Yet Another Proof of the Strong Law of Large Numbers

Nicolas Curien

Abstract

We give a short proof of the strong law of large numbers based on duality for random walks.

Let X_{1}, X_{2}, \ldots be independent identically distributed real random variables with a finite expectation $\mathbb{E}[X]$ and let $S_{n}=X_{1}+\cdots+X_{n}$ for $n \geq 0$ be the corresponding random walk. Allegedly one of the most important results in probability theory, Kolmogorov's strong law of large numbers, states that

$$
(L L N) \quad \frac{S_{n}}{n} \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{E}[X] \quad \text { almost surely (i.e., with probability } 1 \text {). }
$$

There are many proofs of this result, the most standard approaches being either, by the truncation method (see [4, p. 238] or [3]), by Doob's reverse martingale convergence theorem [2], or directly via $0 / 1$ laws and Birkhoff's ergodic theorem (especially using Garsia's short proof, see [5, Theorem 1.64] or [1]). In this note we propose a new proof based on duality for random walks. First notice that the $(L L N)$ is a consequence of the following result:

Theorem 1. Let X_{1}, X_{2}, \ldots be independent identically distributed real random variables with a finite and positive expectation $\mathbb{E}[X]>0$. Then $\inf _{n \geq 0}\left(X_{1}+\cdots+X_{n}\right)$ is finite almost surely.

Indeed, the theorem implies that for every $\varepsilon>0$, almost surely $\left(X_{1}-\mathbb{E}[X]+\varepsilon\right)+$ $\cdots+\left(X_{n}-\mathbb{E}[X]+\varepsilon\right)$ is bounded from below by some (random) constant and, symmetrically, that $\left(X_{1}-\mathbb{E}[X]-\varepsilon\right)+\cdots+\left(X_{n}-\mathbb{E}[X]-\varepsilon\right)$ is bounded from above by another (random) constant. It follows that with probability one we have

$$
\mathbb{E}[X]-\varepsilon \leq \liminf _{n \rightarrow \infty} \frac{S_{n}}{n} \leq \limsup _{n \rightarrow \infty} \frac{S_{n}}{n} \leq \mathbb{E}[X]+\varepsilon
$$

Taking the countable intersection of the above events over rational $\varepsilon>0$ we deduce the ($L L N$).
Proof of Theorem 1. Step i. Bounding the increments from above. Choose $C>$ 0 large enough so that by dominated convergence $\mathbb{E}\left[X \mathbf{1}_{X<C}\right]>0$ and put

$$
\tilde{X}_{i}=X_{i} \mathbf{1}_{X_{i}<C}, \quad \text { for } i \geq 0
$$

We will show that the random walk $\tilde{S}_{n}=\tilde{X}_{1}+\cdots+\tilde{X}_{n}$ is almost surely bounded from below which is sufficient to prove the lemma since $\tilde{S}_{i} \leq S_{i}$ for all $i \geq 0$.

Step 2. Duality. For every $n \geq 0$, the independent and identically distributed increments $\left(\tilde{X}_{1}, \ldots, \tilde{X}_{n}\right)$ have the same law as $\left(\tilde{X}_{n}, \ldots, \tilde{X}_{1}\right)$. This translates onto the walk \tilde{S} as the so-called duality identity [4, Chapter XII. 2, p. 394] which states that space and time reversal leaves the distribution of the first n steps invariant:

$$
\left(0=\tilde{S}_{0}, \tilde{S}_{1}, \ldots, \tilde{S}_{n}\right)=\left(\tilde{S}_{n}-\tilde{S}_{n}, \tilde{S}_{n}-\tilde{S}_{n-1}, \ldots, \tilde{S}_{n}-\tilde{S}_{1}, \tilde{S}_{n}-\tilde{S}_{0}\right) \quad \text { in law. }
$$

Let us apply this identity on a special case, see [4, p. 395]. Let $T=\inf \left\{i \geq 0: \tilde{S}_{i}>0\right\}$ be the first hitting time of the positive axis by the walk and recall that a time $n \geq 0$ is a weak descending record time if, by definition, $\tilde{S}_{n}=\min _{0 \leq k \leq n} \tilde{S}_{k}$. By applying the above equality in law we deduce (see Figure 1) that
for all $n \geq 0, \quad \mathbb{P}(T>n)=\mathbb{P}(n$ is a weak descending record time $)$.

Figure 1. Time and space reversal shows that $\mathbb{P}(T>n)=\mathbb{P}(n$ is a descending record time $)$.

Summing over $n \geq 0$, we get that $\mathbb{E}[T]=\mathbb{E}[\#$ weak descending record times $]$ and the proof is complete if we prove that $\mathbb{E}[T]<\infty$ since this implies that almost surely there are finitely many weak descending records for \tilde{S}, hence the walk is bounded from below almost surely.
Step 3. Optional sampling theorem. To prove $\mathbb{E}[T]<\infty$, consider the standard martingale

$$
M_{n}=\tilde{S}_{n}-\mathbb{E}\left[X \mathbf{1}_{X<C}\right] n, \quad \text { for } n \geq 0
$$

(for the filtration generated by the $X_{i}{ }^{\prime}$'s) and apply the optional sampling theorem (see e.g., [4, p. 213]) to the bounded stopping time $n \wedge T$ to deduce that

$$
0=\mathbb{E}\left[M_{n \wedge T}\right], \quad \text { or, in other words, } \quad \mathbb{E}\left[X \mathbf{1}_{X<C}\right] \mathbb{E}[n \wedge T]=\mathbb{E}\left[\tilde{S}_{n \wedge T}\right] .
$$

By definition $\tilde{S}_{i} \leq 0$ for all $i<T$ and if T is finite we can write $\tilde{S}_{T}=\tilde{S}_{T-1}+\tilde{X}_{T} \leq$ $0+\tilde{X}_{T} \leq C$. In all cases $\tilde{S}_{n \wedge T} \leq C$ and so the right-hand side of the last display is also bounded above by C. Letting $n \rightarrow \infty$, by monotone convergence we deduce that T has finite expectation.
[1] Chin, C. W. (2022). A gambler that bets forever and the strong law of large numbers. Amer. Math. Monthly. 129(2): 183-185.
[2] Doob, J. L. (1971). What is a martingale? Amer. Math. Monthly. 78(5): 451-463.
[3] Etemadi, N. (1981). An elementary proof of the strong law of large numbers. Z. Wahrsch. Verw. Gebiete, 55(1): 119-122.
[4] Feller, W. (1971). An Introduction to Probability Theory and its Applications, Vol. II, 2nd ed. New York-London-Sydney: Wiley.
[5] Ross, S. M., Peköz, E. A. (2007). A Second Course in Probability. Boston, MA: www.ProbabilityBook store.com.

Institut de mathématique d'Orsay, Université Paris-Saclay, 91400 Orsay, France nicolas.curien@gmail.com

