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Caracterize non-hyperbolicity

Goal: Find mechanisms that generate non-hyperbolicity:

— Simple configurations (on periodic orbits).

— Generate large sets of non-hyperbolic systems.

More generally: split the dynamics through dichotomies
phenomenon/mechanisms.



Hyperbolic diffeomorphisms: definition

M: compact boundaryless manifold.

Definition
f € Diff(M) is hyperbolic if there exists Kp, ..., Ky C M s.t.:

— each Kj is a hyperbolic invariant compact set
TkM = E° & EY,
— for any x € M\ (J; Ki), there exists U C M open such that

f(U)C Uand x € U\ f(U).

(Equivalent to “Axiom A + no cycle condition”.)



Obstructions to hyperbolicity

Homoclinic tangency associated to a hyperbolic periodic point p.

VP

Heterodimensional cycle associated to two hyperbolic periodic
points p, g such that dim(E*(p)) # dim(E*(q)).
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Conjecture (Palis)
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Hyperbolicity conjecture

Conjecture (Palis)

Any f € Diff(M) can be approximated by a hyperbolic
diffeomorphism or by a diffeomorphism exhibiting a homoclinic
bifurcation (tangency or cycle).

This holds when dim(M) = 1. (Morse-Smale systems are dense.)
In higher dimensions, we consider the C!-topology.
Theorem (Pujals-Sambarino)

The conjecture holds for C1-diffeomorphisms of surfaces.

Remark. The conjecture also holds in the conservative setting.
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Essential hyperbolicity far from homoclinic bifurcations

Theorem (Pujals, C-)

Any generic f € Diff'(M) \ Tangency U Cycle is essentially
hyperbolic.

Definition of essential hyperbolicity. There exist hyperbolic
attractors A1, ..., Ak and repellors Ry ..., Ry s.t.

— the union of the basins of the A; is (open and) dense in M,
— the union of the basins of the R; is (open and) dense in M,

Remarks.
— The set of these diffeomorphisms is not open apriori.

— In the setting of the theorem, the dynamics outside the basins
is partially hyperbolic.



Program of the lectures

Goal. Any generic f € Difft(M) \ Tangency U Cycle is essentially
hyperbolic.

— Lecture 1. Overview of the proof.
Finiteness of attractors.
— Lecture 2. Classes of the dynamics.
Chain-hyperbolicity, strong laminations.
— Lecture 3. Non-hyperbolic attractors.

Perturbation and creation of strong connections.



Decomposition of the dynamics / quasi-attractors

The chain-recurrent set R(f): the set of x € M s.t. for any £ > 0,
there exists a e-pseudo-orbit x = xg, x1,...,x, = x, n > 1.

The chain-recurrence classes: the equivalence classes of the relation
“for any € > 0, there is a periodic e-pseudo-orbit containing x, y".

» This gives a partition of R(f) into compact invariant subsets.
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Decomposition of the dynamics / quasi-attractors

The chain-recurrent set R(f): the set of x € M s.t. for any £ > 0,
there exists a e-pseudo-orbit x = xp, x1,...,%x, = x, n > 1.

The chain-recurrence classes: the equivalence classes of the relation
“for any € > 0, there is a periodic e-pseudo-orbit containing x, y".

» This gives a partition of R(f) into compact invariant subsets.

A quasi-attractor is a chain-recurrence class having a basis of

neighborhoods U which satisfy f(U) C U.

» There always exist quasi-attractors.

For f ¢ Diff'(M) generic:

1) Any chain-recurrence class which contains a periodic orbit O
coincides with the homoclinic class H(O) := Ws(O)h Wu(0).
(The other chain-recurrence classes are called aperiodic classes.)

2) The union of the basins of the quasi-attractors is dense in M.



Partial hyperbolicity far from homoclinic tangencies...

Theorem (C-, Sambarino, D. Yang)
Any generic f € Diff'(M) \ Tangency is partially hyperbolic:
» For aperiodic classes, TM = E* & E€ © EY with dim(E€) =1
and dim(E?), dim(E¥) > 1.
» For homoclinic classes, TM = E* ® Ef © --- ® EZC @ EY.

For each i one has dim(Ef) = 1 and the class has periodic
points with Lyapunov exponent along Ef arbitrarily close to 0.



Partial hyperbolicity far from homoclinic tangencies...

Theorem (C-, Sambarino, D. Yang)
Any generic f € Diff'(M) \ Tangency is partially hyperbolic:
» For aperiodic classes, TM = E* & E€ © EY with dim(E€) =1
and dim(E?), dim(E¥) > 1.
» For homoclinic classes, TM = E* ® Ef © --- ® EZC @ EY.

For each i one has dim(Ef) = 1 and the class has periodic
points with Lyapunov exponent along Ef arbitrarily close to 0.

. and far from heterodimensional cycles

If moreover f ¢ Cycle, then for each homoclinic class,
> each central bundle Ef is thin-trapped by f or 1,

» there are at most two central bundles.

The class is chain-hyperbolic. ~ (Cf. the second lecture.)
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Strong connexions

Let H(O) be a homoclinic class with a splitting
TM = E® @ EY = (E** @ E°) ® E“, where dim(E€) = 1.

How does the strong stable lamination intersect the class?

Theorem (Bonatti, C-)
If W (x) N H(O) = {x} for any x € H(O), then H(O) is
contained in a (loc. invariant) submanifold tangent to E€ @ E".

Definition. If W*(x) N H(O) # {x} for some x € H(O) that is
periodic and belongs to a transitive hyperbolic set containing O,
one says that H(O) has a strong connection.
» if one can choose K with a weak stable exponent, then there
exists a Cl-perturbation of f with a heterodimensional cycle.



Topology inside center-stable leaves

Consider H(O) a homoclinic class satisfying:
— there is a splitting TM = (E** @ E€) ® E<, dim(E€) = 1,
— ES = E @ E€ and E are thin trapped by f and =1 resp.

Theorem (C-, Pujals)

If H(O) has no strong connection and is not contained in a (loc.
invariant) submanifold tangent to E€ @ EY, then the intersection
of H(O) with the center-stable plaques is totally disconnected.

Remark. This applies to hyperbolic sets.



Extremal bundles

Consider H(O) with a splitting TM = E< & E< s.t.
— E,E are thin trapped by f and f~! respectively,
— dim(E®) = 1.

Theorem (C-, Pujals, Sambarino)
If f is Cl-generic and one of the following cases holds:
- dim(E®) =1,
— E® s uniformly contracted,
— inside the center-stables plaques, H(O) is totally disconnected,

then EY is uniformly expanded.



Extremal bundles : corollaries

Corollary. For generic f € Diff'(M) \ Tangency U Cycle:

— Any homoclinic class H(O) is either a sink/source or a part.
hyperbolic set with non-degenenerated bundles E°, EY.

— If H(O) has a non-uniform bundle E< = E* & E€, then there
exists x # y in H(O) such that W*(x) = W*(y).

— The number of sinks/sources is finite.



Finiteness of attractors

Proposition

For a generic f € Diff*(M) \ Tangency U Cycle, the set of
non-trivial quasi-attractors is finite.




Conclusion

We have seen that generically in Diff!(M) \ Tangency U Cycle,
— the union of the basins of the quasi-attractors is dense in M,

— quasi-attractors are finite.

It remain to prove that quasi-attractors are hyperbolic.

» Lecture 2. Quasi attractors (in fact all classes) are
chain-hyperbolic and have nice properties.

» Lecture 3. One can perturb non-hyperbolic quasi-attractors to
create a heterodimensional cycle.



Essential hyperbolicity versus homoclinic
bifurcations (2)



Program of the lectures

Goal. Any generic f € Difft(M) \ Tangency U Cycle is essentially
hyperbolic.

— Lecture 1. Overview of the proof.

Finiteness of quasi-attractors.
— Lecture 2. Classes of the dynamics.

Chain-hyperbolicity, strong laminations.
— Lecture 3. Non-hyperbolic attractors.

Perturbation and creation of strong connections.



Partial hyperbolicity far from homoclinic bifurcations
Recall. Generically the dynamics splits into homoclinic and
aperiodic classes.

Theorem 1
Any generic f € Diff'(M) \ Tangency U Cycle is part. hyperbolic:

» For aperiodic classes, TM = E* & E€ & EY with dim(E€) =1
and dim(E®),dim(E") > 1.
» For homoclinic classes, TM = E< & E“, where E<® and E<"
are thin trapped by f and f~1 respectively.
If E<® is not uniformly contracted, then E<® = E°* @ E°€ s.t.
— dim(E€) =1 and E* is uniformly contracted,

— the class has periodic points with Lyapunov exponent along E€
arbitrarily close to Q.



Topological dynamics along invariant bundle

K an inv. compact set with a dom. splitting TM = E<° & E.

Definition. A trapped plaque families tangent to E€° is a
continuous family of embedded plaques Dy, x € K, such that:

— Dy contains x and is tangent to to EZ°,

— The closure of f(Dx) is contained in Dy(,.



Topological dynamics along invariant bundle

K an inv. compact set with a dom. splitting TM = E<° & E.

Definition. A trapped plaque families tangent to E€° is a
continuous family of embedded plaques Dy, x € K, such that:

— Dy contains x and is tangent to to EZ°,

— The closure of f(Dx) is contained in Dy(,.

Definition. The bundle E® is thin-trapped if there exists trapped
plaque families tangent to E< with arbitrarily small diameters.

Example. If E< is uniformly contracted, it is thin-trapped.



Thm 1. How to use “far from homoclinic tangencies”?

Theorem (Wen)

Consider f € Diff*(M) \ Tangency and a sequence of hyperbolic
periodic orbits (O,) with the same stable dimension ds.

Then A = U, 0, has a dom. splitting TAM = E & F with
dim(E) = d,.
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Thm 1. How to use “far from homoclinic tangencies”?

Theorem (Wen)

Consider f € Diff*(M) \ Tangency and a sequence of hyperbolic
periodic orbits (O,) with the same stable dimension ds.

Then A = U, 0, has a dom. splitting TAM = E & F with
dim(E) = d,.

» This allows to build dominated splittings.

Corollary (Wen)

If u is an ergodic invariant probability, the support hat a dom.
splitting TM = E & E€ & F with dim(E€) < 1. The Lyapunov
exponents of 1 are 0 along E€ and non-zero along E and F.



Thm 1: Decomposition of non-uniform bundles

Consider a generic f € Diff'(M) \ Tangency and an invariant
compact set A with a splitting TAM = E & F.
Proposition (Decomposition principle)
If E is not uniformly contracted then one of the following holds:
— N C H(p) for some periodic p with dim(E*(p)) < dim(E).
— N C H(p) for some periodic p with dim(E*(p)) = dim(E).
H(p) contains periodic orbits with a weak stable exponent.
— N contains K partially hyperbolic: Ty M = E° & E° & EY,
with dim(E€) = 1, dim(E®) < dim(E).
Any measure on K has a zero Lyapunov exponent along E€.
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Thm 1: Decomposition of non-uniform bundles

Consider a generic f € Diff*(M) \ Tangency and an invariant
compact set A with a splitting TAM = E & F.
Proposition (Decomposition principle)
If E is not uniformly contracted then one of the following holds:
A C H(p) for some periodic p with dim(E*(p)) < dim(E).
A C H(p) for some periodic p with dim(E*(p)) = dim(E).
H(p) contains periodic orbits with a weak stable exponent.
— N contains K partially hyperbolic: Ty M = E° & E° & EY,
with dim(E€) = 1, dim(E®) < dim(E).
Any measure on K has a zero Lyapunov exponent along E€.

» In the two first cases, the bundle E splits E = E' © E€.

» In the third, one finds a periodic orbit in H(p) which spends
most of its time close to K. (Analyze the topol. central dyn.)



Chain-hyperbolic homoclinic classes: definition

Definition. A homoclinic class H(O) is chain-hyperbolic if:
— there is a dominated splitting TM = E< @ E,

— there are some plaque families D, D" tangent to E<°, E<¥
that are trapped by f and ! resp.

- DE C W5(0) and DY C WH(0).

Examples.

» The homoclinic classes of generic
f € Diff!(M) \ Tangency U Cycle.

» Some non-hyperbolic robustly transitive diffeomorphisms
(Shub, Mafé, Bonatti-Viana,...).




Chain-hyperbolic homoclinic classes: properties

Let H(O) be a chain-hyperbolic homoclinic class.

Proposition (Robustness)

(If H(O) is a chain-recurrence class,)
H(Og) is chain-hyperbolic for any g € Diff*(M) close to f.

Proposition (Local product structure)

The plaques D, D are resp. contained in the chain-stable and
the chain-unstable sets of H(O).
For x,y close, D N'Dy" belongs to H(O).



Chain-hyperbolic homoclinic classes: properties

Let H(O) be a chain-hyperbolic homoclinic class.

Proposition (Robustness)

(If H(O) is a chain-recurrence class,)
H(Og) is chain-hyperbolic for any g € Diff*(M) close to f.

Proposition (Local product structure)

The plaques D, D are resp. contained in the chain-stable and
the chain-unstable sets of H(O).
For x,y close, D N'Dy" belongs to H(O).

This justifies the name “chain-hyperbolicity” however H(O) can
robustly contain periodic points of different stable dimension!



Chain-hyp. homoclinic classes: pointwise continuation

Start with f and a chain-hyperbolic class H(O) s.t.
TM = ES @ E% = (E5® E) @ E¥ and dim(E€) = 1.

By perturbation, any points has one or two continuations:

Proposition

If f € Diff"\ strong connexions, there exists a lift dynamics (H, f)
such that for each g C"-close to f there is a semi-conjugacy
g H — H(Og) satisfying:

~ for each X € H the points m¢(X), 7 g(>“<) are close,

— for each x € H(Og) one has #m, L(x) <



Quasi-attractors

For generic f € Diff'(M) \ Tangency U Cycle, if they exist,
non-hyperbolic quasi-attractors are:

homoclinic classes,

chain-hyperbolic with a splitting E< @ EY = (E* @ E€) @ EY,

saturated by unstable leaves,

— not contained in a submanifold: they contain two different
points x,y with a same strong-stable leaf.

Goal. By perturbation, find p, g periodic in H(O) such that
W*(p) and W¥(q) intersect.
(This will give a heterodimensional cycle, hence a contradiction.)



Quasi-attractors: geometry of the unstable lamination

H(O): quasi-attractor for a generic f ¢ Tangency U Cycle.
One looks at pairs (x, y) where x # y in H(O) have a same strong
stable leaf.

> One can compare Wi _(x) with the projection M**(W\_(y))
through strong stable holonomy.

Possible cases:

— transversal: for some pair (x,y),
W (x) and M*=(W}! _(y)) cross,

loc loc
— jointly integrable: for some pair (x,y),
W _(x) and M*(W}2_(y)) coincide,
— stricly non-transversal: for any pair (x, y),
Wi (x) and M*(W_(y)) do not cross and do not coincide.



Boundary points

Definition. A stable boundary point x € H(O) is a point which is
accumulated by H(O) in only one component of DS\ W*(x).

Theorem. If the transversal case does not holds, then any stable
boundary point belongs to the unstable manifold of a periodic
point of H(O).



Conclusion

Any non-hyperbolic quasi-attractor satisfies one of the following
case robustly:

— Unstable case. There exists py, p, periodic in H(O) and
x € W¥(px), y € W¥(py) distinct which share a
same strong stable leaf.

— Stable case. There exists g periodic in H(O) and x,y € W*(q)
distinct which share a same strong stable leaf.



Conclusion

Any non-hyperbolic quasi-attractor satisfies one of the following
case robustly:

— Unstable case. There exists py, p, periodic in H(O) and
x € W¥(px), y € W¥(py) distinct which share a
same strong stable leaf.

— Stable case. There exists g periodic in H(O) and x,y € W*(q)
distinct which share a same strong stable leaf.

Tomorow, one will perturb to create a strong connexion.
= all quasi-attractors are hyperbolic.
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Program of the lectures

Goal. Any generic f € Difft(M) \ Tangency U Cycle is essentially
hyperbolic.

— Lecture 1. Overview of the proof.

Finiteness of the quasi-attractors.
— Lecture 2. Classes of the dynamics.

Chain-hyperbolicity, strong laminations.
— Lecture 3. Non-hyperbolic attractors.

Perturbation and creation of strong connections.



Non-hyperbolic quasi-attractor

Take a quasi-attractor H(O) which is a homoclinic class s.t.
- TM=E“ @ E" and E® = E* @ E°, dim(E°) = 1.
— E“ is thin-trapped.

Theorem. There exists g close to f such that
— either a submanifold tangent to E€ @ E" contains H(Og),

— or H(Og) has a strong connexion: it contains periodic points
p, g such that W*(p) and W"(q) intersect.



Non-hyperbolic quasi-attractor

Take a quasi-attractor H(O) which is a homoclinic class s.t.
- TM=E“ @ E" and E® = E* @ E°, dim(E°) = 1.
— E“ is thin-trapped.

Theorem. There exists g close to f such that
— either a submanifold tangent to E€ @ E" contains H(Og),

— or H(Og) has a strong connexion: it contains periodic points
p, g such that W*(p) and W"(q) intersect.

Remark.
- Iffis Cl—generic and E€ is not uniform, then this gives
heterodimensional cycles.
— The result also applies to hyperbolic sets with a
one-codimensional strong stable bundle.
—If fis C", r > 1, then g is C'*%close for some a > 0.



The goal

One of the following cases holds robustly:

— Unstable case. There exists py, p, periodic in H(O) and
x € WY(px), y € W¥(py) distinct which share a
same strong stable leaf.

— Stable case. There exists g periodic in H(O) and x,y € W*(q)
distinct which share a same strong stable leaf.



The goal

One of the following cases holds robustly:

— Unstable case. There exists py, p, periodic in H(O) and
x € WY(px), y € W¥(py) distinct which share a
same strong stable leaf.

— Stable case. There exists g periodic in H(O) and x,y € W*(q)
distinct which share a same strong stable leaf.

In the unstable case,

— either one builds g and a periodic point g such that W**(q)
meets W"(p,),

— or one finds g such that x; & W*(y,).

In the stable case, one breaks the joint integrability close to (x,y).



Unstable case: return time dichotomy

Consider closest returns "(x) of x (or y) to x:
— the return comes along E .

— If N is the time spent close to pyx before visiting x,
d(f(x),x) =~ AN, for Ac = central eigenvalue of py.
Fix K > 1 large. Two cases occur:

» Fast returns. there are n large such that n < K.\,

» Slow returns. there are n large such that n > K.N.



The fast return case

There are large closest return f"(x) such that n < K.N.
One set a~ K~ |log\c| and b~ a(1 — K71).

Lemma
There exist returns at time n large such that f"(x) € B(x,e?")

and f™(x) & B(x,e™®") forany 0 < m < n.
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The fast return case

There are large closest return f"(x) such that n < K.N.
One set a~ K~ |log\c| and b~ a(1 — K71).

Lemma
There exist returns at time n large such that f"(x) € B(x,e?")
and f™(x) & B(x,e™®") forany 0 < m < n.

Some perturbation g at f~!(x) satisfies g"(W**(x)) C W*(x).
= There is g € W**(x) periodic such that W*°(q) meets W"(p,).

The perturbation is CY.small, where 1 + o« = a/b= %



The slow return case

There are large closest returns f"(x) such that n > K.N.
One perturbs in B(f~%(x), A¥), moving x and “keeping” M(y).
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The slow return case

There are large closest returns f"(x) such that n > K.N.
One perturbs in B(f~%(x), A¥), moving x and “keeping” M(y).

)

X moves by )\(CHO‘ N, for a perturbation C1+® small.

d(y,ygs) < A;", where A\, bounds EY from below.
d(M%(y), M*(yg)) < 2”7 where M5 is 3-Holder.
d(Nz(vg), HQS(Yg)) < o~ ", where o bounds E°/E*.

For K large, one has

o 4 ATBn o \(FN
- .



The stable case

Fix x,y € W*(q), some disc D C W*(q) transverse to W"(q).
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One linearizes f at g and the foliated disc D.

For n > 1 large,

— the angle between E! or E}‘,’ with Et‘; is <o, whereo <1
bounds the domination E€/E".

— one changes E by an angle A2" where As < 1 bounds the
contraction from below.



The stable case

Fix x,y € W*(q), some disc D C W*(q) transverse to W"(q).
One linearizes f at g and the foliated disc D.

For n > 1 large,

— the angle between E! or E}‘,’ with Et‘; is <o, whereo <1
bounds the domination E€/E".

— one changes E by an angle A2" where As < 1 bounds the
contraction from below.
For m > 1 large, one compares the intersections x’, y’ of f~™(D)
with W¥(x) and W"(y).

» y' crosses W**(x') during the perturbation.
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For C'-generic diffeomorphisms.

» Far from homoclinic tangencies = partial hyperbolicity with a
dominated sum of one-dimensional center bundles.
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Conclusion

For C'-generic diffeomorphisms.
» Far from homoclinic tangencies = partial hyperbolicity with a
dominated sum of one-dimensional center bundles.

» Far from heterodimensional cycles = chain-hyperbolicity, at
most two central bundles.

» On quasi-attractors = geometrical properties on the unstable
lamination = uniform hyperbolicity.

What about the other chain-recurrence classes?



