Subelliptic wave equations are never observable

Cyril Letrouit

Ecole Normale Supérieure (DMA) Sorbonne Université (Laboratoire Jacques-Louis Lions)

April 2020

We consider the wave equation

$$\partial_{tt}^2 - \Delta u = 0, \quad (u_{t=0}, \partial_t u_{t=0}) = (u_0, u_1)$$

in a manifold M equipped with a volume μ . Here, Δ is a **sub-Riemannian** (or subelliptic) Laplacian.

We fix $\omega \subset M$ (measurable).

We say that the wave equation is **observable** in time $T_0 > 0$ in ω if $\exists C > 0$ such that for any initial data $(u_0, u_1) \in \mathcal{H} \times L^2$,

$$\int_0^{T_0}\int_{\omega}|\partial_t u(t,x)|^2d\mu(x)dt \ge C\|(u_0,u_1)\|_{\mathcal{H}\times L^2}^2.$$

Main

result: If $M \setminus \omega$ has non-empty interior, then the wave equation is **never** observable (i.e., observable for no time $T_0 < +\infty$).

Remark: Observability \Leftrightarrow Controllability.

Related goal: Understand speed of propagation of information/singularities for subelliptic evolution equations.

- I Introduction and main result
 - 1 Sub-Riemannian geometry
 - 2 Observability and main result
 - 3 Examples of spiraling geodesics
- II Ideas of proof
 - 1 Construction of Gaussian beams
 - 2 Construction of spiraling geodesics
- III Further comments : Subelliptic heat and Schrödinger equations

I - Introduction and main result

э

ヨトイヨト

Sub-Laplacians

Let M be a smooth connected compact manifold of dimension n and μ be a smooth volume on M. Let X_1, \ldots, X_m be smooth vector fields on M (not necessarily linearly independent). We assume

$$Lie(X_1,\ldots,X_m) = TM.$$

We define the sub-Laplacian

$$\Delta = -\sum_{i=1}^m X_i^* X_i = \sum_{i=1}^m X_i^2 + \operatorname{div}_{\mu}(X_i) X_i,$$

where

- Star = transpose in $L^2(M, \mu)$;
- div_{μ}X is defined by $L_X \mu = (div_{\mu}X)\mu$.

Sub-Laplacians are hypoelliptic, i.e., $\Delta u \in C^{\infty}(V) \Rightarrow u \in C^{\infty}(V)$. They satisfy subelliptic estimates:

$$\|u\|_{H^{2/k}} \leq C(\|u\|_{L^2} + \|\Delta u\|_{L^2}).$$

Here k = step = degree of subellipticity !

Examples of sub-Laplacians

- Heisenberg: $\Delta = X_1^2 + X_2^2$ with $X_1 = \partial_x$ and $X_2 = \partial_y x\partial_z$ in \mathbb{R}^3 . Then $[X_1, X_2] = -\partial_z$.
- Grushin: $\Delta = X_1^2 + X_2^2$ with $X_1 = \partial_x$ and $X_2 = x \partial_y$ in \mathbb{R}^2 .
- Martinet: $X_1^2 + X_2^2$ with $X_1 = \partial_x$ and $X_2 = \partial_y + x^2 \partial_z$ in \mathbb{R}^3 . Here, $[X_1, X_2] = 2x \partial_z$ and $[X_1, [X_1, X_2]] = 2\partial_z$. This is a **step 3** sub-Laplacian.

Sometimes, there are complicated relations between the vector fields and their brackets: $[X_1, X_3] = X_1$, etc.

Sub-Riemannian distance

We set $\mathcal{D} = \text{Span}(X_1, \ldots, X_m)$ (the "distribution"). There is a metric g associated to the X_j , namely

$$g_q(v) = \inf \left\{ \sum_{j=1}^m u_j^2, \quad v = \sum_{j=1}^m u_j X_j(q) \right\},$$

and an associated distance

$$d_{\mathrm{sR}}(q,q') = \inf_{\substack{\gamma(0)=q,\gamma(1)=q'\\\dot{\gamma}(t)\in\mathcal{D}, \text{ a.e. } t}} \int_0^1 \sqrt{g_{\gamma(t)}(\dot{\gamma}(t),\dot{\gamma}(t))} dt.$$

According to Chow-Rashevsky, $d_{\sf sR}(q,q') < +\infty$ for any $q,q' \in M.$

Sub-Riemannian wave equation

We consider a bounded subset $M \subset \mathbb{R}^n$ with $\partial M \neq \emptyset$, a time T > 0, and the **free wave equation**

$$\begin{cases} \partial_{tt}^2 u - \Delta u = 0 & \text{in } (0, T) \times M \\ u = 0 & \text{on } (0, T) \times \partial M, \\ (u_{|t=0}, \partial_t u_{|t=0}) = (u_0, u_1). \end{cases}$$

The natural energy of a solution is

$$E(u(t,\cdot)) = \frac{1}{2} \int_{M} \left(|\partial_t u(t,x)|^2 + |\nabla^{\mathsf{sR}} u(t,x)|^2 \right) d\mu(x)$$

where

$$\nabla^{\mathsf{sR}}\phi = \sum_{j=1}^m (X_j\phi)X_j.$$

Then $\frac{d}{dt}E(u(t,\cdot)) = 0$. Initial data:

$$\|(u_0, u_1)\|_{\mathcal{H} \times L^2}^2 = \|u_0\|_{\mathcal{H}}^2 + \|u_1\|_{L^2(M, \mu)}^2$$

with

$$\|v\|_{\mathcal{H}} = \left(\int_{M} |\nabla^{\mathsf{sR}} v(x)|^2 d\mu(x)\right)^{\frac{1}{2}}.$$

Cyril Letrouit Subelliptic wave equations are never observable

1

Definition

Let $T_0 > 0$ and $\omega \subset M$ be a μ -measurable subset. The subelliptic wave equation is **exactly observable** on ω in time T_0 if there exists a constant $C_{T_0}(\omega) > 0$ such that, for any $(u_0, u_1) \in \mathcal{H}(M) \times L^2(M)$, the solution u of the wave equation satisfies

$$\int_0^{T_0}\int_{\omega}|\partial_t u(t,x)|^2d\mu(x)dt \ge C_{T_0}(\omega)\|(u_0,u_1)\|_{\mathcal{H}\times L^2}^2.$$

Theorem (C.L.-2020)

Let $\omega \subset M$ be a measurable subset. We assume that $M \setminus \omega$ contains in its interior a point x such that $[X_i, X_j](x) \notin \text{Span}(X_1(x), \dots, X_m(x)) = \mathcal{D}_x$ for some *i*, *j*. Then the subelliptic wave equation is **not exactly observable** on ω in time T_0 , for any $T_0 > 0$.

How does one usually prove an observability inequality?

If Δ is a **Riemannian** Laplacian,

(Observability in time T_0 in ω) \Leftrightarrow (ω satisfies GCC in time T_0)

where (GCC):

any ray of geometrical optics (=geodesic) travelled at speed 1 meets ω within time T_0 .

(Bardos-Lebeau-Rauch, 1992).

Proof: \Rightarrow Solutions with energy localized along a ray. [Rmk: Gaussian beams \approx Coherent states \approx WKB] If GCC not satisfied, take geodesic not entering ω in time T_0 . Observability contradicted by associated Gaussian beam.

Reminder: A geodesic is a local minimizer of the sR distance

$$d_{\mathrm{sR}}(q,q') = \inf_{\substack{\gamma(0)=q,\gamma(1)=q'\\\dot{\gamma}(t)\in\mathcal{D}, \text{ a.e. } t}} \int_0^1 \sqrt{g(\dot{\gamma}(t),\dot{\gamma}(t))} dt.$$

Two ingredients:

- Find a sub-Riemannian geodesic which does not enter ω within time T₀: in other words, (GCC) never holds because there exist spiraling geodesics which stay very long in M\ω.
- Construct a Gaussian beam along this geodesic: all the energy concentrates near this geodesic, hence outside ω. Therefore observability does not hold.
 More generally, along any (normal) sub-Riemannian geodesic, one may construct Gaussian beams.

Remark: Second point is not surprising (although not explicitly in the literature), first point is new.

Example of spiraling: the 3D Heisenberg case

Example: $M_H = (-1, 1)_{x_1} \times \mathbb{T}_{x_2} \times \mathbb{T}_{x_3}$, with $\mathbb{T} = \mathbb{R}/\mathbb{Z} \approx (-1, 1)$. Vector fields $X_1 = \partial_{x_1}$ and $X_2 = \partial_{x_2} - x_1 \partial_{x_3}$. Laplacian $\Delta = X_1^2 + X_2^2$. [Measure μ =Lebesgue.] Distribution $\mathcal{D}_H = \text{Span}(X_1, X_2)$. Metric g_H : (X_1, X_2) is a g_H -orthonormal frame of \mathcal{D}_H . Then, $(M_H, \mathcal{D}_H, g_H)$ = "Heisenberg manifold with boundary". We note that $[X_1, X_2] = -\partial_{x_3} \ (\Rightarrow \Delta \text{ subelliptic})$. **Spiraling geodesics:**

$$\begin{aligned} x_1(t) &= \varepsilon \sin(t/\varepsilon) \\ x_2(t) &= \varepsilon \cos(t/\varepsilon) - \varepsilon \\ x_3(t) &= \varepsilon (t/2 - \varepsilon \sin(2t/\varepsilon)/4). \end{aligned}$$

They spiral around the x_3 axis $x_1 = x_2 = 0$.

Remark: This geodesic is travelled at speed 1; The x_3 coordinate remains small for $0 \le t \le T_0$.

Sub-Riemannian geodesics

Two types of **geodesics** (i.e., local minimizers of distance) in sR geometry:

- normal geodesics (projections of bicharacteristics);
- abnormal geodesics (discovered by Montgomery).

We focus on **normal geodesics** (sufficient for our proof). **Definitions/Notations.** The **Hamiltonian** is

$$g^*(x,\xi) = \sigma_p(-\Delta) = \sum_{i=1}^m h_{X_i}^2.$$

where, for X smooth vector field, $h_X : T^*M \to \mathbb{R}$ denotes the momentum map

$$h_X(x,\xi) = \xi(X(x)).$$

Example: For Heisenberg, $g^* = \xi_1^2 + (\xi_2 - x_1\xi_3)^2$. The **wave operator** $P = \partial_{tt}^2 - \Delta$ has principal symbol

$$p_2(t,\tau,x,\xi) = -\tau^2 + g^*(x,\xi).$$

Null-bicharacteristics = maximal solutions of

$$\left(\begin{array}{l} \dot{t}(s) = -2\tau(s), \\ \dot{x}(s) = \nabla_{\xi}g^{*}(x(s),\xi(s)), \\ \dot{\tau}(s) = 0, \\ \dot{\xi}(s) = -\nabla_{x}g^{*}(x(s),\xi(s)) \end{array}\right)$$

together with condition $p_2 = 0$, i.e., $\tau^2 = g^*$ (preserved by the flow). They are integral curves of $\vec{p}_2 = (\partial_{\tau} p_2, \partial_{\xi} p_2, -\partial_t p_2, -\partial_x p_2)$ lying in the characteristic manifold $\{p_2 = 0\}$.

By **homogeneity**, fix $\tau = -1/2$, which gives $g^*(x(s), \xi(s)) = 1/4$. In other words, we use *t* as a time variable for the null-bicharacteristic $(x(t), \xi(t))$, and it is **travelled at speed** 1.

The **normal geodesics** are the **projections** on M of the null-bicharacteristics: we keep x(t) but forget $\xi(t)$. They **locally minimize** the sub-Riemannian distance.

Example on Heisenberg geodesics

 $\Delta = \partial_{x_1}^2 + (\partial_{x_2} - x_1 \partial_{x_3})^2$; Hamiltonian $g^* = \xi_1^2 + (\xi_2 - x_1 \xi_3)^2$. The bicharacteristic equations are

$$\begin{split} \dot{x}_1(t) &= 2\xi_1, & \dot{\xi}_1(t) = 2\xi_3(\xi_2 - x_1\xi_3), \\ \dot{x}_2(t) &= 2(\xi_2 - x_1\xi_3), & \dot{\xi}_2(t) = 0, \\ \dot{x}_3(t) &= -2x_1(\xi_2 - x_1\xi_3), & \dot{\xi}_3(t) = 0. \end{split}$$

Take $\xi_3 = \varepsilon^{-1}$. Since the geodesic is travelled at speed 1, i.e., $\xi_1^2 + (\xi_2 - x_1\xi_3)^2 = 1/4$, we take for example $\xi_1 = \cos(2t/\varepsilon)/2$ and $\xi_2 = 0$. Then

$$\begin{aligned} x_1(t) &= \frac{\varepsilon}{2} \sin(\frac{2t}{\varepsilon}) \\ x_2(t) &= \frac{\varepsilon}{2} \cos(\frac{2t}{\varepsilon}) - \frac{\varepsilon}{2} \\ x_3(t) &= \frac{\varepsilon}{4} (t - \frac{\varepsilon}{4} \sin(\frac{4t}{\varepsilon})) \end{aligned}$$

Geodesics do not go far from their initial point !

Observability for small $|\xi_3|$: "repairing" the main result

Idea: Apart from these geodesics with large $|\xi_3|$, all other geodesics meet ω in bounded time.

Again, $M_H = (-1, 1)_{x_1} \times \mathbb{T}_{x_2} \times \mathbb{T}_{x_3}$ with $\Delta = \partial_{x_1}^2 + (\partial_{x_2} - x_1 \partial_{x_3})^2$. Let ω be an horizontal strip $(-1, 1)_{x_1} \times \mathbb{T}_{x_2} \times I_{x_3}$.

Theorem (C.L.-2020)

Let a be a non-negative symbol of order 0 such that Supp(a) contains $T^*\omega$ and

$$V_{arepsilon} = \left\{ (x,\xi) \in T^*M_H : |\xi_3| > rac{1}{arepsilon} (g^*_x(\xi))^{1/2}
ight\}.$$

For T large enough (depending on ε), there exists C > 0 such that

$$C\|(u(0),\partial_t u(0))\|_{\mathcal{H}_0 \times L^2_0}^2 \leqslant \int_0^T |(Op(a)\partial_t u,\partial_t u)_{L^2}| dt + \|(u(0),\partial_t u(0))\|_{L^2_0 \times \mathcal{H}'_0}^2$$

for any solution u of the subelliptic wave equation.

 II - Ideas of proof for Theorem 1

æ

Two ingredients:

- Find a sub-Riemannian geodesic which does not enter ω within time T₀: in other words, (GCC) never holds because there exist spiraling geodesics which stay very long in M\ω.
- Construct a Gaussian beam along this geodesic: all the energy concentrates near this geodesic, hence outside ω.

Two steps for constructing Gaussian beams (GBs):

- **Approximate solutions:** $\partial_{tt}^2 v_k - \Delta v_k \sim 0$ with energy concentrated along the geodesic;

- **Exact solutions:** $\partial_{tt}^2 u_k - \Delta u_k = 0$ and concentrated energy.

We focus on **approximate solutions** and fix a null-bicharacteristic $(x(t), \xi(t))_{t \in [0, T]}$ which not hitting ∂M in the time-interval (0, T).

Important: The construction is the same as for the Riemannian wave equation since normal geodesics stay in the elliptic part of the symbol.

Proof: Approximate solutions

We look for approximate solutions of the wave equation under the form

$$v_k(t,x) = k^{\frac{n}{4}-1}a_0(t,x)e^{ik\psi(t,x)}.$$

[*n* is the dimension of *M*, *k* is a large parameter $(k \sim 1/h)$.] **Important:** ψ is complex-valued (conjugate points).

Plug into the wave equation:

$$\partial_{tt}^2 v_k - \Delta v_k = (k^{\frac{n}{4}+1}A_1 + k^{\frac{n}{4}}A_2 + k^{\frac{n}{4}-1}A_3)e^{ik\psi}$$

with

$$\begin{aligned} A_1(t,x) &= [-(\partial_t \psi(t,x))^2 + g^*(x,\nabla\psi(t,x))]a_0(t,x) \\ A_2(t,x) &= La_0(t,x), \\ A_3(t,x) &= \partial_{tt}^2 a_0(t,x) - \Delta a_0(t,x). \end{aligned}$$

L is a linear first-order transport operator.

Proof: Approximate solutions, II

There exist $a_0, \psi \in C^2((0, T) \times M)$ such that

$$v_k(t,x) = k^{\frac{n}{4}-1}a_0(t,x)e^{ik\psi(t,x)}$$

• is an approximate solution of the wave equation:

$$\|\partial_{tt}^2 v_k - \Delta v_k\|_{L^1((0,T);L^2(M))} \leqslant Ck^{-\frac{1}{2}}.$$

• has energy bounded below (uniformly w.r.t k and $t \in [0, T]$):

$$\exists A > 0, \forall t \in [0, T], \quad \liminf_{k \to +\infty} E(v_k(t, \cdot)) \geq A.$$

• has energy small off x(t): for any small δ ,

$$\sup_{t\in[0,T]}\int_{M\setminus B_{\varepsilon}(x(t),\delta)}\left(|\partial_t v_k(t,x)|^2+|\nabla^{sR}v_k(t,x)|^2\right)d\mu(x)\underset{k\to+\infty}{\to}0.$$

Proof: Approximate solutions, III

For simplicity, $M \subset \mathbb{R}^n$. Recall that with $v_k(t,x) = k^{\frac{n}{4}-1}a_0(t,x)e^{ik\psi(t,x)}$,

$$\partial_{tt}^2 v_k - \Delta v_k = (k^{\frac{n}{4}+1}A_1 + k^{\frac{n}{4}}A_2 + k^{\frac{n}{4}-1}A_3)e^{ik\psi}.$$

We take

$$\psi(t,x) = \xi(t) \cdot (x - x(t)) + \frac{1}{2}(x - x(t))^T \cdot M(t) \cdot (x - x(t)).$$

with a well-chosen $n \times n$ matrix M(t). **Consequence:** $A_1(t, x), A_2(t, x), A_3(t, x)$ vanish at high order along $\Gamma = \{(x(t), \xi(t))\}$ (i.e. where $e^{ik\psi}$ is not negligible). The **new unknown** is the $n \times n$ complex-valued matrix M(t):

- It is complex-valued and Im(M(t)) > 0;
- It is chosen so that the second derivatives of A₁ vanish along Γ (resolution of a Riccati equation).

To sum up, with these choices of a_0 and ψ , we have all desired properties for v_k :

- $E(v_k(t, \cdot)) \ge A$ (independently of k and t).
- The energy of v_k "looks like" kⁿ₂ e^{-ckd²(x,x(t))}, hence is ~ 0 outside a small ball centered at x(t).
- $\|\partial_{tt}^2 v_k \Delta v_k\|_{L^2} \leq Ck^{-\frac{1}{2}}$ thanks to the choices of ψ and a_0 .

Remark: Interpretation as propagation of complex Lagrangian spaces, or propagation of coherent states.

Proof: Existence of spiraling geodesics

Forget about the wave equation ! The rest is pure **geometry**.

Two ingredients:

- Find a sub-Riemannian geodesic which does not enter ω within time T₀: in other words, (GCC) never holds because there exist spiraling geodesics which stay very long in M\ω.
- Construct a Gaussian beam along this geodesic: all the energy concentrates near this geodesic, hence outside ω .

Proposition

For any $T_0 > 0$, any $q \in M$ and any open neighborhood V of q in M, there exists a geodesic $t \mapsto x(t)$ of (M, \mathcal{D}, g) travelled at speed 1 and such that $x(t) \in V$ for any $t \in (0, T_0)$.

Remark: These geodesics lose quickly their optimality. **Main idea:** Isolate a "Heisenberg structure". **Two steps:** Nilpotent case and then general case.

Proof. Nilpotent structures: Example

Idea: Given a sR structure (M, \mathcal{D}, g) and $q \in M$, it is possible to "approximate" it around q by a (simpler) **nilpotent** structure. **Example:** $X_1 = \cos(\theta)\partial_x + \sin(\theta)\partial_y$ and $X_2 = \partial_\theta$ on $\mathbb{R}^2_{x,y} \times \mathbb{T}_\theta$. At q = 0, (x, θ) have "weight 1" and y has "weight 2". Also, ∂_x and ∂_θ have weight -1, and ∂_y has weight -2. Taking **Taylor expansions** we write

$$X_1 = \partial_x - \frac{\theta^2}{2}\partial_x + \ldots + \theta\partial_y - \frac{\theta^3}{6}\partial_y + \ldots,$$
 hence

$$X_1 = X_1^{(-1)} + X_1^{(0)} + X_1^{(1)} + ...,$$
 with

$$X_1^{(-1)} = \partial_x + \theta \partial_y, \qquad X_1^{(0)} = 0, \qquad X_1^{(1)} = -\frac{\theta^2}{2} \partial_x - \frac{\theta^3}{6} \partial_y ...$$

Similarly $X_2^{(-1)} = X_2 = \partial_{\theta}$.

We set $\widehat{X}_1 = X_1^{(-1)} = \partial_x + \theta \partial_y$ and $\widehat{X}_2 = X_2^{(-1)} = \partial_\theta$. Then \widehat{X}_1 and \widehat{X}_2 generate a **nilpotent** sR structure $(\widehat{M}, \widehat{D}, \widehat{g})$. The **geodesics** of $(\widehat{M}, \widehat{D}, \widehat{g})$ approximate those of (M, \mathcal{D}, g) (near 0).

Proof. Existence of spiraling geodesics: General case

The geodesics are the **integral curves** of \vec{g}^* with

$$\mathsf{g}^* = \sum_{i=1}^m h_{X_i}^2$$

 $[h_{X_i}(x,\xi) = \xi(X_i(x)).]$ Since $X_i \approx \hat{X}_i$, it is not difficult to prove that they remain close to the integral curves of \vec{g}^* with

$$\widehat{g}^* = \sum_{i=1}^m h_{\widehat{X}^q_i}^2.$$

Therefore, it is **sufficient** to prove the result in **nilpotent** sR structures.

Proof. Nilpotentization

Question: In which coordinates do we write the vector fields?

Sub-Riemannian flag of (M, \mathcal{D}, g) : $\mathcal{D}^0 = \{0\}$, $\mathcal{D}^1 = \mathcal{D}$, and

$$\forall j \geqslant 1, \qquad \mathcal{D}^{j+1} = \mathcal{D}^j + [\mathcal{D}, \mathcal{D}^j].$$

Fix $q \in M$. We have a flag

$$\{0\} = \mathcal{D}_q^0 \subset \mathcal{D}_q^1 \subset \ldots \subset \mathcal{D}_q^{r-1} \varsubsetneq \mathcal{D}_q^{r(q)} = T_q M.$$

Weights: $w_i(q) = 1 + \text{ number of brackets needed to generate the } i^{\text{th}}$ direction at q (for $1 \leq i \leq n$). A family (Z_1, \ldots, Z_n) of n vector fields is **adapted** to the flag at q if it is a frame of $T_q M$ at q and if $Z_i(q) \in \mathcal{D}_q^{w_i(q)}$ for $1 \leq i \leq n$. The inverse of the local diffeomorphism

$$(x_1,\ldots,x_n)\mapsto \exp(x_1Z_1)\circ\cdots\circ\exp(x_nZ_n)(q)$$

defines **exponential coordinates** of the 2nd kind at *q*. We now work in these coordinates. They are **privileged coordinates**: for any $1 \le j \le n$,

$$\operatorname{ord}_q(x_j) := \sup\{s \in \mathbb{R} : f(p) = O(d(q, p)^s)\} = w_j.$$

Proof. Nilpotentization, II

Setting: SR structure (M, \mathcal{D}, g) with orthonormal frame $(X_1, ..., X_m)$. Every vector field X_i has a Taylor expansion

$$X_i(x) \sim \sum_{lpha, j} \mathsf{a}_{lpha, j} x^lpha \partial_{x_j}.$$

As above, we group terms together

$$X_i = X_i^{(-1)} + X_i^{(0)} + X_i^{(1)} + \dots$$

and we set $\widehat{X}_i = X_i^{(-1)}$. We take $\widehat{M} \simeq \mathbb{R}^n$, $\widehat{\mathcal{D}}^q = \text{Span}(\widehat{X}_1^q, \dots, \widehat{X}_k^q)$ and $\widehat{g}^q(\widehat{X}_i^q, \widehat{X}_j^q) = g_q(X_i, X_j)$. It defines a **nilpotent sR structure** $(\widehat{M}^q, \widehat{\mathcal{D}}^q, \widehat{g}^q)$. Very good

approximation of (M, \mathcal{D}, g) only around q.

Proof. Existence of spiraling geodesics: Nilpotent case

Second reduction: it is possible to reduce to the case where all brackets of length ≥ 3 between X_1, \ldots, X_m vanish. We work under this assumption called (A) in the sequel. Also we set

$$n_2 = \dim(\mathsf{Span}(X_1, \ldots, X_m, [X_1, X_2], \ldots, [X_j, X_k], \ldots))$$

The normal geodesics satisfy

$$\dot{\mathbf{x}}(t) = \sum_{i=1}^{m} u_i(t) X_i(\mathbf{x}(t)),$$
 (1)

where $u_i(t) = h_{X_i}(x(t), \xi(t))$. Thanks to (A), we rewrite (1) as

$$\dot{x}(t) = F(x(t))u(t), \qquad (2)$$

where $F = (a_{ij})$ has size $n_2 \times m$, and $u = {}^t(u_1, \ldots, u_m)$. Differentiating the equation for u_i , we have

$$\dot{u}(t) = G(x(t),\xi(t))u(t)$$

where G is the Goh matrix

$$G=(\{h_{X_i},h_{X_j}\})_{1\leqslant i,j\leqslant m}.$$

Due to (A), $G(t) \equiv G$ is constant in t. We know that $G \neq 0$ and that G is antisymmetric. The whole control space \mathbb{R}^m is the direct sum of the image of G and the kernel of G, and G is nondegenerate on its image.

We take u_0 in an invariant plane of G; in other words its projection on the kernel of G vanishes. Then $u(t) = e^{tG}u_0$ and since e^{tG} is an orthogonal matrix, we have $||e^{tG}u_0|| = ||u_0||$. We have by integration by parts

$$\begin{aligned} x(t) &= \int_0^t F(x(s)) e^{sG} u_0 \, ds \\ &= F(x(t)) G^{-1} (e^{tG} - I) u_0 - \int_0^t \frac{d}{ds} (F(x(s)) G^{-1} (e^{sG} - I) u_0 \, ds. \end{aligned}$$

We take an initial covector ξ^{ε} so that $G(0, \xi^{\varepsilon}(t)) = \frac{1}{\varepsilon}G_0$ for some matrix $G_0 \neq 0$. In the above equation, this brings a factor ε , and we can conclude thanks to Gronwall's lemma.

III - Further comments

< □ > < 向

æ

Two important equations:

$$\partial_t u - \Delta u = 0$$
 (Heat equation)
 $i\partial_t u - \Delta u = 0$ (Schrödinger equation)

with same (subelliptic) Laplacian.

Heat equation: Minimal time of observability for Grushin and Heisenberg heat equations. [Beauchard-Cannarsa-Gugliemi 2014], [Beauchard-Cannarsa 2017].

Proofs : Explicit computations with harmonic oscillators, Fourier series, etc.

Only one paper: Burq-Sun (2019) for the Grushin Schrödinger

$$i\partial_t u - (\partial_x^2 + x^2 \partial_y^2) u = 0$$
 on $\mathbb{R}_t imes (-1,1)_x imes \mathbb{T}_y.$

Observation set of the form $\omega = (-1, 1)_x \times \omega_y$ (union of strips).

Result:

Existence of a minimal time of control $\mathcal{L}(\omega)$ related to the maximal height of the strips of $M_G \setminus \omega$.

Proof: Semiclassical analysis and construction of vertical Gaussian beams (along degenerated direction).

Ideas for subelliptic Schrödinger equation

With spiraling geodesics: We find again their result heuristically.

Different

frequencies travel at different speed (dispersion). If ξ_y is large, the spiraling geodesic is more "folded", makes very small meanders, but it is travelled more quickly. All in all, geodesics starting from 0 but with different ξ_y reach ω at the same time (\neq waves).

Ongoing work with C.

Fermanian-Kammerer: Study of Schrödinger equation in *H*-type groups (with semiclassical measures with "two scales" and representation theory).

Ongoing work with C. Sun: Study of Schrödinger equations which are both fractional and subelliptic.

Open questions:

- How fast does information (singularities, defect measures, etc) propagate along directions transverse to the distribution?

- Can these spiraling geodesics be used for other purposes (spectral analysis, etc)?

Thank you very much for your attention !