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Chapter 1

Introduction

The theory of random graphs has been an intense research area in the last few decades. It is

motivated by the desire to model real-life random graphs such as the internet, digital social net-

works... One of its aims is also to make rigorous some of the predictions of theoretical physicists

in statistical and quantum physics. But above all, it furnishes a lot of appealing mathemati-

cal concepts and problems related to many fields such as combinatorics, ergodic theory, group

theory, percolation... It is impossible to survey the monstrous literature on the subject and the

purpose of this course is only to give a very restrictive view of the numerous applications of one

particular concept: the local convergence of so-called unbiased random graphs.

1.1 Graphs, examples, questions

1.1.1 Graphs

In these notes, a graph (sometimes also called a non-oriented multi-graph) is a pair g = (V(g),E(g)),

where V = V(g) is the set of vertices of g and E = E(g) is the set of edges of g which is a multiset

over V ×V i.e. where repetitions are allowed. The graph is simple if they are no multiple edges

nor loops. If x ,y ∈ V and {x ,y} ∈ E we say that x and y are neighbors and that x and y are

1

2

3 4

Figure 1.1: An example of a graph g = (V ,E) with vertex set V = {1, 2, 3, 4} and edge

set E = {{{1, 1}, {1, 2}, {1, 2}, {1, 3}, {3, 2}}}. The vertex degrees of 1, 2, 3, 4 are respectively

5, 3, 2, 0.

adjacent to the edge {x ,y}. The degree of a vertex x ∈ V denoted by deg(x ) is the number of
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half-edges adjacent to x , otherwise said it is the number of edges adjacent to x where loops are

counted twice. The graph distance on g is denoted by dg
gr or dgr when there is no ambiguity and

is defined by

dgr (x ,y) = minimal number of edges to cross to go from x to y.

By convention we put dgr (x ,y) = ∞ if there is no path linking x to y in g. The equivalence

classes from the relation x ∼ y ⇐⇒ dgr (x ,y) < ∞ are the connected components of g. We say

that g is connected if it has only one connected component.

Proposition 1. Let g = (V ,E) be a connected graph on n vertices. Then we must have #E ≥ n−1.

If #E = n − 1 then g is a tree, meaning that is has no non trivial cycle.

Proof. We can suppose that the vertex set of g is {1, 2, 3, ...,n}. We start with the vertex 1, since

g is connected there exists an edge adjacent to 1 of the form {1, i1}. If i1 = 1 then this edge is

a loop otherwise i1 , 1. We then throw this edge and pick a new edge adjacent to either 1 or

i1. Iteratively after throwing k edges we have explored a part of the connected component of

1 which has at most k + 1 vertices. Since g is connected it follows that #E ≥ n − 1. In case

of equality this means that during the exploration process we have never found an edge linking

two vertices already explored, in other words no non trivial cycle has been created and g is thus

a tree. �

Graph equivalence. If g and g′ are two graphs we say that g and g′ are equivalent if they

represent the same graph up to renaming the vertex set. Formally this means that there exists

a bijection ϕ : V(g) → V(g′) which maps the multiset E(g) to E(g′): such a function is called

a homomorphism of graph (automorphism if g = g′). Obviously we want to identify two equiv-

alent graphs and thus consider the set of equivalence classes of graphs. This quotient space is

monstrous even in the case of countable graphs. The two following exercises should discourage

the reader to further dive into the realm of general infinite graphs:

Exercise 1 (Infinite Erdös–Rényi random graph, Rado graph). (∗) Consider the random graph

G whose vertex set is N and where independently for each i, j ∈ N the edge i ↔ j is present in the

graph with probability 1/2 (in other words, it is a Bernoulli bond percolation with parameter

1/2 on the graph (N,N × N)). Show that almost surely two samples of this random graph are

homomorphic.

Open Question 1 (Hadwiger–Nelson problem). Consider the graph g whose vertex set is R2 and

edge set is {{{x ,y} : |x − y | = 1}}. The chromatic number of g is the minimal number of colors

necessary to paint the vertices of the graph so that no neighboring vertices have the same color.

It is known that the chromatic number of g is in {4, 5, 6, 7} but its precise value is unknown and

may depend on the axiom of choice.
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1.1.2 Regular graphs

In this section we give several classes of “regular” graphs in order to motivate the forthcoming

definitions of stationary or unimodular random graphs which in a sense are generalizations of

the following notions.

Definition 1 (Cayley graph). A Cayley graph encodes the structure of a group. Given a (count-

able) group Gr and a finite symmetric generating set S = {s1, s
−1
1 , s2, s

−1
2 , ..., sk , s

−1
k } of Gr, we form

the simple graph whose vertices are the elements of the group Gr and an edge links x to y if there

exists s ∈ S such that x = sy in Gr.

In particular the Cayley graph depends not only upon the group Gr but also on the symmetric

generating set we have chosen. For example, here are two Cayley graphs for the group (Z,+) for

the symmetric generating sets {−1,+1} and for {−3,−2, 2, 3}:

0 1 2 3 4−1−2−3−4 0 1 2 3 4−1−2−3−4

Figure 1.2: Two Cayley graphs of the same group (Z,+)

In particular Cayley graphs are connected and “regular” in the sense that they look the same

from any vertex. This is formalized in the following notion:

Definition 2 (Transitive graphs). A graph g = (V ,E) is (vertex)-transitive if for any u,v ∈ V

there is a graph automorphism that takes u to v (in pedantic terms the automorphism group of

g acts transitively on its vertices).

Clearly, any Cayley graph is vertex transitive, but the reciproque is false as we will see later.

In fact, as it will turn out, Cayley graphs possess on top of transitivity an additional “inverse”

property which is not always present in infinite vertex transitive graphs.

Exercise 2. Show that the Petersen graph is transitive but is not a Cayley graph.

We could go on and continue weakening the notion of regularity by introducing quasi-

transitive graphs (where the action of the automorphism group has only finitely many orbits)...

However, since we will be later interested in random graphs any deterministic notion of regu-

larity is doomed. The reader should however keep in mind the last two notions since they will

play a great role in these notes.

1.1.3 Examples of random graphs

We give informally several models of random graphs as well as a few questions (some of them

still open as of today) to show the diversity of the thematic.
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Percolation. Given a finite or countable graph g, we call Bernoulli bond (resp. site) percolation

on g with parameter p ∈ (0, 1) the random graph obtained from g by keeping independently each

edge (resp. vertex) with probability p and erasing it with probability 1 − p.

• When the underlying graph is the complete graph on n vertices (there is an edge between

any pair of distinct vertices, so n(n − 1)/2 edges in total) and when we perform a Bernoulli

bond percolation, we speak of the Erdös–Rényi random graph and denote it by G (n,p).

Introduced in 1959, it is the most famous and most studied model of random graph. This

model is referred to as “mean-field” because the geometry of the underlying lattice is trivial

in the sense that any pair of vertices are neighbors of each other.

Question. Understand the connectivity properties of G (n,p) for very large n as a function

of p.

• When the underlying lattice is the classical lattice Zd for d ≥ 2, it corresponds to the

well-known model of Bernoulli bond or site percolation on regular lattices first studied by

Hammersley (1957). The main question is then the existence of an infinite cluster. The

general theory shows that there is a critical percolation threshold pc (Z
d ) ∈ (0, 1) such that

for p < pc (Z
d ) there is no infinite cluster and for p > pc (Z

d ) there is a unique infinite

cluster. The following is a well-known tantalizing problem:

Open Question 2. Show that there is no infinite cluster as p = pc (Z
3) on Z3.

Galton–Watson tree. We are given a probability distribution p = (pk )k≥0 on {0, 1, 2, ...}. Infor-

mally, a Galton–Watson tree with offspring distribution p is the genealogical tree obtained by

starting from a single ancestor particle and such that each particle reproduces independently

of the others by following the offspring distribution p. This model of random tree is also very

well-known and very well understood, see Section 1.3.1. It is one of the key characters in the

theory of random graphs.

Uniform graph in a combinatorial class. Let Cn be a combinatorial class of graphs with finite

size. We can for example take Cn to be the set of all graphs with n edges, the set of all graphs

with n edges and α (n) vertices, the set of all trees with n vertices, the set of all planar graphs

with n edges... Provided that #Cn is finite (which is the case in the above examples) then we

can consider Cn ∈ Cn , a random variable uniformly distributed over Cn .

Open Question 3. Understand the large scale geometry of Cn when Cn is for example the set of

all planar graphs with n edges.

Dynamical random graphs. We can also consider a sequence of growing random graphs which

are built recursively. The (very interesting) prototype is the Barabasi–Albert model [10] which

was introduced to model the degree distribution of many real networks such as the internet.
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The initial graph G1 is just a single vertex. Then inductively for n ≥ 1 we choose in Gn a vertex

proportionally to its degree (the number of adjacent edges) and we attach a new leaf to this

vertex. Hence, the vertices with higher degree get more likely chosen : rich get richer.

Question. Understand the empirical degree distribution of the vertices in Gn.

Configuration model. The configuration model is designed so that the degree sequences of the

vertices is fixed a priori. More precisely, let d = (d1, ...,dn ) be a sequence of integers so that

D =
∑
di is even. We will then consider a random (multi) graph on n vertices {1, 2, ...,n} such

that the vertex i has degree di . One way to sample such a graph is to start with those n vertices

to which we attach di half-edges or stubs which are labeled from 1 to D. We then pair those

half-edges in the most natural way: we couple the half-edge number 1 with a uniformly chosen

half-edge among those numbered 2, 3, ...,D. We then merge the two stubs involved and create

a true edge. We then iterate the procedure with the remaining stubs. We denote by G (d) the

random graph obtained. This graph may not be simple (it may contain multiple edges or loops).

Miscellaneous. There are many more models of random graphs. We give a final example to

re-interpret a well-known model in terms of a random graph. On Z2 consider a simple random

walk started from the origin (0, 0) until it escapes from the square [−n,n]2. The trace (the edges

and vertices visited by the walk) can thus be considered as a random subgraph Gn of [−n,n]2.

Although the “shape” of this trace is very well understood (thanks to the convergence of the

random walk towards Brownian motion), its geometry seen as graph is still elusive:

Open Question 4 (K. Burdzy). In the above random graph prove (or disprove!) that the distance

between 0 and ∂[−n,n]2 is of order n1+o (1).

1.1.4 In search of a limit model

In some of the above examples, we have a model of a random graph of finite size n. It would

be desirable to define a limiting infinite model. Indeed, it is common in mathematics that

asymptotic questions on models of growing size could often be resolved by a direct analysis on

an appropriate infinite limiting model. Let us give tree examples of such questions:

Degree distribution. If (Gn ) is a sequence of model of (random) graphs whose size tends to

infinity, one may want to understand the degree distribution i.e. the random vector

pn (k ) =
#{u ∈ V(Gn ) : deg(u) = k }

#V(Gn )
.

Spanning trees. A spanning tree of a (connected) graph g is a connected subgraph of g without

cycle which spans all the vertices of g. Now if (Gn ) is a sequence of model of (random)

graphs whose size tends to infinity, one would like to understand the asymptotic number

of spanning trees
log #SpanTrees(Gn )

|Gn |
, n → ∞.
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Matching number. A matching on g is a subset of mutually non-adjacent edges on g. We denote

by ν (g) the largest size of a matching on g. Again if (Gn ) is a sequence of model of (random)

graphs whose size tends to infinity, one would like to understand the asymptotic

ν (Gn )

|Gn |
, n → ∞.

All these asymptotic enumeration problems can indeed be answered [35, 1] by looking at an ap-

propriate limit of the Gn , the so-called Benjamini-Schramm or local limit. The goal of this course

is to describe this limit which is well suited to the analysis of so-called “dilute” random graphs

where the average number of edges per vertex (or mean degree) remains typically bounded.

1.2 Local convergence topology

From now on, unless explicitly mentioned, all the graphs g considered

are

• countable i.e. E(g) is countable,

• locally finite i.e. deg(x ) < ∞ for all x ∈ V(g),

• connected.

1.2.1 Local topology

Imagine that we are given a metric space (E,δ ) such that for any x ∈ E and for any r ∈

{0, 1, 2, 3, ...}, there is a notion of restriction of radius r in x that we denote by

[x ]r ∈ E.

We suppose that for any r ≥ 0 the map x 7→ [x ]r is continuous for δ and that different restrictions

of radius r are compatible in the sense that [[x ]r ′]r = [x ]r for any r ′ ≥ r . We assume that for

any r ≥ 0, the set {[x ]r : x ∈ E} is separable and complete for δ . We also suppose that for

any sequence of coherent elements x0,x1, ... satisfying [xi ]j = x j for any 0 ≤ j ≤ i, there exists a

unique “infinite” element x ∈ E such that

[x ]r = xr , for all r ≥ 0. (1.1)

Then we endow the space E with a distance, called the local distance defined as

dloc (x ,y) =
∑
r ≥0

2−r min
(
1,δ ([x ]r , [y]r )

)
.

In other words, a sequence xn of elements of E converges towards x for the local distance if and

only if for any r ≥ 0, the sequence [xn ]r converges to [x ]r for the metric δ as n → ∞. Then we

have the following:
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Theorem 2 (The local topology is Polish)

The space (E,dloc) is a Polish space, that is metric, separable and complete. Furthermore, a

subset A ⊂ E is pre-compact (meaning that its closure is compact) if and only if

for every r ≥ 0 we have {[x ]r : x ∈ A} is pre-compact.

Proof. Distance. Let us first show that dloc is a distance. The symmetry is easy, as well as the

triangle inequality. The separability is also easy since we suppose that if [x ]r = [y]r for all r ≥ 0

then we have x = y by (1.1). Separation. For any x ∈ E, we have dloc (x , [x ]r ) ≤ 2−r and we

supposed that the set {[x ]r : x ∈ E} of all restrictions of radius r is separable. Hence we make a

union over r of dense countable sets in {[x ]r : x ∈ E} which end-up being countable and dense for

dloc. Completeness. If (xn ) is a Cauchy sequence for dloc then for every r , the restriction [xn ]r

is again Cauchy and, by completeness of {[x ]r : x ∈ E}, thus converges for δ to a certain element

yr ∈ {[x ]r : x ∈ E}. By continuity of x 7→ [x ]r we deduce that [yr ′]r = yr for any r ′ ≥ r and so by

the coherence property (1.1) we can define a unique element y ∈ E such that yr = [y]r . It is then

clear that xn → y for dloc. Characterization of the compacts. The condition in the theorem is

clearly necessary for A to be pre-compact for otherwise there exists r0 ≥ 0 and a sequence (xn )

in A whose restrictions of radius r0 are all at distance ε for each other. Such a sequence cannot

admit a convergent subsequence. Conversely, a subset A satisfying the condition of the theorem

is easily seen to be pre-compact for dloc: just cover with restrictions of radius 2−r centered on

an 2−r -net for δ of A to get a 2−r -net for dloc. �

Examples :

• We can consider the space (C(R+,R), ‖‖∞). This space is not Polish but satisfies the above

assumptions once we put for the restriction of radius r

[f ]r (x ) = f (x )1x ≤r + f (x ) (r + 1 − x )1r ≤x ≤r+1.

The local topology we create coincides with the uniform convergence of all compact sets

of R+ and is now Polish.

• We can consider the space D made of all possible (finite and infinite) words on a finite

alphabet. This discrete space is endowed with the trivial distance δ (x ,y) = 1x,y . If w is

such a word, then we can set [w]r , the restriction of radius r to be the word made of the

first r letters of w. It is easy to see that all the conditions are satisfied.

• More generally when the space E is discrete it will always be endowed with the trivial

distance. Then the above process enables to put a topology on E turning its rough metric

into a Polish topology called the local topology. In this lecture notes we will apply this

construction of the local topology to the following discrete structures:

– The space G• of pointed graphs,
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– The space ~G of rooted graphs,

– The space G↔ of graphs with a path on it,

– The space M• of pointed planar maps,

– The space ~M of rooted planar maps,

– The space T of rooted plane trees,

We will always write dloc for the local distance and it will be clear from the context what

we exactly mean. It can also be applied to graphs (non necessary locally-finite) carrying labels

on the edges [5], or even more exotic structure such as equivalence classes of locally compact

metric spaces endowed with the Gromov-Hausdorff distance [21]. Before giving examples of

applications below, let us recall basic notions in probability theory. A random variable X is a

measurable function from the underlying probability space (Ω,F,P) with values in the Polish

space (E,dloc) endowed with the Borel σ -field denoted by Bdoc. Hence we have the natural

notion of convergence in distribution, namely if (Xn )n≥0 is a sequence of random variables, then

Xn converges in distribution (for the local topology) towards a random variable X if for any

bounded continuous function F : E→ R we have

E[F (Xn )] −−−−→
n→∞

E[F (X )].

We recall the fundamental concept of tightness for random variables with values in a Polish

space: A family (Xi )i ∈I of random variables is tight for dloc if for any ε > 0 there exists a

compact Aε ⊂ E such that for any i ∈ I we have

P(Xi ∈ Aε ) ≥ 1 − ε .

In our case, by the construction of the local topology it is easy to check:

Proposition 3. A family (Xi : i ∈ I ) of random variables with values in E is tight if and only if

for any r ≥ 1 the family ([Xi ]r : i ∈ I ) is tight.

Proposition 4 (Characterization of the law and of the convergence for the local topology).

(i) Let X1 and X2 be two random variables with values in (E, dloc) such that for any A ∈ Bloc

and any r ≥ 0 we have P([X1]r ∈ A) = P([X2]r ∈ A), then X1 = X2 in distribution.

(ii) A sequence of random variables (Xn )n≥0 converges in distribution towards X∞ if and only

if for every r ≥ 0 and every A ∈ Bloc we have P([Xn ]r ∈ A) → P([X∞]r ∈ A) as n → ∞.

Proof. (i) We consider the family of events

M =

{
{x ∈ E : [x ]r ∈ A} : A ∈ Bloc, r ≥ 0

}
.

It is easy to see that the family M generates the Borel σ -field on E and moreover that M is

stable under finite intersections. It follows from the monotone class theorem that two random
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variables agreeing on M have the same law.

(ii) For the second point, we have seen above that the sets {[x ]r ∈ A} are stable under finite

intersections and it is easy to see that any open sets of the local topology can be written as a

countable union of those sets. The result then follows from [15, Theorem 2.2]. �

In particular, we deduce that for a sequence of random variables (Xn )n≥0 to converge it is

necessary and sufficient that (Xn )n≥0 be tight and that for every r ≥ 0 and every A ∈ Bloc we

have P([Xn ]r ∈ A) converges. (The two conditions are necessary, exercise!).

1.2.2 Two examples: random pointed graphs and plane trees

Plane trees. We recall the formalism for plane trees as found in [39]. Let

U =

∞⋃
n=0

(N∗)n

where N∗ = {1, 2, . . .} and (N∗)0 = {∅} by convention. An element u of U is thus a finite sequence of

positive integers. We let |u | be the length of the word u. If u,v ∈ U, uv denotes the concatenation

of u and v. If v is of the form uj with j ∈ N, we say that u is the parent of v or that v is a child

of u. More generally, if v is of the form uw, for u,w ∈ U, we say that u is an ancestor of v or

that v is a descendant of u.

Definition 3. A (locally finite) plane tree τ is a (finite or infinite) subset of U such that

1. ∅ ∈ τ (∅ is called the root of τ ),

2. if v ∈ τ and v , ∅, the parent of v belongs to τ

3. for every u ∈ U there exists ku (τ ) ∈ {0, 1, 2, ...} such that uj ∈ τ if and only if j ≤ ku (τ ).

11

1 2
3

31 32 33 34

321

∅

3211 3212

Figure 1.3: A finite plane tree.

A plane tree can be seen as a graph, in which an edge links two vertices u,v such that u is

the parent of v or vice-versa. Notice that with our definition, vertices of infinite degree are not

allowed since ku cannot be infinite. This graph is of course a tree in the graph-theoretic sense,

13



and has a natural embedding in the plane, in which the edges from a vertex u to its children

u1, . . . ,uku (τ ) are drawn from left to right. All the trees considered in these pages are plane

trees. The integer |τ | denotes the number of edges of τ and is called the size of τ .

We denote by T the set of all (finite or infinite) plane trees (sometimes called rooted plane

trees). If τ ∈ T is a plane tree, the notion of restriction [τ ]r of radius r we use is just the plane

tree obtained by keeping all the vertices of τ which are at generation less than r from the origin,

that is [τ ]r = {u ∈ τ : |u | ≤ r }. Using Theorem 2 this gives rise to the local topology on T which is

then Polish. A random plane tree will thus be seen as a random variable with values in (T,dloc).

Random pointed graphs.

Definition 4. A pointed graph g• is a pair (g, ρ) where g is a (countable, locally finite, connected)

graph and ρ ∈ V(g) is a reference vertex sometimes called the origin of the graph. Two pointed

graphs g• = (g, ρ) and h• = (h, ϱ) are equivalent if there exists a graph homomorphism between

g• and h• which sends ρ onto ϱ (we speak of pointed graph homomorphism).

In what follows we will obviously identify equivalent graphs and so formally work on the space

of equivalence classes of pointed graphs. We will implicitly make this identification and later

speak of pointed graphs (instead of equivalence classes of pointed graphs). We introduce G• the

set of all (equivalence classes) of (locally finite, countable, connected) pointed graphs. If g• is a

pointed graph, we denote by [g•]r , the restriction of radius r around the origin of g• to be the

(equivalence class of the) graph obtained from g• = (g, ρ) by keeping only those vertices which

are at distance less than r from ρ and the edges between them; the resulting graph being pointed

at ρ. The compatibility relations of the restrictions are easy to check. The fact that there are

only countably many restrictions of radius r is also easy to see. It requires a bit of thought to

show that if g•1, g
•
2, ... is a sequence of combatible graphs in the sense that [g•j ]r = g•r for r ≤ j

then there exists a unique (equivalence class of a) infinite pointed graph g• whose restrictions

of radius r is g•r but this is also true. Hence we can apply the above procedure to endow G•

with a local distance making it a Polish space. In this case, it is also easy to check that the

pre-compact subset A ⊂ G• are those satisfying for every r ≥ 0 we have

sup
g•∈A

sup
x ∈V([g•]r )

deg(x ) < ∞.

From the previous characterization of pre-compact sets in G•, it follows that for any M > 0,

the subset of pointed graphs where the degree of any vertex is bounded by M is a compact set.

Exercise 3. Show that the following family of pointed graphs is not compact for the local topology

on pointed graphs

...

Exercise 4. Compute the local limit of the following 6 sequences of pointed graphs:
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n n

n

n n

n n
n n

Exercise 5. Show that a family of random pointed graphs (G•i )i ∈I is tight if and only if for any

r ≥ 0 the family of random variables

max
x ∈V([G•i ]r )

deg(x ), i ∈ I

is tight as a family of real-valued random variables.

A random pointed graph will be, in these notes, a random variable G• taking values in the

Polish space (G•, dloc) endowed with the Borel σ -field.

Exercise 6. Let g be a deterministic connected graph and let x ∈ V(g). We launch a simple

random walk on g starting from x , and denote by Gn the random graph obtained by keeping

those vertices and edges that have been visited by the random walker before time n. Show that

(Gn ,x ) converges in distribution as n → ∞ and that its limit is (g,x ) if and only if g is recurrent.

1.3 The prototype: Erdös–Renyi → Poisson Galton–Watson tree

In this section we describe the most famous local convergence result, in a sense, the prototypical

example which underlies much of the theory on the Erdös–Renyi random graph. It says that in

the appropriate range of parameters we have the local convergence of G (n,p) towards a Poisson

Galton–Watson tree.

1.3.1 Reminder on Galton–Watson trees

We first recall briefly the basics on Galton–Watson trees. If τ is a plane tree, for any vertex

u ∈ τ , we denote the shifted tree at u by σu (τ ) := {v ∈ τ : uv ∈ τ }. I

Definition 5. Let p = (p0,1 ,p2, ...) be a probability measure on N such that p1 < 1. The law of the

Galton–Watson tree with offspring distribution p (abbreviated by p-GW) is the unique probability

measure GWp on T such that:

1. GWp (k∅ (τ ) = j ) = pj for j ≥ 0,

2. for every j ≥ 1 with pj > 0, conditionally on {k∅ (τ ) = j}, the subtrees σ1 (τ ), . . . ,σj (τ ) are

i.i.d. with distribution GWp.

It is easy to check from the above definition that for any finite tree τ0 ∈ T we have

GWp (τ = τ0) =
∏
u ∈τ0

pku (τ0),
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but the above display does not characterize the measure GWp because in general a random tree

τ under GWp may very well be infinite... as shown in the next result:

Theorem 5 (Extinction probabilities for Galton–Watson trees)

We introduce Fp (z) =
∑

k≥0 pkz
k the generating function of the offspring distribution p and

suppose that p1 , 1. Then the probability that a p-GW tree is finite (a.k.a. extinction

probability) is the smallest solution z ∈ [0, 1] to

Fp (z) = z. (1.2)

In particular, this probability is strictly less than 1 if and only if the mean of the offspring

distribution m =
∑

k≥0 k pk is strictly larger than 1. When m < 1 the offspring distribution is

called subcritical, critical when m = 1 and supercritical when m > 1.

Proof: We denote by En the event on which the height of τ is strictly less than n (in other words,

the genealogy is extinct at time n). The probability that τ is finite is then the probability of the

event

E∞ = lim
n→∞

En =
⋃
n≥0

En .

For n ≥ 0, we can write En+1 has the intersection of the event En (σ1 (τ )), ...,En (σk∅ (τ ) (τ )) of

extinction at time n of the subtrees of the children of the origin vertex. By the definition of the

Galton–Watson measure we can thus write the recursion

GWp (En+1) =
∑
k≥0

pkGWq (En )
k = Fp

(
GWq (En )

)
.

We deduce that xn = GWp (En ) is a sequence defined by the function recursion xn = Fp (xn+1) and

started at x0 = 0. Using the (strict) convexity of Fp and the fact that Fp (1) = 1 we conclude that

xn tends to the smallest fixed point of Fp on [0, 1]. This proves the first point of the theorem.

For the second point we notice that m is the derivative of Fp at 1 and so by convexity Fp is

strictly above y = x on [0, 1) if m = 1 and crosses it once if m > 1. �

Exercise 7. We say that an infinite tree τ contains an infinite binary tree (starting at the root)

if it is possible to find a subset of vertices B of τ containing the origin ∅ and such that each

u ∈ B has exactly two children in B. Then the probability that τ contains no infinite binary tree

(starting at the root) is the smallest solution z ∈ [0, 1] to

z = Fp (z) + (1 − z)F′p (z).

Application: in the case p1 = (1 − p) and p3 = p with p ∈ [0, 1] show that there is no infinite

binary tree in τ if and only if p < 8
9 and that in the critical case p = 8

9 this probability is in fact

positive (contrary to the above case for survival of the tree).

Of course if τ is a plane tree, one can associate with it a pointed graph which we denote by

τ • obtained by considering the graph made by the vertices of τ and putting an edge between

each parent and their children. The reference point of τ • is ∅. This application T → G• is easily

checked to be continuous for the respective local distances.
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1.3.2 Local convergence of Erdös–Rényi

Consider the complete graph on n vertices and perform a Bernoulli bond percolation with pa-

rameter p ∈ (0, 1). The graph obtained may have many connected components and we denote

by G• (n,p) the random graph made of the connected component of 1 pointed at the vertex 1.

For λ > 0, we also denote by T •λ the random graph obtained from a Galton–Watson tree with

offspring distribution Poisson(λ) pointed at the ancestor vertex.

Theorem 6

For any λ > 0 we have the following convergence in distribution for dloc

G• (n, λ/n) −−−−→
n→∞

T •λ .

Let us sketch an intuitive proof of the last result. First, the number of vertices adjacent to

the vertex 1 has a Bin(n − 1, λ/n) distribution and the latter converges towards a Poisson(λ)

distribution. Hence the 1-neighborhood of 1 in G (n, λ/n) looks like the 1-neighborhood of the

origin in a Poisson(λ)-Galton–Watson tree. We then pass to the neighbors of 1: Each of these

vertices is linked to 1 by definition and the number of other vertices to which it is linked follows

a Bin(n − 2, λ/n) law which is also converging towards Poisson(λ). The point here is to remark

that these variables are roughly independent and that it is very unlikely that when exploring

the 2-neighborhood of 1 we discover a cycle, i.e. a vertex linked to two different neighbors of 1.

Hence, the 2-neighborhood of 1 looks like the 2-neighborhood of a Poisson(λ)-Galton–Watson

tree. We then proceed similarly to explore the 3, 4, 5, ...-neighborhoods of the vertex 1. Although

the above sketch can be made rigorous (see [17]) and constitutes the basis of the analysis of the

Erdös–Rényi model around criticality, we give another proof using the rigidity of plane tree

structure.

Proof. Fix a pointed tree t• = (t, ρ) of height at most r . We will prove that

P([G• (n, λ/n)]r = t•) −−−−→
n→∞

P([T •λ ]r = t•). (1.3)

To this end it will be easier to add an additional ordering on the vertices of the tree in order to

break possible symmetries. We thus consider a plane tree t such that its pointed-graph version is

indeed t• (there are generally several choices for this plane tree). We will also use the numbering

of the vertices of the graph G• (n, λ/n) to our advantage. We will write [G• (n, λ/n)]r ≡ t if we can

map the vertices of the restriction of radius r around 1 to the vertices of [t]r such that 1→ ∅ in a

way which preserves the graph structure and such that the order of the “children” in t coincides

with the order of the vertices in G• (n, λ/n). With this notation in hands we have

P
(
[G• (n, λ/n)]r ≡ t

)
= Nn,t ·

∏
u ∈t: |u |<r

(
λ

n

)ku (t)
︸               ︷︷               ︸

edges present

·

(
1 −

λ

n

)n−1−deg(x )
︸                 ︷︷                 ︸

edges absent

,
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where Nn,t is the number of ways to assign different numbers in {1, 2, ...,n} to the vertices of t so

that the ancestor gets label 1 and so that the numbers assigned of the children of a given vertex

are increasing from left to right. It is easy to see that we have the asymptotic

Nn,t ∼
n→∞

∏
u ∈t: |u |<r

nku (t)

(ku (t))!
.

Combining the last displays we get that for any plane tree t of height at most r we have

P([G• (n, λ/n)]r ≡ t) → P([Tλ ]r = t), as n → ∞.

Removing the orientation and summing over all trees yielding to a given tree neighborhood we

get (1.3). Using Proposition 4 it thus suffices to prove that for any pointed graph g• which is

not a tree we have P([G• (n, λ/n)]r = g•) → 0 as n → ∞. But this is easy since by Fatou’s lemma

we have

lim sup
n→∞

P([G• (n, λ/n)]r is not a tree) = 1 − lim inf
n→∞

∑
t•, tree

P([G• (n, λ/n)]r = t•)

≤ 1 −
∑

t•, tree

P([T •λ ]r = t•)

= 0.

�

The last result together with Theorem 5 is an indication that in G (n, λ/n), a dramatic change

appears at λ = 1. Indeed when λ < 1 a Galton–Watson tree with Poisson(λ) offspring distribution

is almost surely finite, whereas for λ > 1 the later has a positive probability qλ > 0 of being

infinite. This phase transition in the underlying Galton–Watson reflects into a phase transition in

the behavior of the Erdös–Rényi random graph: When λ < 1 then all the connected components

in G (n, λ/n) are of size O (logn) with high probability as n → ∞, whereas for λ > 1 there exists a

unique giant connected component of G (n, λ/n) of size roughly qλ ·n and all the other components

are of size O (logn) with high probability as n → ∞. Strictly speaking, Theorem 6 does not permit

to deduce the above results but it illustrates the philosophy underlying the proof of this theorem.

We refer to [44] for much more about the description of this phase transition in the G (n,p) model.

As we said, this model is often referred to as “mean-field” and this property translates in our

context by the fact that the local limit is a tree. This property is shared by the complete graph

but also by other lattices of “sufficiently high dimension”:

Exercise 8 (Hypercube). Suppose that we replace the complete graph in the definition of the

Erdös-Rényi model by the hypercube {0, 1}n with an edge between two vertices having only one

coordinate which differ. Denote H • (n, λn ) the component of (0, 0, ..., 0) in a percolation on {0, 1}n

with parameter λ
n pointed at this vertex. Show that as above

H • (n,
λ

n
) −−−−→

n→∞
T •λ .
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Exercise 9 (High dimension). Variation on the above exercise: Let Z • (d, λ2d ) be the component

of the origin in a percolation of parameter λ
2d in Zd with the standard edge set (again pointed

at the origin). Show again that

Z • (d,
λ

2d
) −−−−→

d→∞
T •λ .

Bibliographical notes. A vast majority of the literature on random graphs deals with the Erdös-

Rényi model and its generalizations. The configuration model has been introduced by Bollobas

[16]. We refer the interested reader to the wonderful book-to-be of Van der Hofstad [44] which

also contains a lot of information on dynamical random graphs such as the Barabasi-Albert

model. There is a different theory to make sense of “dense” random graphs developed recently

by Lovász and co-authors [34] where the number of edges is typically of order the number of

vertices squared (think of G (n,p) when p is bounded away from 0 as n → ∞). Although implicit

in many earlier works, the local convergence of random graphs has been formally introduced by

Benjamini–Schramm in [14]. The formalism for plane trees has been introduced by Neveu [39],

see [3] for nice lecture notes on Galton–Watson trees and their local limits. Exercise 7 is a result

of Dekking [22]. See [17, 38] for lecture notes available on the web which also treat random

graphs under the local convergence point of view as done in this course.

19



Chapter 2

Unimodular random graphs

Roughly speaking, a unimodular random graph is a random graph where the origin plays no

special role. We start with an easy example to make the reader grasp the key concept. Consider

the case of the line graph {−n,−n + 1, ...,−1, 0, 1, ...,n} with the obvious edge set. If this graph is

pointed at −n or at n, it converges locally as n → ∞ towards the line graph N; whereas if it is

pointed at the vertex 0 then it converges towards the line Z. Which of the above limits make

more sense? The key idea is to let the randomness choose the pointed vertex by distinguishing

a vertex of the graph uniformly at random.

2.1 Mass-transport principle

2.1.1 Finite case

Definition 6. Let G• be a finite (connected) random pointed graph. We say that G• is uniformly

pointed if the reference point is uniform over the vertices of G, namely if for any measurable

f : G• → R+ we have

E[f (G•)] = E



1

#V(G )

∑
x ∈V(G )

f (G,x )


.

Exercise 10. Compute, if they exist, the local limit of the following uniformly pointed random

graphs:

n

nn

nn

n

n
n

n

2.1.2 Unimodular random graphs

The problem with the last definition is that it a priori does not make sense for infinite graphs.

We will thus give an equivalent definition which can be extended to the infinite case. To do so,

we first introduce the set G•• of (equivalence classes) of doubly-pointed graphs (g,x ,y). More
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precisely, two doubly-pointed graphs (g,x ,y) and (g′,x ′,y ′) are identified if there exists a graph

homomorphism from g to g′ sending x to x ′ and y to y ′. This set is endowed with a local

topology for the notion of restriction [(g,x ,y)]r given by the graph made of all the vertices and

edges which are at distance less than r from either x or y subject also to the condition that

dgr (x ,y) ≤ r and where the resulting graph is doubly pointed at x and y. Hence we can apply

the general construction of Section 1.2.1 to get that (G••,dloc) is a Polish space.

Exercise 11. Show that the projection π : G•• → G• which forgets the second distinguished point

is continuous with respect to the local distances.

A Borel function f : G•• → R+ (thus invariant by homomorphism of doubly-pointed graph)

is called a transport function: f (g,x ,y) is interpreted as a quantity, a mass say, that the vertex

x sends to the vertex y in the graph g.

Definition 7 (Unimodular random graph). A random pointed graph (G, ρ) is unimodular if it

obeys the Mass-Transport Principle (MTP) i.e. if for any transport function f we have

E



∑
x ∈V(G )

f (G, ρ,x )


= E



∑
x ∈V(G )

f (G,x , ρ)


. (2.1)

The preceding equation can be interpreted by saying that the average mass the reference point in

G sends in total is equal to the average mass it receives from other vertices. The transport of

mass using f is a fair game on average.

Remark 1. The terminology “unimodular” comes from group theory: If g is a graph we denote

by Γ the group of all its automorphisms (homomorphisms from g to g). When Γ is locally

compact, we know by general theory that there exists a left-invariant measure on it (called the

Haar measure). The graph g is unimodular if this left-invariant measure is also right-invariant.

As promised, the notion of unimodular random graph coincides with the notion of uniformly

pointed random graph in the finite case:

Proposition 7. A random finite pointed graph G• is uniformly pointed if and only if it is uni-

modular.

Proof. Suppose that G• is uniformly pointed and let f be a transport function. Then noticing

that
∑

x ∈V(g) f (g, ρ,x ) =: F (g, ρ) and
∑

x ∈V(g) f (g,x , ρ) =: F ′(g, ρ) are measurable functions for

the single-pointed local topology we have

E



∑
x ∈V(G )

f (G, ρ,x )


= E[F (G, ρ)] = E



1

#V(G )

∑
x ∈V(G )

F (G,x )


= E



1

#V(G )

∑
x,y∈V(G )

f (G,x ,y)


,

E



∑
x ∈V(G )

f (G,x , ρ)


= E[F ′(G, ρ)] = E



1

#V(G )

∑
x ∈V(G )

F ′(G,x )


= E



1

#V(G )

∑
x,y∈V(G )

f (G,y,x )


.
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Since the right-most quantities are equal we conclude that G• obeys the MTP. Conversely, if G•

is unimodular and almost surely finite, we choose a transport function of the form f (g,x ,y) =
1

#V(g)h(g,x ) where h : G• → R+ is a measurable function. We obtain by applying the MTP that

E[h(G, ρ)] = E



∑
x ∈V(G )

f (G, ρ,x )


= E



∑
x ∈V(G )

f (G,x , ρ)


= E



1

#V(G )

∑
x ∈V(G )

h(G,x )


,

which indeed shows that G• is uniformly pointed. �

2.1.3 Mass-Transport principle and local limits

One nice feature with the notion of unimodularity is that it is preserved by taking local limit:

Theorem 8

Let G•n = (Gn , ρn ) be a sequence of unimodular random graphs converging in distribution for

dloc towards G•∞. Then G•∞ = (G∞, ρ∞) is unimodular.

Proof. We start with a warmup. If f is a transport function with finite range, i.e. such that

f (g,x ,y) is zero as soon as x and y are at at least distance r0 and that f (g,x ,y) only depends

on [(g,x ,y)]r0 then it follows that for every k ≥ 0 the functions

Fk (g, ρ) =
∑

x ∈V(g)

(
k∧f (g, ρ,x )

)
1#V([(g,ρ,x )]r0 )≤k

and F ′k (g, ρ) =
∑

x ∈V(g)

(
k∧f (g,x , ρ)

)
1#V([(g,x,ρ )]r0 )≤k

,

are both bounded continuous functions for the local topology. Hence, applying the mass-

transport principle on G•n we have that

E[Fk (G
•
n )] = E[F ′k (G

•
n )].

By the local convergence of G•n to G•∞ we thus get that E[Fk (G
•
∞)] = E[F ′k (G

•
∞)]. Letting k → ∞

we get by monotone convergence that

E



∑
x ∈V(G∞)

f (G∞, ρ∞,x )


= E



∑
x ∈V(G∞)

f (G∞,x , ρ∞)


.

The mass-transport principle is thus satisfied for all transport functions depending only on a

finite range around the first point. However, there are transport functions which are not simple

function of that sort, for example consider f (g,x ,y) = 1x∼y1#V(g)=∞ for which the condition

#V(g) = ∞ is not continuous for the local topology! Proving the general result necessitates a

bit of abstract measure theory. We proceed as follows. Let r0,k ≥ 0 and denote by

Dr0,k = {(g,x ,y) : dgr (x ,y) ≤ r0 and #V([(g,x ,y)]r0 ) ≤ k } ⊂ G••.

We then introduce the family of measurable sets

Mr0,k =



A ⊂ G•• measurable : E



∑
x ∈V(G∞)

1(G∞,ρ∞,x )∈A∩Dr0,k


= E



∑
x ∈V(G∞)

1(G∞,x,ρ∞)∈A∩Dr0,k





.
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By the above warmup, all the elementary sets A = {(g,x ,y) : [(g,x ,y)]r = g••0 } when g••0 ∈ G
•• is a

finite bi-pointed graph are in Mr0,k and those sets generate the Borel σ -field of G•• and are stable

under finite intersection. We claim that Mr0,k is a monotone class: the stability under monotone

union is clear using the monotone convergence theorem, and the stability under difference follows

from the fact that

E



∑
x ∈V(G∞)

1(G∞,ρ∞,x )∈Ac∩Dr0,k


= E



∑
x ∈V(G∞)

1(G∞,ρ∞,x )∈Dr0,k


− E



∑
x ∈V(G∞)

1(G∞,ρ∞,x )∈A∩Dr0,k


,

and similarly when the roles of ρ∞ and x are exchanged. We notice that the first expectation in

the right-hand side is finite (less than k from the definition of Dr0,k ). It follows that Mr0,k is the

Borel σ -field of G••. Sending r0 → ∞ and k → ∞, we deduce from the monotone convergence

theorem that G•∞ obeys the mass-transport principle for any indicator function. Since positive

functions are almost sure increasing limits of sum of indicator functions the full MTP follows

from another application of the monotone convergence theorem. �

Exercise 12. Recall the notation G• (n,p) for the connected component of 1 where the vertex 1

is distinguished in an Erdös–Rényi random graph over n vertices and parameter p. Show that

G• (n,p) is a unimodular random graph and deduce that Poisson-Galton–Watson trees (pointed

at the ancestor) are also unimodular. Show that a supercritical Poisson-Galton–Watson trees

(pointed at the ancestor) conditioned to be infinite is still unimodular.

We can now state perhaps the most interesting open problem in the field. Its resolution

would imply quite a few famous conjectures in group theory as this would imply that every

group is “sofic” .

Open Question 5 (Aldous–Lyons). Show that every unimodular random graph is a local limit in

distribution of uniformly pointed random graphs.

This conjecture has been proved in special cases for example when the limiting random graph

does not grow too fast [4] or the case of unimodular random trees [19, 24, 13, 18].

2.2 Examples

We now give a few example of unimodular random graphs. The first one actually being a

counter-example.

2.2.1 The grand-father graph

The following graph is an example of a vertex-transitive graph (recall Definition 2) which is not

unimodular. We start with a k-regular tree t with k ≥ 3 (in the following k = 3) given together

with a distinguished infinite ray (i.e. an infinite self-avoiding path converging to a point on the

boundary). This ray enables us to speak about a limit point “∞” at its extremity. Hence, if

x and y are neighbors in the graph, then one of the two vertices x or y is closer to “∞” than
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the other. The furthest of the two points is called the parent of the other and this induces a

genealogical order on the vertices of the tree. In the original graph t we then add all the edges

linking a vertex to its four grand-parents (hence the name of the graph). The graph gf obtained

is clearly vertex-transitive.

If conditionally on (G, ρ), (Xn)n!0 is the simple random walk started at ρ, we denote the
distribution of (G, (Xn)n!0) ∈ "G by P, and by E the respective expectation.

Definition 1.3. Let (G, ρ) be a random rooted graph. Conditionally on (G, ρ), let (Xn)n!0 be
the simple random walk on G starting from ρ. The graph (G, ρ) is called stationary if

(G, ρ) = (G,Xn) in distribution, for all n ! 1, (2)

or equivalently for n = 1. In words a stationary random graph is a random rooted graph whose
distribution is invariant under re-rooting along a simple random walk on G. Furthermore, (G, ρ)
is called reversible if

(G,X0,X1) = (G,X1,X0) in distribution. (3)

Clearly any reversible random graph is stationary.

Example 1. Any Cayley graph rooted at any vertex is stationary and reversible. Any transitive
graph G (i.e. whose isomorphism group is transitive on V(G)) is stationary. For examples of
transitive graphs which are not reversible, see [6, Examples 3.1 and 3.2]. E.g. the “grandfather”
graph (see Fig. below) is a transitive (hence stationary) graph which is not reversible.

∞

Fig.: The “grandfather” graph is obtained from the 3-regular tree by choosing a point at
Infinity that orientates the graph and adding all the edges from grand sons to grand-father.

Example 2. [8, Section 3.2] Let G be a finite connected graph. Pick a vertex ρ ∈ V(G) with a
probability proportional to its degree (normalized by

∑
u∈V(G) deg(u)). Then (G, ρ) is a reversible

random graph.

Example 3 (Augmented Galton-Watson tree). Consider two independent Galton-Watson trees
with offspring distribution (pk)k!0. Link the roots vertices of the two trees by an edge and root
the obtained graph at the root of the first tree. The resulting random rooted graph is stationary
and reversible, see [22, 23, 16].

2 Connections with other notions

As we will see, the concept of stationary random graph can be linked to various notions. In the
context of bounded degree, stationary random graphs generalize unimodular random graphs [1].
Stationary random graphs are closely related to graphed equivalence relation with an harmonic
measure, see [25]. We however think that the probabilistic Definition 1.3 is more natural and
shed some additional light on the concept.

3

However, this graph (pointed at any vertex) is not unimodular: consider the transport

function f (g,x ,y) = 1 if y is a parent of x and 0 otherwise. We let the reader check that this

is indeed a transport function (this is not trivial, we have to show that the graph structure of

gf enables to recover the distinguished ray hence the genealogical order). Then the MTP is

violated since

2 = E



∑
x ∈V(gf )

f (gf, ρ,x )


, E



∑
x ∈V(gf )

f (gf,x , ρ)


= 1.

2.2.2 Cayley graphs

Recall the definition of Cayley graphs (Definition 1).

Proposition 9. Any Cayley graph (pointed anywhere) is unimodular.

Proof. Let g be the Cayley graph of (Gr, S ) pointed at the identity e of the group. Then for

any x ,y ∈ Gr there is a homomorphism of bi-pointed graph (g,x ,y) → (g, e,yx−1) where e is the

identity of the group: this is the multiplication by x−1 on the right. Hence, since a transport

function f is invariant under homomorphism of bi-pointed graphs, we have f (g,x ,y) = f̃ (yx−1)

for some function f̃ : Gr → R+. Hence we have

E


∑
x ∈Gr

f (g, e,x )

=

∑
x ∈Gr

f (g, e,x ) =
∑
x ∈Gr

f̃ (x ) =
∑
x ∈Gr

f̃ (x−1) = E


∑
x ∈Gr

f (g,x , e )

,

where we used the fact that x 7→ x−1 is an involution of the group Gr. �

As a consequence of the last proposition we deduce that although being vertex-transitive,

the grand-father graph is not a Cayley graph of any group (do you see another way to prove

it?).
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Exercise 13. Show that Zd for d ≥ 1 with the standard edge set as well as infinite regular trees

of even degree are unimodular.

Exercise 14. Show that the infinite three-regular tree although not a Cayley graph in the above

sense (at least not for a symmetric set of generators) is nevertheless unimodular.

2.2.3 Construction from existing unimodular random graphs

We can obtain new unimodular random graphs from existing ones by modifications which do

not depend on a base point. We present here the case of bond percolation but the result can

be adapted to many other situations such as invariant percolation (see Section 2.3.2). Let

G• = (G, ρ) be a unimodular random graph and conditionally on G• perform a bond percolation

on G with parameter p ∈ (0, 1) (i.e. keep each edge independently with probability p). Denote

by C• (ρ) = (C(ρ), ρ) the cluster of the origin ρ pointed at ρ. Hence C• (ρ) is a random pointed

graph.

Proposition 10. The random graph C• (ρ) is unimodular.

Proof. We directly verify the mass-transport principle (2.1): Fix a transport function f and

compute

E



∑
x ∈V(C(ρ ))

f (C(ρ), ρ,x )


= E



∑
x ∈V(G )

EG
[
f (C(ρ), ρ,x )1x↔ρ

]
,

where Eg is the probability measure underlying a bond percolation on the graph g and x ↔ y

means that x and y are in the same cluster after performing the percolation. We just have to

realize that F (g,x ,y) = Eg

[
f (C(x ),x ,y)1x↔y

]
is a transport function and so applying the MTP

with the initial graph (G, ρ) we get that

E



∑
x ∈V(G )

EG
[
f (C(ρ), ρ,x )1x↔ρ

]
= E



∑
x ∈V(G )

EG
[
f (C(x ),x , ρ)1ρ↔x

]
.

Noting that on the event {ρ ↔ x } the clusters C(ρ) and C(x ) containing respectively x and ρ are

the same it remains just to apply Fubini’s theorem to arrive at the desired equality. �

Exercise 15. Let (G, ρ) be a unimodular random graph. Let A ⊂ G• be an invariant event in the

sense that if (g,x ) ∈ A then (g,y) ∈ A for any y ∈ g. Give examples of such A and prove that if

P((G, ρ) ∈ A) > 0 then (G, ρ) conditioned on being in A is again unimodular.

2.3 A few applications

We now present a couple of results which hold for any unimodular random graphs. We will

see indeed that these random graphs cannot behave too widely and should be thought of as

the stochastic analog of “regular” or “homogeneous” graphs. We focus mainly on the concept of

ends. Then we present the initial use of the Mass-Transport [27] which does not directly lie in

our framework but illustrates the power of the technique. We start with a useful proposition:
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Proposition 11 (Everything shows at the origin). Let G• be a unimodular random graph and

A ⊂ G• be a Borel set such that P(G• ∈ A) = 0. Then the probability that there exists a vertex

x ∈ V(G ) such that (G,x ) ∈ A is equal to zero.

Proof. Simply consider the transport function f (g,x ,y) = 1(g,x )∈A. The mass-transport principle

entails that

0 = P((G, ρ) ∈ A) = E



∑
x ∈V(G )

f (G, ρ,x )


= E



∑
x ∈V(G )

f (G,x , ρ)


= E



∑
x ∈V(G )

1(G,x )∈A


.

�

Proposition 12 (If it happens, it happens a lot). Let (G, ρ) be a unimodular random graph which

is almost surely infinite. Then for any A ⊂ G• Borel we have

#{x ∈ V(G ) : (G,x ) ∈ A} ∈ {0,∞} a.s .

Proof. Fix a measurable subset A ⊂ G• and for g ∈ G• denote by Aд = {x ∈ V(g) : (g,x ) ∈ A}.

We then consider the transport function

f (x ,y, g) =
1

#Ag
1y∈Ag10<#Ag<∞.

In other words, on the event when Ag is non-empty and finite, each vertex x splits a unit mass

between all the vertices of Ag and otherwise does nothing. Applying the mass-transport principle

(2.1) we deduce that

P(#AG ∈ {1, 2, ...}) = E[∞ · 1(G,ρ )∈A10<#Ag<∞].

Since the left-hand side is bounded by one we deduce that the event {(G, ρ) ∈ A and 0 < #Ag <

∞} has zero probability. By the same display it follows that P(0 < #AG < ∞) = 0 also. This is

the desired statement. �

Heuristically speaking, when the random graph G possesses some vertex x such that seen

from x the graph G has a certain property, then there are infinitely such vertices and even with

“positive” density, whatever it means. Beware, this is not a 0 − 1 law for the event in question:

if the graph (G, ρ) is equal to Z2 with probability 1/2 and to Z with probability 1/2 and if A is

the event {deg(ρ) = 2} then P(A) = 1/2.

2.3.1 Ends of unimodular random graphs

Definition 1: Let g be a graph and k1 ⊂ k2 ⊂ . . . an increasing sequence of finite subgraphs of

g which exhausts g, that is
⋃

i≥0 ki = g. An end of g is a nested sequence · · · ⊂ U3 ⊂ U2 ⊂ U1

where Ui is an infinite connected component of g\ki . A priori, the number of ends depends on

the sequence (ki )i≥1 however it is an exercise to see that it does not.
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Definition 2: A ray in g is an infinite self-avoiding path (i.e. a sequence of distinct neighboring

edges). We say that two rays r and r ′ are equivalent if there exists a third ray r ′′ which shares an

infinite number of edges with both r and r ′. This is an equivalence relation. The number of ends

of g is the cardinality of the quotient space of the space of rays by the above equivalence relation.

Exercise 16. Show that the two notions coincide, that is give the same number of ends for every

graph. Show that:

• any finite graph has 0 end,

• any infinite graph has at least one end,

• Z has two ends,

• Zd for d ≥ 2 has one end

• the complete k-ary tree with k ≥ 3 has uncountably many ends.

There is also a natural way to put a topology on the space of ends of a graph to turn it into

a topological space (see wikipedia “ends of graphs” for example). In particular, the space of ends

of the full k-ary tree is homeomorphic to a Cantor set, i.e. a closed set with no interior and no

isolated points.

Theorem 13 (The degree tells us a lot)

Let (G, ρ) be a unimodular random graph.

1. If G is almost surely finite then we have E[deg(ρ)] ≥ 2 · E[1 −#V(G )−1].

2. If G is almost surely infinite then E[deg(ρ)] ≥ 2.

3. If G is almost surely infinite and E[deg(ρ)] = 2 then G is almost surely a tree with 1 or

2 ends.

Proof. For the first point we consider the transport function f (g,x ,y) = deg(x )/#V(g). Applying

(2.1) we get that

E[deg(ρ)] = E



∑
x ∈V(G )

deg(x )

#V(G )


.

But in any graph the sum of all the degrees of the vertices is equal to twice the number of edges

and since G is connected we have by Proposition 1 that #E(G ) ≥ #V(G ) − 1. Combining these

observations we get point 1.
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For the second point we consider the transport function f

defined by f (g,x ,y) = 1 whenever x and y are neighbors and

linked by a single edge whose suppression isolates x in a finite

connected component. We then apply the mass-transport

principle (2.1) and split the cases depending on the degree

of ρ. Remark first that ρ receives deterministically always

strictly less than deg(ρ) unit of mass for otherwise g would

be finite, furthermore:

∞

x

y

< ∞

• when deg(ρ) = 1 (we say that ρ is a leaf) then ρ sends a unit of mass to its unique neighbor

and receives nothing,

• when deg(ρ) ≥ 2 and ρ happens to send a unit of mass through some edge then it cannot

receive mass through this same edge and thus receives in total less than deg(ρ) − 1 unit of

mass,

• when deg(ρ) ≥ 2 and ρ sends no mass at all then after a few drawings, one can convince

oneself that ρ receives less than deg(ρ) − 2 unit of mass.

In all cases we have deterministically

deg(ρ) + Sent(ρ) − Received(ρ) ≥ 2.

The mass-transport principle (2.1) precisely says that the averages of the last two terms of the

left-hand side cancel so that E[deg(ρ)] ≥ 2 as desired. The last point of theorem corresponds to

the saturation of the above inequalities. More precisely, if

F (g,x ) = deg(x ) +
∑

y∈V(g)

f (g,x ,y) −
∑

y∈V(g)

f (g,y,x )

then we deterministically have F (g,x ) ≥ 2 by the above point and thus E[deg(ρ)] = 2 implies that

F (G, ρ) = 2 almost surely. By Proposition 11 we deduce that almost surely we have F (G,x ) = 2

simultaneously for all x ∈ V(G ). However it is easy to see that if there is a non-trivial cycle in

the graph G then F (G,x ) > 2 for any vertex x on this cycle. The graph is thus a tree. Also,

when x is a point where at least three infinite paths merge then we have F (g,x ) > 2, hence there

are no such points and the tree has 1 or 2 ends. �

Exercise 17. Recall that a vertex x in a graph g is a leaf if it has degree 1 (that is adjacent to a

unique edge which is not a loop). Show that in a unimodular random graph (G, ρ) we have

P(ρ is a leaf) = E [#leaves neighboring ρ] .

The next result is a generalization of a well-known theorem for Cayley graphs:

Theorem 14 (Number of ends)

The number of ends of a unimodular random graph necessarily belongs to {0, 1, 2,∞} (but
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can be a random variable).

Proof. We can suppose that (G, ρ) is almost surely infinite, otherwise consider (G, ρ) conditioned

on the event #V(G ) = ∞ which is still a unimodular random graph by Exercise 15. For r ≥ 0

we call a vertex x ∈ V(g) an r -trifurcation if g\[(g,x )]r contains at least 3 infinite connected

components. It is an easy exercise to see that if a locally finite infinite graph has k ∈ {3, 4, ...}

ends then there must exists a r -trifurcation for some r ≥ 1. Also g has infinitely many ends if

and only if

#{r -trifurcations} −−−−→
r→∞

∞.

However by Proposition 12 for any r ≥ 1, in a unimodular infinite random graph (G, ρ) the

number of r -trifurcations is either 0 or ∞ almost surely. We deduce from the last two geometric

remarks that the number of ends of (G, ρ) is necessarily in {1, 2,∞}. �

2.3.2 Invariant percolation on trees

Let t• = (t, ρ) be the four-regular infinite tree pointed at any vertex. An invariant (site) per-

colation on t is a probability measure on Ω : {0, 1}V(t) which is invariant under any graph

homomorphism of t, in words, it is a random bicoloring of the vertices v ∈ V(t) in black if

ω (v ) = 1 and white if ω (v ) = 0 such that the law of coloring does not depend on the distin-

guished pointed vertex. For example a Bernoulli site percolation would do the job, but the

interesting case is that this percolation may exhibit dependence between sites! By invariance,

the percolation density

p = E[ω (v )] ∈ [0, 1],

does not depend on v ∈ V(t). The result we want to prove is the following:

Theorem 15 (High density automatically implies percolation)

If p is close enough to 1 then there exists an infinite cluster with positive probability.

This theorem may seem awkward at first glance. To understand its power we will construct a

counterexample on Z2 that is an invariant dependent percolation with density as close to 1 as

possible but with no infinite cluster. To do this, imagine that we tile Z2 with squares of size n×n

and color the vertices on the boundary of these squares in black (there are 4n − 4 such vertices

per big square) and all the others in white (there are n2 − 4n + 4 such vertices per square). This

gives a periodic coloring of Z2. To transform it into an invariant percolation we just need to

pick the distinguished vertex ρ of Z2 uniformly at random inside a fixed big square.

Exercise 18. Check that the resulting random configuration of colors on (Z2, ρ) is invariant in

law under all graph homomorphisms of Z2.

Clearly the resulting percolation has no infinite cluster, but the density of the percolation is

n2 − 4n + 4

n2
−−−−→
n→∞

1.
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Hiding behind this construction is the fact that in Z2 there are large sets whose boundary size

is negligible with respect to their size. This fact is not true in regular trees (or more generally

in non-amenable graphs) and we can check that for any connected set A of vertices in t, if we

denote by ∂A the set of vertices adjacent to A but not in A then we have for some constant c > 0

independent of A,

#∂A

#A
≥ c . (2.2)

Proof of Theorem 15. Given the tree t and a percolation ω on it, we will define a transport

function fω on the vertices of t as follows: Recall that C(x ) is the cluster of x then for all y ∈ V(t)

we put



if ω (x ) = 0 then fω (x ,y) = 0

if ω (x ) = 1 and #C(x ) = ∞ then fω (x ,y) = 0

if ω (x ) = 1 and #C(x ) < ∞ then fω (x ,y) =
1

|∂C(x ) |1y∈∂C(x ) .

In words, if ω (x ) = 0 or if x is in an infinite cluster then x sends no mass at all. Otherwise, if x

is in a finite connected component for ω he sends mass 1 which is spread over all the neighbor

vertices of C(x ). Recall that t can be seen as the Cayley graph of the free group over two elements

(see Exercise 13) we deduce that E[fω (x ,y)] in fact only depends on xy−1 and by invariance of

the percolation and involution invariance of the group we get that (exercise!)

E



∑
x ∈V(t)

fω (ρ,x )


= E



∑
x ∈V(t)

fω (x , ρ)


. (2.3)

This is the version of (2.1) that we will use. On the left-hand side of the last display we have

P(ω (x ) = 1 and #C(x ) < ∞). We will now bound the right-hand side. Remark first that to

receive mass, the vertex ρ must be white ω (ρ) = 0 and must lie on the boundary of a finite

cluster. Deterministically ρ can be on the boundary of at most 4 finite clusters A1,A2,A3 and

A4 and all the vertices in Ai sends a mass to ρ equal to

#Ai

#∂Ai
.
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By (2.2) and (2.3) we thus deduce that

P(ω (ρ) = 1 and #C(ρ) < ∞) ≤
4

c
· P(ω (ρ) = 0).

If the density p = P(ω (ρ) = 1) is close enough to 1 then the left-hand side becomes smaller than

p and thus ρ is in an infinite cluster with positive probability as desired. �

2.4 Abstracting the setup: Measured equivalence relations

We developed in this chapter the notion of unimodular random graph in the context of pointed

random graphs. Obviously we could abstract the setup: We only needed a notion of structure

(here graphs) with a base point (here a distinguished vertex) which we then want to pick at

random. More precisely recall the notation of Section 1.2.1: we have an abstract metric space

(E,δ ) and suppose that we have an equivalence relation ∼ on E so that the equivalence class of x

is denoted by x. Suppose also that for each class x we have a measure µx, non necessarily finite,

on the equivalence class x. Provided that some compatibility conditions are required on the

local topology and the measures we will say that a random variable X with values in (E,ddoc) is

uniformly based if µX is almost surely finite and

E[f (X )] = E

[
1

µX (E)

∫
dµX (x ) f (x )

]
.

Similarly, when the measure µ can be infinite we can speak of a unimodular random variable X

if we have

E

[∫
dµX (y) f (X ,y)

]
= E

[∫
dµX (x ) f (y,X )

]
,

for every function f : E×E→ R+. This concept is (related to) the theory of“measured equivalence

relations”. Let us see how to apply this setup in the above setting: We were dealing with random

pointed graphs E = G• and the equivalence relation is defined by (g, ρ) ∼ (g′, ρ ′) if and only if

(g′, ρ ′) is obtained from g by changing the origin point. In this case µg• is morally obtained as

the counting measure obtained by changing the base point

µg• =
∑

x ∈V(д)

δ (д,x ) .

There is however a difficulty here in the presence of symmetries in the graph. Indeed, think of

g as been a vertex-transitive graph, then its equivalence class g contains a unique point and the

transport f (g,x ,y) for two vertices x ,y ∈ V(д) cannot be seen as a f ((g,x ), (g,y)) for a function

f : G•×G• → R+! There are two multiple ways to bypass this difficulty: considering rigid graphs

(that are graphs without non trivial isomorphisms see [30, Section 1E]) or add independent

uniform labels ∈ [0, 1] on the graphs (see [4, Example 9.9]) so that we are dealing pointed label

graphs which now have also no non trivial isomorphisms.
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Biliographical references. Olle Haggstrom [27] first used a form of the Mass-transport principle

to study (dependent) invariant percolation on regular trees and show Theorem 15. This triggered

the systematic study of percolation on Cayley graph using the mass-transport principle as done

by Benjamini, Lyons, Peres and Schramm [12]. The most general form of unimodular random

graph and the MTP (as well as the local topology) have been introduced by Benjamini and

Schramm [14]. Most of this chapter is adapted from the wonderful survey paper [4] which

regroups and extends the results of [12] to random graphs. We refer to [4] for original references

and pointers. The Open Question 5 is due to Aldous & Lyons [4]. The answer is known to be

true in the case of trees [24, 13]. The reader interested in measured equivalence relations should

consult [4, 30, 40]
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Chapter 3

The random walk point of view

In this chapter we develop another point of view on unimodular random graphs. Roughly

speaking we will show that unimodular random graphs are those random graphs where the

landscape viewed from a particle performing a simple random walk is stationary in distribution.

3.1 Stationary (and reversible) random graphs

A rooted graph is a pair ~g = (g,~e ) where g is a (locally finite, connected) graph and ~e is

a distinguished oriented edge (that is given with a direction) that we call the root edge. If

g = (V(g),E(g)) is a graph, we denote by ~E(g) the set of all oriented edges of the graph,

which is obtained informally by duplicating each non-oriented edge (including self-loops) into

two oriented edges. If ~e ∈ ~E(g) we denote by ~e∗ the origin vertex of the oriented edge. Two

rooted graphs ~g1 = (g1,~e1) et ~g2 = (g2,~e2) are equivalent if there exists a graph homomorphism

g1 → g2 which sends ~e1 onto ~e2. As usual we will implicitly identify such graphs and work on
~G, the space of equivalence classes of (locally finite, connected) rooted graphs. For r ≥ 0, the

restriction of radius r in ~g, denoted by [~g]r , is obtained by keeping only those vertices and edges

of g which are at distance less than or equal to r from the origin of the root edge and keeping

the root edge as the distinguished oriented edge. As previously, we consider the local distance

dloc on ~G defined by the procedure of Section 1.2.1. If ~g = (g,~e ) is a rooted graph, we denote

by π• (~g) the pointed graph obtained by distinguished in g the origin vertex of the root edge.

Conversely, if G• = (G, ρ) is a deterministic or random pointed graph, we denote by π→ (G
•) the

random rooted graph obtained by distinguishing an oriented edge emanating from ρ uniformly at

random, conditionally on G•. Although π→ contains some additional randomness, the mapping

π• ◦ π→ is the identity on G•.

Exercise 19. Show that π• : ~G→ G• is continuous.

3.1.1 Uniformly rooted random graphs

We start with the exact analog of Definition 4 in the context of rooted graphs:
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Definition 8. Let ~G = (G,~e ) an almost surely finite random rooted graph. We say that ~G is

uniformly rooted if the root edge is chosen uniformly on ~E(G ) or more precisely if for all Borel

function f : ~G→ R+ we have

E[f ( ~G )] = E



1

#~E(G )

∑
~σ ∈~E(G )

f (G, ~σ )


.

We now explain how to pass from a uniformly rooted graph to a uniformly pointed graph

and vice-versa. This uses the concept of biased random variable. Recall that if X ,Y are two

random variables defined on a common probability space such that X takes its values in some

abstract space (E,d ) and such that Y is positive real-valued then we can construct a new random

variable X̃ whose law is the law of the random variable X biased by Y characterized by

E[f (X̃ )] =
1

E[Y ]
E[f (X ) · Y ],

for every Borel function f : E → R+. Of course, this definition requires that Y has a finite non

zero expectation. Equivalently, the law of X̃ is the distribution with Radon–Nikodym derivative

equal to Y (ω)/E[Y ] with respect to the law of X .

Exercise 20. Let U ∈ [0, 1] be a uniform random variable. Compute the law of U biased by itself.

Exercise 21. Let (Xi )i ∈I be a family of positive real-valued random variables all of mean 1. For

each i ∈ I denote by X̃i a random variable with the law of the variable Xi biased by itself. Prove

that (X̃i )i ∈I is tight if and only if (Xi )i ∈I is uniformly integrable.

Exercise 22 (Change of measure via a martingale). Let (Xn )n≥0 be a simple symmetric random

walk on Z starting from X0 = 1. We denote by τ the first hitting time of 0 by X . Everyone

knows that (Xn∧τ )n≥0 is a martingale for the canonical filtration. For every n ≥ 0 we denote by

(X̃ (n)
k )k≤n the law of (Xk )k≤n biased by Xn∧τ .

1. Show that for any 0 ≤ m ≤ n the law of (X̃ (n)
k )k≤m does not depend on n. Hence, by

coherence we can define the law of (X̃k )k≥0.

2. Show that (X̃k )k≥0 is a Markov chain whose probability transitions are q(i, i+1) = (i+1)/(2i )

and p (i, i − 1) = (i − 1)/(2i ) for i ≥ 1. (For those who know, recognize that X̃ has the law

of the h-transform of (Xn )n≥0 with the harmonic function h(i ) = i)

In our case, if ~G is a random uniformly rooted graph then the graph G• obtained from π• ( ~G )

by biasing by deg(~e∗)
−1 is a random uniformly pointed graph (we denoted by ~e∗ the origin vertex
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of the root edge ~e). Indeed, if f is a positive Borel function on G• we have

E[f (G•)] =
1

E[deg−1 (~e∗)]
E

[
deg−1 (~e∗) f (π• ( ~G ))

]

=
def .8

1

E[deg−1 (~e∗)]
E



1

#~E (G )

∑
~σ ∈~E (G )

deg−1 (~σ∗) f (G, ~σ∗)



=
1

E[deg−1 (~e∗)]
E



1

#~E (G )

∑
x ∈V(G )

f (G,x )



=
1

E[deg−1 (~e∗)]
E



1

#~E (G )

∑
~σ ∈~E (G )

deg−1 (~σ∗)
1

#V(G )

∑
x ∈V(G )

f (G,x )


.

The function F (G, ~σ ) = deg−1 (~σ∗)
1

#V(G )

∑
x ∈V(G ) f (G,x ) is measurable function from ~G to R+ hence

by Definition 8 we get that the last chain of equalities goes on with

E [F (G,~e )]

E[deg−1 (~e∗)]
=

1

E[deg−1 (~e∗)]
E


deg−1 (~e∗)

1

#V(G )

∑
x ∈V(G )

f (G,x )


= E



1

#V(G )

∑
x ∈V(G )

f (G,x )


.

Exercise 23. Show that conversely, ifG• is a random uniformly pointed graph with E[deg(ρ)] < ∞,

then the random rooted graph π→ (G
•) biased by deg(ρ) is uniformly rooted.

Exercise 24. Let G• be a uniformly pointed graph. Show that the rooted random graph π→ (G
•)

biased by deg(ρ)/#~E (G ) is uniformly rooted. Note that E[deg(ρ)/#~E (G )] is always finite and the

above procedure may be used even if E[deg(ρ)] = ∞ as long as the graph is almost surely finite.

3.1.2 Invariance along the random walk

We face the same problem as in Section 2.1.1: the notion of uniformly rooted graph cannot

trivially be extended to infinite graphs because of the presence of 1

#E(G )
. We could do the same

trick as in the last chapter and define “edge-unimodular” random graphs as those which satisfy

the “edge-mass transport principle”:

E



∑
~σ ∈E(G )

f (G,~e, ~σ )


= E



∑
~σ ∈E(G )

f (G, ~σ ,~e )


,

for any transport function f which associates a mass to any bi-rooted graph (д,~e, ~σ ). We will

however following a different concept yielding to a more general concept.

If ~д = (д,~e ) is a fixed rooted graph, we denote by P~д the law of the simple random walk on

д starting from the target of the root edge in д. More precisely this yields a sequence ~E0, ~E1, ...

of oriented edges where ~E0 = ~e and recursively for i ≥ 0 we choose independently of the past the

next oriented edge ~Ei+1 uniformly among all the oriented edges emanating from the target vertex

35



of ~Ei . If ~G = (G,~e ) is a random rooted graph the random walk on ~G is the law of (G, (~Ei )i≥0)

under the probability ∫
dP( ~G )

∫
dP~G ((

~Ei )i≥0).

Exercise 25. Let ~Gn be a sequence of random rooted graphs converging in distribution for the

local distance towards ~G∞. If conditionally on ~Gn we denote by (~E (n)
i )i≥0 the oriented edges

traversed by a simple random walk on ~Gn show that for any k ≥ 0 we have

(Gn , ~E
(n)
k )

(d )
−−−−→
n→∞

(G∞, ~E
(∞)
k ),

where (~E (∞)
i )i≥0 is a simple random walk on ~G∞ (Hint: use Skorokhod’s representation theorem

to assume that ~Gn converge almost surely towards ~G∞).

Definition 9. Let ~G = (G,~e ) be a random rooted graph and denote by (~Ei )i≥0 the sequence of edges

visited by a simple random walk on it. We say that ~G is stationary (or stationary along simple

random walk) if for every k ≥ 0 the law of (G, ~Ek ) is the same as that of ~G. It is furthermore

reversible if on top of it we have (G, ~E0) = (G, ~E0) in law, where ~e is the edge ~e with reversed

orientation.

In the context of random walk in random environment (here the random environment is the

underlying random graph) we often speak of a stationary environment seen from the particle. In

other words, when the random walk displaces, it sees at each step the same surrounding random

graph in distribution.

We begin with a few elementary remarks:

• By an easy induction we deduce that ~G is stationary if and only if (G, ~E1) = (G, ~E0) in

distribution.

• In the definition of reversibility, we first ask for stationarity: there are examples of random

rooted graphs such that (G, ~E0) = (G, ~E0) in distribution but which are not stationary (for

example consider two copies of Z joined by an oriented edge).

• For a stationary and reversible random graph we get that (G, ~E0) = (G, ~Ek ) = (G, ~Ek ) for

every k. Also conditionally on the graph, the probability that ~E0 = ~e0, ..., ~Ek = ~ek for a

fixed path γ = (~e0, ...,~ek ) is given by

*.
,

k∏
i=1

deg((~ei )∗)
+/
-

−1

.

Combining this with the above remark we deduce that for a stationary and reversible

random graph we have

(G, ~E0, ..., ~Ek )
(d )
= (G, ~Ek , ..., ~E0), (3.1)

or in words that the first k steps of a random walk have the same law seen from either tip

on a stationary and reversible random graph.
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• We will often use that for a stationary random rooted graph ~G = (G, ~E0) we have

π→ ◦ π• ( ~G ) = ~G, in distribution. (3.2)

In words, this means that we can start the simple random walk from the origin of the root

edge instead of the target of the root edge and get the same distribution. To see this,

denote (~E0, ~E1) and (~E0, ~E
′
1) two independent one-step simple random walks on ~G. Since

these two walks start with the same oriented edges we clearly have

π→ ◦ π• ((G, ~E1))
(d )
= (G, ~E ′1).

But by stationarity we also have (G, ~E ′1) = (G, ~E1) = ~G in distribution. Combining the two

statements we indeed get (3.2).

As promised, in the case of almost surely finite random graphs, stationarity along the simple

random walk is equivalent to uniform rooting.

Proposition 16. Let ~G be an almost surely finite random rooted graph. Then ~G is uniformly

rooted if and only if ~G is stationary along the simple random walk.

Proof. We first recall a well-known fact. If g is a fixed finite connected graph then the invariant

probability measure for the oriented edges visited by simple random walk is nothing but the

uniform measure on ~E(g). In other words, if we pick a uniform oriented edge ~E0 of g and then

perform k ≥ 0 steps of random walk starting from the extremity of ~E0 then the distribution of the

last oriented edge visited is again uniform over ~E(g). It easily follows from this observation that

if (~Ek )k≥0 is a simple random walk on a random uniformly rooted graph ~G then (G, ~Ek ) = (G, ~E0)

in distribution as desired.

To show the converse we again recall that if ~g is a finite connected rooted graph and (~Ei )i≥0

has law P~g then by the classical ergodic theorem for recurrent Markov chains on a finite state

space we have the almost sure weak convergence

1

n

n−1∑
k=0

δ~Ek
a .s .
−−−−→
n→∞

1

#~E(g)

∑
~σ ∈~E(g)

δ~σ .

Then, if f : ~G→ R+ is a bounded Borel function then we have

Sf (~g,n) =
1

n

n−1∑
k=0

f (g, ~Ek )
P~g−a .s .
−−−−−−→
n→∞

1

#~E(g)

∑
~σ ∈~E(g)

f (g, ~σ ) = Uf (~g).

If now ~G is a finite stationary random graph then
∫

dP( ~G )
∫

dP~G (
~Ek ) f (G, ~Ek ) = E[f ( ~G )] so

E[f ( ~G )] =
stationarity

E

[∫
dP~GSf (

~G,n)

]
dom. conv.
−−−−−−−−−→

n→∞
E[Uf ( ~G )],

which proves that ~G is indeed uniformly rooted. �
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Notice that a uniformly rooted random graph is automatically reversible and by the above

result any stationary random graph which is almost surely finite is automatically reversible.

However, this is not always the case in the infinite setting: Recall the grand-father graph gf of

Section 2.2.1. Since gf is transitive, it is easy to see that π→ (gf ) is stationary. However, π→ (gf )

is not reversible since the root edge is more likely to link a vertex to one of its two grand-fathers

(probability 1/3) rather than to its unique grand-son (probability 1/6).

We have the analog of Theorem 8:

Theorem 17

Let ~Gn be a sequence of stationary (resp. stationary and reversible) random graphs which

converges locally in distribution towards ~G∞. Then ~G∞ is also stationary (resp. stationary

and reversible).

Proof. Let Ar ⊂ ~G be a Borel subset of rooted graphs such that ~g ∈ Ar only depends on the

restriction of radius r around the root edge of ~g. Then by stationarity of the graphs ~Gn we get

that for any k ≥ 0 we have

E
[
P~Gn

((Gn , ~E
(n)
k ) ∈ Ar )

]
= E

[
P~Gn

((Gn , ~E
(n)
0 ) ∈ Ar )

]

where ~E (n)
i are the oriented edges traversed by the simple random walk on ~Gn . By our assumption,

the function 1Ar is a bounded continuous function for the local topology hence using Exercise

25 we can pass to the limit in the last display and deduce that

E
[
P~G∞

((G∞, ~E
(∞)
k ) ∈ Ar )

]
= E

[
P~G∞

((G∞, ~E
(∞)
0 ) ∈ Ar )

]

with obvious notation. Using an easy adaptation of Proposition 4 to rooted graphs we conclude

that (G∞, ~E
(∞)
0 ) = (G∞, ~E

(∞)
k ) in distribution. The case of stationary and reversible random graphs

is treated similarly. �

The analog of the Open question 5 also holds in this context: is any stationary and reversible

random graphs a local limit of uniformly rooted random graphs (this is not true for stationary

random graphs only as we have seen above that there are stationary infinite random graphs

which are not reversible)?

3.1.3 Involution invariance

We now make the connection between stationary and reversible random rooted graphs and

unimodular random pointed graphs directly in the (possibly) infinite case. We start with the

easier direction: from unimodular random graphs to stationary and reversible random graphs.

Proposition 18. Let G• = (G, ρ) be a unimodular random pointed graph. Consider first the random

pointed graph G
•
= (G, ρ) obtained from (G, ρ) after biasing by the degree of its origin (provided

that E[deg(ρ)] < ∞) and then introduce
~
G = π→ (G

•
) obtained by distinguishing an oriented edge

emanating from ρ uniformly at random. Then
~
G is stationary and reversible.
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Proof. We will first show that
~
G = (G, ~E) has the same law as (G, ~E). For this, let h(g,~e ) be a

function ~G→ R+ and denote by

f (g,x ,y) = 1x∼y
∑
x→

~e
y

h(g,~e ), (3.3)

the associated transport function obtained by summing over all choice of an oriented edge linking

x to y in g (in particular x ,y must be neighbors). Then applying the mass-transport principle

we get that

E[deg(ρ)] · E
[
h(G, ~E)

]
= E


deg(ρ)

1

deg(ρ)

∑
~e s.t. ~e∗=ρ

h(G,~e )


= E



∑
x ∈V(G )

f (G, ρ,x )


| |

E[deg(ρ)] · E
[
h(G, ~E)

]
= E


deg(ρ)

1

deg(ρ)

∑
~e s.t. ~e∗=ρ

h(G, ~e )


= E



∑
x ∈V(G )

f (G,x , ρ)



But in our context this statement also implies stationary. Indeed if (~E0 = ~E, ~E1) are the first two

steps of a random walk on (G, ~E) (started from the extremity of the root edge) then it is clear that

(G, ~E1) has the same distribution as (G, ~E) since ~E1 is nothing but a uniform edge emanating from

ρ. Since (G, ~E) has the same law as (G, ~E) we indeed deduce that (G, ~E0) = (G, ~E1) in distribution

and hence the desired stationarity. �

Theorem 19

Let ~G = (G, ~E) be a stationary and reversible random graph. We consider ~G = (G,~E) the

graph obtained from ~G after biasing by the inverse of the degree of the origin of ~E. Then

π• ( ~G ) is a unimodular random graph.

Proof. We will verify the mass-transport principle. Let f (g,x ,y) be a transport function which

is zero as soon as x and y are not neighbors. We then form the function h(g,~e ) such that (3.3)

holds. Then the same calculation as in the previous proposition shows that the MTP is verified

in π• ( ~G ) = (G, ρ) for such functions f : if we write ∆ = deg(~E∗) then

E
[
h(G, ~E)

]
=

(3.2)
E


∆−1

∑
~σ∗=~E∗

h(G, ~σ )


= E


∆−1

∑
x ∈V(G )

f (G, ~E∗,x )


= E

[
∆−1

]
E



∑
x ∈V(G )

f (G, ρ,x )


(rev.) | |

E
[
h(G, ~E)

]
=

(3.2)
E


∆−1

∑
~σ∗=~E∗

h(G, ~σ )


= E


∆−1

∑
x ∈V(G )

f (G,x , ~E∗)


= E

[
∆−1

]
E



∑
x ∈V(G )

f (G,x , ρ)



Actually, this suffices to imply the full MTP:

Lemma 20. Let (G, ρ) be a random pointed graph satisfying the MTP for transport functions

f (g,x ,y) which are null as soon as x and y are not neighbors in g. Then (G, ρ) is unimodular.
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Proof. Suppose that f (g,x ,y) is a transport function that is zero unless dgr (x ,y) = k for some

k ≥ 1 (any transport function is a sum of functions of the last sort). We denote by P (g,x ,y) the

number of geodesic paths going from x to y in g and Pj (g,x ,y;u,v ) the number of such paths

such that the jth step links u to v where 1 ≤ j ≤ k. We then form the transport functions for

1 ≤ j ≤ k

fj (g,u,v ) =
∑

x,y∈V(g)

f (g,x ,y)
Pj (g,x ,y;u,v )

P (g,x ,y)
.

Clearly these are transport functions which are null except if u and v are neighbors in g. Since

the MTP is valid for such functions we have

E



∑
v ∈V(G )

fj (G, ρ,v )


= E



∑
u ∈V(G )

fj (G,u, ρ)


.

But on the other hand we have the following deterministic equalities:∑
y∈V(G )

f (G, ρ,y) =
∑

y∈V(G )

f (G, ρ,y)
∑

v :dgr (ρ,v )=1

P1 (G, ρ,y; ρ,v )

P (G, ρ,y)
=

∑
v ∈V(G )

f1 (G, ρ,v ),

∑
x ∈V(G )

f (G,x , ρ) =
∑

x ∈V(G )

f (G,x , ρ)
∑

u:dgr (u,ρ )=1

Pk (G,x , ρ;u, ρ)

P (G,x , ρ)
=

∑
u ∈V(G )

fk (G,u, ρ),

and for 1 ≤ j < k we have∑
u ∈V(G )

fj (G,u, ρ) =
∑

x,y∈V(G )

f (G,x ,y)
∑

u ∈V(G )

Pj (G,x ,y;u, ρ)

P (G,x ,y)

=
∑

x,y∈V(G )

f (G,x ,y)
∑

v ∈V(G )

Pj+1 (G,x ,y; ρ,v )

P (G,x ,y)
=

∑
v ∈V(G )

fj+1 (G, ρ,v ),

since the second sum over paths is just the proportion of those paths going from x to y through

the vertex ρ in j + 1th position. Combining the last displays yields the MTP for the function

f . �

3.2 Applications

We now develop the analogs of the propositions we derived for unimodular random graphs in the

“weaker” context of stationary random graphs only. When the graph is stationary and reversible

one can consider its unimodular version and apply the results of Section 2.3.

3.2.1 Tightness

Proposition 21. A family (Gi , ~E
(i ) )i ∈I of stationary random graphs is tight in ~G if and only if the

family (deg(~E (i )
∗ ))i ∈I is tight.
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Proof. The characterization of pre-compact sets in ~G is analogous to the one in G•, i.e. they are

those sets A ⊂ ~G such that there exist n0,n1,n2, ...,nr , ... satisfying

sup{deg(x ) : x ∈ [~д]r , ~д ∈ A} ≤ nr .

In the following we denote by Mr (~д) the maximum vertex degree inside [~д]r . In particular ( ~Gi )i ∈I

is tight if for every ε > 0 there exist n0,n1, ...,nr such that for all i ∈ I we have P(∀r ≥ 0 :

Mr ( ~Gi ) ≤ nr ) ≥ 1 − ε. This is equivalent to the seemingly weaker condition:

∀ε ′ > 0,∀r ≥ 0,∃n′r ≥ 0, ∀i ∈ I , P(Mr ( ~Gi ) ≤ n′r ) ≥ 1 − ε ′.

But taking ε ′ = ε · 2−r and performing a union bound on r , we see that the second condition is

indeed equivalent to the first one. We have thus shown that ( ~Gi )i ∈I is tight if and only if for

every r ≥ 0 the family (Mr ( ~Gi ))i ∈I is tight. The last argument is valid for any family of random

rooted graphs, and we have not used stationarity. We will show now that if ( ~Gi )i ∈I are stationary

random graphs and (M0 ( ~Gi ))i ∈I is tight then (Mr ( ~Gi ))i ∈I is also tight for every r ≥ 0. We treat

the case r = 1 and leave the general case as an exercise to the reader. By assumption, for any

ε > 0 there exists n0 such that

∀i ∈ I , P(M0 ( ~Gi ) ≥ n0) ≤ ε .

Now inside each ~Gi we perform a two-steps simple random walk started from the origin of the

root edge and denote by ~E (i )′ the second directed edge visited. By (3.2) the graph (Gi , ~E
(i )′ )

has the same distribution as ~Gi and in particular the origin vertex ~E (i )′
∗ of ~E (i )′ is a random

uniform neighbor of ~E (i )
∗ and its degree has the same law as that of deg(~E (i )

∗ ). We choose ` ≥ n0

large enough so that if we sample independently ` variables uniformly in {1, 2, ...,n0} then all

the outcome have been seen with probability at least 1 − ε. We deduce that in ~Gi , if we pick `

independent neighbors ρ1, ..., ρ` of ~E (i )
∗ then on the event where deg(~E (i )

∗ ) ≤ n0 the set {ρ1, ..., ρ` }

covers all the neighbors of ~E (i )
∗ with probability at least 1 − ε. Combining these observations we

get that

P(M1 ( ~Gi ) ≥ n1) ≤ P(M0 ( ~Gi ) ≥ n0) + ε + `P(M0 ( ~Gi ) ≥ n1)

≤ 2ε + `P(M0 ( ~Gi ) ≥ n1).

Choosing n1 large enough we can make the above display less than 3ε and that completes the

proof for the case r = 1. �

Exercise 26. Using Proposition 21 and the above translation between unimodular random graphs

and stationary and reversible random graphs, show that if ((Gi , ρi ))i ∈I is a family of unimodular

random pointed graphs such that (deg(ρi ))i ∈I is uniformly integrable then ((Gi , ρi ))i ∈I is tight in

G•. Show that the latter condition is not necessary and that the condition supi E[deg(ρi )] < ∞

is not sufficient.
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3.2.2 0 − 1 laws

We now have the analogs of Proposition 11 and 12:

Proposition 22 (Everything shows at the origin). Let ~G be a stationary random graph and A ⊂ ~G

be a Borel set such that P( ~G ∈ A) = 0. Then the probability that there exists an edge ~e ∈ ~E(G )

such that ( ~G,~e ) ∈ A is equal to zero.

Proof. For every n ≥ 0 if ~En is the n-th edge visited by a simple random walk on ~G we have

P((G, ~En ) ∈ A) =
stat.
P((G, ~E0) ∈ A) = 0.

Summing-up over all n ≥ 0 we deduce that because the graph is connected

0 = E


∑
n≥0

1(G, ~En )∈A


=

∫
dP( ~G )

∑
~e ∈~E(G )

1(G,~e )∈A

∫
dP~G ((

~Ei )i≥0)
∑
i≥0

1~Ei=~e︸                            ︷︷                            ︸
>0

.

This proves the desired statement. �

Proposition 23 (If it happens, it happens a lot). Let ~G be a stationary random graph which is

almost surely infinite. Then for any A ⊂ ~G Borel we have

#{~e ∈ ~E(G ) : (G,~e ) ∈ A} ∈ {0,∞} a.s .

Proof. Let A ⊂ ~G and for a graph g denote by ~EA (g) the set of all oriented edges ~e ∈ ~E(g) such

that (д,~e ) ∈ A. We argue by contradiction and suppose that with positive probability we have

0 < #~EA (G ) < ∞.

After conditioning on the above event (which preserves stationarity by an extension Exercise

15) we can suppose that 0 < #~EA (G ) < ∞ almost surely. Hence we will suppose that the last

display happens almost surely. By the last proposition we must have P( ~G ∈ A) > 0 and so by

stationarity

0 < P( ~G ∈ A) = E


1

n

n−1∑
i=0

1(G, ~Ei )∈A


= E



1

n

n−1∑
i=0

1~Ei ∈~EA (G )


.

However for any infinite graph g and any finite subset F ⊂ V(g) the proportion of time spend

by a simple random walk in F almost surely goes to 0 (indeed, otherwise the walk would be

positive recurrent and it is not possible that simple random walk on an infinite graph is positive

recurrent because the only invariant measure is proportional to the degree of vertices which is

an infinite measure). Hence by dominated convergence we get that

0 < P( ~G ∈ A) = E


1

n

n−1∑
i=0

1(G, ~Ei )∈A


= E



1

n

n−1∑
i=0

1~Ei ∈~EA (G )


−−−−→
n→∞

0,

which yields a contradiction. �

Using the above propositions, one can adapt the proof of Theorem 14 and deduce:

Corollary 24. The number of ends of a stationary random graph is almost surely in {0, 1, 2}∪{∞}.
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3.2.3 Degree of the root

One now prove the analog of Theorem 13 in the weaker context of stationary random graphs.

Recall that since we need to bias by the inverse degree of the origin vertex to go from stationary

and reversible random graph to unimodular random graph, the analog of the equality E[deg(ρ)] =

2 in Section 2.3 becomes E[deg(ρ)−1] = 1
2 .

Theorem 25 (The (inverse) degree tells us a lot!)

Let (G, ~E) be an a.s. infinite stationary random graph whose origin vertex is denoted by ρ,

then

E[deg(ρ)−1] ≤
1

2
.

Besides if the above inequality is an equality, then G is a.s. a random tree (with one or two

ends, as proved below in Theorem 41).

Proof. Let (~En )n≥0 the sequence of oriented edges visited by the random walk on G and denote

by (Xn )n≥0 their origin vertex. The idea is to consider the function Hn = dgr (X0,Xn ) and in

particular its conditional variation. More precisely, given the graph G, we can condition on the

σ -field Fn generated by the first n − 1 steps (so that the walk sits on Xn) and compute

E(G, ~E )[Hn+1 − Hn | Fn ] =
1

deg(Xn )

(
PG,X0 (Xn ) − NG,X0 (Xn )

)
,

where Pg,x (y) is the number of edges in g starting from y pointing to a vertex at a distance

strictly larger than dgr (x ,y) and similarly for N (g,x ) (y) after replacing strictly larger than strictly

less. Clearly we must have Ng,x (y) ≥ 1 as long as x , y since there must be a geodesic path

going from y to x in g, and so we can always write:

E(G, ~E )[Hn+1 − Hn | Fn ] ≤
deg(Xn ) − 2

deg(Xn )
+ 1Xn=X0

2

deg(Xn )
. (3.4)

Now, taking expectation with respect to the simple random walk and the graph we deduce that

E[dgr (X0,Xn )] =
n−1∑
i=0

E

[
deg(Xi ) − 2

deg(Xi )

]
+ E



n−1∑
i=0

2 · 1X0=Xi

deg(Xi )


.

Using the fact that the walk is either transient or null recurrent (and never positive recurrent),

we can argue as in the preceding proof and deduce that the second term in the right-hand size is

asymptotically negligible in front of n. We now use the stationarity of G to see that E
[
deg(Xn )−2
deg(Xn )

]

does not depend on n and equals E[
deg(ρ )−2
deg(ρ ) ]. Since n−1dgr (X0,Xn ) is obviously non negative we

get the desired estimate

E
[
deg(ρ)−1

]
≤

1

2
.

Let us now prove that if the above inequality is an equality, then G is almost surely a tree.

Arguing by contradiction, we suppose that P(G is not a tree) > 0. We can therefore find an r ∈

N∗ such that P([(G, ~E)]r contains a cycle) > 0 and more precisely one can find a finite connected

rooted graph (д0,~e0) of radius r > 0 such that:
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• (д0,~e0) contains a cycle (x1, . . . ,xk ) with k ≥ 1 and x1, . . . ,xk are all distincts vertices of д0

at distance less than r − 1 from ~e0,

• P([(G, ~E)]r = (д0, ~e0)) > 0

A vertex x is called an intruder in (g,~e ) if (3.4) is not saturated, meaning that the number of

half-edges in g starting from x and pointing towards a vertex at graph distance dgr (ρ,~e∗) + 1 is

strictly less than deg(x ) − 1. Then we have the following deterministic geometric lemma:

Lemma 26. Every cycle of any rooted connected graph contains an intruder.

Proof. Let (g,~e ) be a connected rooted graph and x1, . . . ,xk (k ≥ 1) distincts vertices of g

such that the edges (x1,x2), . . . , (xk−1,xk ), (xk ,x1) are in E(g) and are all distincts (x1, . . . ,xk is

a cycle). The case k = 1 is trivial and x1 is necessarily an intruder. We consider now k ≥ 2.

Let us suppose that the vertices of the cycle are not intruders in (g,~e ). Therefore, all half-

edges but one emanating from xi link to a vertex at distance from the origin ~e∗ strictly larger

than xi . Without loss of generality, we can suppose that dgr (~e∗,x1) = min1≤i≤k dgr (~e∗,xi ). We

have then dgr (~e∗,x2) = dgr (~e∗,x1) + 1 (if dgr (~e∗,x2) = dgr (~e∗,x1) then x2 is an intruder). The edge

x2 → x1 of that cycle is thus the only edge that goes from x2 to an other vertex closer to ~e∗.

Therefore dgr (~e∗,x3) = dgr (~e∗,x2) + 1 etc. Going around the cycle we reach a contradiction. �

Coming back to the proof of the theorem, conditionally on [(G, ~En )]r = (g0,~e0), we know

from the above lemma that the (image inside G of the) cycle (x1, . . . ,xk ) of (g0, ~e0) contains an

intruder x for (G, ~E) which might depend on ~En of course. Then one can find d > 0 and ε > 0

which only depend on g0 and not on the intruder x such that conditionally on [(G, ~En )]r = (g0,~e0)

one of the vertices Xn ,Xn+1, ...,Xn+d−1 visited by the SRW is the intruder x with probability at

least ε. With the above notation we can now write

E(G, ~E )[Hn+1 − Hn |X0, . . . ,Xn ] ≤
deg(Xn ) − 2

deg(Xn )
−

2

deg(Xn )
1Xn=X0 −

1

deg(Xn )
1Xn is an intruder in (G, ~E ) .

Taking expectation with respect to the graph and summing from k d ≤ n < (k + 1)d we obtain

using stationarity of the underlying graph

E[H (k+1)d − Hkd ] ≤ d E

[
deg(X0) − 2

deg(X0)

]
− 2

(k+1)d−1∑
n=kd

E

[
1Xn=X0

deg(Xn )

]

−E



(k+1)d−1∑
n=kd

1Xn is an intruder in (G, ~E ))

deg(Xn )


but by our assumptions, the third term in the right-hand side is smaller than −ε. After arguing

as above (using the transience or null-recurrence of the walk to show that the second term is

negligible as k → ∞) we deduce that as k → ∞ we have using our assumption E[deg(X0)
−1] = 1

2

that

lim sup
k→∞

E[H (k+1)d − Hkd ] ≤ −ε .
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We indeed reach a contradiction after summing-up over all k since the expectation of Hn cannot

be negative. �

3.3 Connection with ergodic theory

We now reformulate Definition 9 in the framework of ergodic theory in order to be able to apply

powerful tools such as the subadditive ergodic theorem, Poincaré recurrence theorem... Recall

that the basic ingredients of ergodic theory are 1) a probability space (E,A, µ ) and 2) an action

θ : E → E measurable which preserves the measure µ in the sense that µ (θ−1 (A)) = µ (A) for all

A ∈ A.

3.3.1 Framework

We will work on the set of locally finite connected graphs endowed with a possibly infinite

path made of oriented edges (g, (~ei )a<i<b ) where a ∈ {−∞} ∪ {...,−2,−1} and b ∈ {1, 2, ...} ∪ {∞}.

The oriented edge ~e0 could be seen as the root edge of the graph. As usual, we will identify

(g, (~ei )i ∈(a,b ) ) with (g′, (~ei
′)i ∈(a,b ) ) if there exists a graph homomorphism g → g′ mapping ~ei to

~ei
′ for every i ∈ (a,b). The quotient space is then denoted by G↔ and endowed with the local

distance corresponding to the notion of restriction
[(

g, (~ei )a<i<b
)]

r
=

(
[(g,~e0)]r , (~ei )i ∈(a,b )∩(−r,r )

)
.

The resulting space (G↔,dloc) is again Polish by Section 1.2.1. We focus in what follows on the

subspace G→ made of those graphs with a semi-infinite path indexed by i ∈ N i.e. when a = −1

and b = ∞. This space comes with a natural shift

θ (g, (~ei )i≥0) 7→ (g, (~ei+1)i≥0).

Recall that to any random rooted graph (G, ~E) we associated a probability measure on G→ by

launching a simple random walk on it, more precisely by considering the distribution

µ =

∫
dP(G, ~E)

∫
dP(G, ~E ) ((

~Ei )i≥0),

where we recall that P(g,~e ) is the law of a simple random walk starting with ~e in g. It is an easy

matter to translate the notion of stationary into θ -invariance:

Proposition 27. The random graph (G, ~E) is stationary if and only if µ is θ-invariant.

Proof. If µ is θ -invariant we in particular get that (G, ~E0) = (G, ~E1) where (~Ei )i≥0 is a simple

random walk on (G, ~E) and so the latter is stationary. Conversely, by the Markovian property

of the simple random walk one can construct θ (G, (~E)i≥0) = (G, (~Ei+1)i≥0) by first making one

step of random walk to discover ~E1 then re-rooting at ~E1 to finally launch the rest of the walk

independently of this step. Since (G, ~E0) = (G, ~E1) this algorithm produces a random graph with

a semi-infinite path which has the same law as µ. �
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Exercise 27. (∗) If (G, (~Ei )i≥0) is a stationary random graph given with a simple random walk

on it, show that as k → ∞ the variable (G, (~Ei+k )−k≤i<∞) converges in distribution in G↔ and

that the resulting distribution is invariant by shifting along the path by ±1. Show that the

law obtained is invariant by time reversal of the path if and only if the original graph (G, ~E0) is

reversible.

Let us give a recreative application using the famous Poincaré recurrence theorem:

Proposition 28. Let (G, ~E) be a stationary random graph and denote by (~Ei )i≥0 a simple random

walk on it. Then we almost surely have

lim inf
n→∞

dloc

(
(G, ~E0), (G, ~En )

)
= 0.

In words, the result says that almost surely when performing a simple random walk on a

stationary random graph we will discover places where the landscape around the current oriented

edge is arbitrarily close to the starting landscape. Notice that the last proposition is trivial when

the simple random walk on G is almost surely recurrent.

Proof. This is an application of Poincaré recurrence theorem. We recall in the next exercise the

general form from which the above result can be deduced in the metric case. �

Exercise 28. Prove Poincaré recurrence theorem: If (X ,A, µ ) is a measurable space with a finite

measure µ and θ : X → X preserves µ then for any measurable A ⊂ A and for µ-almost all x ∈ A

there exists an infinite number of n ≥ 0 such that θn (x ) ∈ A. Hint: Consider A′ = {x ∈ A : θn (x ) <

A,∀n ≥ 1} and show that θ−k (A′) are pairwise disjoint subspaces for k ≥ 0.

3.3.2 Ergodicity and applications

Recall that θ is ergodic (for the measure µ) if for any measurable set A such that µ (A∆θ−1 (A)) = 0

then µ (A) ∈ {0, 1}. In words, ergodicity means that the shift operation does not stabilize any

non trivial event.

Definition 10. We say that a stationary random graph (G, ~E) is ergodic (or its law is ergodic) if

the measure µ on G→ associated by the above means is ergodic for the shift θ .

We will usually admit ergodicity when needed. We recall Kingman’s subadditive ergodic

theorem which generalizes the well-known pointwise ergodic theorem of Birkhoff.

Theorem 29 (Kingman’s subadditive ergodic theorem)

If θ is a measure preserving transformation on a probability space (E,A, µ ) and (hn )n≥1 is a

sequence of integrable functions satisfying for n,m ≥ 1

hn+m (x ) ≤ hn (x ) + hm (θnx ),

then we have the following convergence almost sure and in L1

hn (x )

n

a .s . and L1
−−−−−−−−−−→

n→∞
h(x ),
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where h(x ) is a θ -invariant function (in particular constant if θ is ergodic).

When hn (x ) = x + f (x ) + f (θx ) + ...+ f (θn−1x ) for some integrable function f : E → R we recover

Birkhoff’s famous ergodic theorem. There are many generalizations of the above subadditive

ergodic theorem but this version is already sufficient to provide useful applications in the context

of random graphs. In the following of this section (G, ~E) is a stationary and ergodic random graph

and we denote by µ the associated probability measure on G→.

Speed of the random walk. We consider the function

hn (g, (~ei )i≥0) = dgr ((~e0)∗, (~en )∗),

where (~ei )∗ is the origin vertex of ~ei and dgr is the graph distance. The triangular inequality

shows that

hn+m (g, (~ei )i≥0) = dgr ((~e0)∗, (~en+m )∗) ≤ dgr ((~e0)∗, (~en )∗) + dgr ((~en )∗, (~en+m )∗)

= hn (g, (~ei )i≥0) + hm (g, (~ei )i≥n ) = hn (g, (~ei )i≥0) + hm (θn (g, (~ei )i≥0)).

Clearly the functions hn are bounded by n and so are integrable. We can thus apply Theorem

29 and get the existence of a constant s ≥ 0 (for speed) such that

dgr ((~E0)∗, (~En )∗)

n

a .s .
−−−−→
n→∞

s . (3.5)

Linear growth of the range. We consider the function

rn (g, (~ei )i≥0) = #{(~e0)∗, ..., (~en )∗}

be the number of different vertices visited by the walk in the first n steps. It is plain that

#{(~e0)∗, ..., (~en+m )∗} ≤ #{(~e0)∗, ..., (~en )∗}+#{(~en )∗, ..., (~en+m )∗} and the second term is rm (θn (g, (~ei )i≥0)).

Since the rn are also integrable, we are in position to apply Theorem 29 again and get

#{(~E0)∗, ..., (~En )∗}

n

a .s .
−−−−→
n→∞

r , (3.6)

for some r ≥ 0. Actually we can in this case express exactly the constant r . Indeed, even if the

graph is not ergodic, as long as it is stationary we can evaluate the expectation of the range of

the random walk as follows

E
[
#

{
(~E0)∗, ..., (~En )∗

}]
= E



n∑
k=0

1{it is the last visit to (~Ek )∗ before time n}


=

n∑
k=0

P
(
(~Ei )∗ , (~Ek )∗,∀k + 1 ≤ i ≤ n

)
=

stat.

n∑
k=0

P
(
(~E0)∗ , (~Ei )∗,∀1 ≤ i ≤ k

)
.
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But by dominated convergence we have P
(
(~E0)∗ , (~Ei )∗,∀1 ≤ i ≤ k

)
→ P

(
(~E0)∗ , (~Ei )∗,∀i ≥ 1

)
as

k → ∞. Performing Cesaro’s summation we deduce that

n−1 E
[
#

{
(~E0)∗, ..., (~En )∗

}]
−−−−→
n→∞

P
(
(~E0)∗ , (~Ei )∗,∀i ≥ 1

)
. (3.7)

We deduce that if the graph is almost surely recurrent (not necessarily ergodic) then the range of

the random walk grows sublinearly in probability, a fact that we will use later on. If the graph is

ergodic, we can compare the last display together with (3.6) and get by dominated convergence

that r is the averaged probability that a simple random walk on ~G does not come back to its

starting point.

Another application of Kingman theorem for the function

Entn (g, (~ei )i≥0) = − log P(g,~e0) (
~En = ~en ),

will be presented in the next chapter in connection with the notion of Shannon entropy.

Let us make use of the above machinery to prove the following result:

Theorem 30 (Non reversibility implies transience)

Let (G, ~E) be an ergodic stationary random graph. If (G, ~E) is not reversible then it must also

be almost surely transient.

Proof. We denote (G, (~E)i≥0) the random graph with the random walk path in G→ obtained

by launching the SRW on G. Since G is not reversible, there must exist a bounded function

F : ~G→ R+ such that we have

α = E[F (G, ~E)] , E[F (G,
←−
E )] = β .

The ergodic theorem hence ensures that

1

n

n−1∑
i=0

F (G, ~Ei )
a .s .
−−−−→
n→∞

α and
1

n

n−1∑
i=0

F (G,
←−
E i )

a .s .
−−−−→
n→∞

β .

Now if we suppose by contradiction that G is recurrent with a positive probability, since this

event is shift invariant then by ergodicity G must be almost surely recurrent. Writing τk for

the successive return times of the simple random to the origin vertex we deduce from the last

display and the dominated convergence theorem that

E


1

τk

τk−1∑
i=0

F (G, ~Ei )

−−−−→
k→∞

α and E


1

τk

τk−1∑
i=0

F (G,
←−
E i )


−−−−→
k→∞

β .

However, in any graph, by reversibility of the simple random walk path, the law of (~E0, ..., ~Eτk−1)

is equal to that of (
←−
E τk−1, ...,

←−
E 0) since the density of these two paths is proportional to(

deg(X1) × · · · × deg(Xτk−1)
)−1

where X0,X1, ...,Xτk are the vertices visited by the simple random walk. Combining this obser-

vation with the last display shows that α = β which is absurd! �
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Biliographical references. The connection between stationary reversible random graphs and

unimodular random graphs is explicit in [4] in particular thanks to the involution invariant

property (Lemma 20 above). The exposition here is adapted from [11]. The tightness criterion

for stationary random graphs is taken from [13], see also [8]. Theorem 25 seems to be new.

Finally the link with ergodic theory is classical and can be found e.g. in [11] where the application

to the entropy of the walk was first derived following the approach of [31] in the case of fixed

regular graphs. The proof of Theorem 30 is new but a stronger result has been proved in [11]:

an ergodic stationary non reversible random graph (with bounded degreee) must actually have

positive speed.
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Chapter 4

Entropy of stationary random graphs

In this section we study the entropy of the random walk on stationary random graphs and show

that we can adapt the classical criterion on groups to show that stationary random graphs have

the Liouville property if and only if there asymptotic entropy is equal to 0. We first recall the

basics on entropy of discrete random variables.

4.1 Entropy of discrete random variables

4.1.1 Shannon entropy

We start with the definition:

Definition 11 (Shannon entropy). Let X be a random variable taking values in discrete space

E whose law is described by the family of the probabilities {p (x ) : x ∈ E}. The entropy of the

variable X is defined as

H(X ) := E[− log(p (X ))] =
∑
x ∈E

−p (x ) log(p (x )).

Clearly the definition of H(X ) in fact only depends on the law of the random variable and we

should rather write H(p). However we will always make this abuse of notion and speak of the

entropy of random variables. This quantity measures the “dispersion”, the “information” or the

“surprise” that the random variable X generates. Indeed, if p (x ) happens to be very small, then

we are very “informed” or “surprised” to see that X = x and the quantity of information needed

to describe such an event is by definition the logarithm of the last probability (think of the

number of bits in base 2). Let us gather a few properties of the entropy:

Proposition 31. The entropy is :

1. additive with respect to independence : if X and Y are independent then

H(X ,Y ) = H((X ,Y )) = H(X ) +H(Y ),
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2. maximal when uniform : H(X ) ≤ log(#Supp(X )) with equality when X is uniformly dis-

tributed,

3. diminishes under mapping : H( f (X )) ≤ H(X ) for any map f .

Proof. The first point follows from the fact that if p (x ,y) is the law of (X ,Y ) then we have

p (x ,y) = p1 (x )p2 (y) where p1 and p2 are the laws of X and Y respectively and so

H((X ,Y )) = −
∑
x,y

p (x ,y) log(p (x ,y))

= −
∑
x

p1 (x )p2 (y)
(
logp1 (x ) + logp2 (y)

)
= −

∑
x

p1 (x ) logp1 (x ) −
∑
y

p2 (y) logp2 (y) = H(X ) +H(Y ).

For the second point we use the concavity of log(·) and Jensen’s inequality to get that

H(X ) = E[− log(p (X ))] = E[log(1/p (X ))] ≤ logE[1/p (X )] = log(n),

where n is the size of the support for p. By the equality case in Jensen’s inequality the above is

sharp if and only if 1/p (X ) is constant, meaning that p (X ) is constant, or in other words that X

is uniformly distributed over its support.

The third point is easily checked for simple functions which identifies two points, because

−(p (x ) + p (y)) log(p (x ) + p (y)) ≤ −p (x ) logp (x ) − p (y) logp (y).

The general case is easily deduced by induction. �

Exercise 29. Compute the entropy of a Bernoulli law, and of a geometric law. Show that among

all distributions on {1, 2, 3, ...} the geometric law maximes the entropy for a given mean. (In

general, the probability measures which maximize the entropy for a given mean energy level are

measures whose density with respect to the uniform measure is proportional to exp(βEnergy(·))

for some β ∈ R tuned to reach the desired mean energy level. These are called Gibbs measures.).

Exercise 30 (Asymptotic equipartition theorem). Let (E,p) be a finite probability space. For

n ≥ 1 consider the product space En (of cardinality (#E)n) endowed with the product measure

p⊗n . For any ε > 0 consider

Sε (n) = inf {#A : A ⊂ En such that p⊗n (A) > 1 − ε }.

Show that for any ε ∈ (0, 1) we have n−1 log #Sε (n) → H(p). Reprove that H(p) ≤ log(#E).

4.1.2 Conditional entropy

The fact that the entropy decreases by mapping shows that the entropy of (X ,Y ) is always larger

than or equal to the entropy of X plus the entropy of Y whatever the correlations that may exist

between X and Y . We can thus define the conditional entropy

H(X |Y ) = H(X ,Y ) −H(Y ) ≥ 0.
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If p,p1,p2 denotes the law of (X ,Y ),X ,Y respectively, a simple calculation shows that

H(X |Y ) = −
∑
x,y

p (x ,y) logp (x ,y) −
∑
x,y

p (x ,y) logp2 (y)

= −
∑
x,y

p (x ,y) log
p (x ,y)

p2 (y)

=
∑
y

p2 (y) *
,
−

∑
x

p (x |y) logp (x |y)+
-
= EY [H(L(X |Y ))].

Definition 12 (Conditional entropy). On a probability space with underlying probability measure

P let F be an arbitrary σ -field and X be a discrete random variable. We define the conditional

entropy of X with respect to F as

H(X |F) = E [H(L(X |F))] = E

−

∑
x

P(X = x | F) log P(X = x | F)

.

Exercise 31. Check that the last two definitions agree when F = σ (Y ).

Proposition 32. On a probability space supporting the random variable X we have

1. if G ⊂ F are two σ -fields then H(X | G) ≥ H(X | F) with equality if and only if the

conditional laws of X given F or G are the same. In particular, H(X | F) = 0 if and only

if X is independent of F.

2. if Fn is a decreasing sequence of σ -fields then H(X | Fn ) ↑ F(X |
⋂

n≥0 Fn ).

Proof. Using Jensen’s inequality for the conditional expectation (remark that ϕ (x ) = −x log x is

concave) and the tower property we have

H(X | F) =
∑
x

E [ϕ
(
E[1X=x | F]

)
] =

tower

∑
x

E [E [ϕ
(
E[1X=x | F]

)
| G]]

≤
Jensen

∑
x

E [ϕ
(
E [E[1X=x | F] | G]

)
]

≤
tower

∑
x

E [ϕ (E [1X=x | G])] = H(X | G).

The above inequality is sharp if and only if Jensen’s conditional inequality is sharp, i.e. if for

every x almost surely we have E [1X=x | G] = E [1X=x | F]. The desired statements easily follows

from that.

The second point follows from the fact that E[1X=x | Fn ] is a positive retrograde martingale and

so converges almost surely towards E[1X=x | ∩Fn ]. By Fatou we thus get H(X | ∩Fn ) ≤ limH(X |

Fn ) but the other inequality is granted by the first point. �

4.2 Tail and invariant σ -fields, Poisson boundary

Let g be a connected graph with positive conductances on every edge. If a origin vertex o ∈ V(g)

is distinguished, we can consider the random walk (Xi )i≥0 on g starting from o which we see here

52



as a Markov chain on the vertices of g. The random walk is thus a random variable taking values

in the space Paths of infinite paths of neighboring vertices in g starting from ρ on which the shift

operation θ acts naturally θ ((xi )i≥0) = (xi )i≥1. For each n ≥ 0 we define Fn = σ (X0, ...,Xn ) as

well as F∞ = σ (Xi : i ≥ 0). We then consider two types of σ -fields containing “limit information”

Definition 13. The tail σ -field T is T =
⋂
n≥0

σ (Xi : i ≥ n).

The invariant σ -field I is made of all the events A such that if ω ∈ A then θ (ω) ∈ A as well.

Clearly I ⊂ F. Here is a trivial case where I , F: consider the graph a − b made of a single

edge of conductance 1. Then the invariant sigma field is always trivial whereas the tail sigma

field contains events of the type “the simple random walk crosses from a to b at every large

enough even times”. Unless for this parity reasons the two σ -fields I and T coincide in general

(for exemple for the lazy simple random i.e. when the walk has at each step a probability 1/2

to stay put), see [37, Theorem 14.18 and Section 14.6].

There is also a third way of encapsulating limit behavior of a random walk:

Definition 14. A function f : V(g) → R is harmonic if for any x ∈ V(g) we have Ex [f (X1)] = f (x )

where X1 is a one-step random walk (on the vertices of the graph) started from x (in words f (x )

is the mean of its neighbors).

In general the invariant σ -field can be interpreted in terms of bounded harmonic functions:

Theorem 33 (Description of the invariant σ-field in terms of Poisson boundary)

We have a linear map between the space L∞ (Paths, I,Po ) and the space of bounded harmonic

functions :

L∞ (Paths, I,Po ) → Bounded Harmonic Functions

f ∈ 7→
(
hf : x 7→ Ex [f (X0,X1, ...,Xn , ...)]

)
fh (X0,X1, ...,Xn , ...)

a .s .
= lim

n→∞
h(Xn ) ←[ h

Proof. Let us go from the left to the right. If f is a bounded invariant function then by invariance

and the Markov property at time 1 we have

hf (x ) = Ex [f (X0,X1, ...,Xn , ...)] = Ex [f (X1, ...,Xn , ...)] = Ex [hf (X1)].

Hence hf is indeed a bounded harmonic function. It is easy to see that hf in fact does not

depend on the equivalence class of f . For the reverse mapping, notice that if h is a bounded

harmonic function then h(Xn ) is a bounded martingale and so converges almost surely so we can

define fh . To see that the two mappings are inverse one another remark that

f (X0, ...,Xn , ...)
p .s .
= lim

n→∞
E[f (X0, ...) | Fn ]
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by the martingale convergence theorem. Yet the right hand side of the last display can be written

by the Markov property as

Ex [f (X0, ...) | Fn ] = EXn [f (X̃0, ...)] = hf (Xn ),

and so fhf = f almost surely as desired. �

We deduce in particular from the last theorem that the following definition makes sense:

Definition 15. The graph g has the Liouville property (in short g is Liouville) if the only bounded

harmonic functions it carries are constant, or equivalently if the invariant σ -field I is trivial.

Examples: All the recurrent graphs are Liouville. The graphs Zd for d ≥ 1 are Liouville, more

generally the Cayley graphs of abelian groups are Liouville. The full k-ary tree with k ≥ 3 are

non-Liouville.

4.3 Entropy on stationary random graphs

4.3.1 The mean entropy

Let ~G be a stationary random graph with a random walk on it. In this section it is more convient

to see the walk as a sequence of vertices (X0,X1, ...) starting at the extremity of the root edge

(so that X1 is not necessarily deterministic). In particular, the stationarity of the underlying

graph shows that (G;X0,X1, ...) has the same law as (G;X1,X2, ...).

Proposition 34. With the above notation, for any 1 ≤ i1 < i2 < ... < i` we have

E[H(Xi1 ,Xi2 , ...,Xi` )] = E[H(Xi1 )] + E[H(Xi2−i1 ,Xi3−i1 , ...,Xi`−i1 )].

Proof. If (g, ρ) is a pointed graph we denote by pI
(g,ρ ) the law of (Xi : i ∈ I ) where (Xn )n≥0 is the

random walk on g started from X0 = ρ. By definition of the entropy we thus have

E[H(Xi1 ,Xi2 , ...,Xi` )] = E
[
− logpi1, ...,i`

(G,X0)
(Xi1 ,Xi2 , ...,Xi` )

]

=
Markov

E
[
− log

(
pi1
(G,X0)

(Xi1 )p
i2−i1, ...,i`−i1
(G,Xi1 )

(Xi2 , ...,Xi` )
)]

= E
[
− logpi1

(G,X0)
(Xi1 )

]
+ E

[
pi2−i1, ...,i`−i1
(G,Xi1 )

(Xi2 , ...,Xi` )
]

=
stat.

E
[
− logpi1

(G,X0)
(Xi1 )

]
+ E

[
pi2−i1, ...,i`−i1
(G,X0)

(X̃i2−i1 , ..., X̃i`−i1 )
]

= E[H(Xi1 )] + E[H(Xi2−i1 ,Xi3−i1 , ...,Xi`−i1 )].

�

Exercise 32. Let (Xn )n≥0 be an irreducible Markov chain on a finite state E with stationary

distribution (µi : i ∈ E) and transition probabilities qi, j . Show that regardless of the starting

point of the chain we have

1

n
H(X1, ...,Xn ) −−−−→

n→∞

∑
i ∈E

µi
∑
j ∈E

−qi, j logqi, j .
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(Hint: Show that when the Markov chain starts from stationarity we actually have equality for

all n ≥ 1 in the above display).

Let us derive a few useful consequences of the last proposition. To simplify notation we write

hI = E[H(Xi : i ∈ I )] for a finite subset I ⊂ N and write hn = E[H(Xn )]. First for any n,m ≥ 0 we

have H(Xn ,Xn+m ) ≥ H(Xn+m ) and so after taking expectation and applying Proposition 34 we

deduce that

hn+m ≤ hn + hm .

The sequence (hn )n≥0 is then sub additive and so by Fekete’s lemma hn/n converges as n → ∞,

and this limit (equal to the infimum of all hn/n) is denoted by h ∈ [0,∞] and called the mean

entropy of ~G. In the following we will always assume that h1 is finite (this is a very mild

assumption and follows for example from the hypothesis E[log(deg(~e )∗)] < ∞).

Exercise 33. Let ~G be an ergodic stationary random graph such that E[log(deg(~e )∗)] < ∞. Show

(using Kingman sub additive theorem) that − logpn
(G,X0)

(Xn ) converges almost surely and in L1

towards h ∈ [0,∞) as n → ∞.

Next, if one applies repeatedly Proposition 34 to hI for I = {0 < i1 < ... < i` } one deduces

that letting i0 = 0 we have

hI =
∑̀
j=1

hi j−i j−1 .

In particular, if one considers conditional entropy, for any 1 ≤ k ≤ m ≤ n we have

E[H(X1, ...,Xk | Xm , ...,Xn )] = E[H(X1, ...,Xk ,Xm , ...,Xn ) −H(Xm , ...,Xn )]

= h {1,2, ...,k,m,m+1, ...,n } − h {m,m+1, ...,n }

= kh1 + hm−k + (n −m)h1 − (hm + (n −m)h1)

= kh1 + hm−k − hm .

Theorem 35 (Tail σ-field and zero entropy)

Let ~G be a stationary random graph such that h1 < ∞. Then the mean entropy h is zero if

and only if the tail σ -algebra T relative to the random walk on ~G is almost surely trivial (in

particular G is almost surely Liouville).

Proof. We examine the expected conditional entropy of E[H(X1 | Xm , ...,Xn )] when 1 < m < n.

By the above calculation this is equal to h1 +hm−1 −hm and in particular does not depend upon

n (this is also true without taking expectation and follows from Markov property at time n). If

we let n → ∞ and then m → ∞, we get by monotonicity of conditional entropy (Proposition 32)

and monotone convergence that

h1 + hm−1 − hm = E[H(X1 | σ (Xm , ...)]

↗
m→∞

E[H(X1 | T)],
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in particular hm − hm−1 is decreasing and it must converge to h by Cesaro’s summation. We

finally deduce that E[H(X1 | T)] = h1 − h. Similarly we get E[H(X1,X2, ...,Xk | T)] = k (h1 − h). If

h = 0, it means that H(X1,X2, ...,Xk | T) = H(X1,X2, ...,Xk ) almost surely and so by Exercise 1

that Fk is independent of T, and so T is trivial. Reciprocally, if T is trivial then H(X1 | T) = 0

almost surely and in expectation (recall that h1 < ∞). �

4.3.2 Volume and speed

Using the inequality H(X ) ≤ log #Supp(X ) we deduce that hn ≤ E[log #[(G,X0)]n ] and in par-

ticular if G has subexponential growth in the sense that n−1E[log #[(G,X0)]n ]→ 0 then its mean

entropy is automatically 0 and in particular it is Liouville (this gives another proof of the fact

that Zd is Liouville for any d ≥ 1). Actually, even if the volume of balls growth exponentially

with the radius the graph may still be Liouville as soon as the speed of the random walk is zero:

Corollary 36. Let ~G be a stationary and ergodic random graph of degree almost surely bounded

by M > 0. Conditionally ~G let (Xn )n≥0 be the vertices visited by a simple random walk on G

starting from the origin. We denote the speed of the random walk by s and the exponential

volume growth of G by v, namely

s = lim sup
n→∞

n−1E [dgr (X0,Xn )] ,

v = lim sup
n→∞

n−1E
[
log(#[~G]n )

]
.

Then the mean entropy h of ~G satisfies h ≤ vs .

Remark 2. We even have the inequality h ≥ s2/2, but the proof of it is based on a deep inequality

called the Carne-Varopoulos inequality and so we do not present the proof here.

Proof. Fix ε > 0. To simplify notation, we write Bs for the ball of radius (s + ε )n around the

origin in the graph G and Bcs for the complement of the ball of radius n in Bs . We decompose

the entropy H(Xn ) as follows

H(Xn ) = E[− logpn(G,X0)
(Xn )]

= E
[
− logpn(G,X0)

(Xn )1Xn ∈Bs
]
+ E

[
− logpn(G,X0)

(Xn )1Xn ∈Bcs
]

≤ E
[
− logpn(G,X0)

(Xn )1Xn ∈Bs
]
+ n log(M )P

(
Xn ∈ B

c
s
)
.

Because pn
(g,ρ ) (x ) ≤ M−n in any graph with degrees bounded by M. On the other hand, by

ergodicity it follows that n−1dgr (X0,Xn ) → s almost surely and hence P(Xn ∈ Bs ) → 1. It follows

from the last display that

E[Hn ] ≤ E
[
− logpn(G,X0)

(Xn ) | Xn ∈ Bs
]
(1 + o(1)) + o(n) ≤ E[log(Bs )](1 + o(1)),

and the latter is eventually less than sv as desired. �
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Bibliographical references. The concept of entropy of a random variable has been introduced

by Shannon in the last century in order to theorize channel coding. It has since then been used in

many context. The use of the entropy to characterize the behavior of random walks on regular

graphs has its origin in the work of Avez [9] and has been later developed by Kaimanovich

[31, 29, 30]. The extension to stationary random graphs is taken from [11], see also [20]. Basics

on entropy of random variables and tail behavior of random walk can be found in many textbooks

but is here largely inspired by [37].
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Chapter 5

Stationary random trees

In this chapter we focus on the case when the underlying graph is a stationary/stationary

reversible/unimodular random tree and use this geometric structure to our advantage. We start

by giving an example of stationary and reversible random tree based on the standard Galton–

Watson trees. We also prensent the local limit of large critical Galton–Watson trees known as

Kesten’s tree.

5.1 Augmented Galton–Watson trees

We now introduce a very important example of stationary and reversible random graph based

on Galton–Watson trees. As it will turn out, Galton–Watson trees are generally not stationary

and reversible random graphs and we need to trick a little their distributions to gain stationarity

(and reversibility) along the simple random walk.

5.1.1 Definition

Recall from Section 1.3 the definition of a Galton–Watson plane tree. Clearly a plane tree τ can

be seen as a pointed graph by forgetting the order and distinguishing the ancestor vertex. It

can also be seen as a rooted graph by distinguishing the edge ∅ → 1 provided of course that τ

has more than two vertices. We denote π	 (τ ) the obtained rooted graph.

It should be clear that the origin vertex ∅ of a Galton–Watson tree has stochastically fewer

neighbors than the other vertices since it has no ancestor. To cope with this problem we

introduce the augmented p-Galton–Watson tree (AGW) obtained by grafting two independent

p-GW trees at each extremity of the oriented root edge (∅, 1), see figure below. Equivalently,

the offspring distribution of the root vertex is changed from (pk )k≥0 to (0,p0,p1, ...) whereas the

offspring distribution of the other vertices is still p.

Theorem 37 (Augmented Galton–Watson tree)

The image by π	 of an augmented p-AGW tree is a stationary (and reversible) random

graph.
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GW

GW

AGW

∅

1

In particular we can get from an AGW tree a unimodular random graph after forgetting the

orientation, distinguishing the origin vertex and biasing by (deg(∅))−1.

Proof. We will directly show that the rooted plane AGW tree

(with the plane orientation) is itself stationary and reversible. By

forgetting the plane ordering we will have the desired statement.

Fix k, ` ≥ 0 and measurable subsets of trees A1, ...,Ak ,B1, ...,B`.

We form the event E represented on the figure on the right. By

the definition of the augmented Galton–Watson probability we get

that

PAGW (E) = pkp`

k∏
i=1

PGW (Ai )
∏̀
i=1

PGW (Bi ).

We then compute the probability that the tree re-rooted on the

first edge (after the root edge) taken by a simple random walk falls

in E and we find:

k + 1

`+ 1

A1

A2
Ak

B1

B2

B`

...

...

p`
`

` + 1

∏̀
i=1

PGW (Bi )pk

k∏
i=1

PGW (Ai )︸                                           ︷︷                                           ︸
if ~E1 , ~E0

+p`
1

` + 1
pk

∏̀
i=1

PGW (Bi )
k∏
i=1

PGW (Ai )︸                                           ︷︷                                           ︸
if ~E1 = ~E0

.

Hence the probability of E is the same for the original plane rooted tree as for the one obtained

by rooting after one step of random walk. Events of the type of E form a π -system and they

generate the full σ -algebra. We conclude by an application of the monotone class theorem. �

Exercise 34. Suppose E[p] > 1. Show that an augmented Galton–Watson tree conditioned to

be infinite is a stationary and reversible random graph. Compute the degree distribution of its

origin vertex.

Example : Geometric Galton–Watson. Let p(ξ ) be the geometric offspring distribution with

success parameter ξ ∈ (0, 1), that is

p
(ξ )
k = ξ (1 − ξ )

k .

An easy computation shows that p(ξ ) indeed is a probability distribution whose generating

function is given by Fp(ξ ) (z) = ξ (1 − (1 − ξ )z)−1. In particular, the mean of p(ξ ) is (1 − ξ )/ξ and
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p(ξ ) is supercritical as soon as ξ < 1/2 and the extinction probability is the smallest solution of

z = Fp(ξ ) (z) in [0, 1] and thus equal to

q
(ξ )
die
=

ξ

1 − ξ
, for ξ ∈ (0, 1/2].

We denote in the following Tξ a p(ξ )-Galton–Watson tree. We already convinced ourselves that

Tξ is not a stationary and reversible random graphs and constructed the associated augmented

Galton–Watson tree denoted by T̂ξ which is stationary and reversible. In the case of the geometric

distribution, this augmented Galton–Watson has a particularly simple interpretation:

Proposition 38. For ξ ∈ (0, 1/2), the p(ξ )-Galton–Watson tree Tξ conditioned to be infinite is a

stationary and reversible random graph (after taking the image by π	). Furthermore this law

coincides with the law of the augmented p(ξ )-Galton–Watson tree T̂ξ conditioned to be infinite.

Proof. We will show that Tξ conditioned to be infinite is equal in law to T̂ξ conditioned to

be infinite. Note that since T̂ξ is (in its random rooted graph version) a stationary and re-

versible random graph, the property passes to the conditioning and we get the statement of the

proposition. Let us compute first the degree distribution of the ancestor in Tξ , we have

P(c∅ (Tξ ) = k0 | #Tξ = ∞) =
ξ (1 − ξ )k0

(
1 − (q

(ξ )
die

)k0
)

1 − q
(ξ )
die

=
ξ (1 − ξ )

(
(1 − ξ )k0 − ξ k0

)
1 − 2ξ

.

Furthermore, conditionally on c∅ (Tξ ) = k0 and Tξ being infinite, the k0 trees above 1, 2, ...,k0

have the law of k0 independent p(ξ )-Galton–Watson trees conditioned on having at least one tree

being infinite. The same is true in T̂ξ : conditionally on T̂ξ being infinite and on c∅ (T̂ξ ) = k0 the

k0 subtrees above 1, 2, ...,k0 have the above law and we have

P(c∅ (T̂ξ ) = k0 | #T̂ξ = ∞) =
ξ (1 − ξ )k0−1

(
1 − (q

(ξ )
die

)k0
)

1 − (q
(ξ )
die

)2
=
ξ (1 − ξ )

(
(1 − ξ )k0 − ξ k0

)
1 − 2ξ

.

Comparing the last two displays, we realized that Tξ and T̂ξ have the same law once conditioned

on being infinite. This completes the proof. �

5.1.2 Computation of the speed

In this section we study the behavior of the simple random walk on supercritical augmented

Galton–Watson trees. For simplicity we focus on the case when p0 = 0 i.e. when all individuals

have at least one child and p1 , 1. In particular, the random trees considered are all infinite.

We begin with a 0 − 1 law for transience of Galton–Watson trees.

Proposition 39. Let ~T = (T , ~E) be (the random rooted graph obtained from) a Galton–Watson tree

with offspring distribution (pk )k≥0 with p1 , 1 and p0 = 0. Then P(T is transient) ∈ {0, 1} and

the same is true for the associated augmented Galton–Watson tree.
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Proof. Obviously if the offspring distribution is subcritical or critical, the random tree T is

almost surely finite and thus recurrent. We can thus focus on the supercritical case. A tree is

transient if and only one of its subtrees above the ancestor is transient. Hence the probability

q that T is recurrent satisfies q =
∑

k≥1 pkq
k = Fp (q) whose unique solutions are 0 or 1. The

same property holds for the augmented Galton–Watson tree since the latter is composed of the

grafting of two Galton–Watson trees through a single edge. �

Theorem 40 (Speed in AGW )

Let ~T be (the random rooted graph obtained from) an augmented Galton–Watson tree with

offspring distribution (pk )k≥0 satisfying p0 = 0 and p1 , 1. We denote by (Xi )i≥0 the vertices

visited by the simple random walk on T then

• dgr (X0,Xi ) → ∞ almost surely (T is almost surely transient),

• we have

lim
n→∞

n−1 · E[dgr (X0,Xn )] =
∑
k≥1

pk
k − 1

k + 1
.

Remark 3. A similar statement holds for offspring distribution with p0 , 0 but when
∑

k kpk > 1

and the AGW is conditioned to be infinite. Also, the convergence in mean of n−1 dgr (X0,Xn )

actually holds in a almost sure sense, a fact that follows from (3.5) once we know that an

augmented Galton–Watson tree is ergodic (see [37, Section 16.3] for a proof).

Proof. We denote by X0,X1, ... the vertices visited iteratively by the simple random walk with

the convention that (X0,X1) = ~E0 is the root edge of ~T . For n ≥ 0 we put Hn = dgr (X0,Xn ) and

want to prove that n−1 · Hn → s in mean. To do so we first associate a martingale to Hn in a

standard way. Indeed, conditionally on ~T we denote by Fn the filtration generated by {X0, ...,Xn }

and put

Mn = Hn −

n∑
k=1

E[Hk − Hk−1 | Fk−1].

(We use E for expectation over the random walk and E for averaging over the underlying random

graph). By construction, conditionally on ~T , the process (Mn ) is a martingale. Taking the average

over the random walk and the underlying tree we get that

E[E[dgr (X0,Xn )]] = E[E[Mn ]︸ ︷︷ ︸
=0

] +
n∑

k=1

E[E[Hk − Hk−1 | Fk−1]]. (5.1)

It turns out that, conditionally on ~T , since the walk displaces on a tree we can explicitly express

the conditional expectation E[Hn+1 −Hn | Fn ]: Indeed, if the walk is sitting on a vertex Xn , X0

of degree k, there are k − 1 edges leading to vertices further apart from X0 by one unit and a
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unique edge yielding to a vertex closer to X0 by one unit, so

E[Hn+1 − Hn | Fn ] = 1Xn,X0

deg(Xn ) − 2

deg(Xn )
+ 1Xn=X0

=
deg(Xn ) − 2

deg(Xn )
+

2

deg(Xn )
1X0=Xn . (5.2)

Since the underlying random graph is stationary (we do not use reversibility in this proof) we

get that for all n ≥ 0

E

[
E

[
deg(Xn ) − 2

deg(Xn )

] ]
=

∑
k≥1

pk−1
k − 2

k
=

∑
k≥0

pk
k − 1

k + 1
=: s .

Combining this calculation with (5.2) and (5.1) we deduce that E[E[Hn ]] ≥ n · s. From this we

first deduce that ~T is almost surely transient. Indeed, we know from Proposition 39 that ~T is

either almost surely transient or almost surely recurrent. If it is almost surely recurrent, using

(3.7) we get that range of the walk is sublinear in mean in particular we would have

lim
n→∞

n−1 E[E[Hn ]] = 0,

which is incompatible with E[E[Hn ]] ≥ n · s. Consequently we almost surely have Hn → ∞ and

bootstrapping in (5.2) we deduce that the probability that X0 = Xn tends to zero as n → ∞ and

we get the desired convergence
E[E[Hn ]]

n
→ s .

�

Exercise 35. Show that the speed of the random walk on a Galton–Watson tree with offspring

distribution satisfying p0 = 0 and p1 , 1 exists and is the same as in the associate augmented

Galton–Watson tree.

Exercise 36. Do you have any easier way to prove that supercritical Galton–Watson trees with

p0 = 0 are almost surely transient?

Remark that since the function x 7→ x−1
x+1 is concave we have

∑
k≥0 pk

k−1
k+1 ≤

m−1
m+1 where m is

the mean of the offspring distribution. Hence, the speed on a Galton–Watson tree is lower than

the speed on a regular tree of the same growth. Do you have a heuristic explanation for this

fact?

5.2 General results

We now extend some of the above results to the case of general unimodular/stationary reversible

random trees. We also discuss the status of Open Question 5 in the case of random trees.
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5.2.1 Geometric properties

Theorem 41 (Recurrence, zero speed, mean degree, ends...)

Let (T , ~E) be a stationary random tree a.s. infinite whose origin vertex is denoted by ρ. Then

the following four assertions are equivalent

(i) E[deg(ρ)−1] = 1/2,

(ii) the simple random walk a.s. has zero speed on T ,

(iii) T is almost surely recurrent,

(iv) T almost surely has 1 or 2 ends.

In particular, such stationary random trees are also reversible by Theorem 30.

Proof. With the same notation as in the proof of Theorem 25 or 40 we have

E[dgr (X0,Xn+1) − dgr (X0,Xn ) | Fn ] =
deg(Xn ) − 2

deg(Xn )
+

2

deg(Xn )
1X0=Xn .

Recall also that by stationarity we have

E

[
E

[
deg(Xn ) − 2

deg(Xn )

] ]
= E

[
deg(ρ) − 2

deg(ρ)

]
.

On the other hand, since the invariant measure of the walk on T is proportional to the degree

we have n−1
∑n−1

i=0 1X0=Xi → 0 in P-probability. Hence we deduce that

speed = lim
n→∞

n−1E[E[dgr (X0,Xn )]] =
E[deg(ρ) − 2]

E[deg(ρ)]
,

and so (i ) is equivalent to (ii ). Also (iv ) ⇒ (iii ) ⇒ (ii ) is easy to prove. Indeed, if (iv ) holds

then T is made of a single infinite or bi-infinite line on which finite trees are grafted and as far

as recurrence is concerned, a simple random walk on such a tree behaves like the simple random

walk on N or Z which in both cases is recurrent. If we suppose (iii ) that T is almost surely

recurrent then the range of the walk is zero by (3.7) and so the speed of the SRW on T is zero

and so (ii ) holds. Let us now focus on (ii ) ⇒ (iv ). We can suppose that T is ergodic (this is

a standard procedure in ergodic theory: if a property A holds almost surely for the stationary

measure then it holds also almost surely for almost all –with respect to the Choquet integral–

ergodic components of the measure). In order to prove that T has almost surely 1 or 2 ends,

we will use the tree (T̃ , ρ̃) obtained by biasing T by the inverse of the origin degree. If we can

prove that T is reversible on top of being stationary then T̃ will be unimodular by Proposition

19. Since E[deg(ρ̃)] = 2 we could apply Theorem 13 and deduce that T̃ has one or two ends

almost surely. The same obviously would hold for T and the proof would be complete. It thus

remains to show that T is reversible. To do this, we proceed as in the proof of Theorem 30

and suppose by contradiction that it is not reversible. Then there exists α , β and a bounded
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positive mesurable function F such that by ergodicity we have

1

n

n−1∑
i=0

F (T , ~Ei )
a .s .
−−−−→
n→∞

α and
1

n

n−1∑
i=0

F (T ,
←−
E i )

a .s .
−−−−→
n→∞

β .

Now since we are on a tree, the set of edges visited by the walk from ~E0 to ~En are almost the

same as those visited from
←−
E n to

←−
E 0. Those edges which differ are the edges which lie on the

geodesic path from X0 to Xn , but since T has zero speed by assumption there are only o(n) such

edges. Since F is bounded, we can use this fact together with the last display to deduce that

α = β . Absurd! �

Exercise 37. Prove directly that a recurrent stationary random tree must have 1 or 2 ends

without passing through its unimodular version and requiring the mass-transport principle used

in Theorem 13.

Exercise 38. Give an example of a recurrent (equivalently zero speed by the above theorem)

stationary (and reversible by Theorem 30) random tree T such that the exponential volume

growth is strictly positive

lim inf
n→∞

n−1 log(#[T ]n ) > 0.

5.2.2 Approximations by finite random graphs

Theorem 42 (Soficity for unimodular random trees)

Any unimodular random tree (T , ρ) is the local limit in distribution of a sequence of uniformly

pointed random graphs.

We do not give the proof and refer to [19, 24, 13, 18]. Notice that in the above statement nothing

is said about the geometry of the finite sequence approximating (T , ρ) and they may very well

not be trees. Indeed, if (Tn , ρn ) is a sequence of random finite uniformly pointed trees which

converges locally in distribution towards an infinite random pointed tree (T∞, ρ∞), then using

Theorem 13 as well as Fatou’s lemma, we deduce that

E[deg(ρ)] ≤ 2.

Using Theorem 13 again it follows that T∞ has at most two ends. Reciprocally, those random

trees are approximated by finite random trees: Consider inside T∞ a bond Bernoulli percolation

of parameter p ∈ (0, 1) and denote by (τp , ρ) the cluster of the origin, pointed at the origin.

We have seen that (τp , ρ) is indeed a unimodular random graph. It thus suffices to see that it

is almost surely finite in order to apply Proposition 7. But recall that since E[deg(ρ∞)] ≤ 2,

it follows from Theorem 13 that T∞ almost surely has 0, 1 or 2 ends. It is thus clear that any

percolation with parameter p < 1 on such a tree creates only finite clusters a.s. Translating this

in the realm of stationary random trees we have proved:

Corollary 43. The class of stationary trees considered in Theorem 41 is exactly those random

trees which are local limit of finite stationary random trees.
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Remark 4. In order to compare with the forthcoming theorem of Benjamini & Schramm on

recurrence of local limits of planar graphs let us draw the easy corollary of the above discussion:

If (Tn , ρn ) is a sequence of finite unimodular random trees converging locally in law towards

(T , ρ) then T is almost surely recurrent.

5.2.3 A few constructions

A stationary tree not reversible. We begin with the construction of a random tree which is

stationary but not reversible (and hence not unimodular once biaised by the inverse of the root

degree). As explained in Theorem 30 it must be transient. We start with the fixed tree T0

below obtained where each vertex at generation equal to 0 mod 3 has 1 child, each vertex at

generation equal to 1 mod 3 has 2 children and each vertex at generation equal to 2 mod 3 has

three children. The generations are indexed by Z. It is an easy exercice to see that the simple

Figure 5.1: The 1 − 2 − 3 tree T0.

random walk on T0 is transient. We claim that there is a random choice of the root edge so

that (T0, ~E) is stationary. One abstract way to see this is to consider a subsequential limit of the

probability measure on G→ given by

µn =
1

n

n−1∑
i=0

δ (T0, (~Ei+k )k≥0),

where, as usual, we write (~Ei )i≥0 for the oriented edges visited by the random walk on T0. The

fact that this sequence of probability measure is tight follows from the fact that the degrees in

T0 are all bounded by 4. Clearly if θ is the shift operator on G→ we have

dLP (µn ◦ θ
−1, µn ) ≤

2

n
,

where dLP is the Lévy Prokhorov distance. It follows that if µ is any subsequential limit of

(µn )n≥0 we must have µ ◦ θ−1 = µ. In order words the random rooted graph associated to µ is

stationary, which is what we desired since it corresponds to the tree T0 with a random choice of

root edge (they are only finitely many choices of root edge which give different rooted trees).
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Exercise 39. Give explicitly a choice of a root edge on T0 to turn it into a stationary random

graph.

We claim that the above random rooting of T0 turns it into a stationary but not reversible

random graph. Indeed, since T0 is transient the walk escapes to infinity and during its run the

walker will successively visit vertices of degree 2, 3, 4 more often in this order than in the order

4, 3, 2 breaking the reversibility. We leave the reader turn this heuristic explanation into a proof.

Arbitrary degree distribution. The augmented Galton–Watson tree construction enables us to

produce stationary random trees with an arbitrary degree distribution of the origin. Using the

inverse biasing, one can get a unimodular random tree with an arbitrary degree distribution

provided that it has a finite mean.

5.3 Local limit of critical Galton–Watson trees

In this chapter p = (p0,p1, ...) is a critical offspring distribution
∑

k≥0 kpk = 1 such that p1 , 1.

We denote by T a p-Galton–Watson tree which is thus an almost surely finite plane tree. We

are interested in the local convergence of large critical Galton–Watson trees towards an infinite

random tree called “the Galton–Watson tree T conditioned to be infinite”. Of course since T is

almost surely finite the last conditioning is degenerate and necessitates some care to be properly

defined.

5.3.1 Kesten’s tree

In this section we introduce an infinite random tree which will be shown later to be the local

limit of critical Galton–Watson tree conditioned to be large in some sense.

Martingale construction

Let T be a critical Galton–Watson tree. For n ≥ 0, recall that [T ]n is the tree obtained by

restricting to the first n generations of T and denote by (Fn ) the filtration generated by these

variables. We write #∂[T ]n for the number of vertices at generation n of the tree T . Then by

the branching structure of Galton–Watson trees and the criticality of p we get that

#∂[T ]n is an Fn-martingale.

Obviously this is not a uniformly integrable martingale since it starts from #∂[T ]0 = 1 and

eventually yields the value 0 because the tree is almost surely finite (recall that p1 , 1). We will

use this martingale as a Radon–Nikodym derivative to create a new probability distribution on

plane trees.

More precisely for each n ≥ 0 define (the law of) a random plane tree τn by putting for any

measurable non-negative function f on the space of plane trees

E[f (τn )] = E[#∂[T ]n f ([T ]n )].
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Since #∂[T ]n is a non-negative random variable of expectation 1, the last display makes sense

and indeed defines (the law of) a random plane tree. Now, the martingale property of #∂[T ]n

translates into a coherence relation between the τn in the sense that [τn ]m = τm in distribution

for any 0 ≤ m ≤ n:

E[f ([τn ]m )] =
def .
E[#∂[T ]n f ([[T ]n ]m )] = E[#∂[T ]n f ([T ]m )] =

mart.
E[#∂[T ]m f ([T ]m )] = E[f (τm )].

This enables us to define a random tree τ such that [τ ]n = τn in distribution for each n (to be

precise, the coherence relation shows that τn converges locally in distribution toward a random

plane tree τ ; one then check that [τ ]n = τn in distribution for every n). Notice that τ is almost

surely an infinite random tree since almost surely τn has descendant at the generation n. The

random tree τ will be later called the p-Galton–Watson tree conditioned to be infinite or Kesten’s

infinite p-Galton–Watson tree. Its law is characterized by the fact that for any plane tree t0 of

height n we have

P([τ ]n = t0) = P([T ]n = t0) ·#∂[t0]n .

The above construction is quite general (see Exercise 22) and shows that the law of τ is obtained

by biasing the standard Galton–Watson measure with a non-negative martingale. However, the

above description is not very practical and we shall give another construction of τ in the next

section.

Description of τ as a Galton–Watson tree with immigration

Recall that p is the offspring distribution of T which is supposed to be critical. We denote by p

the size biaised distribution obtained by putting for k ≥ 0

pk = kpk ,

which is indeed a probability distribution thanks to the criticality of p. Notice that p is supported

by (strictly) positive integers. We now construct a random infinite tree τ̃ which is the genealogical

tree made of two sorts of particles : standard and mutant particles. Initially there is only one

mutant particle. All particles reproduce independently of each other, and standard particles

produce a random number of standard particles distributed as p. Mutant particles however,

reproduce according to p. Among the descendant of a mutant particle, a uniform child is picked

(independently of the past) and is declared “mutant” whereas the other children are standard

particles. Clearly, in the construction of the plane tree τ̃ there is a distinguished infinite ray

corresponding to the genealogical line of the mutant particles (there is exactly one mutant

particle at each level of the tree). We call this distinguished line the “spine” of τ̃ . By the above

description, all the trees hanging off this spine are independent p-Galton–Watson trees and so

are all a.s. finite.

Proposition 44. The random infinite tree τ̃ has the same law as τ .
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Figure 5.2: The construction of the tree τ̃ from a spine of mutant particles (in red)

and p-Galton–Watson trees produced by the standard children of the mutants.

Proof. Let us fix a plane tree t0 with height n. We need to show that

P([τ̃ ]n = t0) = P([T ]n = t0) ·#∂[t0]n .

If x ∈ ∂[t0]n is a vertex at height n, we say that we have τ̃ = t(x )0 if in the above construction of

τ̃ the spine at height n exactly goes through the vertex x and the tree τ̃ agrees with t0 on the

first n levels. Using the construction of τ̃ we see that

P([τ̃ ]n = t(x )0 ) =
∏

y∈t0\∂[t0]n\[[∅,x ]]

pcy

∏
z∈[[∅,x ]]\{x }

pcz
1

cz
,

where cu is the number of children of the vertex u and [[a,b]] is the geodesic line in the tree

t0 between vertices a and b. Using the definition of p, we see that the last display is equal to∏
x ∈t0\∂[t0]n pcx which is exactly P([T ]n = t0). The desired result then follows by summing over

all points x ∈ ∂[t0]n . �

Exercise 40. Suppose that p has a second moment and denote
∑
pkk (k − 1) = σ2 its variance.

We denote by T the p-Galton–Watson tree and by τ Kesten’s infinite p-Galton–Watson tree.

Recall that for any n ≥ 0 we have E[#∂[T ]n ] = 1 by the martingale property.

1. Show that E[#∂[τ ]n ] = E[
(
#∂[T ]n

)2
].

2. Using the representation of τ given in Proposition 44 show that

E[#∂[τ ]n ] = n
∞∑
k=1

pk (k − 1) = nσ2 + 1.

3. Do you see another proof of the fact E[
(
#∂[T ]n

)2
] = nσ2 + 1?
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5.3.2 Local convergence

In this section, we show that the random tree τ naturally appears as the local limit of Galton–

Watson trees conditioned to be large in some sense.

5.3.3 Trees with one spine

We denote by Tf the set of all finite plane trees and by T1 the set of all infinite plane trees with

only one end (i.e. a unique infinite path starting from the origin of the tree). Note that τ ∈ T1

almost surely. This is clear from the second construction of τ (Proposition 44) since all the trees

grafted to the spine are a.s. finite. This remark is important since it restricts our state space a

lot and thus to check convergence in distribution it is sufficient to check convergence on a much

smaller set of events.

If t, s are plane trees and x is a leaf of t (that is a vertex with no child), we denote by t~ (s,x )

the tree obtained by grafting s on the vertex x of t, or formally the set {u ∈ t} ∪ {xv : v ∈ s}. We

also introduce the set

T(t,x ) = {t ~ (s,x ) : s plane tree}.

These sets are nice since they generate the Borel σ -field on Tf ∪ T1.

Proposition 45. Let θn for n ≥ 1 and θ be random variables taking values in Tf ∪ T1 almost

surely. For θn to converge in distribution for the local distance towards θ , it is sufficient to prove

that for any t ∈ Tf and any leaf x of t we have

lim
n→∞
P(θn ∈ T(t,x )) = P(θ ∈ T(t,x )) and lim

n→∞
P(θn = t) = P(θ = t).

Proof. The family of all events of the form {θ ∈ T(t,x )} or {θ = t} is a π -system and generate

the Borel σ -field for the local topology on Tf ∪ T1. Hence by the monotone class theorem, the

knowledge of a probability distribution on this class determines it completely. To see that these

events form a convergence determining class, it is sufficient to check that every open set for the

local topology on Tf ∪ T1 is obtained as a finite or countable union of those elements (see [15,

Theorem 2.2]). This is easily checked. �

5.3.4 Conditioning a tree to be large

There are different ways to say that a tree is large : either by considering its number of vertices,

its height, its number of leaves, or more exotic thoughts. Following [2], we unify these notions

as follows. Let A be an integer-valued function which is finite on the set of all finite plane trees

and which satisfies an “asymptotic additive property”: for any finite tree t with a leaf x , as soon

as A(t ~ (s,x )) is large enough we have

A(t ~ (s,x )) = A(s) + D (t,x ), (5.3)

where D (t,x ) is some function of t and x . Let us right away give examples of such functions:
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• A(t) is the size (number of vertices) of t, in this case D (t,x ) = #t − 1,

• A(t) is the height of t, in this case D (t,x ) = Height(x ),

• A(t) is the number of leaves of t, in this case D (t,x ) = #Leaves(t) − 1.

We also denote An the set of all trees in Tf ∪ T1 such that A(t) ∈ [n,n + n0) where n0 ∈

{1, 2, 3, ...} ∪ {∞} is fixed. Usually we think of n0 = 1 or n0 = ∞.

Theorem 46

Let Tn be the random plane tree T conditioned on the event T ∈ An (we restrict our attention

to the values of n such that the latter event has positive probability) then as soon as

lim
n→∞

P(T ∈ An+1)

P(T ∈ An )
= 1,

we have Tn → τ in distribution for the local distance as n → ∞.

Proof. Since τ is almost surely infinite and P(Tn = t) → 0 for any finite plane tree t, using

Proposition 45 it is sufficient to check that for any finite tree t with a leaf x we have

P(Tn ∈ T(t,x )) −−−−→
n→∞

P(τ ∈ T(t,x )) =
∏

u ∈t\{x }

pcu ,

where the last equality has been shown in the proof of Proposition 44. On the event T ∈ T(t,x )

we denote by s the tree grafted on x . Using the assumption (5.3) we made on the “size” function

A we can write for all n large enough

P(Tn ∈ T(t,x )) =
1

P(T ∈ An )
P(T ∈ T(t,x ) and A(T ) ∈ [n,n + n0))

=
for large n

1

P(T ∈ An )
P(T ∈ T(t,x ) and s ∈ An−D (t,x ) )

=
branching

P(T ∈ An−D (t,x ) )

P(T ∈ An )
P(T ∈ T(t,x )).

Since D (t,x ) is a fixed number, by our assumption on P(T ∈ An ) the fraction in the last display

tends to 1 as n → ∞. The second term is easily seen to be equal to
∏

u ∈t\{x } pcu as desired. �

5.3.5 Applications

Conditioning at large heights We consider the size function A(t) to be the height, i.e. the

maximal generation attained by the tree t. Clearly this function satisfies (5.3). So in order to

apply the last result, one needs to verify that P(T ∈ An+1)/P(T ∈ An ) → 1. We first treat the

case when n0 = ∞. In this case T ∈ An if and only if T is not extinct at generation n. However,

the extinction probability for a Galton–Watson tree is known to obey

P(∂[T ]n , ∅) = 1 − F(n)
p (0),
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where Fp (z) =
∑

k≥0 z
kpk is the generating function of the offspring distribution and F(n)

p is its

n-fold composition. Recall that when p is critical (and p1 , 1) we have F(n)
p (0) → 1 (the Galton–

Watson tree almost surely dies out). Since F(n)
p (0) is a sequence defined by iterations of Fp we

have

P(An+1)

P(An )
=

(
1 − F(n+1)

p (0)
)

(
1 − F(n)

p (0)
) → F′p (1) = 1.

Now let us treat the case n0 = 1 meaning that T ∈ An is the height of T is exactly n. Using

the last arguments in this case we have

P(T ∈ An+1)

P(T ∈ An )
=
P(Height(T ) ≥ n + 1) − P(Height(T ) ≥ n + 2)

P(Height(T ) ≥ n) − P(Height(T ) ≥ n + 1)

=

(
1 − F(n+1)

p (0)
)
−

(
1 − F(n+2)

p (0)
)

(
1 − F(n)

p (0)
)
−

(
1 − F(n+1)

p (0)
) → 1.

We can thus apply Theorem 46 in both cases n0 = 1 or n0 = ∞ and get that Galton–Watson tree

conditioned on having an extinction after a large height or at an exact large height converge

towards the infinite Galton–Watson tree conditioned to survive.

Conditioning at large size If the function A(t ) is the number of vertices it is a little more

difficult to prove the required condition on P(T ∈ An ) demanded by Theorem 46. However when

the offspring distribution has a finite variance σ2 we can use the connection of Galton–Watson

trees with random walk and the local central limit theorem to deduce that the conditions of

Theorem ?? are always satisfied.

Bibliographical notes. Augmented Galton–Watson trees have been introduced in the beautiful

paper [36] of Lyons, Pemantle and Peres where they proved Theorem 40. The proof presented

here is taken from [37, Chapter 17]. Proposition 38 is taken from [6] where the supercritical geo-

metric GW tree conditioned to survive arise as the local limit of unicellular maps in high genus.

Theorem 41 and its proof seems to be new in the literature. The general introduction of Kesten’s

infinite random tree is usually dated back to [32] where Kesten used it as a model of random

graph where the simple random walk has an anomalous diffusive behavior. In the particular

case of Poisson Galton–Watson tree this fact has been known earlier [25]. The construction of

Kesten’s infinite tree as a change of measure is mainly due to works of Lyons, Pemantle and

Peres, see [37]. The approach to the convergence given here (one of the simplest as of today) is

taken from [2] to which we refer for further details and references.
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Chapter 6

Unimodular random triangulations

In this chapter we study unimodular random planar triangulation (in particular we will prove the

Benjamini–Schramm’s theorem stating that any local limit of uniformly pointed planar graphs

with bounded degree is recurrent). This chapter will also serve us as a good pretext to introduce

the basics on random maps and random triangulations as well as describing the marvelous theory

of circle packings.

6.1 Planar maps

6.1.1 Generalities

A planar graph is a locally finite (multiple) graph which can be drawn on the plane (or equiva-

lently on the sphere) in such a way that the edges are non-crossing except at the vertices. Such a

drawing is called a proper embedding. Notice that a planar graph may have several topologically

different proper embeddings and the definition only tells us the existence of such. In particular,

the notion of face of the graph is subject to vary with the embedding.

Definition 16. A finite planar map is a finite connected planar graph properly embedded in the

plane (or on the sphere) viewed up to homeomorphisms that preserve the orientation.

= 6=

Figure 6.1: The same underlying planar graph can yield different planar maps.

In other words, a finite planar map is an equivalence class of embeddings of a finite planar graph.

This will allow us to properly define the number of faces of the map and the incidence relations
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between vertices, edges and faces. The degree of a face is the number of edges incident to this

face with the convention that when an edge is lying completely inside a face it is counted twice

in the degree. There is an analogous definition of a finite map drawn on the torus or more

generally on a compact (orientable) surface of genus д ≥ 0, but since we will restrict ourselves to

the planar case we sometimes drop the adjective planar and speak of a map instead of a planar

map. May the reader forgive this. Definition 16 may seem hard to manipulate at first glance,

luckily it admits several equivalent points of view:

• a finite planar map can be seen as a topological gluing of finitely many polygons (the

faces of the map) along their edges so that the manifold produced this way is a topological

sphere,

• a finite planar map can also be seen as a finite graph with a system of coherent orientations

around each vertex of the graph which correspond to the cyclic ordering of the edges when

going clockwise around a vertex in the map.

= =

Figure 6.2: A planar map seen as a gluing of polygons, notice that two edges of a same

polygon could be folded to give a single edge in the map.

Using the last definition it should be clear that the number of planar maps with a given number

of edges is finite. Also, this definition is practical since we can make sense of infinite maps just

as being infinite graphs given with a system of coherent (i.e. giving rise to a planar structure)

of cyclic orientations of the edges around each vertex. In the following we will denote by M•

(resp. ~M) the set of all pointed (resp. rooted) finite of infinite maps. If m ∈ M• or m ∈ ~M we can

make sense of the restriction of radius r , denoted by [m]r as the pointed or rooted planar map

obtained by keeping only vertices and edges within distance r from the origin. This yields the

introduction of the the local topology on M• and ~M. A simple map is a map in which multiple

edges or loops are forbidden.

Remark 5. Although the above definition of infinite planar maps seems inoffensive, it is not clear

at all that these objects can be represented as equivalence classes of planar graphs drawn on the

plane. This is true however in the case of one-ended infinite maps (that is when the underlying

graph is one-ended, or equivalently simply-connected). We call later these maps “infinite maps

of the plane” since they can be properly drawn on R2 such that there is no accumulation of edges

or vertices inside R2.
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Figure 6.3: Three examples of infinite maps, the left-most one has infinitely many ends,

the center one has two ends whereas the right-most one has only one end (the centered

region in gray is not a face). In particular, the right-most map can be drawn on the

plane R2 without accumulation points for the edges.

If m is a finite of infinite planar map such that all the faces of m are of finite degree, one can

define the dual map m† obtained informally speaking by placing inside each face of m a vertex of

m† and linking two vertices of m† by an edge if the corresponding faces in m share an edge. The

duality mapping is clearly an involution on the set of all planar maps with finite face degrees.

If the map m is rooted then m† inherits its dual edge as root edge.

A famous theorem on planar map which looks childish is the 4-colors theorem which proves

that 4 colors suffice to color any planar map such that any pair of adjacent faces (i.e. sharing an

edge) have different colors. The proof is extremely difficult and requires the help of a computer

to check numerous cases, but a version with 5 colors is much easier to do.

We can easily extend the notion of uniformly rooted or pointed maps, unimodular random

map, stationary and reversible random maps.

Exercise 41. Prove that if (M, ~E) is a uniformly rooted random map, then (M†, ~E†) is also uni-

formly rooted. (∗) Prove that if (M, ~E) is a stationary and reversible random map, then (M†, ~E†) is

also stationary and reversible (use unimodularity). (∗∗) Is it true without assuming reversibility?

6.1.2 Euler’s formula

The first non-trivial result about planar maps is the famous Euler relation which links the

number of faces, of edges and of vertices of any finite planar map. We denote the set of vertices,

edges and faces of a map m by V(m),E(m) and F(m) respectively.
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Theorem 47

For any finite planar map m we have

#V(m) +#F(m) −#E(m) = 2. (6.1)

Proof. The proof is done by induction on the number of edges. The only map with 0 edge has 1

vertex and 1 face so that (6.1) is true. Suppose now that E(m) ≥ 1 and erase an arbitrary edge

of m, then two cases may happen:

• either the new map m′ is still connected and so applying the induction hypothesis we have

#V(m′)+#F(m′)−#E(m′) = 2. Also we have #V(m) = #V(m′) and #E(m) = #E(m′)+1

and a careful inspection shows that #F(m) = #F(m′) + 1. Gather-up the pieces we find

that m obeys (6.1).

• or the removal of the edge breaks m into two connected maps m1 and m2. Applying (6.1)

to each block we find that #V(m1) +#F(m1) −#E(m1) = 2 as well as #V(m2) +#F(m2) −

#E(m2) = 2. Also, we have #V(m) = #V(m1)+#V(m2) and #E(m) = #E(m1)+#E(m2)+1

and another careful inspection shows that #F(m) = #F(m1) + #F(m2) − 1, the minus 1

terms stems from the fact that the external face of m1 and m2 is counted twice otherwise.

Putting everything together we indeed verify (6.1).

�

Remark 6. As we already noticed, the notion of face is not well-defined for planar graphs as it

may depend on its planar embedding. However, we see from Euler’s formula that the number

of faces does not depend on the embedding but only on the underlying graph structure.

Exercise 42. Using Euler’s formula show that the complete graph K5 on 5 vertices (with an edge

between any pair of vertices) and the graph K3,3 made of 3 black vertices and 3 white vertices

such that there is an edge between any pair of black and white vertices are not planar graphs.

A well-known application of Euler’s formula is the classification of all regular polyhedrons or

Platonic solids. Indeed, a regular polyhedron can be seen as a finite map such that the degree

of the vertices and faces are constant.

Exercise 43 (regular polyhedrons). Show that there are only 5 regular polyhedrons such that

the degree of the vertices and the degree of the faces satisfy

Name vertex degree face degree

Tetrahedron 3 3

Cube 3 4

Octahedron 4 3

Dodecahedron 3 5

Icosahedron 5 3
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6.1.3 Mean degree in uniformly pointed planar maps

In the following we will use a lot triangulations. A triangulation is a planar map whose faces

have all degree three (they are triangles). Beware, since we allow multiple edges and loops, a

triangle can be folded on itself and look weird at first glance, see Fig. 6.4. When multiple edges

or loops are forbidden we speak of simple triangulations.

=

Figure 6.4: A finite triangulation of the sphere. Notice the triangle which is folded

on itself and looks like a loop with an inner edge : this is indeed a triangle, since the

enclosed face has degree 3!

If m is a finite planar map with no face of degree 1 or 2 then we must have 3#F(m) ≤ 2#E(m)

since any edge is counted twice in the total sum of the degrees of the faces. So after applying

Euler’s formula we get that

#V(m) +#F(m) −#E(m) = 2

3#V(m) + 2#E(m) − 3#E(m) ≥ 6

6

(
1 −

2

#V(m)

)
≥

2#E(m)

#V(m)
= mean degree. (6.2)

We will remember this formula as the fact that the mean degree in a finite planar graph without

loops or faces of degree 2 is always less than or equal to 6. In particular it is the case for simple

maps (except the map made of a single edge). If m is a triangulation then we even have equality

in (6.2). Let us deduce a corollary on limits of uniformly pointed simple maps.

Proposition 48. Let M•n = (Mn , ρn ) be a sequence of random uniformly pointed finite planar

maps without face of degree 1 or 2 converging locally towards some infinite random pointed map

M• = (M, ρ) as n → ∞ then we have

E[deg(ρ)] ≤ 6.

If furthermore M•n are triangulations then E[deg(ρ)] = 6.

Proof. Since M•n = (Mn , ρn ) is uniformly pointed we deduce that

E[deg(ρn )] = E



1

#V(Mn )

∑
x ∈V(Mn )

deg(x )


= E

[
2#E(Mn )

#V(Mn )

]
≤

(6.2)
6E

[
1 −

2

#V(Mn )

]
. (6.3)
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By the local convergence of the maps and since the degree of the origin is a continuous function

for the local topology, we get that deg(ρn ) → deg(ρ) in distribution as n → ∞. Thus by the

above display and Fatou’s lemma we get that

E[deg(ρ)] ≤ 6.

In the case of triangulations, there is an equality in (6.3) and so to deduce E[deg(ρ)] = 6 we must

show that (deg(ρn ))n≥1 is a uniformly integrable family of random variables. Or equivalently

that for any ε > 0 we can find k0 such that uniformly in n we have

E[deg(ρn )1deg(ρn )≥k0 ] = E



1

#V(Mn )

∑
x ∈V(Mn )
deg(x )≥k0

deg(x )



≤ ε .

This will follow from the local convergence of M•n . For simplicity we suppose now that the maps

Mn are simple. Since (M•n ) is locally converging in distribution, it is a tight sequence, and so for

any ε > 0, there exists k0 such that the probability that there exists a vertex within distance 1

from the ρn having a degree larger than k0 is smaller than ε uniformly in n,

P(∃y : dgr (ρn ,y) ≤ 1 and deg(y) ≥ k0) = E



1

#V(Mn )

∑
x ∈V(Mn )

1{∃y : dgr (x ,y) ≤ 1 and deg(y) ≥ k0}


≤ ε .

Now, for any set S of vertices of degree larger than or equal to k0 in a simple map m, we

consider the set of vertices S(1) formed by S as well as its neighbor vertices. Since we assumed

that m is simple, the maps formed by the connected components of S(1) are also simple and

have no face of degree 1 or 2. For each connected component C of S(1) we thus have by (6.2)∑
x ∈V(C) deg(x ) ≤ 6 #V(C). Summing-up over the connected components we deduce that∑

x ∈S

deg(x ) ≤ 6 #S(1) .

Combining the last three displays we get that

E[deg(ρn )1deg(ρn )≥k0 ] ≤ 6P(∃y : dgr (ρn ,y) ≤ 1 and deg(y) ≥ k0) ≤ 6 ε .

This proves that (deg(ρn ))n≥1 is indeed uniformly integrable (in the case of simple maps) and so

converges in expectation as desired. We leave the details of the proof in the triangulation case

(the hiccup is that the connected components of S(1) are not necessarily simple maps!) to the

reader. �

Remark 7. We deduce from the above result that any unimodular triangulation of mean degree

strictly larger than 6 (see for example the 7-regular triangulation of Fig. 6.10) cannot be obtained

as a local limit of uniformly pointed finite planar maps. Notice that by the Aldous–Lyons

conjecture 5 they can be obtained (at least their pointed graph structures) as local limit of finite

unimodular random graphs but not necessarily planar.
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Exercise 44. Let ~Tn be a sequence of uniformly rooted triangulations of the sphere converging

locally towards an infinite rooted triangulation ~T . Show that E[(deg((~E)∗))
−1] = 1/6.

6.1.4 Curvature and isoperimetric inequality

In this section we consider triangulations only. Recall that if t is a finite triangulation with

v > 0 vertices then its mean degree 2e/v = 6 − 12v−1. In conformal geometry the mean degree

represents the “average curvature”: if the mean degree is equal to 6 the surface is flat, if it is

larger than 7 the surface is negatively curved and if it is smaller than 6, it is positively curved.

Everybody knows the standard 6-regular triangulation, which is flat, known as the honey-comb

lattice. However, it is easy to see that there exists infinite triangulations whose vertex degrees

are bounded from below by 7 say (e.g. the 7-regular triangulation) but they grow very rapidly.

This can be encoded in the so-called isoperimetric profile:

Theorem 49 (Degrees and isoperimetric profile)

Let t be a triangulation with a boundary of length p, that is a planar map whose faces are

all triangles except for one face, called the external face which is of degree p. We denote by

n the number of inner vertices of t

• If all the inner vertex degrees are larger than or equal to 7 then for some c > 0

p ≥ c · n.

• If all the inner vertex degrees are larger than or equal to 6 then

p ≥
√

12n.

Proof. Let t be a triangulation with n inner vertices and whose minimal inner vertex degree

is d ∈ {6, 7}. We may choose t so that p is the smallest possible. Notice that this forces the

boundary ∂t to be a simple cycle since otherwise if there are pinch points by a simple surgical

operation we can glue two edges and diminish the perimeter while keeping the number of inner

vertices and their degrees unchanged. We write f for the number of faces of t and e its number

of edges. Counting the edges from the face point of view gives 2e = 3( f − 1) + p and Euler’s

formula writes (n + p) + f − e = 2 which once combined give

3n + 2p = 3 + e . (6.4)

On the other hand counting edges from the vertex point of view yields

2e =
∑

u ∈Vertices(t)

deg(u). (6.5)

From the above display we deduce that 2e ≥ dn where d is the minimal inner vertex degree and

combining this with (6.4) already yields the first point of the theorem.
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In the case d = 6 we must do better and we adapt here the proof of Angel, Benjamini and Horesh

communicated to us by Itai Benjamini. We introduce Σ the edges incident to both a vertex on

the boundary ∂t of t and an inner vertex of t and ∆ the edges linking two vertices of ∂t. Coming

back to (6.5) more carefully we get 2e = 6n + 2p +#Σ + 2#∆ which together with (6.4) yields

#Σ + 2#∆ = 2p − 6. (6.6)

We already deduce that p ≥ 4 unless t is made of a single triangle. We now assume that the

triangulation has been chosen so that the ratio c = p2/n is the smallest possible among all

triangulations with boundary so that n ≤ N where N is fixed (if there are several choices, pick

one with minimal p). Let us examine a bit more the structure of such a minimal triangulation.

Recall that the boundary is necessarily simple, and let us now rule-out the possibility of anon-

boundary edge ∂t linking two vertices of ∂t. Indeed, if there was such an edge it would split the

map into two triangulations with boundary of perimeter p1 + 1 and p2 + 1 with n1 and n2 inner

vertices respectively such that n1 + n2 = n and p1 + p2 = p.

n1 n2

p1 p2

n1

p1 + 1

n2

p2 + 1p1 + 1

Figure 6.5: One cannot split t into two parts by the minimality assumption.

Notice then that necessarily p > p1 ≥ 2 and p > p2 ≥ 2 and (p1 − 1) (p2 − 1) > 1 otherwise t is

made of two triangles glued together and n would be equal to 0. By our minimality assumption

we must have (p1 + 1)2 ≥ cn1 + 1 and (p2 + 1)2 ≥ cn2 + 1. Using the fact that (p1 − 1) (p2 − 1) > 1

it follows that

(p1 + p2)
2 > (p1 + 1)2 + (p2 + 1)2 − 2 ≥ c (n1 + n2),

which is absurd. Hence we have with the above notation ∆ = ∅. Now if we consider the set of

all inner vertices adjacent to the boundary of t, by our deduction on t they form a connected

subset which encloses a triangulation t′ with a boundary of perimeter p ′. It is easy to see on

the figure that #Σ = p + p ′ and so using (6.6) we have that p ≥ p ′ + 6. Using our minimality

assumption again we deduce that (p ′)2 ≥ cv ′ + 1 where v ′ is the number of inner vertices of t′.

Since we obviously have v ≤ v ′ + p ′ (with equality if t′ has a simple boundary) we deduce that

c (v ′ + p ′) ≥ cv = p2 ≥ (p ′ + 6)2 ≥ (p ′)2 + 12p ′ ≥ cv ′ + 12p ′,

and this can only work if c ≥ 12. As N was arbitrary, this proves the second statement of the

theorem. �

Remark 8. The isoperimetric constant
√

12 is achieved in the case of balls of large radius in the

standard infinite 6-regular triangulation.
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Σt

t′

Figure 6.6: Induction hypothesis: passing from t to t′.

Exercise 45. Show that there is not infinite triangulation of the plane whose vertex degrees are

bounded by 5. Is there an infinite triangulation of the plane with degrees only in {5, 6} and

having infinitely many vertices of degree 5?

6.2 Circle packings

A planar map does not a priori have any canonical representation in the plane (or the sphere)

since even in the finite case, it is given as an equivalence class of embeddings. Still one can

ask if we can make sense of a “faithful” representation of a map. In particular, one can wonder

whether a finite map can always be drawn with straight lines on the plane. Surprisingly, once

the trivial cases have been excluded the answer is yes!

6.2.1 Finite Circle Packings

For now on we focus on the case of simple maps where multiple edges and loops have been

forbidden (since in any representation with straight lines, the latter are squashed). We say that

a simple map m is represented by a circle packing if there is a collection (Cv : v ∈ V(m)) of

non overlapping disks in the plane R2 such that Cv is tangent to Cu if and only if u and v are

neighbors in m. Recall that the completed plane Ĉ = R2∪{∞} can be identified with the Riemann

sphere S2 by the stereographic projection from the north pole. This projection transforms circles

and lines in Ĉ into circles on the Riemann sphere. Recall also that the Möbius group

M =

{
z ∈ Ĉ 7→

az + b

cz + d

}
acts triply transitively on the Riemann sphere (i.e. we can map any triplet of points to any other

triplet of points) and preserves circles.
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Theorem 50 (Finite circle packing theorem)

Any finite simple map m admits a circle packing representation on the Riemann sphere.

Furthermore if m is a simple triangulation then the circle packing is unique up to a Möbius

transformation.

Remark 9. It follows from the circle packing theorem that any simple planar graph can be drawn

on the plane with straight lines. This fact is not obvious at all and is known as Fáry’s theorem

(1948).

Figure 6.7: On the left, a finite circle packing of a planar map. On the right a circle

packing of a triangulation seen on the Riemann sphere.

Sketch of proof. First, it is easy to see that it suffices to prove the theorem for simple triangu-

lations because we can embed any simple planar map inside a simple triangulation by further

triangulating inside each face. Fix a triangulation t and pick a face f ∈ F(t) that we will see

as the exterior face. We will prove that we can construct a circle packing of t such that the

three circles corresponding to this outer face are three mutually tangent circles of radius 1, or

equivalently that the three vertices of the triangles form an equilateral triangle. The rest of the

circles are in-between these three circles. We start with the uniqueness statement.

Uniqueness. Since the Möbius group of the Riemann sphere acts triply transitively we can

transform any circle packing into a packing of the above form (with the marked face forming an

equilateral triangle and the rest of the vertices inside). Imagine that we are given two packings

P and P′ of the above form, in particular the three exterior circles are of radius 1. We then

choose an interior vertex v of the triangulation such that the ratio of the corresponding circles

in the packing is maximal i.e.

λ(v ) =
rP (v )

rP′ (v )
is maximal.

We then examine the structure of the packing around this circle in P. By dividing all the

distances by λ(v ) we end up with a circle of radius rP′ (v ) and such that all the neighboring circles

have a radius which is less than the corresponding radius in P′. By an obvious monotonicity

property of the angles around a circle we deduce that these new radii must coincide with those
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in P′ i.e.

λ(u) =
rP (u)

rP′ (u)
= λ(v ),

for all u neighbors of v (for otherwise if the inequality were strict, the neighboring circles would

not surround the circle associated to v). Since the graph is connected we deduce step by step

that λ(·) is constant and must be equal to 1 by the assumption on the exterior circles. Hence

P = P′.

Existence. We will not prove the existence but just describe the algorithm that can be used

(even in practice!) to construct the packing. The idea is to first find all the radii of the circles.

Once these radii are found, one can reconstruct the packing step by step by starting from the

external face and deploying the circles one by one around the circles already explored (notice

that given the radii and the combinatorial layout we can determine the angles, and for this we

crucially use the fact that the underlying map is a triangulation). To find the radii we start with

an arbitrary assignment of radii to the vertices of the triangulations except the three vertices

of the marked face which have their radii fixed for ever to 1. We then examine all the internal

vertices in a cyclic order and repeat forever the following adjustment : see Fig. 6.8.

Too large Too smallAdjusted

Figure 6.8: Adjustment rule : For an internal vertex v with radius rv , we examine the

radii of the neighbors u of v. Using these radii, one can see whether or not placing the

circles of the corresponding radii around a circle of radius rv would close exactly. For

most of the time it will not. But by a simple monotonicity property, one can always

update the radius rv so that the latter property holds true.

Repeatedly applying this updating rule, it can be proved (but it is not easy) that this

algorithm indeed converges towards the unique fixed point for the right values of the radii for

the circles (with the outer three triangles normalized) and that these values give rise to a non-

degenerate (all the radii are positive) circle packing for the triangulation t. �

Although we will not need it, we cannot resist stating the link between circle packings and

the Riemann mapping theorem. Imagine that we have a circle packing of a region Ω, with the

hexagonal packing say, and that the same combinatorial triangulation structure is circle-packed

in the disk (we can always do so by the finite circle packing theorem). We suppose also that

the center z ∈ Ω is mapped to 0 ∈ D. Then as the maximal radius of the circle goes to 0, the
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mapping induced by the circle packings approximates a conformal function bijection Ω → D

such that z is mapped to 0.

Figure 6.9: Thurston conjecture (Rodin–Sullivan/Schramm theorem) : Circle packings

can be used to approximate conformal mappings. Images of Kenneth Stephenson.

6.2.2 Infinite Circle Packings

Recall the definition of infinite planar maps as oriented planar graphs and in particular of one-

ended infinite triangulation also called infinite triangulation of the plane. If P is an infinite circle

packing in the plane the carrier of P is the subset of the plane made of the union of all the

circles as well as the interstices between them, see Fig. 6.10 for a carrier equal to the unit disk

D (left) or the plane (right).

Theorem 51 (Infinite circle packing theorem)

Let t be a infinite simple triangulation of the plane (i.e. 1-ended). Then we have one of the

mutually excluding alternatives:

• Parabolic case: either there is a circle packing whose carrier is R2 representing t,

• Hyperbolic case: or there is a circle packing whose carrier is D representing t.

In the first case, the packing is unique up to rotation, translation and dilation, whereas in the

second case it is unique up to Möbius transformation preserving the unit disk. Furthermore,

if the vertex degrees of t are bounded, the above dichotomy corresponds to the case when t

is recurrent (packing in R2) or transient (packing in D).

The above theorem can be seen as a discrete counter-part to the dichotomy for simple

connected Riemann surfaces homeomorphic to the disk: either such a surface is conformally

equivalent to the disk (and Brownian motion on the surface is transient) or it is conformally

equivalent to the plane (and Brownian motion on the surface is recurrent). We will not give its

proof which is based on the notion of discrete (vertex) extremal length, [28].
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(a) (b)

(c) (d)

S2

D D

(a) (b)

(c) (d)

S2

D D

Figure 6.10: llustration of Theorem 51: the 7-regular infinite triangulation is circle-

packed in the disk (and is transient) whereas the 6-regular infinite triangulation is circle-

packed in the plane (and is recurrent). Images of Kenneth Stephenson.

6.3 Applications

In this section we mix the mass-transport principle and the circle packing to get powerful results

on unimodular planar maps and in particular unimodular planar triangulations. In particular

we will prove the Benjamini–Schramm theorem [14] in the case of triangulations.

6.3.1 Mean degree in unimodular random triangulation

Theorem 52

Let (T , ρ) be a unimodular infinite random simple triangulation which is almost surely one-

ended. Then we have E[deg(ρ)] ≥ 6. Furthermore if E[deg(ρ)] = 6 then T and T is almost

surely parabolic.

Proof. By Theorem 51, the triangulation T admits a circle packing either in the plane or in the

disk (this could be random). In both cases, we consider a mass-transport function f (t,x ,y) which

transports from x to y inside the triangulation t the two angles formed at x by the two sides of

the edge x–y. More precisely, if the circle packing is in the plane we transport the Euclidean

angle and if the circle packing is in the hyperbolic disk then we transport the hyperbolic angle

(this angle is the local Euclidean angle formed by the hyperbolic lines joining the hyperbolic

centers of the circles1).

We can (and should!) wonder whether this mass-transport function is well-defined, as this

angle could a priori depend on the packing. However, from Theorem 51 we know that the

circle packing representing t is unique up to Möbius transformations of the disk or rotation,

translation and dilation of the plane depending whether the carrier is D or R2. Since all these

transformations preserve local angles, the angle of the edge x–y at x is indeed well-defined

and it follows that f (t,x ,y) is an honest transport function (the measurability follows from the

1we recall that a Euclidean circle in D can also be seen as a hyperbolic circle with a center which is generally

different from the Euclidean center
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x
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hyperbolic Euclidean

Figure 6.11: Illustration of the mass-transport function in the case when the packing

is in the disk or when the packing is in the plane.

measurability of the packing and is admitted). Applying the mass-transport principle (2.1) and

recalling that the total angle sum around a vertex is 2π we get that

4π = E[total angle sum of triangles incident to ρ] − 2π .

Now recall that in Euclidiean geometry, the total sum of the angles of a triangle is equal to π ,

whereas in hyperbolic geometry, the total sum of the angle of a triangle is strictly less than π

(it is equal to π minus the hyperbolic area of the triangle). We thus deduce that 6 ≤ E[deg(ρ)]

and with equality if and only if the circle packing is almost surely carried by the plane R2. This

proves the result. �

By the above result if E[deg(ρ)] = 6 and if furthermore T almost surely has bounded degree

then T is almost surely recurrent by Theorem 51. To cover the case of triangulations which are

not necessarily one-ended we need to use its universal cover:

Proposition 53. To any (infinite) pointed triangulation (t, ρ) we can associate a unique infinite

pointed triangulation (t̃, ρ̃) called the universal covering of (t, ρ) such that (t̃, ρ̃) is one-ended

(equivalently simply-connected) and there is a surjection mapping p : t̃ → t which is locally

bijective (and preserves the orientation of edges around each vertex) and sends ρ̃ to ρ.

Proof. The construction of this space is analogous to the construction of the universal covering

of a topological space and is left to the imagination of the reader. �

Corollary 54. If (T , ρ) is a unimodular infinite random triangulation (not necessarily one-ended)

then E[deg(ρ)] ≥ 6. If E[deg(ρ)] = 6 and if T has almost surely bounded degree then T is almost

surely recurrent.
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Proof. We apply Theorem 52 to the universal covering (T̃ , ρ̃) of (T , ρ) which is easily seen to be

still unimodular. Since the mean degree of ρ̃ is the same as the mean degree of ρ we deduce the

first assertion. For the second assertion, note that since there is a surjection map from T̃ to T ,

it follows that if T̃ is recurrent then so is T . �

6.3.2 Benjamini–Schramm theorem

Let (T •n ) be a sequence of finite random uniformly pointed simple triangulations of the sphere

which converges locally towards an infinite random pointed triangulation T • of the plane. We

already know from Theorem 14 that the number of ends of T belongs to {1, 2,∞} almost surely

and from Proposition 48 that the expected degree of the origin in T is equal to 6.

Theorem 55

Let (T •n ) be a sequence of finite random uniformly pointed simple triangulations of the sphere

which converges locally towards an infinite random pointed triangulation T • of the plane.

We suppose that the vertex degrees in Tn are uniformly bounded by some constant C > 0,

then T • is almost surely recurrent.

Proof. Follows by combining Corollary 54 together with Proposition 48. �

The initial theorem of [14] is slightly more general since it allows more general planar maps

(still with a uniform bound on the vertex degrees) rather than triangulations. To deduce this

more general statement one should use standard monotonicity result on recurrence using the

theory of electrical networks [23], since this is not the primary goal of this course we leave it

aside.

Bibliographical notes. Planar maps are key objects in combinatorics and nowadays probability,

see [33] for a range of applications. The finite circle packing theorem has first been discovered

by Koebe and then forgotten to be rediscovered by Thurston as a consequence of a result

of Andreev hence the name of the theorem. It has had many applications in the theory of

planar maps. See the book of Stephenson [43]. The link between circle packing and Riemann

uniformization’s theorem was conjectured by Thurston and proved in [41]. The uniqueness part

of the proof of the finite circle packing theorem is taken from wikipedia and is due to Schramm.

The existence part follows the algorithm proposed by Thurston. The “infinite” circle packing

theorem, Theorem 51 is due to He and Schramm [28]. Section 6.3, and in particular the proof of

the Benjamini–Schramm theorem [14], is adapted from the recent and beautiful paper of Angel–

Hutchroft–Nachmias–Ray [7]. These authors also have an alternative proof of Corollary 54 but

rather involved (it uses uniform spanning forests), so Question ?? remains “open”. The bounded

degree assumption in the Benjamini–Schramm has been an obstacle for several years preventing

to apply the theorem to limit of uniform random triangulations. This obstruction has recently

been overcome by Gurel-Gurevich and Nachmias [26] hence proving that the so-called Uniform

Infinite Planar Triangulation is recurrent.
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