gamma_1 \cap G^u| \ge |\gamma_1 \cap B^s| \simeq |\gamma_2 \cap B^s| \ge (1 - \varepsilon)\tau^s(K)|\gamma_2 \cap G^s|.$$

Similarly:

$$|\gamma_2 \cap G^s| \ge |\gamma_2 \cap B^u| \ge (1 - \varepsilon)\tau^u(K)|\gamma_2 \cap G^u|.$$

This gives

$$|\gamma_2 \cap G^u| \ge (1 - \varepsilon)^2 \tau^s(K) \tau^u(K) |\gamma_2 \cap G^u|,$$

which is a contradiction since $\tau^{s}(K)\tau^{u}(K) > 1$.

Let us assume for instance that the first case of the claim $B^{s,-} < G^{u,-}$ holds. Among the leaves Σ of $f^{-N}(\mathcal{W}^s)$ which satisfy $\Sigma \leq G^{u,-}$, we choose the last one, i.e. minimizing the distance to $G^{u,-}$. Two cases are possible:

- either $\Sigma \leq G^{u,-}$ intersect each other: we have found a generalized homoclinic tangency,
- or $\Sigma < G^{u,-}$: in this case $\Sigma = \widetilde{G}^{s,-}$ where \widetilde{G}^s is the image by f^{-N} of a new component of Int $(R) \setminus \mathcal{W}^s$; by definition of Σ , the leaf $\widetilde{G}^{s,+}$ meets $G^{u,-}$. We also define $\widetilde{G}^u = G^u$.

If there is no generalized homoclinic tangency for g, we have found a new pair of components \tilde{G}^s , \tilde{G}^u satisfying (see figure 8):

- (\widetilde{O} 1) $\widetilde{G}^{u,+}$ does not meet $\widetilde{G}^{s,+}$ (and $\widetilde{G}^{s,-}$),
- (\widetilde{O} 2) $\widetilde{G}^{u,-}$ meets $\widetilde{G}^{s,+}$,
- (\widetilde{O} 3) $\widetilde{G}^{u,-}$ does not meet $\widetilde{G}^{s,-}$.

Note that \tilde{G}^s is contained in B^s , hence has a generation larger than the generation of G^s .

If the second case $B^{u,+} > G^{s,+}$ of the claim holds, the same argument gives the same conclusion (but this time $\tilde{G}^s = G^s$ and the generation of \tilde{G}^u is larger than the generation of G^s).

Figure 8: Overlapping between components and rectangles (2).

Let us consider the rectangles \tilde{B}^s , \tilde{B}^u adjacent to \tilde{G}^s , \tilde{G}^u such that $\tilde{B}^{s,-} = \tilde{U}^{s,+}$ and $\tilde{B}^{u,+} = \tilde{U}^{u,-}$. As before we prove:

Claim 2. One of the following properties holds:

- (a) $\widetilde{B}^{s,+}$ meets $\widetilde{G}^{u,+}$,
- (b) $\widetilde{B}^{u,-}$ meets $\widetilde{G}^{s,-}$.

We assume for instance that $\widetilde{B}^{u,-}$ meets $\widetilde{G}^{s,-}$ as in the first case of the claim. Among the leaves $\widetilde{\Sigma}$ of $f^{N}(\mathcal{W}^{u})$ which meet $\widetilde{G}^{s,-}$, we choose as before the last one. Two cases are possible:

- either $\widetilde{\Sigma} \leq \widetilde{G}^{s,-}$: we have found a generalized homoclinic tangency,
- or $\tilde{\Sigma} = \hat{G}^{u,-}$ where \hat{G}^{u} is the image by f^{N} of a new component of $Int(R) \setminus \mathcal{W}^{u}$; by definition of $\tilde{\Sigma}$, the leaf $\hat{G}^{u,+}$ is disjoint from $\tilde{G}^{s,-}$. We also define $\hat{G}^{s} = \tilde{G}^{s}$.

If there is no generalized homoclinic tangency for g, we have found a new pair of components \hat{G}^s , \hat{G}^u satisfying (O1-3). If $\tilde{B}^{s,+}$ meets $\tilde{G}^{u,+}$ as in the second case of the claim, we obtain the same conclusion by the same argument.

By construction,

```
generation(G^{s}) \leq generation(\widehat{G}^{s}),
generation(G^{u}) \leq generation(\widehat{G}^{u}),
```

and at least one of these inequality is strict. This ends the proof of the lemma 7. \Box

d) Robust tangency. From lemma 7 we obtain a sequence of components G_n^s , G_n^u such that:

- max(generation(G_n^s), generation(G_n^u)) $\xrightarrow[n \to \infty]{} \infty$,
- $G_n^s \cap G_n^u \neq \emptyset,$
- $G_n^{s,-} \cap G^{u,+} = \emptyset.$

If one assumes for instance that generation $(G_n^s) \xrightarrow[n \to \infty]{} \infty$, one deduces that $G_n^{s,-}$ and $G_n^{s,+}$ converge toward a same leaf Σ^s of $f^{-N}(\mathcal{W}^s)$. One can also assume that $G_n^{u,+}$ converge toward a leaf Σ^u of $f^N(\mathcal{W}^u)$.

We obtain:

- Since $G_n^{u,+} \ge G_n^{s,-}$ we have $\Sigma^u \ge \Sigma^s$.
- Since $G_n^{u,+}$ meets $G_n^{s,+}$, we have that Σ^u meets Σ^s .

One deduces that Σ^{u} and Σ^{s} have a non-transverse intersection, hence *g* has a generalized homoclinic tangency. This ends the proof of the theorem 2.

7 Infinitely many sinks or sources

The following proposition ends the proof of the Newhouse's theorem 1 stated at the beginning of the chapter.

Proposition 3. Let us consider an open set $\mathcal{U} \subset \text{Diff}^k(M)$ and a transit if hyperbolic set which admits a hyperbolic continuation K_g for each $g \in \mathcal{U}$. Let us assume furthermore that K_g has a generalized homoclinic tangency for each $g \in \mathcal{U}$. Then, there exists a dense G_δ -subset $\mathcal{G} \subset \mathcal{U}$ such that any $g \in \mathcal{G}$ has infinitely many sinks or infinitely many sources.

Proof. For $N \ge 1$, we define

 $\mathcal{G}_N = \{g \in \mathcal{U}, g \text{ has at least } N \text{ sinks or sources} \}.$

It is an open set. If it is dense for each $N \ge 1$, then the set $\mathscr{G} = \cap \mathscr{G}_N$ is a dense G_{δ} -set as announced. The proof of the proposition is thus a consequence of the following.

Proposition 4. For any diffeomorphism $f \in \text{Diff}^k(M)$, for any transitive hyperbolic set K with a generalized homoclinic tangency and for any neighborhood U of K, there exists g arbitrarily close to f in $\text{Diff}^k(M)$ with a sink or a source whose orbit meets U.

The next lemma shows that one can assume that the diffeomorphism f in the previous proposition has a homoclinic tangency.

Lemma 8. For any diffeomorphism $f \in \text{Diff}^k(M)$, for any transitive hyperbolic set K with a generalized homoclinic tangency and for any neighborhood U of K, there exists g arbitrarily close to f which exhibits a homoclinic tangency associated to a periodic orbit contained in U.

Proof. Let $x, y \in K$ and $N \ge 1$ such that $f^{-N}(W_{loc}^s(x))$ and $f^{-N}(W_{loc}^u(y))$ have a non-transverse intersection z. Since K is transitive, there exists a hyperbolic periodic orbit $O \subset U$ with two points p, q close to x and y respectively. Consequently, the leaves $f^{-N}(W_{loc}^s(p))$ and $f^{-N}(W_{loc}^s(x))$ are close to each other, the leaves $f^N(W_{loc}^u(q))$ and $f^N(W_{loc}^s(y))$ are close to each other.

A perturbation of f in a small neighborhood of $f^{-1}(z)$ will produce a tangency between $f^{-N}(W_{loc}^{s}(p))$ and $f^{-N}(W_{loc}^{u}(q))$.

The end of the section is devoted to the proof of the second proposition.

Proof of proposition 4. Let *O* be a periodic orbit. In order to simplify the presentation, one will assume that *O* is a fixed point *p*. We choose some coordinates (*s*, *t*) near p = (0,0) such that:

- $W_{loc}^{s}(p) = \{(0, t), t \in [-2, 2]\}$ and $W_{loc}^{u}(p) = \{(s, 0), s \in [-2, 2]\},\$
- there exists $N \ge 1$ such that $f^N(1,0) = (0,1)$ and $f^N(W^u_{loc}(p))$ is tangent to $W^s_{loc}(p)$ at (0,1) (i.e. $Df^N(1,0)$ sends the horizontal direction on the vertical one),
- $Df^{N}(1,0)$ sends the vertical direction on the horizontal one.

Let us consider a small vertical segment γ through (1,0), a horizontal segment σ through (0,1), and a large integer $m \ge 1$. The segments $f^{-m}(\gamma)$ and σ intersect at a point q. See figure 9.

Figure 9: The homoclinic return giving birth to sinks or sources.

From the inclination lemma, $Df^m(f^{-m}(q))$ sends the horizontal direction to a direction close to the vertical and sends a direction close to the vertical to the vertical direction. Consequently, there exists a C^k -perturbation g of f supported near q and $f^{-1}(q)$ such that

- q is m + N-periodic for g,
- $Dg^{m+N}(q)$ exchange horizontal and vertical directions, and its determinant is different from ±1: its eigenvalues have the same modulus, which is different from 1.

This proves that q is a sink or a source (depending if the determinant has modulus larger or smaller than 1).

References

- [N1] Sheldon Newhouse. Diffeomorphisms with infinitely many sinks. *Topology* **13** (1974), 9–18.
- [N2] Sheldon Newhouse. Lectures on dynamical systems. In *Dynamical systems*, CIME Lectures, Bressanone 1978.
- [S] Stephen J. Smale. Differentiable dynamical systems. *Bull. Amer. Math. Soc.* **73** (1967), 747–817.

Sylvain Crovisier

Laboratoire de Mathématiques d'Orsay, CNRS - Université Paris-Saclay, Orsay 91405, France *E-mail:* Sylvain.Crovisier@universite-paris-saclay.fr