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Abstract

Random laminations of the disk are the continuous limits of random non-crossing config-
urations of regular polygons. We provide an expository account on this subject. Initiated by
the work of Aldous on the Brownian triangulation, this field now possesses many characters
such as the random recursive triangulation, the stable laminations and the Markovian hy-
perbolic triangulation of the disk. We will review the properties and constructions of these
objects as well as the close relationships they enjoy with the theory of continuous random
trees. Some open questions are scattered along the text.

1 Introduction

Let us begin our journey with the Brownian triangulation of Aldous. In the remaining of
these pages, P

n

denotes the regular polygon inscribed in the unit disk D := {z 2 C : |z|  1}
whose vertices are the nth roots of unit. A triangulation of P

n

is a subset of non-crossing
(except at their endpoints) diagonals that triangulates P

n

, see Fig. 1. These triangulations
are counted by Catalan numbers and are connected to various combinatorial structures, see
[21] for a beautiful application to the rotation distance problem.

We are interested here in random triangulations. For n � 3 we denote by T
n

a uniform
triangulation of P

n

. Combinatorial properties of T
n

have been investigated in length [4, 11,
14]. From a geometrical point of view, the random variable T

n

can also be seen as a random
closed subset of D and one can investigate its limit geometry as n ! 1. This has been
proposed by David Aldous who proved the following:

Theorem (Aldous [2, 3]) We have the following convergence in distribution in the sense of
Hausdor↵ distance on the closed subsets of D

T
n

(d)����!
n!1

B.
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Figure 1: A triangulation of the octogon and a sample of B.

⇤
Variation on Aldous’ original title : “Triangulation the circle, at random” [3].

†
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The random closed subset B is called the Brownian triangulation of the disk. It is indeed
a continuous triangulation since the complement of B inside D is made of countably many
disjoint Euclidean triangles a.s., see Fig. 1. This fractal object (it almost surely has Hausdor↵
dimension 3/2) has a fascinating structure and is connected to the Brownian continuum
random tree [1] which can be thought of as its dual. The work of Aldous opened the doors
for understanding the geometric structure of a large variety of random non-crossing structures
yielding to a number of new objects such as the stable laminations ([16] and Section 2.2), the
recursive triangulation ([9] and Section 3) or the Markovian hyperbolic triangulation ([10]
and Section 5).

Our goal is to present these nice objects and to convince the reader that the framework
adopted here could provide a way to investigate continuous limits of discrete random trees.

Disclaimer : This is an expository work which is not meant to be fully rigorous nor ex-
haustive. The complete proofs as well as precise definitions of the objects considered can be
found in the references. May the reader forgive our wordy and sketchy style.

Acknowledgments: We thank Igor Kortchemski for comments on a first version of this
note.

2 The Brownian triangulation

In this section we give an overview of the construction of the Brownian triangulation B. The
tools introduced for this purpose are of great use thorough the paper. Let us begin with a
precise definition of non-crossing configurations of regular polygons.

A non-crossing configuration (n.c.c. for short) of P
n

is a subset of diagonals (and edges)
of P

n

that are not crossing except at their endpoints. They are many classes of non-crossing
configurations (see e.g. [13]), let us list a few:

• A triangulation is a n.c.c. that triangulates P
n

, and more-generally for p � 3 we speak
of p-angulation (quadrangulation, pentagulation, ...) when all the faces of the configu-
ration (except the external face) have p adjacent edges,

• A dissection is a n.c.c. formed by the edges of P
n

and some non-crossing diagonals,

• A non-crossing tree is a n.c.c. that is also a spanning tree of the vertices of P
n

.

1

2

3
4

5

6

7

8

1

2

3
4

5

6

7

8

1

2

3
4

5

6

7

8

1

2

3
4

5

6

7

8

Figure 2: Examples of non-crossing configurations : from left to right, a dissection, a
triangulation, a quadrangulation and a non-crossing tree of the octogon.

The general goal in these pages is to understand the geometric structure of random non-
crossing configurations as n ! 1. To do so, it is convient to see a n.c.c. as a closed subset
of the unit disk (we shall always do so) and to ask for a limit theorem in the sense of the
Hausdor↵ metric on closed subsets of D. We remind the reader that the Hausdor↵ distance
dH between two closed subsets A,B ⇢ D is the least " > 0 such that A is contained in the
"-enlargement of B and vice-versa. Recall also that

the set of closed subsets of D is compact for dH.
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See the discussion in Section 4. Using this topology, the Brownian triangulation appears as
a universal limit of uniform non-crossing configurations:

Theorem 1 ([16] and [8]). If C
n

is a uniform n.c.c. chosen in the class of p-angulations1 or
dissections or non-crossing trees of P

n

then we have the convergence for dH

C
n

(d)����!
n!1

B.

The combinatorial details of the class of n.c.c. considered thus vanish as n ! 1 and give
rise to the Brownian triangulation. This limit result can be used to compute asymptotic
quantities on n.c.c. For example the law of the arc (normalized by 1/2⇡) intercepted by the
longest diagonal in a random uniform {p-angulation or dissection or non-crossing tree} of P

n

converges as n ! 1 towards that of the Brownian triangulation which is given [3, 11] by

1

⇡

3x� 1

x

2(1 � x)2
p

1 � 2x
1 1

3x 1
2
dx.

We let the reader think about many other applications of Theorem 1.

Laminations and continuous triangulations. Using terminology of geometers, we
call a geodesic lamination of the disk (lamination for short) any closed subset of the unit
disk D that can be written as a disjoint union of diagonals [eix, eiy] for x, y 2 R that are
not intersecting inside D, see [6]. In particular, any n.c.c. of P

n

can be seen as a finite
lamination. It is fairly easy to see that the set of laminations is closed for dH. A continuous
triangulation is a lamination whose complement in D is made of disjoint open Euclidean
triangles. Equivalently, they consist of the laminations that are maximal for the inclusion
relation, see [6, 19].

Using this vocabulary, the Brownian triangulation is indeed a continuous triangulation
(and a lamination) almost surely. This fact could seem obvious when B is considered as
the limit of uniform discrete triangulations of P

n

but less clear when considered as the
limit of uniform quadrangulations! As all characters of the Brownian family, the Brownian
triangulation is a fractal object. Indeed, almost surely, no distinct triangles of D\B share an
edge and it is shown in [19] (and sketched in [3]) that

dim(B) =
3

2
, a.s. (1)

Without giving a proof of Theorem 1, let us introduce the main techniques and ideas it
contains. For sake of simplicity we stick to the case of discrete triangulations.

2.1 Duality and contour function

There is an obvious-once-remarked duality between triangulations of P
n

and rooted oriented
binary trees with n � 1 leaves: take the dual of the triangulation, see Fig. 3. Binary trees
with n � 1 leaves are themselves in bijection with their contour functions of length 4n � 6
(the definition of the contour function should be clear from Fig.3).

Hence chosing a uniform triangulation of P
n

boils down to chosing a uniform binary tree
with n � 1 leaves or equivalently picking its contour function. Let D

(n) denote the contour
function of a uniform binary tree with n�1 leaves and write T

n

for the dual triangulation of
P
n

associated with it (in particular T
n

is indeed a uniform triangulation of P
n

). Let us see
how to relate these objects. First, it is clear to see that local maxima of D(n) are associated
with the leaves of the binary tree or equivalently with the sides of the polygon P

n

. Second,

1
in this case n� p has to be divisible by p� 2
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with any chord [e�2i⇡xn/n
, e

�2i⇡yn/n] with x

n

< y

n

2 {0, 1, ..., n� 1} of T
n

we can associate
two unique instants a

n

< b

n

in {0, 1, ..., 4n� 7} such that

D

(n)

an+
1
2

= D

(n)

bn+
1
2

= min
t2[an+

1
2 ,bn+

1
2 ]
D

(n)
t

. (2)

() ()

Figure 3: Duality with trees and excursion.

They form an up-step and a down-step of the path that can “see” each other below the
curve and correspond to the two visits of the edge dual of the chord [e�2i⇡xn/n

, e

�2i⇡yn/n] by
the contour process of the tree, see Fig. 3. Also x

n

is equal to the number of local maxima
in D

(n) before time a

n

and similarly y

n

is the number of local maxima of D(n) before time
b

n

.
Once this is digested, let us go to the continuous world. It is well-known (see [18]) that

the contour functions of uniform binary trees admit the Brownian excursion as scaling limit.
More precisely we have2

✓
1

2
p

2n
D

(n)
4nt

◆

0t1

(d)����!
n!1

(e
t

)0t1, (3)

where e is the normalized Brownian excursion of duration 1. In fact, the last convergence,
together with the forthcoming (4), implies the convergence in distribution of the T

n

’s to-
wards a random continuous triangulation that is constructed from e. This thus furnishes a
definition of the Brownian triangulation from the Brownian excursion. Our goal here is only
to make the reader guess this construction.

As we said, we need another ingredient: if M(n)
t

denotes the number of local maxima of
D

(n) before time t then we have (see e.g. [17])

sup
t2[0,1]

⇣
n

�1M(n)
4nt � t

⌘
(P )����!

n!1
0. (4)

By the Skorokhod representation theorem one can assume that (3) and (4) hold almost
surely. Now pick a chord of T

n

as above and assume that n

�1
x

n

and n

�1
y

n

converge
towards x < y 2 [0, 1]. By (4) we have (4n)�1

a

n

! x as well as (4n)�1
b

n

! y. Passing to
the limit in (2) using (3) leads to x ⇠e y where ⇠e is the equivalence relation defined by

x ⇠e y if and only if e
x

= e
y

= min
s2[x^y,y_y]

e
s

. (5)

The suspected limit of the T
n

’s is then

Le :=
[

x ⇠e y

[e�2i⇡x
, e

�2i⇡y]. (6)

2
putting D(n)

t = 0 for t � 4n� 6
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Though Le is clearly made of a union of diagonals of the unit disk, it is less clear that this
union is disjoint inside D. It is not the case in general, however a fairly easy exercise shows
that if e is continuous and under the assumption

(He) the local minima of e are distinct,

then Le indeed is a lamination and furthermore a continuous triangulation. Since these
hypotheses are a.s. fulfilled by the Brownian excursion, Le is a.s. a random continuous trian-
gulation and it is possible to show that

T
n

a.s.����!
n!1

Le

consequently B = Le in distribution. See [2, 8, 16] for complete arguments.

This is in essence the idea of the proof of Theorem 1: for each class of non-crossing
configurations, we find a bijection (usually the classical duality operation) with a class of
trees. These random trees usually are simple enough (conditioned Galton-Watson trees
or closely related) so that their contour functions converge in the scaling limit towards (a
multiple) of the Brownian excursion. This convergence then finally implies the convergence of
the random uniform non-crossing model towards the Brownian triangulation. This strategy
has been implanted for a variety of n.c.c. in [8].

Open question 1 (Universality). Extend Theorem 1 to other classes of n.c.c., see [13].

2.2 Stable laminations

The results of this section come from [16] to which the reader is referred for details.

As we saw in the last section, the universal limit of various classes of uniform non-crossing
configurations is a random continuous triangulation. This is reminiscent of the fact that
critical Galton-Watson trees with finite variance o↵spring reproduction law and condition
to be large all admit a continuous random binary tree (the Brownian CRT [1]) as scaling
limit: the only branching points that subsist in the scaling limit are at most of order three.
However, if the o↵spring reproduction law has a heavy tail then branching points of infinite
multiplicity remain in the scaling limit (the stable trees [12]), let us see how this phenomenon
occurs in the context of random laminations.

Let q = (q
i

)
i�1 be a sequence of non-negative weights with q1 = 0. If ! is a dissection of

P
n

we associate a “Boltzmann” weight to ! by the formula

P

n

q (!) =
1

Z

n

Y

f face of !

qdeg(f)�1,

where deg(f) is the degree of the face f , that is the number of edges adjacent to f , and Z

n

is a normalizing constant that makes Pn

q a probability measure. Under mild assumption this
definition makes sense and one can consider a random dissection Dn

q distributed according
to P

n

q . For example if q
i

= c

i�1 for c � 0 the resulting probability P

n

q is uniform over all
dissections and if q

i

= 1
i=p�1 for p � 3, it is uniform over all p-angulations of P

n

. In both
cases we are back to the setting of Theorem 1. However if the measure P

n

q favors large faces
then a di↵erent behavior occurs:

Theorem 2 ([16]). If q is a probability measure on {0, 2, 3, ...} of mean 1 in the domain of
attraction of a stable law of parameter ✓ 2 (1, 2] 3 then we have the following convergence in
distribution for the Hausdor↵ metric

Dn

q
(d)����!

n!1
S
✓

,

where S
✓

is a random lamination of the disk called the stable lamination of parameter ✓.

3
e.g. qk ⇠ ck�1�✓

as k ! 1, for some c > 0
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In the case ✓ = 2 the stable lamination of parameter 2 coincides with the Brownian
triangulation. However when ✓ < 2, the random lamination S

✓

is not a triangulation anymore
and its complement in D contains open polygons with infinitely many faces, see Fig. 4. Also,
the dimension of S

✓

equals

dim(S
✓

) = 2 � 1

✓

.

The strategy of the proof of Theorem 2 follows roughly that of Theorem 1. The dual tree
associated to D

n

q is now a Galton-Watson tree with o↵spring distribution q conditioned on
having n � 1 leaves. This particular conditioning of Galton-Watson trees has recently been
studied in [17] (see also [20]) and in particular it has been shown [17] that the rescaled
contour functions of the last trees converge towards the height process of a stable Lévy
process (see [12] for the definition). The main di�culty that arises when ✓ < 2 is that these
random excursion functions do not have distinct local minima (hypothesis He) and thus the
construction of last section breaks down. Still, it is possible to build the stable lamination
from the stable height process in a way similar as Le is constructed from e, see [16] for more
details.

Figure 4: Stable laminations with parameters 1.1 (left), 1.5 (middle) and 1.9 (right).
Simulations realized by Igor Kortchemski.

Many distributional properties of the stable laminations are still to be calculated. E.g.:

Open question 2 (I. Kortchemski). What is the distribution of the length of the longest
diagonal of S

✓

for ✓ 2 (1, 2)? The area of the largest face? What happens if the weight
sequence q = {q

i

: i 2 {0, 2, 3, 4, ...}} is not a probability sequence or has infinite variance?

3 Recursive triangulations

The results of this section come from [9] to which the reader is referred for details.

The last two sections studied the limit of n.c.c. under the uniform or “Boltzamnn” type
distributions. Another very natural probability measure, the recursive measure, arises when
we actually try to draw a triangulation on a sheet of paper. A new object appears in the
limit.

The recursive triangulation of P
n

is the random discrete triangulation R
n

obtained by
the following process. We start with the empty n-gon P

n

and draw a uniform diagonal of
it. Iteratively, we draw a diagonal uniformly among those that do not intersect (inside D)
the previous drawn diagonals. The process stops after n � 3 steps when no diagonal can
be added to the configuration anymore. Although R

n

= T
n

in law for n = 3, 4 and 5, the
recursive and uniform triangulations di↵er much when n is large and a new object appears
in the limit:

Theorem 3 ([9]). We have the following convergence in distribution for dH

R
n

(d)����!
n!1

R.
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The random lamination R is a continuous triangulation called the random recursive
triangulation of the disk. Although R roughly looks like the Brownian triangulation, they
are very di↵erent and R is “fatter”

dim(R) = 1 + �

⇤
, with �

⇤ =

p
17 � 3

2
⇡ 0, 56.

The recursive triangulation of the disk can be constructed directly as follows: we consider a
sequence U1, V1, U2, V2, . . . of independent random variables, which are uniformly distributed
over the unit circle S1. We then construct inductively a sequence L1, L2, . . . of random closed
subsets of the (closed) unit disk D. To begin with, L1 just consists of the chord [U1V1] with
endpoints U1 and V1. Then at step n+1, we consider two cases. Either the chord [U

n+1Vn+1]
intersects L

n

, and we put L

n+1 = L

n

. Or the chord [U
n+1Vn+1] does not intersect L

n

, and
we put L

n+1 = L

n

[ [U
n+1Vn+1]. Thus, for every integer n � 1, L

n

is a disjoint union of
random chords. We then let R to be the closure of the increasing L

n

’s:

R =
[

n�1

L

n

.

The tools used to study R are very di↵erent from the ones used in the last sections.
However the scenario is the same: we try to understand the contour function of the dual
tree associated to L

n

and prove a convergence of these contour processes (in a certain sense)
towards a continuous non-negative process (m

x

: 0  x  1) which finally encodes the
lamination via

R (d)
= Lm, (7)

in the sense of (6). This coding of R by m then permits to deduce properties of R
(e.g. Hausdor↵ dimension) from properties of m (e.g. Hölder continuity exponent). Let us
precise the construction of m. For x 2 [0, 1] we define (see Fig. 5)

m
n

(x) := #{chords of L
n

that intersect [1, e2i⇡x]}.

1

e

2i⇡x

Figure 5: Definition of mn(x) (four in this case).

This function plays the role of the contour function associated to the dual tree of L
n

. It is
then possible to prove that for all x 2 [0, 1] we have the following convergence in probability

n

��

⇤
/2m

n

(x)
(P )����!

n!1
m

x

, (8)

where (m
x

: 0  x  1) is a continuous random excursion which is Hölder continuous of
exponent �

⇤ � " for all " > 0. Note that the last convergence is strictly weaker than a
functional convergence in the type of (3):
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Open question 3 ([9]). It is conjectured that

n

��

⇤
/2
�
m

n

(x)
�
x2[0,1]

����!
n!1

(m
x

)
x2[0,1]

in probability for the L

1-norm over [0, 1].

Recently, Nicolas Broutin and Henning Sulzbach have announced a proof of this conjec-
ture. Even without this strong convergence, it is still possible to prove (7). Let us mention
that the main tool used to prove (8) is fragmentation theory, see [5]. In particular the expo-
nent �⇤ appears as the so-called Malthusian exponent of a fragmentation process intimately
related to the construction of R.

4 R-trees, dendrites and laminations

Before introducing our last character in the next section, we show that laminations can, in a
sense, be considered as weak versions of continuous trees thus giving an alternative approach
to the classical Gromov-Hausdor↵ topology.

4.1 Laminations as limit of discrete trees

Over the last years a tremendous e↵ort has been made to understand the continuous limits
of discrete random trees. The general question is as follows:

Question: (Q) Assume that (⌧
n

)
n�0 is a sequence of random trees whose “size”

grow to infinity with n. How can we make sense of a continuous limit of the ⌧

n

?

Let us first remind the reader of the classical scaling limit approach to the last question
based on the Gromov-Hausdor↵ topology: if (E, d) and (E0

, d

0) are two compact metric
spaces, the Gromov-Hausdor↵ distance between them is

dGH

�
(E, d), (E0

, d

0)
�

:= inf{dH

�
�(E),�0(E0)

�},

where the infimum is taken over all choices of a metric space (F, �), isometric embeddings
� : E ! F and �

0 : E0 ! F where dH denotes the Hausdor↵ distance in (F, �). The Gromov-
Hausdor↵ distance is indeed a distance on the set of equivalence classes of compact metric
space (which is a Polish space). A discrete tree can obviously be seen as a metric space by
endowing it with the graph metric dgr, hence an answer to (Q) is :

Answer 1: Find a scaling parameter ↵

n

and show that the rescaled (finite)
random compact metric space (⌧

n

,↵

n

· dgr) converges in distribution for dGH.

The metric spaces arising as Gromov-Hausdor↵ limits of rescaled trees are known as R-trees.
They are compact metric spaces without cycles and such that the only geodesic between
any two points is isometric to a real segment, see [18]. Several classes of random discrete
trees have been investigated under that view point (Galton-Watson trees, Markov branching
trees).

But this approach has a drawback: since the set of equivalence classes of compact metric
spaces is not compact for dGH, one usually have to esthablish a thorny tightness property
for the rescaled ⌧

n

, even worse, some very natural sequences of random trees are not tight
for dGH.

Let us give another approach to (Q). Assume for simplicity that the discrete trees we
are dealing with are rooted ordered discrete trees with no vertices of degree 2. This class is
particularly nice since it is in bijection with dissections of finite regular polygons as shown
on Fig. 6. If ⌧ is such a tree we denote by Dis(⌧) the dissection associated with ⌧ . Viewing
our random discrete trees ⌧

n

through their associated dissections then gives a new point of
view to (Q):

8
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Figure 6: A tree and its dual dissection.

Answer 2: Show that (Dis(⌧
n

))
n�1 converges for the Hausdor↵ topology on D.

The continuous limit of the discrete random trees (⌧
n

) is now a random lamination.
Within this framework, the stable laminations of parameter ✓ 2 [1, 2] loosely speaking appear
as the lamination limits of Galton-Watson trees whose o↵spring reproduction law is in the
domain of attraction of a stable law of parameter ✓. The great advantage of this approach
lies in the compactness of the Hausdor↵ topology of D: we know a priori that (Dis(⌧

n

))
admits sub-sequential weak limits for dGH.

Let us give a trivial example. Consider ⌧

n

the (deterministic) binary tree full up to
level n, see Fig. 7. It is easy to see that the sequence ⌧

n

cannot be rescaled to converge
in the Gromov-Hausdor↵ sense towards a continuous R-tree, however (⌧

n

) converges in the
lamination sense towards the (deterministic) lamination of Fig. 7.

Figure 7: A binary tree full up to level 5 and its lamination limit.

A less trivial example of the power of this technique is given by the random recursive
triangulation. Recall the construction of the finite recursive triangulation R

n

of the last
section and denote by ⌧

R

n

its dual binary tree with n�1 leaves. Although the convergence of
⌧

R

n

in terms of laminations is the content of Theorem 3, the Gromov-Hausdor↵ convergence
of the rescaled ⌧

R

n

is still open, see [9].

Open question 4 (Markov branching trees). Construct the limits in the sense of laminations
of the discrete Markov branching trees [15] and study their properties.

4.2 Laminations as measured dendrites

As in the discrete setting, we will see that a lamination hides a “dual” topological tree. To
simplify the exposition we present this construction in the case of the Brownian triangulation.
The setting could be adapted to more general random laminations.

If B is the Brownian triangulation we define an equivalence relation ⇡ on D by putting
x ⇡ y if and only if x and y belong to a chord of B or if they both belong to the closure
of a triangle of D\B. Since no triangle of D\B are adjacent, the relation ⇡ indeed is an
equivalence relation, a.s. We then consider the random topological quotient space

T = D/ ⇡

9



endowed with the quotient topology. We write ⇡ for the canonical projection. It is an exer-
cise to check that T a.s. is a dendrite: a continuum (compact connected topological space)
containing no simple closed curve. See [7] for a survey and for 32 equivalent characterizations
of dendrites. This “topological tree” can be seen as the dual of B. When B = Le then T is
homeomorphic to the Brownian tree Te coded by e, see [19]. Unfortunately, we conjecture
that in the Brownian case this topology is constant:

Open question 5 (Topology of Aldous’ CRT). The topology of T is almost surely constant,
i.e. two independent samples of the Brownian CRT are almost surely homeomorphic.

The push-forward by ⇡ of the uniform measure on S1 endows the dendrite T with a Borel
probability measure µ. Also, the clockwise ordering of S1\{1} leads to a lexicographical order
over T given by a � b if and only if when doing to clockwise contour of S1 starting from 1
we encounter a point whose ⇡-projection is a before this happens for b. From the dendrite
T , its root point ⇡(1), the linear ordering � and its mass measure µ, we can reconstruct B.

5 The Markovian hyperbolic triangulation

The results of this section come from [10] to which the reader is referred for details.

We finish this expository paper by introducing the Markovian hyperbolic triangulation H.
This continuous triangulation di↵ers much from the previous ones and is related to hyperbolic
geometry. In fact, contrary to B,S

✓

or R, the continuous triangulation H is not introduced
as a limit of discrete n.c.c. neither it is constructed as a lamination associated with an
excursion process in the sense of (6). Consequently it has no clearly defined continuous
R-tree associated with it.

In this section we have to work with hyperbolic geometry. The definition of lamination
(and continuous triangulation) is slightly changed by considering hyperbolic chords instead of
Euclidean ones. See Fig. 8. All the objects are denoted with an additional h- for “hyperbolic-
”.

Figure 8: A continuous triangulation with Euclidean chords and its h-version.

The advantage of working with h-laminations (except for obvious aesthetic reasons) is the
fact that a maximal h-lamination (a h-triangulation) can be seen as a tilling of the hyperbolic
plane by hyperbolic triangles. More precisely any open component of the complement of a
h-triangulation in D is an open h-triangle with its three apexes located on the boundary
at infinity @D, such a triangle is called ideal. We recall that the Möbius group Mob of all
hyperbolic isometries acts transitively on the set of ideal triangles. In other words, all the
triangles of a maximal h-triangulation are equilateral triangles!

In view of these remarks, it is legitimate to ask if there exists a random h-triangulation
T whose law in invariant under the action of Mob that is, T = �(T ) in distribution for
every � 2 Mob. The answer is positive and it is fairly easy to construct many examples, see
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[10]. However there is an essentially unique random h-triangulation that is Mob-invariant
and satisfies a spatial Markov property that can be roughly described as follows:

Spatial Markov Property : Given a triangle T = (abc) in T , the triangu-
lation restricted to the three connected components of the complement of T in
D are conditionally independent, and moreover, the part that is beyond (bc) is
independent of the position of a.

Theorem 4 ([10]). There is a unique (law of a) random h-triangulation H such that

• the union of the triangles of H is of full Lebesgue measure in D,
• �(H) = H in distribution for every � 2 Mob,

• H satisfies the above spatial Markov property.

The triangulation H is constructed in [10] using basic hyperbolic tools and subordinators.
Although not locally finite (they are no triangles adjacent to each other), it is the thinest of
all laminations considered in this paper in the sense that

dim(H) = 1.

Many open questions about this object remain open:

Open question 6 ([10]). Is there a “natural” random discrete n.c.c. model that converges
towards H? Is there a random R-tree dual to H as the Brownian tree or stable trees are dual
to B and S

✓

?

Figure 9: A sample of H.
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