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In a few words

We consider the wave equation

∂2
tt −∆u = 0, (ut=0, ∂tut=0) = (u0, u1)

in a manifold M equipped with a volume µ. Here, ∆ is a
sub-Riemannian (or subelliptic) Laplacian.
We fix ω ⊂ M (measurable).
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In a few words

We say that the wave equation is observable in time T0 > 0 in ω if
∃C > 0 such that for any initial data (u0, u1) ∈ H × L2,∫ T0

0

∫
ω

|∂tu(t, x)|2dµ(x)dt > C‖(u0, u1)‖2
H×L2 .

Main
result: If M\ω has non-empty interior,
then the wave equation is never observable
(i.e., observable for no time T0 < +∞).

Remark: Observability ⇔ Controllability.

Related goal: Understand speed
of propagation of information/singularities
for subelliptic evolution equations.
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I - Introduction and main result
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Sub-Laplacians

Let M be a smooth connected compact manifold of dimension n and µ
be a smooth volume on M. Let X1, . . . ,Xm be smooth vector fields on M
(not necessarily linearly independent). We assume

Lie(X1, . . . ,Xm) = TM.

We define the sub-Laplacian

∆ = −
m∑
i=1

X ∗i Xi =
m∑
i=1

X 2
i + divµ(Xi )Xi ,

where

Star = transpose in L2(M, µ);

divµX is defined by LXµ = (divµX )µ.

Sub-Laplacians are hypoelliptic, i.e., ∆u ∈ C∞(V )⇒ u ∈ C∞(V ).
They satisfy subelliptic estimates:

‖u‖H2/k 6 C (‖u‖L2 + ‖∆u‖L2 ).

Here k = step = degree of subellipticity !
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Examples of sub-Laplacians

Heisenberg: ∆ = X 2
1 + X 2

2 with X1 = ∂x and X2 = ∂y − x∂z in R3.
Then [X1,X2] = −∂z .

Grushin: ∆ = X 2
1 + X 2

2 with X1 = ∂x and X2 = x∂y in R2.

Martinet: X 2
1 + X 2

2 with X1 = ∂x and X2 = ∂y + x2∂z in R3. Here,
[X1,X2] = 2x∂z and [X1, [X1,X2]] = 2∂z . This is a step 3
sub-Laplacian.

Sometimes, there are complicated relations between the vector fields and
their brackets: [X1,X3] = X1, etc.
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Sub-Riemannian distance

We set D = Span(X1, . . . ,Xm) (the “distribution”). There is a metric g
associated to the Xj , namely

gq(v) = inf


m∑
j=1

u2
j , v =

m∑
j=1

ujXj(q)

 ,

and an associated distance

dsR(q, q′) = inf
γ(0)=q,γ(1)=q′

γ̇(t)∈D, a.e. t

∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t))dt.

According to Chow-Rashevsky, dsR(q, q′) < +∞ for any q, q′ ∈ M.
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Sub-Riemannian wave equation

We consider a bounded subset M ⊂ Rn with ∂M 6= ∅, a time T > 0, and
the free wave equation ∂2

ttu −∆u = 0 in (0,T )×M
u = 0 on (0,T )× ∂M,
(u|t=0, ∂tu|t=0) = (u0, u1).

The natural energy of a solution is

E (u(t, ·)) =
1

2

∫
M

(
|∂tu(t, x)|2 + |∇sRu(t, x)|2

)
dµ(x).

where

∇sRφ =
m∑
j=1

(Xjφ)Xj .

Then d
dtE (u(t, ·)) = 0. Initial data:

‖(u0, u1)‖2
H×L2 = ‖u0‖2

H + ‖u1‖2
L2(M,µ)

with

‖v‖H =

(∫
M

|∇sRv(x)|2dµ(x)

) 1
2

.
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Main result

Definition

Let T0 > 0 and ω ⊂ M be a µ-measurable subset. The subelliptic wave
equation is exactly observable on ω in time T0 if there exists a constant
CT0 (ω) > 0 such that, for any (u0, u1) ∈ H(M)× L2(M), the solution u
of the wave equation satisfies∫ T0

0

∫
ω

|∂tu(t, x)|2dµ(x)dt > CT0 (ω)‖(u0, u1)‖2
H×L2 .

Theorem (C.L.-2020)

Let ω ⊂ M be a measurable subset. We assume that M\ω contains in its
interior a point x such that [Xi ,Xj ](x) /∈ Span(X1(x), . . . ,Xm(x)) = Dx

for some i , j . Then the subelliptic wave equation is not exactly
observable on ω in time T0, for any T0 > 0.
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How does one usually prove an observability inequality?

If ∆ is a Riemannian Laplacian,

(Observability in time T0 in ω)⇔
(ω satisfies GCC in time T0)

where (GCC):

any ray of geometrical optics (=geodesic)
travelled at speed 1 meets ω within time T0.

(Bardos-Lebeau-Rauch, 1992).
Proof: ⇒ Solutions with energy localized along a ray.
[Rmk: Gaussian beams ≈ Coherent states ≈ WKB]
If GCC not satisfied, take geodesic not entering ω in time
T0. Observability contradicted by associated Gaussian
beam.
Reminder: A geodesic is a local minimizer of the sR distance

dsR(q, q′) = inf
γ(0)=q,γ(1)=q′

γ̇(t)∈D, a.e. t

∫ 1

0

√
g(γ̇(t), γ̇(t))dt.
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Structure of the proof

Two ingredients:

Find a sub-Riemannian geodesic which does not enter ω within time
T0: in other words, (GCC) never holds because there exist spiraling
geodesics which stay very long in M\ω.

Construct a Gaussian beam along this geodesic: all the energy
concentrates near this geodesic, hence outside ω.
Therefore observability does not hold.
More generally, along any (normal) sub-Riemannian geodesic, one
may construct Gaussian beams.

Remark: Second point is not surprising (although not explicitly in the
literature), first point is new.
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Example of spiraling: the 3D Heisenberg case

Example: MH = (−1, 1)x1 × Tx2 × Tx3 , with T = R/Z ≈ (−1, 1).
Vector fields X1 = ∂x1 and X2 = ∂x2 − x1∂x3 .
Laplacian ∆ = X 2

1 + X 2
2 . [Measure µ =Lebesgue.]

Distribution DH = Span(X1,X2).
Metric gH : (X1,X2) is a gH -orthonormal frame of DH .
Then, (MH ,DH , gH)=“Heisenberg manifold with boundary”.
We note that [X1,X2] = −∂x3 (⇒ ∆ subelliptic).
Spiraling geodesics:

x1(t) = ε sin(t/ε)

x2(t) = ε cos(t/ε)− ε
x3(t) = ε(t/2− ε sin(2t/ε)/4).

They spiral around the x3 axis x1 = x2 = 0.

Remark: This geodesic is travelled at speed 1;
The x3 coordinate remains small for 0 6 t 6 T0.
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Sub-Riemannian geodesics

Two types of geodesics (i.e., local minimizers of distance) in sR
geometry:

normal geodesics (projections of bicharacteristics);

abnormal geodesics (discovered by Montgomery).

We focus on normal geodesics (sufficient for our proof).
Definitions/Notations. The Hamiltonian is

g∗(x , ξ) = σp(−∆) =
m∑
i=1

h2
Xi
.

where, for X smooth vector field, hX : T ∗M → R denotes the
momentum map

hX (x , ξ) = ξ(X (x)).

Example: For Heisenberg, g∗ = ξ2
1 + (ξ2 − x1ξ3)2.

The wave operator P = ∂2
tt −∆ has principal symbol

p2(t, τ, x , ξ) = −τ 2 + g∗(x , ξ).
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Sub-Riemannian geodesics, II

Null-bicharacteristics = maximal solutions of
ṫ(s) = −2τ(s) ,
ẋ(s) = ∇ξg∗(x(s), ξ(s)) ,
τ̇(s) = 0 ,

ξ̇(s) = −∇xg
∗(x(s), ξ(s))

together with condition p2 = 0, i.e., τ 2 = g∗ (preserved by the flow).
They are integral curves of ~p2 = (∂τp2, ∂ξp2,−∂tp2,−∂xp2) lying in the
characteristic manifold {p2 = 0}.

By homogeneity, fix τ = −1/2, which gives g∗(x(s), ξ(s)) = 1/4.
In other words, we use t as a time variable for the null-bicharacteristic
(x(t), ξ(t)), and it is travelled at speed 1.

The normal geodesics are the projections on M of the
null-bicharacteristics: we keep x(t) but forget ξ(t).
They locally minimize the sub-Riemannian distance.
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Example on Heisenberg geodesics

∆ = ∂2
x1

+ (∂x2 − x1∂x3 )2; Hamiltonian g∗ = ξ2
1 + (ξ2 − x1ξ3)2.

The bicharacteristic equations are

ẋ1(t) = 2ξ1, ξ̇1(t) = 2ξ3(ξ2 − x1ξ3),

ẋ2(t) = 2(ξ2 − x1ξ3), ξ̇2(t) = 0,

ẋ3(t) = −2x1(ξ2 − x1ξ3), ξ̇3(t) = 0.

Take ξ3 = ε−1. Since the geodesic
is travelled at speed 1, i.e., ξ2

1 + (ξ2 − x1ξ3)2 = 1/4,
we take for example ξ1 = cos(2t/ε)/2 and ξ2 = 0. Then

x1(t) =
ε

2
sin(

2t

ε
)

x2(t) =
ε

2
cos(

2t

ε
)− ε

2

x3(t) =
ε

4
(t − ε

4
sin(

4t

ε
)).

Geodesics do not go far from their initial point !
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Observability for small |ξ3|: “repairing” the main result

Idea: Apart from these geodesics with large |ξ3|, all other geodesics meet
ω in bounded time.
Again, MH = (−1, 1)x1 × Tx2 × Tx3 with ∆ = ∂2

x1
+ (∂x2 − x1∂x3 )2. Let ω

be an horizontal strip (−1, 1)x1 × Tx2 × Ix3 .

Theorem (C.L.-2020)

Let a be a non-negative symbol of order 0 such that Supp(a) contains
T ∗ω and

Vε =

{
(x , ξ) ∈ T ∗MH : |ξ3| >

1

ε
(g∗x (ξ))1/2

}
.

For T large enough (depending on ε), there exists C > 0 such that

C‖(u(0), ∂tu(0))‖2
H0×L2

0
6
∫ T

0

|(Op(a)∂tu, ∂tu)L2 | dt + ‖(u(0), ∂tu(0))‖2
L2

0×H′
0

for any solution u of the subelliptic wave equation.
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II - Ideas of proof for Theorem 1
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Proof: Gaussian beams along normal sR geodesics

Two steps for constructing Gaussian beams (GBs):
- Approximate solutions: ∂2

ttvk −∆vk ∼ 0 with energy concentrated
along the geodesic;
- Exact solutions: ∂2

ttuk −∆uk = 0 and concentrated energy.

We focus on approximate solutions and fix a null-bicharacteristic
(x(t), ξ(t))t∈[0,T ] which not hitting ∂M in the time-interval (0,T ).

Important: The construction is the same as for the Riemannian wave
equation since normal geodesics stay in the elliptic part of the symbol.
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Proof: Approximate solutions

We look for approximate solutions of the wave equation under the form

vk(t, x) = k
n
4−1a0(t, x)e ikψ(t,x).

[n is the dimension of M, k is a large parameter (k ∼ 1/h).]

Important: ψ is complex-valued (conjugate points).

Plug into the wave equation:

∂2
ttvk −∆vk = (k

n
4 +1A1 + k

n
4 A2 + k

n
4−1A3)e ikψ

with

A1(t, x) = [−(∂tψ(t, x))2 + g∗(x ,∇ψ(t, x))]a0(t, x)

A2(t, x) = La0(t, x),

A3(t, x) = ∂2
tta0(t, x)−∆a0(t, x).

L is a linear first-order transport operator.
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Proof: Approximate solutions, II

There exist a0, ψ ∈ C 2((0,T )×M) such that

vk(t, x) = k
n
4−1a0(t, x)e ikψ(t,x)

is an approximate solution of the wave equation:

‖∂2
ttvk −∆vk‖L1((0,T );L2(M)) 6 Ck−

1
2 .

has energy bounded below (uniformly w.r.t k and t ∈ [0,T ]):

∃A > 0,∀t ∈ [0,T ], lim inf
k→+∞

E (vk(t, ·)) > A.

has energy small off x(t): for any small δ,

sup
t∈[0,T ]

∫
M\Bg (x(t),δ)

(
|∂tvk(t, x)|2 + |∇sRvk(t, x)|2

)
dµ(x) →

k→+∞
0.
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Proof: Approximate solutions, III

For simplicity, M ⊂ Rn.
Recall that with vk(t, x) = k

n
4−1a0(t, x)e ikψ(t,x),

∂2
ttvk −∆vk = (k

n
4 +1A1 + k

n
4 A2 + k

n
4−1A3)e ikψ.

We take

ψ(t, x) = ξ(t) · (x − x(t)) +
1

2
(x − x(t))T ·M(t) · (x − x(t)).

with a well-chosen n × n matrix M(t).
Consequence: A1(t, x),A2(t, x),A3(t, x) vanish at high order along
Γ = {(x(t), ξ(t))} (i.e. where e ikψ is not negligible).
The new unknown is the n × n complex-valued matrix M(t):

It is complex-valued and Im(M(t)) > 0;

It is chosen so that the second derivatives of A1 vanish along Γ
(resolution of a Riccati equation).
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Proof: Approximate solutions, IV

To sum up, with these choices of a0 and ψ, we have all desired properties
for vk :

E (vk(t, ·)) > A (independently of k and t).

The energy of vk “looks like” k
n
2 e−ckd

2(x,x(t)), hence is ∼ 0 outside
a small ball centered at x(t).

‖∂2
ttvk −∆vk‖L2 6 Ck−

1
2 thanks to the choices of ψ and a0.

Remark: Interpretation as propagation of complex Lagrangian spaces, or
propagation of coherent states.
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Proof: Existence of spiraling geodesics

Forget about the wave equation ! The rest is pure geometry.

Proposition

For any T0 > 0, any q ∈ M and any open neighborhood V of q in M,
there exists a geodesic t 7→ x(t) of (M,D, g) travelled at speed 1 and
such that x(t) ∈ V for any t ∈ (0,T0).

Remark: These geodesics lose quickly their optimality.
Main idea: Isolate a “Heisenberg structure”.
Two steps: Nilpotent case and then general case.
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Proof. Nilpotent structures: Example

Idea: Given a sR structure (M,D, g) and q ∈ M, it is possible to
“approximate” it around q by a (simpler) nilpotent structure.
Example: X1 = cos(θ)∂x + sin(θ)∂y and X2 = ∂θ on R2

x,y × Tθ. At
q = 0, (x , θ) have “weight 1” and y has “weight 2”. Also, ∂x and ∂θ
have weight −1, and ∂y has weight −2.
Taking Taylor expansions we write

X1 = ∂x −
θ2

2
∂x + . . .+ θ∂y −

θ3

6
∂y + . . . , hence

X1 = X
(−1)
1 + X

(0)
1 + X

(1)
1 + ..., with

X
(−1)
1 = ∂x + θ∂y , X

(0)
1 = 0, X

(1)
1 = −θ

2

2
∂x −

θ3

6
∂y ...

Similarly X
(−1)
2 = X2 = ∂θ.

We set X̂1 = X
(−1)
1 = ∂x + θ∂y and X̂2 = X

(−1)
2 = ∂θ.

Then X̂1 and X̂2 generate a nilpotent sR structure (M̂, D̂, ĝ). The

geodesics of (M̂, D̂, ĝ) approximate those of (M,D, g) (near 0).
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Proof. Existence of spiraling geodesics: General case

The geodesics are the integral curves of ~g∗ with

g∗ =
m∑
i=1

h2
Xi

[hXi (x , ξ) = ξ(Xi (x)).] Since Xi ≈ X̂i , it is not difficult to prove that they

remain close to the integral curves of ~̂g
∗

with

ĝ∗ =
m∑
i=1

h2
X̂ q
i

.

Therefore, it is sufficient to prove the result in nilpotent sR structures.
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Proof. Nilpotentization

Question: In which coordinates do we write the vector fields?

Sub-Riemannian flag of (M,D, g): D0 = {0}, D1 = D, and

∀j > 1, Dj+1 = Dj + [D,Dj ].

Fix q ∈ M. We have a flag

{0} = D0
q ⊂ D1

q ⊂ . . . ⊂ Dr−1
q  Dr(q)

q = TqM.

Weights: wi (q) = 1+ number of brackets needed to generate the i th

direction at q (for 1 6 i 6 n).
A family (Z1, . . . ,Zn) of n vector fields is adapted to the flag at q if it is

a frame of TqM at q and if Zi (q) ∈ Dwi (q)
q for 1 6 i 6 n.

The inverse of the local diffeomorphism

(x1, . . . , xn) 7→ exp(x1Z1) ◦ · · · ◦ exp(xnZn)(q)

defines exponential coordinates of the 2nd kind at q. We now work in
these coordinates. They are privileged coordinates: for any 1 6 j 6 n,

ordq(xj) := sup{s ∈ R : f (p) = O(d(q, p)s)} = wj .
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Proof. Nilpotentization, II

Setting: SR structure (M,D, g) with orthonormal frame (X1, ...,Xm).
Every vector field Xi has a Taylor expansion

Xi (x) ∼
∑
α,j

aα,jx
α∂xj .

As above, we group terms together

Xi = X
(−1)
i + X

(0)
i + X

(1)
i + . . .

and we set X̂i = X
(−1)
i .

We take M̂ ' Rn, D̂q = Span (X̂ q
1 , . . . , X̂

q
k ) and

ĝq(X̂ q
i , X̂

q
j ) = gq(Xi ,Xj).

It defines a nilpotent sR structure (M̂q, D̂q, ĝq). Very good
approximation of (M,D, g) only around q.
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Proof. Existence of spiraling geodesics: Nilpotent case

Second reduction: it is possible to reduce to the case where all brackets
of length > 3 between X1, . . . ,Xm vanish. We work under this
assumption called (A) in the sequel. Also we set

n2 = dim(Span(X1, . . . ,Xm, [X1,X2], . . . , [Xj ,Xk ], . . .))

The normal geodesics satisfy

ẋ(t) =
m∑
i=1

ui (t)Xi (x(t)), (1)

where ui (t) = hXi (x(t), ξ(t)). Thanks to (A), we rewrite (1) as

ẋ(t) = F (x(t))u(t), (2)

where F = (aij) has size n2 ×m, and u = t(u1, . . . , um). Differentiating
the equation for ui , we have

u̇(t) = G (x(t), ξ(t))u(t)

where G is the Goh matrix

G = ({hXi , hXj})16i,j6m.
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Proof. Existence of spiraling geodesics: Nilpotent case

Due to (A), G (t) ≡ G is constant in t. We know that G 6= 0 and that G
is antisymmetric. The whole control space Rm is the direct sum of the
image of G and the kernel of G , and G is nondegenerate on its image.

We take u0 in an invariant plane of G ; in other words its projection on the
kernel of G vanishes. Then u(t) = etGu0 and since etG is an orthogonal
matrix, we have ‖etGu0‖ = ‖u0‖. We have by integration by parts

x(t) =

∫ t

0

F (x(s))esGu0 ds

= F (x(t))G−1(etG − I )u0 −
∫ t

0

d

ds
(F (x(s))G−1(esG − I )u0 ds.

We take an initial covector ξε so that G (0, ξε(t)) = 1
εG0 for some matrix

G0 6= 0. In the above equation, this brings a factor ε, and we can
conclude thanks to Gronwall’s lemma.

Cyril Letrouit Subelliptic wave equations are never observable



III - Further comments
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Bibliographical comments

Two important equations:

∂tu −∆u = 0 (Heat equation)

i∂tu −∆u = 0 (Schrödinger equation)

with same (subelliptic) Laplacian.

Heat equation: Minimal time of observability for Grushin and
Heisenberg heat equations.
[Beauchard-Cannarsa-Gugliemi 2014], [Beauchard-Cannarsa 2017].

Proofs : Explicit computations with harmonic oscillators, Fourier series,
etc.
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Ideas for subelliptic Schrödinger equation

Only one paper: Burq-Sun (2019) for the Grushin Schrödinger

i∂tu − (∂2
x + x2∂2

y )u = 0 on Rt × (−1, 1)x × Ty .

Observation set of the form ω = (−1, 1)x × ωy (union of strips).

Result:
Existence of a minimal time of
control L(ω) related to the maximal
height of the strips of MG\ω.

Proof: Semiclassical analysis
and construction of vertical Gaussian
beams (along degenerated direction).
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Ideas for subelliptic Schrödinger equation

With spiraling geodesics: We find again their result heuristically.

Different
frequencies travel at different speed
(dispersion). If ξy is large, the
spiraling geodesic is more “folded”,
makes very small meanders,
but it is travelled more quickly.
All in all, geodesics
starting from 0 but with different ξy
reach ω at the same time ( 6= waves).

Ongoing work with C.
Fermanian-Kammerer: Study of Schrödinger equation in H-type groups
(with semiclassical measures with “two scales” and representation
theory).

Ongoing work with C. Sun: Study of Schrödinger equations which are
both fractional and subelliptic.
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Conclusion

Open questions:
- How fast does information (singularities, defect measures, etc)
propagate along directions transverse to the distribution?
- Can these spiraling geodesics be used for other purposes (spectral
analysis, etc)?

Thank you very much for your attention !
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