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problèmes et de les résoudre, ta curiosité, tes idées et ta rigueur sont impressionnantes, et je te
remercie de m’en avoir autant fait profiter. Merci pour ta disponibilité sans faille : je ne compte
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surveys the first three above articles.

Articles and preprints not presented

• [Let19], From internal to pointwise control for the 1D heat equation and minimal control
time, published in Systems and Control Letters (2019) (Hal link).

• [Let20c], Catching all geodesics of a manifold with moving balls and application to control-
lability of the wave equation, (Hal link).

• [LL], Uniform controllability of waves from thin domains, with Matthieu Léautaud (work
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Chapter 1

Introduction

“A thing of beauty is a joy for ever.”
John Keats, Endymion.

In this first chapter, we present the main results of this manuscript, just focusing on their
motivations and statements, and not on their proofs. Along the way, we review basic facts
concerning subelliptic PDEs and sub-Riemannian geometry.

The original results of this thesis are presented in boxes, in order to distinguish them from
previously known results.
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12 CHAPTER 1. INTRODUCTION

1.1 Generalities

1.1.1 Motivations: Linear PDEs and sub-Riemannian geometry

A Partial Differential Equation (PDE) is an equation which relates the partial derivatives of a
function of several variables. As for ordinary differential equations, their unknowns are func-
tions. Partial Differential Equations are ubiquitous in science: they are one of the mathematical
grounds on which the modern description of many physical phenomena relies. For instance,
sound, diffusion, heat, waves, elasticity, electrostatics or else electrodynamics can be described
with PDEs. Well-known PDEs include Einstein equations in general relativity, the Euler and
Navier-Stokes equations in fluid mechanics, the Boltzmann equation in kinetic theory, the Yang-
Mills equations in particle physics...

One of the beauties of PDEs is that they interact since their birth in the 18th century with
many other branches of mathematics: with differential geometry for example through minimal
surfaces and the Atiyah-Singer theorem, with algebraic topology through the pioneering work of
Leray on sheaves, with numerical calculus through numerical schemes, with probabilities through
the Feynman-Kacs formula or stochastic PDEs, ...

In the second half of the 20th century, among other developments, a certain class of PDEs
has been intensively studied: the so-called “subelliptic PDEs”. As most PDEs, their roots
are to be found in physics: the Russian mathematician Andrei Kolmogorov, in his study of
the motion of colliding particles [Kol34], was probably the first to notice that the equation
he wrote down was indeed hypoelliptic1. Then, Lars Hörmander, followed by dozens of other
mathematicians, undertook their systematic study; let us only mention the works [Hor67] and
[RS76] as illustrations.

In the years 1980-1990, while the field of subelliptic PDEs was progressively becoming less
active, another more geometric branch of mathematics has undergone an important development:
sub-Riemannian geometry. Starting from the study of the Heisenberg group, it focused on the
geometry of balls, shortest paths and isoperimetric sets in these particular geometries where
not all directions play the same role. Its interest relied also on its links with control theory, a
very active field of “applied” mathematics which serves, among other, to park cars or to design
motions of rockets.

In the same way as Riemannian geometry is the natural geometric framework for ellip-
tic PDEs, sub-Riemannian geometry became the natural geometric framework for subelliptic
PDEs. But sub-Riemannian geometers focused their attention mostly on the heat equation,
leaving aside other natural linear PDEs such as subelliptic wave equations and Schrödinger
equations. Indeed, these two linear equations give rise to particularly strong subelliptic effects
whose analysis required new approaches.

The present thesis aims at partly bridging this gap: it uses the new tools brought by sub-
Riemannian geometry to shed a different light on linear2 subelliptic wave and Schrödinger equa-
tions. Our initial target, finally partially achieved, was to understand the exact role played by
“abnormal minimizers”, discovered by Montgomery in 1991 (see [Mon94]), in their propagation.
But along the way, since this initial question was difficult, we were led to other problems, in
the control theory of subelliptic linear PDEs and concerning eigenfunctions of sub-Laplacians,
whose solutions involved tools coming not only from sub-Riemannian geometry, but also from
non-commutative harmonic analysis and semiclassical analysis.

1We will come back later to the relation between hypoellipticity and subellipticity.
2Although people working in the field of PDEs are particularly interested in non-linear effects, we focus in this

manuscript on linear PDEs since in the subelliptic world, even linear PDEs are still imperfectly understood.
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1.1.2 Organization of the manuscript

The present manuscript is organized as follows.

Chapter 1 aims at presenting the main results of this manuscript, just focusing on their
motivations and statements, and not on their proofs. It is partly inspired by the survey [Let21a].

Then, the first part of our manuscript, composed of Chapters 2, 3 and 4, addresses problems
in control/observability of subelliptic PDEs. They illustrate the slowdown of energy propagation
of solutions of subelliptic PDEs in directions needing brackets to be generated.

• In Chapter 2, we prove that subelliptic wave equations are never observable. The proof uses
tools coming from sub-Riemannian geometry, namely the privileged coordinates and the
nilpotentization procedure of [RS76]. This Chapter essentially follows the article [Let20b].

• In Chapter 3, we establish a resolvent estimate with the tools of semiclassical analysis.
This resolvent estimate implies controllability results for subelliptic Schrödinger, heat and
damped wave equations. This Chapter essentially follows the article [LS20].

• Chapter 4 lies at the intersection of two usually distinct fields: semiclassical analysis
and non-commutative harmonic analysis. Using ideas steming from [FF21], we construct
semiclassical measures adapted to the non-commutative framework provided by quotients
of Heisenberg-type groups, and we use them to prove a controllability results. This Chapter
essentially follows the preprint [FL21].

In the second part, we focus on the propagation of singularities in subelliptic wave equations.

• In Chapter 5, we revisit the paper [Mel86] by R. Melrose, providing a full proof of the main
theorem on propagation of singularities for subelliptic wave equations, and linking this
result with sub-Riemannian geometry. This theorem asserts that singularities of subelliptic
wave equations only propagate along null-bicharacteristics and abnormal extremal lifts
of singular curve. We also derive new consequences of Melrose’s result. This Chapter
essentially follows the preprint [Let21b].

• In Chapter 6, in the context of the subelliptic wave equation with Martinet sub-Laplacian,
we construct explicit examples of solutions whose singularities propagate along abnormal
extremal lifts of singular curves. We find that singularities can propagate at any speed
between 0 and 1, which is in strong contrast with the usual propagation of singularities
at speed 1 for wave equations with elliptic Laplacian. This Chapter essentially follows the
preprint [CL21].

A third part is devoted to the study of high-frequency eigenfunctions of some sub-Laplacians.

• In Chapter 7, we describe the behaviour of high-frequency eigenfunctions of some sub-
Laplacians, using the joint spectral theory of various operators. In some particular cases,
we are able to describe all “Quantum Limits” of the sub-Laplacians. This Chapter essen-
tially follows the preprint [Let20a].

Finally, we gathered in Chapter 8 open questions which seem of particular interest.

The rest of the introduction is organized as follows: in Section 1.2, we introduce sub-
Laplacians and define the notions of hypoellipticity and subellipticity; in Section 1.3 we present
our main results related to control/observability of subelliptic PDEs; in Section 1.4 we explain
our results about propagation of singularities of subelliptic wave equations; and finally in Section
1.5 we describe our results concerning eigenfunctions of sub-Laplacians.
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1.2 Subelliptic Partial Differential Equations

1.2.1 Sub-Laplacians and sub-Riemannian geometry

Sub-Laplacians are a natural generalization of the usual Laplacian in the Euclidean space, and
of the Laplace-Beltrami operator in Riemannian manifolds. They are also called “Hörmander
sums of squares” since they were studied a lot by Hörmander (see [Hor67], [Hor07c, Chapter
XXVII]) and they take the simple form of a sum of squares of vector fields.

Let n ∈ N∗ and let M be a smooth connected compact manifold of dimension n, with or
without boundary. Let µ be a smooth volume on M . We consider m > 1 smooth vector fields
X1, . . . , Xm on M which are not necessarily independent, and we assume that the following
Hörmander condition holds (see [Hor67]):

The vector fields X1, . . . , Xm and their iterated brackets [Xi, Xj ], [Xi, [Xj , Xk]], etc.

span the tangent space TxM at every point x ∈M .
(1.1)

We consider the sub-Laplacian ∆ defined by

∆ = −
m∑
i=1

X∗iXi =
m∑
i=1

X2
i + divµ(Xi)Xi (1.2)

where the star designates the transpose in L2(M,µ) and the divergence with respect to µ is
defined by LXµ = (divµX)µ, where LX stands for the Lie derivative. Up to a lower order term,
a sub-Laplacian is thus a “sum of squares”. The domain D(∆) is the completion in L2(M,µ) of
the set of all u ∈ C∞c (M) for the norm ‖(Id−∆)u‖L2 .

There is a natural geometry associated to such operators, called sub-Riemannian geometry,
which is an extension of the usual Riemannian geometry. We shall describe its foundations,
and refer the reader to the books [Mon02] and [ABB19] for comprehensive treatments of sub-
Riemannian geometry.

We set
D = Span(X1, . . . , Xm) ⊂ TM

which is called the distribution associated to the vector fields X1, . . . , Xm. For x ∈M , we denote
by Dx the distribution D taken at point x. Note that D does not necessarily have constant rank.
When D = TM , the operator ∆ is elliptic.

We also introduce the metric g on D defined at any x ∈M by

gx(v, v) = inf

{
m∑
i=1

u2
i | v =

m∑
i=1

uiXi(x)

}
.

This is a Riemannian metric on D. We call (M,D, g) a sub-Riemannian structure.

In the general case where D ( TM , the set TM \D can be understood as the directions where
the metric g takes the value +∞. A well-known theorem, due to Chow and Rashevskii, asserts
that any two points can be joined by a path, i.e., a continuous function γ : [0, 1] → M with
derivative γ̇(t) contained in Dγ(t) for almost any t ∈ [0, 1]. In other words, the sub-Riemannian
distance

dg(x0, x1) = inf

{∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t))dt

∣∣ γ(0) = x0, γ(1) = x1, γ̇(t) ∈ Dγ(t) a.s. for t ∈ [0, 1]

}
is finite for any x0, x1 ∈M .
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When moving in a sub-Riemannian structure, D should be understood as the “set of allowed
directions for the motion”, and, although it is not possible to move directly in directions of
TM \ D, Chow-Rashevskii’s theorem asserts that any two points can be joined by a path.
This is due to “indirect motions”, that is, paths which describe spirals turning around a fixed
forbidden direction of TM \ D and thus advancing in this direction (although indirectly).

Definition 1.1. The step k of a sub-Riemannian structure (M,D, g) is the least integer k ∈ N
such that Dk = TM , where, for j ∈ N∗, Dj is defined through the recursive relation Dj =
Dj−1 + [D,Dj−1] and D1 = D.

Remark 1.2. More generally, the step kx can be defined at any point x ∈M , just by considering
Djx instead of Dj in the above definition.

Examples

We now give a few examples of sub-Laplacians which we shall study in the sequel.

Example 1.3. On M = Rx × Ry, we set ∆G = ∂2
x + x2∂2

y . This sub-Laplacian is the so-called
Baouendi-Grushin operator, sometimes unproperly called simply Grushin operator (see [Gar17,
Section 11]). In this case, D = Span(∂x, x∂y) and D2 = Span(∂x, ∂y) = TM . In particular,
D = TM outside the line {x = 0}. Also, µ is the Lebesgue measure. The structure (M,D, g)
has step 2 on the line {x = 0} and step 1 outside this line. Since this sub-Riemannian structure
is “Riemannian” outside this line, the Baouendi-Grushin operator is sometimes called “almost-
Riemannian”.

Example 1.4. Given d ∈ N∗, one can also define a sub-Laplacian arising from the Heisenberg
group Hd of dimension 2d+ 1. Recall that the Heisenberg group Hd is R2d+1 endowed with the
group law (x, y, z)·(x′, y′, z′) := (x+x′, y+y′, z+z′+ 1

2

∑d
j=1(xjy

′
j−x′jyj)), where x, y, x′, y′ ∈ Rd

and z, z′ ∈ R. Let

Xj = ∂xj −
yj
2
∂z, Yj = ∂yj +

xj
2
∂z, for j = 1, . . . , d.

We define the sub-Lapacian

∆Hd
=

d∑
j=1

X2
j + Y 2

j .

Since [Xj , Yj ] = ∂z for any j, this sub-Laplacian is naturally associated with a step 2 sub-
Riemannian structure.

Example 1.5. Contact sub-Laplacians arise from a particular type of sub-Riemannian struc-
tures of step 2. We assume that the vector fields X1, . . . , Xm span a distribution D which is a
contact distribution over M , i.e., M has odd dimension n = 2m+ 1 and there exists a 1-form α
on M with D = Ker(α) and α ∧ (dα)m 6= 0 at any point of M . Then, for any smooth volume
µ, the sub-Laplacian ∆ is called a contact sub-Laplacian. A typical example is given by the
Heisenberg sub-Laplacian ∆Hd defined above.

Example 1.6. Magnetic Laplacians are also sub-Laplacians. An example of magnetic Laplacian
is the following: in R3 with coordinates x, y, z, we consider the two vector fields X1 = ∂x −
Ax(x, y)∂z and X2 = ∂y − Ay(x, y)∂z where Ax, Ay are functions which do not depend on z.
The magnetic Laplacian is then ∆ = X2

1 + X2
2 . The 1-form A = Axdx + Aydy is called the

connection form, and the 2-form B = dA is called the magnetic field. The modulus |b| of the
function b defined by the relation B = b dx ∧ dy is called the intensity of the magnetic field.
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Example 1.7. On M = R3, we set ∆ = ∂2
x + (∂y + x2∂z)

2. This sub-Laplacian is called the
“Martinet sub-Laplacian”. The associated distribution D = Span(∂x, ∂y + x2∂z) is of step 3
since D2 = Span(∂x, ∂y, x∂z) and D3 = TM . The Martinet sub-Laplacian is a particular case of
magnetic Laplacian with magnetic field B = −2xdx∧ dy. The line {x = 0} where B vanishes is
an example of “singular geodesic” (also called “abnormal minimizer”, see Definition 1.24), and
the Martinet distribution is one the simplest to exhibit such geodesics.

1.2.2 Hypoellipticity and subellipticity

Two notions are often used to qualify the smoothing properties of sub-Laplacians: hypoellipticity
and subellipticity. Here, we briefly recall their definitions and explain why they are not exactly
equivalent.

Definition 1.8. A (pseudo-)differential operator A with C∞ coefficients in M is hypoelliptic
near x ∈M if for all u ∈ D′(M), if Au ∈ C∞ near x, then u ∈ C∞ near x.

Hypoellipticity appeared naturally in the work of Kolmogorov [Kol34] on the motion of
colliding particles when he wrote down the equation

∂tu− Lu = f where L = x∂y + ∂2
x.

Indeed, the operator L is hypoelliptic.

Definition 1.9. A formally selfadjoint (pseudo-)differential operator A : C∞(M)→ C∞(M) of
order 2 is said to be subelliptic if there exist s, C > 0 such that

‖u‖2Hs(M) 6 C((Au, u)L2(M) + ‖u‖2L2(M)) (1.3)

for any u ∈ C∞(M).

Since M is compact, the subellipticity of the selfadjoint operator A implies that its resolvent
is compact, and as a consequence, its spectrum is discrete.

Using (1.1), Hörmander was able to prove that any sub-Laplacian ∆ is hypoelliptic (see
[Hor67] and [HN05, Chapter 2]). His proof relies on the fact that ∆ is subelliptic; indeed, the
optimal s in (1.3) is 1/k, where k is the step of the associated sub-Riemannian structure, as
proved by Rotschild and Stein [RS76, Theorem 17 and estimate (17.20)].

Conversely, note that an hypoelliptic “sum of squares” (i.e., an operator of the form (1.2)
which is hypoelliptic) does not necessarily satisfy the Lie bracket assumption (1.1): given a
smooth function a : R → R vanishing at infinite order at 0 but with a(s) > 0 for s 6= 0, the
sub-Laplacian ∆ = ∂2

x1
+ a(x1)2∂2

x2
on R2

x1x2
is hypoelliptic although (1.1) fails (see [Fed71] and

[Mor78]).

Let us finally mention that some operators A satisfy the property that if Au is real-analytic,
then u is real-analytic: they are called analytic hypoelliptic. The so-called Trèves conjecture
describes a possible link between analytic hypoellipticity of an operator and the absence of
singular geodesics (see [Tre99] for the conjecture and [ABM18] for more recent results).

1.2.3 The characteristic cone Σ

In all our results, a central role is played by the characteristic cone Σ, which we now define. Let
us consider a general sub-Laplacian ∆ given by (1.2). We set

g∗ = σP (−∆) ∈ C∞(T ∗M) (1.4)
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where σP denotes the principal symbol of a pseudodifferential operator (see Appendix A). This
is the Hamiltonian naturally associated to the non-holonomic system defined by X1, . . . , Xm.
We denote by

Σ = (g∗)−1(0) = D⊥ ⊂ T ∗M (1.5)

the characteristic cone (where ⊥ is in the sense of duality).

The cotangent bundle T ∗M is then composed of two regions:

• T ∗M \Σ is the “elliptic part”, where g∗ 6= 0. In some sense, the sub-Laplacian acts as an
elliptic operator in this region of the phase-space;

• Σ, the characteristic cone, is the place where “truly subelliptic” phenomena show up.

It is a tautology to say that the existence of the characteristic cone Σ is responsible for all
properties which differ between elliptic operators and “truly subelliptic” operators (for which
Σ 6= {0}).

1.3 Main results on control of subelliptic PDEs

The first series of result we shall present in this manuscript concerns the control of subelliptic
PDEs.

The problem of (exact) controllability of PDEs, which has been intensively studied in the
past decades, is the following: given a manifold M , a subset ω ⊂ M , a time T > 0 and an
operator A acting on functions on M , the study of exact controllability consists in determining
whether, for any initial state u0 and any final state u1, there exists f such that the solution of

∂tu = Au+ 1ωf, u|t=0 = u0 (1.6)

in M is equal to u1 at time T . Here, 1ω is the characteristic function of ω. In other words, exact
controllability holds if it is possible, starting from any initial state, to reach any final state just
acting on ω during a time T . The general answer depends on the time T , the control set ω, the
operator A, and the functional spaces in which u0, u1 and f live. This problem is relevant in
many physical situations: typical examples are the control of the temperature of a room by a
heater, or the acoustic insulation of a room just by acting on a small part of it.

By duality (Hilbert Uniqueness Method, see [Lio88]), the exact controllability property is
equivalent to some inequality of the form

∃CT,ω > 0, ∀u0, ‖u0‖2 6 CT,ω

∫ T

0
‖1ωu(t)‖2dt, (1.7)

where u is the solution of the adjoint equation (∂t + A∗)u = 0 with initial datum u0 (here
again, one should specify functional spaces). This is called an observability inequality. In other
words, controllability holds if and only if any solution of (∂t + A∗)u = 0 can be detected from
ω, in a “quantitative way” which is measured by the constant CT,ω. In the sequel, we focus our
attention on equations of wave-type, Schrödinger-type or heat-type:

(∂2
tt − L)u = 0 (Wave-type), (1.8)

(i∂t − L)u = 0 (Schrödinger-type), (1.9)

(∂t − L)u = 0 (Heat-type) (1.10)



18 CHAPTER 1. INTRODUCTION

for various time-independent operators L on M .3 By duality, all the observability results pre-
sented here imply exact controllability results as explained above, but we won’t state them for
the sake of simplicity.

1.3.1 Observability of classical PDEs: known results

Let us present a first series of results, dating back to the 1990’s, which concern the observability
problem in case M is a compact Riemannian manifold with a metric g and with boundary
∂M 6= ∅, L = ∆g is the Laplace-Beltrami operator on (M, g) and the equation is one of the
three equations (1.8), (1.9) or (1.10), with Dirichlet boundary conditions u|∂M = 0. We deal
with these three problems in this order, following the chronology of the results.

Throughout this section, (M, g) is a fixed manifold with boundary ∂M 6= ∅ and L = ∆g. In
this section, the notation dx stands for the associated Riemannian volume dx = dvolg(x).

Remark 1.10. Because of the physical nature of the problems studied in control/observability
theory, most equations are set in compact manifolds, and this introduction is no exception to
the rule. Together with the hypoellipticity, the compactness of the underlying manifold implies
that all sub-Laplacians have a compact resolvent, and thus a discrete spectrum.

Observability of the Riemannian wave equation

Let us start with the wave equation (1.8) with initial data (ut=0, ∂tu|t=0) = (u0, u1) ∈ H1(M)×
L2(M) and Dirichlet boundary conditions. The energy of a solution, which is conserved along
the flow, is

E(u(t)) =

∫
M

(|∇gu(t, x)|2 + |∂tu(t, x)|2)dx

which is in particular equal to the initial energy ‖∇u0‖2L2(M) + ‖u1‖2L2(M). Let T > 0 and ω be
a measurable subset. The observability inequality reads as follows:

E(u(0)) 6 C

∫ T

0

∫
ω
|∂tu(t, x)|2dxdt. (1.11)

Note that the left hand-side of (1.11) is the initial energy, and not the final energy4

We set P = ∂2
tt −∆g (which is a second-order pseudo-differential operator), whose principal

symbol is

p2(t, τ, x, ξ) = −τ2 + g∗(x, ξ)

with τ the dual variable of t and g∗ the principal symbol of −∆g. In T ∗(R×M), the Hamiltonian
vector field Hp2 associated with p2 is given by Hp2f = {p2, f} (see Appendix A.1). Since
Hp2p2 = 0, we get that p2 is constant along the integral curves of Hp2 . Thus, the characteristic
set C(p2) = {p2 = 0} is preserved under the flow of Hp2 . Null-bicharacteristics are then defined as
the maximal integral curves of Hp2 which live in C(p2). In other words, the null-bicharacteristics

3The wave equation involves a ∂2
tt term, and thus does not enter, strictly speaking, the framework given by

equation (1.6). However, it is possible to give a common framework for all three equations, at the cost of being a
bit more abstract. See [Cor07, Section 2.3] for a general introduction.

4The HUM method tells us that the observability inequality is (1.7), which makes appear the final energy since
it concerns the adjoint problem, but we can then use the conservation of energy to obtain that the observability
inequality is equivalent to (1.11).
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are the maximal solutions of 
ṫ(s) = −2τ(s) ,
ẋ(s) = ∇ξg∗(x(s), ξ(s)) ,
τ̇(s) = 0 ,

ξ̇(s) = −∇xg∗(x(s), ξ(s)) ,
τ2(0) = g∗(x(0), ξ(0)).

(1.12)

It is well-known that the projection x(s) of a bicharacteristic ray (x(s), ξ(s)) traveled at speed
1 is a geodesic in M , i.e., a curve which realizes the minimal distance between any two of its
points which are close enough.

Let us also mention the fact that at the boundary of M , the above definition of null-
bicharacteristics has to be completed (yielding the so-called Melrose-Sjöstrand flow): due to
trajectories which “graze” along the boundary, one cannot always define the null-bicharacteristics
which touch the boundary by reflexion, and we refer the reader to [MS78b] and [LLTT17] for
more on this subject. In these papers, a notion of “generalized bicharacteristics” is defined,
which explains how to define bicharacteristics at the boundary. For us, this will only be useful
to give a precise statement for Theorem 1.12.

Definition 1.11. Let T > 0 and ω ⊂ M be a measurable subset. We say that the Geometric
Control Condition holds in time T in ω, and we write (GCC)ω,T , if for any projection γ of a
bicharacteristic ray traveled at speed 1, there exists t ∈ (0, T ) such that γ(t) ∈ ω.

The following result states that the observability of (1.8) is (more or less) equivalent to the
geometric condition (GCC)ω,T . It illustrates the finite speed of propagation for waves.

Theorem 1.12 ([BLR92], [BG97], [HPT19]). Assume that ω 6= ∅ is open and that (GCC)ω,T
holds. Assume also that no generalized bicharacteristic has a contact of infinite order with
(0, T ) × ∂M . Then (1.11) holds, i.e., the wave equation (1.8) is observable in time T on ω.
Conversely, if the wave equation (1.8) is observable in time T , then (GCC)T,ω holds, where ω
denotes the closure of ω.

Note that the second statement in the last theorem is not the exact converse of the first
one, since it involves the closure ω and not simply ω. This is due to the phenomenon of grazing
rays: if there exists a ray γ which does not enter ω but which touches the boundary ∂ω, so that
the geometric control condition is not satisfied, it can however happen (notably if the flow is
“stable” close from the ray) that observability holds, see [Leb92a, Section VI.B] for an example.

Considering solutions of (1.8) of the form eit
√
λϕ where ϕ is an eigenfunction of −∆g corre-

sponding to the eigenvalue λ, the following result follows from Theorem 1.12:

Corollary 1.13. Assume that ω 6= ∅ is open and that there exists T > 0 such that (GCC)ω,T
holds. Then, for any eigenfunction ϕ of −∆g, there holds∫

ω
|ϕ(x)|2dx > C

∫
M
|ϕ(x)|2dx.

In particular, supp(ϕ) = M .

All the observability inequalities stated in this introduction yield similar lower bounds, but
we will not state them thereafter.
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Remark 1.14 (Gaussian beams). The fact that (GCC)ω,T is a necessary condition for observ-
ability can be understood as follows. If (GCC)ω,T does not hold, then let γ : [0, T ] → M be
a geodesic which does not enter ω. By compactness, there exists ε > 0 such that γ|[0,T ] does
not meet an ε-neighborhood of ω. Then, one can construct a sequence of solutions (un)n∈N of
the wave equation whose initial energy E(un(0)) is normalized to 1, and with energy E(u(t))
localized around γ(t) at any time t ∈ [0, T ]: quantitatively, the energy of un outside a tubular
neighborhood of γ of size ε tends to 0 as n → +∞. This disproves the observability inequality
(1.11). The sequence (un)n∈N, if taken as a Gaussian profile centered at a point describing γ, is
called a Gaussian beam.

Observability of the Riemannian Schrödinger equation

For the Schrödinger equation (1.9), the observability inequality reads as follows:

‖u0‖2L2(M) 6 C

∫ T

0

∫
ω
|u(t, x)|2dxdt. (1.13)

As for the wave equation (1.8), the L2-norm of the solution is preserved along the flow, so that
‖u(T )‖L2 = ‖u0‖L2 . A sufficient condition for observability is the following:

Theorem 1.15 ([Leb92b] and Appendix of [DGL06]). Assume that ω 6= ∅ is open and that
(GCC)ω,T ′ holds for some T ′ > 0. Then (1.13) holds, i.e., the Schrödinger equation (1.9) is
observable in any time T > 0 on ω.

The interplay between T ′ and T in the above result is due to the fact that the Schrödinger
equation “propagates at infinite speed” so that no matter how large T ′ is, observability holds in
any time T > 0 if (GCC)ω,T ′ holds. This contrasts with the finite speed of propagation of the
wave equation.

The converse of the above theorem, namely to find necessary conditions on (ω, T ) for (1.13)
to hold, is notoriously a difficult problem. The main results in this direction are for the torus (see
[Jaf90], [BZ12], [AM14]), and in Riemannian manifolds with negative curvature (see [DJN19]),
where (1.13) holds for any non-empty open subset ω and any time T > 0. Indeed, it is expected
that if the geodesic flow of the background geometry is unstable, solutions of (1.9) are more
“delocalized” than those of (1.8) for example. See also the case of the disk [ALM16].

Observability of the Riemannian heat equation

Let us end with the heat equation. The observability inequality reads as follows:

‖u(T )‖2L2(M) 6 C

∫ T

0

∫
ω
|u(t, x)|2dxdt. (1.14)

Theorem 1.16 ([LR95]). Let ω 6= ∅ be open and T > 0. Then (1.14) holds, i.e., the heat
equation (1.10) is observable in time T on ω.

Note that no geometric condition on ω is required in this case. This result illustrates the
infinite speed of propagation of the heat equation.

The works presented hereafter address that same problem of observability of linear PDEs,
but with focus on subelliptic PDEs, meaning that the Laplace-Beltrami operator is replaced in
these PDEs by a sub-Laplacian.
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1.3.2 Observability of subelliptic PDEs: known results

This section is devoted to stating results which were previously known in the literature about
controllability/observability of subelliptic PDEs. All PDEs we consider are well-posed in natural
energy spaces which we do not systematically recall.

Subelliptic heat equations

Let us start with the result proved in [BCG14], which concerns the heat equation (1.10) where
L = ∆γ is the following generalized Baouendi-Grushin operator:

Example 1.17. For γ > 0 (not necessarily an integer), we consider ∆γ = ∂2
x + |x|2γ∂2

y on the
manifold M = (−1, 1)x × Ty. When γ ∈ N, the associated sub-Riemannian structure has step
k = γ + 1.

The two main differences with Example 1.3 are the following: there is an additional degree
of freedom γ ∈ R+, and Example 1.17 is posed on a compact manifold, which is natural in
observability problems as already mentioned in Remark 1.10,

The open subset of observation ω ⊂ (−1, 1) × T considered in [BCG14] is a vertical strip
of the form (a, b) × T where 0 < a < b < 1. The observability inequality is (1.14), with the
modification that u runs over the set of solutions of (1.10) with L = ∆γ . The authors prove the
following result, to be compared with Theorem 1.16:

Theorem 1.18 ([BCG14]). Let γ > 0 and ω be as above. Then

• If γ ∈ (0, 1), then for any T > 0, (1.14) holds;

• If γ = 1, i.e., ∆γ = ∆G, then there exists T0 > 0 such that (1.14) holds if T > T0 and
does not hold if T < T0;

• If γ > 1, then, for any T > 0, (1.14) fails.

Koenig studied the observability of (1.10) with L = ∆G, but for another geometry of the
observation set ω: this time, it is a horizontal band of the form (−1, 1)× I where I is a proper
open subset of T.

Theorem 1.19 ([Koe17]). Let ω = (−1, 1) × I where I is a proper open subset of T. Then
(1.14) fails for any T > 0.

Although the observability properties of the heat equation driven by general hypoelliptic
operators are still mysterious, we list here a few works addressing this question. The recent
works [Lis20], [BDE20] and [DK20] continue and generalize the analysis of [BCG14] and [Koe17]
on the control of the Baouendi-Grushin heat equation. Besides, [BC17] establishes the existence
of a minimal time of observability, as in the second point of Theorem 1.18, for the heat equation
driven by the Heisenberg sub-Laplacian of Example 1.4 (with d = 1). Let us finally mention the
papers [DR20] and [BP18] which also deal with controllability issues for hypoelliptic parabolic
equations.

The above theorems show that some subelliptic heat equations driven by simple sub-Laplacians
require a larger time to be observable than the usual Riemannian heat equation, and observ-
ability may even fail in any time T > 0. As we will see, this is a very general phenomenon for
subelliptic evolution PDEs, at least for subelliptic wave equations and (some) Schrödinger-type
equations. Our results, however, do not shed any new light on subelliptic heat equations, which
remain mysterious due to the lack of “general arguments” which would not rely on geometric
and analytic features specific to very particular sub-Laplacians.
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Approximate observability of subelliptic PDEs

Recently, Laurent and Léautaud have studied the observability of subelliptic PDEs but with
focus on a different notion of observability, called approximate observability. The next paragraph
is devoted to a brief description of their results (see [LL20]).

Let us consider a sub-Laplacian ∆ as in (1.2), with associated sub-Riemannian structure
(M,D, g). We assume that the manifold M (assumed to have no boundary, ∂M = ∅), the

smooth volume µ and the vector fields Xi are all real-analytic. For s ∈ R, the operator (1−∆)
`
2

is defined thanks to functional calculus, and we consider the (adapted) Sobolev spaces

H`(M) = {u ∈ D′(M), (1−∆)
`
2u ∈ L2(M)}

with the associated norm ‖u‖H`(M) = ‖(1−∆)`u‖L2(M).

Theorem 1.20 ([LL20]). Let ω be a non-empty open subset of M and let T > supx∈M dg(x, ω).
We denote by k the step of the sub-Riemannian structure (M,D, g). Then there exist c, C > 0
such that

‖(u0, u1)‖H1×L2 6 CecΛ
k‖u‖L2((−T,T )×ω), with Λ =

‖(u0, u1)‖H1×L2

‖(u0, u1)‖L2×H−1

(1.15)

for any solution u of (1.8) on (−T, T ) such that (u, ∂tu)|t=0 = (u0, u1) ∈ H1(M)× L2(M).

The above result in particular implies unique continuation (and quantifies it): if u = 0 in
(−T, T ) × ω, then u ≡ 0. However, the exact observability inequality which we shall study
(see (1.11)) is a stronger requirement than (1.15), in particular because of the presence of the
“typical frequency of the datum” Λ in the right-hand side of (1.15). The techniques used for
proving Theorem 1.20 are totally different from those we present in the sequel.

Observability of Baouendi-Grushin Schrödinger equation

The recent work [BS19] is the first one dealing with exact observability of a subelliptic Schrödinger
equation, namely in the context of Example 1.3 (on (−1, 1) × T instead of R × R) with obser-
vation set given by a horizontal band as in Theorem 1.19. The observability inequality is given
by (1.13), except that u runs over the solutions of the Schrödinger equation driven by the
sub-Laplacian ∆G.

Theorem 1.21 ([BS19]). Let M = (−1, 1)×T and ∆G = ∂2
x +x2∂2

y . Let ω = (−1, 1)× I where
I ( T is open. Let T0 = L (ω) be the length of the maximal sub-interval contained in T \ I.
Then, the observability property (1.13) holds if and only if T > T0.

Again, this result shows the existence of a minimal time of control which contrasts with the
“infinite speed of propagation” illustrated by Theorem 1.15. Its proof relies on fine semi-classical
analysis.

Non-linear subelliptic PDEs

Although this thesis is devoted only to linear subelliptic PDEs, let us say a word about non-
linear subelliptic PDEs. To study the cubic Grushin-Schrödinger equation i∂tu−(∂2

x+x2∂2
y)u =

|u|2u, Patrick Gérard and Sandrine Grellier introduced a toy model, the cubic Szegö equation,
which models the interactions between the nonlinearity and the lack of dispersivity of the linear
equation (already visible in the above Theorem 1.21). In [GG10], they put this equation into a
Hamiltonian framework and classify the traveling waves for this equation.
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1.3.3 Main results

Let us now present the main results contained in the papers [Let20b], [LS20] and [FL21]. All of
them illustrate the slowdown of propagation of evolution PDEs in directions transverse to the
distribution: in a nutshell, observability will require a much longer time to hold for subelliptic
PDEs than for elliptic ones, and this time will be even larger when the step k of the underlying
sub-Riemannian structure is larger. All our results are summarized in Figure 1.1 at the end of
this section.

First main result

We start with a general result on subelliptic wave equations. Let ∆ = −
∑m

i=1X
∗
iXi be a sub-

Laplacian, where the adjoint denoted by star is taken with respect to a volume µ on M , which is
assumed to have a boundary ∂M 6= ∅.5 The sub-Riemannian gradient is defined by the formula

∇sRφ =
m∑
i=1

(Xiφ)Xi.

Consider the wave equation 
∂2
ttu−∆u = 0 in (0, T )×M
u = 0 on (0, T )× ∂M,
(u|t=0, ∂tu|t=0) = (u0, u1)

(1.16)

where T > 0, and the initial data (u0, u1) are in an appropriate energy space. The natural
energy of a solution u of the sub-Riemannian wave equation (1.16) is

E(u(t, ·)) =
1

2

∫
M

(
|∂tu(t, x)|2 + |∇sRu(t, x)|2

)
dµ(x).

Observability holds in time T0 on ω if there exists C > 0 such that for any solution u of (1.16),

E(u(0)) 6 C

∫ T0

0

∫
ω
|∂tu(t, x)|2dµ(x)dt. (1.17)

Theorem 1: [Let20b]

Let T0 > 0 and let ω ⊂M be a measurable subset. We assume that there exist 1 6 i, j 6
m and x in the interior of M\ω such that [Xi, Xj ](x) /∈ Dx. Then the subelliptic wave
equation (1.16) is not exactly observable on ω in time T0.

Theorem 1 can be reformulated as follows: subelliptic wave equations are never observable.
The condition that there exists x (in the interior of M \ ω) such that [Xi, Xj ](x) /∈ Dx means
that ∆ is not elliptic at x; this assumption is absolutely necessary since otherwise, in M \ ω,
(1.16) would be a wave equation with elliptic Laplacian, and its observability properties would
depend on the GCC, as stated in Theorem 1.12.

The key ingredient in the proof of Theorem 1 is that the GCC fails for any time T0 > 0:
in other words, there exist geodesics which spend a time greater than T0 outside ω. Then, the
Gaussian beam construction described in Remark 1.14 allows to contradict the observability
inequality (1.17).

5This assumption is not necessary, since Theorem 1 also works for manifolds without boundary, but this would
require to introduce a slightly different notion of observability.
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Second main result

Our second main result, obtained in collaboration with Chenmin Sun, sheds a different light on
Theorem 1. For this second statement, we consider the generalized Baouendi-Grushin operator
of Example 1.17, i.e., ∆γ = ∂2

x + |x|2γ∂2
y on (−1, 1)x × Ty.

We assume that γ > 1 (not necessarily an integer). We consider the Schrödinger-type
equation with Dirichlet boundary conditions

i∂tu− (−∆γ)su = 0
u|t=0 = u0 ∈ L2(M)

u|x=±1 = 0
(1.18)

where s ∈ N is a fixed integer. Given an open subset ω ⊂M , we say that (3.2) is observable in
time T0 > 0 in ω if

∃C > 0, ∀u0 ∈ L2(M), ‖u0‖2L2(M) 6 C

∫ T0

0
‖e−it(−∆γ)su0‖2L2(ω)dt. (1.19)

We define
Tob = inf{T0 > 0, (1.19) holds},

with the convention that Tob = +∞ if there does not exist T0 > 0 such that (1.19) holds. Note
that Tob depends on s, γ and ω.

Our result roughly says that observability holds if and only if the subellipticity (measured
by the step γ + 1 in case γ ∈ N), is not too strong compared to the strength of propagation s:

Theorem 2: [LS20]

Assume that γ > 1 and s ∈ N. Let I ( Ty be a strict open subset, and ω = (−1, 1)x × I.

1. If 1
2(γ + 1) < s, then Tob = 0;

2. If 1
2(γ + 1) = s, then 0 < Tob < +∞;

3. If 1
2(γ + 1) > s, then Tob = +∞.

The case s = 1/2 corresponds to wave equations. Strictly speaking, it is not covered by
Theorem 2 since s is assumed to belong to N in this theorem, but we see that for any positive γ,
this case is roughly related to Point (3), and we thus recover the intuition given by Theorem 1
that subelliptic wave equations should not be observable. The case γ = s = 1 allows to recover
Theorem 1.21, except that we do not find with our method the critical time L (ω). Let us also
notice that if γ ∈ N, since γ + 1 is the step of the sub-Laplacian ∆γ , the number 1

2(γ + 1)
appearing in Theorem 2 coincides with the exponent known as the gain of Sobolev derivatives
in subelliptic estimates (see Section 1.2.2).

Third main result

Finally, our third main result, obtained in collaboration with Clotilde Fermanian Kammerer,
illustrates how tools coming from noncommutative harmonic analysis can be used to analyze
sub-Laplacians and the associated evolution equations. Our main message is that a pseudod-
ifferential calculus “adapted to the sub-Laplacian” can be used to prove controllability and ob-
servability results for subelliptic PDEs (instead of the usual pseudodifferential calculus used for
example to prove Theorem 2). As we will see, in the present context, once defined this natural
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pseudodifferential calculus and the associated semi-classical measures (which relies essentially
on functional analysis arguments), observability results follow quite directly.

To relate this last result to the previous ones, let us say that it is roughly linked to the
critical case s = γ = 1 of Point 2 of Theorem 2, i.e., to the case where subelliptic effects are
exactly balanced by the strength of propagation of the equation. Indeed, we consider the usual
Schrödinger equation (s = 1) in some particular non-commutative Lie groups, called H-type
groups, which have step 2 (corresponding to γ = 1 for Baouendi-Grushin operators). As in Point
2 of Theorem 2, we establish that under some geometric conditions on the set of observation ω,
observability holds if and only if time is sufficiently large. The main difference with Theorem 2
relies in the tools used for the proof, which could lead to different generalizations. For example,
the tools employed in this section allow to handle the case with analytic potential, see (1.20)
below. Also, with these tools, we could imagine to prove observability results for higher-step
nilpotent Lie groups, but it requires to know explicit formulas for their representations, since
they determine the propagation properties of the semi-classical measures we construct.

To keep the presentation as simple as possible, we will present our last result only for the
Heisenberg groups Hd of Example 1.4, and not for general H-type groups (which are handled in
[FL21]). By doing so, we avoid defining general H-type groups for the moment, while keeping
the main message of this work, namely the use of noncommutative harmonic analysis for proving
observability inequalities.

Let us explain how to get compact quotients of the Heisenberg group (as required in Remark
1.10). Using the notations of Example 1.4, we consider the left-quotient of Hd by the discrete
subgroup Γ̃ = (

√
2πZ)2d × πZ, which yields a compact manifold M = Γ̃\Hd. The vector fields

Xj , Yj are left-invariant and can be thus considered as vector fields on the quotient manifold M .
This allows to consider the sub-Laplacian ∆M as acting on functions on M .

We consider the equation

i∂tu+
1

2
∆Mu+ Vu = 0 (1.20)

on M , where V is an analytic function defined on M . The factor 1
2 in front of ∆M plays no role,

we put it here just to keep the same conventions as in [FL21].

The Schrödinger equation (1.20) is observable in time T on the measurable set U if there
exists a constant CT,U > 0 such that

∀u0 ∈ L2(M), ‖u0‖2L2(M) 6 CT,U

∫ T

0

∥∥∥eit(
1
2

∆M+V)u0

∥∥∥2

L2(U)
dt. (1.21)

Recall that Theorem 1.15 asserts that, in the Riemannian setting and without potential, the
observability of the Schrödinger equation is implied by the Geometric Control Condition (GCC),
which says that any trajectory of the geodesic flow enters U within time T . Here, one can also
define a sub-Riemannian geodesic flow (see (1.12)) but in some directions of the phase space,
called degenerate directions in the sequel, it vanishes due to the fact that Σ 6= {0} (see Section
1.2.3). In these degenerate directions, we thus need to replace GCC by another condition. In
the case of the Heisenberg group Hd, there is only one such direction, thought of as “vertical”
since it is related to the ∂z vector field.

The Heisenberg group Hd comes with a Lie algebra g. Via the exponential map

Exp : g→ Hd

which is a diffeomorphism from g to Hd, one identifies Hd and g as a set and a manifold.
Moreover, g is equipped with a vector space decomposition

g = v⊕ z ,
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such that [v, v] = z 6= {0} and z (of dimension 1) is the center of g. We define a scalar product
on z by saying that ∂z has norm 1, which allows to identify z to its dual z∗. We define the scalar
product on v by saying that the 2d vector fields

Xj = ∂xj −
yj
2
∂s, Yj = ∂yj +

xj
2
∂s, j = 1, . . . , d (1.22)

form an orthonormal basis, denoted by V .

We consider the “vertical” flow map (also called “Reeb”, in honor of Georges Reeb) on M×z∗:

Φs
0 : (x, λ) 7→ (Exp(sdZ(λ)/2)x, λ), s ∈ R

where, for λ ∈ z, Z(λ) is the element of z defined by λ(Z(λ)) = |λ| (or equivalently, Z(λ) = λ/|λ|
after identification of z and z∗). We introduce the following H-type geometric control condition.

(H-GCC) The measurable set U satisfies H-type GCC in time T if

∀(x, λ) ∈M × (z∗ \ {0}), ∃s ∈ (0, T ), Φs
0((x, λ)) ∈ U × z∗.

The flow Φs
0 thus replaces the geodesic flow in the degenerate direction.

Definition 1.22. We denote by TGCC(U) the infimum of all T > 0 such that H-type GCC holds
in time T (and we set TGCC(U) = +∞ if H-type GCC does not hold in any time).

We also consider the additional assumption:

(A) For any (x, ω) ∈M × v∗ such that |ω| = 1, there exists s ∈ R such that Exp(sω ·V )x ∈ U .
Here, ω · V =

∑2d
j=1 ωjVj where ωj denote the coordinates of ω in the dual basis of V and

it is assumed that
∑2d

j=1 ω
2
j = 1.

More explicitly, denoting by (x, y, t) the elements of Hd, we have

Φs
0(x, y, t, λ) =

(
x, y, t+ s

d

2
sgn(λ), λ

)
, s ∈ R

and

Exp
(
s

d∑
j=1

(ajXj + bjYj)
)
(x, y, t) =

(
x+ sa, y + sb, t+

s

2
(x · b− y · a)

)
, s ∈ R.

These trajectories are the lifts in Hd of the geodesics of T2d.

Theorem 3: [FL21]

Let U ⊂M be open and denote by U its closure.

1. Assume that U satisfies (A) and that T > TGCC(U), then the observability inequal-
ity (1.21) holds.

2. Assume T 6 TGCC(U), then the observability inequality (1.21) fails.

This statement looks like Theorem 1.12 which holds for elliptic waves. In some sense,
“the Schrödinger equation in Heisenberg groups looks like an elliptic wave equation”, a phe-
nomenon which was already pointed out by authors studying Strichartz estimates, see [BGX00]
and [BFG16] for example.

Let us also say that, as already mentioned, Theorem 3 holds more generally in quotients of
Heisenberg-type groups.
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Summary

To conclude, let us draw a table summing up most of the results presented in this introduction:

Elliptic Step 2 Step 2s Step > 2s

Waves and half-waves (s = 1/2) Tinf (under GCC) ∞ ∞ ∞
Schrödinger (s = 1) 0 (under GCC) Tinf ∞ ∞

Generalized Schrödinger (s > 1) 0 (under GCC) 0 Tinf ∞
Heat 0 Tinf or ∞ ? ?

Figure 1.1: Observability of subelliptic PDEs depending on the step.
If the results are established only in particular cases, they are in blue. The first line is covered
by Theorems 1.12 and 1, the second line by Theorems 1.15, 2 and 3, the third line by Theorem
2 and the fourth line by Theorems 1.16, 1.18 and 1.19.

1.4 Main results on propagation of singularities

Our second series of results concerns propagation of singularities for subelliptic wave equations.
Thus, instead of addressing propagation of energy issues as in the observability inequalities of
Section 1.3.3, we focus here on propagation of regularity/singularity. It turns out that this
requires a deeper understanding of the characteristic cone Σ introduced in Section 1.2.3.

Recall that the celebrated propagation of singularities theorem describes the wave-front set
WF (u) of a distributional solution u to a partial differential equation Pu = f in terms of the
principal symbol p of P : it says that, if p is real, then WF (u) \WF (f) ⊂ p−1(0), and that,
if additionally the characteristics are simple (p = 0 ⇒ dp 6= 0 outside the null section), then
WF (u) \WF (f) is invariant under the bicharacteristic flow induced by the Hamiltonian vector
field Hp of p.

This result was first proved in [DH72, Theorem 6.1.1] and [Hor71a, Proposition 3.5.1]. How-
ever, it leaves open the case where the characteristics of P are not simple. In this case, the
difficulty is that at doubly characteristic points, Hp vanishes, and thus the above theorem is
void. The results presented in this section seek to bridge this gap.

1.4.1 A general result

In a short and impressive paper [Mel86], Melrose sketched the proof of an analogous propagation
of singularities result for the wave operator P = D2

t − A when A is a self-adjoint non-negative
real second-order differential operator which is only subelliptic (for example, A can be a sub-
Laplacian, of the form (1.2)). Such operators P are typical examples for which there exist double
characteristic points, namely the points for which τ = σP (A) = 0. When A is a sub-Laplacian,
{σP (A) = 0} is exactly the characteristic cone Σ introduced in (1.5).

Restated in the language of sub-Riemannian geometry, Melrose’s result [Mel86, Theorem 1.8]
asserts that singularities of subelliptic wave equations propagate only along null-bicharacteristics
(solutions of (1.12), with g∗ replaced by σP (A)) and along abnormal extremal lifts of singular
curves (see Definition 1.24). The propagation along null-bicharacteristics corresponds to sin-
gularities outside Σ, and it is indeed implied by the classical “elliptic” theorem recalled above.
But the true novelty of [Mel86] is the characterization of the propagation inside Σ.
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Despite the potential scope of this result, we did not find in the literature any other paper
quoting it. The proof provided in [Mel86] is indeed very sketchy, and it took us months to
understand the statement and to reconstruct the full proof. But this paper contains truly new
ideas, if it is read with the magnifying glass of sub-Riemannian geometry (which was only at a
very early stage of development at the time of publication of [Mel86], in 1986).

The fact that singularities inside Σ propagate along abnormal extremal lifts of singular curves
must be explained. Singular curves are something specific to sub-Riemannian geometry: non-
trivial examples of singular curves do not exist in Riemannian geometry, and they even exist
only in quite specific sub-Riemannian structures (e.g., in the Martinet structure of Example 1.7,
but not in Heisenberg groups). They are central objects in control theory and played a key role
in the discovery of so-called abnormal minimizers in sub-Riemannian geometry (see [Mon94],
[Mon02]). Many open problems in sub-Riemannian geometry revolve around singular curves,
see [Agr14].

In this introductory section, we state Melrose’s theorem in the case where A is a sub-
Laplacian, and we postpone the general statement of Melrose for subelliptic self-adjoint non-
negative real second-order differential operators to Chapter 5.

We consider A = −∆ the opposite of a subelliptic sub-Laplacian on a manifold X. Take care
that in this section as well as in Chapter 5, the manifold is X and not M (as in the previous
sections), since M denotes indeed something different, see (1.24). These choices are made to be
coherent with the original notations of [Mel86].

The wave equation under study is

(D2
t −A)u = Pu = 0 in R×X,
u = u0, ∂tu = u1 at t = 0

(1.23)

where Dt = 1
i ∂t. We denote by a = σP (A) the principal symbol of A (which is indeed equal to

g∗, introduced in (1.4)), and by p = σP (P ) = τ2 − a that of P . We also consider

M = T ∗(R×X) \ 0 (1.24)

and we denote by ω the canonical symplectic form on M (see Appendix A.1 for the sign conven-
tions concerning the Hamiltonian and symplectic formalism). In the next paragraphs, we define
some cones Γm which generalize the bicharacteristic directions at points where the Hamiltonian
vector field Hp defined by ω(Hp, ·) = −dp(·) vanishes.

We set

M+ = {m ∈M, p(m) > 0, τ > 0}, M− = {m ∈M, p(m) > 0, τ 6 0};

in particular, M+ ∪M− = {p > 0}. Let

Σ(2) = M+ ∩M− = {m ∈M, τ = a = 0}.

(the last equality follows from the fact that a > 0).

For m ∈M+ \ Σ(2), we set

Γm = R+ ·Hp(m) ⊂ TmM,

where Hp is the Hamiltonian vector field of p verifying ω(Hp, Z) = −dp(Z) for any smooth
vector field Z. To extend this definition to M− \ Σ(2), for (t, τ, α) ∈M− \ Σ(2), we set

Γm = Γm′ where m′ = (t,−τ, α) ∈M+.
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At m ∈ Σ(2), the Hamiltonian vector field Hp(m) vanishes, but the Hessian am of a is
well-defined: it is a quadratic form on TmM . For m ∈ Σ(2), we set

Γm = R+(∂t +B),

B = {b ∈ ker(am)⊥ω0 , g(dπ(b)) 6 1}.
(1.25)

Here, ⊥ω0 designates the symplectic orthogonal with respect to the canonical symplectic form
ω0 on T ∗X.

Definition 1.23. A null-ray for p is a Lipschitz curve

γ : I → {m ∈M ; p(m) = 0}

defined on some interval I ⊂ R with (set-valued) derivative γ′(s) ⊂ Γγ(s) for all s ∈ I. In
particular, null-rays live in {p = 0}.

Theorem 4: [Mel86], [Let21b]

Let t 7→ u(t) be a solution of (1.23). For any t > 0, if (x, ξ) ∈WF (u(0)) then there exists
(y, η) ∈WF (u(−t))∪WF (∂tu(−t)) such that (y, η) and (x, ξ) can be joined by a null-ray
of length t.

It follows from the definition of the cones Γm that there are two types of null-rays:

• Those contained in M\Σ(2): they are the usual null-bicharacteristics, for which τ2 = a 6= 0.

• Those contained in Σ(2), for which τ2 = a = 0.

A null-ray of the second type is tangent to the cones Γm defined by (1.25). The vector b in
(1.25) belongs to both ker(am)⊥ω0 (by definition) and ker(am) (since the null-ray is contained
in Σ(2)). Therefore it is a characteristic curve, in the sense of the following definition. In this

definition, we take the notation D⊥, equivalent to Σ (see (1.5)), to insist on the fact that the
characteristic cone depends only on the distribution, and not on the metric. Also, ω0 denotes
the restriction to D⊥ of the canonical symplectic form ω0 on T ∗X.

Definition 1.24. A characteristic curve for D is an absolutely continuous curve t 7→ λ(t) ∈ D⊥
that never intersects the zero section of D⊥ and that satisfies

λ̇(t) ∈ ker(ω0(λ(t)))

for almost every t. The projection of λ(t) onto X, which is an horizontal curve6 for D, is called
a singular curve, and the corresponding characteristic an abnormal extremal lift of that curve.

With this definition, Theorem 4 can be reformulated as follows:

Singularities of subelliptic wave equations propagate only along usual null-bicharacteristics, and
also along abnormal extremal lifts of singular curves at speeds between 0 and 1.

Theorem 4 has consequences on the singularities of the wave kernel, which we now explain.
By the spectral theorem, for any t ∈ R, the self-adjoint operator

G(t) = A−1/2 sin(tA1/2)

6i.e., dπ(λ̇(t)) ∈ Dλ(t) for almost every t, where π : T ∗X → X denotes the canonical projection.
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is a well-defined operator bounded on L2(X), in fact it maps L2(X) into the domain D(A1/2).
Together with the self-adjoint operator G′(t) = cos(tA1/2), this allows to solve the Cauchy
problem (1.23) by

u(t, x) = G′(t)u0 +G(t)u1.

For (u0, u1) ∈ D(A1/2) × L2(X), we have u ∈ C0(R; D(A1/2)) ∩ C1(R;L2(X)). Then, the
Schwartz kernel KG ∈ D′(R×X ×X) of G is defined by

∀v ∈ C∞(X), KG(t)v(x) =

∫
X
KG(t, x, y)v(y)dy.

Theorem 4 implies the following inclusion.

Theorem 5: [Mel86], [Let21b]

We have

WF (KG) ⊂ {(t, x, y, τ, ξ,−η) ∈ T ∗(R×X ×X) \ 0;

there is a null ray from (0, τ, y, η) to (t, τ, x, ξ)}.
(1.26)

In turn, we can deduce from Theorem 5 the following corollary in the spirit of the trace
formula of Duistermaat and Guillemin [DG75].

Corollary 1: [Let21b]

Fix x, y ∈ X with x 6= y. We denote by L the set of lengths of normal geodesics from x to
y and by Ts the minimal length of a singular curve joining x to y. Then G : t 7→ KG(t, x, y)
is well-defined as a distribution on (−Ts, Ts), and

sing supp(G ) ⊂ 0 ∪L ∪ −L .

Theorem 4 raises the following problem:

Is it really possible that singularities propagate along singular curves, and if yes, at which
speed?

Our next results answer this question.

1.4.2 Propagation along singular curves in the Martinet case

Let us consider the Martinet sub-Laplacian (see Example 1.7)

∆ = X2
1 +X2

2

on R3, where
X1 = ∂x, X2 = ∂y + x2∂z.

The Martinet half-wave equation is

i∂tu−
√
−∆u = 0 (1.27)

on Rt × R3, with initial datum u(t = 0) = u0.

We denote by λ1(µ) the lowest eigenvalue of

− d2
x + (µ+ x2)2 (1.28)
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over R, and we set

F (µ) =
√
λ1(µ).

In the next result, the curve γ : t 7→ (0, t, 0) plays a particular role. Indeed, it is one of the
simplest examples of singular curves7.

Theorem 6: [CL21]

For any bounded union of intervals I, there exists U(t)u0 solution of (1.27) such that for
any t ∈ R, we have

WF (U(t)u0) = {(0, y, 0; 0, 0, λ) ∈ T ∗R3, λ > 0, y ∈ tF ′(I)} . (1.29)

In particular,
Sing Supp(U(t)u0) = {(0, y, 0) ∈ R3, y ∈ tF ′(I)}. (1.30)

Theorem 7 means that

singularities propagate along the singular curve γ

at speeds given by F ′(I).
(1.31)

But the graph of F ′, restricted to the interval µ ∈ (−10, 10), is the following

and we have in particular:

Proposition 1.25. There holds F ′(R) = [a, 1) for some −1 < a < 0.

Together with (1.31), and choosing I adequately, this implies the following informal state-
ment.

Theorem 7: [CL21]

Any value between 0 and 1 can be realized as a speed of propagation of singularities along
the singular curve γ.

This result is in strong contrast with the propagation of singularities along geodesics at speed
1 for wave equations with elliptic Laplacian.

7One can check that an abnormal extremal lift is given by ξ ≡ η ≡ 0 and ζ 6= 0, where ξ, η, ζ are the dual
variables of x, y, z.
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The proof of Theorem 7 can be summarized in a few lines. First, recalling that

−∆ = −∂2
x − (∂y + x2∂z)

2,

we take the Fourier transform in the variables y, z (with dual variables η, ζ): we get the operator

Hη,ζ = −d2
x + (η + x2ζ)2.

Its lowest eigenvalue is denoted by α1, and the corresponding eigenfunction by ψη,ζ(x). For
f(x, y, z) = ψη,ζ(x)eiyη+izζ , we have −∆f = α1f .

We make the following changes of variables: µ = η
ζ1/3 , ψη,ζ(x) = ψµ(ζ1/3x) and α1 =

ζ2/3λ1(µ). We get
(−d2

x + (µ+ x2)2)ψµ = λ1(µ)ψµ,

so that λ1(µ) and ψµ are indeed the lowest eigenvalue and the corresponding eigenfunction of
(1.28). All in all, we deduce for any µ, ζ ∈ R a solution of (1.27):

vµ,ζ(t, x, y, z) = e−itζ
1/3F (µ)eiyζ

1/3µ+izζψµ(ζ1/3x).

Making linear combinations of the previous solutions for different µ, ζ ∈ R, we obtain a new
solution

(U(t)u0)(x, y, z) =

∫∫
R2

Y (ζ)φ(µ) e−itζ
1/3F (µ)eiyζ

1/3µ+izζψµ(ζ1/3x)︸ ︷︷ ︸
solution for fixed µ, ζ

dµdζ.

We choose Y ∈ C∞(R, [0, 1]) to be a truncation function: Y (ζ) = 0 for ζ 6 1 and Y (ζ) = 1 for
ζ > 2. The function φ will be specified a bit later.

We finally answer the question: How does this solution propagate ? Since the speed of
propagation is given by the group velocity, we differentiate the phase −ζ1/3(tF (µ) − yµ) + zζ
with respect to ζ and µ.

• Differentiating with respect to ζ, we find that the critical points satisfy the relation z =
−1

3ζ
−2/3(tF (µ) − yµ). Since singularities are created only in the regime where ζγ1, the

speed in z is 0 (of course, these arguments are very rough and have to be justified).

• Differentiating now the phase with respect to µ, we find that the critical points satisfy the
relation tF ′(µ) = y. Therefore, the speed in y is F ′(µ), for µ belonging to Support(φ).
Hence, we choose φ so that I = Support(φ).

This gives the intuition for Theorem 7. Mathematically, the above reasoning is justified by the
stationary phase method, see Chapter 6.

To conclude this section, let us mention that it might be possible to extend Theorem 7
to more general geometries, starting with non-flat Martinet metrics and non-flat quasi-contact
metrics, which are other examples where singular curves show up.

1.5 Main results on eigenfunctions of sub-Laplacians

1.5.1 Generalities about Quantum Limits

Our last series of results concerns eigenfunctions of sub-Laplacians in the high-frequency limit.
A typical problem is the description of their Quantum Limits (QL), i.e., the measures which
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are weak limits of a subsequence of squares of eigenfunctions. In the sequel, we denote by
∆g,µ a general sub-Laplacian of the form (1.2), since the notation ∆ will denote a particular
sub-Laplacian (see (1.40)).

Under the assumption (1.1), ∆g,µ is hypoelliptic (see [Hor67]), and if moreover M is com-
pact8, then ∆g,µ has a compact resolvent and there exists a sequence of (real-valued) eigen-
functions of −∆g,µ associated to the eigenvalues in increasing order 0 = λ1 < λ2 6 ... (with
λj → +∞ as j → +∞) which is orthonormal for the L2(M,µ) scalar product. Our main purpose
here is to describe the possible behaviours of the sequence of probability measures |ϕk|2dµ when
(ϕk)k∈N∗ is a sequence of normalized eigenfunctions of −∆g,µ with associated eigenvalue tending
to +∞, for particular sub-Laplacians ∆g,µ, typically by describing its weak limits (in the sense
of duality with continuous functions).

There is a phase-space extension of these weak limits whose behaviour is also of interest. Let
us recall the following definition (see [Ger91a]):

Definition 1.26. Let (uk)k∈N∗ be a bounded sequence in L2(M) and weakly converging to 0.
We call microlocal defect measure of (uk)k∈N∗ any Radon measure ν on S∗M such that for any
a ∈ S 0(M), there holds

(Op(a)uσ(k), uσ(k)) −→
k→+∞

∫
S∗M

adν

for some extraction σ. Here, (·, ·) denotes the L2(M,µ) scalar product, S 0(M) is the space of
classical symbols of order 0, and Op(a) is the Weyl quantization of a (see Appendix A).

Microlocal defect measures are useful tools for studying the (asymptotic) concentration and
oscillation properties of sequences, and they are necessarily non-negative.

Definition 1.27. Given a sequence (ϕk)k∈N∗ of eigenfunctions of −∆g,µ with ‖ϕk‖L2(M,µ) = 1,
we call Quantum Limit (QL) any microlocal defect measure of (ϕk)k∈N∗.

Remark 1.28. Since for any k ∈ N∗, ϕk is normalized, any QL is a probability measure on
S∗M .

Quantum Limits of Riemannian Laplacians.

Let us first state known properties of Quantum Limits in the case where ∆g,µ = ∆g is the
Laplace-Beltrami operator of a Riemannian manifold (M, g). It is known that any Quantum
Limit ν of ∆g is then invariant under the geodesic flow exp(t ~H), where ~H denotes temporarily

the Hamiltonian vector field associated to (g∗)1/2: there holds exp(t ~H)ν = 0 for any t ∈ R. To
see it, we note that for any sequence (ϕk)k∈N∗ consisting of normalized eigenfunctions of −∆g,
there holds

(exp(−it
√
−∆g)Op(a) exp(it

√
−∆g)ϕk, ϕk)L2 = (Op(a)ϕk, ϕk)L2 (1.32)

for any t ∈ R, any k ∈ N∗ and any classical symbol a ∈ S 0(M). It follows from Egorov’s
theorem that exp(−it

√
−∆g)Op(a) exp(it

√
−∆g) is a pseudodifferential operator of order 0

with principal symbol a ◦ exp(t ~H), which in turn implies exp(t ~H)ν = 0.

Conversely, not any probability measure which is invariant under the geodesic flow is a
Quantum Limit. The description of all Quantum Limits of a given Riemannian manifold is
indeed a long-standing question. Over the years, a particular attention has been drawn towards
Riemannian manifolds whose geodesic flow is ergodic since in this case, up to extraction of a

8Note that we left the notation M of Section 1.4 and came back to the notation M of Section 1.2.
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density-one subsequence, the set of Quantum Limits is reduced to the Liouville measure, a phe-
nomenon which is called Quantum Ergodicity (see for example [Shn74], [Col85], [Zel87]). More
recently, the results [Ana08] and [DJ18] gave more precise results in the negative curvature case,
using in the first case the notion of metric entropy and in the second one the fractal uncertainty
principle. For compact arithmetic surfaces, a detailed study of invariant measures lead to the
resolution of the Quantum Unique Ergodicity conjecture for these manifolds, meaning that the
extraction of a density-one subsequence in the Quantum Ergodicity result is even not necessary
for these particular manifolds ([Lin06]). In manifolds which have a degenerate spectrum, the set
of Quantum Limits is generally richer: see for example [Jak97] for the description of Quantum
Limits on flat tori or [ALM16] for the case of the disk. Also, the Quantum Limits of the sphere
Sd equipped with its canonical metric have been fully characterized in [JZ96]. And Quantum
Ergodicity results have been also established on other mathematical objects such as quantum
graphs, see [Col15].

Quantum Limits of sub-Laplacians

The structure and the invariance properties of the Quantum Limits of sub-Laplacians is more
complicated than that of Riemannian Laplacians. In the sequel, we make the identification

S∗M = U∗M ∪ SΣ (1.33)

where S∗M is the cosphere bundle (i.e., the sphere bundle of T ∗M), U∗M = {g∗ = 1} is
a cylinder bundle and SΣ, the sphere bundle of Σ, consists of the points at infinity of the
compactification of U∗M . We also denote by exp(t~g∗) the sub-Riemannian geodesic flow, which
is the Hamiltonian flow of g∗. Note that while working on U∗M , it is equivalent to consider
exp(t~g∗) or exp(t~s) where s =

√
g∗, since both flows coincide on U∗M . Indeed, exp(t~s) is the

flow which shows up from the application of Egorov’s theorem after the computation (1.32).

In comparison with the Riemannian case, the invariance of Quantum Limits of ∆g,µ under the
sub-Riemannian geodesic flow exp(t~g∗) is still true, but it does not say anything about the part
of the QL lying in Σ since the geodesic flow is stationary at such points. Indeed, we note that the
above computation (1.32) does not work anymore for general sub-Laplacians since

√
−∆g,µ is

not a pseudodifferential operator near its characteristic manifold Σ, and hence Egorov’s theorem
does not apply. Therefore, it is interesting to determine other invariance properties for this part
of the QL.

In [CHT18, Theorem B], it was proved that for any sub-Laplacian ∆g,µ, any of its Quantum
Limit ν can be decomposed as a sum ν = βν0 + (1 − β)ν∞ of mutually singular probability
measures, where ν0 is supported in the “elliptic part” U∗M and is invariant under the sub-
Riemannian geodesic flow exp(t~g∗), and ν∞ is supported in SΣ (and its invariance properties
are far more difficult to establish, as will be seen below). It was also proved that for “most” QLs,
ν0 = 0, and therefore ν∞ is the “main part” of the QL. The precise statement is the following.

Proposition 1.29. [CHT18, Theorem B] Let (ϕk)k∈N∗ be an orthonormal Hilbert basis of
L2(M,µ) consisting of eigenfunctions of −∆g,µ associated with the eigenvalues (λk)k∈N∗ la-
beled in increasing order. Let ν be a QL associated with (ϕk)k∈N∗. Using the identifica-
tion S∗M = U∗M ∪ SΣ (see (1.33)), the probability measure ν can be written as the sum
ν = βν0 + (1− β)ν∞ of two mutually singular measures with ν0, ν∞ ∈P(S∗M), β ∈ [0, 1] and

(1) ν0(SΣ) = 0 and ν0 is invariant under the sub-Riemannian geodesic flow exp(t~g∗);

(2) ν∞ is supported on SΣ. Moreover, in the 3D contact case, ν∞ is invariant under the lift
to SΣ of the Reeb flow.9

9See [CHT18] for a definition of the Reeb flow.
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Moreover, there exists a density-one sequence (k`)`∈N of positive integers such that, if ν is a QL
associated with a subsequence of (k`)`∈N, then the support of ν is contained in SΣ, i.e., β = 0
in the previous decomposition.

In [CHT18], the authors also proved Weyl laws (i.e., results “in average” on eigenfunctions),
and Quantum Ergodicity properties (i.e., equidistribution of Quantum Limits under an ergod-
icity assumption) for 3D contact sub-Laplacians.

The Quantum Limits of H-type (or Heisenberg-type) sub-Laplacians were also implicitly
studied in [FF21] thanks to a detailed study of the Schrödinger flow. There are some relations
between the results of [FF21], which work for H-type sub-Laplacians, and our results, although
the precise statements are not the same and the techniques are totally different: semiclassical
analysis and non-commutative harmonic analysis for [FF21] (as in the third result of Section
1.3.3) versus joint spectral calculus for our work. We will come back to it in Chapter 7.

We end this section with the definition of joint microlocal defect measures, which is needed
to state our results in the next section.

Definition 1.30. Let (uk)k∈N∗ , (vk)k∈N∗ be bounded sequences in L2(M) such that uk and vk
weakly converge to 0 as k → +∞. We call joint microlocal defect measure of (uk)k∈N∗ and
(vk)k∈N∗ any Radon measure νjoint on S∗M such that for any a ∈ S 0(M), there holds

(Op(a)uσ(k), vσ(k)) −→
k→+∞

∫
S∗M

adνjoint

for some extraction σ.

In case uk = vk for any k ∈ N∗, we recover the microlocal defect measures of Definition
1.26. Note that joint microlocal defect measures are not necessarily non-negative, and that joint
Quantum Limits (defined as joint microlocal defect measures of two sequences of eigenfunctions)
are not necessarily invariant under the geodesic flow, even in the Riemannian case.

1.5.2 Main results

Our results seek to describe the measure ν∞ (see Proposition 1.29 above) in other cases than
the 3D contact case handled in [CHT18]. We restrict our attention to particular sub-Laplacians,
for which, despite their lack of ellipticity, techniques of joint (elliptic) spectral calculus apply
thanks to additional commutativity assumptions.

Let us fix sub-Laplacian ∆g,µ given by (1.2) and denote by D the associated distribution.
We make the following assumption:

Assumption (A). There exist Z1, . . . , Zm smooth global vector fields on M such that:

(i) At any point x ∈ M where Dx 6= TxM , the vector fields Z1(x), . . . , Zm(x) complete Dx
into a basis of TxM (in particular, they are independent);

(ii) For any 1 6 i, j 6 m, there holds [∆g,µ, Zi] = [Zi, Zj ] = 0.

Assumption (A) is satisfied for example in the following cases:

• For Baouendi-Grushin-type sub-Laplacians, see Examples 1.3 and 1.17. In this case, m = 1
and Z1 = ∂y.

• For H-type sub-Laplacians, in particular for sub-Laplacians defined on the (2d + 1)-
dimensional Heisenberg group (see Example 1.4). In this case, the vector fields Zj form a
basis of the center of the associated Lie algebra.
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• For the Martinet sub-Laplacian, see Example 1.7. In this case, m = 1 and Z1 = ∂z.

• For manifolds obtained as products of the previous examples (and associated sub-Laplacians
obtained by sum), since Assumption (A) is stable by product. For example, for the quasi-
contact sub-Laplacian ∂2

x + (∂y − x∂z)2 + ∂2
w.

Of course, in the above examples, M is not compact, but it is possible to take adequate quotients
and get sub-Laplacians defined on the quotients and still satisfying Assumption (A).

Let us introduce some notations of symplectic geometry. We denote by ω the canonical
symplectic form on the cotangent bundle T ∗M of M . In local coordinates (q, p) of T ∗M , we
have ω = dp ∧ dq. Given a smooth Hamiltonian function h : T ∗M → R, we denote by ~h the
corresponding Hamiltonian vector field on T ∗M , defined by ω(~h, ·) = −dh(·) (in other parts of
the manuscript, this Hamiltonian vector field is denoted by Hh, see Appendix A.1). Given any
smooth vector field V on M , we denote by hV the Hamiltonian function (momentum map) on
T ∗M associated with V , defined in local coordinates by hV (q, p) = p(V (q)). The Hamiltonian
flow exp(t~hV ) of hV projects onto the integral curves of V .

Quantum Limits under Assumption (A)

In all the sequel, we consider a sub-Laplacian ∆g,µ satisfying Assumption (A). Let

P = P({1, . . . ,m})

be the set of all subsets of {1, . . . ,m}. We write Σ as a disjoint union

Σ =
⋃
J∈P

ΣJ (1.34)

where, for J ∈ P, ΣJ is defined as the set of points (q, p) ∈ Σ with(
hZj (q, p) 6= 0

)
⇔ (j ∈ J ) .

Note that (1.34) is a disjoint union and that the ΣJ are non-empty, thanks to point (i) in
Assumption (A) together with the fact that π(Σ) = {x ∈M, Dx 6= TxM} where π : T ∗M →M
is the canonical projection.

Our first main result on eigenfunctions states that it is possible to split any QL into several
pieces which can be studied separately, and which come from well-characterized parts of the
associated sequence of eigenfunctions.

The operator

E = −∆g,µ +
m∑
j=1

Z∗jZj

is elliptic. According to Assumption (A), the following decomposition holds:

L2(M) =
⊕
Hα,β1,...,βm (1.35)

where, for any f ∈ Hα,β1,...,βm , we have

−∆g,µf = α2f, Z∗jZjf = β2
j f, Ef =

α2 +
m∑
j=1

β2
j

 f.
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The main idea is that there is a correspondance between the decomposition (1.34) of Σ and
the decomposition (1.35) of L2(M) in the limit where α2 +

∑m
j=1 β

2
j → +∞. Let us explain this

point. For n ∈ N∗, let χn ∈ C∞c (R, [0, 1]) such that χn(x) = 1 for |x| 6 1
2n and χn(x) = 0 for

|x| > 1
n . Then, for any J ∈ P \ ∅ and any n ∈ N∗, we consider

PJn = χn

(
−∆g,µ

E

)∏
i/∈J

χn

(
Z∗i Zi
E

)∏
j∈J

(1− χn)

(
Z∗jZj

E

)
. (1.36)

Similarly, we consider

P ∅n = (1− χn)

(
−∆g,µ

E

)
. (1.37)

These operators form a “microlocal partition of unity”, i.e.,
∑
J∈P P

J
n = 1. Moreover, we have

the following properties:

• If J 6= ∅, then σP (PJn )→ 1ΣJ pointwise as n→ +∞.

• If J = ∅, then σP (PJn )→ 1U∗M pointwise as n→ +∞.

Therefore, when applied to an (eigen)function, and as n→ +∞, the operators PJn allow to cut
this function into small pieces whose “microlocalization” is known. These ideas are close to those
of [Col79, Theorem 0.6], which deals with the joint spectrum of commuting pseudodifferential
operators whose sum of squares is elliptic.

Therefore, the following result is not a surprise.

Theorem 8: [Let20a]

Let ∆g,µ satisfy Assumption (A). We assume that (ϕk)k∈N∗ is a normalized sequence of
eigenfunctions of −∆g,µ with associated eigenvalues λk → +∞. Then, up to extraction
of a subsequence, one can decompose

ϕk = ϕ∅k +
∑

J∈P\{∅}

ϕJk , (1.38)

with the following properties:

• The sequence (ϕk)k∈N∗ has a unique Quantum Limit ν;

• For any J ∈ P and any k ∈ N∗, ϕJk is an eigenfunction of −∆g,µ with eigenvalue
λk;

• Using the identification S∗M = U∗M ∪ SΣ (see (1.33)), the sequence (ϕ∅k)k∈N∗

admits a unique microlocal defect measure βν∅, where β ∈ [0, 1], ν∅ ∈ P(S∗M)
and ν∅(SΣ) = 0, and, for any J ∈ P \ {∅}, the sequence (ϕJk )k∈N∗ also admits a
unique microlocal defect measure νJ , having all its mass contained in SΣJ ;

• For any J 6= J ′ ∈ P, the joint microlocal defect measure of the sequences (ϕJk )k∈N∗

and (ϕJ
′

k )k∈N∗ vanishes. As a consequence,

ν = βν∅ +
∑

J∈P\{∅}

νJ (1.39)

and the sum in (1.39) is supported in SΣ.
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In this statement, we separated the emptyset from the other subsets J ∈ P\{∅} to emphasize
on the concentration of βν∅ on U∗M , while the rest of the measure ν in (1.39) is supported in
SΣ. This is purely artificial, since one could have included βν∅ into the sum over J . Besides,
the notation ν∅ used above corresponds to the notation ν0 in [CHT18] (see Proposition 1.29
above): we changed it to get a unified notation for the different parts of the QL, namely ν∅ and
νJ .

Products of flat contact sub-Laplacians

Our second main result gives much more information on Quantum Limits, but it works only for
a very specific family of sub-Laplacians, which in particular satisfy Assumption (A). In order to
define these sub-Laplacians, let us first recall the definition of the 3D Heisenberg group. This
definition is not exactly the same as in Example 1.4 (with d = 1), but these two definitions yield
isomorphic groups. Endow R3 with the product law

(x, y, z) ? (x′, y′, z′) = (x+ x′, y + y′, z + z′ − xy′).

With this law, H̃ = (R3, ?) is a Lie group, which is isomorphic to the group of matrices
1 x −z

0 1 y
0 0 1

 , x, y, z ∈ R


endowed with the standard product law on matrices.

We consider the left quotient H = Γ\H̃ where Γ = (
√

2πZ)2× 2πZ is a cocompact subgroup
of H̃ (meaning that H is compact). Note that H is not homeomorphic to T2 × S1 since its
fundamental group is Γ. The vector fields on H

X = ∂x and Y = ∂y − x∂z

are left invariant, and we consider ∆H = X2 + Y 2 the associated sub-Laplacian (here µ is the
Lebesgue measure µ = dxdydz and (X,Y ) is orthonormal for g).

Then, we consider the product manifold Hm and the associated sub-Laplacian ∆ for some
integer m > 2, that is

∆ = ∆H ⊗ (Id)⊗m−1 + Id⊗∆H ⊗ (Id)m−2 + . . .+ (Id)⊗m−1 ⊗∆H, (1.40)

which is a second-order pseudodifferential operator. Below, we give an expression (1.41) for ∆
which is more tractable.

Note that these sub-Laplacians are not contact sub-Laplacians (in the sense of Example 1.5):
they are products of 3D Heisenberg sub-Laplacians.

In the sequel, we fix once for all an integer m > 2.

Remark 1.31. If (ϕk)k∈N∗ denotes an orthonormal Hilbert basis of L2(H) consisting of eigen-
functions of −∆H, then

{ϕk1 ⊗ . . .⊗ ϕkm | k1, . . . , km ∈ N∗}

is an orthonormal Hilbert basis of L2(Hm) consisting of eigenfunctions of −∆. However, there
exist orthonormal Hilbert bases of L2(Hm) which cannot be put in this tensorized form.
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In order to give a precise statement of our second main result on eigenfunctions, it is necessary
to introduce a decomposition of the sub-Laplacian ∆ defined by (1.40). Taking coordinates
(xj , yj , zj) on the j-th copy of H, we can write

∆ =
m∑
j=1

(X2
j + Y 2

j ) (1.41)

with Xj = ∂xj and Yj = ∂yj − xj∂zj . We note that ∆ satisfies Assumption (A) (for Zj = ∂zj for
j = 1, . . . ,m). In other words, the operator

E = −∆ +

m∑
j=1

Z∗jZj

is elliptic.

Let us briefly describe Σ (defined by (1.5)) for the sub-Laplacian ∆. Denoting by (q, p) the
canonical coordinates in T ∗Hm, i.e., q = (x1, y1, z1, . . . , xm, ym, zm) and p = (px1 , py1 , pz1 , . . .,
pxm , pym , pzm), we obtain that

Σ =
{

(q, p) ∈ T ∗Hm | pxj = pyj − xjpzj = 0 for any 1 6 j 6 m
}
,

which is isomorphic to Hm × Rm. Above any point q ∈ Hm, the fiber of Σ is of dimension m,
and therefore, above any point q ∈ Hm, SΣ consists of an (m− 1)-dimensional sphere.

For 1 6 j 6 m, we consider the operator Rj =
√
∂∗zj∂zj and we make a Fourier expansion

with respect to the zj-variable in the j-th copy of H. On the eigenspaces corresponding to
non-zero modes of this Fourier decomposition, we define the operator Ωj = −R−1

j ∆j = −∆jR
−1
j

where ∆j = X2
j + Y 2

j . For example, −∆ acts as

−∆ =
m∑
j=1

RjΩj (1.42)

on any eigenspace of −∆ on which Rj 6= 0 for any 1 6 j 6 m.

The operator Ωj , seen as an operator on the j-th copy of H, is an harmonic oscillator, having
in particular eigenvalues 2n+ 1, n ∈ N (see [CHT18, Section 3.1]). Moreover, the operators Ωi

(considered this time as operators on Hm) commute with each other and with the operators Rj .

Instead of the simple decomposition (1.35) with respect to the Zj (or, here, the Rj), our
second result requires a decomposition of L2(Hm) with respect to the operators Rj and Ωj . This
decomposition is not easy to write down, and we postpone the full details to Chapter 7, but we
explain here the guiding lines.

Thanks to Theorem 8, it is possible to fix J ∈ P and to focus only on ϕJk (with the notations
of this theorem). We decompose the action of −∆ on functions microlocalized in this part of
the phase space as a sum of the operators ∑

j∈J
ωjRj

where ωj accounts for the eigenvalue of Ωj . Any of these first-order operators, is proportional
to an operator of the form

RJs =
∑
j∈J

sjRj
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where s = (sj)j∈J is in the simplex

SJ =

s = (sj) ∈ RJ+ ,
∑
j∈J

sj = 1

 .

This encourages us to introduce, for s ∈ SJ ,

ρJs (q, p) = (σP (Rs))|ΣJ (1.43)

where σP denotes the principal symbol (see Appendix A). These Hamiltonians are homogeneous
of degree 1, and they replace

√
g∗ (see around (1.32)) in the invariance properties of the QLs.

Indeed, we will prove that ν∞, introduced in Proposition 1.29, belongs to the set (see the
footnote10 for the notations)

PSΣ =

{
ν∞ =

∑
J∈P\{∅}

νJ ∈P(S∗Hm), νJ =

∫
SJ

νJs dQ
J (s),

where QJ ∈M+(SJ ), νJs ∈P(S∗Hm),

νJs (S∗Hm \ SΣJ ) = 0 and, for QJ -almost any s ∈ SJ , ~ρJs ν
J
s = 0

} (1.44)

In a few words, (1.44) means that any measure ν∞ ∈ PSΣ is supported in SΣ, and that its
invariance properties are given separately on each set SΣJ (for J ∈ P \ {∅}). Its restriction to
any of these sets, denoted by νJ , can be disintegrated with respect to SJ , and for any s ∈ SJ ,
there is a corresponding measure νJs which is invariant under the flow et~ρ

J
s .

Our second main result on eigenfunctions is the following:

Theorem 9: [Let20a]

Let (ϕk)k∈N∗ be an orthonormal Hilbert basis of L2(Hm) consisting of eigenfunctions
of −∆ associated with the eigenvalues (λk)k∈N∗ labeled in increasing order. Let ν be
a Quantum Limit associated to the sequence (ϕk)k∈N∗ . Then, using the identification
(1.33), we can write ν as the sum of two mutually singular measures ν = βν∅+(1−β)ν∞,
with ν∅, ν∞ ∈P(S∗Hm), β ∈ [0, 1] and

(1) ν∅(SΣ) = 0 and ν∅ is invariant under the sub-Riemannian geodesic flow et~g
∗
;

(2) ν∞ ∈PSΣ.

Moreover, there exists a density-one sequence (k`)`∈N of positive integers such that, if ν
is a QL associated with a subsequence of (k`)`∈N, then the support of ν is contained in
SΣ, i.e., β = 0 in the previous decomposition.

The reason why we consider here only orthonormal bases is to give a sense to the density-one
subsequence of the last part of the statement. However, the first part of the statement is true
for any sequence of normalized eigenfunctions of −∆ with eigenvalues tending to +∞.

10The notation M+(E) (respectively P(E)) denotes the set of non-negative Radon measures (respectively
Radon probability measures) on a given separated space E. The notation SΣJ designates the set of points (q, p)
of SΣ which have null (homogeneous) coordinate pzi for any i /∈ J and non-null pzj for j ∈ J . Note that this set
is, in general, neither open nor closed.
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Note that Theorem 9 holds for any orthonormal Hilbert basis of L2(Hm) consisting of eigen-
functions of −∆, and not only for the bases described in Remark 1.31.

The converse of Theorem 9 holds too, in the following sense:

Theorem 10: [Let20a]

Let ν∞ ∈PSΣ. Then ν∞ is a Quantum Limit associated to some sequence of normalized
eigenfunctions of −∆ with eigenvalues tending to +∞.

Theorem 10 and Point (2) of Theorem 9 serve as substitutes to Point (2) of Proposition 1.29
for the sub-Laplacians ∆ on Hm. Together, Theorem 9 and Theorem 10 yield a classification of
(nearly) all Quantum Limits of ∆.

The particular geometry of the QLs of ∆. As already recalled, the QLs of Riemannian
Laplacians are invariant under the geodesic flow: in some sense, this means that for any (x, ξ) ∈
T ∗M , the QL near (x, ξ) “is invariant in the direction given by ξ”. The above Proposition 1.29
for 3D contact sub-Laplacians, and the result of [FF21, Theorem 2.10(ii)(2)] for H-type groups
extend this intuition to these sub-Laplacians. But Theorems 9 and 10 show that such a property
is not true for any sub-Laplacian: there exist QLs of ∆ and points (x, ξ) ∈ Hm such that the
QL near (x, ξ) is not invariant in the direction ξ, but in some other direction of the cotangent
bundle (parametrized by s ∈ S). This fact will be highlighted again along the proof of Theorem
10.

The next chapters present our works [Let20b, LS20, FL21, Let21b, CL21, Let20a]. The pre-
sentation may very occasionally differ from the versions published (or submitted for publication).
To keep each chapter as self-contained as possible, we kept within these chapters nearly all re-
minders and comments, even when they were slightly redundant with the information already
provided in the introduction. In each chapter, the concluding section provides “supplementary
material”, which corresponds to appendices in the original preprints.
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Chapter 2

Subelliptic wave equations are never
observable

“Un bon contrôle, c’est la moitié d’un but.”
Michel Platini.

This chapter is adapted from [Let20b]. Its main object is the proof of Theorem 1.
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It is well-known that observability (and, by duality, controllability) of the elliptic wave
equation, i.e., with a Riemannian Laplacian, in time T0 is almost equivalent to the Geometric
Control Condition (GCC), which stipulates that any geodesic ray meets the control set within
time T0. We show that in the subelliptic setting, GCC is never verified, and that subelliptic wave
equations are never observable in finite time. More precisely, given any subelliptic Laplacian
∆ = −

∑m
i=1X

∗
iXi on a manifold M , and any measurable subset ω ⊂M such that M\ω contains

in its interior a point q with [Xi, Xj ](q) /∈ Span(X1, . . . , Xm) for some 1 6 i, j 6 m, we show
that for any T0 > 0, the wave equation with subelliptic Laplacian ∆ is not observable on ω in
time T0.

The proof is based on the construction of sequences of solutions of the wave equation con-
centrating on geodesics (for the associated sub-Riemannian distance) spending a long time in
M\ω. As a counterpart, we prove a positive result of observability for the wave equation in the
Heisenberg group, where the observation set is a well-chosen part of the phase space.

2.1 Introduction

2.1.1 Setting

Let n ∈ N∗ and let M be a smooth connected compact manifold of dimension n with a non-
empty boundary ∂M . Let µ be a smooth volume on M . We consider m > 1 smooth vector
fields X1, . . . , Xm on M which are not necessarily independent, and we assume that the following
Hörmander condition holds (see [Hor67]):

The vector fields X1, . . . , Xm and their iterated brackets [Xi, Xj ], [Xi, [Xj , Xk]], etc. span the
tangent space TqM at every point q ∈M .

We consider the sub-Laplacian ∆ defined by

∆ = −
m∑
i=1

X∗iXi =
m∑
i=1

X2
i + divµ(Xi)Xi

where the star designates the transpose in L2(M,µ) and the divergence with respect to µ is
defined by LXµ = (divµX)µ, where LX stands for the Lie derivative. Then ∆ is hypoelliptic
(see [Hor67, Theorem 1.1]).

We consider ∆ with Dirichlet boundary conditions and the domain D(∆) which is the com-
pletion in L2(M,µ) of the set of all u ∈ C∞c (M) for the norm ‖(Id−∆)u‖L2 . We also consider

the operator (−∆)
1
2 with domain D((−∆)

1
2 ) which is the completion in L2(M,µ) of the set of

all u ∈ C∞c (M) for the norm ‖(Id−∆)
1
2u‖L2 .

Consider the wave equation
∂2
ttu−∆u = 0 in (0, T )×M
u = 0 on (0, T )× ∂M,
(u|t=0, ∂tu|t=0) = (u0, u1)

(2.1)

where T > 0. It is well-known (see for example [GR15, Theorem 2.1], [EN99, Chapter II, Section

6]) that for any (u0, u1) ∈ D((−∆)
1
2 )× L2(M), there exists a unique solution

u ∈ C0(0, T ;D((−∆)
1
2 )) ∩ C1(0, T ;L2(M)) (2.2)

to (2.1) (in a mild sense).
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We set

‖v‖H =

(∫
M
|∇sRv(x)|2dµ(x)

) 1
2

. (2.3)

where, for any φ ∈ C∞(M),

∇sRφ =
m∑
i=1

(Xiφ)Xi

is the horizontal gradient. Note that ∇sR is the formal adjoint of (−divµ) in L2(M,µ), and that

∆ = divµ ◦ ∇sR. Note also that ‖v‖H = ‖(−∆)
1
2 v‖L2(M,µ).

The natural energy of a solution is

E(u(t, ·)) =
1

2
(‖∂tu(t, ·)‖2L2(M,µ) + ‖u(t, ·)‖2H).

If u is a solution of (2.1), then
d

dt
E(u(t, ·)) = 0,

and therefore the energy of u at any time is equal to

‖(u0, u1)‖2H×L2 = ‖u0‖2H + ‖u1‖2L2(M,µ).

In this chapter, we investigate exact observability for the wave equation (2.1).

Definition 2.1. Let T0 > 0 and ω ⊂M be a µ-measurable subset. The subelliptic wave equation
(2.1) is exactly observable on ω in time T0 if there exists a constant CT0(ω) > 0 such that, for

any (u0, u1) ∈ D((−∆)
1
2 )× L2(M), the solution u of (2.1) satisfies∫ T0

0

∫
ω
|∂tu(t, x)|2dµ(x)dt > CT0(ω)‖(u0, u1)‖2H×L2 . (2.4)

2.1.2 Main result

Our main result is the following.

Theorem 2.2. Let T0 > 0 and let ω ⊂ M be a measurable subset. We assume that there exist
1 6 i, j 6 m and q in the interior of M\ω such that [Xi, Xj ](q) /∈ Span(X1(q), . . . , Xm(q)).
Then the subelliptic wave equation (2.1) is not exactly observable on ω in time T0.

Consequently, using a duality argument (see Section 2.4.2), we obtain that exact controlla-
bility does not hold either in any finite time.

Definition 2.3. Let T0 > 0 and ω ⊂ M be a measurable subset. The subelliptic wave equation
(2.1) is exactly controllable on ω in time T0 if for any (u0, u1) ∈ D((−∆)

1
2 ) × L2(M), there

exists g ∈ L2((0, T0)×M) such that the solution u of
∂2
ttu−∆u = 1ωg in (0, T0)×M
u = 0 on (0, T0)× ∂M,
(u|t=0, ∂tu|t=0) = (u0, u1)

(2.5)

satisfies u(T0, ·) = 0.

Corollary 2.4. Let T0 > 0 and let ω ⊂M be a measurable subset. We assume that there exist
1 6 i, j 6 m and q in the interior of M\ω such that [Xi, Xj ](q) /∈ Span(X1(q), . . . , Xm(q)).
Then the subelliptic wave equation (2.1) is not exactly controllable on ω in time T0.
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In what follows, we denote by D the set of all vector fields that can be decomposed as linear
combinations with smooth coefficients of the Xi:

D = Span(X1, . . . , Xm) ⊂ TM.

D is called the distribution associated to the vector fields X1, . . . , Xm. For q ∈ M , we denote
by Dq ⊂ TqM the distribution D taken at point q.

The assumptions of Theorem 2.2 are satisfied as soon as the interior U of M \ ω is non-
empty and D has constant rank < n in U . Indeed, under these conditions, we can argue by
contradiction: assume that for any q ∈ U and any 1 6 i, j 6 m, there holds [Xi, Xj ](q) ∈
Span(X1(q), . . . , Xm(q)) = Dq. Then we have [D,D] ⊂ D in U , i.e., D is involutive. By
Frobenius’s theorem, D is then completely integrable, which contradicts Hörmander’s condition.

The following examples show that the assumptions of Theorem 2.2 are also satisfied in some
non-constant rank cases:

Example 2.5. In the Baouendi-Grushin case, for which X1 = ∂x1 and X2 = x1∂x2 are vector
fields on (−1, 1)x1 × Tx2 where T = R/Z, the corresponding sub-Laplacian ∆ = X2

1 + X2
2

(here, µ = dx1dx2 for simplicity) is elliptic outside of the singular submanifold S = {x1 =
0}. Therefore, the corresponding subelliptic wave equation is observable on any open subset
containing S (with some finite minimal time of observability, see [BLR92]), but according to
Theorem 2.2, it is not observable in any finite time on any subset ω such that the interior of
M \ ω has a non-empty intersection with S.

Example 2.6. In the Martinet case, the vector fields are X1 = ∂x1 and X2 = ∂x2 + x2
1∂x3 on

(−1, 1)x1×Tx2×Tx3 , and the corresponding sub-Laplacian is ∆ = X2
1 +X2

2 (again, µ = dx1dx2dx3

for simplicity). Then, we have [X1, X2] = 2x1∂x3 . The only points at which this bracket belongs
to the distribution Span(X1, X2) are the points for which x1 = 0. Since this set of points has
empty interior, the assumptions of Theorem 2.2 are satisfied as soon as M \ ω has non-empty
interior.

Remark 2.7. The assumption of compactness on M is not necessary: we may remove it, and
just require that the subelliptic wave equation (2.1) in M is well-posed. It is for example the
case if M is complete for the sub-Riemannian distance induced by X1, . . . , Xm since ∆ is then
essentially self-adjoint ([Str86]).

Remark 2.8. Theorem 2.2 remains true if M has no boundary. In this case, the equation
(2.1) is well-posed in a space slightly smaller than (2.2): a condition of null average has to be
added since non-zero constant functions on M are solutions of (2.1), see Section 2.1.5. The
observability inequality of Theorem 2.2 remains true in this space of solutions: anticipating the
proof, we notice that the spiraling normal geodesics of Proposition 2.17 still exist (since their
construction is purely local), and we subtract to the initial datum uk0 of the localized solutions
constructed in Proposition 2.16 their spatial average

∫
M uk0dµ.

Remark 2.9. Thanks to abstract results (see for example [Mil12]), Theorem 2.2 remains true
when the subelliptic wave equation (2.1) is replaced by the subelliptic half-wave equation ∂tu+
i
√
−∆u = 0 with Dirichlet boudary conditions.

2.1.3 Ideas of the proof

In the sequel, we call “normal geodesic”1 the projection on M of a bicharacteristic (parametrized
by time) for the principal symbol of the wave equation (2.1). We will give a more detailed

1This terminology is common in sub-Riemannian geometry, and it is justified by the fact that we can naturally
associate to the vector fields X1, . . . , Xm a metric structure on M for which these projected paths are geodesics,
see [Mon02].
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definition in Section 2.1.4.

The proof of Theorem 2.2 mainly requires two ingredients:

1. There exist solutions of the free subelliptic wave equation (2.1) whose energy concentrates
along any given normal geodesic;

2. There exist normal geodesics which “spiral” around curves transverse to D, and which
therefore remain arbitrarily close to their starting point on arbitrarily large time-intervals.

Combining the two above facts, the proof of Theorem 2.2 is straightforward (see Section 2.4.1).
Note that the first point follows from the general theory of propagation of complex Lagrangian
spaces, while the second point is the main novelty of this work.

Since our construction is purely local (meaning that it does not “feel” the boundary and
only relies on the local structure of the vector fields), we can focus on the case where there is
a (small) open neighborhood V of the origin O such that V ⊂ M\ω, and [Xi, Xj ](O) /∈ DO for
some 1 6 i, j 6 m. In the sequel, we assume it is the case.

Let us give an example of vector fields where the spiraling normal geodesics used in the
proof of Theorem 2.2 are particularly simple. We consider the three-dimensional manifold with
boundary M1 = (−1, 1)x1 × Tx2 × Tx3 , where T = R/Z ≈ (−1, 1) is the 1D torus. We endow
M1 with the vector fields X1 = ∂x1 and X2 = ∂x2 − x1∂x3 . This is the “Heisenberg manifold
with boundary”. We endow M1 with an arbitrary smooth volume µ. The normal geodesics we
consider are given by

x1(t) = ε sin(t/ε)
x2(t) = ε cos(t/ε)− ε
x3(t) = ε(t/2− ε sin(2t/ε)/4).

(2.6)

They spiral around the x3 axis x1 = x2 = 0.

Here, one should think of ε as a small parameter. In the sequel, we denote by xε the normal
geodesic with parameter ε.

Clearly, given any T0 > 0, for ε sufficiently small, we have xε(t) ∈ V for every t ∈ (0, T0).
Our objective is to construct solutions uk of the subelliptic wave equation (2.1) such that
‖(uk0, uk1)‖H×L2 = 1 and the energy of uk(t, ·) concentrates outside of an open set Vt containing
xε(t), i.e., ∫

M1\Vt

(
|∂tuk(t, x)|2 + |∇sRuk(t, x)|2

)
dµ(x)

tends to 0 as k → +∞ uniformly with respect to t ∈ (0, T0). As a consequence, the observability
inequality (2.4) fails.

The construction of solutions of the free wave equation whose energy concentrates on geodesics
is classical in the elliptic (or Riemannian) case: these are the so-called Gaussian beams, for
which a construction can be found for example in [Ral82]. Here, we adapt this construction to
our subelliptic (sub-Riemannian) setting, which does not raise any problem since the normal
geodesics we consider stay in the elliptic part of the operator ∆. It may also be directly justified
with the theory of propagation of complex Lagrangian spaces (see Section 2.2).

In the case of general vector fields X1, . . . , Xm, the existence of spiraling normal geodesics
also has to be justified. For that purpose, we first approximate X1, . . . , Xm by their nilpotent
approximations, and we then prove that for the latters, such a family of spiraling normal geodesics
exists, as in the Heisenberg case.
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2.1.4 Normal geodesics

In this section, we explain in more details what normal geodesics are. As said before, they are
natural extensions of Riemannian geodesics since they are projections of bicharacteristics.

We denote by Smphg(T ∗((0, T ) ×M)) the set of polyhomogeneous symbols of order m with
compact support and by Ψm

phg((0, T )×M) the set of associated polyhomogeneous pseudodiffer-
ential operators of order m whose distribution kernel has compact support in (0, T ) ×M (see
Appendix A).

We set P = ∂2
tt −∆ ∈ Ψ2

phg((0, T )×M), whose principal symbol is

p2(t, τ, x, ξ) = −τ2 + g∗(x, ξ)

with τ the dual variable of t and g∗ the principal symbol of −∆. For ξ ∈ T ∗M , we have (see
Appendix A)

g∗ =

m∑
i=1

h2
Xi .

Here, given any smooth vector field X on M , we denoted by hX the Hamiltonian function
(momentum map) on T ∗M associated with X defined in local (x, ξ)-coordinates by hX(x, ξ) =
ξ(X(x)).

In T ∗(R×M), the Hamiltonian vector field ~Hp2 associated with p2 is given by ~Hp2f = {p2, f}
where {·, ·} denotes the Poisson bracket (see Appendix A). Since ~Hp2p2 = 0, we get that p2 is

constant along the integral curves of ~Hp2 . Thus, the characteristic set C(p2) = {p2 = 0} is

preserved by the flow of ~Hp2 . Null-bicharacteristics are then defined as the maximal integral

curves of ~Hp2 which live in C(p2). In other words, the null-bicharacteristics are the maximal
solutions of 

ṫ(s) = −2τ(s) ,
ẋ(s) = ∇ξg∗(x(s), ξ(s)) ,
τ̇(s) = 0 ,

ξ̇(s) = −∇xg∗(x(s), ξ(s)) ,
τ2(0) = g∗(x(0), ξ(0)).

(2.7)

This definition needs to be adapted when the null-bicharacteristic meets the boundary ∂M , but
in the sequel, we only consider solutions of (2.7) on time intervals where x(t) does not reach
∂M .

In the sequel, we take τ = −1/2, which gives g∗(x(s), ξ(s)) = 1/4. This also implies that
t(s) = s+ t0 and, taking t as a time parameter, we are led to solve

ẋ(t) = ∇ξg∗(x(t), ξ(t)) ,

ξ̇(t) = −∇xg∗(x(t), ξ(t)) ,
g∗(x(0), ξ(0)) = 1

4 .

(2.8)

In other words, the t-variable parametrizes null-bicharacteristics in a way that they are traveled
at speed 1.

Remark 2.10. In the subelliptic setting, the co-sphere bundle S∗M can be decomposed as
S∗M = U∗M ∪ SΣ, where U∗M = {g∗ = 1/4} is a cylinder bundle, Σ = {g∗ = 0} is the
characteristic cone and SΣ is the sphere bundle of Σ (see [CHT18, Section 1]).

We denote by φt : S∗M → S∗M the (normal) geodesic flow defined by φt(x0, ξ0) = (x(t), ξ(t)),
where (x(t), ξ(t)) is a solution of the system given by the first two lines of (2.8) and initial con-
ditions (x0, ξ0). Note that any point in SΣ is a fixed point of φt, and that the other normal
geodesics are traveled at speed 1 since we took g∗ = 1/4 in U∗M (see Remark 2.10).
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The curves x(t) which solve (2.8) are geodesics (i.e. local minimizers) for a sub-Riemannian
metric g (see [Mon02, Theorem 1.14]).

2.1.5 Observability in some regions of phase-space

We have explained in Section 2.1.3 that the existence of solutions of the subelliptic wave equation
(2.1) concentrated on spiraling normal geodesics is an obstruction to observability in Theorem
2.2. Our goal in this section is to state a result ensuring observability if one “removes” in some
sense these normal geodesics.

For this result, we focus on a version of the Heisenberg manifold described in Section 2.1.3
which has no boundary. This technical assumption avoids us using boundary microlocal defect
measures in the proof, which, in this sub-Riemannian setting, are difficult to handle. As a
counterpart, we need to consider solutions of the wave equation with null initial average, in
order to get well-posedness.

We consider the Heisenberg group G, that is R3 with the composition law

(x1, x2, x3) ? (x′1, x
′
2, x
′
3) = (x1 + x′1, x2 + x′2, x3 + x′3 − x1x

′
2).

Then X1 = ∂x1 and X2 = ∂x2 − x1∂x3 are left invariant vector fields on G. Since Γ =√
2πZ×

√
2πZ× 2πZ is a co-compact subgroup of G, the left quotient MH = Γ\G is a compact

three dimensional manifold and, moreover, X1 and X2 are well-defined as vector fields on the
quotient. We call MH endowed with the vector fields X1 and X2 the “Heisenberg manifold
without boundary”. Finally, we define the Heisenberg Laplacian ∆H = X2

1 +X2
2 on MH . Since

[X1, X2] = −∂x3 , it is a hypoelliptic operator. We endow MH with an arbitrary smooth volume
µ.

We introduce the space

L2
0 =

{
u0 ∈ L2(MH),

∫
MH

u0 dµ = 0

}
and we consider the operator ∆H whose domain D(∆H) is the completion in L2

0 of the set of all
u ∈ C∞c (MH) with null-average for the norm ‖(Id −∆H)u‖L2 . Then, −∆H is definite positive

and we consider (−∆H)
1
2 with domain D((−∆H)

1
2 ) = H0 := L2

0 ∩ H(MH). The wave equation{
∂2
ttu−∆Hu = 0 in R×MH

(u|t=0, ∂tu|t=0) = (u0, u1) ∈ D((−∆H)
1
2 )× L2

0

(2.9)

admits a unique solution u ∈ C0(R;D((−∆H)
1
2 )) ∩ C1(R;L2

0).

We note that −∆H is invertible in L2
0. The spaceH0 is endowed with the norm ‖u‖H (defined

in (2.3) and also equal to ‖(−∆H)
1
2u‖L2), and its topological dual H′0 is endowed with the norm

‖u‖H′0 := ‖(−∆H)−
1
2u‖L2 .

We note that g∗(x, ξ) = ξ2
1 + (ξ2 − x1ξ3)2 and hence the null-bicharacteristics are solutions

of
ẋ1(t) = 2ξ1, ξ̇1(t) = 2ξ3(ξ2 − x1ξ3),

ẋ2(t) = 2(ξ2 − x1ξ3), ξ̇2(t) = 0,

ẋ3(t) = −2x1(ξ2 − x1ξ3), ξ̇3(t) = 0.

(2.10)

The spiraling normal geodesics described in Section 2.1.3 correspond to ξ1 = cos(t/ε)/2, ξ2 = 0
and ξ3 = 1/(2ε). In particular, the constant ξ3 is a kind of rounding number reflecting the fact
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that the normal geodesic spirals at a certain speed around the x3 axis. Moreover, ξ3 is preserved
under the flow (somehow, the Heisenberg flow is completely integrable), and this property plays
a key role in the proof of Theorem 2.11 below and justifies that we state it only for the Heisenberg
manifold (without boundary).

As said above, normal geodesics corresponding to a large momentum ξ3 are precisely the ones
used to contradict observability in Theorem 2.2. We expect to be able to establish observability
if we consider only solutions of (2.1) whose ξ3 (in a certain sense) is not too large. This is the
purpose of our second main result.

Set

Vε =

{
(x, ξ) ∈ T ∗MH : |ξ3| >

1

ε
(g∗x(ξ))1/2

}
Note that since ξ3 is constant along null-bicharacteristics, Vε and its complementary V c

ε are
invariant under the bicharacteristic equations (2.10).

In the next statement, we call horizontal strip the periodization under the action of the
co-compact subgroup Γ of a set of the form

{(x1, x2, x3) : (x1, x2) ∈ [0,
√

2π)2, x3 ∈ I}

where I is a strict open subinterval of [0, 2π).

Theorem 2.11. Let B ⊂ MH be an open subset and suppose that B is sufficiently small, so
that ω = MH\B contains a horizontal strip. Let a ∈ S0

phg(T
∗MH), a > 0, such that, denoting

by j : T ∗ω → T ∗MH the canonical injection,

j(T ∗ω) ∪ Vε ⊂ Supp(a) ⊂ T ∗MH ,

and in particular a does not depend on time. There exists κ > 0 such that for any ε > 0 and
any T > κε−1, there holds

C‖(u(0), ∂tu(0))‖2H0×L2
0
6
∫ T

0
|(Op(a)∂tu, ∂tu)L2 | dt + ‖(u(0), ∂tu(0))‖2L2

0×H′0
(2.11)

for some C = C(ε, T ) > 0 and for any solution u ∈ C0(R;D((−∆H)
1
2 )) ∩ C1(R;L2

0) of (2.9).

The term ‖(u0, u1)‖2L2×H′0
in the right-hand side of (2.11) cannot be removed, i.e. our

statement only consists in a weak observability inequality. Indeed, the usual way to remove such
terms is to use a unique continuation argument for eigenfunctions ϕ of ∆, but here it does not
work since Op(a)ϕ = 0 does not imply in general that ϕ ≡ 0 in the whole manifold, even if
the support of a contains j(T ∗ω) for some non-empty open set ω: in some sense, there is no
“pseudodifferential unique continuation argument”.

2.1.6 Comments on the existing literature

Elliptic and subelliptic waves. The exact controllability/observability of the elliptic wave
equation is known to be almost equivalent to the so-called Geometric Control Condition (GCC)
(see [BLR92]) that any geodesic enters the control set ω within time T . In some sense, our
main result is that GCC is not verified in the subelliptic setting, as soon as M\ω contains in
its interior a point x at which ∆ is “truly subelliptic”. For the elliptic wave equation, in many
geometrical situations, there exists a minimal time T0 > 0 such that observability holds only for
T > T0: when there exists a geodesic γ : (0, T0) → M traveled at speed 1 which does not meet
ω, one constructs a sequence of initial data (uk0, u

k
1)k∈N∗ of the wave equation whose associated
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microlocal defect measure is concentrated on (x0, ξ0) ∈ S∗M taken to be the initial conditions for
the null-bicharacteristic projecting onto γ. Then, the associated sequence of solutions (uk)k∈N∗

of the wave equation has an associated microlocal defect measure ν which is invariant under the
geodesic flow: ~Hpν = 0 where ~Hp is the Hamiltonian flow associated to the principal symbol p
of the wave operator. In particular, denoting by π : T ∗M → M the canonical projection, π∗ν
gives no mass to ω since γ is contained in M \ω, and this proves that observability cannot hold.

In the subelliptic setting, the invariance property ~Hpν = 0 does not give any information on

ν on the characteristic manifold Σ, since ~Hp = −2τ∂t +~g∗ vanishes on Σ. This is related to the
lack of information on propagation of singularities in this characteristic manifold, see the main
theorem of [Las82]. If one instead tries to use the propagation of the microlocal defect measure
for subelliptic half-wave equations, one is immediately confronted with the fact that

√
−∆ is

not a pseudodifferential operator near Σ.

This is why, in this chapter, we used only the elliptic part of the symbol g∗ (or, equivalently,
the strictly hyperbolic part of p2), where the propagation properties can be established, and
then the problem is reduced to proving geometric results on normal geodesics.

Subelliptic Schrödinger equations. The recent article [BS19] deals with the same ob-
servability problem, but for subelliptic Schrödinger equations: namely, the authors consider
the (Baouendi)-Grushin Schrödinger equation i∂tu − ∆Gu = 0, where u ∈ L2((0, T ) ×MG),
MG = (−1, 1)x × Ty and ∆G = ∂2

x + x2∂2
y is the Baouendi-Grushin Laplacian. Given a con-

trol set of the form ω = (−1, 1)x × ωy, where ωy is an open subset of T, the authors prove
the existence of a minimal time of control L(ω) related to the maximal height of a horizontal
strip contained in MG\ω. The intuition is that there are solutions of the Baouendi-Grushin
Schrödinger equation which travel along the degenerate line x = 0 at a finite speed: in some
sense, along this line, the Schrödinger equation behaves like a classical (half)-wave equation.
What we want here is to explain in a few words why there is a minimal time of observability for
the Schrödinger equation, while the wave equation is never observable in finite time as shown
by Theorem 2.2.

The plane R2
x,y endowed with the vector fields ∂x and x∂y also admits normal geodesics

similar to the 1-parameter family qε, namely, for ε > 0,

x(t) = ε sin(t/ε)

y(t) = ε(t/2− ε sin(2t/ε)/4)

These normal geodesics, denoted by γε, also “spiral” around the line x = 0 more and more
quickly as ε → 0, and so we might expect to construct solutions of the Baouendi-Grushin
Schrödinger equation with energy concentrated along γε, which would contradict observability
when ε→ 0 as above for the Heisenberg wave equation.

However, we can convince ourselves that it is not possible to construct such solutions: in
some sense, the dispersion phenomena of the Schrödinger equation exactly compensate the
lengthening of the normal geodesics γε as ε → 0 and explain that even these Gaussian beams
may be observed in ω from a certain minimal time L(ω) > 0 which is uniform in ε.

To put this argument into a more formal form, we consider the solutions of the bicharacteristic
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equations for the Baouendi-Grushin Schrödinger equation i∂tu−∆Gu = 0 given by

x(t) = ε sin(ξyt)

y(t) = ε2ξy

(
t

2
− sin(2ξyt)

4ξy

)
ξx(t) = εξy cos(ξyt)

ξy(t) = ξy.

It follows from the hypoellipticity of ∆G (see [BS19, Section 3] for a proof) that

|ξy|1/2 .
√
−∆G = (|ξx|2 + x2|ξy|2)1/2 = ε|ξy|.

Therefore ε2|ξy| & 1, and hence |y(t)| & t, independently from ε and ξy. This heuristic gives the
intuition that a minimal time L(ω) is required to detect all solutions of the Baouendi-Grushin
Schödinger equation from ω, but that for T0 > L(ω), no solution is localized enough to stay in
M\ω during the time interval (0, T0). Roughly speaking, the frequencies of order ξy travel at
speed ∼ ξy, which is typical for a dispersion phenomenon. This picture is very different from the
one for the wave equation (which we consider in this chapter) for which no dispersion occurs.

With similar ideas, in [LS20], the interplay between the subellipticity effects measured by
the non-holonomic order of the distribution D (see Section 2.3.1) and the strength of dispersion
of Schrödinger-type equations was investigated. More precisely, for ∆γ = ∂2

x + |x|2γ∂2
y on M =

(−1, 1)x × Ty, and for s ∈ N, the observability properties of the Schrödinger-type equation
(i∂t − (−∆γ)s)u = 0 were shown to depend on the value κ = 2s/(γ + 1). In particular it is
proved that, for κ < 1, observability fails for any time, which is consistent with the present result,
and that for κ = 1, observability holds only for sufficiently large times, which is consistent with
the result of [BS19]. The results of [LS20] are somehow Schrödinger analogues of the results of
[BCG14] which deal with a similar problem for the Baouendi-Grushin heat equation.

General bibliographical comments. Control of subelliptic PDEs has attracted much atten-
tion in the last decade. Most results in the literature deal with subelliptic parabolic equations,
either the Baouendi-Grushin heat equation ([Koe17], [DK20], [BDE20]) or the heat equation
in the Heisenberg group ([BC17], see also references therein). The paper [BS19] is the first to
deal with a subelliptic Schrödinger equation and the present work is the first to handle exact
controllability of subelliptic wave equations.

A slightly different problem is the approximate controllability of hypoelliptic PDEs, which has
been studied in [LL20] for hypoelliptic wave and heat equations. Approximate controllability is
weaker than exact controllability, and it amounts to proving “quantitative” unique continuation
results for hypoelliptic operators. For the hypoelliptic wave equation, it is proved in [LL20] that
for T > 2 supx∈M (dist(x, ω)) (here, dist is the sub-Riemannian distance), the observation of the
solution on (0, T )× ω determines the initial data, and therefore the whole solution.

2.1.7 Organization of the chapter

In Section 2.2, we construct exact solutions of the subelliptic wave equation (2.1) concentrating
on any given normal geodesic. First, in Section 2.2.1, we show that, given any normal geodesic
t 7→ x(t) which does not hit ∂M in the time interval (0, T ), it is possible to construct a sequence
(vk)k∈N of approximate solutions of (2.1) whose energy concentrates along t 7→ x(t) during the
time interval (0, T ) as k → +∞. By “approximate”, we mean here that ∂2

ttvk−∆vk is small, but
not necessarily exactly equal to 0. In Section 2.2.1, we provide a first proof for this construction
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using the classical propagation of complex Lagrangian spaces. An other proof using a Gaussian
beam approach is provided in Section 2-A.1. Then, in Section 2.2.2, using this sequence (vk)k∈N,
we explain how to construct a sequence (uk)k∈N of exact solutions of (∂2

tt −∆)u = 0 in M with
the same concentration property along the normal geodesic t 7→ x(t).

In Section 2.3, we prove the existence of normal geodesics which spiral in M , spending an
arbitrarily large time in M\ω. These normal geodesics generalize the example described in
Section 2.1.3 for the Heisenberg manifold with boundary. The proof proceeds in two steps: first,
we show that it is sufficient to prove the result in the so-called “nilpotent case” (Section 2.3.2),
and then we prove it in the nilpotent case (Section 2.3.3).

In Section 2.4.1, we use the results of Section 2.2 and Section 2.3 to conclude the proof
of Theorem 2.2. In Section 2.4.2, we deduce Corollary 2.4 by a duality argument. Finally, in
Section 2.4.3, we prove Theorem 2.11.

2.2 Gaussian beams along normal geodesics

2.2.1 Construction of sequences of approximate solutions

We consider a solution (x(t), ξ(t))t∈[0,T ] of (2.8) on M . We shall describe the construction of
solutions of

∂2
ttu−∆u = 0 (2.12)

on [0, T ]×M with energy

E(u(t, ·)) :=
1

2

∫
M

(
|∂tu(t, x)|2 + |∇sRu(t, x)|2

)
dµ(x)

concentrated along x(t) for t ∈ [0, T ]. The following proposition, which is inspired by [Ral82]
and [MZ02], shows that it is possible, at least for approximate solutions of (2.12).

Proposition 2.12. Fix T > 0 and let (x(t), ξ(t))t∈[0,T ] be a solution of (2.8) (in particular
g∗(x(0), ξ(0)) = 1/4) which does not hit the boundary ∂M in the time-interval (0, T ). Then
there exist a0, ψ ∈ C2((0, T )×M) such that, setting, for k ∈ N,

vk(t, x) = k
n
4
−1a0(t, x)eikψ(t,x)

the following properties hold:

• vk is an approximate solution of (2.12), meaning that

‖∂2
ttvk −∆vk‖L1((0,T );L2(M)) 6 Ck−

1
2 . (2.13)

• The energy of vk is bounded below with respect to k and t ∈ [0, T ]:

∃A > 0, ∀t ∈ [0, T ], lim inf
k→+∞

E(vk(t, ·)) > A. (2.14)

• The energy of vk is small off x(t): for any t ∈ [0, T ], we fix Vt an open subset of M for
the initial topology of M , containing x(t), so that the mapping t 7→ Vt is continuous (Vt is
chosen sufficiently small so that this makes sense in a chart). Then

sup
t∈[0,T ]

∫
M\Vt

(
|∂tvk(t, x)|2 + |∇sRvk(t, x)|2

)
dµ(x) →

k→+∞
0. (2.15)
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Remark 2.13. The construction of approximate solutions such as the ones provided by Propo-
sition 2.12 is usually done for strictly hyperbolic operators, that is operators with a principal
symbol pm of order m such that the polynomial f(s) = pm(t, q, s, ξ) has m distinct real roots
when ξ 6= 0 (see for example [Ral82]). The operator ∂2

tt−∆ is not strictly hyperbolic because g∗

is degenerate, but our proof shows that the same construction may be adapted without difficulty
to this operator along normal bicharacteristics. This is due to the fact that along normal bichar-
acteristics, ∂2

tt − ∆ is indeed strictly hyperbolic (or equivalently, ∆ is elliptic). It was already
noted by [Ral82] that the construction of Gaussian beams could be done for more general oper-
ators than strictly hyperbolic ones, and that the differences between the strictly hyperbolic case
and more general cases arise while dealing with propagation of singularities. Also, in [Hor07b,
Chapter 24.2], it was noticed that “since only microlocal properties of p2 are important, it is
easy to see that hyperbolicity may be replaced by ∇ξp2 6= 0”.

Hereafter we provide two proofs of Proposition 2.12. The first proof is short and is actu-
ally quite straightforward for readers acquainted with the theory of propagation of complex
Lagrangian spaces, once one has noticed that the solutions of (2.8) which we consider live in the
elliptic part of the principal symbol of −∆. For the sake of completeness, and because this also
has its own interest, we provide in Section 2-A.1 a second proof, longer but more elementary and
accessible without any knowledge of complex Lagrangian spaces; it relies on the construction of
Gaussian beams in the subelliptic context. The two proofs follow parallel paths, and indeed, the
computations which are only sketched in the first proof are written in full details in the second
proof, given in Section 2-A.1.

First proof of Proposition 2.12. The construction of Gaussian beams, or more generally of a
WKB approximation, is related to the transport of complex Lagrangian spaces along bicharac-
teristics, as reported for example in [Hor07b, Chapter 24.2] and [Ivr19, Volume I, Part I, Chapter
1.2]. Our proof follows the lines of [Hor07b, pages 426-428].

A usual way to solve (at least approximately) evolution equations of the form

Pu = 0 (2.16)

where P is a hyperbolic second order differential operator with real principal symbol and C∞

coefficients is to search for oscillatory solutions

vk(x) = k
n
4
−1a0(x)eikψ(x). (2.17)

In this expression as in the rest of the proof, we suppress the time variable t. Thus, we use
x = (x0, x1, . . . , xn) where x0 = t in the earlier notations, and we set x′ = (x1, . . . , xn). Similarly,
we take the notation ξ = (ξ0, ξ1, . . . , ξn) where ξ0 = τ previously, and ξ′ = (ξ1, . . . , ξn). The
bicharacteristics are parametrized by s as in (2.7), and without loss of generality, we only consider
bicharacteristics with x(0) = 0 at s = 0, which implies in particular x0(s) = s because of our
choice τ2(s) = g∗(x(s), ξ(s)) = 1/4.

Taking charts of M , we can assume M ⊂ Rn. The precise argument for reducing to this case
is written at the end of Section 2-A.1. Also, in the sequel, P = ∂2

tt −∆.

Plugging the Ansatz (2.17) into (2.16), we get

Pvk = (k
n
4

+1A1 + k
n
4A2 + k

n
4
−1A3)eikψ (2.18)

with

A1(x) = p2 (x,∇ψ(x)) a0(x)

A2(x) = La0(x)

A3(x) = ∂2
tta0(x)−∆a0(x).
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and L is a transport operator given by

La0 =
1

i

n∑
j=0

∂p2

∂ξj
(x,∇ψ(x))

∂a0

∂xj
+

1

2i

 n∑
j,k=0

∂2p2

∂ξj∂ξk
(x,∇ψ(x))

∂2ψ

∂xj∂xk

 a0. (2.19)

In order for vk to be an approximate solution of P , we are first led to cancel the higher order
term in (2.18), i.e.,

f(x) := p2(x,∇ψ(x)) = 0 (2.20)

which we solve for initial conditions

ψ(0, x′) = ψ0(x′), ∇ψ0(0) = ξ′(0) and ψ0(0) = 0 (2.21)

(i.e., we fix such a ψ0, and then we solve (2.20) for ψ). Indeed, it will be sufficient for our purpose
for (2.20) to be verified at second order along the curve x(s), i.e., Dα

xf(x(s)) = 0 for any |α| 6 2
and any s. For that, we first notice that the choice ∇ψ(x(s)) = ξ(s) ensures that (2.20) holds
at orders 0 and 1 along the curve s 7→ x(s) (see Section 2-A.1 for detailed computations). Now,
we explain how to choose D2ψ(x(s)) adequately in order for (2.20) to hold at order 2.

We use the decomposition of p2 into

p2(x0, x
′, ξ0, ξ

′) = −(ξ0 − r(x′, ξ′))(ξ0 + r(x′, ξ′)) +R(x′, ξ′)

where r =
√
g∗ in a conic neighborhood of (0, ξ(0)). Note that

√
g∗ is smooth in small conic

neighborhoods of (0, ξ(0)) since g∗(0, ξ(0)) = 1/4 6= 0. Indeed, g∗ is elliptic along the whole
bicharacteristic since g∗(x(t), ξ(t)) = 1/4 is preserved by the bicharacteristic flow. The rest term
R(x′, ξ′) is smooth and microlocally supported far from the bicharacteristic, i.e., R(x′, ξ′) = 0
for any (x′, ξ′) ∈ T ∗M in a conic neighborhood of (x′(s), ξ′(s)) for s ∈ [0, T ].

We consider the bicharacteristic γ+ starting at (0, 0, r(0, ξ′(0)), ξ′(0)) and the bicharacteristic
γ− starting at (0, 0,−r(0, ξ′(0)), ξ′(0)).

We denote by Φ±(x0, y
′, η′) the solution of the Hamilton equations with HamiltonianH±(x0, x

′, ξ′) =
ξ0 ∓ r(x′, ξ′) and initial datum (x′, ξ′) = (y′, η′) at x0 = 0. In other words, Φ±(x0, y

′, η′) =

ex0
~H±(0, y′, η′). Then, for any s, Φ(s, ·) is well-defined and symplectic from a neighborhood of

(0, ξ′(0)) to a neighborhood of H±(s, 0, ξ′(0)).

The solution ψ(s, ·) of (2.20) and (2.21) is equal to 0 on γ± and ∇ψ(s, ·) is obtained by the
transport of the values of ∇ψ0 by Φ±(s, ·). In other words, to compute ∇ψ(s, ·), one transports
the Lagrangian sub-space Λ0 = {(x′,∇ψ0(x′))} along the Hamiltonian flow ~H± during a time s,
which yields Λs ⊂ T ∗M , and then, if possible, one writes Λs under the form {(x′,∇x′ψ(s, x′))},
which gives ∇x′ψ(s, x′). The trouble is that the solution is only local in time: when x′ 7→
π(Φ±(s, x′,∇ψ0(x′))) ceases to be a diffeomorphism (conjugate point), where π : T ∗M → M is
the canonical projection, we see that the process described above does not work (appearance of
caustics). In the language of Lagrangian spaces, Λ0 = {(x′,∇ψ0(x′))} ⊂ T ∗M is a Lagrangian
subspace and, since Φ±(s, ·) is a symplectomorphism, Λs = Φ±(s,Λ0) is Lagrangian as well. If
π|Λs is a local diffeomorphism, one can locally describe Λs by Λs = {(x′,∇x′ψ(s, x′))} ⊂ T ∗M
for some function ψ(s, ·), but blow-up happens when rank(dπ|Λs) < n (classical conjugate point
theory), and such a ψ(s, ·) may not exist.

However, if the phase ψ0 is complex, quadratic, and satisfies the condition Im(D2ψ0) > 0,
where D2ψ0 denotes the Hessian, no blow-up happens, and the solution is global in time. Let
us explain why. Indeed, Λ0 = {(x′,∇ψ0(x′))} then lives in the complexification of the tangent
space T ∗M , which may be thought of as C2(n+1). We take coordinates (y, η) on T ∗Rn+1 or
T ∗Cn+1 and we consider the symplectic forms defined by σ =

∑
dyj ∧dηj and σC =

∑
dyj ∧dηj .



56 CHAPTER 2. SUBELLIPTIC WAVE EQUATIONS ARE NEVER OBSERVABLE

Because of the condition Im(D2ψ0) > 0, Λ0 is called a “strictly positive Lagrangian space”
(see [Hor07b, Definition 21.5.5]), meaning that iσC(v, v) > 0 for v in the tangent space to Λ0.
For any s, the symplectic forms σ and σC are preserved by Φ(s, ·), meaning that Φ(s, ·)∗σ = σ
and Φ(s, ·)∗σC = σC, therefore σ = 0 on the tangent space to Λs, and iσC(v, v) > 0 for v
tangent to Λs. It precisely means that Λs is also a strictly positive Lagrangian space. Then,
by [Hor07b, Proposition 21.5.9], we know that there exists ψ(s, ·) complex and quadratic with
Im(D2ψ(s, ·)) > 0 such that Λs = {(x′,∇x′ψ(s, x′))} (to apply [Hor07b, Proposition 21.5.9],
recall that for ϕ(x′) = 1

2(Ax′, x′), there holds ∇ϕ(x′) = Ax′). In other words, the key point in
using complex phases is that strictly positive Lagrangian spaces are parametrized by complex
quadratic phases ϕ with Im(D2ϕ) > 0, whereas real Lagrangian spaces were not parametrized
by real phases (see explanations above). This parametrization is a diffeomorphism from the
Grassmannian of strictly positive Lagrangian spaces to the space of complex quadratic phases
with ϕ with Im(D2ϕ) > 0. Hence, the phase

ψ(s, y′) = ∇x′ψ(x(s)) · (y′ − x′(s)) +
1

2
(y′ − x′(s)) ·D2

x′ψ(s, x′(s))(y′ − x′(s))

for s ∈ [0, T ] and y′ ∈ Rn is smooth and for this choice, (2.20) is satisfied at second order along
s 7→ x(s) (the rest R(x′, ξ′) plays no role since it vanishes in a neighborhood of s 7→ x(s)).

Then, we note that A2 vanishes along the bicharacteristic if and only if La0(x(s)) = 0 (see
also [Hor07b, Equation (24.2.9)]). According to (2.19), this turns out to be a linear transport
equation on a0(x(s)), with leading coefficient ∇ξp2(x(s), ξ(s)) different from 0. Given a 6= 0 at
(t = 0, x′ = x′(0)), this transport equation has a solution a0(x(s)) with initial datum a, and,
by Cauchy uniqueness, a0(x(s)) 6= 0 for any s. We can choose a0 in a smooth (and arbitrary)
way outside the bicharacteristic. We choose it to vanish outside a small neighborhood of this
bicharacteristic, so that no boundary effect happens.

With these choices of ψ and a0, the bound (2.13) then follows from the following result whose
proof is given in [Ral82, Lemma 2.8].

Lemma 2.14. Let c(x) be a function on Rn+1 which vanishes at order S − 1 on a curve Γ for
some S > 1. Suppose that Supp c ∩ {|x0| 6 T} is compact and that Im ψ(x) > ad(x)2 on this
set for some constant a > 0, where d(x) denotes the distance from the point x ∈ Rd+1 to the
curve Γ. Then there exists a constant C such that∫

|x0|6T

∣∣∣c(x)eikψ(x)
∣∣∣2 dx 6 Ck−S−n/2.

Let us now sketch the end of the proof, which is given in Section 2-A.1 in full details. We
apply Lemma 2.14 to S = 3, c = A1 and to S = 1, c = A2, and we get

‖∂2
ttvk −∆vk‖L1(0,T ;L2(M)) 6 C(k−

1
2 + k−

1
2 + k−1),

which implies (2.13). The bounds (2.14) and (2.15) follow from the facts that Im(D2ψ(s, ·)) > 0
and vk(x) = k

n
4
−1a0(x)eikψ(x).

Remark 2.15. An interesting question would be to understand the delocalization properties
of the Gaussian beams constructed along normal geodesics in Proposition 2.12. Compared with
the usual Riemannian case done for example in [Ral82], there is a new phenomenon in the
sub-Riemannian case since the normal geodesic x(t) (or, more precisely, its lift to S∗M) may
approach the characteristic manifold Σ = {g∗ = 0} which is the set of directions in which ∆ is not
elliptic. In finite time T as in our case, the lift of the normal geodesic remains far from Σ, but it
may happen as T → +∞ that it goes closer and closer to Σ. The question is then to understand
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the link between the delocalization properties of the Gaussian beams constructed along such a
normal geodesic, and notably the interplay between the time T and the semi-classical parameter
1/k.

2.2.2 Construction of sequences of exact solutions in M

In this section, using the approximate solutions of Proposition 2.2.1, we construct exact solutions
of (2.12) whose energy concentrates along a given normal geodesic of M which does not meet
the boundary ∂M during the time interval [0, T ].

Proposition 2.16. Let (x(t), ξ(t))t∈[0,T ] be a solution of (2.8) in M (in particular g∗(x(0), ξ(0)) =
1/4) which does not meet ∂M . Let θ ∈ C∞c ([0, T ]×M) with θ(t, ·) ≡ 1 in a neighborhood of x(t)
and such that the support of θ(t, ·) stays at positive distance of ∂M .

Suppose (vk)k∈N is constructed along x(t) as in Proposition 2.12 and uk is the solution of
the Cauchy problem 

(∂2
tt −∆)uk = 0 in (0, T )×M,

uk = 0 in (0, T )× ∂M,
uk|t=0 = (θvk)|t=0, ∂tuk|t=0 = [∂t(θvk)]|t=0.

Then:

• The energy of uk is bounded below with respect to k and t ∈ [0, T ]:

∃A > 0, ∀t ∈ [0, T ], lim inf
k→+∞

E(uk(t, ·)) > A. (2.22)

• The energy of uk is small off x(t): for any t ∈ [0, T ], we fix Vt an open subset of M for
the initial topology of M , containing x(t), so that the mapping t 7→ Vt is continuous (Vt is
chosen sufficiently small so that this makes sense in a chart). Then

sup
t∈[0,T ]

∫
M\Vt

(
|∂tuk(t, x)|2 + |∇sRuk(t, x)|2

)
dµ(x) →

k→+∞
0. (2.23)

Proof of Proposition 2.16. Set hk = (∂2
tt −∆)(θvk). We consider wk the solution of the Cauchy

problem 
(∂2
tt −∆)wk = hk in (0, T )×M,

wk = 0 in (0, T )× ∂M,
(wk|t=0, ∂twk|t=0) = (0, 0) .

(2.24)

Differentiating E(wk(t, ·)) and using Gronwall’s lemma, we get the energy inequality

sup
t∈[0,T ]

E(wk(t, ·)) 6 C
(
E(wk(0, ·)) + ‖hk‖L1(0,T ;L2(M))

)
.

Therefore, using (2.13), we get supt∈[0,T ]E(wk(t, ·)) 6 Ck−1. Since uk = θvk − wk, we obtain
that

lim
k→+∞

E(uk(t, ·)) = lim
k→+∞

E((θvk)(t, ·)) = lim
k→+∞

E(vk(t, ·))

for every t ∈ [0, T ] where the last equality comes from the fact that θ and its derivatives are
bounded and ‖vk‖L2 6 Ck−1 when k → +∞. Using (2.14), we conclude that (2.22) holds.
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To prove (2.23), we observe similarly that

sup
t∈[0,T ]

∫
M\Vt

(
|∂tuk(t, x)|2 + |∇sRuk(t, x)|2

)
dµ(x)

6 C sup
t∈[0,T ]

(∫
M\Vt

(
|∂tvk(t, x)|2 + |∇sRvk(t, x)|2

)
dµ(x)

)
+ Ck−

1
2

→ 0

as k → +∞, according to (2.15). It concludes the proof of Proposition 2.16.

2.3 Existence of spiraling normal geodesics

The goal of this section is to prove the following proposition, which is the second building block
of the proof of Theorem 2.2, after the construction of localized solutions of the subelliptic wave
equation (2.1) done in Section 2.2.

We say that X1, . . . , Xm satisfies the property (P) at q ∈M if the following holds:

(P) For any open neighborhood V of q, for any T0 > 0, there exists a non-stationary normal
geodesic t 7→ x(t), traveled at speed 1, such that x(t) ∈ V for any t ∈ [0, T0].

Proposition 2.17. At any point q ∈M such that there exist 1 6 i, j 6 m with [Xi, Xj ](q) /∈ Dq,
property (P) holds.

In Section 2.3.1, we define the so-called nilpotent approximations X̂q
1 , . . . , X̂

q
m at a point

q ∈ M , which are first-order approximations of X1, . . . , Xm at q ∈ M such that the associated
Lie algebra Lie(X̂q

1 , . . . , X̂
q
m) is nilpotent. Roughly, we have X̂q

i ≈ Xi(q), but low order terms

of Xi(q) are not taken into account for defining X̂q
i , so that the high order brackets of the X̂q

i

vanish (which is not generally the case for the Xi). These nilpotent approximations are good
local approximations of the vector fields X1, . . . , Xm, and their study is much simpler.

The proof of Proposition 2.17 splits into two steps: first, we show that it is sufficient to prove
the result in the nilpotent case (Section 2.3.2), then we handle this simpler case (Section 2.3.3).

2.3.1 Nilpotent approximation

In this section, we recall the construction of the nilpotent approximations X̂q
1 , . . . , X̂

q
m. The

definitions we give are classical, and the reader can refer to [ABB19, Chapter 10] and [Jea14,
Chapter 2] for more material on this section. This construction is related to the notion of
tangent space in the Gromov-Hausdorff sense of a sub-Riemannian structure (M,D, g) at a point
q ∈ M ; the tangent space is defined intrinsically (meaning that it does not depend on a choice
of coordinates or of local frame) as an equivalence class under the action of sub-Riemannian
isometries (see [Bel96], [Jea14]).

Sub-Riemannian flag. We define the sub-Riemannian flag as follows: we set D0 = {0},
D1 = D, and, for any j > 1, Dj+1 = Dj + [D,Dj ]. For any point q ∈M , it defines a flag

{0} = D0
q ⊂ D1

q ⊂ . . . ⊂ Dr−1
q  Dr(q)q = TqM.

The integer r(q) is called the non-holonomic order of D at q, and it is equal to 2 everywhere
in the Heisenberg manifold for example. Note that it depends on q, see Example 2.5 in Section
2.1.2 (the Baouendi-Grushin example).
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For 0 6 i 6 r(q), we set ni(q) = dimDiq, and the sequence (ni(q))06i6r(q) is called the growth

vector at point q. We set Q(q) =
∑r(q)

i=1 i(ni(q) − ni−1(q)), which is generically the Hausdorff
dimension of the metric space given by the sub-Riemannian distance on M (see [Mit85]). Finally,
we define the non-decreasing sequence of weights wi(q) for 1 6 i 6 n as follows. Given any
1 6 i 6 n, there exists a unique 1 6 j 6 n such that nj−1(q) + 1 6 i 6 nj(q). We set wi(q) = j.
For example, for any q in the Heisenberg manifold, w1(q) = w2(q) = 1 and w3(q) = 2: indeed,
the coordinates x1 and x2 have “weight 1”, while the coordinate x3 has “weight 2” since ∂x3

requires a bracket to be generated.

Regular and singular points. We say that q ∈ M is regular if the growth vector
(ni(q

′))06i6r(q′) at q′ is constant for q′ in a neighborhood of q. Otherwise, q is said to be
singular. If any point q ∈ M is regular, we say that the structure is equiregular. For example,
the Heisenberg manifold is equiregular, but not the Baouendi-Grushin example.

Non-holonomic orders. The non-holonomic order of a smooth germ of function is given
by the formula

ordq(f) = min{s ∈ N : ∃i1, . . . , is ∈ {1, . . . ,m} such that (Xi1 . . . Xisf)(q) 6= 0}

where we adopt the convention that min ∅ = +∞.

The non-holonomic order of a smooth germ of vector field X at q, denoted by ordq(X), is
the real number defined by

ordq(X) = sup{σ ∈ R : ordq(Xf) > σ + ordq(f), ∀f ∈ C∞(q)}.

For example, there holds ordq([X,Y ]) > ordq(X) + ordq(Y ) and ordq(fX) > ordq(f) + ordq(X).
As a consequence, every X which has the property that X(q′) ∈ Diq′ for any q′ in a neighborhood
of q is of non-holonomic order > −i.

Privileged coordinates. Locally around q ∈ M , it is possible to define a set of so-called
“privileged coordinates” of M (see [Bel96]).

A family (Z1, . . . , Zn) of n vector fields is said to be adapted to the sub-Riemannian flag at

q if it is a frame of TqM at q and if Zi(q) ∈ Dwi(q)q for any i ∈ {1, . . . , n}. In other words, for
any i ∈ {1, . . . , r(q)}, the vectors Z1, . . . , Zni(q) at q span Diq.

A system of privileged coordinates at q is a system of local coordinates (x1, . . . , xn) such
that

ordq(xi) = wi, for 1 6 i 6 n. (2.25)

In particular, for privileged coordinates, we have ∂xi ∈ D
wi(q)
q \Dwi(q)−1

q at q, meaning that
privileged coordinates are adapted to the flag.

Example: exponential coordinates of the second kind. Choose an adapted frame
(Z1, . . . , Zn) at q. It is proved in [Jea14, Appendix B] that the inverse of the local diffeomorphism

(x1, . . . , xn) 7→ exp(x1Z1) ◦ · · · ◦ exp(xnZn)(q)

defines privileged coordinates at q, called exponential coordinates of the second kind.

Dilations. We consider a chart of privileged coordinates at q given by a smooth mapping
ψq : U → Rn, where U is a neighborhood of q in M , with ψq(q) = 0. For every ε ∈ R\{0}, we
consider the dilation δε : Rn → Rn defined by

δε(x) = (εwi(q)x1, . . . , ε
wn(q)xn)
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for every x = (x1, . . . , xn). A dilation δε acts also on functions and vector fields on Rn by pull-
back: δ∗εf = f◦δε and δ∗εX is the vector field such that (δ∗εX)(δ∗εf) = δ∗ε(Xf) for any f ∈ C1(Rn).
In particular, for any vector field X of non-holonomic order k, there holds δ∗εX = ε−kX.

Nilpotent approximation. Fix a system of privileged coordinates (x1, . . . , xn) at q. Given
a sequence of integers α = (α1, . . . , αn), we define the weighted degree of xα = xα1

1 . . . xαnn to be
w(α) = w1(q)α1 + . . . + wn(q)αn. Coming back to the vector fields X1, . . . , Xm, we can write
the Taylor expansion

Xi(x) ∼
∑
α,j

aα,jx
α∂xj . (2.26)

Since Xi ∈ D, its non-holonomic order is necessarily −1, hence there holds w(α) > wj(q)− 1 if
aα,j 6= 0. Therefore, we may write Xi as a formal series

Xi = X
(−1)
i +X

(0)
i +X

(1)
i + . . .

where X
(s)
i is a homogeneous vector field of degree s, meaning that

δ∗ε(ψq)∗X
(s)
i = εs(ψq)∗X

(s)
i .

We set X̂q
i = (ψq)∗X

(−1)
i for 1 6 i 6 m. Then X̂q

i is homogeneous of degree −1 with respect

to dilations, i.e., δ∗εX̂
q
i = ε−1X̂q

i for any ε 6= 0. Each X̂q
i may be seen as a vector field on Rn

thanks to the coordinates (x1, . . . , xn). Moreover,

X̂q
i = lim

ε→0
εδ∗ε(ψq)∗Xi

in C∞ topology: all derivatives uniformly converge on compact subsets. For ε > 0 small enough
we have

Xε
i := εδ∗ε(ψq)∗Xi = X̂q

i + εRεi

where Rεi depends smoothly on ε for the C∞ topology (see also [ABB19, Lemma 10.58]). An

important property is that (X̂q
1 , . . . , X̂

q
m) generates a nilpotent Lie algebra of step r(q) (see

[Jea14, Proposition 2.3]).

The nilpotent approximation of X1, . . . , Xm at q is then defined as M̂ q ' Rn endowed
with the vector fields X̂q

1 , . . . , X̂
q
m. It is important to note that the nilpotent approximation

depends on the initial choice of privileged coordinates. For an explicit example of computation
of nilpotent approximation, see [Jea14, Example 2.8].

2.3.2 Reduction to the nilpotent case

In this section, we show the following

Lemma 2.18. Let X1, . . . , Xm be smooth vector fields on M satisfying Hörmander’s condition,
and let q ∈ M . If the property (P) holds at point 0 ∈ Rn for the nilpotent approximation
X̂q

1 , . . . , X̂
q
m, then the property (P) holds at point q for X1, . . . , Xm.

Note that the above lemma is true for any nilpotent approximation X̂q
1 , . . . , X̂

q
m at q, i.e.,

for any choice of privileged coordinates (see Section 2.3.1).

Proof of Lemma 2.18. We use the notation hZ for the momentum map associated with the vector
field Z (see Section 2.1.4). We use the notations of Section 2.3.1, in particular the coordinate
chart ψq.
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We set Yi = (ψq)∗Xi and Xε
i = εδ∗εYi which is a vector field on Rn. Recall that

Xε
i = X̂q

i + εRεi

where Rεi depends smoothly on ε for the C∞ topology. Therefore, using the homogeneity of X̂q
i ,

we get, for any ε > 0,

Yi =
1

ε
(δε)∗X

ε
i =

1

ε
(δε)∗(X̂

q
i + εRεi ) = X̂q

i + (δε)∗R
ε
i . (2.27)

The vector field (δε)∗R
ε
i (x) does not depend on ε and has a size which tends uniformly to 0

as x→ 0 ∈ M̂ q ' Rn. Recall that the Hamiltonian Ĥ associated to the vector fields X̂q
i is given

by

Ĥ =
m∑
i=1

h2
X̂q
i

.

Similarly, we set

H =
m∑
i=1

h2
Yi .

We note that (2.27) gives

hYi = h
X̂q
i

+ h(δε)∗Rεi
.

Hence

~H = 2

m∑
i=1

hYi
~hYi =

~̂
H + ~Θ, (2.28)

where ~Θ is a smooth vector field on T ∗Rn such that

‖(dπ ◦ ~Θ)(x, ξ)‖ 6 C‖x‖ (2.29)

when ‖x‖ → 0 (independently of ξ) where π : T ∗Rn → Rn is the canonical projection. This last
point comes from the smooth dependence of Rεi on ε for the C∞ topology (uniform convergence
of all derivatives on compact subsets of Rn).

Given the projection of an integral curve c(·) of ~H, we denote by ĉ(·) the projection of

the integral curve of
~̂
H with same initial covector. Combining (2.28) and (2.29), and using

Gronwall’s lemma, we obtain the following result:

Fix T0 > 0. For any neighborhood V of 0 in Rn, there exists another neighborhood V ′ of 0
such that if c|[0,T0] ⊂ V ′, then ĉ|[0,T0] ⊂ V .

Therefore, if the property (P) holds at 0 ∈ Rn for X̂q
1 , . . . , X̂

q
m, then it holds also at 0 ∈ Rn

for the vector fields Y1, . . . , Ym.

Using that Xi = ψ∗qYi, we can pull back the result to M and obtain that the property (P)
holds at point q for X1, . . . , Xm, which concludes the proof of Proposition 2.17.

Thanks to Lemma 2.18, it is sufficient to prove the property (P) under the additional as-
sumption that

M ⊂ Rn and Lie(X1, . . . , Xm) is nilpotent. (2.30)

In all the sequel, we assume that this is the case.
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2.3.3 End of the proof of Proposition 2.17

Let us finish the proof of Proposition 2.17. Our ideas are inspired by [AG01, Section 6].

First step: reduction to the constant Goh matrix case. We consider an adapted frame
Y1, . . . , Yn at q. We take exponential coordinates of the second kind at q: we consider the inverse
ψq of the diffeomorphism

(x1, . . . , xn) 7→ exp(x1Y1) . . . exp(xnYn)(q).

Then we write the Taylor expansion (2.26) of X1, . . . , Xm in these coordinates. Thanks to
Lemma 2.18, we can assume that all terms in these Taylor expansions have non-holonomic order
−1. We denote by ξi the dual variable of xi. We use the notations n1, n2, . . . introduced in
Section 2.3.1, and we make a strong use of (2.25).

Claim 1. If a normal geodesic (x(t), ξ(t))t∈R has initial momentum satisfying ξk(0) = 0 for
any k > n2 + 1, then ξ̇k ≡ 0 for any k > n1 + 1, and in particular ξk ≡ 0 for any k > n2 + 1.

Proof. We write

Xj(x) =

n∑
i=1

aij(x)∂xi , j = 1, . . . ,m

where the aij are homogeneous polynomials. We have

g∗(x, ξ) =
m∑
j=1

(
n∑
i=1

aij(x)ξi

)2

. (2.31)

Let k > n2 + 1, which means that xk has non-holonomic order > 3. If aij(x) depends on xk,
then necessarily i > n3 +1, since aij(x)∂xi has non-holonomic order −1. Thus, writing explicitly

ξ̇k = − ∂g∗

∂xk
thanks to (2.31), there is in front of each term a ξi for some i which is in particular

> n2 + 1. By Cauchy uniqueness, we deduce that ξk ≡ 0 for any k > n2 + 1.

Now, let k > n1 + 1, which means that xk has non-holonomic order > 2. If aij(x) depends
on xk, then necessarily i > n2 + 1, since aij(x)∂xi has non-holonomic order −1. Thus, writing

explicitly ξ̇k = − ∂g∗

∂xk
thanks to (2.31), there is in front of each term a ξi for some i which is

> n2 + 1. It is null by the previous conclusion, hence ξ̇k ≡ 0.

The previous claim will help us reducing the complexity of the vector fields Xi once again
(after the first reduction provided by Lemma 2.18). Let us consider, for any 1 6 j 6 m, the
vector field

Xred
j =

n2∑
i=1

aij(x)∂xi (2.32)

where the sum is taken only up to n2. We also consider the reduced Hamiltonian on T ∗M

g∗red =
m∑
j=1

h2
Xred
j
.

Claim 2. If Xred
1 , . . . , Xred

m satisfy Property (P) at q, then X1, . . . , Xm satisfy Property (P)
at q.
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Proof. Let us assume that Xred
1 , . . . , Xred

m satisfy Property (P) at q. Let T0 > 0 and let
(xred,ε(0), ξred,ε(0)) be initial data for the Hamiltonian system associated to g∗red which yield
speed 1 normal geodesics (xred,ε(t), ξred,ε(t)) such that xred,ε(t) → q uniformly over (0, T0) as
ε→ 0.

We can assume without loss of generality that ξred,ε
i (0) = 0 for any i > n2 + 1, since these

momenta (preserved under the reduced Hamiltonian evolution) do not change the projection
xred,ε(t) of the normal geodesic. We consider (xε(0), ξε(0)) = (xred,ε(0), ξred,ε(0)) as initial data
for the (non-reduced) Hamiltonian evolution associated to g∗. Then we notice that ξεk ≡ 0 for

k > n2 + 1 thanks to Claim 1. It follows that when i 6 n2, we have xεi (t) = xred,ε
i (t), i.e., the

coordinate xi is the same for the reduced and the non-reduced Hamiltonian evolution.

Finally, we take k such that n2 + 1 6 k 6 n3. Since g∗ is given by (2.31), we have

ẋεk =
∂g∗

∂ξk
= 2

m∑
j=1

akj(x
ε)

(
n∑
i=1

aij(x
ε)ξεi

)
. (2.33)

But akj has necessarily non-holonomic order 2 since ∂xk has non-holonomic order −3. Thus,
akj(x) is a non-constant homogeneous polynomial in x1, . . . , xn2 . Since xε1, . . . , x

ε
n2

converge to
q uniformly over (0, T0) as ε→ 0, it is also the case of xεk according to (2.33), noticing that∣∣∣∣∣

n∑
i=1

aij(x
ε)ξεi

∣∣∣∣∣ 6 (g∗)1/2 = 1/2

for any j. In other words, xεn2+1, . . . , x
ε
n3

also converge to q uniformly over (0, T0) as ε→ 0.

We can repeat this argument successively for k ∈ {n3 + 1, . . . , n4}, k ∈ {n4 + 1, . . . , n5}, etc,
and we finally obtain the result: for any 1 6 k 6 n, xεk converges to q uniformly over (0, T0) as
ε→ 0.

Thanks to the previous claim, we are now reduced to prove Proposition 2.17 for the vector
fields Xred

1 , . . . , Xred
m . In order to keep notations as simple as possible, we simplify these notations

into X1, . . . , Xm, i.e., we drop the upper notation “red”. Also, without loss of generality we
assume that q = 0.

If we choose our normal geodesics so that x(0) = 0, then xi ≡ 0 for any i > n2 + 1 thanks
to (2.32). In other words, we forget the coordinates xn2+1, . . . , xn in the sequel, since they all
vanish.2

Second step: conclusion of the proof. Now, we write the normal extremal system in its
“control” form. We refer the reader to [ABB19, Chapter 4]. We have

ẋ(t) =
m∑
i=1

ui(t)Xi(x(t)), (2.34)

where the ui are the controls, explicitly given by (see [ABB19, Theorem 4.20])

ui(t) = hXi(x(t), ξ(t)). (2.35)

2Note that this is the case only because we are now working with the reduced Hamiltonian evolution; otherwise,
under the original Hamiltonian evolution associated to (2.31), the xi (for i > n2 + 1) remain small according to
Claim 2, but do not necessarily vanish.
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Thanks to (2.32), we rewrite (2.34) as

ẋ(t) = F (x(t))u(t), (2.36)

where F = (aij), which has size n2 ×m, and u = t(u1, . . . , um). Differentiating (2.35), we have
the complementary equation

u̇(t) = G(x(t), ξ(t))u(t)

where G is the Goh matrix
G = (2{hXi , hXj})16i,j6m

(it differs from the usual Gox matrix by a factor −2 due to the absence of factor 1
2 in the

Hamiltonian g∗ in our notations).

Let us prove that G(t) is constant in t. Fix 1 6 j, j′ 6 m. We notice that in (2.32), aij is a
constant (independent of x) as soon as 1 6 i 6 n1 since ∂xi has weight −1. This implies that

[Xj , Xj′ ] is spanned by the vector fields ∂xn1+1 , ∂xn1+2 , . . . , ∂xn2
. (2.37)

Putting this into the relation {hXj , hXj′} = h[Xj ,Xj′ ]
, and using that the dual variables ξk for

n1 + 1 6 k 6 n2 are preserved under the Hamiltonian evolution (due to Claim 1), we get that
G(t) ≡ G is constant in t.

We know that G 6= 0 and that G is antisymmetric. The whole control space Rm is the direct
sum of the image of G and the kernel of G, and G is nondegenerate on its image. We take u0 in
an invariant plane of G; in other words its projection on the kernel of G vanishes (see Remark
2.20). We denote by G̃ the restriction of G to this invariant plane. We also assume that u0,

decomposed as u0 = (u01, . . . , u0m) ∈ Rm, satisfies
∑m

i=1 u
2
0i = 1/4. Then u(t) = etG̃u0 and

since etG̃ is an orthogonal matrix, we have ‖etG̃u0‖ = ‖u0‖. We have by integration by parts

x(t) =

∫ t

0
F (x(s))esG̃u0 ds

= F (x(t))G̃−1(etG̃ − I)u0 −
∫ t

0

d

ds
(F (x(s))G̃−1(esG̃ − I)u0 ds. (2.38)

Let us now choose the initial data of our family of normal geodesics (indexed by ε). The
starting point xε(0) = 0 is the same for any ε, we only have to specify the initial covectors
ξε = ξε(0) ∈ T ∗0Rm. For any i = 1, . . . ,m, we impose that

〈ξε, Xi〉 = u0i. (2.39)

It follows that g∗(x(0), ξε(0)) =
∑m

i=1 u
2
0i = 1/4 for any ε > 0. Now, we notice that Span(X1, . . . , Xm)

is in direct sum with the Span of the [Xi, Xj ] for i, j running over 1, . . . ,m (this follows from

(2.37)). Fixing G0 6= 0 an antisymmetric matrix and G̃0 its restriction to an invariant plane, we
can specify, simultaneously to (2.39), that

〈ξε, 2[Xj , Xi]〉 = ε−1G0
ij .

Then xε(t) is given by (2.38) applied with G̃ = ε−1G̃0, which brings a factor ε in front of (2.38).

Recall finally that the coefficients aij which compose F have non-holonomic order 0 or 1,
thus they are degree 1 (or constant) homogeneous polynomials in x1, . . . , xn1 . Thus d

ds(F (x(s))
is a linear combination of ẋi(s) which we can rewrite thanks to (2.36) as a combination with
bounded coefficients (since

∑m
i=1 u

2
i = 1/4) of the xi(s). Hence, applying the Gronwall lemma

in (2.38), we get ‖xε(t)‖ 6 Cε, which concludes the proof.
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Remark 2.19. The normal geodesics constructed above lose their optimality quickly, in the
sense that their first conjugate point and their cut-point are close to q.

Remark 2.20. If we take u0 in the kernel of G, then the corresponding trajectory is singular,
see [ABB19, Chapter 4]. In this case, we can find normal geodesics which spiral around this
singular curve, and do not remain close to their initial point over (0, T0) although their initial
covector is “high in the cylinder bundle U∗M”. For example, for the Hamiltonian ξ2

1 +(ξ2+x2
1ξ3)2

associated to the “Martinet” vector fields X1 = ∂x1 , X2 = ∂x2 + x2
1∂x3 in R3, there exist normal

geodesics which spiral around the singular curve (t, 0, 0).

2.4 Proofs

2.4.1 Proof of Theorem 2.2

In this section, we conclude the proof of Theorem 2.2.

Fix a point q in the interior of M \ ω and 1 6 i, j 6 m such that [Xi, Xj ](q) /∈ Dq. Fix also
an open neighborhood V of q in M such that V ⊂ M\ω. Fix V ′ an open neighborhood of q in
M such that V ′ ⊂ V , and fix also T0 > 0.

As already explained in Section 2.1.3, to conclude the proof of Theorem 2.2, we use Propo-
sition 2.16 applied to the particular normal geodesics constructed in Proposition 2.17.

By Proposition 2.17, we know that there exists a normal geodesic t 7→ x(t) such that x(t) ∈ V ′
for any t ∈ (0, T0). It is the projection of a bicharacteristic (x(t), ξ(t)) and since it is non-
stationary and traveled at speed 1, there holds g∗(x(t), ξ(t)) = 1/4. We denote by (uk)k∈N a
sequence of solutions of (2.12) as in Proposition 2.16 whose energy at time t concentrates on
x(t) for t ∈ (0, T0). Because of (2.22), we know that

‖(uk(0), ∂tuk(0))‖H×L2 > c > 0

uniformly in k.

Therefore, in order to establish Theorem 2.2, it is sufficient to show that∫ T0

0

∫
ω
|∂tuk(t, x)|2dµ(x)dt →

k→+∞
0. (2.40)

Since x(t) ∈ V ′ for any t ∈ (0, T0), we get that for Vt chosen sufficiently small for any t ∈ (0, T0),
the inclusion Vt ⊂ V holds (see Proposition 2.16 for the definition of Vt). Combining this last
remark with (2.23), we get (2.40), which concludes the proof of Theorem 2.2.

2.4.2 Proof of Corollary 2.4

We endow the topological dual H(M)′ with the norm ‖v‖H(M)′ = ‖(−∆)−1/2v‖L2(M).

The following proposition is standard (see, e.g., [TW09], [LLTT17]).

Lemma 2.21. Let T0 > 0, and ω ⊂M be a measurable set. Then the following two observability
properties are equivalent:

(P1): There exists CT0 such that for any (v0, v1) ∈ D((−∆)
1
2 ) × L2(M), the solution v ∈

C0(0, T0;D((−∆)
1
2 )) ∩ C1(0, T0;L2(M)) of (2.1) satisfies∫ T0

0

∫
ω
|∂tv(t, q)|2dµ(q)dt > CT0‖(v0, v1)‖H(M)×L2(M). (2.41)
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(P2): There exists CT0 such that for any (v0, v1) ∈ L2(M) × D((−∆)−
1
2 ), the solution

v ∈ C0(0, T0;L2(M)) ∩ C1(0, T0;D((−∆)−
1
2 )) of (2.1) satisfies∫ T0

0

∫
ω
|v(t, q)|2dµ(q)dt > CT0‖(v0, v1)‖2L2×H(M)′ . (2.42)

Proof. Let us assume that (P2) holds. Let u be a solution of (2.1) with initial conditions

(u0, u1) ∈ D((−∆)
1
2 ) × L2(M). We set v = ∂tu, which is a solution of (2.1) with initial

data v|t=0 = u1 ∈ L2(M) and ∂tv|t=0 = ∆u0 ∈ D((−∆)−
1
2 ). Since ‖(v0, v1)‖L2×H(M)′ =

‖(u1,∆u0)‖L2×H(M)′ = ‖(u0, u1)‖H(M)×L2 , applying the observability inequality (2.42) to v =
∂tu, we obtain (2.41). The proof of the other implication is similar.

Finally, using Theorem 2.2, Lemma 2.21 and the standard HUM method ([Lio88]), we get
Corollary 2.4.

2.4.3 Proof of Theorem 2.11

We consider the space of functions u ∈ C∞([0, T ] ×MH) such that
∫
MH

u(t, ·)dµ = 0 for any
t ∈ [0, T ], and we denote by HT its completion for the norm ‖·‖HT induced by the scalar product

(u, v)HT =

∫ T

0

∫
MH

(
∂tu∂tv + (∇sRu) · (∇sRv)

)
dµ(q)dt.

We consider also the topological dual H′0 of the space H0 (see Section 2.1.5).

Lemma 2.22. The injections H0 ↪→ L2(MH), L2(MH) ↪→ H′0 and HT ↪→ L2((0, T )×MH) are
compact.

Proof. Let (ϕk)k∈N be an orthonormal basis of eigenfunctions of L2(MH), labeled with increasing
eigenvalues 0 = λ0 < λ1 6 . . . 6 λk → +∞, so that −∆ϕk = λkϕk. The fact that λ1 > 0, which
will be used in the sequel, can be proved as follows: if −∆ϕ = 0 then

∫
MH
|∇sRϕ|2dµ = 0 and,

since ϕ ∈ C∞(MH) by hypoelliptic regularity, we get X1ϕ(x) = X2ϕ(x) = 0 for any x ∈ MH .
Hence, [X1, X2]ϕ ≡ 0, and alltogether, this proves that ϕ is constant, hence λ1 > 0.

We prove the last injection. Let u ∈ HT . Writing u(t, ·) =
∑∞

k=1 ak(t)ϕk(·) (note that there
is no 0-mode since u(t, ·) has null average), we see that

‖u‖2HT > ‖∇sRu‖2L2((0,T )×MH) =
∞∑
k=1

λk‖ak‖2L2((0,T )) > λ1

∞∑
k=1

‖ak‖2L2((0,T ))

= λ1‖u‖2L2((0,T )×MH),

thus HT imbeds continuously into L2((0, T )×MH). Then, using a classical subelliptic estimate
(see [Hor67] and [RS76, Theorem 17]), we know that there exists C > 0 such that

‖u‖
H

1
2 ((0,T )×MH)

6 C(‖u‖L2((0,T )×MH) + ‖u‖HT ).

Together with the previous estimate, we obtain that for any u ∈ HT , ‖u‖
H

1
2 ((0,T )×MH)

6

C‖u‖HT . Then, the result follows from the fact that the injectionH
1
2 ((0, T )×MH) ↪→ L2((0, T )×

MH) is compact.

The proof of the compact injection H0 ↪→ L2(MH) is similar, and the compact injection
L2(MH) ↪→ H′0 follows by duality.
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Proof of Theorem 2.11. In this proof, we use the notation P = ∂2
tt − ∆H . For the sake of a

contradiction, suppose that there exists a sequence (uk)k∈N of solutions of the wave equation
such that ‖(uk0, uk1)‖H×L2 = 1 for any k ∈ N and

‖(uk0, uk1)‖L2×H′0 → 0,

∫ T

0
|(Op(a)∂tu

k, ∂tu
k)L2(MH ,µ)|dt→ 0 (2.43)

as k → +∞. Following the strategy of [Tar90] and [Ger91b], our goal is to associate a defect
measure to the sequence (uk)k∈N. Since the functional spaces involved in our result are unusual,
we give the argument in detail.

First, up to extraction of a subsequence which we omit, (uk0, u
k
1) converges weakly in H0 ×

L2(MH) and, using the first convergence in (2.43) and the compact embedding H0×L2(MH) ↪→
L2(MH) ×H′0, we get that (uk0, u

k
1) ⇀ 0 in H0 × L2

0. Using the continuity of the solution with
respect to the initial data, we obtain that uk ⇀ 0 weakly in HT . Using Lemma 2.22, we obtain
uk → 0 strongly in L2((0, T )×MH).

Fix B ∈ Ψ0
phg((0, T )×MH). We have

(Buk, uk)HT =

∫ T

0

∫
MH

(
∂t(Bu

k)∂tu
k +

(
∇sR(Buk)

)
·
(
∇sRuk

))
dµ(q)dt

=

∫ T

0

∫
MH

(
([∂t, B]uk)∂tu

k +
(

[∇sR, B]uk
)
·
(
∇sRuk

))
dµ(q)dt

+

∫ T

0

∫
MH

((
B∂tu

k
)(

∂tu
k
)

+
(
B∇sRuk

)
·
(
∇sRuk

))
dµ(q)dt (2.44)

Since [∂t, B] ∈ Ψ0
phg((0, T ) × MH), [∇sR, B] ∈ Ψ0

phg((0, T ) × MH) and uk → 0 strongly in

L2((0, T )×MH), the first one of the two lines in (2.44) converges to 0 as k → +∞. Moreover,
the last line is bounded uniformly in k since B ∈ Ψ0

phg((0, T ) ×MH). Hence (Buk, uk)HT is
uniformly bounded. By a standard diagonal extraction argument (see [Ger91b] for example),
there exists a subsequence, which we still denote by (uk)k∈N such that (Buk, uk) converges for
any B of principal symbol b in a countable dense subset of C∞c ((0, T ) ×MH). Moreover, the
limit only depends on the principal symbol b, and not on the full symbol.

Let us now prove that
lim inf
k→+∞

(Buk, uk)HT > 0 (2.45)

when b > 0. With a bracket argument as in (2.44), we see that it is equivalent to proving that
the liminf as k → +∞ of the quantity

Qk(B) = (B∂tu
k, ∂tu

k)L2 + (B∇sRuk,∇sRuk)L2 (2.46)

is > 0. But there exists B′ ∈ Ψ0
phg((0, T )×MH) such that B′ −B ∈ Ψ−1

phg((0, T )×MH) and B′

is positive (this is the so-called Friedrichs quantization, see for example [Tay74, Chapter VII]).
Then, lim infk→+∞Qk(B

′) > 0, and Qk(B
′−B)→ 0 since (B′−B)∂t ∈ Ψ0

phg((0, T )×MH) and

uk → 0 strongly in L2((0, T )×MH). It immediately implies that (2.45) holds.

Therefore, setting p = σp(P ) and denoting by C(p) the characteristic manifold C(p) = {p =
0}, there exists a non-negative Radon measure ν on S∗(C(p)) = C(p)/(0,+∞) such that

(Op(b)uk, uk)HT →
∫
S∗(C(p))

bdν

for any b ∈ S0
phg((0, T )×MH).
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Let C ∈ Ψ−1
phg((0, T )×MH) of principal symbol c. We have ~Hpc = {p, c} ∈ S0

phg((0, T )×MH)
and, for any k ∈ N,

((CP − PC)uk, uk)HT = (CPuk, uk)HT − (Cuk, Puk)HT = 0 (2.47)

since Puk = 0. To be fully rigorous, the identity of the previous line, which holds for any
solution u ∈ HT of the wave equation, is first proved for smooth initial data since Pu /∈ HT in
general, and then extended to general solutions u ∈ HT . Taking principal symbols in (2.47), we
get 〈ν, ~Hpc〉 = 0.

Therefore, denoting by (ψs)s∈R the maximal solutions of

d

ds
ψs(ρ) = ~Hp(ψs(ρ)), ρ ∈ T ∗(R×MH)

(see (2.7)), we get that, for any s ∈ (0, T ),

0 = 〈ν, ~Hpc ◦ ψs〉 = 〈ν, d
ds
c ◦ ψs〉 =

d

ds
〈ν, c ◦ ψs〉

and hence

〈ν, c〉 = 〈ν, c ◦ ψs〉. (2.48)

We note here that the precise homogeneity of c (namely c ∈ S−1
phg((0, T )×MH)) does not matter

since ν is a measure on the sphere bundle S∗(C(p)). The identity (2.48) means that ν is invariant
under the flow ~Hp.

From the second convergence in (2.43), we can deduce that

ν = 0 in S∗(C(p)) ∩ T ∗((0, T )× Supp(a)). (2.49)

The proof of this fact, which is standard (see for example [BG02, Section 6.2]), is given in Section
2-A.2.

Let us prove that any normal geodesic ofMH with momentum ξ ∈ V c
ε enters ω in time at most

κε−1 for some κ > 0 which does not depend on ε. Indeed, the solutions of the bicharacteristic
equations (2.10) with g∗ = 1/4 and ξ3 6= 0 are given by

x1(t) =
1

2ξ3
cos(2ξ3t+ φ) +

ξ2

ξ3
, x2(t) = B − 1

2ξ3
sin(2ξ3t+ φ)

x3(t) = C +
t

4ξ3
+

1

16ξ2
3

sin(2(2ξ3t+ φ)) +
ξ2

2ξ2
3

sin(2ξ3t+ φ)

where B,C, ξ2, ξ3 are constants. Since ξ ∈ V c
ε and g∗ = 1/4, there holds 1

4|ξ3| >
ε
2 . Hence, we

can conclude using the expression for x3 (whose derivative is roughly (4|ξ3|)−1) and the fact that
ω = MH\B contains a horizontal strip. Note that if ξ3 = 0, the expressions of x1(t), x2(t), x3(t)
are much simpler and we can conclude similarly.

Hence, together with (2.49), the propagation property (2.48) implies that ν ≡ 0. It follows
that ‖uk‖HT → 0. By conservation of energy, it is a contradiction with the normalization
‖(uk0, uk1)‖H×L2 = 1. Hence, (2.11) holds.
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2-A Supplementary material

2-A.1 Proof of Proposition 2.12

In this Section, we give a second proof of Proposition 2.12 written in a more elementary form
than the one of Section 2.2.1. Let us first prove the result when M ⊂ Rn, following the proof of
[Ral82]. The general case is addressed at the end of this section.

As in the proof of Section 2.2.1, we suppress the time variable t. Thus we use x =
(x0, x1, . . . , xn) where x0 = t. Similarly, ξ = (ξ0, ξ1, . . . , ξn) where ξ0 = τ previously. Let Γ
be the curve given by x(s) ∈ Rn+1. We insist on the fact that in the proof the bicharacteristics
are parametrized by s, as in (2.7). We consider functions of the form

vk(x) = k
n
4
−1a0(x)eikψ(x).

We would like to choose ψ(x) such that for all s ∈ R, ψ(x(s)) is real-valued and Im ∂2ψ
∂xi∂xj

(x(s))

is positive definite on vectors orthogonal to ẋ(s). Roughly speaking, |eikψ(x)| will then look like
a Gaussian distribution on planes perpendicular to Γ in Rn+1.

We first observe that ∂2
ttvk −∆vk can be decomposed as

∂2
ttvk −∆vk = (k

n
4

+1A1 + k
n
4A2 + k

n
4
−1A3)eikψ (2.50)

with

A1(x) = p2 (x,∇ψ(x)) a0(x)

A2(x) = La0(x)

A3(x) = ∂2
tta0(x)−∆a0(x).

Here we have set

La0 =
1

i

n∑
j=0

∂p2

∂ξj
(x,∇ψ(x))

∂a0

∂xj
+

1

2i

 n∑
j,k=0

∂2p2

∂ξj∂ξk
(x,∇ψ(x))

∂2ψ

∂xj∂xk

 a0 (2.51)

(For general strictly hyperbolic operators, L contains a term with the sub-principal symbol of
the operator, but here it is null, see Appendix A.)

In what follows, we construct a0 and ψ so that A1(x) vanishes at order 2 along Γ and A2(x)
vanishes at order 0 along the same curve. We will then be able to use Lemma 2.14 with S = 3
and S = 1 respectively.

Analysis of A1(x). Our goal is to show that, if we choose ψ adequately, we can make the
quantity

f(x) = p2 (x,∇ψ(x)) (2.52)

vanish at order 2 on Γ. For the vanishing at order 0, we prescribe that ψ satisfies ∇ψ(x(s)) =
ξ(s), and then f(x(s)) = 0 since (x(s), ξ(s)) is a null-bicharacteristic. Note that this is possible
since x(s) 6= x(s′) for any s 6= s′, due to ẋ0(s) = 1 (bicharacteristics are traveled at speed 1,
see Section 2.1.4). For the vanishing at order 1, using (2.52) and (2.7), we remark that for any
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0 6 j 6 n,

∂f

∂xj
(x(s)) =

∂p2

∂xj
(x(s)) +

n∑
k=0

∂p2

∂ξk
(x(s))

∂ψ

∂xj∂xk
(x(s))

= −ξ̇j(s) +
n∑
k=0

ẋk(s)
∂ψ

∂xj∂xk
(x(s)) (2.53)

= − d

ds

(
∂ψ

∂xj
(x(s))

)
+

n∑
k=0

ẋk(s)
∂ψ

∂xj∂xk
(x(s))

= 0.

Therefore, f vanishes automatically at order 1 along Γ (without making any particular choice
for ψ): it just follows from (2.52) and the bicharacteristic equations (2.7). But for f(x) to vanish
at order 2 along Γ, it is required to choose a particular ψ. In the end, we will find that if ψ is
given by the formula (2.59) below, with M being a solution of (2.54), then f vanishes at order
2 along Γ. Let us explain why.

Using the Einstein summation notation, we want that for any 0 6 i, j 6 n, there holds

0 =
∂2f

∂xj∂xi

=
∂2p2

∂xj∂xi
+

∂2p2

∂ξk∂xi

∂2ψ

∂xj∂xk
+

∂2p2

∂xj∂ξk

∂2ψ

∂xi∂xk
+

∂2p2

∂ξl∂ξk

∂2ψ

∂xi∂xk

∂2ψ

∂xj∂xl
+
∂p2

∂ξk

∂3ψ

∂xj∂xk∂xi

along Γ. Introducing the matrices

(M(s))ij =
∂2ψ

∂xi∂xj
(x(s)), (A(s))ij =

∂2p2

∂xi∂xj
(x(s), ξ(s)),

(B(s))ij =
∂2p2

∂ξi∂xj
(x(s), ξ(s)), (C(s))ij =

∂2p2

∂ξi∂ξj
(x(s), ξ(s))

this amounts to solving the matricial Riccati equation

dM

ds
+MCM +BTM +MB +A = 0 (2.54)

on a finite-length time-interval. While solving (2.54), we also require M(s) to be symmetric,
Im(M(s)) to be positive definite on the orthogonal complement of ẋ(s), and M(s)ẋ(s) = ξ̇(s)
to hold for all s due to (2.53).

Let M0 be a symmetric (n + 1) × (n + 1) matrix with Im(M0) > 0 on the orthogonal
complement of ẋ(0) and M0ẋ(0) = ξ̇(0) (in particular Im(M0)ẋ(0) = 0). It is shown in [Ral82]
that there exists a global solution M(s) on [0, T ] of (2.54) which satisfies all the above conditions
and such that M(0) = M0. The proof just requires that A,C are symmetric, but does not need
anything special about p2 (in particular, it applies to our sub-Riemannian case where p2 is
degenerate). For the sake of completeness, we recall the proof here.

We consider (Y (s), N(s)) the matrix solution with initial data (Y (0), N(0)) = (Id,M0)
(where Id is the (n+ 1)× (n+ 1) identity matrix) to the linear system{

Ẏ = BY + CN

Ṅ = −AY −BTN.
(2.55)
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We note that (Y (s)ẋ(0), N(s)ẋ(0)) then also solves (2.55), with Y and N being this time vecto-
rial. One can check that (ẋ(s), ξ̇(s)) is the solution of the same linear system with same initial
data, and therefore, for any s ∈ R,

ẋ(s) = Y (s)ẋ(0), ξ̇(s) = N(s)ẋ(0). (2.56)

All the coefficients in (2.55) are real and A and C are symmetric, and it follows that the
flow defined by (2.55) on vectors preserves both the real symplectic form acting on pairs (y, η) ∈
(Rn+1)2 and (y′, η′) ∈ (Rn+1)2 given by

σ((y, η), (y′, η′)) = y · η′ − η · y′

and the complexified form σC((y, η), (y′, η′)) = σ((y, η), (y′, η′)) for (y, η) ∈ (Cn+1)2 and (y′, η′) ∈
(Cn+1)2. When we say that σC is invariant under (2.55), it means that we allow complex vectorial
initial data in (2.55).

Let us prove that Y (s) is invertible for any s. Let v ∈ Cn+1 and s0 ∈ R be such that
Y (s0)v = 0. We set y(s0) = Y (s0)v and η(s0) = N(s0)v and consider χ(s0) = (y(s0), η(s0)).
From the conservation of σC, we get

0 = σC(χ(s0), χ(s0)) = σC(χ(0), χ(0)) = v ·M0v − v ·M0v = −2iv · (Im(M0))v.

Since Im(M0) is positive definite on the orthogonal complement to ẋ(0), there holds v = λẋ(0)
for some λ ∈ C. Hence

0 = Y (s0)v = λY (s0)ẋ(0) = λẋ(s0)

where the last equality comes from (2.56). Since ẋ0(s0) = ∂p2

∂ξ0
(s0) = −2ξ0(s0) = 1, there holds

ẋ(s0) 6= 0, hence λ = 0. It follows that v = 0 and Y (s0) is invertible.

Now, for any s ∈ R, we set

M(s) = N(s)Y (s)−1

which is a solution of (2.54) with M(0) = M0. It verifies M(s)ẋ(s) = ξ̇(s) thanks to (2.56).
Moreover, it is symmetric: if we denote by yi(s) and ηi(s) the column vectors of Y and N , by
preservation of σ, for any 0 6 i, j 6 n, the quantity

σ((yi(s), ηi(s)), (yj(s), ηj(s)) = yi(s) ·M(s)yj(s)− yj(s) ·M(s)yi(s)

is equal to the same quantity at s = 0, which is equal to 0 since M0 is symmetric.

Let us finally prove that for any s ∈ R, Im(M(s)) is positive definite on the orthogonal
complement of ẋ(s). Let y(s0) ∈ Cn+1 be in the orthogonal complement of ẋ(s0). We decompose
y(s0) on the column vectors of Y (s0):

y(s0) =
n∑
i=0

biy
i(s0), bi ∈ C.

For s ∈ R, we consider y(s) =
∑n

i=0 biy
i(s) and we set χ(s) =

∑n
i=0 bi(y

i(s), ηi(s)). Then,

σC(χ(s), χ(s)) = −2iy(s) · Im(M(s))y(s). (2.57)

By preservation of σC and using (2.57), we get that

y(s0) · Im(M(s0))y(s0) = y(0) · Im(M0)y(0). (2.58)
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But y(0) cannot be proportional to ẋ(0) otherwise, using (2.56), we would get that y(s0) is
proportional to ẋ(s0). Hence, the right hand side in (2.58) is > 0, which implies that Im(M(s0))
is positive definite on the orthogonal complement to ẋ(s0).

Therefore, we found a choice for the second order derivatives of ψ along Γ which meets all
our conditions. For x = (t, x′) ∈ R× Rn and s such that t = t(s), we set

ψ(x) = ξ′(s) · (x′ − x′(s)) +
1

2
(x′ − x′(s)) ·M(s)(x′ − x′(s)), (2.59)

and for this choice of ψ, f vanishes at order 2 along Γ.
To sum up, as in the Riemannian (or “strictly hyperbolic”) case handled by Ralston in

[Ral82], the key observation is that the invariance of σ and σC prevents the solutions of (2.54)
with positive imaginary part on the orthogonal complement of ẋ(0) to blowup.

Analysis of A2(x). We note that A2 vanishes along Γ if and only if La0(x(s)) = 0. According
to (2.51), this turns out to be a linear transport equation on a0(x(s)). Moreover, the coefficient
of the first-order term, namely ∇ξp2(x(s), ξ(s)), is different from 0. Therefore, given a0 6= 0 at
(t = 0, x = x(0)), this transport equation has a solution a0(x(s)) with initial datum a0, and, by
Cauchy uniqueness, a0(x(s)) 6= 0 for any s. Note that we have prescribed a0 only along Γ, and
we may choose a0 in a smooth (and arbitrary) way outside Γ. We choose it to vanish outside a
small neighborhood of Γ.

Proof of (2.13). We use (2.50) and we apply Lemma 2.14 to S = 3, c = A1 and to S = 1,
c = A2, and we get

‖∂2
ttvk −∆vk‖L1(0,T ;L2(M)) 6 C(k−

1
2 + k−

1
2 + k−1),

which implies (2.13).

Proof of (2.14). We first observe that since Im(M(s)) is positive definite on the orthogonal
complement of ẋ(s) and continuous as a function of s, there exist α,C > 0 such that for any
t(s) ∈ [0, T ] and any x′ ∈M ,

|∂tvk(t(s), x′)|2 + |∇sRvk(t(s), x
′)|2 >

(
C|a0(t(s), x′)|2k

n
2 +O(k2(n

2
−1))

)
e−αkd(x′,x′(s))2

where d(·, ·) denotes the Euclidean distance in Rn. We denote by `n the Lebesgue measure on
Rn. Using the observation that for any function f ,∫

M
f(x′)e−αkd(x′,x′(s))2

dµ(x′) ∼ πn/2

kn/2
√
α
f(x′(s))

dµ

d`n
(x′(s)) (2.60)

as k → +∞, and the fact that a0(x(s)) 6= 0, we obtain (2.14).

Proof of (2.15). We observe that since Im(M(s)) is positive definite (uniformy in s) on the
orthogonal complement of ẋ(s), there exist C,α′ > 0 such that for any t ∈ [0, T ], for any x′ ∈M ,
|∂tvk(t(s), x′)| and |∇sRvk(t(s), x

′)| are both bounded above by Ck
n
4 e−α

′kd(x′,x′(s))2
. Therefore∫

M\Vt(s)

(
|∂tvk(t(s), x′)|2 + |∇sRvk(t(s), x

′)|2
)
dµ(x′)

6 Ckn/2
∫
M\Vt(s)

e−2α′kd(x′,x′(s))2
dµ(x′)

6 Ckn/2
∫
M\Vt(s)

e−2α′kd(x′,x′(s))2
d`n(x′) + o(1) (2.61)
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where, in the last line, we used the fact that |dµ/d`n| 6 C in a fixed compact subset of M (since
µ is a smooth volume), and the o(1) comes from the eventual blowup of µ at the boundary of
M .

Now, M ⊂ Rn, and there exists r > 0 such that Bd(x(s), r) ⊂ Vt(s) for any s such that
t(s) ∈ (0, T ), where d(·, ·) still denotes the Euclidean distance in Rn. Therefore, we bound above
the integral in (2.61) by

Ckn/2
∫
Rn\Bd(x(s),r)

e−2α′kd(x′,x′(s))2
d`n(x′) (2.62)

Making the change of variables y = k−1/2(y − x(s)), we bound above (2.62) by

C

∫
Rn\Bd(0,rk1/2)

e−2α′‖y‖2d`n(y)

with ‖ · ‖ the Euclidean norm. This last expression is bounded above by

Ce−α
′r2k

∫
Rn
e−α

′‖y‖2d`n(y)

which implies (2.15).

Extension of the result to any manifold M . In the case of a general manifold M , not
necessarily included in Rn, we use charts together with the above construction. We cover M by
a set of charts (Uα, ϕα), where (Uα) is a family of open sets of M covering M and ϕα : Uα → Rn
is an homeomorphism Uα onto an open subset of Rn. Take a solution (x(t), ξ(t))t∈[0,T ] of (2.8).
It visits a finite number of charts in the order Uα1 , Uα2 , . . ., and we choose the charts and a0 so
that vk(t, ·) is supported in a unique chart at each time t. The above construction shows how
to construct a0 and ψ as long as x(t) remains in the same chart. For any l > 1, we choose tl so
that x(tl) ∈ Uαl ∩Uαl+1

and a0(tl, ·) is supported in Uαl ∩Uαl+1
. Since there is a (local) solution

vk for any choice of initial a0(tl, x(tl)) and Im
(

∂2ψ
∂xi∂xj

)
(tl, x(tl)) in Proposition 2.12, we see that

vk may be continued from the chart Uαl to the chart Uαl+1
. This continuation is smooth since

the two solutions coincide as long as a0(t, ·) is supported in Uαl ∩ Uαl+1
. Patching all solutions

on the time intervals [tl, tl+1] together, it yields a global in time solution vk, as desired.

2-A.2 Proof of (2.49)

Because of the second convergence in (2.43) and the non-negativity of a, it amounts to proving
that ∫ T

0
|(∇sROp(a)uk,∇sRuk)L2(MH ,µ)|dt→ 0.

Now, we notice that for any B ∈ Ψ0
phg((0, T )×MH), there holds

(Buk,∇sRuk)L2((0,T )×MH) −→
k→+∞

0 and (Buk, ∂tu
k)L2((0,T )×MH) −→

k→+∞
0 (2.63)

since uk → 0 strongly in L2((0, T )×MH) and both ∇sRuk and ∂tu
k are bounded in L2((0, T )×

MH). We apply this to B = [∇sR,Op(a)], and then, also using (2.63), we see that we can replace
Op(a) by its Friedrichs quantization OpF (a), which is positive (see [Tay74, Chapter VII]). In
other words, we are reduced to prove

(OpF (a)∇sRuk,∇sRuk)L2((0,T )×MH) −→
k→+∞

0. (2.64)
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Let δ > 0 and ã ∈ S0
phg((−δ, T + δ) ×MH), 0 6 ã 6 sup(a) and such that ã(t, ·) = a(·) for

0 6 t 6 T . Making repeated use of (2.63) and of integrations by parts (since ã is compactly
supported in time), we have

(OpF (ã)∇sRuk,∇sRuk)L2((0,T )×MH) = (∇sROpF (ã)uk,∇sRuk)L2((0,T )×MH) + o(1)

= −(OpF (ã)uk,∆uk)L2((0,T )×MH) + o(1)

= −(OpF (ã)uk, ∂2
t u

k)L2((0,T )×MH) + o(1)

= (∂tOpF (ã)uk, ∂tu
k)L2((0,T )×MH) + o(1)

= (OpF (ã)∂tu
k, ∂tu

k)L2((0,T )×MH) + o(1).

Finally we note that since OpF is a positive quantization, we have

(OpF (a)∇sRuk,∇sRuk)L2((0,T )×MH) 6 (OpF (ã)∇sRuk,∇sRuk)L2((0,T )×MH)

= (OpF (ã)∂tu
k, ∂tu

k)L2((0,T )×MH) + o(1)

6 Cδ + (OpF (a)∂tu
k, ∂tu

k)L2((0,T )×MH) + o(1)

6 Cδ + o(1)

where C does not depend on δ. Making δ → 0, it concludes the proof of (2.64), and consequently
(2.49) holds.



Chapter 3

Observability of
Baouendi-Grushin-type equations

“Science sans conscience n’est que ruine de l’âme.”
François Rabelais.

“Conscience sans science n’est qu’un vilain gros mot.”
Pierre Dac.

This chapter is adapted from [LS20]. Among other things, we prove Theorem 2 (restated as
Theorem 3.4).
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3.1 Introduction and main results

3.1.1 Motivation

In this chapter, we will mainly use resolvent estimates to establish observability inequalities.
Resolvent estimates consist in a quantitative measurement of how much approximate solutions
(also named quasimodes) of an operator can concentrate away from an open set ω, and in
particular resolvent estimates do not involve the time variable, at least in this context. See
for example [BZ04] and [Mil12] for detailed studies about the link between observability and
resolvent estimates.

Since the study of the controllability/observability properties of evolution equations driven by
sub-Laplacians in full generality seems out of reach (except for wave equations, see the previous
chapter), in this chapter we focus on a particular family of models, which we now describe.

Let

M = (−1, 1)x × T,

where T is the 1D torus in the y-variable and let γ > 0. We consider the Baouendi-Grushin-type
sub-Laplacian

∆γ = ∂2
x + |x|2γ∂2

y ,

together with the domain

D(∆γ) = {u ∈ D′(M) : ∂2
xu, |x|2γ∂2

yu ∈ L2(M) and u|∂M = 0}

(see Example 1.17). By Hörmander’s theorem, in the case where γ ∈ N, ∆γ is subelliptic, since
∂y can be obtained by taking γ times the bracket of ∂x with xγ∂y.

The observation region ω that we consider is assumed to contain a horizontal strip (−1, 1)x×
Iy where I ⊂ T is a non-empty open interval of the 1D-torus. This choice for ω is natural if one
is interested in understanding the specific features of propagation in the subelliptic directions
(here, the vertical y-axis), see Section 3.1.3 below; this choice for ω has already been made
in different but related subelliptic frameworks, see for example [Koe17], [BS19], [FL21]. We
note, and we will come back to this point later in our analysis, that ω does not satisfy the
Geometric Control Condition, which is known to be equivalent to observability of elliptic waves
(see [BLR92]) and to imply the observability of the elliptic Schrödinger equation in any time
(see [Leb92b]). Several other choices for ω could have been made (see [BCG14] for example).

3.1.2 Main results.

Our first main result is a resolvent estimate in the case γ > 1, which reads as follows:

Theorem 3.1. Let γ ∈ R, γ > 1 and let ω contain a horizontal strip (−1, 1) × I. There exist
C, h0 > 0 such that for any v ∈ D(∆γ) and any 0 < h 6 h0, there holds

‖v‖L2(M) 6 C(‖v‖L2(ω) + h−(γ+1)‖(h2∆γ + 1)v‖L2(M)). (3.1)

Remark 3.2. In [LL21] (see Corollary 1.9), a resolvent estimate with an exponential cost
(replacing the above polynomial cost h−(γ+1)) was proved for any sub-Riemannian manifold of
step k and for any of its subsets ω of positive Lebesgue measure. It was shown to be sharp for
the Baouendi-Grushin-type sub-Laplacian ∆γ (with γ + 1 = k) and for any open set ω whose
closure does not touch the line {x = 0}. Our resolvent estimate is much stronger, but heavily
relies on the particular geometric situation under study.
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Remark 3.3. From the proof of (2) of Theorem 3.4, the resolvent estimate (3.1) is sharp in the
sense that there exists a sequence of quasi-modes vh which saturates the inequality. Indeed, a
better resolvent estimate than (3.1), together with [BZ04, Theorem 4], would contradict the lack
of observability for short times in Point (2) of Theorem 3.4 (see the argument after Theorem
3.21 in Section 3.3.1).

Furthermore, the conclusion of Theorem 3.1 does not apply to the case γ < 1, at least if we
remove the boundary. For example, when γ = 0 and ∆0 is the usual Laplace operator on the
torus T2, it follows from [BLR92] that the resolvent estimate (3.1) with order O(h−1) cannot
hold if ω does not satisfy the geometric control condition with respect to the geodesic flow.

In this chapter, we will explore the consequences of this resolvent estimate for the observ-
ability of evolution equations driven by ∆γ .

Let us consider the Schrödinger-type equation with Dirichlet boundary conditions
i∂tu− (−∆γ)su = 0
u|t=0 = u0 ∈ L2(M)

u|x=±1 = 0
(3.2)

where s ∈ N is a fixed integer and γ > 0, γ ∈ R. Here (−∆γ)s is defined “spectrally” by its
action on eigenspaces of the operator ∆γ associated with Dirichlet boundary conditions. In other
words, by classical embedding theorems (recalled in Lemma 3.22), (∆γ , D(∆γ)) has a compact
resolvent, and thus there exists an orthonormal Hilbert basis of eigenfunctions (ϕj)j∈N such that
−∆γϕj = λ2

jϕj , with the λj sorted in increasing order. The domain of (−∆γ)s is given by

D((−∆γ)s) = {u ∈ L2(M) :
∑
j∈N

λ4s
j |(u, ϕj)L2(M)|2 <∞}. (3.3)

Note that a function u in D((−∆γ)s) verifies the boundary conditions

(−∆γ)ku|∂M = 0, for any 0 6 k < s− 1

4
. (3.4)

In Section 3-A.1, we prove this fact and we also show that (3.2) is well-posed in L2(M). Of
course, the solution of (3.2) does not live in general in the energy space given by the form domain
of (−∆γ)s, but only in L2(M).

Given an open subset ω̃ ⊂ M , we say that (3.2) is observable in time T0 > 0 in ω̃ if there
exists C > 0 such that for any u0 ∈ L2(M), there holds

‖u0‖2L2(M) 6 C

∫ T0

0
‖e−it(−∆γ)su0‖2L2(ω̃)dt. (3.5)

Our second main result, which is a reformulation of Theorem 2, roughly says that observability
holds if and only if the subellipticity, measured by the step γ+ 1, is not too strong compared to
s:

Theorem 3.4. Assume that γ ∈ R, γ > 1. Let I ( Ty be a strict open subset, and let
ω = (−1, 1)x × I. Then, for s ∈ N, we have:

1. If 1
2(γ + 1) < s, (3.2) is observable in ω for any T0 > 0;

2. If 1
2(γ + 1) = s, there exists Tinf > 0 such that (3.2) is observable in ω for T0 if and only

if T0 > Tinf ;

3. If 1
2(γ + 1) > s, for any T0 > 0, (3.2) is not observable in ω.
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Indeed, Points (1) and (2) hold under the weaker assumption that ω contains a horizontal band
of the form (−1, 1)x × I; and Point (3) holds under the weaker assumption that M \ ω contains
an open neighborhood of some point (x, y) ∈M with x = 0.

Let us make several comments about this result:

• In the case 1
2(γ+ 1) = s, our proof only provides a lower bound on Tinf (see Remark 3.26).

The exact value of Tinf was explicitly computed in [BS19] in the case γ = s = 1. It is an
interesting problem to compute this exact value for s, γ satisfying s = 1

2(γ + 1), and more
importantly, to give a geometric interpretation for this exact constant in a more general
subelliptic setting.

• The number 1
2(γ + 1) appearing in Theorem 3.4 is already known to play a key role in

many other problems. Recall that the step of the manifold (defined as the least number
of brackets required to generate the whole tangent space) is equal to γ + 1 (when γ ∈ N).
Then, 2/(γ + 1) is the exponent known as the gain of Sobolev derivatives in subelliptic
estimates. Note that 1

2(γ+ 1) is also the threshold found in the work [BCG14] which deals
with observability of the heat equation with sub-Laplacian ∆γ , and that it is related to the
growth of eigenvalues for the operator −∂2

x + x2γ , see for example Section 2.3 in [BCG14].

• In the statement of Theorem 3.4, we took s ∈ N in order to avoid technical issues of non-
local effects due to the fractional Laplacian. We expect that the statements in Theorem
3.4 are also true for all s > 0.

• The assumption that γ > 1 for Points (1) and (2) is mainly due to the technical issue
that the Hamiltonian flow associated with the symbol ∂2

x + |x|2γ∂2
y may not be unique

if 0 < γ < 1 (see Section 3.2.3). Dealing with this case, and more generally addressing
the question of propagation of singularities for metrics with lower regularity, is an open
problem.

We now derive from Theorems 3.1 and 3.4 two consequences. First, Theorem 3.4 implies the
following result about observability of heat-type equations associated to ∆γ (which are well-
posed, as proved in Section 3-A.1):

Corollary 3.5. Assume that γ ∈ R, γ > 1 and ω contains a horizontal strip (−1, 1)x × I. For
any s ∈ N, s > 1

2(γ + 1) and any T0 > 0, final observability for the heat equation with Dirichlet
boundary conditions 

∂tu+ (−∆γ)su = 0
u|t=0 = u0 ∈ L2(M)

u|x=±1 = 0
(3.6)

holds in time T0. In other words, there exists C > 0 such that for any u0 ∈ L2(M), there holds

‖e−T0(−∆γ)su0‖2L2(M) 6
∫ T0

0
‖e−t(−∆γ)su0‖2L2(ω)dt.

This is a direct consequence of Corollary 2 in [DM12] and Point (2) of Theorem 3.4. Note
also that observability for (3.6) fails for any time if γ = s = 1 (see [Koe17]), so that we cannot
expect that an analogue of Point (2) of Theorem 3.4 holds for heat-type equations. This last fact
- observability of a Schrödinger semigroup while the associated heat semigroup is not observable
- gives an illustration of Proposition 3 of [DM12] (which states that the same phenomenon occurs
for the harmonic oscillator on the real line observed in a set of the form (−∞, x0), x0 ∈ R).
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Finally, Theorem 3.1 also implies a decay rate for the damped wave equation associated to
∆γ . To state it, we introduce the following adapted Sobolev spaces: for k = 1, 2,

Hk
γ (M) = {v ∈ D′(M), (−∆γ + 1)k/2v ∈ L2(M)}, ‖v‖Hk

γ (M) = ‖(−∆γ + 1)k/2v‖L2(M)

and H1
γ,0(M) is the completion of C∞c (M) for the norm ‖ · ‖H1

γ(M).

Let b ∈ L∞(M), b > 0 such that infq∈ω b(q) > 0. On the space H := H1
γ,0(M)× L2(M), the

operator

A =

(
0 1

∆γ −b

)
with domain D(A) = (H2

γ(M)∩H1
γ,0(M))×H1

γ,0(M) generates a bounded semigroup (from the
Hille-Yosida theorem) and the damped wave equation

(∂2
t −∆γ + b∂t)u = 0 (3.7)

with Dirichlet boundary conditions and given initial datum (u0, u1) ∈ H admits a unique solution
u ∈ C0(R+;H1

γ,0(M)) ∩ C1(R+;L2(M)), see Section 3-A.1.

Corollary 3.6. Assume γ ∈ R, γ > 1 and ω contains a horizontal strip (−1, 1)x × I. There
exists C > 0 such that, for any (u0, u1) ∈ D(A), the solution u(t) of (3.7) with initial conditions
(u, ∂tu)|t=0 = (u0, u1) satisfies

E(u(t), ∂tu(t))
1
2 6

C

t
1

2γ

E(A(u0, u1))
1
2 (3.8)

for any t > 1, where

E(v, w) = ‖∂xv‖2L2(M) + ‖|x|γ∂yv‖2L2(M) + ‖w‖2L2(M).

In particular, E(u(t), ∂tu(t))→ 0 as t→ +∞.

Remark 3.7. As usual for the damped wave equation, one cannot replace E(A(u0, u1))
1
2 in

the r.h.s. of (3.8) by E(u0, u1)
1
2 , otherwise the rate t

− 1
2γ could be improved to an exponential

decay.

The proof of this corollary from Theorem 3.1 is essentially contained in Proposition 2.4 of
[AL14]. To be self-contained, we prove Corollary 3.6 in Section 3-A.2. Note that the decay

rate t−
1
2 when γ = 1 is not new. This special case is a direct consequence of the Schrödinger

observability proved in [BS19] and an abstract result (Theorem 2.3) in [AL14], linking the
Schrödinger observability and the decay rate of the associated damped wave equation. However,
when γ > 1, the Schrödinger equation is not observable ((3) of Theorem 3.4), and we have to
apply Theorem 3.1. Also, we do not address here the question of the optimality of the decay
rate given by Corollary 3.6. See [AL14, Section 2C] for other open questions related to decay
rates of damped waves.

3.1.3 Comments and sketch of proof

Let us describe in a few words the intuition underlying our results, notably Theorem 3.4. For
that, we start with the case s = 1/2 (corresponding to wave equations) which, although not
covered by Theorem 3.4, is of interest. Whereas elliptic wave equations are observable in finite
time under a condition of geometric control ([BLR92]), it is known that for (strictly) subelliptic
wave equations, observability fails in any time (see Chapter 2). This is due to the fact that



80 CHAPTER 3. OBSERVABILITY OF BAOUENDI-GRUSHIN-TYPE EQUATIONS

in (co)-directions where the sub-Laplacian is not elliptic, the propagation of waves, and more
generally of any evolution equation built with sub-Laplacians, is slowed down. On the other
side, large s correspond to a quicker propagation along all directions. Therefore, Theorem 3.4
characterizes the threshold for the ratio of γ and s to get an exact balance between subelliptic
effects (measured by the step γ + 1) and elliptic phenomena (measured by s), and thus “finite
speed of propagation” along subelliptic directions.

This same analysis underlies the result on the Baouendi-Grushin-Schrödinger equation [BS19],
which was the starting point of our analysis: indeed, [BS19] deals with the critical case 1

2(γ+1) =
s = 1. Although the elliptic Schrödinger equation propagates at infinite speed, in subelliptic
geometries, observability may hold only for sufficiently large time or even fail in any time if the
degeneracy measured by γ is sufficiently strong. To our knowledge, the paper [BGX00], which
exhibited a family of travelling waves solutions of the Schrödinger equation (3.2) for γ = 1, mov-
ing at speeds proportional to n ∈ N, was the first result showing the slowdown of propagation
in degenerate directions.

The chapter is organized as follows.
In Section 3.2, we prove Theorem 3.1, roughly following the same lines as in [BS19]. Due to

the absence of the time-variable in our resolvent estimate, our proof is however slightly simpler,
but as a counterpart, our method does not allow us to compute explicitly the minimal time Tinf

of observability in Point (2) of Theorem 3.4. After having spectrally localized the sub-Laplacian
∆γ around h−2, our proof relies on a careful analysis of several regimes of comparison between
|Dy| and ∆γ , which roughly correspond to different types of trajectories for the geodesics in M :
we split the function v appearing in (3.1) according to Fourier modes in y and then we establish
estimates for different “spectrally localized” parts of v of the form ψ(h2∆γ)χh(Dy)v. Here, χh
localizes Dy in some subinterval of R which depends on h. Fixing a small constant b0 � 1, the
three different regimes which we distinguish are:

• the degenerate regime in Section 3.2.2 (|Dy| > b−1
0 h−1), for which we use a positive commu-

tator method (also known as “energy method”, and used for example to prove propagation
of singularities in the literature, see [Hor71a, Section 3.5]);

• the regime of the geometric control condition in Section 3.2.3 (b−1
0 h−1 > |Dy| > b0h

−1),
handled with semi-classical defect measures;

• the regime of horizontal propagation (|Dy| 6 b0h
−1) in Sections 3.2.4 and 3.2.5, for which

we use a positive commutator argument, and then a normal form method.

In Section 3.3, using the link between resolvent estimates and observability of Schrödinger-
type semigroups established in [BZ04], we deduce Points (1) and (2) of Theorem 3.4 from
Theorem 3.1. Indeed, we first establish a spectrally localized observability inequality, from which
we deduce the full observability using a classical procedure described for example in [BZ12].

In Section 3.4, we prove Point (3) of Theorem 3.4. For that, we construct a sequence of
approximate solutions of (3.2) whose energy concentrates on a point (x, y) ∈ (−1, 1) × T with
x = 0 and y /∈ I. The existence of such a sequence contradicts the observability inequality (3.5)
and is possible only when 1

2(γ + 1) > s. For constructing the sequence of initial data, we add
in a careful way the ground states of the operators −∂2

x + |x|2γη2 for different η’s (the Fourier
variable of y). These initial data propagate at nearly null speed along the vertical axis x = 0.

Finally, Section 3-A is devoted to the proof of basic results which were postponed to the
end of the chapter. In Section 3-A.1, we prove the well-posedness of the Schrödinger-type
equation (3.2), the heat-type equation (3.6) and the damped wave equation (3.7), using standard
techniques such as the Hille-Yosida theorem. In Section 3-A.2, we prove Corollary 3.6. Using
results of [BT10], it is sufficient to estimate the size of (iλId − A)−1 for large λ ∈ R (and in
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appropriate functional spaces). This is done mainly thanks to a priori estimates on the system
(iλId−A)U = F , and using the resolvent estimate of Theorem 3.1.

3.2 Proof of Theorem 3.1

This section is devoted to the proof of Theorem 3.1. In all the sequel, γ > 1 is fixed. It is
sufficient to deal with the case where ω = (−1, 1)x × I where I is a simple interval, since if
Theorem 3.1 holds for some ω = ω1, then it holds for any ω2 ⊃ ω1. Hence, in all the sequel, we
assume that I is a simple interval (a1, a2). Also, we use the notations Dx = 1

i ∂x and Dy = 1
i ∂y.

We will argue by contradiction. Assume that there exists a sequence (vh)h>0 such that

‖vh‖L2(M) = 1, ‖vh‖L2(ω) = o(1), ‖fh‖L2(M) = o(hγ+1) (3.9)

where fh = (h2∆γ + 1)vh, and we seek for a contradiction, which would prove Theorem 3.1. Let
us show that we can furthermore assume that vh has localized spectrum: for that, we consider
an even cutoff ψ ∈ C∞c (R), such that ψ ≡ 1 near ±1 and ψ = 0 outside (−2,−1

2) ∪ (1
2 , 2).

We set wh = (1 − ψ(h2∆γ))vh. Then (h2∆γ + 1)wh = (1 − ψ(h2∆γ))fh has L2 norm which
is o(hγ+1). Moreover, we also deduce that wh = (h2∆γ + 1)−1(1 − ψ(h2∆γ))fh and since
(h2∆γ + 1)−1(1 − ψ(h2∆γ)) is elliptic and thus bounded from L2(M) to L2(M), we obtain
‖wh‖L2(M) = o(1). Hence, considering vh − wh instead of vh, we can furthermore assume that
vh = ψ(h2∆γ)vh.

In the next subsections, we use a decomposition of vh as vh = v1
h + v2

h + v3
h + v4

h where

v1
h = (1− χ0(b0hDy))vh, v2

h = (χ0(b0hDy)− χ0(b−1
0 hDy))vh

v3
h = (χ0(b−1

0 hDy)− χ0(hεDy))vh, v4
h = χ0(hεDy)vh,

where 0 < ε � 1, 0 < b0 � 1 are small parameters which will be fixed throughout the article
and will be specified later (respectively in Proposition 3.14 and in Lemma 3.10). This is a
decomposition according to the dual Fourier variable of y and defined by functional calculus. The
cut-off χ0 ∈ C∞c (R) will be defined later (see (3.10)). We prove that vjh = o(1) for j = 1, 2, 3, 4,
which contradicts (3.9). The methods used for each j are quite different, and roughly correspond
to the different behaviours of geodesics according to their momentum η ∼ Dy.

3.2.1 A priori estimate and elliptic regularity

We start with the following coercivity estimate:

Lemma 3.8. There exists C1 > 0 such that for any u, the following inequality holds:

‖|Dy|
2

γ+1u‖L2(M) 6 C1‖∆γu‖L2(M)

Proof of Lemma 3.8. We write a Fourier expansion in y: for η ∈ Z, we set ûη(·) := Fy(u)(·, η).
Then, we have

Fy(−∆γu)(x, η) = (D2
x + |x|2γη2)ûη(x).

We make the change of variables z = |η|
1

γ+1x, and we set f(z, η) = Fy(−∆γu)(x, η) and v̂η(z) =
ûη(x). Then we obtain

f(z, η) = |η|
2

γ+1 (D2
z + |z|2γ)v̂η(z),



82 CHAPTER 3. OBSERVABILITY OF BAOUENDI-GRUSHIN-TYPE EQUATIONS

and thus, using that D2
z + |z|2γ is elliptic (since its spectrum is strictly above 0), we get

|η|
2

γ+1 ‖v̂η‖L2
z
6 C‖f(·, η)‖L2

z

for some constant C > 0 (independent of η). Coming back to the x variable and summing over
η, we obtain

‖|Dy|
2

γ+1u‖2L2(M) =
∑
η∈Z
|η|

4
γ+1 ‖ûη‖2L2

x

6 C1

∑
η∈Z
‖Fy(−∆γu)(·, η)‖2L2

x

= C1‖∆γu‖2L2(M)

thanks to Plancherel formula, which finishes the proof.

Let χ0 ∈ C∞c (R; [0, 1]) such that

χ0(ζ) ≡ 1, if |ζ| 6 (4C1)
γ+1

2 and χ0(ζ) ≡ 0 if |ζ| > (8C1)
γ+1

2 . (3.10)

Corollary 3.9. For 0 < h < 1, there holds

ψ(h2∆γ)(1− χ0(hγ+1Dy)) = 0.

Proof. For n ∈ Z, we consider an Hilbert basis of eigenfunctions ϕm,n of L2
x satisfying

(D2
x + |x|2γn2)ϕm,n = λ2

m,nϕm,n, ‖ϕm,n(x)‖L2((−1,1)) = 1, (3.11)

so that ϕm,ne
iny is an eigenfunction of ∆γ with associated eigenvalue −λ2

m,n. Let f ∈ D(∆γ),
and consider fh = ψ(h2∆γ)(1− χ0(hγ+1Dy))f . We write

fh =
∑
m,n

am,nψ(−h2λ2
m,n)(1− χ0(hγ+1n))ϕm,ne

iny.

We use Plancherel formula, apply Lemma 3.8 to fh and we obtain∑
m,n

|n|
4

γ+1 |am,n|2ψ(−h2λ2
m,n)2(1−χ0(hγ+1n))2 6 C2

1

∑
m,n

λ4
m,n|am,n|2ψ(−h2λ2

m,n)2(1−χ0(hγ+1n))2

(3.12)

On the support of θ(h,m, n) := ψ(−h2λ2
m,n)2(1−χ0(hγ+1n))2, there holds |n|

4
γ+1 > 16C2

1h
−4 >

C2
1λ

4
m,n. Indeed, for the first inequality, we used the support properties of χ0, and for the second

the support of ψ. This contradicts (3.12), except if all am,n vanish, i.e., fh ≡ 0.

Corollary 3.9 implies that

vh = ψ(h2∆γ)χ0(hγ+1Dy)vh. (3.13)

The next lemma shows that in the regime |Dy|γh−1, the energy of vh concentrates in the

region |x| � 1. Let χ ∈ C∞c (R) such that χ(ζ) ≡ 1 for |ζ| 6 2
1
γ . Also, possibly taking a larger

C1 in Lemma 3.8, we can assume that C1 > 1: in particular, χ0(ζ) ≡ 1 for |ζ| 6 1.
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Lemma 3.10 (Elliptic regularity). There exist small constants 0 < h0 � 1 and 0 < b0 � 1
such that for all 0 < h < h0, there holds∥∥(1− χ(b

− 1
γ

0 x)
)
(1− χ0(b0hDy))vh

∥∥
L2(M)

+
∥∥(1− χ(b

− 1
γ

0 x)
)
(1− χ0(b0hDy))h∂xvh

∥∥
L2(M)

6CNh
N
(
‖vh‖L2(M) + ‖h∇γvh‖L2(M)

)
,

for any N ∈ N.

Proof. As in the previous lemma, we write the eigenfunction expansion of vh as

(1− χ0(b0hDy))vh =
∑

m,n:|n|>b−1
0 h−1

1√
2
h−16λm,n6

√
2h−1

am,neinyϕm,n(x)

since χ0(ζ) ≡ 1 for |ζ| 6 1 and vh = ψ(h2∆γ)vh.
We claim that it suffices to prove:

‖(1− χ(b
− 1
γ

0 x))ϕm,n‖L2 + ‖(1− χ(b
− 1
γ

0 x))h∂xϕm,n‖L2 6 CNh
N (3.14)

for all N ∈ N and m,n such that 1√
2
h−1 6 λm,n 6

√
2h−1, |n| > b−1

0 h−1. Indeed, Cauchy-

Schwarz and (3.14) together imply∥∥(1− χ(b
− 1
γ

0 x)
)
(1− χ0(b0hDy))vh

∥∥
L2(M)

6
∑

m,n:b−1
0 h−16|n|6Ch−(γ+1)

1√
2
h−1λm,n6

√
2h−1

|am,n|
∥∥(1− χ(b

− 1
γ

0 x))ϕm,n
∥∥
L2

6CNh
N‖vh‖L2(#{(m,n) : b−1

0 h−1 6 |n| 6 Ch−(γ+1),
1√
2
h−1 6 λm,n 6

√
2h−1})1/2.

Since λm,n = |n|
2

γ+1µm,n where µm,n is the m-th eigenvalue of the operator D2
z + |z|2γ on

L2(|z| 6 |n|
1

γ+1 ) with Dirichlet boundary condition, we deduce from Weyl’s law that

#{(m,n) : b−1
0 h−1 6 |n| 6 Ch−(γ+1),

1√
2
h−1 6 λm,n 6

√
2h−1} 6 Ch−N0

for some N0 ∈ N.1 Therefore, it is sufficient to establish (3.14), which roughly says that in the
regime we consider, the energy of eigenfunctions concentrates near x = 0.

Multiplying (3.11) by (1− χ(b
− 1
γ

0 x))2ϕm,n and integrating over x ∈ (−1, 1), we obtain that∫ 1

−1
(1− χ(b

− 1
γ

0 x))2λ2
m,n|ϕm,n(x)|2dx =

∫ 1

−1
(1− χ(b

− 1
γ

0 x))2ϕm,n(x) · (−∂2
x + |x|2γn2)ϕm,ndx.

Doing integration by part for the r.h.s., and using the fact that n2|x|2γ > 4
h2 on the support of

1− χ(b
− 1
γ

0 x) when |n| > b−1
0 h−1, we deduce that the r.h.s. can be bounded from below by

4

h2

∫ 1

−1
(1− χ(b

− 1
γ

0 x))2|ϕm,n(x)|2dx+

∫ 1

−1
(1− χ(b

− 1
γ

0 x))2|∂xϕm,n(x)|2dx

−
∫ 1

−1
2b
− 1
γ

0 χ′(b
− 1
γ

0 x)(1− χ(b
− 1
γ

0 x))ϕm,n(x)∂xϕm,n(x)dx.

1To obtain this rough estimate, it suffices to apply Weyl’s law for each fixed n and count the number of n.
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Using the fact that 4
h2 − λ2

m,n > 2
h2 , we obtain that

2h−2‖(1− χ(b
− 1
γ

0 x))ϕm,n‖2L2 + ‖(1− χ(b
− 1
γ

0 x))∂xϕm,n‖2L2

6Cb
− 1
γ

0 ‖χ
′(b
− 1
γ

0 x)ϕm,n‖L2‖(1− χ(b
− 1
γ

0 x))∂xϕm,n‖L2 .

(3.15)

Using Young’s inequality in the r.h.s., this implies

‖(1− χ(b
− 1
γ

0 x))ϕm,n‖L2 + ‖(1− χ(b
− 1
γ

0 x))h∂xϕm,n‖ 6 Cb
− 1
γ

0 h.

To prove a better estimate, i.e. with an hN in the r.h.s. instead of h, we observe that

‖χ′(b
− 1
γ

0 x)ϕm,n‖L2 6 C‖(1− χ̃(b
− 1
γ

0 x))ϕm,n‖L2

for another cutoff χ̃ such that χ̃χ = χ̃. Therefore, we choose cutoffs χ(1), χ(2), · · · , χ(N) ∈ C∞c (R)
such that χ(1) = χ and χ(k)χ(k+1) = χ(k+1) for all 1 6 k 6 N and such that (3.15) holds by
replacing χ by χ(k) and

‖χ′(k)(b
− 1
γ

0 x)ϕm,n‖L2 6 Ck‖(1− χ(k+1)(b
− 1
γ

0 x))ϕm,n)‖L2 , k = 1, 2, · · · , N − 1.

Now since for χ(N),

‖(1− χ(N)(b
− 1
γ

0 x))ϕm,n‖L2 + ‖(1− χ(N)(b
− 1
γ

0 x))h∂xϕm,n‖ 6 Cb
− 1
γ

0 h,

we deduce by induction (in the reverse order) that

‖(1− χ(1)(b
− 1
γ

0 x))ϕm,n‖L2 + ‖(1− χ(1)(b
− 1
γ

0 x))h∂xϕm,n‖ 6 Cb
−N
γ

0 hN .

This completes the proof of Lemma 3.10.

3.2.2 Degenerate regime

For 0 < h < 1 and b0 fixed once for all thanks to Lemma 3.10, we define the semiclassical
spectral projector

Πb0h
h := ψ(h2∆γ)(χ0(hγ+1Dy)− χ0(b0hDy)).

In this subsection, we will show that

‖Πb0h
h vh‖L2(M) = o(1), h→ 0. (3.16)

We prove it by contradiction. If not, we must have ‖wh‖L2(M) & 1 where wh = Πb0h
h vh. We set

f̃ = Πb0h
h f so that

(h2∆γ + 1)wh = f̃h.

Let us notice that∣∣∣‖h∇γwh‖2L2(M) − ‖wh‖
2
L2(M)

∣∣∣ 6 ‖wh‖L2(M)‖(h2∆γ + 1)wh‖L2(M)

where ∇γ = (∂x, x
γ∂y) is the horizontal gradient. This follows from integration by part in the

integral
∫
wh(h2∆γ + 1)wh. We deduce

‖h∇γwh‖L2(M) = ‖wh‖2L2(M) + o(1). (3.17)
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The proof of (3.16) is mainly based on the following commutator relation:

[∆γ , x∂x + (γ + 1)y∂y] = 2∆γ .

This is an illustration for the positive commutator method, which we shall use again in other
parts of the proof. This method dates back at least to [Hor71a, Section 3.5] and has been widely
used, for example for proving propagation of singularities for the wave equation.

Note that y∂y is not defined globally on Ty. This is why we introduce the following cut-off
procedure. Let φ ∈ C∞(T) such that φ ≡ 1 on T \ (a1, a2), supp(φ′) ⊂ (a1, a2) and φ ≡ 0 on a
strict sub-interval of I = (a1, a2). Then, considering φ(y)y∂y on the interval [a1+a2

2 , a1+a2
2 + 2π]

and then periodizing, we obtain an objet globally defined on T.

We also set χb0(x) = χ(b
− 1
γ

0 x) (see Lemma 3.10). We compute the inner product

Cγ := ([h2∆γ + 1, χb0(x)φ(y)(x∂x + (γ + 1)y∂y)]wh, wh)L2(M)

in two ways. The first way is to expand the bracket and use the self-adjointness of ∆γ :

Cγ = (χb0(x)φ(y)(x∂xvh+(γ+1)y∂ywh), f̃h)L2(M)−(χb0(x)φ(y)(x∂xf̃h+(γ+1)y∂yf̃h), wh)L2(M).

The second way is to use the computation

[h2∆γ + 1, χb0(x)φ(y)(x∂x + (γ + 1)y∂y)]

=2h2χb0(x)φ(y)∆γ + h2(γ + 1)|x|2γ(φ′′(y)y + 2φ′(y))χb0(x)∂y

+h2φ′′(y)|x|2γxχb0(x)∂x + 2h2(γ + 1)|x|2γyφ′(y)χb0(x)∂2
y + 2h2|x|2γxχb0(x)φ′(y)∂2

xy

+h2φ(y)(χ′′b0(x) + 2χ′ε(x)∂x)(x∂x + (γ + 1)y∂y).

From the elliptic regularity (Lemma 3.10) and (3.17), on the supports of 1−χb0(x), χ′b0(x), χ′′b0(x),

the L2 norm of wh and ∇γwh is of order O(hN )‖wh‖L2 for any N ∈ N. Then, using integration
by part and Young’s inequality, we obtain

Cγ = (2φ(y)h2∆γwh, wh)L2(M)+O(h)‖h∇γwh‖2L2(M)+O(h)‖wh‖2L2(M)+O(1)‖h∇γwh‖2L2(supp(φ′)).

Equating the two ways of computing Cγ and using integration by parts, we obtain

‖φ(y)1/2h∇γwh‖2L2(M) 6 O(h)‖h∇γwh‖2L2(M) +O(h)‖wh‖2L2(M) +O(1)‖h∇γwh‖2L2(supp(φ′))

+O(1)‖f̃h‖L2(M)(‖∂xwh‖L2(M) + ‖∂ywh‖L2(M)).

First, we notice that we can replace the left hand side simply by ‖h∇γwh‖2L2(M) (which is

& 1 thanks to (3.17)) and the above inequality remains true: this is due to the presence of
O(1)‖h∇γwh‖2L2(supp(φ′)) in the right hand side. Then, for h sufficiently small, we absorb the

O(h)‖h∇γw‖2L2(M) and the O(h)‖wh‖2L2(M) terms in the left hand side. Finally, we use

‖∂xwh‖L2(M) 6 h−1‖h∇γwh‖L2(M) . h−1

‖∂ywh‖L2(M) 6 h−(γ+1)‖wh‖L2(M)

‖f̃h‖L2(M) 6 ‖fh‖L2(M) = o(hγ+1)

where the first line comes from (3.17), the second line from Corollary 3.9 together with wh =
ψ(h2∆γ)wh, and the third line from Plancherel formula and (3.9). We obtain

1 . ‖h∇γwh‖2L2(supp(φ′)). (3.18)
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Let us prove that this contradicts (3.9). Let φ1 ∈ C∞(Ty) such that φ1 = 1 on supp(φ′) and
φ1 = 0 on Ty \ I. In particular, together with (3.18), this implies

1 . ‖φ1(y)h∇γwh‖2L2(M).

By integration by parts, there holds

‖φ1(y)h∇γwh‖2L2(M) = −h2

∫
M
wh(∇γ(φ2

1) · ∇γwh)dxdy − h2

∫
M
φ2

1wh∆γwhdxdy

= −h2

∫
M
wh(∇γ(φ2

1) · ∇γwh)dxdy +

∫
M
φ2

1wh(wh − f̃h)dxdy

where in the last line we used the equation of wh. Using (3.9), (3.17) and Cauchy-Schwarz
inequality, we see that the first term in the last line is O(h). For the second term, we write∣∣∣∣∫

M
φ2

1wh(wh − fh)dxdy

∣∣∣∣ = ‖φ1wh‖2L2(M) + o(1),

and we note that

‖φ1wh‖L2(M) 6 ‖[φ1,Π
b0h
h ]vh‖L2(M) + ‖Πb0h

h (φ1vh)‖L2(M) 6 O(h) + ‖vh‖L2(ω) = o(1)

as h → 0, by assumption. All in all, we obtain ‖φ1(y)h∇γwh‖2L2(M) = o(1), which is a contra-

diction. This concludes the proof of (3.16).

3.2.3 Regime of the geometric control condition

Let
Πh,b0 = ψ(h2∆G)χ0(b0hDy)(1− χ0(b−1

0 hDy))

and zh = Πh,b0vh. In this subsection, we will show that

‖zh‖L2(M) = o(1), h→ 0. (3.19)

We will use a defect-measure based argument as in [BS19, Section 5]. It consists in showing that
the semi-classical defect measure associated with a subsequence of (zh)h>0 is invariant along the
Melrose-Sjöstrand flow (corresponding to the principal symbol p = ξ2 + |x|2γη2). Then to obtain
a contradiction, we just need to check the geometric control condition: there exists T0 > 0 such
that any trajectory of the Melrose-Sjöstrand flow enters ω within time T0; but we recall that
only trajectories corresponding to |η| ∈ (b0, b

−1
0 ) are considered here. We omit the standard

steps of constructing the semi-classical measure and proving the invariance of the measure2, and
only proceed to check the geometric control condition.

For the principal symbol

p(x, y; ξ, η) = ξ2 + |x|2γη2, γ > 1,

the Hamiltonian flow is given by the ODE
ẋ = ∂ξp = 2ξ

ξ̇ = −∂xp = −2γ|x|2(γ−1)xη2

ẏ = 2|x|2γη
η̇ = 0.

(3.20)

2The argument is the same as in the Baouendi-Grushin-context γ = 1 handled in [BS19, Section 5].



3.2. PROOF OF THEOREM 3.1 87

Thanks to the integrability of (3.20), we can define the Melrose-Sjöstrand flow associated with
the symbol p on the compressed cotangent bundle bT ∗M .3 We will denote by ϕs(·) this flow.

Remark 3.11. The assumption that γ > 1 is used here, since otherwise the coefficients of
(3.20) are not Lipschitz and the Cauchy-Lipschitz theorem does not allow us to conclude that
its solutions are unique.

Lemma 3.12. Assume that γ > 1 and ω ⊂ (−1, 1) × T is a horizontal strip. There exist
T0 > 0, c0 > 0, such that for all ρ0 = (x0, y0; ξ0, η0) with |η0| ∈

(
b0, b

−1
0

)
and p(x0, y0; ξ0, η0) =

p0 ∈
(

1
2 , 2
)
, there holds

1

T0

∫ T0

0
1ω(ϕs(ρ0))ds > c0 > 0.

In particular, the geometric control condition (GCC) holds for ω.

Proof. It suffices to show that any trajectory ϕs(ρ0) satisfying

p(ρ0) = p0 ∈
(1

2
, 2
)
, |η0| ∈

(
b0, b

−1
0

)
will enter the interior of ω before some uniform time T0 > 0. By shifting the y variable we
may assume that y0 = 0. Without loss of generality we can also assume that η0 > 0. Let
ϕs(ρ0) = (x(s), y(s); ξ(s), η(s)). Note that η(s) = η0 6= 0, so that x(·) is periodic. Moreover, we
have the first integrals

p0 =
1

4
|ẋ(s)|2 + |x(s)|2γη2

0, y(s) = 2η0

∫ s

0
|x(s′)|2γds′ (mod 2π) (3.21)

In a nutshell, to show that the flow reaches ω, we first notice that y(·) evolves in a monotone
way in T, and that the larger |x| is, the more y varies. Now, if |x| remains too small, then (3.21)
gives that |ẋ| ∼ 2

√
p0, which implies that |x| cannot remain too small, thus a contradiction.

To put it into a rigorous form, consider the interval Jδ = (−δ, δ) (for the x variable) for
0 < δ � 1. For δ > 0 sufficiently small (not depending on |η0| ∈ (b0, b

−1
0 )) and if x(s) ∈ Jδ,

using (3.21), we have |ẋ(s)| > √p0. Therefore, following the flow, it takes a time at most
τ0 := 2δ√

p0
to leave the regionl Jδ × T.

Let us fix s0 such that x(s0) ∈ Jδ (if it does not exist, we are done thanks to the second relation
in (3.21)). We know that there exists s0 6 s1 6 s0 + τ0 such that |x(s1)| = δ. We consider the
minimal time s2 > s1 such that |x(s2)| = δ

2 . Since ‖ẋ‖∞ 6 2
√
p0 (thanks to (3.21)), we know

that s2 > s3 := s1 + δ
4
√
p0

. Finally,

y(s3)− y(s0) = 2η0

∫ s3

s0

|x(s′)|2γds′ > 2b0

∫ s3

s1

(
δ

2

)2γ

ds′ =
b0δ

2
√
p0

(
δ

2

)2γ

.

In other words, in any case, y increases of at least b0δ
2
√
p0

(
δ
2

)2γ
within any time period of length

τ0 + δ
4
√
p0

6 3δ√
p0

. Hence, the result holds for some T0 of order δ−2γ .

3In our specific example, the flow in the interior is defined via (3.20); when it reaches the boundary, the flow
is continued directly at diffractive points and by reflection at hyperbolic points. There is no higher order contact
in this simple geometry, see [BS19, Section 5].
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3.2.4 Horizontal propagation regime I

Now we treat the regime |Dy| 6 b0h
−1. We set κh := ψ(h2∆γ)χ0(b−1

0 hDy)vh. To finish the proof
of Theorem 3.1, it remains to show that

‖κh‖L2(M) = o(1), h→ 0. (3.22)

Let µ be a semi-classical measure associated to a subsequence of (κh)h>0. Since it is invariant
along the Hamiltonian flow associated with p = ξ2 + |x|2γη2 subject to the reflection and diffrac-
tion at the boundary. Since µ1ω = 0 and ω is a horizontal strip (or union of horizontal strips),
we deduce that the only possible place where the defect measure concentrates is the set {η = 0}
on which the trajectories are horizontal. To exclude this possibility, we need to decompose |Dy|
in a finer way. For some small parameter ε > 0 to be chosen later, we let

κεh = (1− χ0(hεDy))κh, κh,ε = χ0(hεDy)κh.

Our goal of this subsection is to show that

‖κεh‖L2(M) = o(1), h→ 0 (3.23)

We use the positive commutator method (already used in Section 3.2.2) with the relation

[h2∆γ + 1, φ(y)y∂y] =2φ(y)|x|2γ(h∂y)
2 + 2yφ′(y)|x|2γ(h∂y)

2

+h2φ′′(y)y|x|2γ∂y + 2h2φ′(y)|x|2γ∂y,

where φ has been introduced in Section 3.2.2. As in Section 3.2.2, we compute the inner product
([h2∆γ + 1, φ(y)y∂y]κ

ε
h, κ

ε
h)L2(M) in two ways, and using Cauchy-Schwarz, it gives

‖φ(y)1/2h|x|γ∂yκεh‖2L2(M) 6Ch‖|x|
γh∂yκ

h
ε ‖L2(M)‖κεh‖L2(M) + Ch2‖κεh‖2L2(M)

+C‖φ′(y)1/2|x|γh∂yκεh‖2L2(M) + Ch−1‖fh‖L2(M)‖h∂yκεh‖L2(M).

Using Young’s inequality, we deduce that for any δ > 0, for any sufficiently small h > 0,

‖φ(y)1/2|x|γh∂yκεh‖2L2(M) 6δ‖h∂yκ
ε
h‖2L2(M) + C‖|x|γh∂yκεh‖2L2(supp(φ′))

+C(δ)h−2‖fh‖2L2(M) + C(δ)h2‖κεh‖2L2(M)

and therefore, using the ‖|x|γh∂yκεh‖L2(supp(φ′)) term in the right hand side, we obtain

‖|x|γh∂yκεh‖2L2(M) 6 δ‖h∂yκεh‖2L2(M) + C‖|x|γh∂yκεh‖2L2(supp(φ′))

+C(δ)h−2‖fh‖2L2(M) + C(δ)h2‖κεh‖2L2(M).
(3.24)

We need the following lemma, which roughly states that in the horizontal regime, the mass
cannot concentrate on x = 0:

Lemma 3.13. We have

‖∂yκεh‖L2(M) 6 C‖|x|γ∂yκεh‖L2(M) + o(1),

as h→ 0.
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Let us postpone the proof of Lemma 3.13 for the moment and proceed to finish the proof of
(3.23). Thanks to (3.24) and Lemma 3.13, by choosing δ small enough, we have

‖|x|γ∂yκεh‖2L2(M) 6 C‖|x|γ∂yκεh‖2L2(supp(φ′)) + C(δ)o(h2(γ−1)) + C(δ)‖κεh‖2L2(M) + o(1).

Applying Lemma 3.13 again and plugging into the inequality above, we have

‖∂yκεh‖2L2(M) + ‖|x|γ∂yκεh‖2L2(M) 6 C‖|x|γ∂yκεh‖2L2(supp(φ′)) + C(δ)‖κεh‖2L2(M) + o(1).

Now since Fy(κεh)(x, n) = 0, for all |n| 6 h−ε, by definition of κεh, we have

‖κεh‖2L2(M) 6 h2ε‖∂yκεh‖2L2(M),

hence, we have

‖∂yκεh‖2L2(M) + ‖|x|γ∂yκεh‖2L2(M) 6 C‖|x|γ∂yκεh‖2L2(supp(φ′)) + o(1).

Now, we proceed as in Section 3.2.2: we insert a smooth cutoff φ1(y) such that supp(φ1) ⊂ ω
and φ1(y) ≡ 1 on supp(φ′). Hence ‖|x|γ∂yκεh‖2L2(supp(φ′)) 6 ‖|x|

γφ1(y)∂yκ
ε
h‖2. Then we can write

|x|γφ1(y)h∂yκ
ε
h = |x|γh∂yψ(h2∆γ)χ0(b−1

0 hDy)(φ1(y)vh) +OL2(M)(h),

where the second term on the r.h.s. comes from the commutator. Therefore,

‖κεh‖2L2(M) 6 h2ε‖∂yκεh‖2L2(M) 6 o(h2ε) + Ch2ε‖φ1(y)vh‖2L2(M) +O(h2ε).

Since supp(φ1) ⊂ ω, there holds ‖φ1(y)vh‖L2(M) = o(1). The proof of (3.23) is complete.
It remains to prove Lemma 3.13:

Proof of Lemma 3.13. This is a variant of horizontal propagation estimates in the spirit of
Lemma 6.2 in [BS19]. However, due to the absent of the time variable, here we need a slightly
different argument. The main idea is to use propagation arguments in the horizontal direction
in order to “get out” from the singular region x = 0.

Let zh = ∂yκ
ε
h. Since ∂y commutes with h2∆γ + 1, zh satisfies the equation

(h2∆γ + 1)zh = gh = oL2(hγ),

where gh = (1− χ0(hεDy))χ0(b−1
0 hDy)∂yfh. Let us show that for some r0 ∈ (0, 1

2),

‖zh‖L2(|x|62r0) 6 C(r0)‖zh‖L2(r0<|x|<1) + o(1)

as h→ 0, which is sufficient for proving Lemma 3.13. We choose ψ± ∈ C∞c (R) such that

ψ±(ξ) =

1, if 3
4

√
1
2 − (8C1)γ+1b20 6 ±ξ 6 2

√
2;

0, if |ξ| > 3 or |ξ| < 1
2

√
1
2 − (8C1)γ+1b20.

Let χ ∈ C∞c ((0, 1)) such that χ(x) = 1 if |x| 6 r0 and χ(x) = 0 if |x| > 3r0/2. From the
localization property of zh, we know that

WFh(zh) ⊂
{

(x, y; ξ, η) : p = ξ2 + |x|2γη2 ∈ (
1

2
, 2), |η| 6 (8C1)

γ+1
2 b0

}
⊂ {(x, y, ξ, η) : ξ ∈ supp(ψ+) ∪ supp(ψ−)},
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thus it suffices to estimate ‖χ(x)ψ±(hDx)zh‖L2(M) and by symmetry we only need to estimate
‖χ(x)ψ+(hDx)zh‖L2(M). Moreover, by our choice of ψ±,

WFh(zh) ∩ {(x, y; ξ, η) : ξ ∈ supp((ψ±)′)} = ∅.

Note that for any (semi-classical) pseudo-differential operator Oph(a), compactly supported
in the interior of M , we have

1

ih

(
[Oph(a), h2∆γ + 1]zh, zh

)
L2(M)

= o(hγ−1) = o(1), (3.25)

thanks to the equation of zh. Now we consider a specific pseudo-differential operator Oph(a±)
with principal symbol χ2(x) sin

(
πx
4r0

)
(ψ±(ξ))2. By symbolic calculus,

1

ih
[Oph(a+), h2∆γ + 1] = Oph({ξ2 + |x|2γη2, χ2(x) sin(

πx

4r0
)(ψ±(ξ))2}) +OL2→L2(h).

We compute

{ξ2 + |x|2γη2, χ2(x) sin(
πx

4r0
)(ψ+(ξ))2}

=2ξ(ψ+(ξ))2 · π
4r0

χ2(x) cos
( πx

4r0

)
+ 4ξ(ψ+(ξ))2χ(x)χ′(x) sin

( πx
4r0

)
−4γ|x|2γ−2xη2ψ+(ξ)(ψ+)′(ξ)χ2(x) sin

( πx
4r0

)
.

Let

a1 = 2ξ(ψ+(ξ))2 · π
4r0

χ2(x) cos
( πx

4r0

)
, a2 = 4ξ(ψ+(ξ))2χ(x)χ′(x) sin

( πx
4r0

)
and a3 = −4γ|x|2γ−2xη2ψ+(ξ)(ψ+)′(ξ)χ2(x) sin

(
πx
4r0

)
. From the property of WFh(zh), we have

(Oph(a3)zh, zh)L2(M) = O(hN ), for any N ∈ N. From the support property of a2, we have

|(Oph(a2)zh, zh)L2(M)| 6 C‖zh‖2L2(r0<|x|<1).

Thus from (3.25), we have

(Oph(a1)zh, zh)L2(M) 6 o(1) + C‖zh‖2L2(r0<|x|<1). (3.26)

Since a1 > c0 for some uniform constant c0 > 0 on |x| 6 3r0/2, we can decompose a1 = a
(0)
1 +a

(1)
1

where a
(0)
1 > c0χ(x)2(ψ+(ξ))2 and supp(a

(1)
1 ) ⊂ {|x| > 3r0

2 }. Using the sharp G̊arding inequality,
we have

(Oph(a
(0)
1 )zh, zh)L2(M) > c0(Oph(χ(x)2(ψ+(ξ))2)zh, zh)L2(M) − Ch‖zh‖2L2(M).

Together with (3.26), this yields

‖χ0(x)ψ(hDx)+zh‖2L2 6 o(1) + C‖zh‖L2(r0<|x|<1).

The proof of Lemma 3.13 is now complete.
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3.2.5 Horizontal propagation regime II

To finish the proof of (3.22) (and hence that of Theorem 3.1), it remains to show that

‖κh,ε‖L2(M) = o(1), h→ 0, (3.27)

where κh,ε = χ0(hεDy)κh = ψ(h2∆γ)χ0(hεDy)κh with small parameter ε > 0 to be fixed later.
In this subsection, we prove the following result which, combined with (3.9), directly yields
(3.27):

Proposition 3.14. There exist C > 0, h0 > 0, ε0 > 0 such that for all 0 < h < h0 and
0 < ε < ε0, we have

‖κh,ε‖L2(M) 6 C‖κh,ε‖L2(ω) + Ch−2‖(h2∆γ + 1)κh,ε‖L2(M) + Ch1−2ε‖vh‖L2(M).

We follow the normal form method as in [BS19, Section 7], originally inspired by the work
[BZ04]. The key point is to search for a microlocal transformation

w = (1 + hQD2
y)v

for some suitable semi-classical pseudo-differential operator Q = q(x, hDx), such that the con-
jugated equation (satisfed by w) is

h2∂2
xw + h2M∂2

yw + w = errors,

where

M =
1

2

∫ 1

−1
|x|2γdx

is the mean value of |x|2γ . Roughly speaking, this normal form method puts into a rigorous
form the intuition that in the horizontal propagation regime, the vector field |x|γ∂y acts as if it
were averaged along horizontal trajectories.

Then we will be able to use the following theorem:

Proposition 3.15 ([AL14],[BZ04],[AM14]). Let ∆M = ∂2
x + M∂2

y . Then for any non-empty
open set ω0 ⊂ T2, we have

‖u‖L2(T2) 6 C‖u‖L2(ω0) + Ch−2‖(h2∆M + 1)u‖L2(T2).

However, dealing with Dirichlet boundary value problem induces difficulties and conse-
quently, we prefered to extend the analysis to the periodic setting. First we introduce several
notations. Let

T̃ := [−1, 3]/{−1, 3} and T̃2 := T̃x × Ty.

Define

a(x) = |x|γ , if |x| 6 1 and a(x) = |2− x|γ , if 1 6 x 6 3,

and the operator

Pa := ∂2
x + a(x)2∂2

y .

Note that a(x) and a(x)2 are Lipschitz functions on T̃. Let

Hk
a (T̃2) := {f ∈ D′(T̃2) : P jaf ∈ L2(T̃2), ∀0 6 j 6 k}



92 CHAPTER 3. OBSERVABILITY OF BAOUENDI-GRUSHIN-TYPE EQUATIONS

the associated function spaces and the domain of Pa is D(Pa) = H2
a(T̃2). Recall that D(∆γ) =

H1
γ,0(M) ∩H2

γ(M). Consider the extension map:

ι1 : D(∆γ)→ D(Pa), f 7→ f̃ ,

with
f̃(x, y) = f(x, y), if |x| 6 1, and f̃(x, y) = −f(2− x, y), if 1 6 x 6 3.

The mapping ι1 is the odd extension with respect to x = 1. Note that for f ∈ C∞(M), we have

∂xf |x=1− = ∂x(ι1f)|x=1+.

Recall the following lemmas from [BS19, Section 7]:

Lemma 3.16 ([BS19]). The extension map ι1 : D(∆γ) → D(Pa) is continuous. Moreover, for
all f ∈ D(∆γ), ‖ι1f‖L2(T̃2)

=
√

2‖f‖L2(Ω).

Note that this result was only proved for γ = 1 in [BS19, Section 7], but the proof given
there works without any modification for general γ > 1.

Lemma 3.17 ([BS19]). Let S1, S2 be two self-ajoint operators on Banach spaces E1, E2 with
domains D(S1), D(S2) respectively. Assume that j : D(S1)→ D(S2) is a continuous embedding
and that there holds j ◦ S1 = S2 ◦ j. Then, for any Schwartz function g ∈ S(R), we have

j ◦ g(S1) = g(S2) ◦ j

Lemma 3.17 ensures the preservation of the spectral localization property by odd extension
procedure. We deduce from Lemma 3.17 that for any Schwartz function g : R→ C,

ι1 ◦ g(h2∆γ) = g(h2Pa) ◦ ι1.

Consequently, we have the following lemma, reducing the proof of Proposition 3.14 to the ob-
servability of the extended solutions:

Lemma 3.18. Let φ1(y) be a smooth function which is supported in ω. Assume that there exist
h0, ε0 > 0 such that for any 0 < h < h0, 0 < ε < ε0, the following observability holds for all
ṽ ∈ L2(T̃2):

‖ψ(h2Pa)χ0(hεDy)ṽ‖2L2(T̃2)
6C‖(h2Pa + 1)ψ(h2Pa)χ0(hεDy)ṽ‖2L2(T̃2)

+C‖φ1(y)ψ(h2Pa)χ0(hεDy)ṽ(t)‖2
L2(T̃2)

dt+ Ch‖ṽ‖2
L2(T̃2)

. (3.28)

Then Proposition 3.14 is true. More precisely, with the same constant C > 0, for all 0 < h < h0,
0 < ε < ε0, the resolvent estimate

‖ψ(h2∆γ)χ0(hεDy)v‖2L2(M) 6C‖(h
2∆γ + 1)v‖2L2(M)

+C‖φ1(y)ψ(h2∆γ)χ0(hεDy)v‖2L2(M) + Ch‖v‖2L2(M)

holds for all v ∈ L2(M).

The proof of Lemma 3.18 is straightforward and we omit the detail.

Remark 3.19. Since the extension operation is done for the x-variable, we keep the notation
φ1(y) for the extension of this function.
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Before proving (3.28), we need a lemma which, modulo errors, allows us to replace the
operator ψ(h2Pa)χ0(hεDy) by ψ1(hDx)χ0(hεDy).

Lemma 3.20. Let ψ1 ∈ C∞c (1
4 < |ξ| < 4) such that ψ1 = 1 on supp(ψ). Then, as a bounded

operator on L2(T̃2), we have

(1− ψ1(hDx))ψ(h2Pa)χ0(hεDy) = OL2→L2(h2−2ε).

Proof. As Dy commutes with Dx and Pa, by Plancherel, it suffices to show that, uniformly in

|n| 6 (8C1)
1

γ+1h−ε,
(1− ψ1(hDx))ψ(h2Ln) = OL2→L2(h2(1−ε)),

where Ln = −∂2
x + n2a(x)2. The key point here is that (1− ψ1(ξ))ψ(ξ) = 0. We will make use

of the Helffer-Sjöstrand formula (see [DS99] and [BGT04]) :

ψ(h2Ln) =
1

2πi

∫
C
∂ψ̃(z)(z − h2Ln)−1dz ∧ dz,

where ψ̃(z) is an almost analytic extension of ψ, for example

ψ̃(z) := χ(Imz) ·
N+1∑
n=0

ψ(n)(Rez)

n!
(iImz)n, N > 2.

Note that as an operator-valued meromorphic function, we have

(z − h2Ln)−1 = (z − h2D2
x)−1 + h2n2(z − h2D2

x)−1a(x)2(z − h2Ln)−1,

we obtain that

(1− ψ1(hDx))ψ(h2Ln) =
h2n2

2πi
(1− ψ1(hDx))

∫
C
∂ψ̃(z)(z − h2Dx)−1a(x)2(z − h2Ln)−1dz ∧ dz,

where we used the Cauchy integral formula

ψ(h2Dx) =
1

2πi

∫
C
∂ψ̃(z)(z − h2D2

x)−1dz ∧ dz

and (1 − ψ1(hDx))ψ(hDx) = 0. Using the fact that |∂ψ̃(z)| 6 CN |Imz|Nχ(Imz) and ‖(z −
P )−1‖ 6 |Imz|−1 for any self-adjoint operator P , we deduce that

‖(1− ψ1(hDx))ψ(h2Ln)‖ 6 Ch2(1−ε).

This completes the proof of Lemma 3.20.

Proof of Proposition 3.14. From Lemma 3.18, it is sufficient to prove (3.28). With a little abuse
of notation, we denote by v0 = κ̃h,ε the extension of κh,ε, which verifies v0 = ψ(h2Pa)χ0(hεDy)v0.
We are now in the periodic setting. Yet, we should pay an extra attention to the fact that
Pa = ∂2

x + a(x)2∂2
y is a hypoelliptic operator with only Lipschitz coefficient. More precisely,

a ∈ Lip(T̃2) which is not C1 when γ = 1 at x = 1.
Modulo an error OL2(h2−2ε)‖v0‖L2(T̃2)

, we may assume that v0 = ψ1(hDx)χ0(hεDy)v0. Note

that
(h2Pa + 1)v0 = f0 := ι((h2∆γ + 1)κh,ε).

Now we search for the function
w0 = (1− hQ∂2

y)v0
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with an h-pseudo-differential operator Q acting only on x, to be chosen later. Let M =
1
4

∫ 3
−1 a(x)2dx = 1

2

∫ 1
−1 |x|

2γdx be the average of a(x)2 along the horizontal trajectory y = const.

Using the equation (h2Pa + 1)v0 = f0, we have

(h2∂2
x +Mh2∂2

y)w0 + w0 =(1− hQ∂2
y)(h2∆γ + 1)v0 + (1− hQ∂2

y)(M − a(x)2)h2∂2
yv0

−1

h
[h2∂2

x, Q]h2∂2
yv0

=(1− hQ∂2
y)f0 +

(
M − a(x)2 − 1

h
[h2∂2

x, Q]
)
h2∂2

yv0

−hQ∂2
y(M − a(x)2)h2∂2

yv0

Take ψ2 ∈ C∞c (1/8 6 |ξ| 6 8), such that ψ2ψ1 = ψ1. We define the operator

Q =
1

2i

(∫ x

−1
(M − a(z)2)dz

)
(hDx)−1ψ2(hDx),

and set b(x) = 1
2i

∫ x
−1(M − a(z)2)dz, m(hDx) = (hDx)−1ψ2(hDx). Since a(x)2 −M has zero

average, the function b is well-defined as a periodic function in the space C1(T̃) ∩ W 2,∞(T̃).
From a direct calculation, we have

h[∂2
x, Q] = 2ib′(x)m(hDx)hDx + i[hDx, b

′(x)]m(hDx).

Note that [hDx, b
′(x)] = −ihb′′(x), and b′′ ∈ L∞(T̃), thus

‖
(
M − a(x)2 − 1

h
[h2∂2

x, Q]
)
h2∂2

yv0‖L2(T̃2)
= O(h3−2ε)‖v0‖L2(T̃2)

.

Therefore,

‖(h2∆M + 1)w0‖L2(T̃2)
6 C‖f0‖L2(T̃2)

+O(h3−4ε)‖v0‖L2(T̃2)
.

where ∆M = ∂2
x +M∂2

y . Applying Proposition 3.15, we obtain that

‖w0‖L2(T̃2)
6 C‖φ1(y)w0‖L2(T̃2)

+ Ch−2‖f0‖L2(T̃2)
+ Ch1−4ε‖v0‖L2(T̃ 2)

.

Since w0 = v0 + O
L2(T̃2)

(h1−2ε)‖v0‖L2(T̃2)
and supp(φ1) ⊂ ω, the proof of Proposition 3.14 is

now complete.

End of the proof of Theorem 3.1. We choose ε as in Proposition 3.14. Combining (3.13), (3.16),
(3.19), (3.22) and (3.27), we obtain ‖vh‖L2(M) = o(1), which contradicts (3.9) and proves The-
orem 3.1.

3.3 Theorem 3.4: proofs of observability

3.3.1 Localized observability

In this section, we prove Point (1) and one part of Point (2) of Theorem 3.4, namely that
observability holds for sufficiently large time in case s = γ+1

2 . The proofs of these two results
are both based on the resolvent estimate given by Theorem 3.1.

In general, we have the following abstract theorem:
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Theorem 3.21 ([BZ04]). Let P (h) be self-adjoint on some Hilbert space H with densely defined
domain D and A(h) : D → H be bounded. Fix χ0 ∈ C∞c ((−b,−a)). Assume that uniformly for
τ ∈ I = [−b,−a] ⊂ R, we have the following resolvent inequality

‖u‖H 6
G(h)

h
‖(P (h) + τ)u‖H + g(h)‖A(h)u‖H

for some 1 6 G(h) 6 O(h−N0). Then there exist constants C0, c0, h0 > 0, such that for every
T (h) satisfying

G(h)

T (h)
< c0,

we have, ∀0 < h < h0

‖χ0(P (h))u‖2H 6 C0
g(h)2

T (h)

∫ T (h)

0
‖A(h)e−

itP (h)
h χ0(P (h))u‖2Hdt,

where ψ ∈ C∞c ((a, b)).

Let us prove Points (1) and (2) of Theorem 3.4, using Theorems 3.1 and 3.21. For s ∈ N,
s > 1, there holds:

(−h2∆γ)s − 1 = Qh,γ(−h2∆γ − 1)

where

Qh,γ = (−h2∆γ)s−1 + . . .+ 1

which is an elliptic operator, such that Q−1
h,γ is bounded from L2(M) to L2(M) (independently

on h). Hence if

(−h2∆γ)suh − uh = gh,

then

−h2∆γuh − uh = Q−1
h,γgh

and, applying Theorem 3.1 and using the L2(M) boundedness of Q−1
h,γ , we get

‖uh‖L2(M) 6 O(1)‖uh‖L2(ω) +O(h−(γ+1))‖gh‖L2(M).

Let us now prove a spectrally localized observability inequality thanks to a rescaling argument.
We first assume s > γ+1

2 . The previous estimate gives

‖uh‖L2(M) 6 O(1)‖uh‖L2(ω) +
G(h)

h
‖gh‖L2(M)

with G(h) = o(h1−2s). Applying Theorem 3.21 to g(h) = 1, A(h) = 1ω, P (h) = (−h2∆γ)s, by
denoting uh = χ0((−h2∆γ)s)u0 where χ0 ∈ C∞c ((1/2, 2)), we have

‖uh‖2L2(M) 6
C0

T (h)

∫ T (h)

0
‖e−

it(−h2∆γ )s

h uh‖2L2(ω)dt

for T (h) = C1G(h) with C1 = 2
c0

. By changing variables t′ = h2s−1t, we have

‖uh‖2L2(M) 6
C0

C1G(h)h2s−1

∫ h2s−1C1G(h)

0
‖e−it′(−∆γ)suh‖2L2(ω)dt

′.
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Fix T > 0. Since h2s−1G(h) = o(1) as h → 0, we can apply the inequality above ∼ T
C1h2s−1G(h)

times, together with the conservation of the L2(M) norm along the flow e−it
′(−∆γ)s . This yields

‖uh‖2L2(M) 6 C

∫ T

0
‖e−it′(−∆γ)suh‖2L2(ω)dt

′. (3.29)

In the case of Point (2) where 1
2(γ+1) = s, doing the same argument with G(h) = O(h1−2s),

we obtain that (3.29) holds only for T sufficiently large, that is, T > Tinf .
It remains to show how to deduce Point (1) (or Point (2)) from the localized observability

inequality (3.29). This procedure is standard (see [BZ12, Section 4]), but we recall it here briefly
for the sake of completeness.

3.3.2 From the localized observability to the full observability

In the next lemma, H−1
γ (M) denotes the dual of H1

γ,0(M) (defined in Section 3.1.2).

Lemma 3.22. The embeddings H1
γ,0(M) ↪→ L2(M) and L2(M) ↪→ H−1

γ (M) are compact.

Proof. By duality, we only need to prove that H1
γ,0(M) ↪→ L2(M) is compact. Since H1

γ,0(M) ↪→
H1
γ(M), it suffices to show that H1

γ(M) ↪→ L2(M) is compact. For s1 ∈ N, s2 > 0, denote by
Hs1,s2(M) be the Sobolev space with respect to the norm

‖f‖2Hs1,s2 (M) := ‖f‖2L2(M) + ‖∂s1x f‖2L2(M) + ‖|Dy|s2f‖2L2(M).

Note that H1
γ(M) = [L2(M), H2

γ(M)] 1
2

and H
0, 1
γ+1 (M) = [L2(M), H

0, 2
γ+1 (M)] 1

2
, here [X ,Y]θ is

the standard notation of interpolation spaces (see Chapter 4 of [Tay11]). By Lemma 3.8, we know

that H2
γ(M) ↪→ H

0, 2
γ+1 (M). Interpolating with the trivial embedding4 L2(M) ↪→ L2(M), we

obtain that H1
γ(M) ↪→ H

0, 1
γ+1 (M) is continuous. Moreover, since ‖∂xu‖L2(M) 6 ‖u‖H1

γ,0(M), we

deduce that H1
γ(M) ↪→ H

1, 1
γ+1 (M) is continuous. Thus from the compactness of the embedding

H
1, 1
γ+1 (M) ↪→ L2(M), we deduce that H1

γ,0(M) ↪→ L2(M) is compact.

Proof of Point (1) and (2) of Theorem 3.4. Let ψ(ρ) := χ0((−ρ)s), hence uh = ψ(h2∆γ)u0.
From (3.29), we deduce that for sufficiently small h0 > 0, 0 < h < h0 and any T > Tinf (for
Point (1) we say that Tinf = 0), there holds

‖ψ(h2∆γ)u0‖2L2(M) 6 CT

∫ T

0
‖φ1e

−it(−∆γ)sψ(h2∆γ)u0‖2L2(M)dt, (3.30)

where supp(φ1) ⊂ ω. Taking h = 2−j and summing over the inequality above for j > j0 =
blog2

(
h−1

0

)
c+ 1, by decreasing h0 if necessary, we will get

‖u0‖2L2(M) 6 CT

∫ T

0
‖e−it(−∆γ)su0‖2L2(ω)dt+ CT ‖ψ0(2−2j0∆γ)u0‖2L2(M), (3.31)

for some ψ0 ∈ C∞c (R). To see this, we first take ψ0 ∈ C∞c (R), equaling to 1 on (−1
2 , 0]. By the

almost orthogonality, we have

‖u0‖2L2(M) 6 ‖ψ0(2−2j0∆γ)u0‖2L2(M) + C
∞∑
j=j0

‖ψ(2−2j∆γ)u0‖2L2(M) 6 C‖u0‖2L2(M).

4Here we use the complex interpolation theorem, see for example [LP64].
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Applying (3.30), we have for each j > j0,

‖ψ(2−2j∆γ)u0‖2L2(M)

6CT

∫ T

0
‖ψ(2−2j∆γ)(φ1e

−it(−∆γ)su0)‖2L2(M)dt+ CT

∫ T

0
‖[ψ(2−2j∆γ), φ1]e−it(−∆γ)su0‖2L2(M)dt

6CT

∫ T

0
‖ψ(2−2j∆γ)(φ1e

−it(−∆γ)su0)‖2L2(M)dt+ CT 2−2j‖u0‖2L2(M),

where for the last step, we used the symbolic calculus for the commutator [ψ(2−2j∆γ), φ1] and
the fact that e−it(−∆γ)s is unitary on L2(M). Summing the above inequality over j > j0, we
obtain (3.31), provided that h0 > 0 is chosen smaller so that CTh

2
0 = CT 2−2j0 < 1

2 . Note that
the second term on the right side of (3.31) can be controlled by ‖u0‖2H−1

γ (M)
.

To conclude, we follow the approach of Bardos-Lebeau-Rauch [BLR92]. For T ′ > 0, defining
the set

NT ′ :=
{
u0 ∈ L2(M) : e−it(−∆γ)su0|[0,T ′]×ω = 0

}
Let T ′ ∈ (Tinf , T ). (3.31) implies that any function u0 ∈ NT ′ satisfies

‖u0‖L2(M) 6 CT ‖u0‖H−1
γ (M).

Thanks to Lemma 3.22, we deduce that dim(NT ′) <∞. Note that for any T1 < T2, NT2 ⊂ NT1 .
Consider the mapping S(δ) := δ−1

(
e−iδ(−∆γ)s − Id

)
: NT ′ → NT ′−δ. For fixed T ′ ∈ (Tinf , T ),

when δ < T ′−Tinf , dimNT ′−δ <∞. Since the dimension is an integer, up to a slight diminution
of T ′, there exists δ0 > 0, such that for all 0 < δ < δ0, NT ′−δ = NT ′ . Therefore, S(δ) is a linear
map on NT ′ . Let δ → 0, we obtain that

−i(−∆γ)s|NT ′ : NT ′ → NT ′

is a well-defined linear operator. Take any eigenvalue λ ∈ C of this operator, and assume that
u∗ ∈ NT ′ is a corresponding eigenfunction (if it exists). There holds

(−∆γ)su∗ = iλu∗.

This implies that u∗ is an eigenfunction of (−∆γ)s (thus u∗ is also an eigenfunction of −∆γ).
However, u∗|ω ≡ 0, hence u∗ ≡ 0 by the unique continuation property for ∆γ (see [Gar93]).
Therefore, NT ′ = {0}.

Now we choose T0 = T ′ as above. By contradiction, assume that Point (1) or Point (2) of
Theorem (3.4) is untrue. Then there exists a sequence (uk,0)k∈N, such that

‖uk,0‖L2(M) = 1, lim
k→∞

∫ T0

0
‖e−it(−∆γ)suk,0‖2L2(M)dt = 0.

Up to extraction of a subsequence, we may assume that uk,0 ⇀ u0 in L2(M). Thus from Lemma
3.22, uk,0 → u0, strongly in H−1

γ (M). Since e−it(−∆γ)suk,0 → 0 in L2([0, T0] × ω), we know
that u0 ∈ NT0 = {0}. Besides, letting k → ∞ in (3.31), we obtain ‖u0‖H−1

γ (M) > 0. This is a

contradiction, which concludes the proof of Points (1) and (2) of Theorem 3.4.

3.4 Theorem 3.4: proofs of non-observability

In this section, we prove the second part of Point (2) of Theorem 3.4, namely that observability
fails for small times in case s = γ+1

2 , and Point (3) also follows from this analysis. The proof
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is totally different from the proofs of observability presented in Section 3.3. Let us assume
1
2(γ + 1) = s.
We note that if γ = 1, then necessarily s = 1, and the result was proved in [BS19]. Therefore,
in the sequel, we assume γ > 1: this will be useful for establishing precise asymptotics of
eigenfunctions, see Proposition 3.25.

The non-observability part of Point (2) immediately follows from:

Proposition 3.23. There exist T0 > 0 and a sequence of solutions (un)n∈N of (3.2) with initial
data (u0

n)n∈N such that ‖u0
n‖L2(M) = 1 and∫ T0

0

∫
ω
|un(t, x, y)|2dxdydt −→

n→+∞
0. (3.32)

The goal of this section is to prove Proposition 3.23. In all the sequel, using the invariance
by y-translation, we assume without lost of generality that Ty \ I contains a neighborhood of 0.

Here is a sketch of the proof, which borrows ideas from [BS19, Section 9]:

• We can reduce the analysis to the construction of solutions of i∂tu − (−∆γ)su = 0 in
R× T: then, using an appropriate cut-off, we transplant it into solutions of (3.2) (thus in
(−1, 1)× T).

• In R × T and for η ∈ R, we consider as initial datum the normalized ground state

|η|
1

2(γ+1)φγ(|η|
1

γ+1x) of the operator D2
x + |η|2|x|2γ , mutiplied by eiyη. The associated

solution of i∂tu− (−∆γ)su = 0 is obtained by mutiplication by a phase, and the intuition
is that this solution has all its energy concentrated near x = 0 when η is large: it is ana-
loguous to the “degenerate regime” of Section 3.2.2. Taking linear combinations of these
solutions for large η’s (this is the role of the multiplication by ψ(hnk) in (3.34)), we obtain
a solution which travels along the y-axis at finite speed.

Let us now start the proof. The normalized ground state of the operator Pγ,w = −∂2
x+|x|2γw2

on Rx is denoted by pγ(w, ·) and the associated eigenvalue is λγ(w). We set z = |w|
1

γ+1x, and we
are then left to study the operator Qγ = −∂2

z + |z|2γ on Rz. Recall that its normalized ground
state is φγ which satisfies

Qγφγ = µ0φγ

on Rz. In particular, we have λγ(w) = µ0|w|
2

γ+1 and

pγ(w, x) = |w|
1

2(γ+1)φγ(|w|
1

γ+1x).

Definition 3.24. We write f(x) = Õ(g(x)) as x→ +∞ if for any k ∈ N,

|f (k)(x)| = O(|g(k)(x)|), x→∞.

We need the following estimate, which is specific to the case γ > 1:

Proposition 3.25. We consider the ground state

−φ′′γ + |z|2γφγ = µ0φγ , φγ(x) > 0, φγ even, ‖φγ‖L2(R) = 1.

Then, for some constant cγ ∈ R we have the asymptotic behavior

φγ(x) ∼ cγ

x
γ
2

e
−x

γ+1

γ+1 , x→∞, (3.33)

and φγ = Õ(x−
γ
2 e
−x

γ+1

γ+1 ).

Proposition 3.25 is proved in Section 3.4.4 below, but let us first explain how to deduce
Proposition 3.23 from these estimates.
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3.4.1 Estimate of the source term

We set hn = 2−n and we consider

vn(t, x, y) =
∑
k∈Z

ψ(hnk)eiyk−itµ
s
0|k|

2s
γ+1 |k|

1
2(γ+1)φγ(|k|

1
γ+1x), (3.34)

where ψ ∈ C∞c (1
2 6 η 6 1), and φγ is the first normalized eigenfunction of the operator

−∂2
x + |x|2γ on L2(Rx) with the eigenvalue µ0 > 0. Then vn satisfies

i∂tvn − (−∆γ)svn = 0

on Rx × Ty.
We consider a cut-off χ ∈ C∞c (Rx) with χ = 1 for |x| 6 1/4 and χ(x) = 0 for |x| > 1/2. Let

un = χvn, then
i∂tun − (−∆γ)sun = −[(−∆γ)s, χ]vn.

Our first goal is to show that

fn := [(−∆γ)s, χ]vn −→
n→+∞

0, (3.35)

in L2
t,x,y as n→ +∞, uniformly in t ∈ [0, T0].

We write

[(−∆γ)s, χ] =

s−1∑
j=0

(−∆γ)j [−∆γ , χ](−∆γ)s−j−1 (3.36)

and we note that
[−∆γ , χ] = −2χ′∂x − χ′′.

Let us fix 0 6 j 6 s− 1 and focus on the term indexed by j in (3.36). We know that

[−∆γ , χ](−∆γ)s−j−1vn(t, x, y) =
∑
k∈Z

(
−2|k|

1
γ+1φ′γ(|k|

1
γ+1x)χ′(x)− φγ(|k|

1
γ+1x)χ′′(x)

)
θn(t, y, k),

(3.37)
with

θn(t, n, k) = ψ(hnk)eiky−itµ
s
0|k|

2s
γ+1

(µ0|k|
2

γ+1 )s−j−1|k|
1

2(γ+1) .

Now we have to take j times (−∆γ) on the left of the above expression. For that, we determine
the size of the new factors brought by any new ∂x or |x|γ∂y derivative. Indeed, we see that
(−∆γ)j [−∆γ , χ](−∆γ)s−j−1vn is a sum of terms of the form

In,jj1,j2,j3,j4
(t, x, y) :=

∑
k∈Z
|k|j1φ(j2)

γ (|k|
1

γ+1x)χ(j3)(x)(|x|γ∂y)j4θn(t, y, k)

with j1, j2, j3, j4 > 0 bounded above by a constant which only depends on s. We also notice
that necessarily j3 > 1, so that, with the properties of χ, In,jj1,j2,j3,j4

(t, x, y) = 0 for |x| < 1/4.
Therefore, we can assume |x| > 1/4. Because of the term ψ(hnk) in θn(t, y, k), the sum in the

definition of In,jj1,j2,j3,j4
can be taken only over k ∈ (h−1

n /2, h−1
n ). Now, using the profile of φ

(j2)
γ

given by Proposition 3.25, we see that In,jj1,j2,j3,j4
= o(1) as n→ +∞. Therefore, (3.35) holds.

By Duhamel’s formula, we then have, for fixed T0 > 0,

‖un(t)− e−it(−∆γ)s(χvn(0))‖L2
x,y
−→

n→+∞
0

uniformly in t ∈ [0, T0]. Therefore, now considering un as a function on (−1, 1)x × Ty, we see
that (3.32) holds if and only if∫ T0

0

∫
R×I
|vn(t, x, y)|2dxdydt −→

n→+∞
0. (3.38)
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3.4.2 Proof of (3.38)

Recall that Ty \ I is assumed to contain a neighborhood of 0. We prove that for any c > 0, there
exists T0 > 0 such that ‖vn1|y|>c‖L2((0,T0)×Rx×Ty) −→

n→+∞
0, which implies (3.38). We consider

the phase
Φm(t, y, w) = wy − λγ(w)st− 2πmw.

By the Poisson formula,

vn(t, x, y) =
∑
m∈Z

K̂
(n)
t,x,y(2πm)

where

K̂
(n)
t,x,y(2πm) =

∫
R
ψ(hnw)pγ(w, x)eiΦm(t,y,w)dw (3.39)

The goal is to prove that for |y| > c, each K̂
(n)
t,x,y(2πm) is small; therefore vn is also small for y

outside a neighborhood of 0.
We do the usual integration by part argument, writing

eiΦm(w) =
1

i∂wΦm

∂

∂w
eiΦm . (3.40)

Here, using λγ(w) = µ0|w|
2

γ+1 and s = γ+1
2 , we find

∂wΦm(t, y, w) = y − 2πm− tµs0,

(for w > 0) and in particular ∂2
wΦm = 0 (for w > 0). Using (3.40), we integrate by parts three

times in (3.39):

K̂
(n)
t,x,y(2πm) =

1

i

∫
R

∂3
w(ψ(hnw)pγ(w, x))

|∂wΦm(t, y, w)|3
eiΦmdw. (3.41)

There is a ∂wΦm at the denominator, for which we need an estimate. We assume without loss
of generality that I ( Ty is an interval, which we denote by (a, b), with 0 < a < b < π. Let
us fix T0 < a/µs0. We see that |∂wΦm(t, y, w)| is bounded away from 0 uniformly in y ∈ I and
0 6 t 6 T0. Moreover |m| . |∂wΦm(t, y, w)| when m → +∞, uniformly in w ∈ R, y ∈ I and
0 6 t 6 T0. We write |∂wΦm(w)| & |m− c0| for some 0 < c0 < 1 which does not depend on m.

Let us now analyze (3.41). Since on the support of ψ(hnw), |w| ∼ h−1
n , the main contribu-

tion of ∂3
w(ψ(hnw)pγ(w, x)) comes from the situation where every derivative falls on the factor

φγ(|w|
1

γ+1x), thus bounded by

O(|w|
1

2(γ+1)
+ 3
γ+1
−3

) = O(h
3γ
γ+1
− 1

2(γ+1)
n ), |w| ∼ h−1

n .

Therefore, we obtain that

sup
(t,x,y)∈(0,T )×ω

|K̂(n)
t,x,y(2πm)| 6 Ch

3γ
γ+1
− 1

2(γ+1)
−1

n

|m− c0|3
.

Hence, the sum over m of the |K̂(n)
t,x,y(2πm)| is O(h

4γ−3
2(γ+1)
n )5. It gives (3.38), since γ > 1.

Remark 3.26. Note that this proof provides the lower bound Tinf > a/µs0.

5Writing similar relations as (3.40), but at higher order, and then integrating by part sufficiently many times
in (3.41), we can obtain better bounds O(hNn ) for any N ∈ N.
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3.4.3 End of the proof of Proposition 3.23

We finally need to estimate the size of the initial data.

Lemma 3.27. There exists c > 0 such that ‖vn,0‖L2(M) > c for any n ∈ N.

Proof of Lemma 3.27. By Plancherel (used for fixed x ∈ R), we have

‖vn,0‖2L2 =
∑
k∈Z

∫
R
|ψ(hnk)|2|k|

1
γ+1 |φγ(|k|

1
γ+1x)|2dx

=
∑
k∈Z
|ψ(hnk)|2 & 1,

hence the conclusion.

Combining Lemma 3.27 and (3.38), we get Proposition 3.23, and the non-observability part
of Point (2) of Theorem 3.1 follows. Point (3) then follows immediately from the abstract result
[Mil12, Corollary 3.9]: if (3.2) was observable for some T > 0 and some s < γ+1

2 , then it would

be observable in any time for s = γ+1
2 , which is not the case thanks to the non-observability

part of Point (2).

Remark 3.28. Note that it would be possible to obtain Point (3) by a similar construction
as the one of Section 3.4.2: if s < γ+1

2 , the phase ∂wΦm verifies an estimate of the form

∂wΦm = y − 2πm + O(h
1− 2s

γ+1
n T0), and, since h

1− 2s
γ+1

n T0 tends to 0 in any case as n → +∞, an
analysis similar to the above one shows that observability fails for any T0 > 0.

Remark 3.29. The proof of Proposition 3.23 is adapted from the vertical Gaussian-beam like
construction of [BS19] and this strategy was inspired by [RS20] for the controllability of the
Kadomtsev-Petviashvili equation. Since s is a natural number, our construction here simplifies
the analysis of Section 9 in [BS19], without appealing to the properties of first eigenfunctions
of the semi-classical generalized harmonic oscillators −∂2

x + n2|x|2γ with Dirichlet boundary
conditions. When s is fractional, we do not have the nice formulas (3.36) and (3.37), due to the
non-local feature, and the analysis will be considerably more involved. Nevertheless, we believe
that it is possible to handle a more precise analysis as in Section 9 of [BS19] to prove Point (3)
for general s > 0, not necessarily in N.

Remark 3.30. It might be possible to generalize Proposition 3.23 to a more general setting
thanks to a normal form procedure. By normal form, we mean that a complicated sub-Laplacian
can sometimes be (micro)-locally conjugated (by a Fourier Integral Operator) to a simpler one,
see [CHT18, Theorem 5.2] for the example of 3D contact sub-Laplacians. Since in the above
proof of Point (3) the constructed sequence of solutions stays localized around a single fixed point
of the manifold, we could hope to disprove observability for equations involving sub-Laplacians
which are microlocally conjugated to −∆γ .

3.4.4 Proof of Proposition 3.25

Our proof is inspired by [Si70, Appendix IV]. Note that we are only interested in the region xγ1.
Let Y =

(
ψ
ψ′

)
, and

A =

(
0 1

|x|2γ − µ0 0

)
,
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hence Qγψ = µ0ψ is equivalent to Y ′ = AY . We set

φ−(x) = x−γ/2e
−x

γ+1

γ+1 , φ+(x) = x−γ/2e
xγ+1

γ+1 .

We compute

φ′−(x) = −(x
γ
2 +

γ

2
x−

γ
2
−1)e

−x
γ+1

γ+1 , φ′+(x) = (x
γ
2 − γ

2
x−

γ
2
−1)e

xγ+1

γ+1 ,

φ′′−(x) = (x
3γ
2 +

γ

2
(
γ

2
+ 1)x−

γ
2
−2)e

−x
γ+1

γ+1 , φ′′+(x) = (x
3γ
2 +

γ

2
(
γ

2
+ 1)x−

γ
2
−2)e

xγ+1

γ+1 .

These two functions can be viewed as approximate solutions, as x→ +∞, to

Lψ := −ψ′′ + (x2γ − µ0)ψ = 0

and we will give an expression of φγ in terms of φ− and φ+, which will imply (3.33). Let

U =

(
φ− φ+

φ′− φ′+

)
and a =

(
a−
a+

)
:= U−1Y , or equivalently,

ψ(x) = a−(x)φ−(x) + a+(x)φ+(x), ψ′(x) = a−(x)φ′−(x) + a+(x)φ′+(x).

We remark that the inverse of U exists since det(U) = φ′+φ− − φ′−φ+ = 2 and is given by

U−1 =
1

det(U)

(
φ′+ −φ+

−φ′− φ−

)
.

We set the ansatz Y = Ua, hence Lψ = 0 is equivalent to

a′ = −Ra,

where

R = U−1(U ′U−1 −A)U = U−1

(
0 0

µ0 + γ
2 (γ2 + 1)x−2 0

)
U

i.e.,

R =
µ0 + γ

2 (γ2 + 1)x−2

xγ

 −1 −e
2xγ+1

γ+1

e
− 2xγ+1

γ+1 1

 .

To solve a′ = −Ra, we expand the Neumann series as

a(x) =

∞∑
n=0

an(x), an =

(
an,−(x)

an,+(x)

)
.

where

an+1(x) =

∫ ∞
x

R(z)an(z)dz,

provided that the series and the integration converge. In order to avoid the divergence at
x = +∞, we initially choose

a0(x) =

(
a0,−

0

)
,

where we can set a0,− = 1 is a constant. It turns out that the Neumann series a =
∑∞

n=0 an
converges to a smooth function a. Hence Y = Ua is the solution of Y ′ = AY which tends to 0
as x→ +∞.
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Lemma 3.31. There holds

a−(x)− 1 = e
2xγ+1

γ+1 Õ(
1

xγ−1
e
− 2xγ+1

γ+1 ), a+(x) = Õ(
1

xγ−1
e
− 2xγ+1

γ+1 ).

Proof. It follows from a simple recurrence that there exist C > 0 and some (large) x0 > 0 such
that for any n ∈ N and any x > x0, we have

|an,−(x)| 6 Cµn0
xn(γ−1)

, |an,+(x)| 6 Cµn0
xn(γ−1)

e
−2x

γ+1

γ+1

It follows that a−(x) − 1 = O(1/xγ−1) and a+(x) = O(e
− 2xγ+1

γ+1 /xγ−1). Then, the estimates on
the derivatives of a− and a+ follow from a recurrence using the relation a′ = −Ra.

Thus we have constructed an explicit solution

ψ∞(x) := a−(x)φ−(x) + a+(x)φ+(x)

with the asymptotic behavior

ψ∞(x) ∼ x−
γ
2 e
−x

γ+1

γ+1 , x→ +∞

and ψ∞ = Õ(x−
γ
2 e
−x

γ+1

γ+1 ).
Note that the Wronskian of the equation Lψ = 0 is constant (so we can choose it to be 1),

so we find another independent solution (with some x0γ1 fixed)

ψ−∞(x) := ψ∞(x)

∫ x

x0

dz

(ψ∞(z))2
∼ x−

γ
2 e

xγ+1

γ+1 .

Now the fundamental solution φγ(x) should be a linear combination of ψ∞, ψ−∞, namely, there
exist constants a, b ∈ R such that

φγ(x) = aψ∞(x) + bψ−∞(x)

for all large x > x0 (this identity is only valid for large x > 0). Since φγ(x) → 0 as x → +∞,
we must have b = 0, which finishes the proof.

3-A Supplementary material

3-A.1 Proof of the well-posedness

We intend to prove the well-posedness of (3.2), (3.6) and (3.7).

Schrödinger equation

The equation (3.2) can be solved by spectral theory. Expanding the initial datum u0(x, y) as

u0(x, y) =
∑
j∈N

ajϕj(x, y), with −∆γϕj = λ2
jϕj , (3.42)

the solution of (3.2) is given by

(e−it(−∆γ)su0)(t, x, y) =
∑
j∈N

aje
−itλ2s

j ϕj(x, y),
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which belongs to L2(M) for any t ∈ R.
Let us now prove (3.4). For each N , we set

uN =
∑
j6N

(u, ϕj)ϕj .

Then, (−∆γ)kuN |∂M = 0 for all k > 0. When k 6 s,

(−∆γ)kuN =
∑
j6N

λ2k
j (u, ϕj)ϕj

converges uniformly in H
2(s−k)
γ (M) to u. When k < s− 1

4 , since this is equivalent to 2(s−k) > 1
2 ,

(−∆γ)kuN |∂M converges in L2(∂M) by trace theorem6. In particular, we have (−∆γ)ku|∂M = 0.
Note that when s = k0

2 ∈
1
2N, 0 6 k < s− 1

4 is equivalent to 0 6 k 6
⌊
k0−1

2

⌋
.

Heat equation

To prove the well-posedness in L2(M), we will apply the Hille-Yosida theorem with generator
Ã = −(−∆γ)s. The domain D(Ã) is given by (3.3), and it is dense in L2(M). For u0 ∈ D(Ã),
written as in (3.42), there holds

Re(〈Ãu0, u0〉L2(M)) = −
∑
j∈N
|aj |2λ2s

j ‖ϕj‖2L2(M) 6 0,

hence Ã is dissipative. Let us show that it is maximally dissipative, i.e., Id − µÃ is surjective
for any µ > 0. Let u0 as in (3.42) and µ > 0. We consider

u =
∑
j∈N

aj
1 + µλ2s

j

ϕj .

Then u ∈ L2(M) and (Id− µÃ)u = u0. Therefore, by the Hille-Yosida theorem, Ã generates a
strongly continuous semigroup of contraction, and in particular (3.6) is well-posed.

Damped wave equation

Consider the damped wave equation

∂2
t u−∆γu+ b∂tu = 0

where b ∈ L∞(M) and b > 0. For its well-posedness in the energy space H = H1
γ,0(M)×L2(M),

we will apply the Hille-Yosida theorem to prove the existence and uniqueness of the semi-group
etA with generator

A =

(
0 1

∆γ −b

)
.

We need to check the condition that A is maximally dissipative, which we formulate this time
under the form

(a) (0,∞) ⊂ ρ(A);

(b) ‖(µId−A)−1‖L(H) 6 µ−1, for any µ > 0.

6Though Hs
γ is not the usual Sobolev space, the usual trace theorem applies since near the boundary, −∆γ is

uniformly elliptic.
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Indeed, (a) is proved in the beginning of the proof of Corollary 3.33. We only need to check (b).
Let U = (u, v)t and F = (u, v)t such that (µ−A)U = F . Equipped with the inner product(

(u1, v1), (u2, v2)
)
H := (∇γu1,∇γu2)L2(M) + (v1, v2)L2(M),

we verify directly that
Re
(
AU,U

)
H = −(bv, v)L2(M) 6 0.

Therefore,

µ‖U‖2H 6 µ(U,U)H − Re(AU,U)H = Re((µId−A)U,U)H 6 ‖U‖H‖(µId−A)U‖H.

This means that µ‖(µId − A)−1F‖H 6 ‖F‖H. Therefore, (b) is verified. The proof of well-
posedness for the damped wave equation is then complete.

3-A.2 Proof of Corollary 3.6

Recall that γ > 1 is fixed. Given b ∈ L∞(M), b > 0, consider the damped wave equation

∂2
t u−∆γu+ b∂tu = 0

which can be written as ∂tU = AU with U = (u, ∂tu)t and

A =

(
0 1

∆γ −b

)
.

Let H := H1
0,γ(M)×L2(M) and H−1

γ be the dual of H1
0,γ(M). When b = 1ω, we have a stronger

version of Theorem 3.1:

Proposition 3.32. There exist C, h0 > 0, such that for all 0 < h 6 h0, and any solution v of

(h2∆γ + 1)v = g1 + g2,

with g1 ∈ L2(M), g2 ∈ H−1
γ , we have

‖h∇γv‖L2(M) + ‖v‖L2(M) 6 C‖v1ω‖L2(M) +
C

hγ+1
‖g1‖L2(M) +

C

hγ+2
‖g2‖H−1

γ (M).

Proof. Let Ph = −h2∆γ−1+ihγ+1. We first show that Ph is invertible. Note that for v ∈ D(∆γ),
we have

(Phv, v)L2(M) = ‖h∇γv‖2L2(M) − ‖v‖
2
L2(M) + ihγ+1(bv, v)L2(M).

Taking the imaginary part of the identity above, we have (using b2 = b)

‖bv‖2L2(M) 6 h−(γ+1)|Im(Phv, v)L2(M)|. (3.43)

Taking the real part of the identity and inserting Theorem 3.1, we have

‖h∇γv‖2L2(M) + ‖v‖2L2(M) 6 2‖v‖2L2(M) + |Re(Phv, v)L2(M)|

6 C‖bv‖2L2(M) + Ch−2(γ+1)‖Phv‖2L2(M) + ‖Phv‖L2(M)‖v‖L2(M).

Applying Young’s inequality and (3.43), we have

‖h∇γv‖2L2(M) + ‖v‖2L2(M) 6 Ch−2(γ+1)‖Phv‖2L2(M).
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This implies that Ph is invertible and

P−1
h = O(h−(γ+1)) : L2(M)→ L2(M), P−1

h = O(h−(γ+2)) : L2(M)→ H1
γ,0(M).

Now if (h2∆γ + 1)v = g1 + g2, for any w ∈ L2(M), let z = P−1
h w, and we have

(v, w)L2(M) =(v, Phz)L2(M) = (Phv, z)L2(M) = (ihγ+1b− g1 − g2, z)L2(M)

6‖ihγ+1b− g1‖L2(M)‖z‖L2(M) + ‖g2‖H−1
γ
‖z‖H1

γ,0

6Ch−(γ+1)‖ihγ+1b− g1‖L2(M)‖w‖L2(M) + Ch−(γ+2)‖g2‖H−1
γ
‖w‖L2(M).

Since w ∈ L2(M) is arbitrary, by duality, we complete the proof of Proposition 3.32

Consequently, the following resolvent estimate for the damped wave equation holds:

Corollary 3.33. We have iR ⊂ ρ(A) and there exists λ0 > 1, such that for every λ ∈ R,
|λ| > λ0,

‖(iλId−A)−1‖L(H) 6 C|λ|2γ . (3.44)

Proof of Corollary 3.33 from Theorem 3.32. We show that iR ⊂ ρ(A). This consists of two
steps. First, we prove that µ ∈ ρ(A) for all µ > 0. Let U = (u, v)t and F = (f, g)t, then

(µId−A)U = F

is equivalent to {
µu− v = f

−∆γu+ µv + bv = g,
(3.45)

hence u satisfies the equation

−∆γu+ (µb+ µ2)u = g + (b+ µ)f. (3.46)

Consider the bilinear form on H1
0,γ :

Bµ[u, v] := Re(−∆γu+(µb+µ2)u, v)L2(M) = Re
(
(∇γu,∇γv)L2(M) + µ2(u, v)L2(M) + µ(bu, v)L2(M)

)
which is coercive for all µ > 0. By Lax-Milgram, given (f, g) ∈ H, (3.46) posseses a unique
solution u ∈ H1

0,γ , and setting v = µu − f , we obtain a solution (u, v) ∈ H of (3.45). Hence

µ ∈ ρ(A). Moreover, we claim that (Id − A)−1 is compact. Indeed, from the equation of u,
we deduce that u ∈ H2

γ(M). Since v = µu − f , we then deduce that v ∈ H1
γ,0(M). Now the

compactness of (Id − A)−1 comes from the fact that the embedding Hk+1
γ (M) ↪→ Hk

γ (M) is
compact (which we only need for k = 0, 1).

Now for any z ∈ C, we write

z −A = (Id + (1− z)(A− Id)−1)(Id−A),

since Id + (1 − z)(A − Id)−1 is Fredholm with index 0, we deduce that z − A is invertible (i.e.
z ∈ ρ(A)) if and only if it is injective. To prove that iλ−A is injective for all λ ∈ R, it suffices
to show that any solution u of

−∆γu− λ2u+ iλbu = 0
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is zero. Multiplying by u, doing the integration by part and taking the imaginary part, we have

(bu, u)L2 = 0.

Since b = 1ω, we have bu = 0 a.e., hence we deduce that u is an eigenfunction of −∆γ which
vanishes on ω. By the unique continuation property of −∆γ (see [Gar93]), we deduce that u ≡ 0.
This proves that iR ⊂ ρ(A).

It remains to prove (3.44) for large λ. Without loss of generality, we assume that λ > 1. Let
U = (u, v)t ∈ H and F = (f, g)t ∈ H such that (iλ−A)U = F . Equivalently, with h = λ−1,{

u = −ih(v + f),

(h2∆γ + 1)v = ihbv − ihg − h2∆γf.

Applying Theorem 3.32 to v and g1 = ihg + ihbv, g2 = h2∆γf , we have

‖v‖L2 6C‖b
1
2 v‖L2 + Ch−(γ+1)‖ihbv − ihg‖L2 + Ch−(γ+2)‖h2∆γf‖H−1

γ

6Ch−γ‖b
1
2 v‖L2 + Ch−γ‖g‖L2 + Ch−γ‖f‖H1

γ
. (3.47)

We need to estimate ‖b
1
2 v‖L2 . Multiplying the equation (h2∆γ + 1)v = ihbv − ihg − h2∆γf by

v, integrating it and taking the imaginary part, we have

(bv, v)L2 6|(g, v)L2 |+ h−1|(h2∆γf, v)L2 | 6 ‖g‖L2‖v‖L2 + h‖∆γf‖H−1
γ
‖v‖H1

γ

6‖g‖L2‖v‖L2 + h‖f‖H1
γ
‖ih−1u− f‖H1

γ
6 ‖g‖L2‖v‖L2 + h‖f‖2H1

γ
+ ‖f‖H1

γ
‖u‖H1

γ
.

Plugging into (3.47) and using the fact that ‖b
1
2 v‖2L2 = (bv, v)L2 since b & 1ω, we obtain that

‖v‖L2 6Ch−γ‖g‖1/2
L2 ‖v‖

1/2
L2 + Ch−γ‖f‖1/2

H1
γ
‖u‖1/2

H1
γ

+ Ch−γ‖g‖L2 + Ch−γ‖f‖H1
γ
. (3.48)

It remains to estimate ‖u‖H1
γ
. From the equation u = −ihv − ihf , we have

‖u‖H1
γ
6 h‖v‖H1

γ
+ h‖f‖H1

γ
.

Next, multiplying the equation (h2∆γ+1)v = ihbv−ihg−h2∆γf by v, integrating it and taking
the real part, we have

‖h∇γv‖2L2 6‖v‖2L2 + h|(g, v)L2 |+ |(h2∆γf, v)L2 |

6‖v‖2L2 + Ch‖g‖2L2 +
1

2
h‖v‖2L2 + Ch2‖∆γf‖2H−1

γ
+

1

2
h2‖v‖2H1

γ
,

hence ‖hv‖H1
γ
6 Ch1/2‖g‖L2 +Ch‖f‖H1

γ
+‖v‖L2 , and ‖u‖H1

γ
6 ‖v‖L2 +Ch‖f‖H1

γ
+Ch1/2‖g‖L2 .

Plugging into (3.48) and using Young’s inequality, we have

‖u‖H1
γ

+ ‖v‖L2 6 Ch−2γ‖g‖L2 + Ch−2γ‖f‖H1
γ
.

This completes the proof of Corollary 3.33.

Now, using [BT10, Theorem 2.4], we obtain Corollary 3.6.
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Chapter 4

Observability in quotients of groups
of Heisenberg type

“On a beau intervertir l’ordre des facteurs, le courrier n’arrive pas plus vite.”
Pierre Dac.

This chapter is adapted from [FL21]. Its main result is Theorem 3 (restated as Theorem
4.2).
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4.1 Introduction

In this chapter, we consider on a compact manifold M a sub-Laplacian ∆M =
∑2d

j=1 V
2
j which

is the sum of the squares of 2d vector fields (Vj)16j62d that satisfy the Hörmander condition:
together with their commutators, they generate the tangent bundle to M . We give necessary
and sufficient conditions for the controllability and observability of the Schrödinger equation
associated with 1

2∆M + V where the potential V is analytic.

More precisely, the manifold M = Γ̃\G is obtained by taking the quotient of a group of
Heisenberg type (or H-type) G by one of its discrete cocompact sub-groups Γ̃. The Lie group
G, as a differential manifold, is diffeomorphic to R2d+p, where p is the dimension of the center
of the group, and it is an important example of stratified Lie group of step 2. We study the
controllability and the observability of the Schrödinger equation on M thanks to the Harmonic
analysis properties of the group G, and of M . Contrarily to what happens for the usual elliptic
Schrödinger equation for example on flat tori or on negatively curved manifolds, there exists a
minimal time of observability. The main tools used in the proofs are (operator-valued) semi-
classical measures constructed by use of representation theory and a notion of semi-classical
wave packets that we introduce here in the context of groups of Heisenberg type. The concrete
example given in Section 4.1.5, which is constructed in Heisenberg groups, will probably help
the reader to follow the notations in the present introduction.

4.1.1 The quotient-manifold M and the Schrödinger equation

We consider an H-type group G, i.e., a connected and simply connected Lie group whose Lie
algebra is an H-type algebra, denoted by g. This means that:

• g is a step 2 stratified Lie algebra: it is equipped with a vector space decomposition

g = v⊕ z ,

such that [v, v] = z 6= {0} and z is the center of g.

• g is endowed with a scalar product 〈·, ·〉 such that, for all λ ∈ z∗, the skew-symmetric map

Jλ : v→ v

defined by
〈Jλ(U), V 〉 = λ([U, V ]) ∀U, V ∈ v (4.1)

satisfies J2
λ = −|λ|2Id. In other words, Jλ is an orthogonal map as soon as |λ| = 1. Here, to

define |λ|, we first identify z∗ to z thanks to 〈·, ·〉, then we define |λ| as the norm (deriving
from 〈·, ·〉) of the image of λ through this identification.

The Heisenberg group in any (odd) dimension is an example of H-type group, as will be recalled
below. H-type groups were introduced in [Kap80], the main motivation being that the sub-
Laplacians in these groups admit explicit fundamental solutions of an elementary form.

Via the exponential map
Exp : g→ G

which is a diffeomorphism from g to G, one identifies G and g as a set and a manifold. We may
identify g with the space of left-invariant vector fields via

Xf(x) =
d

dt
f(xExp(tX))

∣∣∣∣
t=0

, (4.2)
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which acts on functions of x ∈ G and on functions of x ∈M . Choosing an orthonormal basis Vj
of v and identifying g with the Lie algebra of left-invariant vector fields on G, one defines the
sub-Laplacian

∆M =
2d∑
j=1

V 2
j ,

on M , where dim v = 2d. Note that this makes sense since the Vj are left-invariant, and thus
pass to the quotient. We consider the hypoelliptic second order equation (see [Hor67])

i∂tψ +
1

2
∆Mψ + Vψ = 0 (4.3)

on M , where V is an analytic function defined on M (the latter assumption could be relaxed,
see Remark 4.17 below).

4.1.2 Controllability and observability

One says that the Schrödinger equation (4.3) is controllable in time T on the measurable set
U ⊂ M if for any u0, u1 ∈ L2(M), there exists f ∈ L2((0, T ) × M) such that the solution
ψ ∈ L2((0, T )×M) of

i∂tψ +
1

2
∆Mψ + Vψ = f1U

(where 1U denotes the characteristic function of U) with initial condition ψ(0, x) = u0(x) sat-
isfies ψ(T, x) = u1(x). By the Hilbert Uniqueness Method (see [Lio88]), it is well-known that
controllability is equivalent to an observability inequality.

The Schrödinger equation (4.3) is said to be observable in time T on the measurable set U
if there exists a constant CT,U > 0 such that

∀u0 ∈ L2(M), ‖u0‖2L2(M) 6 CT,U

∫ T

0

∥∥∥eit(
1
2

∆M+V)u0

∥∥∥2

L2(U)
dt. (4.4)

For the usual (Riemannian) Schrödinger equation, it is known that if the so-called Geometric
Control Condition is satisfied in some time T ′ (which means that any ray of geometric optics
enters U within time T ′), then observability, and thus controllability, hold in any time T > 0
(see [Leb92b]). Much less is known about the converse implication, due to curvature effects.

4.1.3 Main result

Our main result gives a similar condition, replacing the rays of geometric optics by the curves
of the flow map on M × z∗:

Φs
0 : (x, λ) 7→ (Exp(sdZ(λ)/2)x, λ),

where, for λ ∈ z∗, Z(λ) is the element of z defined by λ(Z(λ)) = |λ|. Note that the integral curves
of this flow are transverse to the space spanned by the Vj ’s. We introduce the following H-type
geometric control condition.

(H-GCC) The measurable set U satisfies H-type GCC in time T if

∀(x, λ) ∈M × (z∗ \ {0}), ∃s ∈ (0, T ), Φs
0((x, λ)) ∈ U × z∗.

Definition 4.1. We denote by TGCC(U) the infimum of all T > 0 such that H-type GCC holds
in time T (and we set TGCC(U) = +∞ if H-type GCC does not hold in any time).
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In the sequel, we will also consider an additional assumption (A). In geometric terms, it
consists in saying that all the normal geodesics reach U in finite time. To give a rigorous
statement, we fix an orthonormal basis V = (V1, . . . , V2d) of v to write the coordinates v =
(v1, . . . , v2d) of a vector

V = v1V1 + . . .+ v2dV2d ∈ v.

Given ω ∈ v∗, we write ωj for the coordinates of ω in the dual basis of V , and we write |ω| = 1

when
∑2d

j=1 ω
2
j = 1.

(A) For any (x, ω) ∈M × v∗ such that |ω| = 1, there exists s ∈ R such that

Exp(s
2d∑
j=1

ωjVj)x ∈ U.

Theorem 4.2. Assume that the potential V in (1.20) is analytic. Let U ⊂ M be open and
denote by U its closure.

1. Assume that U satisfies (A) and that T > TGCC(U), then the observability inequality (4.4)
holds, i.e. the Schrödinger equation (4.3) is observable in time T on U and thus (4.3) is
controllable in time T on U .

2. Assume T 6 TGCC(U), then the observability inequality (4.4) fails, and thus the control-
lability in time T also fails on U .

Although this will be commented more thoroughly in Remark 4.15, let us already say that we
conjecture that the observability inequality (4.4) holds in U at time T under the only condition
that T > TGCC(U) (and thus one could avoid using Assumption (A)). We also point out Re-
mark 4.17 about the assumption that the potential is analytic. Finally, we notice that in general
TGCC(U) 6= TGCC(U). This is due to the possible existence of “grazing rays”, see Remark 4.25
for more comments on this issue.

The existence of a minimal time of control in Theorem 4.2 contrasts strongly with the
observability in arbitrary small time, under Geometric Control Condition, of the usual elliptic
Schrödinger equation (see [Leb92b]), which is related to its “infinite speed of propagation”. In
the subelliptic setting which we consider here (meaning that ∆M is subelliptic but not elliptic),
in the directions defined by z, the Schrödinger operator has a very different behaviour, possessing
for example a family of travelling waves moving at speeds proportional to n ∈ N, as was first
noticed in [BGX00, Section 1] (see also [FF21, Theorem 2.10]).

More recently, in [BS19], it was shown that the Grushin Schrödinger equation i∂tu− ∂2
xu−

x2∂2
yu = 0 in (−1, 1)x × Ty is observable on a set of horizontal strips if and only the time T

of observation is sufficiently large. With related ideas, it is shown in [LS20] (see Chapter 3)
that the observability of the Grushin-type Schrödinger equation i∂tu+ (−∂2

x− |x|2γ∂2
y)su = 0 in

(−1, 1)x×Ty (with observation on the same horizontal strips as in [BS19]) depends on the value
of the ratio (γ + 1)/s: observability may hold in arbitrarily small time, or only for sufficiently
large times, or even never hold if (γ+1)/s is large enough. These results share many similarities
with ours, although their proofs use totally different techniques. The existence of a minimal time
of observability for hypoelliptic PDEs was first shown in the context of the heat equation: for
instance the case of the heat equation with Heisenberg sub-Laplacian was investigated in [BC17].
Finally, in contrast with the usual “finite time of observability” of elliptic waves (under GCC),
it was shown in [Let20b] (see Chapter 2) that subelliptic waves are never observable. We can
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roughly summarize all these results by saying that the subellipticity of the sub-Laplacian slows
down the propagation of evolution equations in the directions needing brackets to be generated.

The proof of Theorem 4.2 is based on adapting standard semi-classical approach to prove ob-
servability for a class of Schrödinger equations with subelliptic Laplacian, through the use of the
operator-valued semi-classical measures of [FF21] which are adapted to this stratified setting.
The proof also uses the introduction of wave packets playing in this non-commutative setting a
role similar to the ones introduced in [CR12] and [Hag80] in the Euclidean case. To say it differ-
ently, we follow the usual scheme for proving or disproving observability inequalities, but with
all the analytic tools (i.e., pseudodifferential operators, semiclassical measures and wave pack-
ets) adapted to our subelliptic setting: we do not use, for instance, classical pseudodifferential
operators.

4.1.4 Strategy of the proof

The theorem consists in two parts: firstly that the condition (A) guarantees that the observ-
ability holds when T > TGCC(U) and, secondly, that the observability fails when T 6 TGCC(U).
Beginning with the first part, it is standard (see [Leb92b]) to start with a localized observability
result as stated in the next lemma.

Lemma 4.3 (Localized observability). Assume the set U satisfies assumption (A) and that (H-
GCC) holds in time T for U . Let h > 0 and χ ∈ C∞c ((1/2, 2), [0, 1]). Using functional calculus,
we set

Phf = χ

(
−h2

(
1

2
∆M + V

))
f, f ∈ L2(M). (4.5)

Then, there exists a constant C0 > 0 such that for any sufficiently small h > 0 and any u0 ∈
L2(M),

‖Phu0‖2L2(M) 6 C0

∫ T

0

∥∥∥eit(
1
2

∆M+V)Phu0

∥∥∥2

L2(U)
dt. (4.6)

Remark 4.4. By conservation of mass in the LHS (and invariance of H-type GCC by translation
in time), this inequality also holds when the integral in the RHS is taken over an arbitrary time
interval (T1, T2) such that T2 − T1 > T .

The proof of the localized observablity is done in Section 4.3.1 below. The argument is by
contradiction (as in [BZ12] or [AM14, Section 7]) and it uses the semi-classical setting based on
representation theory and developed in [FF19, FF21] that we extend to the setting of quotient
manifolds in Section 4.2. In particular, this argument relies in a strong way on the operator-
valued semi-classical measures constructed in Sections 4.2.3 and 4.2.4.

The role of semiclassical measures in the context of observability estimates was first no-
ticed by Gilles Lebeau [Leb96] and has been widely used since then [Mac10, AM14, AFM15,
MR18], with all the developments of semi-classical measures, especially two-scale (also called
two-microlocal) semi-classical measures that allow to analyze more precisely the concentra-
tion of families on submanifolds. These two-scale measures introduced in the end of the 90-s
(see [Fer00, Fer05, FG02, Nie96, Mil96]) have known since then a noticeable development in
control theory (see the survey [Mac15]) and in a large range of problems from conical intersec-
tions in quantum chemistry [LT05, FL08] to effective mass equations [CFM19, CFM20]. The
semi-classical measures that we consider here have common features with the two-scales ones
in the sense that they are operator-valued. This operator-valued feature arises from the inho-
mogeneity of the nilmanifolds, in parallel with the homogeneity introduced by a second scale of
concentration as in the references above. However, the operator-valued feature is more funda-
mental here since it is due to non-commutativity of nilmanifolds and is a direct consequence of
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the original features of Fourier analysis on nilpotent groups: it is thus intrinsic to the structure
of the problem.

The second step of the proof of the first part of Theorem 4.2 consists in passing from the
localized observability to observability itself. Standard arguments (see [BZ12]) that we describe
in Section 4.3.2 allow to derive from Lemma 4.3, a weak observability inequality in time T on
the domain U : there exists a constant C1 > 0 such that

∀u0 ∈ L2(M), ‖u0‖2L2(M) 6 C1

∫ T

0

∥∥∥eit(
1
2

∆M+V)u0

∥∥∥2

L2(U)
dt+ C1‖(Id−∆M )−1u0‖2L2(M). (4.7)

Note that compared to (4.4), the latter inequality has an added term in its RHS which controls
the low frequencies. This weak observability inequality (4.7) implies (4.4) via a Unique continu-
ation principle for 1

2∆M +V (see [Bon69] and [LL20]), as we describe in Section 4.3.3. It is then
non surprising that the result of Theorem 4.2 holds as soon as a Unique continuation principle
is known for 1

2∆M + V, without further assumption of analyticity on V (see Remark 4.17).

For proving the second part of Theorem 4.2 – the necessity of the condition (H-GCC)
– we construct a family of initial data (uε0) for which the solution (ψε(t)) of the Schrödinger
equation (4.3) concentrates on the curve Φt

0(x0, λ0), for any choice of (x0, λ0) ∈ M × z \ {0}.
As mentioned above, this set of initial data is the non-commutative counterpart to the wave
packets (also called coherent states) in the Euclidean setting [CR12, Hag80]. These aspects
are the subject of Section 4.4. Our proof relies on a statement of propagation of semiclassical
measures which was proved in [FF21] when V = 0 and that we adapt to our setting. A second
proof consists in using the results of Section 4-A.3, which are of independent interest: we prove
that, if the initial datum is a wave packet, the solution of (4.3) is also (approximated by) a wave
packet.

Our approach could be developed in general graded Lie groups through the generalization
of the tools we use: for semi-classical measures in graded groups, see Remarks 3.3 and 4.4
in [FF19], and for an extension of non-commutative wave packets to a more general setting, see
Sections 6.3 and 6.4 in [FF] (based on [Ped94]).

4.1.5 An example

Before closing this introduction, let us describe an example of a quotient manifold M to which
our result applies. It is known (see [BLU07, Theorem 18.2.1], and also [BFG16]) that any H-type
group is isomorphic to one of the “prototype H-type groups”, which are defined as follows: let
P (1), . . . , P (p) be p linearly independent 2d× 2d orthogonal skew-symmetric matrices satisfying
the property

P (r)P (s) + P (s)P (r) = 0, ∀r, s ∈ {1, ..., p} , r 6= s.

Let us denote by (z, s) = (z1, · · · , z2d, s1, · · · , sp) the points of R2d+p, that is endowed with the
group law

(z, s) · (z′, s′) :=

(
z + z′

sj + s′j + 1
2〈z, P

(j)z′〉, j = 1, ..., p

)
This defines a Lie group with a Lie algebra of left invariant vector fields spanned by the following
vector fields: for j running from 1 to 2d and k from 1 to p,

Xj :=∂zj +
1

2

p∑
k=1

2d∑
l=1

zl P
(k)
l,j ∂sk , and ∂sk .
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For more explicit examples of H-type groups, see [BLU07, Section 18.1] (e.g., Example 18.1.3).
It includes the Heisenberg group Hd (of dimension 2d + 1), but also groups with a center of
dimension p > 1.

In this representation, the Heisenberg group Hd corresponds to p = 1 and the choice of

P (1) =

(
0 1Rd
−1Rd 0

)
.

The group law then is

(x, y, s) · (x′, y′, s′) :=

 x+ x′

y + y′

s+ s′ + 1
2

∑d
j=1(xjy

′
j − x′jyj)


where x, y, x′, y′ ∈ Rd and s, s′ ∈ R. We define the scalar product on v by saying that the 2d
vector fields

Xj = ∂xj −
yj
2
∂s, Yj = ∂yj +

xj
2
∂s, j = 1, . . . , d

form an orthonormal basis, and we define the scalar product on z by saying that ∂s has norm 1
(and v and z are orthogonal for the scalar product on g). Then we obtain

Jλ

 d∑
j=1

(ajXj + bjYj)

 = λ
d∑
j=1

(−bjXj + ajYj).

where Jλ has been introduced in (4.1). An example of discrete cocompact subgroup of the
Heisenberg group Hd is

Γ̃ = (
√

2πZ)2d × πZ, (4.8)

and the associated quotient manifold is the left quotient M = Γ̃\Hd. For more general examples
of discrete cocompact subgroups in H-type groups, see [CG04, Chapter 5].

A typical open set U ⊂ Γ̃\Hd of control which one may consider is the periodization (through
the multiplication on the left by elements of Γ̃) of the set

A = {(x, y, s), (x, y) ∈ [0,
√

2π)2d, s ∈ I}

where I is a strict open subset of [0, π). One can verify that both Assumption (A) and (H-GCC)
(in sufficiently large time, which depends on I) are satisfied.

4.2 Semi-classical analysis on quotient manifolds

Semi-classical analysis is based on the analysis of the scales of oscillations of functions. It uses a
microlocal approach, meaning that one understands functions in the phase space, i.e. the space
of position/impulsion of quantum mechanics. As the impulsion variable is the dual variable of
the position variable via the Fourier transform, microlocal analysis crucially relies on the Fourier
representation of functions, and on the underlying harmonic analysis.

Recall that, in the usual Euclidean setting, the algebra of pseudodifferential operators con-
tains those of multiplications by functions together with Fourier multipliers. These operators
are defined by their symbols via the Fourier inversion formula and are used for analyzing families
of functions in the phase space. Indeed, their boundedness in L2 for adequate classes of symbols
allows to build a linear map on the set of symbols, the weak limits of which are characterized by
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non-negative Radon measures. These measures give phase space information on the obstruction
to strong convergence of bounded families in L2(Rd). In a context where no specific scale is
specified, they are called microlocal defect measures, or H-measures and were first introduced
independently in [Ger91a, Tar90]. When a specific scale of oscillations is prescribed, this scale
is called the semi-classical parameter and they are called semi-classical (or Wigner) measures
(see [HMR87, Ger91a, GL93, LP93, GMMP00]). If these functions are moreover solutions of
some equation, the semi-classical measures may have additional properties such as invariance
under a flow.

In the next sections, we follow the same steps, adapted to the context of quotients of H-
type groups, which are non-commutative: following the theory of non-commutative harmonic
analysis (see [CG04, Tay11] and some elements given in Section 4-A.1), we define the (operator-
valued) Fourier transform (4.13), based on the unitary irreducible representations of the group,
recalled in (4.12), which form an analog to the usual frequency space. Then, we use the Fourier
inversion formula (4.14) to define in (4.16) a class of symbols and the associated semi-classical
pseudodifferential operators in (4.18). From this, Proposition 4.11 guarantees the existence of
semi-classical measures, whose additional invariance properties for solutions of the Schrödinger
equation are listed in Proposition 4.13.

4.2.1 Harmonic analysis on quotient manifolds

Let G be a stratified nilpotent Lie group of H-type and Γ̃ be a discrete cocompact subgroup of
G. We consider the left quotient M = Γ̃\G and we denote by π the canonical projection

π : G→M

which associates to x ∈ G its class modulo Γ̃.

For each λ ∈ z∗ \{0}, one associates with λ the canonical skew-symmetric form B(λ) defined
on v by

B(λ)(U, V ) = λ([U, V ]).

The map Jλ : v → v of Section 4.1 is the natural endomorphism associated with B(λ). In
H-type groups, the symmetric form −J2

λ is the scalar map |λ|2Id (note that −J2
λ is always a

non-negative symmetric form). Therefore, one can find a λ-dependent orthonormal basis(
P

(λ)
1 , . . . , P

(λ)
d , Q

(λ)
1 , . . . , Q

(λ)
d

)
of v where Jλ is represented by

〈Jλ(U), V 〉 = B(λ)(U, V ) = |λ|U tJV with J =

(
0 Id
−Id 0

)
,

the vectors U, V ∈ v being written in the
(
P

(λ)
1 , . . . , P

(λ)
d , Q

(λ)
1 , . . . , Q

(λ)
d

)
-basis. We then de-

compose v in a λ-depending way as v = pλ + qλ with

p := pλ := Span
(
P

(λ)
1 , . . . , P

(λ)
d

)
, q := qλ := Span

(
Q

(λ)
1 , . . . , Q

(λ)
d

)
.

Denoting by z = (z1, · · · , zp) the coordinates of Z in a fixed orthonormal basis (Z1, · · · , Zp) of
z, and once given λ ∈ z∗ \ {0}, we will often use the writing of an element x ∈ G or X ∈ g as

x = Exp(X), X = p1P
(λ)
1 + . . .+pdP

(λ)
d + q1Q

(λ)
1 + . . .+qdQ

(λ)
d + z1Z1 + . . .+zpZp, (4.9)

where X = P + Q + Z, p = (p1, · · · , pd) are the λ-dependent coordinates of P on the vector

basis (P
(λ)
1 , · · · , P (λ)

d ), q = (q1, · · · , qd) those of Q on (Q
(λ)
1 , · · · , Q(λ)

d ), and z = (z1, · · · , zp) of Z
are independent of λ.
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Example 4.5. In the Heisenberg group Hd, if λ = αdz with α ∈ R, we have P
(λ)
j = Xj ,

Q
(λ)
j = Yj for α > 0, and P

(λ)
j = Yj , Q

(λ)
j = Xj for α < 0. Therefore, the above (p, q, z)

coordinates are not the usual coordinates in Heisenberg groups (see [Tay86, Chapter 1]). This
choice is due to the fact that there is no canonical choice of coordinates in general H-type groups.
As a consequence, the formula for irreducible representations (4.11) is not the same as the usual
one in Heisenberg groups [Tay86, Equation (2.23) in Chapter 1].

As already mentioned in Section 4.1.3, we also fix an orthonormal basis (V1, . . . , V2d) of v to
write the coordinates v = (v1, . . . , v2d) of a vector

V = v1V1 + . . .+ v2dV2d ∈ v;

both this orthonormal basis and the coordinates are independent of λ. With these coordinates,
we define a quasi-norm by setting

|x| =
(
|v1|4 + · · ·+ |v2d|4 + |z1|2 + · · ·+ |zp|2

)1/4
, x = Exp(V + Z) ∈ G. (4.10)

We recall that it satisfies a triangle inequality up to a constant.

Functional spaces

We shall say that a function f on G is Γ̃-leftperiodic if we have

∀x ∈ G, ∀γ ∈ Γ̃, f(γx) = f(x).

With a function f defined on M , we associate the Γ̃-leftperiodic function f ◦ π defined on G.
Conversely, a Γ̃-leftperiodic function f naturally defines a function on M . Thus the set of
functions on M is in a one-to-one relation with the set of Γ̃-left periodic functions on G.

The inner products on v and z allow us to consider the Lebesgue measure dv dz on g = v⊕ z.
Via the identification of G with g by the exponential map, this induces a Haar measure dx on
G and on M . This measure is invariant under left and right translations:

∀f ∈ L1(M) , ∀x ∈M ,

∫
M
f(y)dy =

∫
M
f(xy)dy =

∫
M
f(yx)dy .

The convolution of two functions f and g on M is given by

f ∗ g(x) =

∫
M
f(xy−1)g(y)dy =

∫
M
f(y)g(y−1x)dy.

Using the bijection of the set of functions on M with the set of Γ̃-leftperiodic functions on G,
we deduce that f ∗ g is well-defined as a function on M . Finally, we define Lebesgue spaces by

‖f‖Lq(M) :=

(∫
M
|f(y)|q dy

) 1
q

,

for q ∈ [1,∞), with the standard modification when q =∞.
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Homogeneous dimension

Since G is stratified, there is a natural family of dilations on g defined for t > 0 as follows: if X
belongs to g, we decompose X as X = V + Z with V ∈ v and Z ∈ z and we set

δtX := tV + t2Z .

The dilation is defined on G via the identification by the exponential map as the map Exp ◦
δt ◦Exp−1 that we still denote by δt. The dilations δt, t > 0, on g and G form a one-parameter
group of automorphisms of the Lie algebra g and of the group G. The Jacobian of the dilation
δt is tQ where

Q := dim v + 2dim z = 2d+ 2p

is called the homogeneous dimension of G. A differential operator T on G (and more generally
any operator T defined on C∞c (G) and valued in the distributions of G ∼ R2d+p) is said to be
homogeneous of degree ν (or ν-homogeneous) when T (f ◦ δt) = tν(Tf) ◦ δt. We recall that the
quasi-norm introduced in (4.10) satisfies |δrx| = r|x| for all r > 0 and x ∈ G. It is a homogeneous
quasi-norm and we recall that any homogeneous quasi-norm is equivalent to it.

Irreducible representations and Fourier transform

For the sake of completeness, many details about the results of this section, which are standard
in non-commutative harmonic analysis, are given in Section 4-A.1.

The infinite dimensional irreducible representations of G are parametrized by z∗ \ {0}: for
λ ∈ z∗ \ {0}, one defines πλ· on L2(pλ) ∼ L2(Rd) by

πλxΦ(ξ) = eiλ(z)+ i
2
|λ| p·q+i

√
|λ| ξ·q Φ

(
ξ +

√
|λ|p

)
, (4.11)

where x has been written as in (4.9). The representations πλ, λ ∈ z∗ \ {0}, are infinite dimen-
sional. The other unitary irreducible representations of G are given by the characters of the first
stratum in the following way: for every ω ∈ v∗, we set

π0,ω
x = eiω(V ), x = Exp(V + Z) ∈ G, with V ∈ v and Z ∈ z.

The 0 in the notation (0, ω) is here to differentiate π(0,ω) from πλ. It is natural since we think
of v∗ as “horizontal” and z∗ as “vertical”. The set Ĝ of all unitary irreducible representations
modulo unitary equivalence is then parametrized by (z∗ \ {0}) t v∗:

Ĝ = {class of πλ : λ ∈ z∗ \ {0}} t {class of π0,ω : ω ∈ v∗}. (4.12)

We will identify each representation πλ with its equivalence class. Note that the trivial repre-
sentation 1

Ĝ
corresponds to the class of π(0,ω) with ω = 0, i.e. 1

Ĝ
:= π(0,0).

The set G × Ĝ will be interpreted in our analysis as the phase space of G, and M × Ĝ as
the phase space of M , in analogy with the fact that Rd × Rd and Td × Rd are respectively the
phase space of the Euclidean space Rd and of the torus Td.

The Fourier transform is defined on Ĝ and is valued in the space of bounded operators
on L2(pλ): for any λ ∈ z∗, λ 6= 0,

Ff(λ) :=

∫
G
f(x)

(
πλx

)∗
dx , (4.13)
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Besides, above finite dimensional representations, the Fourier transform is defined for ω ∈ v∗ by

f̂(0, ω) = Ff(0, ω) :=

∫
G
f(x)(π(0,ω)

x )∗dx =

∫
v×z

f(Exp(V + Z))e−iω(V )dV dZ.

Functions f of L1(G) have a Fourier transform (F(f)(λ))λ∈z∗ which is a bounded family of

bounded operators on L2(pλ) with uniform bound:

‖Ff(λ)‖L(L2(pλ)) 6
∫
G
|f(x)|‖(πλx)∗‖L(L2(pλ))dx = ‖f‖L1(G).

since the unitarity of πλ implies ‖(πλx)∗‖L(L2(pλ)) = 1.

The Fourier transform can be extended to an isometry from L2(G) onto the Hilbert space of
measurable families A = {A(λ)}λ∈z∗\{0} of operators on L2(pλ) which are Hilbert-Schmidt for
almost every λ ∈ z∗ \ {0}, with norm

‖A‖ :=

(∫
z∗\{0}

‖A(λ)‖2HS(L2(pλ))|λ|
d dλ

) 1
2

<∞ .

We have the Fourier-Plancherel formula:∫
G
|f(x)|2 dx = c0

∫
z∗\{0}

‖Ff(λ)‖2HS(L2(pλ))|λ|
d dλ ,

where c0 > 0 is a computable constant. The Plancherel measure is c0|λ|ddλ, and is supported
in the subset {class of πλ : λ ∈ z∗ \ {0}} of Ĝ. Besides, an inversion formula for f ∈ S(G)
and x ∈ G writes:

f(x) = c0

∫
z∗\{0}

Tr
(
πλxFf(λ)

)
|λ|d dλ , (4.14)

where Tr denotes the trace of operators of L(L2(pλ)) (see [Tay86, Chapter 1, Theorem 2.7]). This
formula makes sense since for Schwartz functions f ∈ S(G), the operators Ff(λ), λ ∈ z∗ \ {0},
are trace-class, with enough regularity in λ so that

∫
z∗\{0}Tr

∣∣∣Ff(λ)
∣∣∣ |λ|d dλ is finite.

To conclude this section, it is important to notice that the differential operators have a
Fourier resolution that allows to think them as Fourier multipliers. In particular, the resolution
of the sub-Laplacian −∆G is well-understood

∀f ∈ S(G), F(−∆Gf)(λ) = H(λ)F(f)(λ).

At π(0,ω), ω ∈ v∗, it is the number F(−∆G)(0, ω) = |ω|2, and at πλ, λ ∈ z∗ \ {0}, it is the
unbounded operator

H(λ) = |λ|
d∑
j=1

(
−∂2

ξj
+ ξ2

j

)
, (4.15)

where we have used the identification pλ ∼ Rd.

4.2.2 Semi-classical pseudodifferential operators on quotient manifolds

As observables of quantum mechanics are functions on the phase space, the symbols of pseudod-
ifferential operators on M are functions defined on M × Ĝ. In this non-commutative framework,
they have the same properties as the Fourier transform and they are operator-valued symbols.
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Following [FF21, FF19], we consider the class of symbols A0 of fields of operators defined on
M × Ĝ by

σ(x, λ) ∈ L(L2(pλ)), (x, λ) ∈M × Ĝ,

that are smooth in the variable x and Fourier transforms of functions of the set S(G) of Schwartz
functions on G in the variable λ: for all (x, λ) ∈M × Ĝ,

σ(x, λ) = Fκx(λ), κx ∈ C∞(M,S(G)). (4.16)

Note that a similar class of symbols in the Euclidean context was introduced in [LP93, Section
3]. Note that we kept in (4.16) the notation λ also for the parameters (0, ω), ω ∈ v∗. In this
case, the operator Fκx((0, ω)) = σ(x, (0, ω)) reduces to a complex number since the associated
Hilbert space is C.

If ε > 0, we associate with κx (and thus with σ(x, λ)) the function κεx defined on G by

κεx(z) = ε−Qκx(δε−1(z)), (4.17)

We then define the semi-classical pseudodifferential operator Opε(σ) via the identification of
functions f on M with Γ̃-leftperiodic functions on G:

Opε(σ)f(x) =

∫
G
κεx(y−1x)f(y)dy. (4.18)

When ε = 1, we omit the index ε and just write Op instead of Opε.

Remark 4.6. The formulas (4.18), (4.17) and (4.16) may be compared to the formulas of the
semiclassical (standard) quantization on the torus Tn = (R/2πZ)n, namely, for σ(x, ξ), x ∈
Tn, ξ ∈ Rn and f a (2πZ)n-periodic function,

OpT
n

ε (σ)f(x) =

∫
Rn
Kε (x, x− y) f(y)dy

where Kε(x, z) = ε−nK(x, ε−1z),

K(x,w) =
1

(2π)n

∫
Rn
eiw·ξσ(x, ξ)dξ ∈ C∞(Tn,S(Rn)),

i.e., σ(x, ξ) = FRnw K(x, ξ).

We observe the following facts:

1. The operator Opε(σ) is well-defined as an operator on M . Indeed,

Opε(σ)f(γx) =

∫
G
κεγx(y−1γx)f(y)dy

=

∫
G
κεx(y−1x)f(γy)dy

= Opε(σ)f(x).

Here we have used a change of variable and the relations κγx(·) = κx(·) and f(γy) = f(y).

2. Using (4.14) and (4.16), we have the useful identity

Opε(σ)f(x) = ε−Q
∫
G
κx(δε(y

−1x))f(y)dy =

∫
G×Ĝ

Tr(πλy−1xσ(x, ε2λ))f(y)|λ|ddλdy.

Note that the rescaling σ(x, ε2λ) is considered here only for λ ∈ z∗ \ {0} due to (4.14).
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3. The kernel of Opε(σ) is given by

kε(x, y) =
∑
γ∈Γ̃

κεx(γy−1x)

4. The family of operators (Opε(σ))ε>0 is uniformly bounded in L(L2(M)):

‖Opε(σ)‖L(L2(M)) 6
∫
G

sup
x∈M
|κx(y)|dy. (4.19)

5. Semi-classical pseudodifferential operators act locally: let σ ∈ A0 be compactly supported
in an open set U such that U is strictly included in a unit cell B of Γ̃ and χ ∈ C∞c (B) such
that χσ = σ. Then, for all N ∈ N, there exists a constant cN such that, for any ε > 0,

‖Opε(σ)− χOpε(σ)χ‖L(L2(M)) = ‖Opε(σ)−Opε(σ)χ‖L(L2(M)) 6 cN ε
N . (4.20)

Remark 4.7. The last property is crucial for our analysis since it allows to transfer results
obtained in the nilpotent group G for functions in L2

loc(G) to the case of square-integrable
functions of the homogeneous manifold M . Indeed, if f ∈ L2(M), then f can be identified
to a Γ̃-leftperiodic function on L2

loc(G). In particular, we have χf ∈ L2(G) and Opε(σ)χf =
χOpε(σ)χf coincides with the standard definition of [FF19, FF21]. This correspondance between
computations in M and in G will be further developed at the beginning of Section 4.4.1, notably
through the periodization operator P.

Properties (3), (4) and (5) are discussed more in details in Section 4-A.2.

We deduce from the latter observation (5) the next two properties. For stating them, we
introduce the difference operators, acting on L(L2(pλ)):

∆λ
pj = |λ|−1/2[ξj , ·], ∆qj = |λ|−1/2[i∂ξj , ·], 1 6 j 6 d.

(6) The following symbolic calculus result holds:

Proposition 4.8. Let σ ∈ A0. Then, in L(L2(M)),

Opε(σ)∗ = Opε(σ
∗)− εOpε(P ·∆λ

pσ
∗ +Q ·∆λ

qσ
∗) +O(ε2).

Let σ1, σ2 ∈ A0. Then in L(L2(M)),

Opε(σ1) ◦Opε(σ2) = Opε(σ1 σ2)− εOpε

(
∆λ
pσ1 · P σ2 + ∆λ

qσ1 ·Qσ2

)
+O(ε2),

Proof. We take f, g ∈ L2(M). By using a partition of unity, we reduce to the case of σ and χ
as in Point (5) above. Thanks to Proposition 3.6 of [FF19], we observe

(Opε(σ)∗f, g)L2(M) = (f,Opε(σ)g)L2(G)

= (χf,Opε(σ)χg)L2(G) = (Opε(σ)∗χf, χg)L2(G)

= (Opε(σ
∗)χf, χg)L2(G) − ε(Opε(P ·∆λ

pσ
∗ +Q ·∆λ

qσ
∗)χf, χg)L2(G)

+O(ε2‖χf‖L2(G)‖χg‖L2(G))

= (Opε(σ
∗)f, g)L2(M) − ε(Opε(P ·∆λ

pσ
∗ +Q ·∆λ

qσ
∗)f, g)L2(M)

+O(ε2‖f‖L2(M)‖g‖L2(M)).
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Indeed, if χσ = σ in B, we also have χ∆λ
pσ = ∆λ

pσ and χ∆λ
qσ = ∆λ

qσ whence χσ∗ = σ∗ in B.
The proof follows similarly for the product by considering

(Opε(σ1) ◦Opε(σ2)f, g)L2(M) ,

passing in L2(G), using Point (5) and the observations above.

(7) The main contribution of the function (x, z) 7→ κx(z) to the operator Opε(σ), σ(x, λ) =
F(κx)(λ) is due to its values close to z = 1G.

Proposition 4.9. Let χ0 ∈ C∞(G) be compactly supported close to 1G. Let σ = F(κx)(λ) and

σε = F(κxχ0 ◦ δε).

Then, in L2(M), for all N ∈ N,

Opε(σ) = Opε(σε) +O(εNQ).

Proof. Here again, we reduce by using a partition of unity to the case of σ as in (5) above and
introduce the associated function χ ∈ C∞c (B) such that χσ = σ. We observe that χσε = σε and
we use Proposition 3.4 of [FF19] to write for f, g ∈ L2(M),

(Opε(σ)f, g)L2(M) = (Opε(σ)χf, χg)L2(G)

= (Opε(σε)χf, χg)L2(G) +O(εNQ‖χf‖L2(G)‖χg‖L2(G))

= (Opε(σε)f, g)L2(M) +O(εNQ‖f‖L2(M)‖g‖L2(G))

which concludes the proof.

4.2.3 Semi-classical measures

When given a bounded sequence (f ε)ε>0 in L2(M), one defines an observation `ε(σ) in analogy
with quantum mechanics as the action of observables on this family, i.e. the families

`ε(σ) = (Opε(σ)f ε, fε) , σ ∈ A0.

Since these quantities are bounded sequences of real numbers, it is then natural to study the
asymptotic ε→ 0. The families (`ε(σ))ε>0 have weak limits that depend linearly on σ and enjoy
additional properties. We call semi-classical measure of (f ε)ε>0 any of these linear forms.

For describing the properties of semi-classical measures, we need to introduce a few notations.
If Z is a locally compact Hausdorff set, we denote by M(Z) the set of finite Radon measures
on Z and by M+(Z) the subset of its positive elements. Considering the metric space M × Ĝ
endowed with the field of complex Hilbert spaces L2(pλ) defined above elements (x, λ) ∈M × Ĝ,

we denote by M̃ov(M× Ĝ) the set of pairs (γ,Γ) where γ is a positive Radon measure on M× Ĝ
and Γ = {Γ(x, λ) ∈ L(L2(pλ)) : λ ∈ Ĝ} is a measurable field of trace-class operators such that

‖Γdγ‖M :=

∫
M×Ĝ

Tr(|Γ(x, λ)|)dγ(x, λ) <∞.

Here, as usual, |Γ| :=
√

ΓΓ∗. Note that Γ(x, λ) is defined as a linear operator on the space
L2(pλ) which does not depend on x but which depends on λ. Considering that two pairs
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(γ,Γ) and (γ′,Γ′) in M̃ov(M × Ĝ) are equivalent when there exists a measurable function
f : M × Ĝ→ C \ {0} such that

dγ′(x, λ) = f(x, λ)dγ(x, λ) and Γ′(x, λ) =
1

f(x, λ)
Γ(x, λ)

for γ-almost every (x, λ) ∈ M × Ĝ, we define the equivalence class of (γ,Γ) by Γdγ, and the
resulting quotient by Mov(M × Ĝ). One checks readily that Mov(M × Ĝ) equipped with the
norm ‖ · ‖M is a Banach space.

Finally, we say that a pair (γ,Γ) in M̃ov(M×Ĝ) is positive when Γ(x, λ) > 0 for γ-almost all

(x, λ) ∈M×Ĝ. In this case, we write (γ,Γ) ∈ M̃+
ov(M×Ĝ), and Γdγ > 0 for Γdγ ∈M+

ov(M×Ĝ).

With these notations in mind, one can mimic the proofs of [FF21], considering the C∗-
algebraA obtained as the closure ofA0 for the norm sup

(x,λ)∈M×Ĝ ‖σ(x, λ)‖L(L2(pλ)). Indeed, the

properties of this algebra depend on those of Ĝ and the analysis of the set and of [FF19, FF21]
also applies in this context. Then, arguing as in [FF19, FF21], one can define semi-classical
measures as follows.

Theorem 4.10. Let (f ε)ε>0 be a bounded family in L2(M). There exist a sequence (εk) ∈ (R∗+)N

with εk −→
k→+∞

0, and Γdγ ∈M+
ov(M × Ĝ) such that for all σ ∈ A,

(Opεk(σ)f εk , fεk)L2(M) −→
k→+∞

∫
M×Ĝ

Tr(σ(x, λ)Γ(x, λ))dγ(x, λ).

Given the sequence (εk)k∈N, the measure Γdγ is unique up to equivalence. Besides,∫
M×Ĝ

Tr(Γ(x, λ))dγ(x, λ) 6 lim sup
ε→0

‖f ε‖2L2(M).

We emphasize on the operator-valued nature of Γ(x, λ)1λ∈z∗(λ) in opposition to the fact that
Γ(x, λ)1λ∈v∗(λ) ∈ R+ (since finite dimensional representations are scalar operators).

The link of semi-classical measures with the limit of energy densities |f ε(x)|2dx will be
discussed below, it is solved thanks to the notion of ε-oscillating families (see Section 4.2.4).

4.2.4 Time-averaged semi-classical measures

The local observability inequality takes into account time-averaged quadratic quantities of the
solution of Schrödinger equation. Physically, it corresponds to an observation, i.e. the mea-
surement of an observable during a certain time. For example, when V = 0, the right-hand
side of inequality (4.6) can be expressed with the set of observables introduced in the previous
section using the symbol σ(x, λ) = 1x∈Mχ(H(λ)) (see (4.15) for a definition of H(λ)). There-
fore, when considering time-dependent families, as solutions to the Schrödinger equation (4.3),
we are interested in the limits of time-averaged quantities: let (uε)ε>0 be a bounded family in
L∞(R, L2(M)), θ ∈ L1(R) and σ ∈ A0, we define

`ε(θ, σ) =

∫
R
θ(t) (Opε(σ)uε(t), uε(t))L2(M) dt

and we are interested in the limit as ε goes to 0 of these quantities.

When introduced, semi-classical measures were first used for systems with a semi-classical
time scaling, i.e. involving ε∂t derivatives, which is not the case here when multiplying the
equation (4.3) by ε2. It is then difficult to derive results for the semi-classical measures at each
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time t. However, one can deduce results for the time-averaged semi-classical measures that
hold almost everywhere in time. Indeed, these measures satisfy important geometric properties
that can lead to their identification (for example in Zoll manifolds). This was first remarked
by [Mac10] and lead to important results in control [AM14, AFM15, MR19], but also for example
in the analysis of dispersion effects of operators arising in solid state physics [CFM19, CFM20].
This approach has been extended to H-type groups in [FF21] and, arguing in the same manner
as for the proof of Theorem 2.8 therein, we obtain the next result on the nilmanifold M .

Proposition 4.11. Let (uε)ε>0 be a bounded family in L∞(R, L2(M)). There exist a sequence
(εk) ∈ (R∗+)N with εk −→

k→+∞
0 and a map t 7→ Γtdγt in L∞(R,M+

ov(M × Ĝ)) such that we have

for all θ ∈ L1(R) and σ ∈ A,∫
R
θ(t)(Opεk(σ)uεk(t), uεk(t))L2(M)dt −→

k→+∞

∫
R×M×Ĝ

θ(t)Tr(σ(x, λ)Γt(x, λ))dγt(x, λ)dt.

Given the sequence (εk)k∈N, the map t 7→ Γtdγt is unique up to equivalence. Besides,∫
R

∫
M×Ĝ

Tr(Γt(x, λ))dγt(x, λ)dt 6 lim sup
ε→0

‖uε‖2L∞(R,L2(M)).

ε-oscillating families

The link between semi-classical measures and the weak limits of time-averaged energy densities
is solved thanks to the notion of ε-oscillation. Let (uε)ε>0 be a bounded family in L∞(R, L2(M)).
We say that the family (uε)ε>0 is uniformly ε-oscillating when we have for all T > 0,

lim sup
ε→0

sup
t∈[−T,T ]

∥∥1−ε2∆M>Ru
ε(t)
∥∥
L2(M)

−→
R→+∞

0.

Proposition 4.12. [[FF21]Proposition 5.3] Let (uε) ∈ L∞(R, L2(M)) be a uniformly ε-oscillating
family admitting a time-averaged semi-classical measure t 7→ Γtdγt for the sequence (εk)k∈N.
Then for all φ ∈ C∞(M) and θ ∈ L1(R),

lim
k→+∞

∫
R×M

θ(t)φ(x)|uεk(t, x)|2dxdt =

∫
R
θ(t)

∫
M×Ĝ

φ(x)Tr (Γt(x, λ)) dγt(x, λ) dt,

Semi-classical measures for families of Schrödinger equations

Families of solutions to the Schrödinger equation (4.3) have special features. We recall that in
the (non compact) group G, the operator

H(λ) = |λ|
d∑
j=1

(
−∂2

ξj
+ ξ2

j

)
introduced in (4.15) is the Fourier resolution of the sub-Laplacian −∆G above λ ∈ z∗ \ {0}. Up
to a constant, this is a quantum harmonic oscillator with discrete spectrum {|λ|(2n+d), n ∈ N}
and finite dimensional eigenspaces. For each eigenvalue |λ|(2n + d), we denote by Π

(λ)
n and

V(λ)
n the corresponding spectral orthogonal projection and eigenspace. Even though the spectral

resolution of −∆G and −∆M are quite different, we shall use the operator H(λ) as one uses the
function ξ 7→ |ξ|2 on the phase space of the torus Td, when studying the operator −∆Td .

Proposition 4.13. Assume Γtdγt is associated with a family of solutions to (4.3).
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1. For (x, λ) ∈M × z∗

Γt(x, λ) =
∑
n∈N

Γn,t(x, λ) with Γn,t(x, λ) := Π(λ)
n Γt(x, λ)Π(λ)

n . (4.21)

Moreover, the map (t, x, λ) 7→ Γn,t(x, λ)dγt(x, λ) defines a continuous function from R into

the set of distributions on M × (z∗ \ {0}) valued in the finite dimensional space L(V(λ)
n )

which satisfies (
∂t − (n+

d

2
)Z(λ)

)
(Γn,t(x, λ)dγt(x, λ)) = 0 (4.22)

2. For (x, (0, ω)) ∈M × v∗, the scalar measure Γtdγt is invariant under the flow

Ξs : (x, ω) 7→ (xExp(sω · V ), ω).

Here, ω · V =
∑2d

j=1 ωjVj where ωj denote the coordinates of ω in the dual basis of V .

The proof of this proposition follows ideas from [FF21] that we adapt to our situation. We
give some elements on the proof of this Proposition in Section 4-A.2, in particular we explain
the continuity of the map t 7→ Γtdγt.

We have now all the tools that we shall use for proving Theorem 4.2 in the next two sections.

4.3 Proof of the sufficiency of the geometric conditions

We prove here the first part of Theorem 4.2, that if U satisfies condition (A), TGCC(U) < +∞
and T > TGCC(U), then the Schrödinger equation (4.3) is observable on U in time T .

4.3.1 Proof of localized observability.

We argue by contradiction. If (4.6) is false, then there exist (uk0)k∈N and (hk)k∈N such that
uk0 = Phkuk0,

‖uk0‖L2(M) = 1 and

∫ T

0

∥∥∥eit(
1
2

∆M+V)Phku
k
0

∥∥∥2

L2(U)
dt −→

k→+∞
0. (4.23)

Because uk0 = Phkuk0 with χ compactly supported in an annulus (see (4.5)) and V is bounded,
the family uk0 is hk-oscillating in the sense of Section 4.2.4 and so it is for

ψk(t) = eit(
1
2

∆M+V)Phku
k
0.

We consider (after extraction of a subsequence if necessary), the semi-classical measure Γtdγt of
ψk(t) given by Proposition 4.11 and satisfying the properties listed in Proposition 4.13.

Proposition 4.14. We have the following facts:

1. There holds ∫ T

0

∫
U×Ĝ

Tr(Γt(x, λ))dγt(x, λ)dt = 0. (4.24)

2. γt is supported above z∗ \ {0} for almost every t ∈ R.
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Proof of Proposition 4.14. To prove (1), let us recall that for θ ∈ L1(R) and σ ∈ A0,∫
R
θ(t)(Ophk(σ)ψk(t), ψk(t))L2(M)dt −→

k→+∞

∫
R×M×Ĝ

θ(t)Tr(σ(x, λ)Γt(x, λ))dγt(x, λ)dt. (4.25)

We take ϕj(x) a sequence of smooth non-negative functions converging to 1U (x) and bounded
above by 1, and α ∈ C∞c ((−1, 1)) non-negative with α = 1 in a neighborhood of 0. Since ψk(t)
is uniformly ε-oscillating for ε = hk, we have∫ T

0

∫
R×M×Ĝ

Tr(ϕj(x)Γt(x, λ))dγt(x, λ)dt =

lim
R→+∞

lim
k→+∞

∫ T

0

(
Ophk(ϕj(x)α(R−1H(λ)))ψk(t), ψk(t)

)
L2(M)

dt.

Besides, Ophk(ϕj(x)α(R−1H(λ))) = ϕj(x)α(−h2
kR
−1∆M ), thus

‖Ophk(ϕj(x)α(R−1H(λ)))‖L(M) 6 1

and ∣∣∣∣∫ T

0

(
Ophk(ϕj(x)α(R−1H(λ)))ψk(t), ψk(t)

)
L2(M)

∣∣∣∣ 6 ∫ T

0
‖ψk(t)‖2L2(U)dt.

We deduce from (4.23) that∫ T

0

∫
R×M×Ĝ

Tr(ϕj(x)Γt(x, λ))dγt(x, λ)dt = 0.

Taking the limit j → +∞ and using Lebesgue’s dominated convergence theorem (since Γtdγt >
0), we get (4.24).

Point (2) follows from Point (1), the positivity of Γtdγt, Assumption (A) and Point (2) of
Proposition 4.13.

Set
γn,t(x, λ) = Tr (Γn,t(x, λ)) γt(x, λ).

We have obtained

0 =
∑
n∈N

∫ T

0

∫
U×Ĝ

Tr(Γn,t(x, λ))dγt(x, λ)dt =
∑
n∈N

∫ T

0

∫
U×Ĝ

dγn,t(x, λ)dt

whence, the positivity of Γt (and thus of γn,t) yields∫
U×z∗

dγn,t(x, λ) = 0, for almost every t ∈ [0, T ], ∀n ∈ N,

where we have also used that the support of dγn,t is above z∗.

We now use transport equation (4.22). For n ∈ N and λ ∈ z∗ \ {0}, we set

Zn(λ) = (n+
d

2
)Z(λ)

and we have

|Zn(λ)| = n+
d

2
.
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We introduce the map Φs
n defined for s ∈ R and n ∈ N as an application from M × (z∗ \ {0}) to

itself by
Φs
n : (x, λ) 7→ (Exp[sZn(λ)]x, λ) .

The flows Φs
n and Φs

0 are related by

Φs
n(x, λ) = Φs′

0 (x, λ), s′ =

(
2n

d
+ 1

)
s.

The transport equation (4.22) implies that for any interval I and any Λ ⊂M × (z∗ \ {0}),

d

ds

(∫
(I+s)×Φsn(Λ)

dγn,tdt

)
= 0,

which means ∫
(I+s)×Φsn(Λ)

dγn,tdt =

∫
I×Λ

dγn,tdt. (4.26)

Since T > TGCC(U), we may choose T ′ such that TGCC(U) < T ′ < T and (H-GCC) holds in
time T ′. Assume that there exists τ with 0 < τ < T − T ′ such that∫ τ

0

∫
M×z∗

dγtdt > 0. (4.27)

We seek for a contradiction.

Writing γt =
∑∞

n=0 γn,t, with all γn,t being non-negative Radon measures on M × (z∗ \ {0})
(since Point 2 of Proposition 4.14 ensures that it has no mass on the trivial representation), we
see that there exists n0 ∈ N and a bounded open subset Λ ⊂M × (z∗ \ {0}) such that∫ τ

0

∫
Λ
dγn0,tdt > 0.

Fix (x, λ) ∈ Λ and s ∈ (0, T ′) such that Φs
0((x, λ)) ∈ U × z∗. Note that, making Λ smaller

if necessary, by continuity of the flow and using that U is open, Φs
0((x′, λ′)) ∈ U × z∗ for any

(x′, λ′) ∈ Λ. Therefore Φ
s(n0)
n0 ((x′, λ′)) ∈ U × z∗ for any (x′, λ′) ∈ Λ, where s(n0) = sd

2n0+d (with
a slight abuse of notation).

From (4.24), we get
γn0,t(Φ

s(n0)
n0

(Λ)) = 0, a.e. t ∈ (0, T ),

and in particular ∫ T

s(n0)

∫
Φ
s(n0)
n0

(Λ)
dγn0,tdt = 0.

Therefore, by (4.26), ∫ T−s(n0)

0

∫
Λ
dγn,tdt = 0.

Since τ < T − T ′ < T − s(n0), we get ∫ τ

0

∫
Λ
dγn,tdt = 0

which is a contradiction. Therefore ∫ τ

0

∫
M×z∗

dγtdt = 0.

This implies γt = 0 for almost every t ∈ (0, τ). In turn, this contradicts the fact that ‖ψk(t)‖L2 =
1. Therefore (4.6) holds.
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Remark 4.15. Assumption (A) exactly corresponds to the usual Geometric Control Condi-
tion which is known to be a sufficient condition for the control/observation of the Riemannian
Schrödinger equation (see [Leb92b]), but this time it is assumed to hold for the sub-Riemannian
geodesic flow. It is well known that, in the Riemaninan setting, this condition is not always
necessary : it is not for the Euclidean torus (see [Jaf90, AM14, BZ12]) while it is for Zoll
manifolds [Mac11] (these manifolds have geodesics that are all periodic); so, it depends on the
manifold. Thus, in the case of general subelliptic Schrödinger equations, it is likely that an
Assumption such as (A) has to be required in some cases for proving the observability of the
Schrödinger equation. However, as already mentioned in the introduction, we tend to think
that in the particular case considered in this chapter (quotients of H-type groups), Theorem 4.2
still holds without this assumption. Assumption (A) has been used in the proof of Point (2)
of Proposition 4.14, and it is the only place of the chapter where we use it. By analogy with
the results of [AM14, AFM15, BS19], it is likely that as in [BS19, Section 7], a key argument
should be a reduction to a problem on the Euclidian torus, as those studied in [AFM15] for
example. Then, the semiclassical analysis of this reduced problem would show that the part of
the measure γt located above M × v∗ vanishes. That would prove that H-type GCC alone is
enough and would avoid the use of Assumption (A).

4.3.2 Proof of weak observability

We prove here (4.6) =⇒ (4.7).

Consider a partition of unity over the positive real half-line R+:

∀x ∈ R+, 1 = χ0(x)2 +

∞∑
j=1

χj(x)2 (4.28)

where, for j > 1, χj(x) = χ(2−jx) with χ ∈ C∞c ((1/2, 2), [0, 1]). To construct such a partition
of unity, consider ψ ∈ C∞c ((−2, 2), [0, 1]) such that ψ ≡ 1 on a neighborhood of [−1, 1], and set
χ(x) =

√
ψ(x)− ψ(2x) for x > 0, which is smooth for well-chosen ψ. Finally, define χ0(x) for

x > 0 by χ0(x)2 = 1−
∑∞

j=1 χj(x)2, so that χ0(x) = 0 for x > 2. Then (4.28) holds.

We follow the proof of [BZ12, Proposition 4.1]. Set hj = 2
−j
2 for j > 1, and note that

Phj = χj(−(1
2∆M + V)). We choose K so that hK 6 h0, where h0 is taken so that (4.6) holds

for 0 < h 6 h0. We take ε > 0 such that T ′ + 2ε < T and ψ ∈ C∞c ((0, T ), [0, 1]) with ψ = 1 on
a neighborhood of [ε, T ′ + 2ε]. Then

‖u0‖2L2(M) =
∞∑
j=0

∥∥∥∥χj (−1

2
∆M + V

)
u0

∥∥∥∥2

L2(M)

=

K∑
j=0

‖Phju0‖2L2(M) +

∞∑
j=K+1

‖Phju0‖2L2(M)

6 C

∥∥∥∥∥
(

Id− (
1

2
∆M + V)

)−1

u0

∥∥∥∥∥
2

L2(M)

+

∞∑
j=K+1

‖Phju0‖2L2(M)

6 C‖(Id−∆M )−1u0‖2L2(M) + C

∞∑
j=K+1

∥∥∥ψ(t)eit(
1
2

∆M+V)Phju0

∥∥∥2

L2((0,T )×U)

where in the third line we bounded above the low frequencies with a constant C = CK , and in
the last line we used (4.6) (with the term on U being integrated for t ∈ (ε, T ′ + 2ε), which is
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of length > T ′, see Remark 4.4). Note that we also used the fact that V is analytic and thus
bounded, and therefore the resolvents of the operators 1

2∆M + V and ∆M are comparable in
L2 norm. Using equation (4.3), we may change Phj = χj(−(1

2∆M + V)) into χj(−Dt) where
Dt = ∂t/i. We get

‖u0‖2L2(M) 6 C‖(Id−∆M )−1u0‖2L2(M) + C
∞∑

j=K+1

∥∥∥ψ(t)χj(−Dt)e
it( 1

2
∆M+V)u0

∥∥∥2

L2((0,T )×U)

(4.29)

If ψ̃ ∈ C∞c ((0, T ), [0, 1]) satisfies ψ̃ = 1 on supp(ψ), we note that

ψ(t)χj(−Dt) = ψ(t)χj(−D(t))ψ̃(t) + ψ(t)[ψ̃(t), χj(−Dt)]

= ψ(t)χj(−D(t))ψ̃(t) + Ej(t,Dt) (4.30)

where Ej is smoothing, i.e.,

∂αEj = O(〈t〉−N 〈τ〉−N2−Nj)

for any α ∈ N, any N ∈ N and uniformly in j. This fact follows from the remark that, on the
support of ψ, ψ̃ is constant and therefore the bracket vanishes.

Therefore, integrating by parts in the time variable in the second term of the right-hand side
and absorbing the error terms Ej(t,Dt) in ‖(Id−∆M )−1u0‖2L2 , we get

‖u0‖2L2(M) 6 C‖(Id−∆M )−1u0‖2L2(M) + C
∞∑

j=K+1

‖ψ(t)χj(−Dt)ψ̃(t)eit(
1
2

∆M+V)u0‖2L2((0,T )×U)

6 C‖(Id−∆M )−1u0‖2L2(M) + C
∞∑

j=K+1

‖χj(−Dt)ψ̃(t)eit(
1
2

∆M+V)u0‖2L2((0,T )×U)

= C‖(Id−∆M )−1u0‖2L2(M) + C

∞∑
j=K+1

(
χj(−Dt)

2ψ̃(t)eit(
1
2

∆M+V)u0 , ψ̃(t)eit(
1
2

∆M+V)u0

)
L2((0,T )×U)

6 C‖(Id−∆M )−1u0‖2L2(M) + C

 ∞∑
j=0

χj(−Dt)
2ψ̃(t)eit(

1
2

∆M+V)u0 , ψ̃(t)eit(
1
2

∆M+V)u0


L2((0,T )×U)

6 C‖(Id−∆M )−1u0‖2L2(M) + C‖eit(
1
2

∆M+V)u0‖2L2((0,T )×U)

where we used (4.28) in the last line. This concludes the proof of (4.7).

4.3.3 Proof of observability

We prove here (4.7) =⇒ (4.4), which concludes the proof of the sufficiency of the geometric con-
dition H-type GCC. We follow the classical Bardos-Lebeau-Rauch argument, see for example
[BZ12].

For δ > 0, we set

Nδ = {u0 ∈ L2(M) | eit(
1
2

∆M+V)u0 ≡ 0 on (0, T − δ)× U}.

Lemma 4.16. There holds N0 = {0}.
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Proof. Let u0 ∈ N0. We define

vε,0 =
1

ε

(
eiε(

1
2

∆M+V) − Id
)
u0. (4.31)

If ε 6 δ, then eit(
1
2

∆M+V)vε,0 = 0 on (0, T − δ) × U . We write u0 in terms of orthonormal
eigenvectors fλ of 1

2∆M + V (associated with λ ∈ Sp, the spectrum of 1
2∆M + V):

u0 =
∑
λ∈Sp

u0,λfλ

For small enough α, β, applying (4.7) with a slightly smaller T , we have

‖vα,0 − vβ,0‖2L2 6 C‖(Id− (
1

2
∆M + V))−1(vα,0 − vβ,0)‖2L2

6 C
∑
λ∈Sp

∣∣∣∣eiαλ − 1

α
− eiβλ − 1

β

∣∣∣∣2 (1 + λ)−2|u0,λ|2

6 C
∑
λ∈Sp

λ2|α− β|2(1 + λ)−2|u0,λ|2

6 C|α− β|2.

Hence there exists v0 ∈ L2(M) such that v0 = limα→0 vα,0 where the limit is taken in L2(M).
This limit is necessarily in Nδ for all δ > 0, hence in N0. Moreover, thanks to (4.31), there holds
in the sense of distributions

eit(
1
2

∆M+V)v0 = ∂te
it( 1

2
∆M+V)u0

and therefore

v0 = i(
1

2
∆M + V)u0.

Therefore ∆M : N0 → N0 is a well-defined operator. Moreover, according to (4.7), on N0, we
have

‖(Id−∆M ) · ‖L2(M) 6 C‖ · ‖L2(M)

and, by compact embedding (see Lemma 4.18 below), the unit ball of N0 ⊂ L2(M) is compact.
Hence N0 is finite dimensional and there exists an eigenfunction w ∈ N0 of 1

2∆M +V : N0 → N0,
i.e.,

(
1

2
∆M + V)w = µw, w|U = 0

By a standard unique continuation principle (see [Bon69] and [LL20, Theorem 1.12]), since V
and ∆M are analytic (see [BLU07, Section 5.10] for example), we conclude that w = 0, hence
N0 = {0}.

Remark 4.17. To our knowledge, the unique continuation principle used in the above proof is
only known when V is analytic. In C∞ regularity, counterexamples to the unique continuation
principle exist, see [Ba86]. However, the result of Theorem 4.2 holds as soon as a unique
continuation principle holds for 1

2∆M + V.

Lemma 4.18. Set

H(M) = {u ∈ L2(M) | (Id−∆M )u ∈ L2(M)}.

Then H(M) ↪→ L2(M) with compact embedding.
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Proof. By [LL20, Corollary B.1], we have ‖u‖H1(M) 6 ‖(Id − ∆M )u‖L2(M) since G is step 2.
Therefore, H(M) ↪→ H1(M) continuously. The result then follows by the Rellich-Kondrachov
(compact embedding) theorem.

Assume that (4.4) does not hold. Then there exists a sequence (uk0)k∈N such that

‖uk0‖L2(M) = 1 and

∫ T

0

∥∥∥eit(
1
2

∆M+V)uk0

∥∥∥2

L2(U)
dt −→

k→+∞
0. (4.32)

Since (uk0)k∈N is bounded in L2(M), we can extract from (uk0)k∈N a subsequence which converges
weakly to some u∞ in L2(M). By Lemma 4.18, we then have (Id−∆M )−1uk0 → (Id−∆M )−1u∞

strongly in L2(M). Moreover, the second convergence in (4.32) gives u∞ ∈ N0. Thanks to (4.7),
we know that

‖uk0‖2L2(M) 6 C1

∫ T

0

∥∥∥eit(
1
2

∆M+V)uk0

∥∥∥2

L2(U)
dt+ C1

∥∥∥(Id−∆M )−1uk0

∥∥∥2

L2(M)
.

Therefore, taking the limit k → +∞, we get

1 6 C1‖(Id−∆M )−1u∞‖2L2(M).

Therefore u∞ 6= 0, which contradicts Lemma 4.16 since u∞ ∈ N0. Hence, (4.4) holds.

4.4 Non-commutative wave packets and the necessity of the ge-
ometric control

In this section, we conclude the proof of Theorem 4.2 and prove the necessity of the condition (H-
GCC) (for U). We use special data that we call non-commutative wave packets that we first
introduce, together with their properties, on which we also elaborate in Section 4-A.3. Then,
we conclude to the necessity of the H-type GCC.

4.4.1 Non-commutative wave packets

Let us first briefly recall basic facts about classical (Euclidean) wave packets. Given (x0, ξ0) ∈
Rd × Rd and a ∈ S(Rd), we consider the family (indexed by ε) of functions

uεeucl(x) = ε−d/4a

(
x− x0√

ε

)
e
i
ε
ξ0·(x−x0), x ∈ Rd. (4.33)

Such a family is called a (Euclidean) wave packet.

The oscillation along ξ0 is forced by the term e
i
ε
ξ0·(x−x0) and the concentration on x0 is

performed at the scale
√
ε for symmetry reasons : the ε-Fourier transform of uεeucl, ε

−d/2ûεeucl(ξ/ε)
presents a concentration on ξ0 at the scale

√
ε. The regularity of the wave packets makes them

a flexible tool. Besides, taking a compactly supported in the interior of a unit cell for the torus,
one can generalize their definition to the case of the torus by extending them by periodicity. For
example, let us consider the torus Td = Rd/(2πZ)d, we choose a ∈ C∞c ((−π, π)d) and we define
aε(x) as

aε(x) = a

(
x− x0√

ε

)
.

We consider the periodisation operator P which associates with a function ϕ compactly supported
inside a set of the form x0 + (−π, π)d the periodic function defined on the sets k+x0 + (−π, π)d
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for k ∈ (2πZ)d by Pϕ(x) = ϕ(x− k). Then, the definition of a wave packet extends to functions
on the torus by setting

uεtorus(x) = εd/4Paε(x)e
i
ε
ξ0·(x−x0).

We introduce here a generalization of these wave packets to the non-commutative setting
of Lie groups and nilmanifolds, in the context of H-type groups, which is strongly inspired
by [FF19]. For x ∈ G, we write

x = Exp(V + Z) = xzxv = xvxz with V ∈ v, Z ∈ z,

where
xz = eZ ∈ Gz := Exp(z) and xv = eV ∈ Gv := G/Gz.

The concentration is performed by use of dilations: with a ∈ C∞c (G), we associate

aε(x) = a (δε−1/2(x)) .

The oscillations are forced by using coefficients of the representations, in the spirit of [Ped94]:
with λ0 ∈ z∗, Φ1, Φ2 smooth vectors in the space of representations, i.e. in S(Rd), we associate
the oscillating term

eε(x) =
(
πλεx Φ1,Φ2

)
, λε =

λ0

ε2
.

We restrict to ε ∈ (0, 1) and define the periodisation operator P in analogy with the case of
the torus described above, using the multiplication on the left by elements of Γ̃. We consider
a subset B of G which is a neighborhood of 1G and such that ∪

γ∈Γ̃
(γB) = G and we choose

functions a that are in C∞c (B) (in other words, their support is a subset of the interior of B).

Proposition 4.19. Let Φ1,Φ2 ∈ S(Rd), a ∈ C∞c (B), x0 ∈M , λ0 ∈ z∗ \ {0}. Then, there exists
ε0 > 0 such that the family (vε)ε∈(0,ε0) defined by

vε(x) = |λε|d/2 ε−p/2 P(eεaε)(x
−1
0 x),

is a bounded ε-oscillating family in L2(M) with bounded ε-derivatives and momenta:

∀k ∈ N, ∃Ck > 0, ∀ε > 0, ‖(−ε2∆M )k/2vε‖L2(M) 6 Ck. (4.34)

Moreover, (vε)ε∈(0,ε0) has only one semi-classical measure Γdγ where

γ = ca δ(x− x0)⊗ δ(λ− λ0), ca = ‖Φ2‖2
∫
Gz

|a(xz)|2dxz, (4.35)

and Γ is the operator defined by

ΓΦ =
(Φ,Φ1)

‖Φ1‖2
Φ1, ∀Φ ∈ L2(Rd).

In the following, we shall say that the family vε is a wave packet on M with cores (x0, λ0),
profile a and harmonics (Φ1,Φ2), and write

vε = WP εx0,λ0
(a,Φ1,Φ2) = |λε|d/2 ε−p/2 P(eεaε)(x

−1
0 x).

Remark 4.20. 1. Note that ε0 is chosen small enough so that for ε ∈ (0, ε0), the function
G 3 x 7→ aε(x) has support included in a unit cell of G for Γ̃ and thus x 7→ (eεaε)(x

−1
0 x)

can be extended by periodicity on G, which defines a function of M .
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2. Omitting the periodisation operator P, we construct wave packets on G that also satisfy
estimates in momenta

∀k ∈ N, ∃Ck > 0, ∀ε > 0,
∑

16p+q6k

‖|x|p(−ε2∆G)q/2vε‖L2(G) 6 Ck.

3. The coefficient |λε|d/2ε−p/2 guarantees the boundedness in L2(M) of the family (vε)ε>0.

4. Characterization of wave packets. Let x ∈ M be identified to a point of G and let us fix
Φ1, Φ2, x0 and λ0. Then, vε is a wave packet on M if there exist x0 ∈ M , λ0 ∈ z∗ \ {0},
a ∈ C∞c (B) and Φ1,Φ2 ∈ S(Rd), such that

εQ/4vε(x0δ√ε(x)) = |λε|d/2εQ/4−p/2a(x)(Φ1, (π
λ0

δ
ε−1/2 (x))

∗Φ2) (4.36)

= |λ0|d/2ε−d/2a(x)(Φ1, (π
λ0

δ
ε−1/2 (x))

∗Φ2).

5. Generalization. The construction we make here extends to more general Lie groups fol-
lowing ideas from Section 6.4 in [FF19] and [Ped94].

4.4.2 Proof of Proposition 4.19

The proof of Proposition 4.19 is relatively long, and we decompose it into several steps.

The norm of wave packets

By the definition of the periodisation operator P,∫
M
|vε(x)|2dx = |λε|dε−p

∫
G
|aε(x−1

0 x)|2|eε(x−1
0 x)|2dx.

We then use (4.36) and we write

‖vε‖2L2(G) = |λ0|dε−d
∫
G
|a(x)|2(πλ0

δ
ε−1/2x

Φ1,Φ2)|2dx

= |λ0|d
∫
G
|a(δ√ε(xv)xz)|2(πλ0

xv Φ1,Φ2)|2dxvdxz

6

(∫
Gz

sup
yv∈Gv

|a(yvxz)|2dxz

)(
|λ0|d

∫
Gv

|(πλ0
xv Φ1,Φ2)|2dxv

)
.

Let us note that the following relation holds for any Φ, Φ̃,Ψ, Ψ̃ ∈ S(Rd):

|λ0|d
∫
Gv

(πλ0
xv Φ,Ψ)(πλ0

xv Φ̃, Ψ̃)dxv = (Φ, Φ̃)(Ψ, Ψ̃). (4.37)

Therefore,

|λ0|d
∫
Gv

|(πλ0
xv Φ1,Φ2)|2dxv = ‖Φ1‖2‖Φ2‖2.

We deduce that vε is uniformly bounded in L2(G).
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The ε-oscillation and the regularity of wave packets.

Straightforward computations give that if λ ∈ z∗ \ {0}, Φ1,Φ2 ∈ S(Rd), xv = Exp[P + Q],
x = xvxz

P =

d∑
j=1

pjP
(λ)
j and Q =

d∑
j=1

qjQ
(λ)
j ,

then, for 1 6 j 6 d,√
|λ| qj

(
πλxΦ1,Φ2

)
=
(

[πλx , i∂ξj ]Φ1,Φ2

)
,
√
|λ| pj

(
πλxΦ1,Φ2

)
=
(

[πλx , ξj ]Φ1,Φ2

)
. (4.38)

Besides,

P
(λ)
j

(
πλxΦ1,Φ2

)
=
√
|λ|
(
∂ξjπ

λ
xΦ1,Φ2

)
and Q

(λ)
j

(
πλxΦ1,Φ2

)
= i
√
|λ|
(
ξjπ

λ
xΦ1,Φ2

)
. (4.39)

For proving this formula for P
(λ)
j , we use (4.2) and we observe

Exp(tP
(λ)
j )Exp(P +Q+ Z) = Exp(tP

(λ)
j + P +Q+ Z +

t

2
[P

(λ)
j , P +Q]).

Since [P
(λ)
j , Q

(λ)
j ] = Z(λ) and for k 6= j, [P

(λ)
j , P

(λ)
k ] = [P

(λ)
j , Q

(λ)
k ] = 0, we deduce

Exp(tP
(λ)
j )Exp(P +Q+ Z) = Exp(tP

(λ)
j + P +Q+ Z +

t

2
qjZ(λ)).

Therefore, using λ(Z(λ)) = |λ|, we obtain for Φ ∈ S(Rd) and ξ ∈ Rd,

d

dt

(
πλ

Exp(tP
(λ)
j )x

Φ(ξ)

)∣∣∣∣
t=0

=
√
|λ|πλx∂ξjΦ(ξ) + i|λ|qjπλxΦ(ξ) =

√
|λ|∂ξjπ

λ
xΦ(ξ).

The proof for Q
(λ)
j is similar. We deduce (4.34) and that the family (vε) is uniformly ε-oscillating

by the Sobolev criteria of Proposition 4.6 in [FF19].

Action of pseudodifferential operators on wave packets.

For studying their semi-classical measure, it is convenient to analyze first the action of pseudod-
ifferential operators on wave packets.

Lemma 4.21. Let Φ1, Φ2 ∈ S(Rd), (x0, λ0) ∈ G × z∗, a ∈ C∞c (B). Let σ ∈ A0 compactly
supported in an open set U such that U is strictly included in a unit cell B of Γ̃. Then there
exist ε1 > 0 and c1 > 0 such that for all ε ∈ (0, ε1),

‖Opε(σ)WP εx0,λ0
(a,Φ1,Φ2)−WP εx0,λ0

(a, σ(x0, λ0)Φ1,Φ2)‖L2(M) 6 c1

√
ε.

Remark 4.22. The proof we perform below shows that there exist sequences of profiles (aj)j∈N

and of harmonics (Φ
(j)
1 ,Φ

(j)
2 )j∈N such that for all N ∈ N,

‖Opε(σ)WP εx0,λ0
(a,Φ1,Φ2)−

N∑
j=0

ε
j
2WP εx0,λ0

(aj ,Φ
(j)
1 ,Φ

(j)
2 )‖L2(M) 6 c1 (

√
ε)N+1.
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Moreover, by commuting the operator (−ε2∆G)s/2 with the pseudodifferential operators, one
can extend this result in Sobolev spaces. Note also that the same type of expansion holds in G,
in refined functional spaces where momenta are controlled:

‖Opε(σ)WP εx0,λ0
(a,Φ1,Φ2)−

N∑
j=0

ε
j
2WP εx0,λ0

(aj ,Φ
(j)
1 ,Φ

(j)
2 )‖Σkε (G) 6 c1 ε

N+1
2

where Σk
ε is the vector space of functions f ∈ L2(G) for which the semi-norms

‖f‖Σkε :=
k∑
`=0

(
‖|x|`f‖L2(G) + ‖(−ε2∆G)`/2f‖L2(G)

)
(4.40)

are finite.

Proof. We first observe that, in view of Remark 4.7, it is enough to prove the result for wave
packets in G. Indeed, consider χ ∈ C∞c (B) with χσ = σ. Then for any function f ∈ C∞c (B) and
x ∈M identified to the point x of G ∩ B, we have for all N ∈ N, thanks to (4.20),

Opε(σ)P(f)(x) = Opε(σ)χP(f)(x) +O(εN )

= Opε(σ)χf(x) +O(εN ) = Opε(σ)f(x) +O(εN ).

Therefore, we are going to prove the result of Lemma 4.21 for wave packets and pseudodifferential
operators in G. Besides, for simplicity, we assume that σ(x, ·) is the Fourier transform of a
compactly supported function. This technical assumption simplifies the proof which extends
naturally to symbols that are Fourier transform of Schwartz class functions.

We write

Opε(σ)vε(x) = c0|λε|d/2ε−p/2
∫
G×Ĝ

Tr(πλy−1xσ(x, ε2λ))aε(x
−1
0 y)(πλε

x−1
0 y

Φ1,Φ2)|λ|ddλdy

= c0|λε|d/2ε−p/2
∫
G×Ĝ

Tr(πλ
y−1x−1

0 x
σ(x, ε2λ))aε(y)(πλεy Φ1,Φ2)|λ|ddλdy.

where we have performed the change of variable y 7→ x0y. We now focus on ε−Q/4Opε(σ)vε(x0δ√εx)

in order to simplify the computations. Note that this quantity is uniformly bounded in L2(G).

Opε(σ)vε(x0δ√εx) = c0|λε|d/2ε−p/2
∫
G×Ĝ

Tr(πλy−1δ√εx
σ(x0δ√εx, ε

2λ)aε(y)(πλεy Φ1,Φ2)|λ|ddλdy.

We perform the change of variable ỹ = δε−1/2y and λ̃ = ε2λ. We have

πλy−1δ√εx
= π

λ̃/ε2

δ√ε(y
−1x)

= πλ̃δ
ε−1/2 (ỹ−1x), πλεy = π

λ0/ε2

δ√εỹ
= πλ0

δ
ε−1/2 (y)

and

|λ̃|ddλ̃dỹ = ε2dε2pε−Q/2|λ|ddλdy = εQ/2|λ|ddλdy.

We obtain

Opε(σ)vε(x0δ√εx) = c0|λε|d/2ε−p/2ε−Q/2

×
∫
G×Ĝ

Tr(πλδ
ε−1/2 (y−1x)σ(x0δ√εx, λ))a(y)(πλ0

δ
ε−1/2 (y)Φ1,Φ2)|λ|ddλdy.
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The change of variables w = δε−1/2(y−1x) (for which dy = εQ/2dw and y = x(δ√εw)−1)) gives

Opε(σ)vε(x0δ√εx) = c0|λε|d/2ε−p/2

×
∫
G×Ĝ

Tr(πλwσ(x0δ√εx, λ))a(x(δ√εw)−1)(πλ0

(δ
ε−1/2 (x))w−1Φ1,Φ2)|λ|ddλdw

= c0|λε|d/2ε−p/2

×
∫
G×Ĝ

Tr(πλwσ(x0δ√εx, λ))a(x(δ√εw)−1)(πλ0

w−1Φ1, (π
λ0

δ
ε−1/2 (x))

∗Φ2)|λ|ddλdw.

Computing the integral in λ thanks to the inverse Fourier transform formula (4.14) and denoting
by κx the Schwartz function such that σ(x, ·) = F(κx) we have

εQ/4Opε(σ)vε(x0δ√εx) = |λ0|d/2ε−d/2
∫
G
κx0δ√εx(w)a(x(δ√εw)−1)(πλ0

w−1Φ1, (π
λ0

δ
ε−1/2 (x))

∗Φ2)dw

that we can rewrite

εQ/4Opε(σ)vε(x0δ√εx) = |λ0|d/2ε−d/2
(
Qε(x)Φ1, (π

λ0

δ
ε−1/2 (x))

∗Φ2

)
with

Qε(x) =

∫
G
κx0δ√εx(w)a(x(δ√εw)−1)πλ0

w−1dw.

By performing a Taylor formula on the functions x 7→ κx0δ√εx(w) and w 7→ a(x(δ√εw)−1), we
see that the operator Qε(x) admits a formal asymptotic expansion of the form

Qε(x) = Q0(x) +
√
εQ1(x) + · · ·+ ε

j
2Qj(x) + · · · (4.41)

with

Q0(x) = a(x)

∫
G
κx0(w)πλ0

w−1dw = a(x)σ(x0, λ0).

It remains to prove the convergence of this asymptotic expansion by examining the remainder
term.

We examine the one-term expansion. We write

a(x(δ√εw)−1) = a(x) +A(x, δ√εw) (4.42)

with

|A(x,w)| 6
2d∑
j=1

sup
|z|6|w|

|zj ||Vja(xz)| 6 Ca|w|, (4.43)

where for z ∈ G, |z| denotes the homogeneous norm defined in (4.10). We obtain

εQ/4Opε(σ)vε(x0δ√εx) = |λ0|d/2ε−d/2
(
Q0Φ1, (π

λ0

δ
ε−1/2 (x))

∗Φ2

)
a(x) +

√
εrε1(x) +

√
εrε2(x) (4.44)

with

rε1(x) = |λ0|d/2ε−d/2
(
Rε1(x)Φ1, (π

λ0

δ
ε−1/2 (x))

∗Φ2

)
, Rε1(x) = ε−1/2

∫
G

(κx0δ√εx(w)−κx0(w))a(x)πλ0

w−1dw

and

rε2(x) = |λ0|d/2ε−d/2
(
Rε2(x)Φ1, (π

λ0

δ
ε−1/2 (x))

∗Φ2

)
, Rε2(x) = ε−1/2

∫
G
κx0δ√εx(w)A(x, δ√εw)πλ0

w−1dw.
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Lemma 4.23. The families (rε1)ε>0 and (rε2)ε>0 are uniformly bounded in L2(G).

Applying (4.36) to the first term in the right hand side of (4.44), we see that Lemma 4.23
implies Lemma 4.21.

Proof of Lemma 4.23. The idea is that, for j = 1, 2, there holds rεj (x) = ε−d/2r̃εj (δε−1/2(xv), xz, x)
with

y 7→ r̃εj (yv, yz, x)

that is in L2(G), uniformly with respect to ε, with continuity of the map x 7→ r̃εj (·, ·, x).

With this idea in mind, we write, for j = 1, 2,

‖rεj‖2L2(G) = |λ0|dε−d
∫
G

∣∣∣(Rεj(x)Φ1, (π
λ0

δ
ε−1/2 (x))

∗Φ2

)∣∣∣2 dx
= |λ0|d

∫
G

∣∣∣(Rεj(δε1/2(xv)xz)Φ1, (π
λ0
xv )∗Φ2

)∣∣∣2 dxvdxz. (4.45)

Let us first deal with rε1. Writing a Taylor formula, we notice that

Rε1(δε1/2(xv)xz) = ε−1/2

∫
G

(κx0δε(xv)δ√ε(xz)
(w)− κx0(w))a(x)πλ0

w−1dw

=
√
ε

∫
G
B(x,w)a(x)πλ0

w−1dw

where (x,w) 7→ B(x,w) is continuous and compactly supported in w. Therefore Rε1(δε1/2(xv)xz)
is a bounded operator for any x ∈ G. Since a is compactly supported, it implies that (rε1)ε>0 is
uniformly bounded in L2(G).

Let us now deal with rε2. We are going to use that for all multi-indexes α ∈ N2d, the map

x 7→ xαv

(
Rε2(δε1/2(xv)xz)Φ1, (π

λ0
xv )∗Φ2

)
(4.46)

is uniformly bounded and has compact support in xz. Let us first prove these properties.

By assumption on the support of κx, we know that the w’s contributing to the integral
defining Rε2(x) are contained in a compact set (independent of x). Then, using (4.42) and the
fact that a has compact support, we obtain that Rε2 has compact support. It follows that the
map (4.46) has compact support in xz, i.e., there exists R0 > 0 such that |xz| 6 R0 for all x that
are in the support of Rε2(δε1/2(xv)xz). Because of (4.43) and because the integral is compactly
supported in w, Rε2(x) is a bounded operator for all x ∈ G. Besides, the bound is uniform since
x belongs to a compact set. Therefore, there exists a constant C0 > 0 such that∣∣∣(Rε2(δε1/2(xv)xz)Φ1, (π

λ0
xv )∗Φ2

)∣∣∣ 6 C01xz6R0(x).

One now wants to prove also decay at infinity in xv. For this, we use the relations (4.38)
and the fact that Φ1 and Φ2 are in the Schwartz class to absorb the factor |xv| in the right part
of the scalar product. Therefore, for all α ∈ N, there exists Cα such that

|xv|α
∣∣∣(Rε2(δε1/2(xv)xz)Φ1, (π

λ0
xv )∗Φ2

)∣∣∣ 6 Cα1xz6R0(x).

As a conclusion, there exists C > 0 such that∫
G

∣∣∣(Rε2(δε1/2(xv)xz)Φ1, (π
λ0
xv )∗Φ2

)∣∣∣2 dxvdxz 6 C

∫
1|xz|6R0

(1 + |xv|2)−Ndxvdxz < +∞

by choosing N large enough. This implies the uniform boundedness of the family (rε2) in L2(G),
which concludes the proof of Lemma 4.23.
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Let us now shortly discuss the generalization of this proof in order to obtain an asymptotic
expansion at any order, as stated in Remark 4.22. The idea is to use a Taylor expansion at
higher order (see Section 3.1.8 of [FR16]). The terms of the expansion (4.41) are of the form

Qj(x) = xαa(x)

∫
G
wβκx0(w)πλ0

w−1dw

where α and β are multi-indexes such that the sum of their homogeneous lengths is exactly j.
Denoting by ∆wβσ(x, λ0) the Fourier transform of w 7→ wβκx0(w), we obtain

Qj(x) = xαa(x)∆wβσ(x, λ0).

Observe that the operator ∆wβ is a difference operator as defined in [FR16]. It order to justify
Remark 4.22, one then needs to remark that the rest term produced by the Taylor expansion at
order N is of the form

rεN (x) = |λ0|d/2ε−d/2
(
RεN (x)Φ1, (π

λ0

δ
ε−1/2 (x))

∗Φ2

)
and

RεN (x) = ε−
N+1

2

∫
G
κx0δ√εx(w)AN+1(x, δ√εw)πλ0

w−1dw

where AN+1 satisfies convenient bounds so that an argument similar to the preceding one can
be worked out. We do not develop the argument further because we do not need such a precise
estimate for our purpose.

Semi-classical measure

We can now deduce (4.35) from Lemma 4.21 and the following lemma.

Lemma 4.24. Let (x0, λ0) ∈ G × (z∗ \ {0}) a, b ∈ C∞c (B) where B is a unit cell of M , and
Φ1,Φ2,Ψ1,Ψ2 ∈ S(Rp). Then

(
WP εx0,λ0

(a,Φ1,Φ2),WP εx0,λ0
(b,Ψ1,Ψ2)

)
L2(M)

= (Φ1,Ψ1)(Φ2,Ψ2)

∫
Gz

a(xz)b(xz)dxz +O(
√
ε)

Proof. Define uε = WP εx0,λ0
(a,Φ1,Φ2) and vε = WP εx0,λ0

(b,Ψ1,Ψ2) the wave packets in G. We
first use that (

WP εx0,λ0
(a,Φ1,Φ2),WP εx0,λ0

(b,Ψ1,Ψ2)
)
L2(M)

= (uε, vε)L2(G).

Besides,

(uε, vε)L2(G) = |λε|dε−p
∫
G
aε(x

−1
0 x)b(x−1

0 x)(πλε
x−1

0 x
Φ1,Φ2)(πλε

x−1
0 x

Ψ1,Ψ2)dx

= |λ0|d
∫
G
a
(
δ√ε(xv)xz

)
b
(
δ√ε(xv)xz

)
(πλ0
xv Φ1,Φ2)(πλ0

xv Ψ1,Ψ2)dxvdxz.

A Taylor expansion of the map x 7→ a(δ√ε(xv)xz)b(δ
√
ε(xv)xz) gives

a(δ√ε(xv)xz)b(δ
√
ε(xv)xz) = a(xz)b(xz) +

√
ε
∑

16j62d

vjrj(xz, δ√ε(xv))
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where xv = Exp(
∑

16j62d vjVj) and with |rj(x,w)| 6 Cj for some constants Cj , 1 6 j 6 2d. We
deduce (using (4.38))

(uε, vε)L2(G) = |λ0|d
∫
Gz

a(xz)b(xz)dxz

∫
Gv

(πλ0
xv Φ1,Φ2)(πλ0

xv Ψ1,Ψ2)dxv +O(
√
ε)

= (Φ1,Ψ1)(Φ2,Ψ2)

∫
Gz

a(xz)b(xz)dxz +O(
√
ε),

where the second line follows from (4.37).

Here again, the reader will observe that the expansion can be pushed at any order.

It follows from Lemma 4.21 and Lemma 4.24 that

(Opε(σ)WP εx0,λ0
(a,Φ1,Φ2),WP εx0,λ0

(a,Φ1,Φ2))

= (WP εx0,λ0
(a, σ(x0, λ0)Φ1,Φ2),WP εx0,λ0

(a,Φ1,Φ2)) +O(
√
ε)

= (σ(x0, λ0)Φ1,Φ1)‖Φ2‖2
∫
Gz

|a(xz)|2dxz +O(
√
ε)

which concludes the proof of Proposition 4.19.

4.4.3 End of the proof of Theorem 4.2

By the results of Section 4.3, we only need to prove that if T 6 TGCC(U), the observability
inequality (4.4) does not hold.

We first note that if the observability inequality (4.4) is satisfied for some T > 0, then there
exists δ > 0 such that (4.4) also holds in time T − δ. Indeed, if it were not the case, there would
exist un0 ∈ L2(M) such that ‖un0‖L2(M) = 1 and

1 = ‖un0‖2L2(M) > n

∫ T−2−n

0

∥∥∥eit(
1
2

∆M+V)un0

∥∥∥2

L2(U)
dt

> n

∫ T

0

∥∥∥eit(
1
2

∆M+V)un0

∥∥∥2

L2(U)
dt− n

2n
.

due to conservation of energy, and (4.4) would not hold in time T . Therefore, we shall assume
in the sequel that T < TGCC(U).

Let T < TGCC(U) and (x0, λ0) ∈ G× (z∗ \ {0}) such that

for all s ∈ [0, T ], Φs
0(x0, λ0) /∈ U × z∗. (4.47)

Let us chose initial data uε0 in (4.3) which is a wave packet in M with harmonics given by the
first Hermite function h0:

uε0 = WP εx0,λ0
(a, h0, h0).

As a consequence, the semi-classical measure of (uε0) is Γ0(x, λ)dγ0 with Γ0 the orthogonal
projector on h0 (this is where we use the fact that h0 is the first Hermite function) and

γ0(x, λ) = c δ(x− x0)⊗ δ(λ− λ0)

where c = lim sup ‖uε0‖L2(M) > 0. Let us denote by uε(t) the associated solution, uε(t) =

eit(
1
2

∆M+V)uε0. By Proposition 4.13, any of its semi-classical measures Γtdγt decomposes above
G × z∗ according to the eigenspaces of H(λ) following (4.21). Moreover, by Proposition 4.13,
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the maps (t, x, λ) 7→ Γn,t(x, λ)dγt(x, λ) are continuous and satisfy the transport equation (4.22).
We deduce that for n 6= 0, Γn,t(x, λ) = 0,

γt(x, λ) = c δ

(
x− Exp

(
t
d

2
Z(λ)

)
x0

)
⊗ δ(λ− λ0) (4.48)

and Γ0 is the orthogonal projector on h0.

As a consequence of the conservation of the L2-norm by the Schrödinger equation, ‖uε(t)‖L2(M) =
‖uε0‖L2(M). Besides, the ε-oscillation (see Proposition 4.12) gives that, for the subsequence defin-
ing Γtdγt,

lim
ε→0
‖uε(t)‖2L2(M) =

∫
M×Ĝ

Tr(Γt(x, λ))dγt(x, λ), ∀t ∈ R.

We deduce that we have, for any t ∈ R,∫
M×Ĝ

Tr(Γt(x, λ))dγt(x, λ) =

∫
M×Ĝ

Tr(Γ0(x, λ))dγ0(x, λ).

On the other hand, the positivity of the measure Tr(Γt(x, λ))dγt(x, λ) combined with (4.48)
gives∫

M×Ĝ
Tr(Γt(x, λ))dγt(x, λ) >

∫
M×z∗

Tr(Γt(x, λ))dγt(x, λ) =

∫
M×z∗

Tr(Γ0(x, λ))dγ0(x, λ)

=

∫
M×Ĝ

Tr(Γ0(x, λ))dγ0(x, λ).

We deduce that γt1v∗ = 0. Now, using (4.47), there exists a continuous function φ : M → [0, 1]
such that φ(Φs

0(x0, λ0)) = 0 for any s ∈ [0, T ] and φ = 1 on U × z∗. Using Proposition 4.12 for
the subsequence defining the semi-classical measure Γtdγt, we get

0 6
∫ T

0

∫
U
|uε(t, x)|2dxdt 6

∫ T

0

∫
M
φ(x)|uε(t, x)|2dxdt−→

ε→0

∫ T

0

∫
M×z∗

φ(x)dγt(x, λ)dt = 0.

Therefore, the observability inequality (4.4) cannot hold.

Remark 4.25. As already noticed in the introduction, it can happen that TGCC(U) < TGCC(U),
and in this case, Theorem 4.2 does not say anything about observability for times T such that
TGCC(U) < T 6 TGCC(U). This is due to the possible existence of grazing rays, which are rays
which touch the boundary ∂U without entering the interior of U . This phenomenon already
occurs in the context of the observability of Riemannian waves, as was shown for example in
[Leb92a, Section VI.B]. The example given in this paper is the observation of the wave equation
in the unit sphere S2 from its (open) northern hemisphere: although the GCC condition is
violated by the geodesic following the equator, observability holds in time T > π. Intuitively,
even wave packets following this geodesic have half of their energy located on the northern
hemisphere.

4-A Supplementary material

4-A.1 Representations of H-type groups

In this section, we provide a proof of the description (4.12) of Ĝ. This material is standard in
non-commutative Fourier analysis, see for example [CG04].
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The orbits of g

As any group, a nilpotent connected, simply connected Lie group acts on itself by the inner
automorphism ix : y 7→ xyx−1. With this action, one derives the action of G on its Lie algebra
g called the adjoint map

Ad : G → Aut(g)
x 7→ Adx = d(ix)|1G ,

and its action on g∗, the co-adjoint map

Ad∗ : G → Aut(g∗)
x 7→ Ad∗x

defined by
∀x ∈ G, ∀` ∈ g∗, ∀Y ∈ g, (Ad∗x`)(Y ) = `(Ad−1

x Y ).

It turns out that the orbits of this action play an important role in the representation theory of
the group. Let us recall that the orbit of an element ` ∈ g∗ is the set O` defined by

O` = {Ad∗x(`), x ∈ G}.

The next proposition describes the orbits of H-type groups.

Proposition 4.26. Let G be a H-type group, then there are only two types of orbits.

(i) 0-th. dimensional orbits. If ` ∈ v∗, then O` = {`}.

(ii) 2d-th. dimensional orbits. If ` = ω + λ with ω ∈ v∗ and λ ∈ z∗ \ {0}, then O` = Oλ and

Oλ = {ω′ + λ, ω′ ∈ v∗}.

Proof. Let x = Exp(Vx + Zx) ∈ G and y = Exp(Vy + Zy) ∈ G. Then

ix(y) = xyx−1 = Exp(Vx + Zx)Exp(Vy + Zy)Exp(−Vx − Zx)

= Exp(Vy + Zy + [Vx, Vy]).

We deduce that if Y = VY + ZY ∈ g,

Ad−1
x (Y ) = VY + ZY + [Vx, VY ].

Therefore, if ` = ω + λ with λ ∈ z∗ and ω ∈ v∗,

Ad∗x`(Y ) = 〈`,Ad−1
x (Y )〉 = 〈ω, VY 〉+ 〈λ, ZY + [Vx, VY ]〉 = 〈ω + Jλ(Vx), VY 〉+ 〈λ, ZY 〉

As a consequence, if λ = 0, Ad∗x`(Y ) = `(Y ) for all Y ∈ g. We deduce Ad∗x` = ` for all x ∈ G,
which gives the first type of orbits.
If now λ 6= 0 and if ω′ ∈ v∗, one can find Vx ∈ v such that

〈ω′, V 〉 = 〈ω + Jλ(Vx), V 〉, ∀V ∈ v.

One deduces that for all Y ∈ g, Ad∗x`(Y ) = `′(Y ) with `′ = ω′ + λ. We deduce that any of
these `′ is in the orbit of `, which concludes the proof.

Let λ ∈ z∗ \ {0}, the sets pλ ⊕ z and qλ ⊕ z are maximal isotropic sub-algebras of g for the
bilinear map B(λ) (with associated endomorphism Jλ). Such an algebra is said to be a polarizing
algebra of g. We shall use these algebras in the next section.



142 CHAPTER 4. OBSERVABILITY IN GROUPS OF HEISENBERG TYPE

Unitary irreducible representations of G

The unitary representations of a locally compact group are homomorphisms π of G into the
group of unitary operators on a Hilbert space that are continuous for the strong topology.
The representations for which there is no proper closed π(G)-invariant subspaces in Hπ are
called irreducible. Arbitrary representations can be uniquely decomposed as sums of irreducible
representations.

Kirillov theory establishes a one to one relation between the orbits (O`)`∈g∗ and the irre-
ducible unitary representations of G for any nilpotent Lie group which is connected and locally
connected. We shall first explain how one associates to an orbit O` a representation π` (which
only depends on the class of the orbit O`). Then, in the next subsection, we shall explain how
the Stone-Von Neumann Theorem implies that any representation can be associated with an
orbit.

• Let ω ∈ v∗, the map χω defined below is a 1-dimensional representation of G.

χω : G → S1

Exp(X) 7→ eiω(X).

• Let λ ∈ z∗ \ {0}. We consider the polarizing sub-algebra associated with λ

mλ = qλ ⊕ z

and the subgroup of G defined by M := Exp(mλ). Then, if ` ∈ Oλ, `([mλ,mλ]) = 0, and the
map

χλ,M : M → S1

Exp(Y ) 7→ eiλ(Y ).

is a one-dimensional representation of M . This allows to construct an induced representation

πλ on G with Hilbert space pλ ∼ L2(Rp) via the identification of Exp
(∑d

j=1 ξjP
(λ)
j

)
∈ Exp(pλ)

with ξ = (ξ1, · · · , ξd) ∈ Rd. Indeed, let us take ξ ∈ pλ and x = Exp(X), with X = P + Q + Z
and P ∈ pλ, Q ∈ qλ and Z ∈ z. We have, by the Baker-Campbell-Hausdorff formula,

Exp(ξ)Exp(X) = Exp(Q+ Z + [ξ,Q] +
1

2
[P,Q])Exp(ξ + P ),

with

Q+ Z + [ξ,Q] +
1

2
[P,Q] ∈ mλ and ξ + P ∈ pλ.

Let us denote by p, q ∈ Rd the coordinates of P and Q in the bases (P
(λ)
j )16j6d and (Q

(λ)
j )16j6d

respectively. Following [CG04], we define the induced representation by

πλ(x)f(ξ) = χλ

(
Exp(Q+ Z + [ξ,Q] +

1

2
[P,Q])

)
f(ξ + p).

Using λ([P
(λ)
j , Q

(λ)
j ]) = B(λ)(P

(λ)
j , Q

(λ)
j ) = |λ|, we obtain

πλ(x)f(ξ) = eiλ(Z)+ i
2
|λ|p·q+i|λ|ξ·qf(ξ + p).

We can then use the scaling operator Tλ defined by

Tλf(ξ) = |λ|d/4f(|λ|1/2ξ)

to get the equivalent representation πλx := T ∗λπλ(x)Tλ written in (4.11).

This inductive process can be generalized to the case of groups presenting more than two
strata. For our purpose, it remains to prove that any irreducible representation is equivalent to
one of those, which is a consequence of the Stone-Von Neumann Theorem.
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Stone-Von Neumann Theorem

Let us recall the celebrated Stone-Von Neumann theorem (see [CG04, Section 2.2.9] for a proof).

Theorem 4.27. Let ρ1, ρ2 be two unitary representations of G = Rd in the same Hilbert space
H satisfying, for some α 6= 0, the covariance relation

ρ1(x)ρ2(y)ρ1(x)−1 = eiαx·yρ2(y), for all x, y ∈ Rd.

Then H is a direct sum H = H1 ⊕ H2 ⊕ . . . of subspaces that are invariant and irreducible
under the joint action of ρ1 and ρ2. For any k, there is an isometry Jk : Hk → L2(Rd) which
transforms ρ1 and ρ2 to the canonical actions on L2(Rd):

[ρ̃1(x)f ](ξ) = f(ξ + x), [ρ̃2(y)f ](ξ) = eiαy·ξf(ξ).

For each α 6= 0, the canonical pair ρ̃1, ρ̃2 acts irreducibly on L2(Rd), so ρ1, ρ2 act irreducibly on
each Hk.

Let π be an irreducible representation of G on Hπ. Our goal is to prove that it is equivalent
either to a χω or to a πλ of the preceding section. For Z ∈ z, the operators π(Exp(Z)) commute
will all elements of {πg : g ∈ G}. By Schur’s Lemma (see [CG04, Lemma 2.1.1]), they are thus
scalar: πExp(Z) = χ(Exp(Z))IdHπ where χ is a one-dimensional representation of the center
Z(G) = Exp(z) of G. Then, two cases appear:

• If χ ≡ 1, then π is indeed a representation of the Abelian quotient group G/Z(G) = Exp(v),
thus it is one-dimensional and of the form χω for some ω ∈ v∗.

• If χ 6≡ 1, there is λ ∈ z∗\{0} such that χ(Exp(Z)) = eiλ(Z). We keep the notations of (4.9),

the notations P = p1P
(λ)
1 + . . .+ pdP

(λ)
d , Q = q1Q

(λ)
1 + . . .+ qdQ

(λ)
d and Z = z1Z1 + . . .+ zpZp

of the previous section, and we set p = (p1, . . . , pd), q = (q1, . . . , qd) and z = (z1, . . . , zp). The
actions of the d-parameter subgroups ρ1(p) = πExp(P ) and ρ2(q) = πExp(Q) satisfy the covariance
relation

ρ1(p)ρ2(q)ρ−1
1 (p)ρ−1

2 (q) = π
Exp( 1

2
(p1q1[P

(λ)
1 ,Q

(λ)
1 ]+...+pdqd[P

(λ)
d ,Q

(λ)
d ]))

= e
i
2
|λ|p·qIdHπ

where we have used [P
(λ)
j , Q

(λ)
j ] = Z(λ) with λ(Z(λ)) = |λ|. The joint action of ρ1 and ρ2 is

irreducible since the d-parameter subgroups generate G and π is irreducible. Thus, we may
apply the Stone-Von Neumann theorem, which gives that there exists an isometry identifying
Hπ with L2(Rd) such that the actions take the form

[ρ1(p)f ](t) = [πExp(P )f ](ξ) = f(ξ + p),

[ρ2(q)f ](t) = [πExp(Q)f ](ξ) = ei|λ|q·ξf(ξ)

for all f ∈ L2(Rd) and p, q ∈ Rd. Hence, in this model, the action of an arbitrary element of G
is

[πExp(P+Q+Z)f ](ξ) = eiλ(z)+ i
2
|λ|p·q+i|λ|q·ξf(ξ + p)

since Exp(P+Q+Z) = Exp(Z+ 1
2 [P,Q])·Exp(Q)·Exp(P ) by the Baker-Campbell-Hausdorff for-

mula. This is just the action of πλ modeled in L2(Rd). Thus, an infinite-dimensional irreducible
representation π is isomorphic to πλ for some λ.
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4-A.2 Pseudodifferential operators and semi-classical measures

In this section we focus on different aspects of the pseudodifferential calculus on quotient man-
ifolds.

Properties of pseudodifferential operators on quotient manifolds

We prove here properties (3), (4) and (5) of Section 4.2.

• Proof of Property (3). We write G = ∪
γ∈Γ̃

Mγ−1 and, using the periodicity of f , we obtain∫
G
κεx(y−1x)f(y)dy =

∑
γ∈Γ̃

∫
y∈Mγ−1

κεx(y−1x)f(y)dy =
∑
γ∈Γ̃

∫
y∈M

κεx(γy−1x)f(y)dy.

As a consequence, the action of the operator Opε(σ) writes as a sum of convolution

Opε(σ)f(x) =
∑
γ∈Γ̃

f ∗ κεx(γ·)(x).

• Proof of Property (4). By Young’s convolution inequality

‖f ∗ κεx(γ·)‖L2(M) 6 ‖ sup
x∈M
|κεx(γ·)|‖L1(M)‖f‖L2(M).

We have

‖ sup
x∈M
|κεx(γ·)|‖L1(M) = ε−Q

∫
M

sup
x∈M
|κx(ε · γy)|dy =

∫
γ−1M

sup
x∈M
|κx(y)|dy.

Therefore

‖Opε(σ)f‖L2(M) 6 ‖f‖L2(M)

∑
γ∈Γ̃

∫
γ−1M

sup
x∈M
|κx(y)|dy = ‖f‖L2(M)

∫
G

sup
x∈M
|κx(y)|dy,

which gives (4.19)

• Proof of Property (5). We argue as for the L2 boundedness and observe that the kernel of
Opε(σ)−Opε(σ)χ is the function

(x, y) 7→ κεx(y−1x)(1− χ(y)).

Writing
κεx(y−1x)(1− χ(y)) = κεx(y−1x)(1− χ(x(y−1x)−1)

we deduce that we can write the operator Opε(σ) − Opε(σ)χ as the convolution with an x-
dependent function:

(Opε(σ)−Opε(σ)χ)f(x) =
∑
γ∈Γ̃

f ∗ θε(x, γ·)

with θε(x, z) = ε−Qκx(ε · z)(1− χ)(xz−1). Therefore, if K = suppσ (where χ ≡ 1), we have

‖ sup
x∈K

θε(x, γ·)‖L1(M) 6
∫
M

sup
x∈K
|κx(γz)||(1− χ)(x(ε · (γz))−1)|dz.

A Taylor formula gives that there exists a constant c > 0 such that for all x ∈ K,

|(1− χ)(x(ε · (γz))−1)| 6 cεN |γz|N .
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Therefore,

‖ sup
x∈K

θε(x, γ·)‖L1(M) 6 cεN
∫
M

sup
x∈K
|κx(γz)||γz|Ndz.

We deduce thanks to Young’s convolution inequality

‖(Opε(σ)(1− χ)f‖L2(M) 6 εNc‖f‖L2(M)

∑
γ∈Γ̃

∫
M

sup
x∈K
|κx(γz)||γz|Ndz

= εNc‖f‖L2(M)

∫
G

sup
x∈K
|κx(z)||z|Ndz.

Time-averaged semi-classical measures

We give here comments about the proof of Proposition 4.13. Note that when V = 0, Theorem
2.10(ii)(2) in [FF21] implies the statement, except for the continuity of the map t 7→ Γtdγt. The
key observation is that for any symbol σ ∈ A0,

1

iε

[
−ε

2

2
∆M − ε2V,Opε(σ)

]
=

1

iε

[
−ε

2

2
∆M ,Opε(σ)

]
+O(ε) (4.49)

in L(L2(G)) by the boundedness of V. As a consequence, the results of Theorem 2.10(ii)(2) in
[FF21] without potential passes to the case with a bounded potential. Note in particular that
we do not need any analyticity on the potential. The two points of Proposition 4.13 derive from
relation (4.49).

For (1), using Proposition 4.8 and multiplying (4.49) by ε, one gets that for any symbol
σ ∈ A0 and θ ∈ L1(G),∫

R×G×Ĝ
θ(t)Tr([σ(x, λ), H(λ)]Γt(x, λ))dγt(x, λ)dt = 0,

which implies the commutation of Γt(x, λ) with H(λ) and thus the relation 4.21.

Let us now prove the transport equation and the continuity property; Let Π
(λ)
n be the

projector on the n-th eigenspace of H(λ). We prove here the continuity of the map t 7→
(Π

(λ)
n Γt1z∗Π

(λ)
n , γt1z∗). Since Π

(λ)
n /∈ A0, it is necessary to regularize the operator Π

(λ)
n σ(x, λ)Π

(λ)
n

for σ ∈ A0. In that purpose, we fix χ ∈ C∞(R) such that 0 6 χ 6 1, χ(u) = 1 for on |u| > 1
and χ(u) = 0 for |u| 6 1/2. We consider σ ∈ A0 a symbol strictly supported inside a unit cell
of M and associate with it the symbol

σ(u,n)(x, λ) = χ(uH(λ))Π(λ)
n σ(x, λ)Π(λ)

n , n ∈ N, u ∈ (0, 1].

In view of Corollary 3.9 in [FF21], this symbol belongs to the class S−∞ of regularizing symbols.
Besides, it is also supported inside a unit cell of M . Fix n ∈ N and consider the map

t 7→
(

Opε(σ
(u,n))ψε(t), ψε(t)

)
:= `u,ε(t)

where ψε(t) is a family of solutions to (4.3) for some family of initial data (ψε0)ε>0.

Lemma 4.28. The map t 7→
(
Opε(σ

(u,n))ψε(t), ψε(t)
)

is equicontinuous with respect to the
parameter ε ∈ (0, 1).

We recall that from Theorem 2.5 (i) of [FF21] we have for all σ ∈ A0, χ and u as above,
θ ∈ L1(R), and p, p′ ∈ N with p 6= p′,∫

R
θ(t)

(
Opε(Πpχ(uH(λ))σΠp′)ψ

ε(t), ψε(t)
)
dt = O(ε) (4.50)
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Proof. For any symbol σ ∈ A0, we have

d

dt
(Opε(σ)ψε(t), ψε(t)) =

1

iε2

(
[Opε(σ),−ε

2

2
∆M − ε2V]ψε(t), ψε(t)

)
=

1

iε2
(Opε([σ,H(λ)]ψε(t), ψε(t))− 1

iε

(
Opε(V · πλ(V )σ)ψε(t), ψε(t)

)
(4.51)

− 1

2i
(Opε(∆Mσ)ψε(t), ψε(t))− 1

i
([Opε(σ),V]ψε(t), ψε(t)) .

For σ(u,n) (which commutes with H(λ)) we have

d

dt
`u,ε(t) =

1

iε2

(
[Opε(σ

(u,n)),−ε
2

2
∆M − ε2V]ψε(t), ψε(t)

)
= − 1

iε

(
Opε(V · πλ(V )σ(u,n))ψε(t), ψε(t)

)
− 1

2i

(
Opε(∆Mσ

(u,n))ψε(t), ψε(t)
)

+O(ε)

where we used [Opε(σ
(u,n)),V] = O(ε) in L(L2(M)) by Proposition 4.8. By Lemma 4.1 in [FF21],

there exists σ1(x, λ) such that

V · πλ(V )σ(u,n)(x, λ) = [σ1(x, λ), H(λ)] (4.52)

(V · πλ(V )σ1(x, λ)) =

(
(n+

d

2
)iZ(λ) − 1

2
∆M

)
σ(u,n)(x, λ)

The proof of these relations is discussed at the end of the proof of Proposition 4.29 where we
use quite similar properties. We then write for t, t′ ∈ R,

`u,ε(t)− `u,ε(t′) = − 1

iε

∫ t

t′
(Opε([σ1, H(λ)])ψε(s), ψε(s)) ds

− 1

2i

∫ t

t′

(
Opε(∆Mσ

(u,n))ψε(s), ψε(s)
)
ds+O(ε|t− t′|).

Besides, using (4.51) for the symbol σ1, we deduce

− 1

iε
(Opε([σ1, H(λ)])ψε(t), ψε(t)) = −ε

i
([Opε(σ1),V]ψε(t), ψε(t))− ε d

dt
(Opε(σ1)ψε(t), ψε(t))

− 1

i

(
Opε(V · πλ(V )σ1)ψε(t), ψε(t)

)
− ε

2i
(Opε(∆Mσ1)ψε(t), ψε(t)) .

This implies

`u,ε(t)− `u,ε(t′) = −1

i

∫ t

t′

(
Opε(V · πλ(V )σ1)ψε(s), ψε(s)

)
ds− 1

2i

∫ t

t′
(Opε(∆Mσ1)ψε(s), ψε(s)) ds

+O(ε|t− t′|)

= (n+
d

2
)

∫ t

t′

(
Opε(Z(λ)σ)ψε(s), ψε(s)

)
ds+O(ε|t− t′|) (4.53)

which concludes the proof.

The continuity of the map t 7→ (Π
(λ)
n Γt1z∗Π

(λ)
n , γt1z∗) follows from Lemma 4.28 and the

Arzelà-Ascoli theorem. Note that, equation (4.53) of the proof of Lemma 4.28 also implies the
transport equation (4.22).
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Finally, let us prove Point (2) of Proposition 4.13. We use the relation

1

ε
[−ε2∆M ,Opε(σ)] =

1

ε
Opε([H(λ), σ])− 2Opε(V · πλ(V )σ)− εOpε(∆Mσ).

together with (4.49). We denote by ςt the scalar measure Γtdγt1v∗ and we use that for the finite
dimensional representations π(0,ω), we have π(0,ω)(Vj) = iωj . In the limit ε→ 0, we obtain that
for any θ ∈ L1(R) and σ ∈ A0 commuting with H(λ),∫
R×M×z∗

θ(t)Tr(V · π(V )σ(x, λ)Γt(x, λ))dγt(x, λ)dt+

∫
R×M×v∗

θ(t)iω · V σ(x, ω)dςt(x, ω)dt = 0.

Since Γt commutes with H(λ) and V · π(V )σ is off-diagonal when σ is diagonal (see (4.52)), we
deduce that the first term of the left-hand side of the preceding relation is 0. Therefore,∫

R×M×v∗
θ(t)ω · V σ(x, ω)dςt(x, ω)dt = 0,

which implies the invariance of ςt(x, ω) by the map (x, ω) 7→ (Exp(tω · V )x, ω).

4-A.3 Wave packet solutions to the Schrödinger equation

We assume here V = 0. We prove that the solution of (4.3) with an initial datum which is a
wave packet can be approximated by a wave packet. We focus on the case where the harmonics
verify Φ1 = Φ2 = h0, see the discussion preceding Remark 4.30 for more details. We work in
G, keeping in mind that by Remark 4.7, the result extends to M . Note that the results of this
section give in particular a second proof of the necessary part of Theorem 4.2 in case V = 0.

Proposition 4.29. Let uε(t) be the solution of equation (4.3) with V = 0 and initial data of
the form

uε0 = WP εx0,λ0
(a, h0, h0),

where (x0, λ0) ∈ M × (z∗ \ {0}), a ∈ S(G) and h0 is the first Hermite function. Then, there
exists a map (t, x) 7→ a(t, x) in C1(R,S(G)) such that for all k ∈ N,

uε(t, x) = WP εx(t),λ0
(a(t, ·), h0, h0) +O(

√
ε)

in Σk
ε (see (4.40) for definition), with

x(t) = Exp

(
d

2
tZ(λ0)

)
x0.

In particular, this proposition means that, contrarily to what happens in Riemannian man-
ifolds, there are wave packet solutions of the Schrödinger equation which remain localized even
in very long time (of order ∼ 1 independently of ε). For example, this is not the case for the
torus (see [AM14, BZ12]) or semi-classical completely integrable systems (see [AFM15]).

In what follows, we use the notation πλ(X) for denoting the operator such that

F(Xf)(λ) = πλ(X)F(f), ∀f ∈ Hλ

where X ∈ g (recall that Xf is defined in (4.2)). Using an integration by part in the definition
of F(Xf)(λ) and the fact that (πλx)∗ = πλ−x, we obtain in particular

X(πλxΦ1,Φ2) = (πλ(X)πλxΦ1,Φ2) (4.54)
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and, in view of (4.39), we have

πλ(P
(λ)
j ) =

√
|λ|∂ξj and πλ(Q

(λ)
j ) = i

√
|λ|ξj . (4.55)

We recall that extending the definition to −∆G, we have πλ(−∆G) = H(λ) where H(λ) is the
Harmonic oscillator

H(λ) = |λ|
d∑
j=1

(−∂2
ξj

+ ξ2
j ). (4.56)

Of course, we also have the relations

H(λ) = −
d∑
j=1

πλ(Vj)
2 = −

d∑
j=1

(
πλ(P

(λ)
j )2 + πλ(Q

(λ)
j )2

)
. (4.57)

In the sequel, in order to simplify notations, since λ = λ0 is fixed, we write Pj and Qj instead

of P
(λ0)
j and Q

(λ0)
j . We also use the notation Πn instead of Π

(λ0)
n .

Proof of Proposition 4.29. We construct a function vε(t, x) of the form

vε(t, x) = WP εx(t),λ0
(σε(t, x)(t, ·), h0, h0) +O(

√
ε) (4.58)

which solves for all t ∈ R,

i∂tv
ε +

1

2
∆gv

ε = O(
√
ε) (4.59)

in all the spaces Σε
k, k ∈ N. More precisely, we look for σε(t, x) =

∑N
j=1 ε

j
2σj(t, x), for some

N ∈ N to be fixed later and some maps (t, x) 7→ σj(t, x) that are smooth maps from R × G to
L2(Rd), and we shall require σ0(0, x) = a(x) (note that, more rigorously, these operator-valued
maps are the values at λ = λ0 of fields of operators σj(t, x, λ) over the spaces Hλ = L2(Rd) of
representations, as the symbols of the pseudodifferential calculus). Then, an energy estimate
shows that uε(t)− vε(t) = O(

√
ε) in L2(G) for all t ∈ R.

In view of (4.36), it is equivalent to construct a family ṽε(t, x) = εQ/4vε(t, x(t)δ√εx) which
satisfies

iε∂tṽ
ε − id

2
Z(λ0)ṽε +

1

2
∆gṽ

ε = O(ε
√
ε)

and

ṽε(t, x) =
N∑
j=0

ε
j
2 (σj(t, x)πλ0

δ
ε−1/2 (x)h0, h0), N ∈ N. (4.60)

We emphasize that if we look for operators σj(t, x) which are of finite rank, then, decomposing

σj(t, x)h0 on the Hermite basis, the function (σj(t, x)πλ0

δ
ε−1/2 (x)h0, h0) is a sum of terms of the

form
(aj,β(t, x)πλ0

δ
ε−1/2 (x)h0, hβ),

which means that vε(t) satisfying (4.58) is indeed a sum of wave packets.

Let us now construct the operators σj(t, x). In order to simplify the notations, we set
S0 = |λ0|d2 and

L = i
d

2
Z(λ0) − 1

2
∆G.

Note that

i
d

2
Z(λ0)πλ0

x = −S0π
λ0
x
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and that S0 is such that H(λ0)h0 = 2S0h0. We denote by Π0 the orthogonal projector on
the eigenspace of H(λ0) for the eigenvalue 2S0. For any operator-valued σ(t, x), we have the
following result:

(iε∂t − L)(σ(t, x)πλ0

δ
ε−1/2 (x)h0, h0) =

S0

ε
(σ(t, x)πλ0

δ
ε−1/2 (x)h0, h0)− 1

2ε
(σ(t, x)H(λ0)πλ0

δ
ε−1/2 (x)h0, h0)

+
1√
ε

(V σ(t, x) · πλ0(V )πλ0

δ
ε−1/2 (x)h0, h0) + ((iε∂t − L)σ(t, x)πλ0

δ
ε−1/2 (x)h0, h0)

where V σ ·Πλ0(V ) =
∑2d

j=1 VjσΠλ0(Vj). Equivalently, we can write the latter relation under the
more convenient form:

(iε∂t − L)(σ(t, x)πλ0

δ
ε−1/2 (x)h0, h0) =

1

2ε
([H(λ0), σ(t, x)]πλ0

δ
ε−1/2 (x)h0, h0)

+
1√
ε

(V σ(t, x) · πλ0(V )πλ0

δ
ε−1/2 (x)h0, h0) + ((iε∂t − L)σ(t, x)πλ0

δ
ε−1/2 (x)h0, h0).

(4.61)

Therefore, for σ0 = a ∈ C1(R,S(G)) a scalar map, we have

(iε∂t − L)(σ0(t, x)πλ0

δ
ε−1/2 (x)h0, h0) = (rε0(t, x)πλ0

δ
ε−1/2 (x)h0, h0)

with

rε0(t, x) =
1√
ε

(V σ0(t, x) · πλ0(V )πλ0

δ
ε−1/2 (x)h0, h0) + ((iε∂t − L)σ0(t, x)πλ0

δ
ε−1/2 (x)h0, h0) (4.62)

In other words, for any σ0(t, x) which is scalar, the rest term is of order ε−1/2. At the end of
the proof, we will specify our choice of σ0 in (4.67).

We now focus on constructing correction terms in order to compensate the rest term rε0(x).
Note that since Π0h0 = h0, we also have

rε0(t, x) =
1√
ε

(Π0V σ0(t, x) · πλ0(V )πλ0

δ
ε−1/2 (x)h0, h0) + ((iε∂t − L)σ0(t, x)πλ0

δ
ε−1/2 (x)h0, h0)

The second term involves the scalar operator (iε∂t − L)σ0(t, x) which commutes with Π0 while
the first one depends on Π0V σ0(t, x) · πλ0(V ) which does not. For constructing σ1(t, x), we use
the computation (4.61) and the fact that for symbols σ(t, x) that anti-commute with H(λ0), one
can find θ(t, x) such that σ(t, x) = [H(λ0), θ(t, x)].

• Construction of the approximate solution up to
√
ε. We have already noticed in Section 4-

A.2) that if

θ0(t, x) = − 1

2i|λ0|

d∑
j=1

(
Pjσ0(t, x)πλ0(Qj)−Qjσ0(t, x)πλ0(Pj)

)
,

we have the following relations that we prove below

V σ0(t, x) · πλ0(V ) = −[H(λ0), θ0(t, x)], (4.63)

Π0(V θ0(t, x) · πλ0(V ))Π0 =
1

2
Π0

(
i
d

2
Zλ0σ0(t, x)− 1

2
∆Gσ0(t, x)

)
Π0 =

1

2
Π0Lσ0(t, x). (4.64)

Therefore, setting
σ1(t, x) = 2Π0θ0(t, x),
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and using (4.61), we obtain that

(iε∂t − L)(σ1(t, x)πλ0

δ
ε−1/2 (x)h0, h0) = −1

ε
(V σ0(t, x) · πλ0(V )πλ0

δ
ε−1/2 (x)h0, h0)

+
1√
ε

(Lσ0(t, x)πλ0

δ
ε−1/2 (x)h0, h0) + ((iε∂t − L)σ1(t, x)πλ0

δ
ε−1/2 (x)h0, h0)

Therefore, the function ṽε1(t, x) = ((σ0(t, x) +
√
εσ1(t, x))πλ0

δ
ε−1/2 (x)h0, h0) satisfies in Σk

ε the

equation
(iε∂t − L)ṽε1(t, x) = rε1(t, x) +O(ε

√
ε)

with
rε1(t, x) = −

√
ε(Lσ1(t, x)πλ0

δ
ε−1/2 (x)h0, h0) + iε(∂tσ0(t, x)πλ0

δ
ε−1/2 (x)h0, h0).

• Construction of the approximate solution up to ε. We observe that by construction θ0(t, x)
and σ1(t, x) anticommute with H(λ0). Therefore, there exists σ2(t, x) such that

Lσ1(t, x) =
1

2
[H(λ0), σ2(t, x)], (4.65)

and the function ṽε2(t, x) = ((σ0(t, x) +
√
εσ1(t, x) + ε

√
εσ2(t, x))πλ0

δ
ε−1/2 (x)h0, h0) satisfies the

equation
(iε∂t − L)ṽε2(t, x) = rε2(t, x) +O(ε

√
ε)

with

rε2(t, x) = ε(V σ2(t, x) · πλ0(V )πλ0

δ
ε−1/2 (x)h0, h0) + iε(∂tσ0(t, x)πλ0

δ
ε−1/2 (x)h0, h0).

At this stage of the proof, we observe that by choosing an adequate term σ3, the off-diagonal
part of V σ2 ·πλ0(V ) can be treated in the same manner than the off-diagonal term Lσ1. Finally
we are left with

ṽε3(t, x) = ((σ(t, x) +
√
εσ1(t, x) + ε

√
εσ2(t, x) + ε2σ3(t, x))πλ0

δ
ε−1/2 (x)h0, h0)

and the equation
(iε∂t − L)ṽε3(t, x) = rε3(t, x) +O(ε3/2)

with
rε3(t, x) = ε((i∂tσ0 + Π0V σ2(t, x) · πλ0(V )Π0)πλ0

δ
ε−1/2 (x)h0, h0).

• Construction of the approximate solution up to ε3/2. For concluding the proof, we use the
specific form of the term Π0V σ2(t, x) · πλ0(V )Π0. We claim, and we prove below, that there
exists a selfadjoint differential operator L̃ such that

Π0V σ2(t, x) · πλ0(V )Π0 = L̃σ0(t, x)Π0. (4.66)

Therefore, it is enough to choose the function σ0(t, x) as the solution of the equation

i∂tσ0(t, x) + L̃σ0(t, x) = 0 σ0(0, x) = a(x). (4.67)

• Proof of relations (4.63), (4.64) and (4.66). Let us begin with (4.63). Using (4.55) and
(4.56), we get that for 1 6 j 6 d there holds

[H(λ0), πλ0(Qj)] = 2i|λ|πλ0(Pj) and [H(λ0), πλ0(Pj)] = −2i|λ0|πλ0(Qj).
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Therefore

[H(λ0), θ0] = − 1

2i|λ|

d∑
j=1

(Pjσ0[H,πλ0(Qj)]−Qjσ0[H,π(λ0)(Pj)])

= −
d∑
j=1

(Pjσ0π
λ0(Pj) +Qjσ0π

(λ0)(Qj))

= −V σ0 · πλ0(V )

which gives (4.63).

The relation (4.64) is a direct application of Lemma B.2 in [FF21] which states that if

T :=

 2d∑
j1=1

Vj1π
λ0(Vj1)

 ◦
 d∑
j2=1

(
Pj2π

λ0(Qj2)−Qj2πλ0(Pj2)
) ,

then

ΠnTΠn = |λ0|
(

(n+
d

2
)Z(λ0) +

i

2
∆G

)
Πn

where Πn denotes the orthogonal projector on Vect(hα, |α| = n) (recall that Πn depends on λ0

since it is defined from H(λ0) but we omit this fact in the notation). Note that these relations
are nothing but consequences of the elementary properties of the creation-annihilation operators
∂ξj and iξj .

Let us now prove the claim (4.66).We use the notations of [FF21] and introduce the operators

Rj :=
1

2
(Pj − iQj), and R̄j :=

1

2
(Pj + iQj).

By (4.39), the operators πλ0(Rj) =

√
|λ0|
2 (∂ξj + ξj) and πλ0(R̄j) =

√
|λ0|
2 (∂ξj − ξj) are the

creation-annihilation operators associated with the harmonic oscillator H(λ0). The well-known
recursive relations of the Hermite functions give for α ∈ Nd and j = 1, . . . , d,

πλ0(Rj)hα =

√
|λ0|
2

√
2αjhα−1j πλ0(R̄j)hα = −

√
|λ0|
2

√
2(αj + 1)hα+1j .

In the preceding formula, we use the convention hα−1j = 0 as soon as αj = 0. Actually, one has
π(Rj)h0 = 0. We will also use the expression of Π0π(R̄j) that derives from these formula.

Let us now compute σ2. Starting from

d∑
j=1

(Pjπ
λ0(Qj)−Qjπλ0(Pj)) = −2i

d∑
j=1

(Rjπ
λ0(R̄j)− R̄jπλ0(Rj)),

and using Π0π
λ0(R̄j) = 0, we obtain

σ1(t, x) = −2Π0

|λ0|

d∑
j=1

R̄ja(t, x)πλ0(Rj).

Therefore σ1 = Π0σ1Π1 can be written

Π0σ1Π1 = − 2

|λ0|

d∑
j=1

R̄ja(t, x)Π0π
λ0(Rj).



152 CHAPTER 4. OBSERVABILITY IN GROUPS OF HEISENBERG TYPE

We deduce from (4.65) that

Π0σ2Π1 = − 1

|λ0|
Π0Lσ1Π1.

Therefore

σ2(t, x) =
2

|λ0|2
d∑
j=1

LR̄ja(t, x)Π0π
λ0(Rj).

We now use that for any operator-valued σ(t, x),

V σ ·Πλ0(V ) = 2
d∑

k=1

(Rkσπ
λ0(R̄k) + R̄kσπ

λ0(Rk))

and we obtain

V σ2 ·Πλ0(V ) =
4

|λ0|2
d∑

j,k=1

(RkLR̄ja(t, x)Π0π
λ0(Rj)π

λ0(R̄k) + R̄kLR̄ja(t, x)Π0π
λ0(Rj)π

λ0(Rk)).

When computing the diagonal part of the operator above or, more precisely Π0V σ2 ·Πλ0(V )Π0,
we use Π0π(Rj)π(R̄k) = Π0π(R̄k)π(Rj) = 0 when j 6= k and we find

Π0V σ2 ·Πλ0(V )Π0 =
4

|λ0|2
d∑
j=1

RjLR̄ja(t, x)Π0π
λ0(Rj)π

λ0(R̄j).

Using

RjR̄j =
1

4
(P 2

j +Q2
j ) +

i

4
Z(λ0) and [Rj , R̄j ] =

i

2
Z(λ0),

we obtain

RjLR̄j = (L − iZ(λ0))RjR̄j and Π0π
λ0(Rj)π

λ0(R̄j) = −|λ0|
2

Π0

and therefore

Π0V σ2 ·Πλ0(V )Π0 =− 2

|λ0|

d∑
j=1

(L − iZ(λ0))RjR̄jaΠ0

=− 2

|λ0|
(L − iZ(λ0))(

1

4
∆G +

id

4
Z(λ0))aΠ0

=− 1

2|λ0|

(
i

(
d

2
− 1

)
Z(λ0) − 1

2
∆G

)
(∆G + idZ(λ0))aΠ0

which concludes the proof of (4.66) with

L̃ = − 1

2|λ0|

(
i

(
d

2
− 1

)
Z(λ0) − 1

2
∆G

)
(∆G + idZ(λ0))

that is clearly self-adjoint.

In case the harmonics of the initial wave packet are no more equal to h0, e.g.

uε0 = WP εx0,λ0
(a, hα, hα)

with α ∈ Nd of length n, the operator ΠnV σ2π(V )Πn is not scalar: it is matricial since one must
add terms of the form (bβ(t, x)πλ0

x hα, hβ) for all β ∈ Nd of length n. Equation (4.67) is then
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replaced by an equation with values in finite-rank operators. Setting F (σ0) = ΠnV σ2π(V )Πn,
F is a linear map on the set S(G,L(Vn)) where Vn = Vect(hα, |α| = n). We endow this set of
matrix-valued functions with the scalar product 〈a, b〉 =

∫
G TrL(Vn)(a(x)b(x))dx. Then, one can

define two linear maps A and S such that F = S+A with S self-adjoint, A skew symmetric and
A ◦S = S ◦A. Observing that σ0(0) = a(x)IdVn ∈ KerA, one then solves i∂tσ0 = F (σ0) in KerA,
which induces the solution σ0(t) = e−itSσ0(0). As a conclusion, noticing that the argument
would be the same for

uε0 = WP εx0,λ0
(a, hγ , hα)

for α 6= γ, we deduce the following remark from the linearity of the equation and the fact that
the set of Hermite functions generates L2(Rd).

Remark 4.30. The solution to (4.3) with V = 0 and initial data which is a wave packet is
asymptotic to a wave packet in finite time.
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Chapter 5

Propagation of singularities of
subelliptic wave equations

“Si cela va sans le dire, cela ira encore mieux en le disant.”
Talleyrand.

This chapter is adapted from the preprint [Let21b]. It proves Theorems 4 and 5.
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We revisit the paper [Mel86] by R. Melrose, providing a full proof of the main theorem
on propagation of singularities for subelliptic wave equations, and linking this result with sub-
Riemannian geometry. This result asserts that singularities of subelliptic wave equations only
propagate along null-bicharacteristics and abnormal extremal lifts of singular curve.

As a new consequence, for x 6= y and denoting by KG the wave kernel, we obtain that the
singular support of the distribution t 7→ KG(t, x, y) is included in the set of lengths of the normal
geodesics joining x and y, at least up to the time equal to the minimal length of a singular curve
joining x and y.

5.1 Introduction

In microlocal analysis, the celebrated propagation of singularities theorem describes the wave-
front set WF (u) of a distributional solution u to a partial (or pseudo) differential equation
Pu = f in terms of the principal symbol p of P : it says that if p is real and homogeneous, then
WF (u)\WF (f) ⊂ p−1(0), and that if additionally the characteristics are simple (p = 0⇒ dp 6= 0
outside the null section), then WF (u) \ WF (f) is invariant under the bicharacteristic flow
induced by the Hamiltonian vector field of p.

This result was first proved in [DH72, Theorem 6.1.1] and [Hor71a, Proposition 3.5.1]. How-
ever, it leaves open the case where the characteristics of P are not simple. In a very short and
impressive paper [Mel86], Melrose sketched the proof of an analogous propagation of singularities
result for the wave operator P = D2

t −A when A is a self-adjoint non-negative real second-order
differential operator which is only subelliptic. Such operators P are typical examples for which
there exist double characteristic points.

Despite the potential scope of this result, we did not find in the literature any other paper
quoting it. The proof provided in [Mel86] is very sketchy, and we thought it would deserve to be
written in full details. This is what we do in the present note, before presenting in the last section
a new application of this result. Since the publication of [Mel86] in 1986, the development of
sub-Riemannian geometry (the geometry associated to subelliptic operators) has brought some
tools and concepts which we use here to shed a new light on this result: for example, we explain
that singular curves and their abnormal extremal lifts, which are central objects in control theory
and played a key role in the discovery of so-called abnormal minimizers (see [Mon94], [Mon02]),
appear naturally in [Mel86], although it is not written explicitly.

For the sake of coherence, we borrow nearly all notations to [Mel86]. A is a self-adjoint
non-negative real second-order differential operator on a smooth compact manifold X without
boundary:

∀u ∈ C∞(X), (Au, u) = (u,Au) > 0 (5.1)

with

(u, v) =

∫
X
u(x)v(x)dν, (5.2)

where ν is some positive C∞ density. The associated norm is denoted by ‖ · ‖.
We also assume that A is subelliptic, in the following sense: there exist a (Riemannian)

Laplacian ∆ on X and c, s > 0 such that

∀u ∈ C∞(X), ‖(−∆)s/2u‖2 6 c((Au, u) + ‖u‖2). (5.3)

Finally, we assume that A has vanishing sub-principal symbol.1

1Since X is endowed with a smooth density ν, the sub-principal symbol makes sense, see Appendix A. Note also
that the assumption of vanishing sub-principal symbol is not made in [Mel86], but it simplifies the presentation
and it is valid in applications.
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Example 5.1. An important class of examples of such operators A is given by sub-Laplacians (or
Hörmander’s sums of squares, see [RS76] or [LL21]), that is, operators of the formA =

∑K
i=1 Y

∗
i Yi

for some smooth vector fields Yi on X (here, Y ∗i denotes the adjoint of Yi for the scalar product
(5.2)) satisfying Hörmander’s condition: the Lie algebra generated by Y1, . . . , YK is equal to the
whole tangent bundle TX.

The assumption (5.1) implies that A has a self-adjoint extension with the domain

D(A) = {u ∈ D′(X); Au ∈ L2(X)}.

By the spectral theorem, for any t ∈ R, the self-adjoint operator

G(t) = A−1/2 sin(tA1/2)

is a well-defined operator bounded on L2(X), in fact it maps L2(X) into D(A1/2). Together
with the self-adjoint operator G′(t) = cos(tA1/2), this allows to solve the Cauchy problem for
the wave operator (here Dt = 1

i ∂t)

(D2
t −A)u = Pu = 0 in R×X,
u = u0, ∂tu = u1 at t = 0

(5.4)

by
u(t, x) = G′(t)u0 +G(t)u1.

For (u0, u1) ∈ D(A1/2)× L2(X), we have u ∈ C0(R; D(A1/2)) ∩ C1(R;L2(X)).

For f ∈ D′(Y ) a distribution on a manifold Y (equal to X, R × X or R × X × X in the
sequel), we denote by WF (f) the usual Hörmander wave-front set (see [Hör71b]); in particular,
WF (f) ⊂ T ∗Y \ 0.

The first main result of [Mel86] is the following (the terminology “null-ray” is explained
below):

Theorem 5.2. Let t 7→ u(t) be a solution of (5.4). For any t > 0, if (x, ξ) ∈ WF (u(0)) then
there exists (y, η) ∈ WF (u(−t)) ∪WF (∂tu(−t)) such that (y, η) and (x, ξ) can be joined by a
null-ray of length t.

The second main result of [Mel86], which we state here only in the context of sub-Laplacians2,
concerns the Schwartz kernel KG of G, i.e., the distribution KG ∈ D′(R×X ×X) defined by

∀u ∈ C∞(X), G(t)u(x) =

∫
X
KG(t, x, y)u(y)dy. (5.5)

Theorem 5.3. [Mel86, Theorem 1.8] Assume that A is a sub-Laplacian (see Example 5.1).
Then

WF (KG) ⊂ {(t, x, y, τ, ξ,−η) ∈ T ∗(R×X ×X) \ 0;

there is a null-ray from (0, τ, y, η) to (t, τ, x, ξ)}.
(5.6)

Comments on Theorems 5.2 and 5.3. The null-rays which appear in the statements of
Theorems 5.2 and 5.3 are generalizations of the usual null-bicharacteristics (i.e., integral curves
of the Hamiltonian vector field Hp of the principal symbol p of P , contained in the characteristic
set p−1(0)). Their definition will be given in Section 5.2: they are paths tangent to a family

2This assumption is not made in [Mel86].
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of convex cones Γm introduced in Definition 5.4. For example, at m ∈ T ∗(R × X) which is
not in the double characteristic set p = dp = 0, Γm is simply R+ ·Hp(m) (or R− ·Hp(m)). In
the double characteristic set Σ(2) = {p = dp = 0} ⊂ M , their definition is more involved, but
readers familiar with control theory will recognize that null-rays contained in Σ(2) are abnormal
extremal lifts of singular curves (as in Pontryagin’s maximum principle). That is, they are
integral curves of ker(ωΣ(2)

) where ωΣ(2)
= ι∗Σ(2)

ω is the pullback of the canonical symplectic

form ω on T ∗(R×X) by the canonical injection ι : Σ(2) →M .

As a particular case of Theorems 5.2 and 5.3, if A is elliptic, then we recover Hörmander’s
result [Hor71a, Proposition 3.5.1] already mentioned above (see also [Hor07a, Theorem 8.3.1
and Theorem 23.2.9] and [Ler11, Theorem 1.2.23]). In case A has only double characteristics
on a symplectic submanifold it was obtained in [Mel84] (in codimension 2) and by B. and R.
Lascar [Las82], [LL82] in the general case, using constructions of parametrices (and not positive
commutator estimates as in [Mel86]). It is explained in Remark 5.23 how Theorem 5.3 implies
these results.

Also, in [Mel86], two other results are proved, namely the finite speed of propagation for P
and an estimate on the heat kernel exp(−tA), but it is not our purpose to discuss here these
other results, whose proofs are written in details in [Mel86].

Organization of the paper. As said above, the goal of this note is firstly to provide a
fully detailed proof of Theorems 5.2 and 5.3, and secondly to derive a new consequence on the
singular support of the Schwartz kernel KG of the wave operator.

In Section 5.2, we define the convex cones Γm generalizing bicharacteristics and give an
explicit formula (5.14) for them, then prove their semi-continuity with respect to m, and finally
introduce “time functions”, which are by definition non-increasing along these cones. In this
section, there is no operator, we work at a purely “classical” level.

The proof of Theorems 5.2 and 5.3 is based on a positive commutator argument: the idea,
which dates back at least to [Hor71a] (see also [Ivr19, Chapter I.2]), is to derive an energy
inequality from the computation of a quantity of the form Im(Pu,Lu), where L is some well-
chosen (pseudodifferential) operator. In Section 5.3, we compute this quantity for L = Op(Φ)Dt

where Φ is a time function, we write it under the form 1
2(Cu, u) for an explicit second-order

operator C which, up to remainder terms, has non-positive symbol.

In Section 5.4, we derive from this computation the sought energy inequality, which in turn
implies Theorem 5.2. This proof requires to construct specific time functions and to use the
powerful Fefferman-Phong inequality [FP78].

In Section 5.5, we prove Theorem 5.3: the main idea is to see KG itself as the solution of a
subelliptic wave equation.

Whether Theorem 5.3 implies a trace formula in the spirit of [DG75] for subelliptic wave
operators is an open question: due to the particular role of the section τ = 0, it is not clear
whether the trace KG(t, x, x) is a well-defined distribution. However, in Section 5.6, for x 6= y, we
are able to infer from Theorem 5.3 that the singular support of the distribution t 7→ KG(t, x, y)
is included in the set of lengths of the normal geodesics joining x and y, at least up to the time
equal to the minimal length of a singular curve joining x and y.

In the supplementary sections 5-A.1 and 5-A.2, we prove two additional results concerning
the inner semi-continuity of the cones Γm.
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5.2 The cones Γm

At double characteristic points where dp = 0, the Hamiltonian vector field Hp vanishes, and the
usual propagation of singularities result [DH72, Theorem 6.1.1] does not provide any information.
In [Mel86], Melrose defines convex cones Γm which replace the usual propagation cone R+ ·Hp

at these points, and which will indicate the directions in which singularities of the subelliptic
wave equation (5.4) may propagate.

5.2.1 First definition of the cones Γm

In this section, we introduce several notations, and we define the cones Γm.

We consider a ∈ C∞(T ∗X) satisfying

a(x, ξ) > 0, a(x, rξ) = r2a(x, ξ), r > 0 (5.7)

in canonical coordinates (x, ξ). Also we consider

p = τ2 − a ∈ C∞(M), where M = T ∗(R×X) \ 0.

Of course, a and p will be in the end the principal symbols of the operators A and P introduced
in Section 5.1, but for the moment we work at a purely classical level and forget about operators.

We set

M+ = {m ∈M, p(m) > 0, τ > 0}, M− = {m ∈M, p(m) > 0, τ 6 0};

in particular, M+ ∪M− = {p > 0}. Let

Σ = {m ∈M ; p(m) = 0, τ > 0}.

Note that Σ ⊂ {τ > 0}; the next few definitions also hold only at points where τ > 0.

For m ∈M+, we consider the set

Hm = R+ ·Hp(m) ⊂ TmM,

where Hp is the Hamiltonian vector field of p verifying ω(Hp, Z) = −dp(Z) for any smooth
vector field Z (recall that ω is the canonical symplectic form on the cotangent bundle M).

If m verifies dp(m) = 0 and p(m) > 0 (or equivalently τ = a = 0, i.e., m is a double
characteristic point), Hm = {0}. We therefore extend the notion of “bicharacteristic direction”
at m. This will be done first for m ∈ M+, then also for m ∈ M−, but never for m ∈ {p < 0}:
the cones Γm are not defined for points m ∈ {p < 0}.

Let
Σ(2) = {m ∈M, τ = a = 0} ⊂ Σ.

Note that since a > 0, there holds Σ(2) = M+ ∩M−. At m ∈ Σ(2), we have τ = a = da =
p = dp = 0 (this follows from the positivity (5.7)) and the Hessian of a is well-defined: it is a
quadratic form on TmM . We denote by am the half of this Hessian, and by pm = (dτ)2 − am
the half of the Hessian of p. For m ∈ Σ(2), we set

Λm = {w ∈ TmM ; dτ(w) > 0, pm(w) > 0} (5.8)

and, still for m ∈ Σ(2),

Γm := {v ∈ TmM ; ω(v, w) 6 0 ∀w ∈ Λm}. (5.9)
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If m ∈M+ \ Σ(2), we set

Γm = Hm. (5.10)

In particular, the cones Γm are defined also at points m outside Σ, i.e. for which p(m) 6= 0.
Note also that the relation (5.10) says that the cones Γm are only half -tangents.

In order to extend the definition of the cones Γm to M−, we want this extension to be
consistent with the previous definition at points in M+ ∩M− = Σ(2). We observe that M− is
the image of M+ under the involution sending τ to −τ . For (t, τ, α) ∈M−, we set

Γm = Γm′ where m′ = (t,−τ, α) ∈M+.

It is clear that at points of M+ ∩M− = Σ(2), the two definitions of Γm coincide. With this
definition in M−, note that for m ∈M− \ Σ(2), there is a sign change:

Γm = −Hm. (5.11)

In summary, the formulas (5.9), (5.10) and (5.11) define Γm at any point m ∈ M+ ∪M−, with
different definitions for m ∈ Σ(2), m ∈ M+ \ Σ(2) and m ∈ M− \ Σ(2). The cones Γm are not
defined for m /∈M+ ∪M−. For any m ∈M+ ∪M−, the cone Γm is closed and convex.

Definition 5.4. A forward-pointing ray for p is a Lipschitz curve γ : I →M+ defined on some
interval I ⊂ R with (set-valued) derivative γ′(s) ⊂ Γγ(s) for all s ∈ I. Such a ray is forward-null
if γ(s) ∈ Σ for any s ∈ I. We define backward-pointing rays similarly, with γ valued in M−,
and backward-null rays, with γ valued in {m ∈M ; p(m) = 0, τ 6 0}.

Under the terminology “ray”, we mean either a forward-pointing or a backward-pointing
ray; under the terminology “null-ray”, we mean either a forward-null or a backward-null ray.

In particular null-rays live in {p = 0}. In Definition 5.4, the fact that the curve γ is only
Lipschitz explains why its derivative can be set-valued.

Remark 5.5. In the inclusion (5.6), the null-ray mentioned in the right-hand side is forward if
τ > 0 and backward if τ 6 0 (and both forward and backward if τ = 0).

5.2.2 Formulas for the cones Γm

In this section, we derive a formula for the cones Γm when m ∈ Σ(2). It is more explicit than
(5.9) and we will give in Section 5.6 an application of this formula.

It relies on the computation of the polar of a cone defined by a non-negative quadratic form:

Proposition 5.6. Let S be a non-negative quadratic form on a real vector space Y , and let
Θ = (ker(S))⊥ ⊂ Y ∗ where ⊥ is understood in the duality sense. Let Λ = {ξ = (ξ0, η) ∈
R× Y ; ξ0 > S(η)

1
2 } and Λ0 = {ξ′ ∈ (R× Y )∗; ∀ξ ∈ Λ, ξ′(ξ) 6 0}. Then

Λ0 = {ξ′ = (ξ′0, η
′) ∈ (R× Y )∗; η′ ∈ Θ and − ξ′0 > (S∗(η′))

1
2 }. (5.12)

where R∗ is identified with R and

S∗(η′) = sup
η/∈ker(S)

η′(η)2

S(η)
. (5.13)
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Proof. Let ξ′ = (ξ′0, η
′) ∈ (R× Y )∗ such that η′ ∈ Θ and −ξ′0 > (S∗(η′))

1
2 , we seek to prove that

ξ′ ∈ Λ0. Let ξ = (ξ0, η) ∈ Λ. In particular, ξ0 > (S(η))
1
2 . We have

ξ′(ξ) = ξ′0(ξ0) + η′(η) 6 −(S∗(η′))
1
2 (S(η))

1
2 + η′(η) 6 0

hence ξ′ ∈ Λ0, which proves one inclusion.

Conversely, to prove that Λ0 is included in the expression (5.12), we first note that if η′ /∈ Θ,
then (ξ′0, η

′) /∈ Λ0 for any ξ′0 ∈ R∗. Indeed, if η′ /∈ Θ, there exists η ∈ Y such that S(η) = 0 and
η′(η) > 0. Thus, considering ξ = (0, η), which is in Λ by assumption, we get ξ′(ξ) = η′(η) > 0
for any ξ′0 ∈ R∗ and ξ′ = (ξ′0, η

′), proving that ξ′ /∈ Λ0. Now, if ξ′ = (ξ′0, η
′) ∈ Λ0 with η′ ∈ Θ,

we take ξn = (ξ0n, ηn) with ηn /∈ ker(S) so that η′(ηn)2/S(ηn) → S∗(η′), and η′(ηn) > 0 and

ξ0n = S(ηn)
1
2 . Then ξn ∈ Λ. Therefore, ξ′(ξn) 6 0, which implies that −ξ′0 > (S∗(η′))

1
2 . This

proves the result.

Applying the previous proposition to S = am yields a different definition of the cones Γm.
First, Λm, which has been defined in (5.8), can be written as

Λm = {w ∈ TmM ; dτ(w) > (am(w))
1
2 },

Since the definition of Λm does not involve dt, we have v(∂t) = 0 for any v ∈ Λ0
m. Now, using

the notation a∗m to denote (5.13) when S = am, Proposition 5.6 yields that

Λ0
m = R+(−dτ +B0),

B0 = {b0 ∈ (ker(am))⊥, a∗m(b0) 6 1}.

The duality ⊥ is computed with respect to the space ker(am) ⊂ T (T ∗X), i.e., b0 ∈ T ∗(T ∗X).

Comparing the definition of Λ0
m as the polar cone of Λm and the definition (5.9) of Γm, we

see that Γm is exactly the image of Λ0
m through the canonical isomorphism ω(v, ·) 7→ v between

T ∗mM and TmM . Thus,

Γm = R+(∂t +B),

B = {b ∈ ker(am)⊥ωX , a∗m(I(b)) 6 1}.
(5.14)

Here, ⊥ωX designates the symplectic orthogonal with respect to the canonical symplectic form
ωX on T ∗X and I : b 7→ ωX(b, ·) is the canonical isomorphism between T (T ∗X) and T ∗(T ∗X).

In case A =
∑K

i=1 Y
∗
i Yi is a sum of squares, the expression a∗m(I(b)) which appears in (5.14)

can be written in a much simpler form involving the sub-Riemannian metric associated to the
vector fields Yi, see Lemma 5.22. For more on formula (5.14), which plays a key role in the
sequel, see also Section 5.6.3.

Without assuming that A is a sum of squares for the moment, we can already write (5.14)
differently, and for that we introduce the “fundamental matrix” F (see [Hor07a, Section 21.5])
defined as follows:

∀Y,Z ∈ Tm(T ∗X), ωX(Y, FZ) = am(Y, Z). (5.15)

Then, ωX(FY,Z) = −ωX(Y, FZ). Note that there is a slight abuse of notations here since
Tm(T ∗X) stands for Tπ2(m)(T

∗X) where π2 : M → T ∗X is the canonical projection on the
second factor (recall that M = T ∗(R×X) \ 0).
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We now prove the following formula3:

Γm = R+(∂t +B), B = cxhl

{
FZ

am(Z)
1
2

, Z /∈ ker(am)

}
.

Thanks to (5.14), it is sufficient to prove that if b ∈ ker(am)⊥ωX with a∗m(I(b)) = 1, then

b = FZ/am(Z)
1
2 for some Z /∈ ker(am). We set b0 = −I(b) ∈ ker(am)⊥. By Lax-Milgram’s

theorem applied to the bilinear form am which is continuous and coercive on Tm(T ∗X)/ker(am)
and b0 which is a linear form on this space, we get the existence of Z such that b0 = am(Z, ·).
Using that a∗m(b0) = 1, we obtain am(Z) = 1, hence b0 = am(Z, ·)/am(Z)

1
2 . It follows that

b = −I−1(b0) = FZ/am(Z)
1
2 .

Fixing a norm | · | on TM , the expression (5.14) implies that near any point m ∈ {p > 0},
there is a (locally) uniform constant c > 0 such that

v ∈ Γm ⇒ v = T∂t + v′, |v′| 6 cT (5.16)

where v′ is tangent to T ∗X. Thus, if γ : I → M+ is a forward-pointing ray (thus a Lipschitz
curve) defined for s ∈ I, (5.16) implies that dt/ds > c′|dγ/ds|, hence dγ/dt = (dγ/ds)/(dt/ds)
is well-defined (possibly set-valued), i.e., γ can be parametrized by t.

Finally, we define the length of a ray γ : s ∈ [s0, s1]→M+ by `(γ) := |t(s1)− t(s0)|.

Remark 5.7. Thanks to the above parametrization and with a slight abuse in the terminology,
we say that there is a null-ray of length |T | from (y, η) to (x, ξ) if there exists a null-ray (in the
sense of Definition 5.4) parametrized by t which joins (0, τ, y, η) to (T, τ, x, ξ), where τ verifies
τ2 = a(y, η) = a(x, ξ).

5.2.3 Inner semi-continuity of the cones Γm

Using the formula (5.14), we can prove a continuity property for the cones Γm, inspired by the
arguments of [Mel86, Lemma 2.4].

Lemma 5.8. Let a ∈ C∞(T ∗X) satisfying (5.7). The assignment m 7→ Γm is inner semi-
continuous on M+ ∪M− = {p > 0}. In other words,

∀mj → m (mj ∈M+ ∪M−), ∀vj ∈ Γmj such that vj → v ∈ TmM, there holds v ∈ Γm.

Proof of Lemma 5.8. The assignments Σ(2) 3 m 7→ Γm and M+ ∪M− \ Σ(2) 3 m 7→ Γm are
clearly continuous thanks to formula (5.9) (resp. (5.10) and (5.11)). Therefore, we restrict to
the case where m ∈ Σ(2) and mj ∈M+ ∪M− \ Σ(2).

The cone Γmj at mj = (tj , τj , xj , ξj) is given by the positive multiples of the Hamiltonian
vector field of p:

Γmj = R+[2τj∂t −Ha(mj)] (5.17)

where Ha(mj) is the Hamiltonian vector field of a at mj . Dividing by 2τj , we rewrite it as

Γmj = R+

(
∂t −

1

2

a(mj)
1
2

τj

Ha(mj)

a(mj)
1
2

)
(5.18)

We assume without loss of generality that τj > 0, the case τj < 0 being similar.

3This is formula (2.6) in [Mel86].
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Since mj ∈ {p > 0}, we know that τj > (a(mj))
1
2 (the equality would correspond to null-

bicharacteristics) thus the first fraction is bounded. For the second fraction, we consider its image

da(mj)/a(mj)
1
2 through the isomorphism I between the tangent and the cotangent bundle given

by the canonical symplectic form on T ∗X.

In the sequel, we work in a chart near m. If mj − m accumulates in a direction where a
vanishes at order exactly k > 2, then a Taylor development yields

|Ha(mj)| = O(‖mj −m‖kM ) = o(‖mj −m‖(k+1)/2
M ) = o(a(mj)

1/2) = o(τj)

where ‖ · ‖M is the Euclidean norm on a chart of M near m. Hence, using (5.17), we obtain that
the only limiting direction of the Γmj is R+ · ∂t, which is contained in Γm.

Otherwise, we use the following elementary result.

Lemma 5.9. If
mj−m
‖mj−m‖M has no accumulation point in ker(am), then for any v ∈ TmM , there

holds 1
2
da(mj)(v)

a(mj)1/2 =
am(mj−m,v)

am(mj−m)1/2 + o(1).

Proof. Recall that am is half the Hessian of a at m. In a chart, we have da(mj)(v) = 2am(mj −
m, v) + o(‖mj −m‖M ) and a(mj) = am(mj −m) + o(‖mj −m‖2M ), hence the result.

In view of (5.18) and (5.14), the inner semi-continuity at m is equivalent to proving that

a∗m

(
1

2

a(mj)
1
2

τj

da(mj)

a(mj)
1
2

)
6 1 + o(1). (5.19)

Using the fact that a(mj) 6 τ2
j and Lemma 5.9, for any v ∈ TmM \ ker(am), there holds

1

am(v)

(
1

2

a(mj)
1
2

τj

da(mj)(v)

a(mj)
1
2

)2

6
am(mj −m, v)2

am(v)am(mj −m)
+ o(1) 6 1 + o(1)

by Cauchy-Schwarz, hence (5.19) holds, which concludes the proof of Lemma 5.8.

Remark 5.10. We only proved the inner semi-continuity in m, since these arguments do not
seem to be sufficiently robust to prove the inner semi-continuity in a. However, we prove in
Section 5-A.1 that if we make some additional assumptions, the cones Γm are also inner semi-
continuous with respect to a (and this second proof requires no formula for the cones, just
convexity arguments).

Remark 5.11. Let us explain briefly the intuition behind the semi-continuity stated in Lemma
5.8. Recall that the cones Γm generalize bicharacteristic directions at points where τ = a =
da = p = dp = 0. To define the cones Γm at these points, following formulas (5.8) and (5.9), we
have first considered directions where p grows (since p = dp = 0, we consider the (half) Hessian
pm), yielding Λm, and then Γm has been defined as the (symplectic) polar cone of Λm. This
is exactly parallel to a procedure which yields bicharacteristic directions in the non-degenerate
case: the directions along which p grows, verifing dp(v) > 0, form a cone, and it is not difficult
to check that its (symplectic) polar consists of a single direction given by the Hamiltonian vector
field of p. This unified vision of the cones Γm (in the sense that they are obtained in a unified
way, no matter whether m ∈ Σ(2) or not) is not used directly in the proof of Lemma 5.8, but it
is at the heart of the proof of Proposition 5.30.

Remark 5.12. We prove in Section 5-A.2 that for any m ∈ Σ(2), the cone Γm is exactly given
by all limits of the cones Γmj for mj /∈ Σ(2) tending to m.
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5.2.4 Time functions

In this section, we introduce time functions which are one of the key ingredients of the proof of
Theorems 5.3 and 5.2.

Definition 5.13. A C∞ function φ near m ∈ {p > 0} ⊂ M is a time function near m if in
some neighborhood N of m,

φ is non-increasing along Γm, m ∈ N ∩ {p > 0}.

In particular, φ is non-increasing along the Hamiltonian vector field Hp in M+ but non-decreasing
along Hp in M− (due to (5.11)).

Note that outside {p > 0}, there is no constraint on the values of φ. The following result
asserts the existence of (local) time functions.

Proposition 5.14. Let m ∈ {p > 0}. Then there exists a (non-constant) time function near
m, and moreover we can choose it independent of τ and homogeneous of any fixed degree.

Proof. We choose φ′t < 0 and φ independent of x, ξ, which is clearly possible even with φ
0-homogeneous and independent of τ .

If m /∈ Σ(2), then m /∈ Σ(2) for m close to m. Therefore, we want to check that φ is weakly
decreasing along Hp when τ > 0, and weakly increasing along Hp when τ 6 0 (because of the
sign conventions (5.10) and (5.11)). This is the case: if τ > 0 in a small neighborhood of m,
then Hp = 2τφ′t 6 0; and if τ < 0 in a small neighborhood of m, then Hp = 2τφ′t > 0.

Let us now consider the case m ∈ Σ(2). Firstly, for m /∈ Σ(2) near m, we have dφ(Hp) = 2τφ′t
is 6 0 if m ∈M+ \ Σ(2) and > 0 if m ∈M− \ Σ(2). Secondly, for m ∈ Σ(2) near m, we have the
inequality dφ(v) = dt(v)φ′t 6 0 for any v such that dt(v) > 0, which is the case for v ∈ Γm. In
any case, φ is non-increasing along Γm.

5.3 A positive commutator

The proof of Theorems 5.2 and 5.3 is based on a “positive commutator” technique, also known
as “multiplier” or “energy” method in the literature. The idea is to derive an inequality from the
computation of a quantity of the form Im(Pu,Lu) where L is some well-chosen (pseudodiffer-
ential) operator. In the present note, the operator L is related to the time functions introduced
in Definition 5.13.

In the sequel, we use polyhomogeneous symbols, denoted by Smphg, and the Weyl quantization,
denoted by Op : Smphg → Ψm

phg (see Appendix A). For example, we consider the operator Dt =
1
i ∂t = Op(τ) (of order 1). The operator A ∈ Ψ2

phg has principal symbol a ∈ C∞(T ∗X) satisfying

(5.7), and P = D2
t −A has principal symbol p = τ2 − a.

Also, Φ(t, x, ξ) designates a smooth real-valued function on M , homogeneous of degree α ∈ R
in ξ, compactly supported on the base R × X, and independent of τ . In Section 5.4, we will
take Φ to be a time function. By the properties of the Weyl quantization, Op(Φ) is a compactly
supported selfadjoint (with respect to ν) pseudodifferential operator of order α.

As indicated above, our goal in the next section will be to compute C defined by4

Im(Pu,Op(Φ)Dtu) :=
1

2
(Cu, u), (5.20)

since this will allow us to derive the inequality (5.50) which is the main ingredient in the proof
of Theorems 5.2 and 5.3.

4In [Mel86], C is explicitly defined as Im(Op(Φ)Dtu, Pu) := (Cu, u); however the formulas (6.1) and (6.2) in
[Mel86] are not coherent with this definition, but they are correct if we take the definition (5.20) for C.
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5.3.1 The operator C

Our goal in this section is to compute C defined by (5.20). We have

Im(Pu,Op(Φ)Dtu) := I1 − I2 (5.21)

with

I1 = Im(D2
t u,Op(Φ)Dtu) and I2 = Im(Au,Op(Φ)Dtu).

Noting that

[Dt,Op(Φ)] = Op(
1

i
Φ′t)

where Φ′t = ∂tΦ (see [Zwo12, Theorem 4.6]), we have for I1:

I1 =
1

2i

(
(D2

t u,Op(Φ)Dtu)− (Op(Φ)Dtu,D
2
t u)
)

=
1

2i

(
(DtOp(Φ)D2

t u, u)− (D2
tOp(Φ)Dtu, u)

)
= − 1

2i
(Dt[Dt,Op(Φ)]Dtu, u)

= − 1

2i
(Dt

1

i
Op(Φ′t)Dtu, u)

=
1

2
(DtOp(Φ′t)Dtu, u) (5.22)

Then, we write Op(Φ)Dt = S + iT where

S =
1

2
(Op(Φ)Dt +DtOp(Φ))

T =
1

2i
(Op(Φ)Dt −DtOp(Φ)) =

1

2
Op(Φ′t). (5.23)

Using that A, S and T are selfadjoint, we compute I2:

I2 = Im(Au, (S + iT )u) = Im((S − iT )Au, u) =
1

2i
([S,A]u, u)− Re((TAu, u))

=
1

2i
([S,A]u, u)− 1

2
((TA+AT )u, u). (5.24)

First,

[S,A] =
1

2
([Op(Φ), A]Dt +Dt[Op(Φ), A]). (5.25)

All in all, combining (5.21), (5.22), (5.23), (5.24) and (5.25), we find that C in (5.20) is given
by

C = DtOp(Φ′t)Dt −
i

2
([A,Op(Φ)]Dt +Dt[A,Op(Φ)]) +

1

2
(AOp(Φ′t) + Op(Φ′t)A). (5.26)

Note that C is of order 2 + α, although we could have expected order 3 + α by looking too
quickly at (5.20).
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5.3.2 The principal and subprincipal symbols of C

In this section, we compute the operator C modulo a remainder term in Ψα
phg. All symbols and

pseudodifferential operators used in the computations are polyhomogeneous (see Appendix A);
we denote by σp(C) the principal symbol of C. We use the Weyl quantization in the variables
y = (t, x), η = (τ, ξ), hence we have for any b ∈ Smphg and c ∈ Sm′phg:

Op(b)Op(c)−Op(bc+
1

2i
{b, c}) ∈ Ψm+m′−2

phg (5.27)

and

[Op(b),Op(c)]−Op(
1

i
{b, c}) ∈ Ψm+m′−3

phg . (5.28)

Note that in (5.28), the remainder is in Ψm+m′−3
phg , and not only in Ψm+m′−2

phg (see [Hor07a,
Theorem 18.5.4], [Zwo12, Theorem 4.12]). Finally, we recall that Φ(t, x, ξ) is homogeneous in ξ
of degree α.

Now, we compute each of the terms in (5.26) modulo Ψα
phg. We prove the following formulas:

1

2
(AOp(Φ′t) + Op(Φ′t)A) = Op(aΦ′t) mod Ψα

phg (5.29)

DtOp(Φ′t)Dt = Op(τ2Φ′t) mod Ψα
phg (5.30)

i

2
([A,Op(Φ)]Dt +Dt[A,Op(Φ)]) = Op(τ{a,Φ}) mod Ψα

phg (5.31)

Firstly, (5.29) follows from the fact that A = Op(a) mod Ψ0
phg (since the subprincipal symbol

of a vanishes) and from (5.27) applied once with b = a, c = Φ′t, and another time with b = Φ′t
and c = a.

Secondly, Op(Φ′t)Dt = Op(Φ′t)Op(τ) = Op(Φ′tτ + 1
2i{Φ

′
t, τ})+Ψα−1

phg thanks to (5.27). Hence,
using again (5.27), we get

DtOp(Φ′t)Dt = Op(τ)Op(Φ′tτ +
1

2i
{Φ′t, τ}) mod Ψα

phg

= Op(τ2Φ′t +
τ

2i
{Φ′t, τ}+

1

2i
{τ,Φ′tτ}) mod Ψα

phg

which proves (5.30).

Thirdly, thanks to A = Op(a) mod Ψ0
phg and (5.28), we have

[A,Op(Φ)] = Op

(
1

i
{a,Φ}

)
mod Ψα−1

phg

(note that the remainder is in Ψ−1
phg, not in Ψ0

phg). Using (5.27), we get

[A,Op(Φ)]Dt +Dt[A,Op(Φ)] = Op

(
2τ

i
{a,Φ}

)
mod Ψα

phg

which proves (5.31).

In particular, we get the principal symbol

σ2(C) = τ2Φ′t − τHaΦ + Φ′ta.
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Using p = τ2 − a, we can write it differently:

σp(C) = τ2Φ′t − τ{τ2 − p,Φ}+ Φ′ta

= τ2Φ′t − τ{τ2,Φ}+ τHpΦ + Φ′ta

= τ2Φ′t − 2τ2Φ′t + τHpΦ + Φ′ta

= τHpΦ− Φ′tp. (5.32)

Moreover, the formulas (5.29), (5.30) and (5.31) imply that the subprincipal symbol of C van-
ishes:

σsub(C) = 0. (5.33)

5.4 Proof of Theorem 5.2

The goal of this section is to prove Theorem 5.2. For V ⊂ T ∗X and t ∈ R, we set

S −t(V ) ={(−t, y, η) ∈ R× T ∗X, there exist (x, ξ) ∈ V, τ ∈ R and a ray

from (−t, τ, y, η) to (0, τ, x, ξ)}.
(5.34)

Also, when we replace the upper index −t in the above definitions by an interval J ⊂ R, this
means that we allow −t to vary in J . Take care that the above notation (5.34) refers to rays,
and not null-rays.

With the above notations, Theorem 5.2 can be reformulated as follows: for any t > 0
and any (x0, ξ0) ∈ WF (u(0)), there exists (y0, η0) ∈ WF (u(−t)) ∪ WF (∂tu(−t)) such that
(−t, y0, η0) ∈ S −t({(x0, ξ0)}) and one of the rays from (y0, η0) to (x0, ξ0) is null.

First reduction of the problem. If a(x0, ξ0) 6= 0, then Theorem 5.2 follows from the usual
propagation of singularities theorem [DH72, Theorem 6.1.1] and the fact that Γm = R± ·Hp(m)
for m /∈ Σ(2). Therefore, in the sequel we assume that a(x0, ξ0) = 0.

Also, note that, to prove Theorem 5.2, it is sufficient to find T > 0 independent of (x, ξ)
(and possibly small) such that the result holds for any t ∈ (0, T ).

Idea of the proof of Theorem 5.2. To show Theorem 5.2, we will prove for T > 0 sufficiently
small an inequality of the form

‖Op(Ψ0)u‖2Hs 6 c(‖Op(Ψ0)u‖2L2 + ‖Op(Ψ1)u‖2L2) + Remainder terms (5.35)

where Ψ0 and Ψ1 are functions of t, x, ξ such that

• the function Ψ0 is supported near t ∈ [−T, 0] and the function Ψ1 near t = −T ;

• on their respective supports in t, the operators Op(Ψ0) and Op(Ψ1) microlocalize respec-
tively near (x0, ξ0) and S −T ({(x0, ξ0)}).

Then, assuming that u is smooth on the support of Ψ1, we deduce by applying (5.35) for different
functions Ψ0 with different degrees of homogeneity in ξ that u is smooth on the support of Ψ0.

The inequality (5.35), written more precisely as (5.50) below, will be proved by constructing
a time function Φ(t, x, ξ) such that Φ′t = Ψ2

1 − Ψ2
0, and then by applying the Fefferman-Phong

inequality to the operator C given by (5.26) (for this Φ).
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Reduction to X ⊂ Rd Let us show that it is sufficient to prove Theorem 5.2 in the case
X ⊂ Rd. Note first that it is sufficient to prove Theorem 5.2 “locally”, i.e., for sufficiently
short times and in a neighborhood of a fixed point x ∈ X, since null-rays stay close from their
departure points for short times (this follows from (5.10), (5.11), (5.14)). Then, working in
a coordinate chart ψ : Ω → Rd where Ω is a neighborhood of x, the differential operator A
is pushed forward into a differential operator Ã on Rd which is also real, second-order, self-
adjoint, non-negative and subelliptic. Moreover, we can lift ψ to a symplectic mapping ψlift :
(x, ξ) 7→ (ψ(x), ((dxψ(x))−1)T ξ). Through the differential of ψlift, the cones Γm (computed with
a = σP (A), in X) are sent to the same cones, computed this time with ã = σP (Ã) in Rd. This
follows from the “symplectic” definition of the cones in Section 5.2.1 and the fact that σP (Ã) is
the pushforward of σP (A). Hence, ψlift maps also null-rays to null-rays. To sum up, if we prove
the Theorem for subsets of Rd, then pulling back the situation to X proves Theorem 5.2 in full
generality.

In the sequel, we assume X = Ω ⊂ Rd.

5.4.1 Construction of the time function

As explained in the introduction of this section, we construct a time function Φ(t, x, ξ) which
verifies several properties. Some time functions are also constructed in the classical proofs of
Hörmander’s propagation of singularities theorem [Hor71a, Proposition 3.5.1], but in the present
context of subelliptic wave equations, the construction is more involved since the cones Γm
along which time functions should be non-increasing contain much more than a single direction
(compare (5.10) with (1.25)). The following lemma summarizes the properties that the time
functions we need thereafter should satisfy.

Lemma 5.15. Let (x0, ξ0) ∈ T ∗X \ 0 and V ⊂ V ′ be sufficiently small open neighborhoods of
(x0, ξ0) such that V ⊂ V ′. There exist T > 0 and δ1 � T such that for any 0 6 δ0 6 δ1 and any
α ∈ R, there exists a smooth function Φ(t, x, ξ) with the following properties:

(1) it is compactly supported in t, x;

(2) it is homogeneous of degree α in ξ;

(3) it is independent of τ ;

(4) there exists δ > 0 such that at any point of M where p > −2δa, there holds τHpΦ 6 0.

(5) its derivative in t can be written Φ′t = Ψ2
1 −Ψ2

0 with Ψ0 and Ψ1 homogeneous of degree α/2
in ξ;

(6) Ψ0 = 0 outside S (−T, δ0
2

)(V ′) and Ψ1 = 0 outside S (−T− δ0
2
,−T+

δ0
2

)(V ′);

(7) Ψ0 > 0 on S (−T+
δ0
2
,0)(V );

(8) Φ is a time function on S (−T+
δ0
2
,
δ0
2

)(V ).

All of the above properties of Φ will be used in Sections 5.4.2 and 5.4.4 to prove Theorem
5.2. The rest of Section 5.4.1 is devoted to the proof of Lemma 5.15. The figures may be helpful
to follow the explanations.

We fix (x0, ξ0) ∈ T ∗X \ 0. As said in the introduction of Section 5.4, we assume that
a(x0, ξ0) = 0, and we set m = (0, 0, x0, ξ0) ∈ Σ(2) where the first two coordinates correspond to
the variables t, τ . For m near m, the cone −Γm is the cone with base point m and containing
the opposite of the directions of Γm.
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We are looking for a τ -independent time function; since any ray lives in a slice τ = const.,
we first construct Φ in the slice τ = 0, and then we extend Φ to any τ so that it does not depend
on τ . If we start from a time function in {τ = 0}, then its extension is also a time function:
indeed, the image of a ray contained in {τ 6= 0, a = 0} under the map τ 7→ 0 is also a ray, this
follows from the fact that R+∂t ⊂ Γm for any m ∈ Σ(2) (see (5.14)). Thus, the property of being
non-increasing along Γm is preserved under this extension process.

After the τ variable, we turn to the ξ variable. There is a global homogeneity in ξ of the
cones Γm and consequently of the null-rays:

Homogeneity Property. If [T1, T2] 3 t 7→ γ(t) = (x(t), ξ(t)) ∈ {a = 0} is a null-ray
parametrized by t, then for any λ > 0, [T1, T2] 3 t 7→ γλ(t) = (x(t), λξ(t)) is a null-ray
parametrized by t and joining the same endpoints as γ (in the same time interval [T1, T2]).

This property follows from (5.9). Thanks to this property, we will be able to find Φ satisfying
Point (2) in Lemma 5.15.

Consequently, in our construction, we should have the following picture 5.1a in mind:

(a) The coordinates and the cones Γm. On the
picture, the cone Γm′ has an aperture which is

equal to λ times the aperture of Γm.

(b) The cones K1 and K2 (see (5.36)).

Figure 5.1

At this point we should say that since we are working in the slice {τ = 0}, we will use in the
sequel the following convenient abuse of notations: for m = (t, 0, x, ξ), we still denote by m the
projection of m on R × T ∗Ω obtained by throwing away the coordinate τ = 0. The fact that
the whole picture is now embedded in R2d+1 (see Figure 5.1a) is very convenient: for example,
after throwing away the coordinate τ = 0, we see the cones Γm as subcones of R2d+1 (and not
of its tangent space).

Also, in the sequel, we only consider points for which t > −T for some (small) T > 0.5 We
set δ1 = T/10 and take 0 6 δ0 6 δ1.

The set of all points which belong to a backward-pointing ray starting from (x0, ξ0) at time

5T is denoted by ε in [Mel86].
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0 and stopped at time −T is denoted by S :

S =
⋃

06t6T

S −t({(x0, ξ0)}).

Then, S is closed according to the first point of the following lemma (the second point will be
used later):

Lemma 5.16. The following two properties hold:

1. For any closed V ⊂ T ∗X and any T > 0, the set S −T (V ) is closed.

2. The mapping (T, x, ξ) 7→ S −T ({(x, ξ)}) is inner semi-continuous, meaning that when
(Tn, xn, ξn)→ (T, x, ξ), any point obtained as a limit, as n→ +∞, of points of S −Tn({(xn, ξn)})
belongs to S −T ({(x, ξ)}).

Proof. Both properties follow from the locally uniform Lipschitz continuity (5.16) combined with
the extraction of Lipschitz rays as in the Arzelà-Ascoli theorem and the fact that the cones Γm
are closed.

We take two closed convex cones K1 and K2 such that

S ⊂ Int(K1) ⊂ Int(K2). (5.36)

(see Figure 5.1b). It is possible to define Φ going backwards in time from time 0 to time −T+ δ0
2 ,

which is weakly increasing along the directions of K2 and strictly increasing along the directions
of K1, and which is compactly supported in (t, x) with support contained in the projection of
K2 on this base.

Since S ⊂ Int(K1), Point 2. of Lemma 5.16 implies that

if V is a sufficiently small neighborhood of (x0, ξ0),

Φ is strictly increasing from time 0 to time −T +
δ0

2
along any backward-pointing ray starting from any point (x, ξ) ∈ V .

(5.37)

Also, if V ′ is a sufficiently small neighborhood of V , then it has the property that S −t(V ′) ⊂ K2

for any 0 6 t 6 T , thus Property (6) can be guaranteed.

For t > −T+ δ0
2 , we have Φ′t 6 0 since ∂t ∈ Γm, and thus we set Ψ0 =

√
−Φ′t. Then, following

the rays backwards in time, we make Ψ0 fall to 0 between times −T + δ0
2 and −T . Similarly,

following the rays backward from time −T + δ0
2 to time −T − δ0

2 , we extend Φ smoothly and
homogeneously (in the fibers in ξ) in a way that Φ is compactly supported in the time-interval
(−T − δ0

2 ,
δ0
2 ) and Φ′t + Ψ2

0 > 0. Finally, we set Ψ1 =
√

Φ′t + Ψ2
0. It is clear that points (5), (6),

(8) are satisfied. See Figure 5.2 for the profile of Φ along a ray.

In Lemma 5.15, Properties (1), (2), (3), (5), (6), (8) follow from the construction. Property
(7) follows from (5.37). Finally, Property (4) follows from the fact that due to (5.36), we can
replace the cones Γm by slightly bigger cones in a way that along the rays associated to these
new cones, Φ is still non-decreasing.
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Figure 5.2: Profile of the function Φ along a ray. The abscissa indicates variable t.

5.4.2 A decomposition of C

When Φ satisfies (2), (3), (4) and (5) in Lemma 5.15, the operator C given by (5.26) can be
expressed as follows:

Proposition 5.17. If Φ satisfies (2), (3), (4) and (5) in Lemma 5.15, then writing Φ′t = Ψ2
1−Ψ2

0,
there holds

C = R+R′P + PR′ + C ′ − δ(Op(Ψ0)AOp(Ψ0) +DtOp(Ψ0)2Dt) (5.38)

where δ > 0 is the same as in (4), R′ = − δ
2Op(Φ′t) ∈ Ψα

phg, R = δOp(Ψ1)(D2
t + A)Op(Ψ1) ∈

Ψ2+α
phg , and C ′ ∈ Ψ2+α

phg has non-positive principal symbol and vanishing subprincipal symbol.

We start the proof of this proposition with the following corrected version of [Mel86, Lemma
5.3]:

Lemma 5.18. Let φ be a time function near m ∈ Σ(2) which does not depend on τ . Then, there
holds

τHpφ 6 φ′tp (5.39)

in a neighborhood of m.

Proof of Lemma 5.18. Recalling that ±τ > 0 on M±, it follows from the definition of a time
function that

q = τ{p, φ} 6 0 on {p > 0}. (5.40)

Now, since φ does not depend on τ , we get that q is a quadratic polynomial in τ , vanishing at
τ = 0:

q = bτ2 − cτ, p = τ2 − a, a > 0.

More explicitly, b = 2φ′t and c = {a, φ}. From (5.40), we know that b 6 0. Moreover, (5.40)
also implies that if b = 0, then c = 0, hence φ′t = Hpφ = 0, and (5.39) is automatically satisfied.
Otherwise, b < 0. Since q 6 0 on τ /∈ [−a1/2, a1/2] by (5.40), we get that the other zero of q,
τ = c/b, must lie in [−a1/2, a1/2]. Thus, c2 6 b2a. Then,

τ{p, φ} − φ′tp =
1

2
b(τ − c/b)2 + (b2a− c2)/2b 6 0 (5.41)

where we used that b < 0.
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Let us come back to the proof of Proposition 5.17. Following the proof of Lemma 5.18
and keeping its notations, we replace (5.40) by the condition that τHpΦ 6 0 on {p > −2δa}
(this is Point (4) in Lemma 5.15). The proof then gives that in case b < 0, there holds c/b ∈
[−((1− 2δ)a)1/2, ((1− 2δ)a)1/2], hence c2 6 b2a(1− 2δ). Therefore, (5.41) yields this time

τ{p,Φ} − Φ′tp 6 (b2a− c2)/2b 6 baδ = 2Φ′taδ.

This inequality obviously also holds in case b = 2Φ′t = 0. Hence, setting r′ = − δ
2Φ′t, we have

τ{p,Φ} − Φ′tp− 2r′p 6 2Φ′taδ + Φ′tpδ = Φ′tδ(τ
2 + a) = δ(Ψ2

1 −Ψ2
0)(τ2 + a). (5.42)

We set R = δOp(Ψ1)(D2
t +A)Op(Ψ1). It follows from (5.42), (5.32), (5.33) and (5.27) that the

operator
C ′ = C −R− (R′P + PR′) + δ(Op(Ψ0)AOp(Ψ0) +DtOp(Ψ0)2Dt) (5.43)

has non-positive principal symbol and vanishing sub-principal symbol. This proves Proposition
5.17.

5.4.3 The Fefferman-Phong inequality

The Fefferman-Phong inequality [FP78] (see also [Ler11, Section 2.5.3]) can be stated as follows:
for any pseudodifferential operator C ′1 of order 2 +α whose (Weyl) symbol is non-positive, there
holds for any u ∈ C∞c ,

(C ′1u, u)L2 6 c((Id−∆)α/2u, u)L2 (5.44)

where ∆ is a Riemannian Laplacian on X. The following lemma is a simple microlocalization
of this inequality.

Lemma 5.19. Let W,W ′ ⊂ T ∗(R ×X) be conic sets such that W ′ is a conic neighborhood of
W . Let C ′ ∈ Ψ2+α

phg with essupp(C ′) ⊂ W such that σp(C
′) 6 0 and σsub(C

′) 6 0. Then there

exists Cα ∈ Ψ
α/2
phg with essupp(Cα) ⊂W ′ such that

∀u ∈ C∞c (R×X), (C ′u, u)L2 6 c(‖Cαu‖2L2 + ‖u‖2L2). (5.45)

Proof. Taking a microlocal cut-off χ homogeneous of order 0, essentially supported in W ′ and
equal to 1 on a neighborhood of W , we see that

(C ′u, u) = (C ′(Op(χ) + Op(1− χ))u, (Op(χ) + Op(1− χ))u)

= (Op(χ)C ′Op(χ)u, u) + (Q′u, u) (5.46)

where Q′ ∈ Ψ−∞ is explicit:

Q′ = Op(1− χ)C ′Op(χ) + Op(χ)C ′Op(1− χ) + Op(1− χ)C ′Op(1− χ).

Since Q′ ∈ Ψ−∞, we have in particular

(Q′u, u) 6 c‖u‖2L2 . (5.47)

Then, we write C ′ = C ′1 +C ′2 where C ′1 has non-positive full Weyl symbol, and C ′2 ∈ Ψα
phg. First,

we apply (5.44) with Op(χ)u instead of u: we obtain

(Op(χ)C ′1Op(χ)u, u) 6 c‖Cαu‖2L2 (5.48)

with Cα = (Id−∆)α/4Op(χ). Secondly, writing C ′2 = (Id−∆)α/4C ′′2 (Id−∆)α/4 with C ′′2 ∈ Ψ0
phg,

we see that
(Op(χ)C ′2Op(χ)u, u) 6 c‖Cαu‖2L2 . (5.49)

Combining (5.46), (5.47), (5.48) and (5.49), we get (5.45).



5.4. PROOF OF THEOREM 5.2 173

5.4.4 End of the proof of Theorem 5.2

We come back to the proof of Theorem 5.2. We fix (x0, ξ0) ∈ T ∗X \ 0 and consider u a solution
of (5.4). For the moment, we assume that u is smooth. We consider a time function Φ as
constructed in Lemma 5.15.

Using (5.38), we have

0 = 2Im(Pu,Op(Φ)Dtu)

= (Cu, u)

= ((R+R′P + PR′ + C ′ − δ(Op(Ψ0)AOp(Ψ0) +DtOp(Ψ0)2Dt))u, u).

Hence, using Pu = 0 and applying Lemma 5.19 to C ′, we get:

(AOp(Ψ0)u,Op(Ψ0)u) + ‖Op(Ψ0)Dtu‖2L2 6 c((Rα +R′P + PR′ + C ′)u, u)

6 cα(‖Cαu‖2L2 + ‖u‖2L2 + (Rαu, u)).

with cα > 1/δ and Rα = R, just to keep in mind in the forthcoming inequalities that it depends
on α.

But (AOp(Ψ0)u,Op(Ψ0)u) > 1
c ((−∆)sOp(Ψ0)u,Op(Ψ0)u) − ‖Op(Ψ0)u‖2 by subellipticity

(5.3). Hence

‖(−∆)s/2Op(Ψ0)u‖2L2 + ‖Op(Ψ0)Dtu‖2L2 6 cα(‖Cαu‖2L2 + ‖u‖2L2 + (Rαu, u) + ‖Op(Ψ0)u‖2L2)
(5.50)

which we decompose into

‖(−∆)s/2Op(Ψ0)u‖2L2 6 cα(‖Cαu‖2L2 + ‖u‖2L2 + (Rαu, u) + ‖Op(Ψ0)u‖2L2) (5.51)

and
‖Op(Ψ0)Dtu‖2L2 6 cα(‖Cαu‖2L2 + ‖u‖2L2 + (Rαu, u) + ‖Op(Ψ0)u‖2L2). (5.52)

Now, assume that u is a general solution of (5.4), not necessarily smooth. We have u ∈
C0(R; D(A1/2)) ∩ C1(R;L2(X)). Recall the following definition.

Definition 5.20. Let s0 ∈ R and f ∈ D′(Ω). We shall say that f is Hs0 at (x, ξ) ∈ T ∗Ω \ 0
if there exists a conic neighborhood W of (x, ξ) such that for any 0-th order pseudodifferential
operator B with essupp(B) ⊂W , we have Bf ∈ Hs

loc(Ω).
We shall say that f is smooth at (x, ξ) of it is Hs0 at (x, ξ) for any s0 ∈ R.

Lemma 5.21. Let V, V ′ be sufficiently small open neighborhoods of (x0, ξ0) such that V ⊂ V ′.

Let u be a solution of (5.4). If u and ∂tu are smooth in S (−T− δ0
2
,−T+

δ0
2

)(V ′), then u is smooth
in

U = S (−T+
δ0
2
,0)(V ).

When we say that u is Hs0 at (t, y, η), we mean that u(t) is Hs0 at (y, η) ∈ T ∗Ω.

Proof of Lemma 5.21. We set uε = ρε ∗ u where ρε = ε−(d+1)ρ(·/ε) and ρ ∈ C∞c (Rd+1) is of
integral 1 (and depends on the variables t, x). Recall that d is the dimension of X (and of the
coordinate patch Ω).

Applying Lemma 5.15 for any α ∈ R yields a function Φα which is in particular homogeneous
of degree α in ξ; its derivative in t can be written Φ′α = (Ψα

1 )2 − (Ψα
0 )2 (the upper index being

not an exponent). Then we apply (5.51) to uε and with α = 0: we get

‖(−∆)s/2Op(Ψ0
0)uε‖2L2 6 c0(‖C0uε‖2L2 + ‖uε‖2L2 + (R0uε, uε) + ‖Op(Ψ0

0)uε‖2L2) (5.53)
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where R0 = δOp(Ψ0
1)(D2

t + A)Op(Ψ0
1) (see Proposition 5.17) and c > 0 does not depend on ε.

All quantities

‖C0u‖L2 , ‖u‖L2 , (R0u, u), ‖Op(Ψ0
0)u‖2L2

are finite. Therefore, taking the limit ε→ 0 in (5.53), we obtain u ∈ H2s in U . Using the family
of inequalities (5.51), we can iterate this argument: first with α = 2s, then with α = 4s, 6s,
etc, and each time we replace Ψ0

0, R0, C0 by Ψα
0 , Rα, Cα. At step k, we deduce thanks to

(5.51) that u ∈ H2ks. In particular, we use the fact that ‖Cαu‖L2 and ‖Op(Ψα
0 )u‖L2 are finite,

which comes from the previous step of iteration since Cα is essentially supported close to the
essential support of C ′ (whose essential support is contained in that of Φ thanks to (5.43)).
Thus, u ∈

⋂
k∈NH

2ks = C∞ in U .

Then, using (5.52) for any α ∈ N with Ψα
0 in place of Ψ0, we obtain that Dtu is also Hα in

U . Hence, it is C∞ in U , which concludes the proof of Lemma 5.21.

We conclude the proof of Theorem 5.2. We assume that

u is smooth in W = S (−T− δ0
2
,−T+

δ0
2

)({(x0, ξ0)}). (5.54)

Then, u is smooth in a slightly larger set W ′, i.e., such that W ⊂ W ′. By Lemma 5.16, there
exists V ′ ⊂ T ∗X \ 0 an open neighborhood of (x0, ξ0) such that

W ⊂ S (−T− δ0
2
,−T+

δ0
2

)(V ′) ⊂W ′.

Fix also an open set V ⊂ T ∗X \ 0 such that

(x0, ξ0) ∈ V ⊂ V ⊂ V ′.

Lemma 5.21 implies that u is smooth in S (−T+
δ0
2
,0)(V ). In particular,

u is smooth in S (−T+
δ0
2
,0)({(x0, ξ0)}). (5.55)

The fact that (5.54) implies (5.55) proves that singularities of (5.4) propagate only along
rays. Using that singularities of P are contained in {p = 0}, we obtain finally Theorem 5.2.

5.5 Proof of Theorem 5.3

In the last two sections of this note, we assume that A is a sub-Laplacian. As mentioned in the
introduction, it means that we assume that A has the form

A =
K∑
i=1

Y ∗i Yi (5.56)

where the global smooth vector fields Yi are assumed to satisfy Hörmander’s condition (the Lie
algebra generated by Y1, . . . , YK is equal to the whole tangent bundle TX). Here Y ∗i denotes
the adjoint of Yi for the scalar product (5.2).
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5.5.1 The sub-Riemannian metric

In this preliminary section, we work with a general sub-Laplacian A• on a smooth compact
manifold X• without boundary. This is because the results of this section will be used in
Section 5.5 also for a sub-Laplacian defined on X ×X. We have

A• =

K•∑
i=1

Y ∗•iY•i. (5.57)

There is a metric g• on the distribution D• = Span(Y•1, . . . , Y•K):

(g•)x(v, v) = inf

{
K•∑
i=1

u2
i | v =

K•∑
i=1

uiY•i(x)

}
. (5.58)

The triple (X•,D•, g•) is called a sub-Riemannian structure (see [Mon02]).

The principal symbol of A•, which is also the natural Hamiltonian, is

a• =

K•∑
i=1

h2
Y•i .

Here, for Y• a vector field on X•, we denoted by hY• the momentum map given in canonical
coordinates (x, ξ) by hY•(x, ξ) = ξ(Y•(x)).

Denote by π• denotes the canonical projection π• : T ∗X• → X• and by I• : b 7→ ω•(b, ·)
the canonical isomorphism between T (T ∗X•) and T ∗(T ∗X•). The notation a•m stands for the
Hessian of the principal symbol of A• at m.

Lemma 5.22. There holds a∗•m(I•(b)) = g•(dπ•(b)) for any b ∈ (ker(a•m))⊥ω• ⊂ T (T ∗X•).

Proof. We consider a local g•-orthonormal frame Z1, . . . , ZN . In particular, the Zj are indepen-

dent, and the HhZj
are also independent. We have a•m =

∑N
j=1(dhZj )

2. Hence, HhZ1
, . . . ,HhZN

span (ker(a•m))⊥ω• since

ker(a•m) =

N⋂
j=1

ker(dhZj ) = {ξ ∈ T (T ∗X•), dhZj (ξ) = 0, ∀1 6 j 6 N}

= {ξ ∈ T (T ∗X•), ω•(ξ,HhYN
) = 0, ∀1 6 j 6 N}

= span(HhY1
, . . . ,HhYN

)⊥ω• .

We fix b ∈ (ker(a•m))⊥ω• and we write b =
∑N

j=1 ujHhZj
. Note that g•(

∑N
j=1 ujZj) =

∑N
j=1 u

2
j .

By definition, I•(HhZj
) = −dhZj and dπ(HhZj

) = Zj for any j, so there holds

a∗•m

I•
 N∑
j=1

ujHhZj

 = a∗•m

 N∑
j=1

ujdhZj

 = sup
η/∈ker(a•m)

(∑N
j=1 ujdhZj (η)

)2

∑N
j=1 dhZj (η)2

= sup
(θj)∈RN

(∑N
j=1 ujθj

)2

∑N
j=1 θ

2
j

=

N∑
j=1

u2
j = g•

 N∑
j=1

ujZj


= g•

dπ•
 N∑
j=1

ujHhZj


where, to go from line 1 to line 2, we used that the dhZj are independent.
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5.5.2 KG as a solution of a wave equation

The rest of Section 5.5 is devoted to the proof of Theorem 5.3, i.e., we deduce the wave-front set
of the Schwartz kernel KG from the “geometric” propagation of singularities given by Theorem
5.2. The idea is to consider KG itself as the solution of a wave equation to which we can apply
Theorem 5.2.

We consider the product manifold X×X, with coordinate x on its first copy, and coordinate
y on its second copy. We set

A⊗ =
1

2
(Ax ⊗ Idy + Idx ⊗Ay)

and we consider the operator
P = ∂2

tt −A⊗

acting on functions of R×Xx ×Xy. Using (5.5), we can check that the Schwartz kernel KG is
a solution of

KG|t=0 = 0, ∂tKG|t=0 = δx−y, PKG = 0.

The operator A⊗ is a self-adjoint non-negative real second-order differential operator on
X × X. Moreover it is subelliptic: it is immediate that the vector fields Y1 ⊗ Idy, . . . , YK ⊗
Idy, Idx ⊗ Y1, . . . , Idx ⊗ YK verify Hörmander’s Lie bracket condition, since it is satisfied by
Y1, . . . , YK . Hence, Theorem 5.2 applies to P , with the null-rays being computed with A⊗ in
T ∗(X ×X) (see (5.61) for the associated cones). We denote by ∼t the relation of existence of a
null-ray of length |t| joining two given points of T ∗(X ×X) \ 0 (see Remark 5.7 for the omission
of the variables t and τ in the null-rays).

Since WF (KG(0)) = ∅ and

WF (∂tKG(0)) = {(z, z, ζ,−ζ) ∈ T ∗(X ×X) \ 0},

we have

WF (KG(t)) ⊂ {(x, y, ξ,−η) ∈ T ∗(X ×X) \ 0, ∃(z, ζ) ∈ T ∗X \ 0,

(z, z, ζ,−ζ) ∼t (x, y, ξ,−η)}.
(5.59)

Let us denote by g1 the sub-Riemannian metric on Xx and by g2 the sub-Riemannian metric
on Xy. The sub-Riemannian metric on Xx × Xy is g⊗ = 1

2(g1 ⊕ g2). In other words, if q =
(q1, q2) ∈ X ×X and v = (v1, v2) ∈ Tq(X ×X) ≈ Tq1X × Tq2X, we have

g⊗q (v) =
1

2
(g1
q1(v1) + g2

q2(v2)). (5.60)

Now, the cones Γ⊗m associated to A⊗ are given by

Γ⊗m = R+(∂t +B),

B = {b ∈ ker(a⊗m)⊥ω⊗ , g⊗(dπ⊗(b)) 6 1}.
(5.61)

Here, ⊥ω⊗ designates the symplectic orthogonal with respect to the canonical symplectic form
ω⊗ on T ∗(X ×X), and π⊗ : T ∗(X ×X)→ X ×X is the canonical projection.

To evaluate the right-hand side of (5.59), we denote by ≈t the relation of existence of a null-
ray of length |t| joining two given points of T ∗X \ 0 (the cones Γm are subsets of T (T ∗(R×X))
as defined in Section 5.2). Let us prove that

{(x, y, ξ,−η) ∈ T ∗(X ×X) \ 0, ∃(z, ζ) ∈ T ∗X \ 0, (z, z, ζ,−ζ) ∼t (x, y, ξ,−η)}
⊂ {(x, y, ξ,−η) ∈ T ∗(X ×X) \ 0, (x, ξ) ≈t (y, η)}.

(5.62)

Combining with (5.59), it will immediately follow that

WF (KG(t)) ⊂ {(x, y, ξ,−η) ∈ T ∗(X ×X) \ 0, (x, ξ) ≈t (y, η)}. (5.63)
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5.5.3 Proof of (5.62).

We denote by γ : [0, t]→ T ∗(X×X)\0 a null-ray from (z, z, ζ,−ζ) to (x, y, ξ,−η), parametrized
by time. Our goal is to construct a null-ray of length |t| in T ∗X \ 0, from (y, η) to (x, ξ). It is
obtained by concatenating a null-ray from (y, η) to (z, ζ) with another one, from (z, ζ) to (x, ξ).
However, there are some subtleties hidden in the parametrization of this concatenated null-ray.

We write γ(s) = (α1(s), α2(s), β1(s), β2(s)), and for i = 1, 2 and 0 6 s 6 t, we set γi(s) =
(αi(s), βi(s)) ∈ T ∗X. We also set δi(s) = gi(dπi(γ̇i(s))), where πi : T ∗X → X (here X is the
i-th copy of X). The upper dot denotes here and in the sequel the derivative with respect to
the time variable. Since g⊗(dπ⊗(γ̇(s))) 6 1 for any s ∈ [0, t], we deduce from (5.60) that

1

2
(δ1(s) + δ2(s)) 6 1.

We are going to construct a null-ray ε : [0, t]→ T ∗X of the form

ε(s) = (α2(θ(s)),−β2(θ(s))), 0 6 s 6 s0 (5.64)

ε(s) = (α1(θ(s)), β1(θ(s))), s0 6 s 6 t.

The parameter s0 and the parametrization θ will be chosen so that the first part of ε joins (y, η)
to (z, ζ) and the second part joins (z, ζ) to (x, ξ). We choose θ(0) = t, hence ε(0) = (y, η). Then,
for 0 6 s 6 s0, we choose θ(s) 6 t in order to guarantee that g1(dπ1(ε̇(s))) = 1. This defines s0

in a unique way as the minimal time for which ε(s0) = (z, ζ). In particular, θ(s0) = 0. A priori,
we do not know that s0 6 t, but we will prove it below. Then, for s0 6 s1, we choose θ(s) > 0
in order to guarantee that g2(dπ2(ε̇(s))) = 1. This defines s1 in a unique way as the minimal
time for which ε(s1) = (x, ξ). Finally, if s1 6 t, we extend ε by ε(s) ≡ (x, ξ) for s1 6 s 6 t.

We check that ε is a null-ray in T ∗X. We come back to the definition of null-rays as tangent
to the cones Γm. It is clear that

ker(a⊗m)⊥ω⊗ = ker(am)⊥ω1 × ker(am)⊥ω2

where ωi is the canonical symplectic form on T ∗Xi. Therefore, ε̇(s) ∈ ker(am)⊥ωi for i = 1 when
0 6 s 6 s0 and for i = 2 when s0 6 s 6 t. Thanks to Lemma 5.22, the inequality in (5.14)
(but for the cones in X1 and X2) is verified by ε̇(s) for any 0 6 s 6 t by definition. There is a
“time-reversion” (or “path reversion”) in the first line of (5.64); the property of being a null-ray
is preserved under time reversion together with momentum reversion. Hence ε is a null-ray in
T ∗X.

The fact that s0, s1 6 t follows from the following computation:

t >
∫ t

0
g⊗(dπ⊗(γ̇(s)))ds =

1

2

∫ t

0
g1(dπ1(γ̇1(s)))ds+

1

2

∫ t

0
g2(dπ2(γ̇2(s)))ds

=
1

2

∫ s0

0
g1(dπ1(ε̇(s)))ds+

1

2

∫ s1

s0

g2(dπ2(ε̇(s)))ds

= s0 + (s1 − s0) = s1.

where the second equality follows from the fact that we ε is a reparametrization of γ1 (resp. γ2)
for s ∈ [0, s0] (resp. [s0, s1]). This concludes the proof of (5.62).

5.5.4 Conclusion of the proof of Theorem 5.3

Let us finish the proof of Theorem 5.3. We fix (x0, ξ0), (y0, η0) and t0 such that there is no
null-ray from (y0, η0) ∈ T ∗X to (x0, ξ0) ∈ T ∗X in time t0.

Claim. There exist a conic neighborhood V of (x0, y0, ξ0,−η0) and a neighborhood V0 of t0
such that for any N ∈ N and any t ∈ V0, ∂2N

t KG(t) is smooth in V .
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Proof. We choose V so that for (x, y, ξ,−η) ∈ V and t ∈ V0, there is no null-ray from (y, η) to
(x, ξ) in time t. Such a V exists, since otherwise by extraction of null-rays (which are Lipschitz
with a locally uniform constant, see (5.16)), there would exist a null-ray from (y0, η0) to (x0, ξ0)

in time t0. Then, we can check that for any N ∈ N, K
(2N)
G = ∂2N

t KG is a solution of

K
(2N)
G |t=0 = 0, ∂tK

(2N)
G |t=0 = (A⊗)Nδx−y, PK

(2N)
G = 0.

Repeating the above argument leading to (5.63) with K
(2N)
G instead of KG, we obtain

WF (K
(2N)
G (t)) ⊂ {(x, y, ξ,−η) ∈ T ∗(X ×X) \ 0, (x, ξ) ≈t (y, η)},

which proves the claim.

We deduce from the claim that if there is no null-ray from (y0, η0) ∈ T ∗X to (x0, ξ0) ∈ T ∗X
in time t0, then (t0, τ0, x0, y0, ξ0,−η0) /∈WF (KG) for any τ0 ∈ R.

Finally, if there is a null-ray from (y0, η0) to (x0, ξ0) in time t0, then a(x0, ξ0) = a(y0, η0),
and due to the fact that WF (KG) is included in the characteristic set of ∂2

tt−A⊗, the only τ0’s
for which (t0, τ0, x0, y0, ξ0,−η0) ∈ WF (KG) is possible are the ones satisfying τ2

0 = a(x0, ξ0) =
a(y0, η0). This concludes the proof of Theorem 5.3.

Remark 5.23. Theorem 5.3 allows to recover some results already known in the literature.
In the situations studied in [Las82], [LL82] and [Mel86], Σ(2) is a symplectic manifold. In

this case, thanks to (5.14), we see that the only null-rays starting from points in Σ(2) are lines
in t. Therefore Theorem 5.3 implies:

• the “wave-front part” of the main results of [Las82] and [LL82] (but not the effective
construction of parametrices handled in these papers).

• Theorem 1.8 in [Mel84], which can be reformulated as follows: if Σ2 (in the notations of
[Mel84]) is of codimension 2, then

singularities outside Σ2 propagate along bicharacteristics,
and singularities inside Σ2 propagate along lines in t.

This is exactly the content of Theorem 5.3 in this case. To see that Theorem 1.8 of

[Mel84] can be reformulated as above, we must notice that on Σ2,
◦
χt± extends as the

identity for any t ∈ R, which follows from the following property (denoting by U∗x0
X the

set of covectors of norm 1 with base point x0):

∀t > 0, ∀x0 ∈ X, exptx0
: U∗x0

X → X is proper (5.65)

(when restricted to minimizers), which implies that for any open neighborhood V of x0,
(exptx0

)−1(X \ V ) is compact, at positive distance from Σ2. The property (5.65) is always
true in the absence of singular curves (defined in Section 5.6.1).

5.6 A consequence for wave equations with sub-Laplacians

We now turn to the consequences of Theorem 5.3. For that purpose, we briefly introduce
notations and concepts from sub-Riemannian geometry. Our presentation is inspired by [Mon02,
Chapter 5 and Appendix D]. In this last section, we continue to assume that A is a sub-Laplacian
on X (see Example 5.1). The associated sub-Riemannian metric (see (5.58)) is denoted by g.
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5.6.1 Sub-Riemannian geometry and horizontal curves

Fix an interval I = [b, c] and a point x0 ∈ X. We denote by Ω(I, x0;D) the space of all absolutely
continuous curves γ : I → X that start at γ(b) = x0 and whose derivative is square integrable
with respect to g, implying that the length∫

I

√
gγ(t)(γ̇(t), γ̇(t))dt

of γ is finite. Such a curve γ is called horizontal. The endpoint map is the map

End : Ω(I, x0;D)→ X, γ 7→ γ(c).

The metric (5.58) induces a distance d on X, and d(x, y) < +∞ for any x, y ∈ X thanks to
Hörmander’s condition (this is the Chow-Rashevskii theorem).

Two types of curves in Ω(I, x0;D) will be of particular interest: the critical points of the
endpoint map, and the curves which are projections of the Hamiltonian vector field Ha associated
to a.

Projections of integral curves of Ha are geodesics:

Theorem 5.24. [Mon02, Theorem 1.14] Let γ(s) be the projection on X of an integral curve (in
T ∗X) of the Hamiltonian vector field Ha. Then γ is a horizontal curve and every sufficiently
short arc of γ is a minimizing sub-Riemannian geodesic (i.e., a minimizing path between its
endpoints in the metric space (X, d)).

Such horizontal curves γ are called normal geodesics, and they are smooth.

The differentiable structure on Ω(I, x0;D) described in [Mon02, Chapter 5 and Appendix D]
allows to give a sense to the following notion:

Definition 5.25. A singular curve is a critical point for the endpoint map.

Note that in Riemannian geometry (i.e., for a elliptic), there exist no singular curves.

In the next definition, we use the notation D⊥ for the annihilator of D (thus a subset of the
cotangent bundle T ∗X), and ωX denotes the restriction to D⊥ of the canonical symplectic form
ωX on T ∗X.

Definition 5.26. A characteristic for D⊥ is an absolutely continuous curve λ(t) ∈ D⊥ that
never intersects the zero section of D⊥ and that satisfies λ̇(t) ∈ ker(ωX(λ(t))) at every point t
for which the derivative λ̇(t) exists.

Theorem 5.27. [Mon02, Theorem 5.3] A curve γ ∈ Ω is singular if and only if it is the
projection of a characteristic λ for D⊥ with square-integrable derivative. λ is then called an
abnormal extremal lift of the singular curve γ.

Normal geodesics and singular curves are particularly important in sub-Riemannian geometry
because of the following fact (Pontryagin’s maximum principle):

any minimizing geodesic in (X, d) is either a singular curve or a normal geodesic.

The existence of geodesics which are singular curves but not normal geodesics was proved in
[Mon94].
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5.6.2 The singular support of KG(·, x, y)

When A is a sub-Laplacian (5.56), the cones Γm defined in Section 5.2.1 have an additional
geometric interpretation, which we now explain.

We consider a null-ray, as introduced in Definition 5.4. It is necessarily of one of the following
types (depending on the value of τ , which is a constant):

• either a null-bicharacteristic with (constant) τ 6= 0, since Γm = R± ·Hp(m) in this case;

• or contained in Σ(2) and tangent to the cones Γm given by (5.14), with τ ≡ 0 since
dτ(v) = 0 for any v ∈ Γm according to (5.14).

In the second case, setting n = π2(m) and writing v = c(∂t + b) as in (5.14), we have b ∈ TnD⊥
since a ≡ 0 along the path. There holds ker(am) = TnD⊥ and, plugging into the above formula,
we also get b ∈ (TnD⊥)⊥ωX . It follows that b ∈ TnD⊥∩(TnD⊥)⊥ωX = ker ωX , i.e., the trajectory
of the null-ray (forgetting the time variable) is a characteristic curve.

In summary, when A is a sub-Laplacian (5.56), Theorem 5.3 asserts that singularities of
the wave equation (5.4) propagate only along integral curves of Ha and characteristics for D⊥.
From that, we can infer the following proposition, in the spirit of Duistermaat-Guillemin’s trace
formula [DG75]:

Proposition 5.28. We fix x, y ∈ X with x 6= y. We denote by L the set of lengths of normal
geodesics from x to y and by Ts the minimal length of a singular curve joining x to y. Then
G : t 7→ KG(t, x, y) is well-defined as a distribution on (−Ts, Ts), and

sing supp(G ) ⊂ L ∪ −L .

Note that this proposition does not say anything about times |t| > Ts: it could happen a
priori that t 7→ KG(t, x, y) is not a distribution after Ts.

Proof. As said above, null-rays living in {τ = 0} are characteristic curves (in the sense of
Definition 5.26) tangent to Γm. Now, it follows from (5.14), Theorem 5.27 and Lemma 5.22 that
the least t > 0 for which there exists a null-ray of length t with τ ≡ 0 joining x and y is equal
to the length of the shortest singular curve joining x and y.

We consider ϕ : R→ R×X×X, t 7→ (t, x, y) which has conormal set Nϕ = {(t, x, y, 0, ξ, η)}
(in other words Nϕ corresponds to τ = 0). Thus, using Theorem 5.3, we see that WF (G ) does
not intersect the conormal set of ϕ|(−Ts,Ts). Then, [Hör71b, Theorem 2.5.11’] ensures that G ,
which is the pull-back of KG by ϕ|(−Ts,Ts), is well-defined as a distribution over (−Ts, Ts). Of
course, sing supp(G ) is the projection of WF (G ) (for |t| < Ts).

For |t| < Ts, null-rays between x and y are contained in {τ 6= 0}, thus they are tangent to
the cones Γm = R± ·Hp(m). Hence, the singularities of G occur at times belonging to the set
L of lengths of normal geodesics (for τ > 0, we obtain normal geodesics from y to x, and for
τ < 0, normal geodesics from x to y).

Remark 5.29. If x = y, the same reasoning as in the proof of Proposition 5.28 says nothing
more than sing supp(KG(·, x, x)) ⊂ R since for any point (x, ξ) ∈ D⊥ and any t ∈ R, the constant
path joining (x, ξ) to (x, ξ) in time t is a null-ray (with τ = 0).
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5.6.3 Comments on the inequality in (5.14)

In the formula (5.14) for the cones Γm, the inequality a∗m(I(b)) 6 1 may seem surprising at first
sight. When A is a sub-Laplacian, according to Lemma 5.22, it is equivalent to g(dπ(b)) 6 1.
In rough terms, Theorem 5.2 does not exclude that singularities contained in D⊥ propagate
at speeds < 1, which would be in strong contrast with the usual propagation “at speed 1”
of singularities of wave equations with elliptic Laplacian. In a joint work with Yves Colin de
Verdière [CL21] (see Chapter 6), we give explicit examples of initial data of a subelliptic wave
equation whose singularities effectively propagate at any speed between 0 and 1 along singular
curves.

5-A Further properties of the cones Γm

5-A.1 Inner semi-continuity of the cones Γm in a

In this appendix, we prove that if we make some additional assumptions, the convex cones Γm
are inner semi-continuous with respect to a (in addition to their inner semi-continuity with
respect to m proved in Lemma 5.8). For that, we introduce the following class of functions on
T ∗X (for k ∈ N):

Ak =
{∑

h2
Yj , (Yj) ∈ Dk

}
,

where Dk is the set of families of smooth vector fields generating a regular (i.e., constant rank)
distribution of rank k. Note that any a ∈ Ak automatically satisfies (5.7).

Proposition 5.30. The mapping (M+ ∪M−) × Ak 3 (m, a) 7→ Γ
(a)
m is inner semi-continuous

(for the C∞ topology in a ∈ Ak). In other words,

∀mj → m∗ (mj ,m∗ ∈M+ ∪M−), ∀aj ∈ Ak, aj
C∞−−→ a∗, ∀vj ∈ Γ

(aj)
mj , vj → v ∈ Tm∗M,

there holds v ∈ Γ(a∗)
m∗

where we temporarily denoted by Γ
(a)
m the cone computed with the Hamiltonian a at point m.

Proposition 5.30 follows quite directly from the computations done in the proof of Lemma
5.8. However, we give here a different proof which has the advantage of requiring no formula,
and which illustrates Remark 5.11.

Definition 5.31. Let F be a manifold and E ⊂ F be a closed set. For x ∈ E, the tangent
cone C(x) is the R+-subcone of the tangent space TxF consisting of all the vectors γ′(0) where
γ : [0, a[→ F is a C1 curve so that γ(0) = x and γ(t) ∈ E for t > 0 small enough. The dual
tangent cone Co(x) is the subcone of T ∗xF of all covectors ξ so that ξ(v) 6 0 for all v ∈ C(x).

Let us remark that if ∂E is smooth at x, then Co(x) is generated by the normal outgoing
covectors at x.

Proof of Proposition 5.30. We set Y = T ∗X. The statement clearly holds if m∗ = (t∗, τ∗, y∗)
does not verify τ∗ = 0 and a∗(y∗) = 0. Hence we assume in the sequel that τ∗ = 0 and
y∗ ∈ a−1

∗ (0). Writing mj = (tj , τj , yj), we can also assume that for any j, τj 6= 0 since otherwise
0 = τ2

j > aj(yj) > 0, meaning that all cones Γm are computed according to the formula (5.9),

and in this case we even have continuity of the cones Γ
(aj)
mj towards Γ

(a∗)
m∗ . In other words, with

transparent notations, we assume in the sequel that mj /∈ Σ
(aj)

(2) and m∗ ∈ Σ
(a∗)
(2) .
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For a ∈ Ak, p0 > 0, and b = (a, p0), we consider

Eb = {(t, τ, y) ∈ T ∗R× Y ; τ > 0 and τ2 − a(y) > p0}.

There are two steps: 1) prove that the mapping (m, a) 7→ Cob (m) is inner semi-continuous where
b = (a, p(m)) and Cob (m) is the dual tangent cone of Eb at m (which is in ∂Eb); 2) conclude the
proof of Proposition 5.30.

1) Since a∗ ∈ Ak, the characteristic manifold Z = a−1
∗ (0) ⊂ Y is smooth (see [ABB19], below

Definition 4.33), and it is non-degenerate. Thus, the Morse-Bott Lemma (see [BH04]) guarantees
the existence of local coordinates y = (ỹ, z) ∈ N such that y∗ = (0, 0) and a∗(y) = ‖ỹ‖2. In
these coordinates (valid for (t, τ, y) ∈ N), the set Eb∗ ∩N is convex.

The boundary ∂Ebj is smooth at mj and, for any j, the tangent cone of Ebj at mj ∈ ∂Ebj is
a set Hj ⊂ TmjM which is nearly a half tangent space6. Indeed, the convergence aj → a∗ (in
the C∞ topology) implies that any set H∞ which is the limit of a convergent subsequence of
(Hj) is a half-space, and Eb∗ ⊂ H∞. Hence, by convexity of Eb∗ ∩N , the tangent cone at m∗ is
contained in H∞. By taking duals, we get the opposite inclusion: any limit of the dual tangent
cones Cobj (mj) belongs to Cob∗(m∗). This proves the result: the mapping (m, a) 7→ Cob (m) is inner

semi-continuous at (m∗, a∗).

2) Let us compute Cob (m) depending on m and a.

If m /∈ Σ(2), then its tangent cone is Cb(m) = {w ∈ TmM, dp(w) > 0}. Hence Cob (m) =
{λ ∈ T ∗mM, λ(w) 6 0 ∀w such that dp(w) > 0} = {−dp} where this last differential is taken at
m.

If m ∈ Σ(2), then Cb(m) = {w ∈ TmM ; dτ(w) > 0, pm(w) > 0} = Λm and Cob (m) = {λ ∈
T ∗mM ; λ(w) 6 0 ∀w ∈ Λm}.

Then, identifying T ∗mM and TmM through the isomorphism ω(v, ·) 7→ v, we see that in both
cases Cob (m) identifies with Γm (see the sign conventions for symplectic geometry in Appendix
A.1). Since this identification between T ∗mM and TmM is continuous in m, we get the result.

5-A.2 What is there exactly in the cone Γm when m ∈ Σ(2)?

Lemma 5.8 and Proposition 5.30 state that the cones Γm are inner semi-continuous. It is natural
to wonder whether a cone Γm can be much bigger than the set of limits of the cones Γmj for mj

tending to m. The answer is given by the following:

Proposition 5.32. For any m ∈ Σ(2), the cone Γm (resp. its boundary) is exactly given by all
limits of the cones Γmj for mj /∈ Σ(2) (resp. mj ∈ Σ \ Σ(2)) converging to m.

Proof. As in Section 5.2.3, we work in a chart near m. Let v ∈ Γm, which, up to multiplication
by a constant, we can take equal to ∂t + b according to (5.14). According to (5.18), we have

to prove that b is the limit of 1
2
a(mj)

1
2

τj

Ha(mj)

a(mj)
1
2

for some well-chosen mj → m. Playing with the

multiplication factor a(mj)
1
2 /τj , it is sufficient to show that if a∗m(I(b)) = 1, then b is the limit

of 1
2
Ha(mj)

a(mj)1/2 for some well-chosen mj → m.

Since our computations do not depend on t, τ , we replace mj ,m by π2(mj), π2(m) (omitted
in the notations).

6The formula for the tangent cone in point 2) at m /∈ Σ(2) is perturbed since we take coordinates, but this
perturbation is smooth since aj → a∗ in the C∞ topology.
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Following the computations of Lemma 5.9 and using the notation F for the “fundamental
matrix” introduced in (5.15), we get

1

2
ωX(Ha(mj), w) = −1

2
da(mj)(w) = −am(mj −m,w) + o(mj −m)

= ωX(F (mj −m), w) + o(mj −m),

and finally 1
2
Ha(mj)

a(mj)1/2 =
F (mj−m)

am(mj−m)1/2 + o(1). But it follows from (5.15) that

F : Tm(T ∗X)/ker(am)→ (ker(am))⊥ωX

is an isomorphism7. Thus, choosing the sequence (mj) adequately, we can take F (mj − m)
colinear to b ∈ (ker(am))⊥ωX , and then we compute

a∗m (I (F (mj −m))) = sup
w/∈ker(am)

ω(F (mj −m), w)2

am(w)
= sup

w/∈ker(am)

am(mj −m,w)2

am(w)

= am(mj −m).

Hence, with this choice of mj , any limit v′ of F (mj −m)/am(mj −m)1/2 is colinear to b and
the above computation implies that

a∗m(I(v′)) = a∗m(I(b)),

which implies that F (mj −m)/am(mj −m)1/2 tends to b.

7It follows for example from Lax-Milgram’s lemma applied in the space Tm(T ∗X)/ker(am), see Section 5.2.2.
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Chapter 6

Propagation of well-prepared states
along Martinet singular geodesics

“Regardez les singularités, il n’y a que cela qui compte.”
Gaston Julia.

This chapter is adapted from [CL21]. Its main object is the proof of Theorem 7, restated as
Theorem 6.2.
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We prove that for the Martinet wave equation with “flat” metric, which a subelliptic wave
equation, singularities can propagate at any speed between 0 and 1 along any singular geodesic.
This is in strong contrast with the usual propagation of singularities at speed 1 for wave equations
with elliptic Laplacian.

6.1 Introduction

6.1.1 Propagation of singularities and singular curves

Restated in the language of sub-Riemannian geometry, Melrose’s result [Mel86] presented in the
previous chapter asserts that singularities of subelliptic wave equations propagate only along
usual null-bicharacteristics (at speed 1) and along singular curves (see Definition 6.1). Along
singular curves, Melrose writes in [Mel86] that the speed should be between 0 and 1, but nothing
more. It is our purpose here to prove that for the Martinet wave equation, which is a subelliptic
wave equation, singularities can propagate at any speed between 0 and 1 along the singular
curves of the Martinet distribution. As explained in Remark 6.9, an analogous result also holds
in the so-called quasi-contact case (the computations are easier in that case).

To state our main result, we consider the Martinet sub-Laplacian

∆ = X2
1 +X2

2

on R3, where
X1 = ∂x, X2 = ∂y + x2∂z.

Hörmander’s theorem implies that ∆ is hypoelliptic since X1, X2 and [X1, [X1, X2]] span TR3.
The Martinet half-wave equation is

i∂tu−
√
−∆u = 0 (6.1)

on Rt × R3, with initial datum u(t = 0) = u0. The vector fields X1 and X2 span the horizontal
distribution

D = Span(X1, X2) ⊂ TR3.

Let us recall the definition of singular curves. We use the notation D⊥ for the annihilator of
D (thus a subcone of the cotangent bundle T ∗R3), and ω denotes the restriction to D⊥ of the
canonical symplectic form ω on T ∗R3.

Definition 6.1. A characteristic curve for D is an absolutely continuous curve t 7→ λ(t) ∈ D⊥
that never intersects the zero section of D⊥ and that satisfies

λ̇(t) ∈ ker(ω(λ(t)))

for almost every t. The projection of λ(t) onto R3, which is an horizontal curve1 for D, is called
a singular curve, and the corresponding characteristic an abnormal extremal lift of that curve.

We refer the reader to [Mon02] for more material related to sub-Riemannian geometry.

The curve t 7→ γ(t) = (0, t, 0) ∈ R3 is a singular curve of the Martinet distribution D. De-
noting by (ξ, η, ζ) the dual coordinates of (x, y, z), this curve admits both an abnormal extremal
lift, for which ξ(t) = η(t) = 0, and a normal extremal lift, for which ξ(t) = 0, η(t) = 1, ζ(t) = 0
(meaning that, if τ = 1 is the dual variable of t, this yields a null-bicharacteristic). Martinet-type
distributions attracted a lot of attention since Montgomery showed in [Mon94] that they provide

1i.e., dπ(λ̇(t)) ∈ Dλ(t) for almost every t, where π : T ∗R3 → R3 denotes the canonical projection.
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examples of singular curves which are geodesics of the associated sub-Riemannian structure, but
which are not necessarily projections of bicharacteristics (in contrast with the Riemannian case,
where all geodesics are obtained as projections of bicharacteristics).

In this chapter, all phenomena and computations are done (microlocally) near the abnormal
extremal lift, and thus away (in the cotangent bundle T ∗R3) from the normal extremal lift,
which plays no role.

6.1.2 Main result

Let Y ∈ C∞(R,R) be equal to 0 on (−∞, 1) and equal to 1 on (2,∞). Take φ ∈ C∞0 (R,R)
with φ > 0 and φ 6≡ 0. Consider as Cauchy datum for the Martinet half-wave equation (6.1) the
distribution u0(x, y, z) whose Fourier transform 2 with respect to (y, z) is

Fy,zu0(x, η, ζ) = Y (ζ)φ(η/ζ1/3)ψη,ζ(x). (6.2)

Here, ψη,ζ is the ground state of the x−operator

−d2
x + (η + x2ζ)2

with ψη,ζ(0) > 0 and ‖ψη,ζ‖L2 = 1, and α1 is the associated eigenvalue. Thanks to the Fourier
inversion formula applied to (6.2), we note that

√
−∆u0(x, y, z) =

∫∫
R2

Y (ζ)φ(η/ζ1/3)
√
α1(η, ζ)ψη,ζ(x)ei(yη+zζ)dηdζ.

We call u0 a well-prepared Cauchy datum. It yields a solution of (6.1), namely

(U(t)u0)(x, y, z) =

∫∫
R2

Y (ζ)φ(η/ζ1/3)ψη,ζ(x)e−it
√
α1(η,ζ)ei(yη+zζ)dηdζ.

For µ ∈ R, we set Hµ = −d2
x + (µ+ x2)2 and we denote by ψµ its normalized ground state

Hµψµ = λ1(µ)ψµ,

whose properties are described at the beginning of Section 6.2. We also define

F (µ) =
√
λ1(µ).

We assume that
F ′ is strictly monotonic on the support of φ, (6.3)

which is no big restriction (choosing adequately the support of φ) since F is an analytic, non-
affine, function3.

We set η = ζ1/3η1 and we note that ψη,ζ(x) = ζ1/6ψη/ζ1/3(ζ1/3x) = ζ1/6ψη1(ζ1/3x) and
√
α1 = ζ1/3F (η/ζ1/3). Hence,

(U(t)u0)(x, y, z) =

∫∫
R2

Y (ζ)ζ1/2φ(η1)ψη1(ζ1/3x)e−iζ
1/3(tF (η1)−yη1)eizζdη1dζ. (6.4)

We denote by WF (f) ⊂ T ∗R3 \ 0 the wave-front set of f ∈ D′(R3), whose projection onto
R3 is the singular support Sing Supp(f) (see [Hor07a, Definition 8.1.2]). Our main result states
that the speed of propagation of the singularities of u0 is in some window determined by the
support of φ.

2We take the convention Ff(p) = (2π)−d
∫
Rd f(q)e−iqpdq for the Fourier transform in Rd.

3See Point 1 of Lemma 6.10 and Proposition 6.14
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Theorem 6.2. For any t ∈ R, we have

WF (U(t)u0) = {(0, y, 0; 0, 0, λ) ∈ T ∗R3, λ > 0, y ∈ tF ′(I)} , (6.5)

where I is the support of φ. In particular,

Sing Supp(U(t)u0) = {(0, y, 0) ∈ R3, y ∈ tF ′(I)}. (6.6)

Theorem 6.2 means that

singularities propagate along the singular curve γ

at speeds given by F ′(I).
(6.7)

Let us comment on the notion of “speed” used throughout this paper. In the Riemannian
setting, when one says that singularities propagate at speed 1, this has to be understood with
respect to the Riemannian metric. In the context of the Martinet distribution D, there is also
a metric, called sub-Riemannian metric, defined by

gq(v) = inf
{
u2

1 + u2
2, v = u1X1(q) + u2X2(q)

}
, q ∈ R3, v ∈ TqR3, (6.8)

which is a Riemannian metric on D. This metric g induces naturally a way to measure the speed
of a point moving along an horizontal curve: if δ : J → R3 is an horizontal curve describing
the time-evolution of a point, i.e., δ̇(t) ∈ Dδ(t) for any t ∈ J , then the speed of the point is

(gδ(t)(δ̇(t)))
1/2. In the case of the curve γ, since gq(∂y) = 1 for any q of the form (0, y, 0), we

have (gq(F
′(I)∂y))

1/2 = F ′(I). This is why the set F ′(I) is understood as a set of speeds in
(6.7).

Proposition 6.3. There holds F ′(R) = [a, 1) for some −1 < a < 0.

Together with (6.7), and choosing I adequately, this implies the following informal statement.

“Corollary” 6.4. Any value between 0 and 1 can be realized as a speed of propagation of
singularities along the singular curve γ.

According to (1.29), the negative values in the range of F ′ yield singularities propagating
backwards along the singular curve. This happens when F ′(I) contains negative values (see
Proposition 1.25).

The next remarks explain possible adaptations of the statement of Theorem 6.2.

Remark 6.5. Putting in the initial Fourier data (6.2) an additional phase e−iz0ζ for some fixed
z0 ∈ R, we obtain that the singularities of the corresponding solution propagate along the curve
t 7→ (0, t, z0), which is also a singular curve: for this new initial datum, we replace in (6.5) the
0 in the z coordinate by z0.

Remark 6.6. If we consider (u,Dtu)|t=0 = (u0, 0) as initial data of the Martinet wave equation
∂2
t u−∆u = 0, the solution is given by

u(t) =
1

2
(U(t)u0 + U(−t)u0) .

Hence, under the assumption that F ′(I) and −F ′(I) do not intersect, (6.5) must be replaced by

WF (u(t)) = {(0, y, 0; 0, 0, λ) ∈ T ∗R3, λ > 0, y ∈ ±tF ′(I)}.
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Remark 6.7. If we take ζ < 0 instead of ζ > 0 in the (Fourier) initial data

Y (|ζ|)φ(η/|ζ|1/3)ψη,ζ(x),

then we must replace F ′(I) by −F ′(−I) in the Theorem 6.2. The same if we replace X2 by
∂y − x2∂z and keep ζ > 0 in the Fourier initial data. This is due to the “orientation” of the
singular curve γ: for Theorem 6.2 to hold without any change, we have to take (0, 0, ζ)(X2) > 0.

Remark 6.8. Instead of ψη,ζ , we can use in the Fourier initial datum (6.2) the k-th eigenfunction
of −d2

x + (η + x2ζ)2. This yields a function Fk and the associated velocity F ′k, instead of F and
F ′. Theorem 6.2 also holds for this initial datum with the same proof, just replacing F ′ by F ′k
in the statement.

Remark 6.9. It is possible to establish an analogue of Theorem 6.2 for the half-wave equation
associated to the quasi-contact sub-Laplacian

∆ = ∂2
x + ∂2

y + (∂z − x∂s)2

on R4. For that, we take Fourier initial data of the form

Fy,z,su0(x, η, ζ, σ) = φ(η/σ1/2, ζ/σ1/2)ψη,ζ,σ(x)

where φ ∈ C∞0 (R2,R), η, ζ, σ denote the dual variables of y, z, s, and ψη,ζ,σ is the normalized
ground state of the x−operator −d2

x+η2 +(ζ−xσ)2. Then, the singularities propagate along the
curve t 7→ (0, t, 0, 0) which is a singular curve of the quasi-contact distribution Span(∂x, ∂y, ∂z −
x∂s). The proof of this fact requires simpler computations than in the Martinet case since,
instead of quartic oscillators, they involve usual harmonic oscillators. Note that the (non-flat)
quasi-contact case has also been investigated in [Sav19], with other methods.

6.1.3 Comments and organization of the chapter

The singular curve t 7→ γ(t) = (0, t, 0) ∈ R3 of the Martinet distribution D has played an
important role in the last decades in the development of sub-Riemannian geometry. This role is
due to the fact that γ is a minimizing geodesic for the sub-Riemannian distance induced by the
metric g defined in (6.8). However, we insist on the fact that in the present work,

the minimizing character of the singular curve γ plays no role.

For example, as explained in Remark 6.9, our computations can be adapted to the quasi-contact
case, where singular curves are not minimizing.

It follows from Definition 6.1 that the existence of singular curves is a property of the
distribution D, and does not depend on the metric g on D (or on the vector fields X1, X2 which
span D). Besides, it was proved in [Mar70, Section II.6] that generically, a rank 2 distribution
D0 in a 3D manifold M0 is of contact type outside a surface S , called the Martinet surface,
and near any point of S except a finite number of them, the distribution is isomorphic to
D = ker(dz−x2dy), which is exactly the distribution under study in the present work. Therefore,
we expect to be able to generalize Theorem 6.2 to more generic situations.

To explain further the importance of singular curves, let us provide more context about sub-
Riemannian geometry. A sub-Riemannian manifold is a triple (M,D, g) where M is a smooth
manifold, D is a smooth sub-bundle of TM which is assumed to satisfy the Hörmander condition
Lie(D) = TM , and g is a Riemannian metric on D (which naturally induces a distance d on
M). Sub-Riemannian manifolds are thus a generalization of Riemannian manifolds (for which
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D = TM), and they have been studied in depth since the years 1980, see [Mon02] and [ABB19]
for surveys.

As already mentioned, a particular interest has been devoted to the understanding of geodesics,
i.e. absolutely continuous horizontal paths for which every sufficiently short subarc realizes the
sub-Riemannian distance between its endpoints. It follows from Pontryagin’s maximum principle
(see also [Mon02, Section 5.3.3]) that any sub-Riemannian geodesic is

• either normal, meaning that it is the projection of an integral curve of the normal Hamil-
tonian vector field 4;

• or singular, meaning that it is the projection of a characteristic curve (see Definition 6.1).

A sub-Riemannian geodesic can be normal and singular at the same time, and it is indeed the
case of the singular curve t 7→ (x, y, z) = (0, t, 0) in the Martinet distribution described above.
But it was proved in [Mon94] that there also exist sub-Riemannian manifolds which exhibit
geodesics which are singular, but not normal (they are called strictly singular).

The study of the spectral consequences of the presence of singular minimizers was initiated
in [Mon95], where it was proved that in the situation where strictly singular minimizers show
up as zero loci of two-dimensional magnetic fields, the ground state of a quantum particle
concentrates on this curve as e/h tends to infinity, where e is the charge and h is the Planck
constant. In [CHT21b], it is proved that, for 3D compact sub-Riemannian manifolds with
Martinet singularities, the support of the Weyl measure is the 2D Martinet manifold: most
eigenfunctions concentrate on it.

The present work gives a new illustration of the intuition that singular curves play a role “at
the quantum level”, this time at the level of propagation for a wave equation. However, the fact
that the propagation speed is not 1, but can take any value between 0 and 1 was unexpected,
since it is in strong contrast with the usual propagation of singularities at speed 1 for wave
equations with elliptic Laplacians.

The chapter is organized as follows. In Section 6.2, we prove some properties of the eigen-
functions ψµ which play a central role in the next sections. In Section 6.3, we compute the
wave-front set of the Cauchy datum u0 thanks to stationary phase arguments; this proves The-
orem 6.2 at time t = 0. In Section 6.4, we complete the proof of Theorem 6.2 by extending
the previous computation to any t ∈ R. We could have directly done the proof for any t ∈ R
(thus avoiding to distinguish the case t = 0), but we have chosen this presentation to improve
readability. In Section 6.5, to illustrate Theorem 6.2, we prove Proposition 6.3, we provide plots
of F and F ′ and compute their asymptotics.

6.2 Some properties of the eigenfunctions ψµ

Let us recall that Hµ is the essentially self-adjoint operator Hµ = −d2
x + (µ+ x2)2 on L2(R, dx)

and ψµ is the ground state eigenfunction with
∫
R ψµ(x)2dx = 1 and ψµ(0) > 0. We denote by

λ1(µ) the associated eigenvalue, λ1(µ) = F (µ)2.

Lemma 6.10. The domain of the essentially self-adjoint operator Hµ is independent of µ. It is
denoted by D(H0). Moreover, the following assertions hold:

1. The map µ 7→ λ1(µ) is analytic on R, and the map µ 7→ ψµ is analytic from R to D(H0);

4By this, we mean the Hamiltonian vector field of g∗, the semipositive quadratic form on T ∗qM defined by
g∗(q, p) = ‖p|Dq‖

2
q, where the norm ‖ · ‖q is the norm on D∗q dual of the norm gq.
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2. The function ψµ is in the Schwartz space S(R) uniformly with respect to µ on any compact
subset of R 5;

3. Any derivative in D(H0) of the map µ 7→ ψµ is in the Schwartz space S(R) uniformly with
respect to µ on any compact subset of R.

Proof. The domain of Hµ is given by

D(Hµ) = {ψ ∈ L2(R),−ψ′′ + x4ψ ∈ L2(R), x2ψ ∈ L2(R)} ,

the last property coming from the finiteness of the associated quadratic form Q(ψ) =
∫
R((ψ′)2 +

(µ + x2)2ψ2)dx. We have hence D(Hµ) = D(H0). The map µ 7→ Hµ is analytic from R into
L(D(H0), L2(R)). Moreover, by [BS12, Theorem 3.1], the eigenvalues of Hµ are non-degenerate
(simple). This implies (see [Kat13, Chapter VII.2] or [CR19, Proposition 5.25]) that the eigen-
values λ1(µ) and eigenfunctions ψµ are analytic functions of µ, respectively with values in R and
in D(H0). This proves Point 1.

Point 2 follows from Agmon estimates (precisely, [Hel88, Proposition 3.3.4] with h = h0 = 1),
which are uniform with respect to µ on any compact subset of R.

This allows to start to prove Point 3 by induction. Assume that Point 3 is true for the
derivatives of order 0, . . . , k − 1. Then, taking the derivatives with values in the domain D(H0)
with respect to µ in the equation (Hµ − λ1(µ))ψµ = 0, we get

(Hµ − λ1(µ))
dk

dµk
ψµ = vk,µ (6.9)

and we know, by the induction hypothesis, that vk,µ ∈ S(R) uniformly with respect to µ on any
compact subset of R. We now use the results of [Shu87, Section 25] (see also [Shu87, Section
23] for the notations, and [HR82] for similar results). We check that ξ2 + x4 is a symbol in the
sense of Definition 25.1 of [Shu87], with m = 4, m0 = 2 and ρ = 1/2. Its standard quantization
(i.e., τ = 0 in Equation (23.31) of [Shu87]) is Hµ. By [Shu87, Theorem 25.1], Hµ − λ1(µ)
admits a parametrix Bµ; in particular, Bµ(Hµ − λ1(µ)) = Id + Rµ where Rµ is smoothing.
Hence, composing on the left by Bµ in (6.9), and noting that Bµvk,µ ∈ S(R), we obtain that
dk

dµk
ψµ ∈ S(R) uniformly with respect to µ on any compact subset of R, which concludes the

induction and the proof of Point 3.

6.3 Wave-front of the Cauchy datum

The goal of this section is to compute the wave-front set of u0. In other words, we prove Theorem
6.2 for t = 0. Recall that (see (6.4))

u0(x, y, z) =

∫∫
R2

Y (ζ)ζ1/2φ(η1)ψη1(ζ1/3x)ei(yζ
1/3η1+zζ)dη1dζ. (6.10)

Lemma 6.11. The function u0 is smooth on R3 \ {(0, 0, 0)}.

Proof. We prove successively that u0 is smooth outside x = 0, y = 0 and z = 0. Any
derivative of (6.10) in x, y, z is of the form∫∫

R2

Y (ζ)ζαψ(γ)
η1

(ζ1/3x)φ(η1)ηβ1 e
i(yζ1/3η1+zζ)dη1dζ (6.11)

5This means that for any compact K ⊂ R, in the definition of S(R), the constants in the semi-norms can be
taken independent of µ ∈ K.
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for some α, β, γ > 0. By the dominated convergence theorem, locally uniform (in x, y, z) con-
vergence of these integrals implies smoothness. Recalling that φ has compact support, we see
that the main difficulty for proving smoothness comes from the integration in ζ in (6.11).

For x 6= 0 it follows from Lemma 6.10 (Point 2) that the integrand in (6.11) has a fast decay
in ζ. This proves that u0 is smooth outside x = 0.

If y 6= 0, we use the fact that the phase yζ1/3η1 + zζ is non critical with respect to η1 to get
the decay in ζ. More precisely, (6.11) is equal to∫∫

R2

Y (ζ)ζα(yζ1/3)−NDN
η1

(ψ(γ)
η1

(ζ1/3x)φ(η1)ηβ1 )ei(yζ
1/3η1+zζ)dη1dζ

after integration by parts in η1 (where Dη1 = i−1∂η1). Taking N sufficiently large and using

that DN
η1

(ψ
(γ)
η1 (ζ1/3x)φ(η1)ηβ1 ) is bounded thanks to Lemma 6.10 (Point 3), we obtain that this

integral converges when y 6= 0, and that this convergence is locally uniform with respect to
x, y, z. This proves that u0 is smooth outside y = 0.

Finally, let us study the case z 6= 0. We can also assume that y 6 1 due to the previous
point.

Claim. The function
ζ 7→ Y (ζ)ζ1/2φ(η1)ψ(γ)

η1
(ζ1/3x)eiyζ

1/3η1 (6.12)

is a symbol (see Definition 6.16) uniformly on every compact in (y, η1).

Proof. The functions ζ 7→ ζ1/2φ(η1) and ζ 7→ Y (ζ)eiyζ
1/3η1 are symbols. Besides, ζ 7→

ψ
(γ)
η1 (ζ1/3x) is also a symbol (of degree 0 with ρ = 1): we notice for example that the first deriva-

tive with respect to ζ writes (1/3)ζ−1(ζ1/3x)ψ
(γ+1)
η1 (ζ1/3x) which is uniformly O(1/ζ) thanks

to Lemma 6.10 (Point 2). Finally, since the space of symbols is an algebra for the pointwise
product, we get the claim.

Integrating (6.12) in η1 ∈ R and using Lemma 6.17 (in the variable ζ), we obtain that (6.10)
is smooth outside z = 0, which concludes the proof of Lemma 6.11.

The following lemma proves Theorem 6.2 at time t = 0.

Lemma 6.12. There holds WF (u0) = {(0, 0, 0; 0, 0, λ) ∈ T ∗R3, λ > 0}.

Proof. The Fourier transform of u0 is

U0(ξ, η, ζ) = Y (ζ)φ(η/ζ1/3)Ψη/ζ1/3(ξ/ζ1/3) (6.13)

where Ψµ is the Fourier transform of the eigenfunction ψµ. By Lemma 6.10 (Point 2), for any
N ∈ N we get

|U0(ξ, η, ζ)| 6 CN |φ(η/ζ1/3)|(1 + |ξ/ζ1/3|)−N . (6.14)

We show that U0 is fastly decaying in any cone C := {|ξ|+ |η| > c|ζ|} for c small. We split
the cone into C = C1 ∪ C2 with C1 = C ∩ {|ξ| 6 |η|} and C2 = C ∩ {|η| 6 |ξ|}.
In C1, we have |η/ζ1/3| > c1|η2/3|. This implies that φ(η/ζ1/3) vanishes for η large enough.
Hence, U0 has fast decay in C1.
In C2, we have |ξ/ζ1/3| > c2|ξ|2/3 > c3(1 + ξ2 + η2 + ζ2)1/3, hence, plugging into (6.14), we get
that U0 has fast decay in C2.

This proves that no point of the form (x, y, z; ξ, η, ζ) ∈ T ∗R3 with (ξ, η) 6= (0, 0) can belong
to WF (u0). Moreover, due to the factor Y (ζ), necessarily WF (u0) ⊂ {ζ > 0}. Combining with
Lemma 6.11, we get the inclusion ⊂ in Lemma 6.12.

Let us finally prove that (0, 0, 0; 0, 0, λ) ∈ WF (u0) for λ > 0. We pick a, b ∈ R such that
φ(a) 6= 0 and Ψa(b) 6= 0. Then, we note that U0(ζ1/3a, ζ1/3b, ζ) is independent of ζ and 6= 0, thus
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it is not fastly decaying as ζ → +∞. Since (ζ1/3a, ζ1/3b, ζ) converges to the direction (0, 0,+∞)
as ζ → +∞, we get that there exists at least one point of the form (x, y, z; 0, 0, λ) ∈ T ∗R3 which
belongs to WF (u0). By Lemma 6.11, we necessarily have x = y = z = 0, which concludes the
proof.

6.4 Wave front of the propagated solution

In this Section, we complete the proof of Theorem 6.2. We set

Gt = {(0, y, 0; 0, 0, λ), λ > 0, y ∈ tF ′(Support(φ))}.

In Section 6.4.1, we prove the inclusion WF (U(t)u0) ⊂ Gt, and then in Section 6.4.2 the converse
inclusion Gt ⊂WF (U(t)u0). This completes the proof of Theorem 6.2.

6.4.1 The inclusion WF (U(t)u0) ⊂ Gt
For this inclusion, we follow the same arguments as in Section 6.3: we adapt Lemma 6.11 to
find out the singular support of U(t)u0, and then we adapt Lemma 6.12 to determine the full
wave-front set.

Lemma 6.13. For any t ∈ R, U(t)u0 is smooth outside {(0, y, 0) ∈ R3, y ∈ tF ′(I)}.

Proof. As in Lemma 6.11, we prove successively that U(t)u0 is smooth outside x = 0,
y /∈ tF ′(I) and z = 0. Any derivative of U(t)u0 is of the form∫∫

R2

Y (ζ)ζαψ(γ)
η1

(ζ1/3x)φ(η1)ηβ1 e
−iζ1/3(tF (η1)−yη1)eizζdη1dζ (6.15)

for some α, β, γ > 0.

For x 6= 0, it follows from Lemma 6.10 (Point 2) that the integrand in (6.15) has a fast decay
in ζ (locally uniformly in x, y, z). This proves that U(t)u0 is smooth outside x = 0.

If y /∈ tF ′(I), we use the fact that the phase ζ1/3(tF (η1) − yη1) − zζ is non critical with
respect to η1 to get decay in ζ. We set Rη1H = Dη1(Q−1H) where Q = Dη1(−i(ζ1/3(tF (η1) −
yη1) − zζ)) = −ζ1/3(tF ′(η1) − y). Note that Q 6= 0 since y /∈ tF ′(I). Doing N integration by
parts, the above expression becomes∫∫

R2

Y (ζ)ζαRNη1
(ψ(γ)

η1
(ζ1/3x)φ(η1)ηβ1 )e−iζ

1/3(tF (η1)−yη1)eizζdη1dζ. (6.16)

We set H(x, η1, ζ) = ψ
(γ)
η1 (ζ1/3x)φ(η1)ηβ1 .

Claim. For any N , there exists CN such that |RNη1
H(x, η1, ζ)| 6 CN |ζ|−N/3 for any ζ ∈ R,

any η1 ∈ I = Support(φ) and any x ∈ R.

Taking N sufficiently large, the claim implies that (6.16), and thus (6.15), converge (locally
uniformly), which proves the smoothness when y /∈ tF ′(I) thanks to the dominated convergence
theorem.

Proof of the claim. We prove it first for N = 1. We have

Rη1H =
Dη1H

Q
−HDη1Q

Q2
. (6.17)

Since H is bounded (thanks to Point 2 of Lemma 6.10) and |Q| > c|ζ|1/3 with c > 0 and

|Dη1Q| 6 C|ζ|1/3 on the support of φ, we have |HDη1Q

Q2 | 6 c|ζ|−1/3. For the first term in the
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right-hand side of (6.17), we only need to prove that Dη1H is bounded. When Dη1 falls on φ(η1)

or ηβ1 , it is immediate. When Dη1 falls on ψ
(γ)
η1 (ζ1/3x), we use Lemma 6.10 (Point 3) and also get

the result. This ends the proof of the case N = 1. Now, we notice that our argument works not

only for H, but for any function of the form ψ
(γ′)
η1 (ζ1/3x)φ(δ)(η1)ηβ

′

1 where φ(δ) is any derivative
of φ and β′, γ′ > 0. Hence, applying the previous argument recursively, we obtain the claim for
any N .

Finally, the case z 6= 0 is checked in the same way as in the case t = 0, just shifting the
phase by itζ1/3F (η1) in (6.12).

Let us finish the proof of the inclusion WF (U(t)u0) ⊂ Gt.
The Fourier transform of U(t)u0 is

F(U(t)u0)(ξ, η, ζ) = Y (ζ)φ(η/ζ1/3)Ψη/ζ1/3(ξ/ζ1/3)e−it
√
α1(η,ζ). (6.18)

The change of phase with respect (6.13) has no influence on the properties of decay at infinity.
Hence, the proof of Lemma 6.12 allows to conclude that WF (U(t)u0) ⊂ Gt for any t ∈ R.

6.4.2 The inclusion Gt ⊂ WF (U(t)u0)

We fix t ∈ R and we prove the non smoothness at (0, tF ′(c), 0) for any c ∈ I. We can assume
that c is in the interior of I and that φ(c) 6= 0. This implies thanks to (6.3) that F ′′(c) 6= 0.
We want to show non-smoothness with respect to z at x = 0, y = tF ′(c) and z = 0. We
set v(z) := (U(t)u0)(0, tF ′(c), z). We will show that the Fourier transform of v is not fastly
decaying.

Starting from (6.4), we get the explicit formula for the Fourier transform of v,

Fv(ζ) = Y (ζ)ζ1/2K(ζ)

where

K(ζ) =

∫
R
φ(η1)ψη1(0)e−iζ

1/3t(F (η1)−F ′(c)η1)dη1.

The only critical point of the phase η1 7→ −iζ1/3t(F (η1) − F ′(c)η1) located in I is c thanks to
(6.3). Applying the stationary phase theorem with respect to η1, we obtain

K(ζ) = e−iζ
1/3t(F (c)−F ′(c)c)

∑
j>1

aj(ζ
1/3|t|)−j/2

where

a1 = φ(c)ψc(0)

(
2π

|F ′′(c)|

)1/2

exp(−iπ
4

sgn(F ′′(c))) 6= 0.

Since φ(c) > 0 and ψc(0) > 0,we have K(ζ) ∼ c0(ζ1/3|t|)−1/2 where c0 6= 0, and Fv(ζ) is not
fastly decaying as ζ → +∞. Applying Lemma 6.17 to a = Fv which is a symbol in ζ, this
implies that v is not smooth at z = 0, thus U(t)u0 is not smooth at (0, tF ′(c), 0).

6.5 The function Fk(µ) =
√
λk(µ)

In this Section, we illustrate Theorem 6.2 with some plots and asymptotics of the functions
Fk defined by µ →

√
λk(µ). As shown by Theorem 6.2 (and Remark 6.8), the speeds of the
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propagation of singularities along the singular curve are determined by the derivative F ′k(µ).
Below, we plot F = F1 and F ′ for µ ∈ (−10, 10)6.

(a) Plot of F (µ) for µ ∈ (−10, 10) (b) Plot of F ′(µ) for µ ∈ (−10, 10)

Recall that the Fk’s are analytic (see Point 1 of Lemma 6.10). We state a more precise
version of Proposition 6.3:

Proposition 6.14. For any k ∈ N \ {0}, there holds F ′k(µ)→ 1− as µ→ +∞, F ′k(µ)→ 0− as
µ → −∞, and F ′k is minimal for some value µ?k < 0. There exists ak ∈ (−1, 0) such that the
range of F ′k is [ak, 1).

Proposition 6.14 will be a consequence of the following result:

Proposition 6.15. Denote by λk(µ) the k-th eigenvalue of Hµ = −d2
x + (µ + x2)2. Then, for

k ∈ N \ {0}, as µ→ +∞,

λk(µ) = µ2 +
√

2(2k − 1)
√
µ+

∞∑
`=2

b`,kµ
2−3`/2 (6.19)

and
d

dµ

√
λk(µ) = 1− 2k − 1

2
√

2
µ−3/2 + o(µ−3/2) (6.20)

These derivatives are > 0 and converge to 1.

As µ→ −∞, for k ∈ N \ {0},

λ2k−1(µ) = 2(2k − 1)
√
−µ+

∞∑
`=2

c`,k(−µ)2−3`/2 (6.21)

λ2k(µ) = λ2k−1 + o
(
µ−∞

)
(6.22)

and

d

dµ

√
λ2k−1(µ) = −

√
2(2k − 1)

4
(−µ)−3/4 + o((−µ)3/4) (6.23)

and the same for d
dµ

√
λ2k(µ). These derivative are < 0 and converge to 0.

6We thank Julien Guillod for his help in making the first numerical experiments.
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Proof of Proposition 6.15. For µ > 0, we consider the operator Tµ : ψ 7→ ψ(·/µ1/4). Then
Hµ = T−1

µ GµTµ where Gµ = µ2 +µ1/2(−d2
x+2x2 +x4/µ3/2). The eigenvalues of −d2

x+2x2 +hx4

for h → 0 can be computed with the usual perturbation theory (see [RS78, Chapter XII.3]),
and this yields (6.19) with h = µ−3/2. Moreover the formal expansion can be differentiated with
respect to µ, hence we get (6.20).

For µ = −µ0 < 0, we see that the transformation x 7→ µ
1/4
0 (x ∓ µ

1/2
0 ) conjugates Hµ to

the operator µ
1/2
0 (−d2

x + 4x2 ± 4µ
−3/4
0 x3 + µ

−3/2
0 x4). Using again perturbation theory and the

separation into pairs of eigenvalues in double wells (see [HS84]), we get (6.21) and (6.22), and
(6.23) follows.

Proof of Proposition 6.14. The convergences at ±∞ are proved by Proposition 6.15. This
behaviour at ±∞ implies the existence of µ?k such that F ′k(µ

?
k) = ak is minimal. We denote by

ψkµ the normalized eigenfunction corresponding to λk(µ). Taking the first derivative (with value

in the domain D(H0)) with respect to µ of the eigenfunction equation (Hµ−λk(µ))ψkµ = 0, and

then integrating against ψkµ, we obtain λ′k(µ) =
∫
R(µ+ x2)ψkµ(x)2dx. Thus,

F ′k(µ) =
1√
λk(µ)

∫
R

(µ+ x2)ψkµ(x)2dx

which is positive for µ > 0, hence µ?k < 0.

It remains to show that |F ′k(µ)| < 1 for every µ: by the Cauchy-Schwarz inequality, we get

F ′k(µ)2 6
1

λk(µ)

∫
R

(µ+ x2)2ψkµ(x)2dx

∫
R
ψkµ(x)2dx

and, from the quadratic form associated to Hµ,∫
R

(µ+ x2)2ψkµ(x)2dx < λk(µ),

which concludes the proof.

6-A Fourier transform of symbols

Definition 6.16. A smooth function a : Rd → C is called a symbol of degree 6 m if there exists
0 < ρ 6 1 so that the partial derivatives of a satisfy

∀α ∈ Nd, |Dαa(ξ)| 6 Cα(1 + |ξ|)m−ρ|α|.

The space of symbols is an algebra for the pointwise product. If a is a real valued symbol of
degree m < 1 and ρ > m, eia is a symbol of degree 0 (with a different ρ).

We will need the

Lemma 6.17. If a is a symbol, the Fourier transform Fa of a is smooth outside x = 0 and all
derivatives of Fa decay fastly at infinity. If moreover a does not belong to the Schwartz space
S(Rd), then Fa is non smooth at x = 0.

Proof. For x 6= 0 and for any α, β ∈ Nd, we have

(Fa)(β)(x) = Cβ

∫
Rd
ξβa(ξ)e−ixξdξ =

cαβ
xα

∫
Rd
Dα
ξ (ξβa(ξ))e−ixξdξ. (6.24)

The multi-index β ∈ Nd being fixed, this last integral converges for |α| sufficiently large since
a is a symbol. By the dominated convergence theorem, this implies that Fa is smooth outside
x = 0. Moreover, (6.24) also implies that all derivatives of Fa decay fastly at infinity.

Finally, if Fa were smooth at 0, then Fa would be in the Schwartz space as well as a.



Chapter 7

Quantum limits of sub-Laplacians
via joint spectral calculus

“La chance c’est comme le Tour de France, on l’attend longtemps et ça passe vite.”
Amélie Poulain.

“Combien de personnes savent que pour rester éveillé, il faut soustraire les moutons ?”
Les Marx Brothers.

This chapter is adapted from the preprint [Let20a]. It proves Theorems 8, 9 and 10.
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Warning: Section 1.5 must be read before this chapter, since we use without recalling them
a lot of notations introduced in this section.

Structure of the chapter. In Section 7.1 we prove Theorem 8 using joint spectral calculus.
Then, Section 7.2 is devoted to the proof of Theorem 9. In Section 7.2.2, we explain the spectral
decomposition of L2(Hm) according to the eigenspaces of the harmonic oscillators Ωj . Building
upon this spectral decomposition and Theorem 8, we establish in Section 7.2.3 Theorem 9. In
Section 7.3, we prove Theorem 10 by constructing explicitely a sequence of eigenfunctions with
prescribed Quantum Limit. In Section 7.4, we make a few remarks concerning the links of our
main results with non-commutative harmonic analysis.

Then, we provide some supplementary material (this is an appendix in the preprint [Let20a]).
In Section 7-A.1, we prove two elementary lemmas. In Section 7-A.2, we provide some supple-
mentary material on Assumption (A). Finally, in Section 7-A.3, we prove a result concerning
Quantum Limits of flat contact manifolds in any dimension: for such manifolds, the invariance
properties of Quantum Limits are essentially the same as in the 3D case. Although this is a
direct consequence of the results in [FF21], we decided to provide here a short and self-contained
proof since this can be seen as a toy model for the averaging techniques used repeatedly in the
proof of Theorem 9.

We also mention that in a previous version of the corresponding paper1, we explain an
alternative way to obtain the measure QJ on SJ and the family of measures (νJs )s∈SJ on SΣJ ,
based on pure functional analysis.

Joint spectral calculus. A key ingredient in the proof of all results of the present chapter is
the joint spectral calculus (see [RS72, VII and VIII.5] and [Col79]) associated to the operators
Z1, . . . , Zm and −∆g,µ. This joint calculus, at least for Heisenberg groups, is well-known, see for
example [DS84, Section 2], or [Tha09] for the quotient case. It was used for instance in [MRS95]
to prove a Marcinkiewicz multiplier theorem in H-type groups.

7.1 Proof of Theorem 8

In this Section, we prove Theorem 8. We fix a sub-Laplacian ∆g,µ satisfying Assumption (A),
we fix (ϕk)k∈N∗ a sequence of eigenfunctions of −∆g,µ associated with the eigenvalues (λk)k∈N∗

with λk → +∞ and ‖ϕk‖L2 = 1, and we consider ν, a Quantum Limit associated to the sequence
(ϕk)k∈N∗ .

Let us first give an intuition of how the proof goes. We decompose ϕk as a sum of functions
which are joint eigenfunctions of −∆g,µ and of all the Z∗jZj for 1 6 j 6 m. Each of these
functions is an eigenfunction of −∆g,µ with same eigenvalue λk as ϕk. Then, roughly speaking,
we gather some of these functions into ϕ∅k or into ϕJk for some J ∈ P \ {∅}, depending on their
eigenvalues with respect to the operators Z∗jZj (for 1 6 j 6 m) and −∆g,µ. More precisely,
setting

E = −∆g,µ +
m∑
j=1

Z∗jZj ∈ Ψ2(M), (7.1)

the functions which we select (asymptotically as k → +∞) to be in ϕJk are those such that:

1. −∆g,µ � E;

1https://arxiv.org/pdf/2007.00910.pdf

https://arxiv.org/pdf/2007.00910.pdf
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2. if i /∈ J , then Z∗jZj � E;

3. if j ∈ J , then Z∗jZj & E.

Here, since we consider joint eigenfunctions of −∆g,µ, E and Z∗jZj for any 1 6 j 6 m, the
above notation A� B (resp. A & B) means that the eigenvalue with respect to A is negligible
compared to (resp. is greater than a constant times) the eigenvalue with respect to B.

This splitting “quantizes” the fact that ΣJ is the set of points (q, p) of T ∗M for which
g∗(q, p) = 0 (point 1 above) and hZj(q,p) is non-nul if and only if j ∈ J (points 2 and 3 above).

Here is the rigorous proof:

Proof of Theorem 8. For n ∈ N∗, let χn ∈ C∞c (R, [0, 1]) such that χn(x) = 1 for |x| 6 1
2n and

χn(x) = 0 for |x| > 1
n . We consider E given by (7.1) which, thanks to point (i) in Assumption

(A), is elliptic. Its principal symbol is

σP (E) = g∗ +
m∑
j=1

σP (Z∗jZj).

Also, thanks to point (ii) in Assumption (A), we know that E commutes with Zj , for any
1 6 j 6 m, and with −∆g,µ. Therefore, thanks to functional calculus (see [RS72, VII and
VIII.5]), for J ∈ P \ {∅}, it makes sense to consider the operator

PJn = χn

(
−∆g,µ

E

)∏
i/∈J

χn

(
Z∗i Zi
E

)∏
j∈J

(1− χn)

(
Z∗jZj

E

)
. (7.2)

Similarly, we consider

P ∅n = (1− χn)

(
−∆g,µ

E

)
. (7.3)

As we will see, for any J ∈ P, PJn ∈ Ψ0(M) and, as n→ +∞, its principal symbol tends either
to the characteristic function 1ΣJ : T ∗M → R of ΣJ , or to the characteristic function 1U∗M of
U∗M if J = ∅. Recall that ΣJ has been defined in (1.34).

For any J ∈ P, the following properties hold:

(1) PJn ∈ Ψ0(M);

(2) [PJn ,∆g,µ] = 0;

(3) If J 6= ∅, then σP (PJn )→ 1ΣJ pointwise as n→ +∞.
If J = ∅, then σP (PJn )→ 1U∗M pointwise as n→ +∞.

Let us prove Point (1). Since E ∈ Ψ2(M) is elliptic, it is invertible, and thus −∆g,µE
−1 =

−E−1∆g,µ ∈ Ψ0(M) is self-adjoint. Hence, by [HV00, Theorem 1(ii)], (1−χn)
(
−∆g,µ

E

)
∈ Ψ0(M)

with principal symbol

(1− χn)

(
g∗

σP (E)

)
.

Similarly, the operators χn

(
−∆g,µ

E

)
, χn

(
Z∗i Zi
E

)
and (1 − χn)

(
Z∗j Zj
E

)
(for any 1 6 i, j 6 m)

belong to Ψ0(M) with respective principal symbols

χn

(
g∗

σP (E)

)
, χn

(
|hZi |2

σP (E)

)
and (1− χn)

(
|hZj |2

σP (E)

)
.
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Hence, PJn ∈ Ψ0(Hm).

Point (2) is an immediate consequence of functional calculus, since ∆g,µ commutes with E
and with Zj for any 1 6 j 6 m.

Let us prove Point (3). For κ > 0, we consider the cone

Sκ :=

{
g∗

σP (E)
6 κ

}
⊂ T ∗M

and, for 1 6 j 6 m, we also consider the cone

T jκ =

{
|hZj |2

σP (E)
6 κ

}
⊂ T ∗M.

For the moment, we assume J 6= ∅. Then, the support of σP (PJn ) is contained in S 1
n

, in T i1
n

for i /∈ J and in the complementary set (T j1
2n

)c for j ∈ J . It follows that, in the limit n→ +∞,

σP (PJn ) vanishes everywhere outside the set of points (q, p) satisfying g∗(q, p) = 0,

hZi(q, p) = 0, ∀i /∈ J
hZj (q, p) 6= 0, ∀j ∈ J .

We note that these relations exactly define the set ΣJ .
Conversely, let (q, p) ∈ ΣJ . Our goal is to show that σP (PJn )(q, p) = 1 for sufficiently large
n ∈ N∗. It follows from a separate analysis of the principal symbol of each factor in the product
(7.2):

• Since (q, p) ∈ Σ, there holds g∗(q, p) = 0, hence

χn

(
g∗

σP (E)

)
= 1;

• For i /∈ J , since hZi(q, p) = 0, there holds

χn

(
|hZi |2

σP (E)

)
(q, p) = 1;

• For j ∈ J , we know that hZj (q, p) 6= 0. Hence, for n sufficiently large, at (q, p),

(1− χn)

(
|hZj |2

σP (E)

)
(q, p) = 1.

All in all, σP (PJn )(q, p) = 1 for sufficiently large n, which proves Point (3) in case J 6= ∅. The
proof in the case J = ∅ is very similar, for the sake of brevity we do not repeat it here.

We now conclude the proof of Theorem 8. We consider, for fixed n ∈ N and J ∈ P \{∅}, the
sequence (PJn ϕk)k∈N∗ , which, thanks to Points (1) and (2), is also a sequence of eigenfunctions of
−∆g,µ with same eigenvalues as ϕk. We denote by νJn a microlocal defect measure of (PJn ϕk)k∈N∗

and by ν∅n a microlocal defect measure of the sequence given by the eigenfunctions

ϕk −
∑

J∈P\{∅}

PJn ϕk.
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Furthermore, we can assume thanks to the diagonal extraction process that the extraction used
to obtain all these microlocal defect measures is the same for any n ∈ N∗ and any J ∈ P.

Finally, we take νJ a weak-star limit of (νJn )n∈N and βν∅ a weak-star limit of (ν∅n)n∈N, with
ν ∈P(S∗M) and β ∈ [0, 1]. Thanks to the analysis done while proving Point (3), we know that
νJ gives no mass to the complementary of SΣJ in S∗M , and that ν∅(SΣ) = 0. Again, thanks
to the diagonal extraction process, up to extraction of a subsequence in k ∈ N∗, we can write

ϕk = ϕ∅k +
∑

J∈P\{∅}

ϕJk (7.4)

where the unique microlocal defect measure of (ϕ∅k)k∈N∗ is βν∅, and ϕJk = PJr(k)ϕk (for some

function r tending (slowly) to +∞ as k → +∞) has a unique microlocal defect measure as
k → +∞, which is νJ .

Let us prove that (7.4) implies (1.39). For that, we first recall an elementary lemma con-
cerning joint microlocal defect measures (see Definition 1.30). It is proved in Section 7-A.1.

Lemma 7.1. Let (uk), (vk) be two sequences of functions weakly converging to 0, each with a
unique microlocal defect measure, which we denote respectively by µ11 and µ22. Then, any joint
microlocal defect measures µ12 (resp. µ21) of (uk)k∈N∗ and (vk)k∈N∗ (resp. of (vk)k∈N∗ and
(uk)k∈N∗) is absolutely continuous with respect to both µ11 and µ22.

Using Lemma 7.1, we then notice that if J ,J ′ ∈ P \ {∅} are distinct, the joint microlocal
defect measures of (ϕJk )k∈N∗ and (ϕJ

′

k )k∈N∗ vanish since ΣJ and ΣJ ′ are disjoint. Similarly,
the joint microlocal defect measure of (ϕ0

k)k∈N∗ with the sequence (ϕJk )k∈N∗ vanishes for any
J ∈ P \ {∅}. Therefore, evaluating (Op(a)ϕk, ϕk) and using (7.4), we obtain (1.39), which
finishes the proof of Theorem 8.

Remark 7.2. The above proof is inspired by the proof of a slightly different fact (see [Ger91b,
Proposition 3.3]): if θ is the unique microlocal defect measure of a sequence (ψk)k∈N∗ of functions
over a manifold M , A (resp. B) is a closed (resp. open) subset of S∗M , and A and B form a
partition of S∗M , then we can write θ = θA + θB, with θA (resp. θB) supported in A (resp.
θB(A) = 0) and ψk = ψAk +ψBk such that θA (resp. θB) is a microlocal defect measure of (ψAk )k∈N∗

(resp. of (ψBk )k∈N∗). The proof just consists in choosing symbols pn ∈ S 0(M) concentrating on
A and taking ψAk = Op(pn)ψk as in the proof above.

In the proof of Theorem 8, we had to choose particular symbols pn in order to ensure that
ϕJk and ϕ∅k are still eigenfunctions of −∆g,µ.

Remark 7.3. As already mentioned, the ideas underlying Theorem 8 are close to those of [Col79,
Theorem 0.6], which deals with the joint spectrum of commuting pseudodifferential operators
whose sum of squares is elliptic. The parallel is the following: the elliptic operator Q in [Col79]
is replaced here by E, and the operators Pi in [Col79] are replaced here by the Xi and the Zj .

With this parallel in mind and using the tools developed in the above proof, given a Rieman-
nian Laplacian ∆g =

∑
X2
i with all the Xi commuting and a sequence of eigenfunctions of ∆g,

one could identify which part of the eigenfunctions concentrates on each part of the cotangent
bundle.

In our setting, not all Xi and Zj commute, but
∑N

i=1X
∗
iXi commutes with all Zj , which is

sufficient because we do not look for any information on the QLs in U∗M . Our statement is, in
some sense, more precise than [Col79, Theorem 0.6] since the splitting of eigenfunctions is made
precise, but also less general becauseXi and Zj are differential, and not general pseudodifferential
operators as in [Col79].
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7.2 Proof of Theorem 9

This section is devoted to the proof of Theorem 9. In other words, we seek to prove that for
any continuous function a : SΣ→ R, there holds∫

SΣ
adν∞ =

∑
J∈P\{∅}

∫
SJ

(∫
SΣJ

adνJs

)
dQJ (s)

where νJ , νJs and QJ are as in (1.44).

Therefore, we fix m > 2 and ∆g,µ = ∆ as in Section 1.5.2. The last part of Theorem 9 is
an immediate consequence of the last part of Proposition 1.29, and therefore we are reduced to
prove Points (1) and (2). The first step in the proof consists in reducing the analysis to the part
of the QL above ΣJ for some J ∈ P \ {∅}, and it is achieved thanks to Theorem 8 as follows.

Reduction to a fixed J ∈ P \ {∅}. Combining Theorem 8 with Point (1) of Proposition
1.29, we see that it is enough to prove Point (2) of Theorem 9, and that it is possible to assume
that (ϕk)k∈N∗ is a sequence of eigenfunctions with eigenvalue tending to +∞, and with a unique
microlocal defect measure ν, which can be assumed to be supported in SΣ. Indeed, thanks to
Theorem 8, we can even assume that all the mass of ν is contained in SΣJ for some J ∈ P \{∅},
i.e., ν = νJ : once we have established the decomposition

νJ =

∫
SJ

νJs dQ
J (s),

Point (2) of Theorem 9 follows by just gluing all pieces of ν together thanks to Theorem 8.

Therefore, in order to establish Point (2) of Theorem 9, we assume that the unique microlocal
defect measure of (ϕk)k∈N∗ has no mass outside SΣJ for some J ∈ P \ {∅}. By symmetry, we
can even assume that J = {1, . . . , J} with J = Card(J ).

To sum up, the sequence (ϕk)k∈N∗ that we consider is no more a general sequence of nor-
malized eigenfunctions with eigenvalues tending to +∞, but it satisfies the following property:

Property 7.4. (ϕk)k∈N∗ is a bounded sequence of eigenfunctions of −∆ labeled with increasing
eigenvalues tending to +∞, and with unique microlocal defect measure ν. Moreover, there exist
J 6 m and r(k)→ +∞ as k → +∞ such that

ϕk = PJr(k)ϕk (7.5)

for J = {1, . . . , J} and for any k ∈ N∗, where PJn is defined in (7.2). In particular, ν has no
mass outside SΣJ .

Remark 7.5. Writing Σ as a disjoint union (1.34), we notice that ΣJ is indeed the set of points
(q, p) ∈ Σ with p = (px1 , py1 , pz1 , . . . , pxm , pym , pzm) such that(

pzj 6= 0
)
⇔ (j ∈ J ) .

7.2.1 Illustration and sketch of proof

Since the rest of the proof is a bit involved, in this section we provide an illustration and a sketch
of proof which could be helpful. The proof is written in full details in Sections 7.2.2 and 7.2.3.
Logically, one may omit the discussion which follows and proceed directly to the next section.
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An illustration of Point (2) of Theorem 9. A way to get an intuition of Point (2) of
Theorem 9 is to fix (n1, . . . , nm) ∈ Nm, and to consider a sequence of normalized eigenfunctions
(ψk)k∈N∗ of −∆ given in a tensor form as in Remark 1.31, such that, for any k ∈ N∗, ψk is also,
for any 1 6 j 6 m, a sequence of eigenfunctions of Rj with eigenvalue tending to +∞, and of
Ωj with eigenvalue 2nj + 1. We notice that any associated Quantum Limit ν is supported in
SΣ: it follows directly from the arguments developed in the proof of Theorem 8, since for any
1 6 j 6 m, the eigenvalues with respect to R2

j are much larger than the eigenvalues with respect
to −∆.

Let J = {1, . . . ,m} ∈ P. Then, ν is necessarily invariant under the Hamiltonian vector field

~ρJs , where s = (s1, . . . , sm) ∈ SJ is defined by sj =
2nj+1

2n1+1+...+2nm+1 for j = 1, . . . ,m. To see it,
we set

R =

∑m
j=1(2nj + 1)Rj∑m
j=1 2nj + 1

and we note that for any A ∈ Ψ0(Hm), we have

([A,R]ψk, ψk) = (ARψk, ψk)− (Aψk, Rψk) = 0

since ψk is an eigenfunction of R. In the limit k → +∞, taking the principal symbol, we obtain∫
SΣ{a, ρ

J
s }dν = 0 where a = σP (A). Since it is true for any a ∈ S 0(Hm), this implies ~ρJs ν = 0.

Hence, for such sequences (ψk)k∈N∗ , any QL verifies ν = νJs (which is invariant under ~ρJs ), QJ

is a Dirac mass on s and QJ
′

= 0 for P 3 J ′ 6= J .

In some sense, any QL supported on SΣ is a linear combination of sequences as in the above
example, for different J ∈ P \ {∅} and different s ∈ SJ .

Roles of Rj and Ωj. The operators Rj and Ωj play a key role in the proofs of Theorem 9
and Theorem 10. As illustrated in the previous paragraph, the operators Ωj are linked with the
parameters s ∈ SJ : in some sense, once the eigenfunctions have been orthogonally decomposed
with respect to the operators Rj and Ωj (as explained in Section 7.2.2), the ratios between the Ωj-
s determines the invariance property of the associated Quantum Limits through the parameter
s and the Hamiltonian vector field ~ρJs . On the other side, the operators Rj ‘determine’ the
microlocal support of the associated Quantum Limits, for example the element J ∈ P \ {∅}
(such that the QL concentrates on SΣJ ). The next paragraph, which is devoted to a sketch of
proof of Theorem 9, will make these intuitions more precise.

Sketch of proof. In order to simplify the presentation, in this sketch of proof, we assume
that J = {1, . . . ,m} and we omit this notation (writing for example S instead of SJ ), but the
ideas are similar for any J ∈ P \ {∅}.

Le us use the decomposition (1.42) to write each ϕk as a sum of eigenfunctions of operators
of the form

∑m
j=1 (2nj + 1)Rj for some integers n1, . . . , nm:

ϕk =
∑

(n1,...,nm)∈Nm
ϕk,n1,...,nm , (7.6)

with Ωjϕk,n1,...,nm = (2nj + 1)ϕk,n1,...,nm , ∀ 1 6 j 6 m.

We will see in Section 7.2.2 that the decomposition (7.6) is orthogonal, and therefore each
eigenfunction ϕk,n1,...,nm has the same eigenvalue λk as ϕk. Then, we do a careful analysis of this
decomposition into modes, which, in the limit k → +∞, gives the disintegration ν =

∫
S νsdQ(s).
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This analysis builds upon a partition of the lattice Nm into positive cones, each of them gathering
together the modes ϕk,n1,...,nm for which the m-tuples(

2n1 + 1

2n1 + 1 + . . .+ 2nm + 1
, . . . ,

2nm + 1

2n1 + 1 + . . .+ 2nm + 1

)
are approximately the same: each of these positive cones accounts for a small region of the
simplex S. If Nm is partitioned into 2N positive cones CN` (with 0 6 ` 6 2N − 1), this gathering
defines eigenfunctions

ϕNk,` =
∑

(n1,...,nm)∈CN`

ϕk,n1,...,nm

of −∆ such that

ϕk =
2N−1∑
`=0

ϕNk,` (7.7)

for any N ∈ N∗.
Taking a microlocal defect measure νN` in each sequence (ϕNk,`)k∈N∗ and making N → +∞

(i.e., taking the limit where the positive cones degenerate to half-lines parametrized by s ∈ S),
we obtain from (7.7) the disintegration ν =

∫
S νsdQ(s).

Given a certain s = (s1, . . . , sm) ∈ S, dQ(s) accounts for the relative importance, in the
limit N → +∞, of the eigenfunction ϕNk,`(N) in the sum (7.7), where `(N) is chosen so that the

positive cone CN`(N) converges to the half-line with parameter s as N → +∞.

The invariance property ~ρsνs = 0 can be seen from the fact that, for any large N and any
0 6 ` 6 2N−1, each eigenfunction ϕk,n1,...,nm with (n1, . . . , nm) ∈ CN` is indeed an eigenfunction
of the operator

m∑
i=1

(
2ni + 1

2n1 + 1 + . . .+ 2nm + 1

)
Ri

which, by definition of ϕNk,`, is approximately equal toRs = s1R1+. . .+smRm if s = (s1, . . . , sm) ∈
S denotes the parameter of the limiting half-line of the positive cones CN` as N → +∞. Hence,
ϕNk,` is an approximate eigenfunction of Rs, from which it follows by a classical argument that
νs is invariant under the Hamiltonian vector field ~ρs of ρs = (σP (Rs))|Σ.

7.2.2 Spectral decomposition of −∆

In this section, we start the proof of Theorem 9 with a detailed study of the action of −∆ on
L2(Hm), writing it under the form of an orthogonal decomposition of eigenspaces.

Let us recall that, for 1 6 j 6 m, we set Rj =
√
∂∗zj∂zj and we made a Fourier expansion with

respect to the zj-variable. On the eigenspaces corresponding to non-zero modes of this Fourier
decomposition, we defined the operator Ωj = −R−1

j ∆j = −∆jR
−1
j where ∆j = X2

j + Y 2
j . For

example, −∆ acts as

−∆ =
m∑
j=1

RjΩj

on any eigenspace of −∆ on which Rj 6= 0 for any 1 6 j 6 m. Moreover, Rj and Ωj are
pseudodifferential operators of order 1 in any cone of T ∗Hm whose intersection with some conic
neighborhood of the set {pzj = 0} is reduced to 0 (for example in small conic neighborhoods of
ΣJ for J containing j).
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The operator Ωj , seen as an operator on the j-th copy of H, is an harmonic oscillator, having
in particular eigenvalues 2n+ 1, n ∈ N (see [CHT18, Section 3.1]). Moreover, the operators Ωi

(considered this time as operators on Hm) commute with each other and with the operators Rj .

Recall that P stands for the set of all subsets of {1, . . . ,m}. We fix J ∈ P. In the sequel,
we think of J as the set of j for which Rj 6= 0. For j ∈ J and n ∈ N, we denote by Ejn ⊂ L2(H)
the eigenspace of Ωj corresponding to the eigenvalue 2n+ 1. For (nj) ∈ NJ , we set

HJ(nj) = F 1 ⊗ . . .⊗ Fm ⊂ L2(Hm)

where F j = Ejnj for j ∈ J and F j = L2(H) otherwise.

We have the orthogonal decomposition

L2(Hm) =
⊕
J∈P

⊕
(nj)∈NJ

HJ(nj). (7.8)

We can also write the associated decomposition of −∆:

−∆ =
⊕
J∈P

⊕
(nj)∈NJ

HJ(nj)

with HJ(nj) =
∑
j∈J

(2nj + 1)Rj −
∑
i/∈J

(∂2
xi + ∂2

yi).

From this, we deduce

sp(−∆) =
⋃
J∈P

⋃
(nj)∈NJ

sp(HJ(nj))

=

{∑
j∈J

(2nj + 1) |αj |+ 2π
∑
i/∈J

(k2
i + `2i ),

with ki, `i ∈ Z, J ∈ P, nj ∈ N, αj ∈ (Z \ {0})

}

where sp denotes the spectrum.

Remark 7.6. The particularly rich structure of the Quantum Limits of the sub-Laplacian −∆
described in Theorem 9 is due to the high degeneracy of this spectrum. To make an analogy
with the Riemannian case, the QLs of the usual flat Riemannian torus T2 = R2/Z2 have a
rich structure (see [Jak97]), whereas the QLs of irrational Riemannian tori are much simpler to
describe.

7.2.3 Step 2: End of the proof of Point (2) of Theorem 9

In the sequel, the notation (·, ·) stands for the L2(Hm) scalar product, and the associated norm
is denoted by ‖ · ‖L2 .

Positive cones. We set V =
(
−1

2 , . . . ,−
1
2

)
∈ RJ and we consider the quadrant

V + RJ+ =

{
(x1, . . . , xJ) ∈ RJ | xj > −

1

2
for any 1 6 j 6 J

}
.
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We now define a series of partitions of V + RJ+ into positive cones with vertex at V , each of
these partitions (indexed by N) being composed of 2N thin positive cones, with the property
that each partition is a refinement of the preceding one.

More precisely, these positive cones CN` ⊂ V + RJ+, for N ∈ N∗ and 0 6 ` 6 2N − 1, satisfy
the following properties, some of which are illustrated on Figure 7.1 below:

(1) For any N ∈ N∗ and any 0 6 ` 6 2N − 1, CN` is a positive cone with vertex at V , i.e.,

V + λ(W − V ) ∈ CN` , ∀λ > 0, ∀W ∈ CN` ;

(2) For any N ∈ N∗, (CN` )06`62N−1 is a partition of V + RJ+, i.e.,

2N−1⋃
`=0

CN` = V + RJ+ and CN` ∩ CN`′ = ∅, ∀` 6= `′;

(3) Each partition is a refinement of the preceding one: for any N > 2 and any 0 6 ` 6 2N − 1,
there exists a unique 0 6 `′ 6 2N−1 − 1 such that CN` ⊂ C

N−1
`′ .

Denote by L the set of half-lines issued from V and contained in V + RJ+. Note that L is
parametrized by s ∈ SJ . We also assume the following property:

(4) For any L ∈ L parametrized by s ∈ SJ , there exists a subsequence (CN`(s,N))N∈N∗ which

converges to L , in the following sense. There exists d : N → R+ with d → 0 as N → +∞,
such that, for any s′ ∈ SJ parametrizing a half-line L′ ∈ L contained in SN`(s,N), we have

‖s′ − s‖1 6 d(N). (7.9)

This last property is equivalent to saying that the size of the positive cones tends uniformly to
0 as N → +∞.

Figure 7.1: The positive cones CN` , for J = 2, N = 3.

Remark 7.7. The positive cones CN` can be seen as positive sub-cones of the Heisenberg fan
(whose definition is recalled in Section 7.4).
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Spectral decomposition. Decomposing ϕk on the spaces HJ(nj) defined in Section 7.2.2, we

write

ϕk =
2N−1∑
`=0

ϕNk,` (7.10)

where

ϕNk,` =
∑

(n1,...,nJ )∈CN`

ϕk,n1,...,nJ

and, for any (nj) ∈ NJ , k ∈ N∗ and j ∈ J ,

Ωjϕk,n1,...,nJ = (2nj + 1)ϕk,n1,...,nJ .

For any N ∈ N∗ and any 0 6 ` 6 2N − 1, we take νN` to be a microlocal defect measure of the
sequence (ϕNk,`)k∈N∗ . By diagonal extraction in k ∈ N∗ (which we omit in the notations), we
can assume that any of these microlocal defect measures is obtained with respect to the same
subsequence.

Lemma 7.8. The following properties hold:

(1) All the mass of νN` is contained in SΣJ for any N ∈ N∗ and any 0 6 ` 6 2N − 1;

(2) For N ∈ N∗ and ` 6= `′ with 0 6 `, `′ 6 2N − 1, the joint microlocal defect measure (see
Definition 1.30) of (ϕNk,`)k∈N∗ and (ϕNk,`′)k∈N∗ vanishes. In particular, for any N ∈ N∗,

ν =
2N−1∑
`=0

νN` . (7.11)

Proof. The proof mainly relies on averaging techniques (see also Section 7-A.3 for a result
obtained by these techniques in the much simpler context of flat contact sub-Laplacians).

We first prove Point (1). Using (7.5), (7.10) and the fact that PJn ∈ Ψ0(Hm) commutes with
the operators Ωj and Rj , we get that

ϕNk,` = PJr(k)ϕ
N
k,`.

Point (1) now follows from the fact that σP (PJr(k))→ 1ΣJ as k → +∞ (see the proof of Theorem

8).

We now turn to the proof of Point (2). Let N, `, `′ be as in the statement. By Point (1) and
Lemma 7.1, we know that the joint microlocal defect measure of (ϕNk,`)k∈N∗ and (ϕNk,`′)k∈N∗ has
no mass outside SΣJ .

Let b ∈ S 0(Hm) which is microlocally supported in a conic set in which Rj ,Ωj act as first-
order pseudodifferential operators for any j ∈ J . A typical example of microlocal support for b
is given by any conic subset of T ∗Hm whose intersection with some conic neighborhood of the
set {pzj = 0} is reduced to 0, for any j ∈ J . We set U(t) = U(t1, . . . , tJ) = ei(t1Ω1+...+tJΩJ ) for
t = (t1, . . . , tJ) ∈ (R/2πZ)J .

The average of Op(b) is then defined by

A =

∫
(R/2πZ)J

U(−t)Op(b)U(t)dt
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(see [Wei77]). For 1 6 j 6 J , since

d

dtj
U(−t)Op(b)U(t) = U(−t)[Op(b),Ωj ]U(t),

integrating in the tj variable, using that all Ωi commute together, and that exp(2iπΩj) = Id
(since the eigenvalues of Ωj belong to N), we get that [A,Ωj ] = 0 for any 1 6 j 6 J .

By a bracket computation, A has principal symbol

a := σP (A) =

∫
(R/2πZ)J

b ◦ θ1(t1) ◦ . . . ◦ θJ(tJ) dt.

Here, θj(·) denotes, for 1 6 j 6 J , the 2π-periodic flow of the Hamiltonian vector field of σP (Ωj)
(see [CHT18, Lemma 6.1] for similar arguments).

Remark 7.9. If D is a 0th-order pseudodifferential operator on Hm which satisfies [D,Ωj ] = 0
for any j ∈ J , then D leaves HJ(nj) invariant for any (nj) = (n1, . . . , nJ) ∈ N. It follows that for

any f ∈ HJ(nj) and any g ∈ HJ
(n′j)

such that (n1, . . . , nJ) 6= (n′1, . . . , n
′
J), we have (Df, g) = 0.

We know that σP (A) = b on SΣJ . Therefore,

(Op(b)ϕNk,`, ϕ
N
k,`′)− (AϕNk,`, ϕ

N
k,`′) −→

k→+∞
0.

Since A commutes with Ωj for any 1 6 j 6 J , by Remark 7.9, we know that (AϕNk,`, ϕ
N
k,`′) = 0.

Hence, (Op(b)ϕNk,`, ϕ
N
k,`′) tends to 0 as k → +∞. Using this result for all possible b with

microlocal support satisfying the property recalled at the beginning of the proof, we obtain
that the joint microlocal defect measure of (ϕNk,`)k∈N∗ and of (ϕNk,`′)k∈N∗ vanishes. Evaluating
(Op(b)ϕk, ϕk) in the limit k → +∞ and using (7.10), we conclude the proof of Point (2).

Approximate invariance. We fix N ∈ N∗ and 0 6 ` 6 2N − 1 and we consider s ∈ SJ
such that the half-line issued from V and defined by the J equations

2xj+1
2x1+1+...+2xJ+1 = sj (and

xj > −1/2) lies in CN` .

Let A be a 0-th order pseudodifferential operator microlocally supported in a conic set where
Rj ,Ωj act as first-order pseudodifferential operators for any j ∈ J . Assume moreover that A
commutes with Ω1, . . . ,ΩJ and with ∂xj , ∂yj and ∂zj for any J + 1 6 j 6 m. Recall that Rs was
defined in (1.43). Using that [A,Rs] commutes with Ω1, . . . ,ΩJ in order to kill crossed terms
(see Remark 7.9), we have

([A,Rs]ϕ
N
k,`, ϕ

N
k,`) = ([A,Rs]

∑
(n1,...,nJ )∈CN`

ϕk,n1,...,nJ ,
∑

(n1,...,nJ )∈CN`

ϕk,n1,...,nJ )

=
∑

(n1,...,nJ )∈CN`

([A,Rs]ϕk,n1,...,nJ , ϕk,n1,...,nJ ) (7.12)

Let us fix (n1, . . . , nJ) ∈ CN` and prove that

([A,Rs]ϕk,n1,...,nJ , ϕk,n1,...,nJ )

=
J∑
j=1

(
sj −

2nj + 1∑J
i=1 2ni + 1

)
([A,Rj ]ϕk,n1,...,nJ , ϕk,n1,...,nJ ) (7.13)
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We set

R =

∑J
j=1(2nj + 1)Rj −

∑m
i=J+1 ∆i∑J

j=1 2nj + 1
.

and, for the sake of simplicity of notations, ϕ = ϕk,n1,...,nJ . Using that R is selfadjoint (since Rj
is selfadjoint for any j) and that ϕ is an eigenfunction of R, we get

([A,R]ϕ,ϕ) = (ARϕ,ϕ)− (Aϕ,Rϕ) = 0

and therefore, since A commutes with ∆J+1, . . . ,∆m, we get

([A,Rs]ϕ,ϕ) = ([A,Rs −R]ϕ,ϕ) =

J∑
j=1

(
sj −

2nj + 1∑J
i=1 2ni + 1

)
([A,Rj ]ϕ,ϕ)

which is exactly (7.13).

Thanks to our choice of microlocal support for A, we know that [A,Rj ] ∈ Ψ0(Hm) for
1 6 j 6 J . Combining (7.12) and (7.13), we obtain

∣∣([A,Rs]ϕNk,`, ϕNk,`)∣∣ 6 C
∑

(n1,...,nJ )∈CN`

J∑
j=1

∣∣∣∣∣sj − 2nj + 1∑J
i=1 2ni + 1

∣∣∣∣∣ ‖ϕk,n1,...,nJ‖
2
L2

6 Cd(N)‖ϕNk,`‖2L2

(7.14)

where in the last line, we used (7.9) and the fact that the decomposition (7.8) is orthogonal.

In order to pass to the limit k → +∞ in these last inequalities, we note that

σP ([A,Rs])|ΣJ = {a|ΣJ , ρs}ω|ΣJ (7.15)

(see [CHT18, Lemma 6.2] for a similar identity). Here, the Poisson bracket {·, ·}ω|ΣJ is the

Poisson bracket on the manifold (ΣJ , ω|ΣJ ) which is symplectic as it is defined as a product of
symplectic manifolds (recall that for m = 1, the 4-dimensional manifold Σ is symplectic, see for
example [CHT18]).

Since all the mass of νN` is contained in SΣJ by Lemma 7.8, we finally deduce from (7.14)
the upper bound ∣∣∣∣∣

∫
SΣJ

{a|ΣJ , ρs}ω|ΣJ dνN`

∣∣∣∣∣ 6 Cd(N)νN` (SΣJ ). (7.16)

The upper bound (7.16) has been established only for a|ΣJ the restriction to ΣJ of the
symbol of an operator A of order 0 which commutes with Ω1, . . . ,ΩJ and ∂xj , ∂yj and ∂zj for
any J + 1 6 j 6 m, and we would like to remove this commutation assumption. Let b ∈ S 0(H)
of the form

b(q, p) = bJ (q1, . . . , qJ , p1, . . . , pJ)

where (q, p) denote the coordinates in T ∗Hm, (qj , pj) the coordinates in the cotangent bundle of
the j-th copy of H, and bJ ∈ S 0(HJ ) is an arbitrary 0-th order symbol supported in a subset
of T ∗HJ where Rj ,Ωj act as first-order pseudodifferential operators for any j ∈ J . We consider
the operator

A =

∫
(R/2πZ)J

U(−t)Op(b)U(t)dt ∈ Ψ0(Hm)

where U(t) = U(t1, . . . , tJ) = ei(t1Ω1+...+tJΩJ ) for t = (t1, . . . , tJ) ∈ (R/2πZ)J . By an argument
that we have already in the proof of Point (2) of Lemma (7.8), A commutes with Ωj for any
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1 6 j 6 J , and it also commutes with ∂xj , ∂yj and ∂zj for any J + 1 6 j 6 m. Moreover, the
principal symbol of A on SΣJ coincides with bJ by the Egorov theorem. Using (7.16) for A,
this proves that (7.16) is valid for any symbol a of order 0 on Hm supported far from the sets
{pzj = 0} for j ∈ J , without any assumption of commutation on A.

Disintegration of measures. From the equality (7.11) taken in the limit N → +∞, we will
deduce that νJ =

∫
SJ

νJs dQ
J (s). Note that a simple Fubini argument does not suffice since QJ

is not the Lebesgue measure in general (it may contain Dirac masses, see Section 7.2.1). Instead,
we have to adapt the proof of the classical disintegration of measure theorem (see [Roh62]).

First of all, we define a measure QJ over SJ as follows. It was explained at the beginning of
Section 7.2.3 that the set L of half-lines issued from V and contained in V +RJ+ is parametrized
by s ∈ SJ . For N ∈ N∗ and 0 6 ` 6 2N − 1, we consider the subset of SJ given by

SN` =
{
s ∈ SJ , s parametrizes a half-line of L contained in CN`

}
. (7.17)

Then we define

QJ (SN` ) = νN` (SΣ). (7.18)

This definition is consistent thanks to the partition of V + RJ+ into nested positive cones:
QJ is well-defined on any SN` and it is also additive. By the properties of the positive cones
CN` , for any s ∈ SJ , there exists a sequence (`(s,N))N∈N∗ such that SN`(s,N) ⊂ SJ converges to

s, in the sense that any sequence (sN )N∈N∗ such that sN ∈ SN`(s,N) for any N ∈ N∗ converges to

s as N → +∞. Therefore, by extension, (7.18) defines a (unique) non-negative Radon measure
QJ on SJ .

Given N > 1, 0 6 ` 6 2N − 1 and a continuous function f : SΣJ → R, we set

fN` =
1

νN` (SΣJ )

∫
SΣJ

fdνN` (7.19)

if νN` (SΣJ ) 6= 0, and fN` = 0 otherwise.

Proposition 7.10. Given any continuous function f : SΣ → R, for QJ -almost all s ∈ SJ ,
there exists a real number e(f)(s) such that

fN`(s,N) −→
N→+∞

e(f)(s),

where, for any N ∈ N∗, `(s,N) is the unique integer 0 6 `(s,N) 6 2N − 1 such that s ∈ SN`(s,N).

In the sequel, we call `(s,N) the approximation at order N of s.

Proof. By linearity of formula (7.19), it is sufficient to prove the statement for f > 0. Therefore,
in the sequel, we fix f > 0. For N > 1, we define the function fN : SJ → R by fN (s) = fN`(s,N),

where `(s,N) is the approximation at order N of s. Note that fN is constant on SN` for
0 6 ` 6 2N − 1.

For 0 6 α < β 6 1, we define S(α, β) as the set of s ∈ SJ such that

lim inf
N→+∞

fN (s) < α < β < lim sup
N→+∞

fN (s).

To prove Proposition 7.10, it is sufficient to prove that S(α, β) has QJ -measure 0 for any

0 6 α < β 6 1. Fix such α, β. For s ∈ S(α, β), take a sequence 1 6 Nα
1 (s) < Nβ

1 (s) < Nα
2 (s) <
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Nβ
2 (s) < ... < Nα

k (s) < Nβ
k (s) < ... of integers such that fN

α
k (s)(s) < α and fN

β
k (s)(s) > β for

any k > 1. We finally define the following sets:

Ak =
⋃

s∈S(α,β)

S
Nα
k (s)

`(s,Nα
k (s))

Bk =
⋃

s∈S(α,β)

S
Nβ
k (s)

`(s,Nβ
k (s))

We have S(α, β) ⊂ Ak+1 ⊂ Bk ⊂ Ak for every k > 1. In particular,

S(α, β) ⊂ S̃(α, β) :=
⋂
k∈N∗

Ak =
⋂
k∈N∗

Bk. (7.20)

Given any two of the sets S
Nα
k (s)

`(s,Nα
k (s)) that form Ak, either they are disjoint or one is contained

in the other. Consequently, Ak may be written as a disjoint union of such sets, denoted by Ak
′
k .

Therefore, ∫
Ak

fdQJ =
∑
k′

∫
Ak
′
k

fdQJ <
∑
k′

αQJ (Ak
′
k ) = αQJ (Ak)

and analogously, with similar notations,∫
Bk

fdQJ =
∑
k′

∫
Bk
′
k

fdQJ >
∑
k′

βQJ (Bk′
k ) = βQJ (Bk).

SinceBk ⊂ Ak, we get αQJ (Ak) > βQJ (Bk). Taking the limit k → +∞, it yields αQJ (S̃(α, β)) >
βQJ (S̃(α, β)), which is possible only if QJ (S̃) = 0. Therefore, using (7.20), we get QJ (S) = 0,
which concludes the proof of the proposition.

From (7.11) and (7.19), we infer that for any N > 1,∫
SΣJ

fdνJ =

2N−1∑
`=0

∫
SΣJ

fdνN` =

2N−1∑
`=0

fN` ν
N
` (SΣJ ),

and the dominated convergence theorem together with the definition of QJ and Proposition
7.10 yield ∫

SΣJ

fdνJ =

∫
SJ

e(f)(s)dQJ (s). (7.21)

We see that for a fixed s ∈ SJ ,

C0(SΣJ ,R) 3 f 7→ e(f)(s) ∈ R

is a non-negative linear functional on C0(SΣJ ,R). By the Riesz-Markov theorem, there exists
a unique Radon probability measure νJs on SΣJ such that

e(f)(s) =

∫
SΣJ

fdνJs . (7.22)

Putting (7.21) and (7.22) together, we get∫
SΣJ

fdνJ =

∫
SJ

(∫
SΣJ

fdνJs

)
dQJ (s)

which is the desired disintegration of measures formula.
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Conclusion of the proof. There remains to show that νJs is invariant by ~ρJs . Let a ∈
S 0(Hm) be supported in cone of T ∗Hm whose intersection with some conic neighborhood of
the set {pzj = 0} is reduced to 0, for any j ∈ J . For QJ -almost every s ∈ SJ , we have∫

SΣJ

{a, ρJs }dνJs = e({a, ρJs })(s) (by (7.22))

= lim
N→+∞

1

νN`(s,N)(SΣJ )

∫
SΣJ

{a, ρJs }dνN`(s,N) (7.23)

6 lim
N→+∞

Cd(N) (by (7.16))

= 0

with the convention that if the denominator in (7.23) is null, then the whole expression is null.
For an arbitrary a ∈ S 0(Hm), taking a sequence an ∈ S 0(Hm) whose support has the above
property and such that an → a in SΣJ (in the space of symbols) as n → +∞, we see that
the above quantity also vanishes since νJs has finite mass and {an, ρJs } → {a, ρJs } in SΣJ as

n → +∞. This implies that νJs is invariant by the flow et~ρ
J
s , which concludes the proof of

Theorem 9.

Remark 7.11. Contrarily to those of flat tori (see [Jak97]), the Quantum Limits of Hm (or,
more precisely, their pushforward under the canonical projection onto Hm) are not necessarily
absolutely continuous. It was already remarked in the case m = 1 in [CHT18, Proposition
3.2(2)].

7.3 Proof of Theorem 10

In this section, we prove Theorem 10. The four steps are the following:

1. In Lemma 7.13 and Lemma 7.14, we prove the result for a fixed J ∈ P \{∅}, QJ the Dirac
mass at some s ∈ SJ , and νJs ∈P(S∗Hm)

(i) has no mass outside SΣJ ,

(ii) is invariant under the flow of ~ρJs ,

(iii) and is in a simple tensor form that we make precise below.

In other words, if ν∞ = νJs with νJs satisfying (i), (ii) and (iii), then it is a QL.

2. In Lemma 7.16, we extend the result of Step 1 to the case where (iii) is not necessarily
satisfied, i.e., ν∞ = νJs satisfies only (i) and (ii).

3. In Lemma 7.18, we extend the result of Steps 1 and 2 to the case where ν∞ ∈ PSΣ has
no mass outside SΣJ for some J ∈ P \ {∅}, i.e., ν∞ = νJ .

4. Finally, using the previous result for all J ∈ P\{∅}, we prove Theorem 10 in full generality
(i.e., for arbitrary ν∞ ∈PSΣ).

The specific algebraic structure of sp(−∆) plays a key role at each of these four steps. Note that
similar roadmaps have been followed in different but related contexts, see [JZ96] and [Stu19].

The map Σ→ Hm×Rm, (q, p) 7→ (q, pz1 , . . . , pzm) is an isomorphism, and thus, in the sequel,
we consider the coordinates (q, pz1 , . . . , pzm) on Σ and the coordinates (q, pz1 : · · · : pzm) on SΣ,
where the notation pz1 : · · · : pzm stands for homogeneous coordinates.
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Let us summarize the proof, which uses in a key way the precise description of the spectrum
of −∆ (see Section 7.2.2) and the knowledge of the flows of the Hamiltonian vector fields ~ρJs .

Remark 7.12. Projecting the flow of ~ρJs on M , we obtain straight lines described by changes
proportional to sj in the zj coordinates, for j ∈ J . Once all coordinates xi, yi (for 1 6 i 6 m)
and zi (for i /∈ J ) have been fixed - since they are preserved by the flow -, these straight lines
are similar to the lines given by the geodesic flow on the flat |J |-dimensional Riemannian torus
in the variables zj (for j ∈ J ).

We fix J ∈ P \ {∅}. Since any two of the operators Rj and Ωj′ for j, j′ ∈ J commute,
the orthogonal decomposition (7.8) can be refined: more precisely, given (nj) ∈ NJ and (αj) ∈
(Z \ {0})J , we consider the joint eigenspace HJ(nj),(αj) ⊂ L2(Hm) on which the operator 1

i ∂zj
acts as αj and Ωj acts as 2nj + 1.

ν∞ is obtained as a QL of a sequence of normalized eigenfunctions (ϕk)k∈N∗ which is described
through its components in these eigenspaces. Moreover, each of the four steps is achieved by
taking linear combinations of eigenfunctions (with same eigenvalues) used in the previous step.
Therefore, the number of eigenspaces HJ(nj),(αj) used for building (ϕk)k∈N∗ increases at each step.

In order to achieve Step 1, we focus on the eigenspaces HJ(nj),(αj) corrreponding to

2nj + 1∑
i∈J (2ni + 1)

≈ sj and
αj
αj′
≈
pzj
pzj′

for any j, j′ ∈ J .

For Step 2, we add the results of the previous step for different p ∈ SΣJ , and we take care
that each term in the sum corresponds to the same value of −∆. Hence, (nj) ∈ NJ is the same
as in Step 1, but we use various (αj) ∈ (Z \ {0})J to reach all p.

For Step 3, we add the results of Step 2 for different s ∈ SJ . Therefore, we use the eigenspaces
HJ(nj),(αj) also for different (nj) ∈ NJ . Finally, in Step 4, we sum the sequences obtained at Step

3 for J ranging over P \ {0}.
In order to describe the measures in a “tensor form” which we consider for Step 1, we need

to introduce a few notations.

Notations. For the first three steps, we fix J ∈ P \ {∅}. Any s ∈ SJ can be identified to
some homogeneous coordinate pz1 : · · · : pzm (with pzi = 0 for i /∈ J ), in a way which does not
depend on q ∈ Hm. Thus, for any q ∈ Hm, t ∈ R and s ∈ SJ , it makes sense to consider the
point q + ts ∈ Hm, which has the same coordinates xj and yj as q for any 1 6 j 6 m (only the
coordinates zj for j ∈ J change).

Let us consider the set
M s
q = {q + ts, t ∈ R} ⊂ Hm

where the bar denotes the closure in Hm. The set M s
q is a submanifold of Hm of dimension

dsq 6 m, and we denote by H s
q the Hausdorff measure of dimension dsq on M s

q .

For any (q, p) ∈ SΣ and any q′ ∈ Hm, it makes sense to consider the point (q′, p) ∈ SΣ, which
is the point in the fiber of SΣ over q that has the same homogeneous coordinates pz1 : · · · : pzm
as p.

Lemma 7.13. Let (q, p) ∈ SΣJ and s ∈ SJ be such that there exists a J-tuple (nj) ∈ NJ with

sj =
2nj + 1∑

i∈J
(2ni + 1)

(7.24)
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for any j ∈ J . Then, the measure H s
q ⊗ δp is a Quantum Limit. [The associated sequence of

normalized eigenfunctions is specified in the proof, see also Remark 7.15.]

Proof. Since the sj are pairwise rationally related, the mapping t 7→ q+ts is periodic and dsq = 1.
Without loss of generality, we assume that J = {1, . . . , J} for some 1 6 J 6 m.

We construct a sequence of eigenfunctions (ϕk)k∈N∗ of −∆ which admits µsq,p as unique

Quantum Limit. In our construction, for any k ∈ N∗, ϕk belongs to the eigenspace HJ(nj),(αj) for

some (nj) ∈ NJ and some (αj) ∈ (Z \ {0})J , and it does not depend on the variables in the i-th
copy of H for i /∈ J . Our goal is to choose adequately the J-tuples (nj) and (αj). Note that a
similar argument for m = 1 is done in the proof of Point 2 of Proposition 3.2 in [CHT18].

We fix a sequence of J-tuples (α1,k, . . . , αJ,k) ∈ (Z \ {0})J , for k ∈ N∗, such that:

• For any 1 6 j 6 J , αj,k → +∞ as k → +∞, so that for any 1 6 j, j′ 6 J , there holds

nj′

αj,k
−→
k→+∞

0; (7.25)

• For any 1 6 j, j′ 6 J ,
αj,k
αj′,k

−→
k→+∞

pzj
pzj′

, (7.26)

where pz1 : · · · : pzm are the homogeneous coordinates of p in SΣ.

Now, for any k ∈ N∗, denoting by 1 the constant function equal to 1 (on some copy of H),
we define

ϕk = Φ1
k ⊗ . . .⊗ ΦJ

k ⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸
m−J times

, (7.27)

where, for 1 6 j 6 J ,
Φj
k(xj , yj , zj) = φj,k(xj , yj)e

iαj,kzj

is an eigenfunction of −∆j (on the j-th copy of H) with eigenvalue (2nj + 1)|αj,k|. The precise
form of φj,k will be given below.

Using (7.25) and the proof of Theorem 8, notably the pseudodifferential operators PJn intro-
duced in (7.2), we obtain that the mass of any Quantum Limit of (ϕk)k∈N∗ is contained in SΣJ .
Moreover, from the decomposition into cones done in Section 7.2.3 and the equality (7.24), we
infer that any Quantum Limit of (ϕk)k∈N∗ is invariant under ~ρJs .

In the next paragraphs, we explain how to choose φj,k with eigenvalue 2nj + 1 in order to
ensure that (ϕk)k∈N∗ has a unique QL, which is µs0,p. For the sake of simplicity of notations,
we set α = αj,k. The eigenspace of −∆j corresponding to the eigenvalue (2nj + 1)|α| is of
the form (A∗α)nj (ker(Aα))eiαz, where Aα = ∂xj + i∂yj + iαxj locally, and, accordingly, A∗α =
−∂xj + i∂yj + iαxj locally (see for example [Col84, Section 2]). This follows from a Fourier
expansion in the zj variable, which gives

−∆j =
⊕
γ∈Z

Bγ , where Bγ = A∗γAγ + γ for γ ∈ Z.

We note that the function fj,k(xj , yj) = ck exp(−αx
2
j

2 + α
4 (xj + iyj)

2) (normalized to 1 thanks
to ck) is a quasimode of Aα, as α → +∞, for the eigenvalue 0. Moreover, a well-known
computation on coherent states (see Example 1 of Chapter 5 in [Zwo12]) guarantees that for
any a ∈ S 0(R2m),

(Op(a)(A∗α)njfj,k, (A
∗
α)njfj,k) −→

k→+∞
a(0, 0).
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In other words, (A∗α)njfj,k, seen as a sequence of functions of R2m, has a unique Quantum Limit,
which is δ0,0.

Now, using that the spectrum ofBα has gaps that are uniformly bounded below, this property
is preserved when we consider eigenfunctions of −∆j : when α varies, the projection Φj

k of
(A∗α)njfj,ke

iαz onto the eigenspace of −∆j corresponding to the eigenvalue (2nj + 1)|α| has a
unique QL, which is H s

0 ⊗ δp. The Dirac mass at p comes from (7.26) and from Lemma 7.23
applied, for any 1 6 i, j 6 J , to the operator Ri

Rj
− pi

pj
. Note that the point q = 0 plays no

specific role, and therefore any measure H s
q ⊗ δp can be obtained as a QL, when dsq = 1 and

under (7.24).

Lemma 7.14. Let (q, p) ∈ SΣJ and s ∈ SJ be arbitrary. Then, the measure H s
q ⊗ δp is a

Quantum Limit. [See Remark 7.15 for the description of the associated sequence of normalized
eigenfunctions.]

Proof. We still assume that J = {1, . . . , J}. Using Lemma 7.13, we can assume that q ∈ Hm

and s ∈ Sj verify either dsq > 2, or dsq = 1 but (7.24) is not satisfied. In both cases, the following
fact holds:

Fact 1. The measure H s
q is in the weak-star closure of the set of measures H s′

q′ for which

ds
′
q′ = 1 and (7.24) is satisfied.

Let us denote by TJ = (R/2πZ)J the Riemannian torus of dimension #J equipped with
the flat metric. Due to Remark 7.12, proving Fact 1 is equivalent to proving the following fact,
called Fact 2 in the sequel: if γ is a geodesic of TJ and Hγ is the Hausdorff measure on γ, then
Hγ is in the weak-star closure of the set of measures Hγ′ with γ′ a periodic geodesic of TJ of
slope (s1, . . . , sJ) verifying (7.24) for some J-tuple (n1, . . . , nJ). Let us prove Fact 2.

In case dsq > 2, possibly restricting to the flat torus given by the closure of γ, we can assume

that γ is a dense geodesic in TJ . To prove Fact 2 in this elementary case, we take a sequence
of geodesics (γ′n)n∈N∗ contained in TJ , with rational slopes given by J-tuples (sn1 , . . . , s

n
J) of the

form (7.24), and which become dense in TJ as n→ +∞.

For the case dsq = 1 where (7.24) is not satisfied, similarly, we take a sequence of geodesics
with rational slopes which converges to γ. This proves Fact 2 and hence Fact 1 follows.

Since the set of QLs is closed, Fact 1 implies Lemma 7.14.

Remark 7.15. Note that, following the proofs of Lemma 7.13 and Lemma 7.14, any measure
H s
q ⊗ δp is a Quantum Limit associated to a sequence of normalized eigenfunctions (ϕk)k∈N∗

such that, for any k ∈ N∗, ϕk belongs to some eigenspace HJ(nj,k),(αj,k). In particular, ϕk is an

eigenfunction of Ωj for any j ∈ J .

Note also that to guarantee this last property, it is not sufficient to invoke, at the end of the
proof of Lemma 7.14, the closedness of the set of QLs: it is necessary to follow the proof of this
fact, which consists in a simple extraction argument.

Lemma 7.16. Let s ∈ SJ and νJs ∈P(S∗Hm) having no mass outside SΣJ and being invariant
under ~ρJs . Then νJs is a Quantum Limit. [See Remark 7.17 for the description of the associated
sequence of normalized eigenfunctions.]

Proof. Let us consider the set PJ
s ⊂P(S∗Hm) of probability measures

νJs =
∑

(qi,pi)∈E

βiH
s
qi ⊗ δpi (7.28)

where i ranges over some finite set F , E is a set of pairs (qi, pi) ∈ SΣ, and βi ∈ R.
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We consider νJs ∈ PJ
s defined by (7.28). Note that if i 6= i′, either H s

qi ⊗ δpi = H s
q′i
⊗ δp′i ,

or the supports of H s
qi ⊗ δpi and H s

q′i
⊗ δp′i are disjoint. Therefore, possibly gathering terms in

the above sum, we assume that the supports of H s
qi ⊗ δpi and H s

q′i
⊗ δp′i are disjoint as soon as

i 6= i′.

For i ∈ F , using Lemma 7.13 and Lemma 7.14, we consider a sequence of eigenfunctions
(ϕik)k∈N∗ with eigenvalues (λik)k∈N∗ and whose unique QL is H s

qi ⊗ δpi . According to the proof

of these lemmas (see also Remark 7.15), we can also assume that ϕik ∈ H
J
(nj,k),(αij,k)

for some

J-tuples such that

λik :=
∑
j∈J

(2nj,k + 1)|αij,k|

does not depend on i ∈ F . In other words,

• for any 1 6 j 6 J , ϕik is also an eigenvalue of Ωj with eigenvalue nj,k which does not
depend on i ∈ F ;

• for any i, i′ ∈ F , λik = λi
′
k and we denote this common value by λk. This means that for

any i ∈ F , ϕik belongs to the eigenspace of −∆ corrresponding to the eigenvalue λk.

Since H s
qi ⊗ δpi and H s

q′i
⊗ δp′i have disjoint supports, the joint microlocal defect measure of

(ϕik)k∈N∗ and (ϕi
′
k )k∈N∗ vanishes for i 6= i′ by Lemma 7.1. It follows that

ϕk :=
∑
i∈F

βiϕ
i
k

is an eigenfunction of −∆ with eigenvalue λk, and that in the limit k → +∞, it admits νJs as
unique Quantum Limit.

Finally, we note that any νJs ∈ P(S∗Hm) having all its mass contained in SΣJ and being
invariant under ~ρJs is in the closure of PJ

s . Since the set of QLs is closed, Lemma 7.16 is
proved.

Remark 7.17. The above proof shows that ν∞ = νJs is a QL for a sequence (ϕk)k∈N∗ such that
ϕk belongs to ⊕

(αj)∈(Z∗)J
HJ(nj′,k′ ),(αj)

for some J-tuple (nj′,k′) ∈ NJ which depends only on k ∈ N∗.

Lemma 7.18. Let J ∈ P \ {∅}, and

νJ =

∫
SJ

νJs dQ
J (s)

for some QJ ∈ P(SJ ) and νJs ∈ P(S∗Hm) having no mass outside SΣJ and such that, for
QJ -almost any s ∈ SJ , ~ρJs ν

J
s = 0. Then νJ is a Quantum Limit. [See Remark 7.19 for the

description of the associated sequence of normalized eigenfunctions.]

Proof. As in the previous proofs, we assume without loss of generality that J = {1, . . . , J} for
some 1 6 J 6 m. Let (s`)`∈L be a finite family of distinct elements of SJ indexed by L, and
let γ` ∈ R for ` ∈ L. For any ` ∈ L, let also νs` , with mass only in SΣJ , be invariant under the
flow of ~ρJ

s`
. Let us prove that

νJ =
∑
`∈L

γ`νs` (7.29)
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is a Quantum Limit. This corresponds to the case where the measure QJ on SJ is given by

QJ =
∑
`∈L

γ`δs` .

For any ` ∈ L, we take (ϕ`k)k∈N∗ to be a sequence of eigenfunctions of −∆ whose unique
QL is νs` . As emphasized in the proof of Lemma 7.16, it is possible to assume that ϕ`k is an
eigenfunction of Ωj for any 1 6 j 6 J , with eigenvalue 2n`j,k + 1 such that

2n`j,k + 1

J∑
i=1

(2n`i,k) + 1

−→
k→+∞

s`j (7.30)

where s` = (s`1, . . . , s
`
J).

Let us prove that the joint microlocal defect measure ν`,`′ of (ϕ`k)k∈N∗ and (ϕ`
′
k )k∈N∗ vanishes

for ` 6= `′: we note that for Op(a) commuting with Ω1, . . . ,Ωm, with a ∈ S 0(Hm),

(2n`j,k + 1)(Op(a)ϕ`k, ϕ
`′
k ) = (Op(a)Ωjϕ

`
k, ϕ

`′
k )

= (Op(a)ϕ`k,Ωjϕ
`′
k )

= (2n`
′
j,k + 1)(Op(a)ϕ`k, ϕ

`′
k )

From (7.30) and the fact that s` 6= s`
′
, we deduce that, for any sufficiently large k ∈ N∗,

there exists 1 6 j 6 J such that n`j,k 6= n`
′
j,k. Hence, the above computation shows that

(Op(a)ϕ`k, ϕ
`′
k ) = 0 for sufficiently large k ∈ N∗. Therefore,∫

S∗Hm

adν`,`′ = 0.

Since νs` and νs`′ give no mass to the complementary set of SΣJ in S∗Hm, we know that it is
also the case for ν`,`′ by Lemma 7.1. Therefore, if b ∈ S 0(Hm) is arbitrary, averaging Op(b)
with respect to the operators Ω1, . . . ,ΩJ as in Lemma 7.8, we obtain an operator A ∈ Ψ0(Hm)
such that σP (A) coincides with b on ΣJ , and A commutes with Ω1, . . . ,ΩJ . Therefore,∫

S∗Hm

bdν`,`′ =

∫
SΣJ

bdν`,`′ =

∫
SΣJ

σP (A)dν`,`′ = 0,

and since this is true for any b ∈ S 0(Hm), we conclude that ν`,`′ = 0.

This implies that the sequence given by

ϕJk =
∑
`∈L

γ`ϕ`k

admits νJ as unique QL, where νJ is defined by (7.29). Note that to ensure that ϕJk is still
an eigenfunction of −∆, it is necessary, as in the proof of Lemma 7.16, to adjust the sequences
(n`j,k) and (α`j,k) in order to guarantee that all ϕ`k (for ` ∈ L) are eigenfunctions of −∆ with
same eigenvalue.

We notice that the closure of the set of Radon measures on SΣJ which may be written as a
finite linear combination (7.29) is exactly the subset of PSΣ for which QJ

′
= 0 for any J ′ 6= J .

Using that the set of QLs is closed, Lemma 7.18 is proved.
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Remark 7.19. The above proof shows that ν∞ = νJ is a QL for a sequence of normalized
eigenfunctions (ϕk)k∈N∗ such that ϕk belongs to⊕

(nj)∈NJ

⊕
(αj)∈(Z∗)J

HJ(nj),(αj).

Let us now finish the proof of Theorem 10. Let ν∞ ∈PSΣ,

ν∞ =
∑

J∈P\{∅}

νJ .

Note that the measures νJ are non-negative, but are not necessarily probability measures.

Let (ϕJk )k∈N∗ be a sequence of eigenfunctions of −∆ whose unique microlocal defect measure
is νJ . The proof of Lemma 7.18 guarantees that, for any k ∈ N∗, one may choose all ϕJk , for J
running over P \ {∅}, to have the same eigenvalue with respect to −∆. Therefore,

ϕk =
∑

J∈P\{∅}

ϕJk

is also an eigenfunction of −∆. Moreover, for any distinct J ,J ′ ∈ P \ {∅}, the joint microlocal
defect measure of (ϕJk )k∈N∗ and (ϕJ

′

k )k∈N∗ vanishes (see Lemma 7.1). Computing (Op(a)ϕk, ϕk)
for any a ∈ S 0(Hm) in the limit k → +∞, we obtain that the unique Quantum Limit of
(ϕk)k∈N∗ is ν∞. Note that, as already explained in Remarks 7.15, 7.17 and 7.19, the sequence
(ϕk)k∈N∗ is fully explicit in our construction.

Finally, we note that the invariance properties of ν∞ can be established separately on each
SΣJ since ([A,Rs]ϕ

J
k , ϕ

J ′
k ) → 0 as k → +∞ for J 6= J ′ (the bracket [A,Rs] is the natural

operator to consider for establishing invariance properties, see Section 7.2.3). This concludes
the proof of Theorem 10.

Remark 7.20. The exact converse of Theorem 9 would guarantee that all measures ν ∈
P(S∗Hm) of the form ν = βν∅ + (1 − β)ν∞ with the same assumptions on β, ν∅ and ν∞
as in Theorem 9 are Quantum Limits. Our statement is weaker since it does not say anything
about the measures ν for which β 6= 0 (which are rare, as stated in Theorem 9), but we do not
think that a stronger converse statement for Theorem 9 holds.

Remark 7.21. Theorems 9 and 10 remain true for slightly more general sub-Laplacians than
those considered here. Indeed, for any d ∈ N, one can consider the (2d+1)-dimensional Heisen-
berg group H̃d and its quotient Hd = Γd\H̃d by the discrete cocompact subgroup Γd =
(
√

2πZ)2d × 2πZ. Then, one can define as in Section 1.5.2 a natural sub-Laplacian ∆Hd
on

Hd (see Section 7-A.3). Given a finite sequence of positive integers d1, . . . , dm, one can consider
the associated sub-Laplacian on Hd1 × . . .×Hdm defined as in (1.40). Then, Theorems 9 and 10
are still true in this setting (mutatis mutandis). However, for the sake of clarity of presentation,
we found it preferable to write full details only in the case d1 = . . . = dm = 1, since it already
contains the key ideas.

Remark 7.22. The problem of identifying other families of sub-Laplacians for which a full
characterization of QLs is possible is open; it requires to identify a family of 1-homogeneous
Hamiltonians on Σ replacing the family (ρJs ). E.g., for the quasi-contact sub-Laplacian ∂2

x +
(∂y − x∂z)2 + ∂2

w, defined on H × (R/2πZ), it does not seem possible to identify such a family
because of the additional ∂2

w term which is separated from the RΩ-factorization of the rest of
the sub-Laplacian.
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7.4 Links with non-commutative harmonic analysis.

The point of view taken in this chapter is definitely Euclidean, meaning that we do not use
pseudodifferential calculus adapted to the stratified Lie algebra which possibly shows up while
studying sub-Laplacians. However, our results share connexions with important problems in
non-commutative Fourier analysis.

It is possible to use the stratified Lie algebra structure to study the spectral theory of (nilpo-
tent) sub-Laplacians, as done for example in [FF21]. This work builds upon non-commutative
harmonic analysis (see [Tay86]) to develop a pseudodifferential calculus and semiclassical tools
“naturally attached to the sub-Laplacian”. It is very likely that one could have given a proof
of Theorems 9 and 10 based on similar tools as in [FF21]. The point of view we adopt in the
present chapter is different: it only requires “classical” pseudodifferential calculus (briefly re-
called in Appendix A.2) since there is still enough commutativity and ellipticity from the choice
of operators under study. Beside making the results more accessible to some readers, it allows us
to isolate in each eigenfunction the piece which is responsible, in the high-frequency limit, for a
given part of the QL. Moreover, our method only builds upon abstract commutation arguments,
at least for Theorem 8, and in particular it avoids the computation of irreducible representations
which are always specific to certain families of groups (e.g., H-type groups in Chapter 4 and
[FF21]).

Part of our results can be reinterpreted through the light of noncommutative harmonic
analysis. For example, the part of the QL in U∗M , namely βν∅ (see (1.39)), is described in [FF21]
as the part of the semiclassical measure supported above the finite dimensional representations
π0,ω
x (see [FF21, Section 2.2.1]), and the fact that βν∅ = 0 for “almost all” QLs (see Proposition

1.29) can be recovered from the fact that the Plancherel measure denoted by |λ|ddλ in [FF21]
gives no mass to finite-dimensional representations.

Also, in the setting covered by Theorems 9 and 10, i.e., products of quotients of the Heisen-
berg group, the joint spectrum of (∆1, . . . ,∆m, i

−1∂z1 , . . . , i
−1∂zm), which can be drawn in R2m,

is called “Heisenberg fan”. This terminology was introduced in [Str91] for the 3D Heisenberg
sub-Laplacian; in our case, this fan consists in a discrete set of points which can be gathered
into lines (see [Str91, Figure 1]). In case m = 1, the subset of points (or joint eigenvalues)
corresponding to ϕ∅k and ν∅ in the statement of Theorem 9 can be seen as points close to the
vertical line {0} × R ⊂ R2. Similar descriptions can be given in case m > 2. Also, let us
mention that we could derive from the proof of Theorem 8 a generalization of the definition of
the Heisenberg fan to any sub-Laplacian satisfying Assumption (A), as the joint spectrum of
(−∆g,µ, |Z1|, . . . , |Zm|).

Let us also mention that sub-Laplacians on products of Heisenberg groups (and, more gen-
erally, on “decomposable groups”) were analysed in [BFG16] with a non-commutative harmonic
analysis point of view in order to establish Strichartz estimates (see notably [BFG16, Section
1.4 and Corollary 1.6]).

7-A Supplementary material

7-A.1 Proof of two lemmas

Let us prove Lemma 7.1 of Section 7.1.

Proof of Lemma 7.1. If a ∈ S 0(M) is such that a > 0 and a is supported in a set where µ11 = 0,
then, setting aε = a+ ε for any ε > 0, we get

(Op(aε)uk, vk) = (Op(a1/2
ε )uk,Op(a1/2

ε )vk) + o(1) 6 ‖Op(a1/2
ε )uk‖L2‖Op(a1/2

ε )vk‖L2 + o(1)
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where a
1/2
ε ∈ S 0(M). We know that

‖Op(a1/2
ε )uk‖2L2 = (Op(aε)uk, uk) + o(1) = (Op(a)uk, uk) + ε‖uk‖22 + o(1) = ε‖uk‖2 + o(1)

and that ‖Op(a
1/2
ε )vk‖2L2 6 (C+ε)‖vk‖2 where C does not depend on ε. Therefore (Op(aε)uk, vk) .

ε. Hence (Op(a)uk, vk)→ 0. The same result holds for a 6 0 supported in a set where µ11 = 0.
Therefore, decomposing any symbol as a = a+ + a− + r, where a+, a−, r ∈ S 0(M), a+ > 0,
a− 6 0, and |r| 6 δ for some small δ > 0, we get that µ12 is absolutely continuous with respect
to µ11. The rest of the lemma follows by symmetry.

Lemma 7.23. Let us assume that ` ∈ N and P ∈ Ψ`(M) is elliptic in any cone contained in the
complementary of a closed conic set F ⊂ T ∗M . Assume that (uk)k∈N∗ is a bounded sequence in
L2(M) weakly converging to 0 and such that Puk → 0 strongly in L2(M). Then any microlocal
defect measure of (uk)k∈N∗ is supported in F .

Proof. Let µ be a microlocal defect measure of (uk)k∈N∗ , i.e.,

(Op(a)uσ(k), uσ(k)) −→
k→+∞

∫
S∗M

adµ

for any a ∈ S 0(M), where σ is an extraction. Let a ∈ S 0(M) be supported outside F . Let
Q ∈ Ψ−`(M) be such that PQ − I ∈ Ψ−1(M) on the support of a. Then QOp(a)P ∈ Ψ0(M)
has principal symbol a, and therefore

(QOp(a)Puσ(k), uσ(k)) −→
k→+∞

∫
S∗M

adµ.

Using that Puσ(k) → 0, we get (QOp(a)Puσ(k), uσ(k))→ 0 as k → +∞, and therefore
∫
S∗M adµ =

0. Hence, µ is supported in F .

7-A.2 Supplementary material on Assumption (A)

The Martinet sub-Laplacian

In this Section, we provide an example of a sub-Laplacian on a compact manifold which satisfies
Assumption (A) but which is not step 2, meaning that brackets of length > 3 of the Xi are
required to generate the whole tangent bundle, see (1.1).

For that, we consider M = (R/2πZ)3 with coordinates x, y, z, endowed with the Lebesgue
measure dµ = dxdydz. Let A be a smooth 1-form A = Axdx+Aydy, where Ax and Ay depend
only on x and y. The 2-form B = dA = (∂xAy − ∂yAx)dx ∧ dy is the “magnetic field” and
b = ∂xAy − ∂yAx is its “strength”. We consider the sub-Riemannian structure associated to the
vector fields X1 = ∂x + Ax∂z and X2 = ∂y + Ay∂z. Then, [X1, X2] = b∂z. Now, we choose A
so that b vanishes along a closed curve in (R/2πZ)2

x,y, and (∂xb, ∂yb) 6= 0 along this curve. This
construction is classical, see Example 1.6 and [Mon95]. When adding the z-variable, this yields
a surface S ⊂ M , called Martinet surface, on which [X1, X2] = 0 but some bracket of length
3 of X1, X2 generates the missing direction of the tangent bundle thanks to (∂xb, ∂yb) 6= 0. In
other words, the sub-Riemannian structure has step 3 on S . Nevertheless, Assumption (A) is
satisfied with Z1 = ∂z.
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7-A.3 Quantum Limits of flat contact manifolds

The study of Quantum Limits of higher dimensional contact manifolds is also an interesting
problem. In this section, we prove that for the sub-Laplacian defined on the quotient of the
Heisenberg group Hd of dimension 2d + 1 by one of its discrete cocompact subgroups, the
invariance properties of Quantum Limits are much simpler than those described in Theorem 9,
even though “frequencies” show up: the part of the QL which lies in SΣ is invariant under the
lift of the Reeb flow, as in the 3D case.

For d > 1, we consider the group law on R2d+1 given by

(x, y, z) ? (x′, y′, z′) = (x+ x′, y + y′, z + z′ − x · y′)

where x, x′, y, y′ ∈ Rd and z, z′ ∈ R. The Heisenberg group H̃d is the group H̃d = (R2d+1, ?).
We consider the subgroup Γd = (

√
2πZ)2d × 2πZ of H̃d, and the left quotient Hd = Γd\H̃d. We

also define the 2d left invariant vector fields on Hd given by

Xj = ∂xj , Yj = ∂yj − xj∂z

for 1 6 j 6 d. We fix β1, . . . , βd > 0 satisfying
∏d
j=1 βj = 1, we set β = (β1, . . . , βd) and we

consider the sub-Laplacian

∆β =

d∑
j=1

βj(X
2
j + Y 2

j ) (7.31)

which is an operator acting on functions on Hd. The positive real numbers βj are sometimes
called frequencies, see [Agr96].

We set ρ = hZ |Σ, which is the Hamiltonian lift of the Reeb vector field Z = ∂z to Σ (see
[CHT18, Section 2.3] for properties of the Reeb vector field).

Proposition 7.24. Let (ϕk)k∈N∗ be a sequence of L2(Hd) consisting of normalized eigenfunc-
tions of −∆β. Then, any Quantum Limit ν∞ associated to (ϕk)k∈N∗ and supported in SΣ is
invariant under et~ρ, the lift of the Reeb flow.

Remark 7.25. This result follows from [FF21, Theorem 2.10(ii)(2)], but we provide here a
simple self-contained proof which illustrates the averaging techniques used in Section 7.2.3.

Remark 7.26. We do not expect such a result to be true when the frequencies βj are not
constant on the manifold.

Proof of Proposition 7.24. Denoting by (q, p) the canonical coordinates in T ∗Hd, i.e.,
q = (x1, . . . , xd, y1, . . . , yd, z) and p = (px1 , . . . , pxd , py1 , . . . , pyd , pz), we know that

Σ = {(q, p) ∈ T ∗Hd, pxj = pyj − xjpzj = 0}

is isomorphic to Hd × R.

Up to extraction of a subsequence, we may assume that (ϕk)k∈N∗ has a unique QL ν∞,
which is supported in SΣ. We set R =

√
∂∗z∂z and, on its eigenspaces corresponding to non-zero

eigenvalues, we define Ωj = −R−1(X2
j + Y 2

j ) = −(X2
j + Y 2

j )R−1 for 1 6 j 6 d. On these
eigenspaces, the sub-Laplacian acts as

−∆β = RΩ = ΩR with Ω =

d∑
j=1

βjΩj
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and [R,Ω] = 0.

Let V be a (small) conic microlocal neighborhood of Σ, and let us consider R,Ω as acting
on functions microlocally supported in V (meaning that their wave-front set is contained in V ).
If B ∈ Ψ0(Hd) is microlocally supported in V and commutes with Ω, then

([B,R]ϕk, ϕk) =
1

λk
(BRϕk,−∆βϕk)−

1

λk
(RB(−∆β)ϕk, ϕk)

=
1

λk
(BRϕk, RΩϕk)−

1

λk
(RBRΩϕk, ϕk)

=
1

λk
([Ω, RBR]ϕk, ϕk)

= 0.

Let U(t) = U(t1, . . . , td) = ei(t1Ω1+...+tdΩd) for t = (t1, . . . , td) ∈ (R/2πZ)d. For A ∈ Ψ0(Hd)
microlocally supported in V , we consider

Ã =

∫
(R/2πZ)d

U(−t)AU(t)dt

As in the proof of Lemma 7.8, we know that [Ã,Ω] = 0 and that σP (A) and σP (Ã) coincide on
Σ. Therefore, using the previous computation with B = Ã, we obtain∫

Σ
{σP (A), ρ}ω|Σdν∞ =

∫
Σ
{σP (Ã), ρ}ω|Σdν∞ = lim

k→+∞
([Ã, R]ϕk, ϕk) = 0.

Since it is true for any A microlocally supported in V , this implies that ν∞ is invariant under
the flow et~ρ.



Chapter 8

Perspectives and open questions

“J’ai souhaité comprendre le coeur des hommes;
j’ai souhaité comprendre pourquoi les étoiles brillent.”

Bertrand Russell.

This concluding chapter gathers some perspectives and open questions related to the present
manuscript.

8.1 Singular curves

At the microlocal level, the two main specificities of sub-Riemannian geometry, compared to
Riemannian geometry, are the existence of the characteristic cone Σ (see (1.5)) and, in some
but not all sub-Riemannian distributions, the existence of singular curves, and hence of abnormal
extremal lifts.

The characteristic cone. The characteristic cone is by now well understood. At the “clas-
sical” level (at the level of geometry, and not of operators), it is responsible, for example, for
a “spiraling” of normal geodesics around curves transverse to the distribution, see [CHT21a],
[Let20b].

Several works have also been devoted to the influence of the characteristic cone on the
“quantum” level, i.e., that of operators: see for example [MS78a], [CHT21b] for asymptotics of
eigenvalues, [CHT18], [CHT21b], [Let20a] for the repartition of eigenfunctions (in particular,
quantum ergodicity), and [BS19], [LS20], [FL21] for the propagation of energy (observability).

Singular curves. Singular curves, in particular when they are minimizing, remain more mys-
terious. Since their discovery in the 90’s by Montgomery [Mon94], many efforts have been
devoted to understand the “classical” aspects of singular minimizers: for example, are they al-
ways smooth? (still open, see [HL16] for a recent breakthrough); do they exist generically? (see
[CJT06]); how do they influence the regularity of the sub-Riemannian distance? (see [AG01]),
...

But the effects at the level of operators (“quantum” level) of the presence of singular (mini-
mizing) curves are still poorly understood. This is due to the fact that many usual tools do not
detect the presence of singular curves. For example, in [CHT21b], precise Weyl laws (i.e., the
asymptotic distribution of eigenvalues and eigenfunctions) are established even in the presence
of singular curves, but singular curves have no real influence on these asymptotics: roughly

223
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speaking, what only matters in these asymptotics is the growth vector. Indeed, the problem
of establishing Weyl laws is related to that of establishing small-time asymptotics of subelliptic
heat kernels (see [CHT20]), but the heat kernel “is too rough to see singular curves”.

In Riemannian geometry, the correspondance between classical and quantum aspects relies
on the Hamiltonian framework (think of Egorov’s theorem for example), but in sub-Riemannian
geometry, singular curves are not directly related to the Hamiltonian framework : their existence
is dictated by the distribution, not the metric (or equivalently the cometric). The only works
available which show the effects at the quantum level of singular curves, namely [Mon95], [Sav19]
and [CL21], are thus devoted to only particular sub-Laplacians, for which, in some sense, explicit
computations or “normal forms” can be derived (for example, quasi-contact or magnetic sub-
Laplacians).

The work [Mel86], revisited in [Let21b], could pave the way to a general understanding of
the interplay between classical and quantum level in the presence of singular curves, thanks to
the cones Γm (see Chapter 5), which generalize the usual Hamiltonian framework.

8.2 Magnetic fields

The first examples of minimizing singular curves, exhibited in [Mon94], were inspired by the
study of magnetic fields. Indeed, there is a dictionary between some S1-invariant sub-Riemannian
geometries on a manifold M with a codimension one distribution transverse to the action of S1,
and magnetic fields on the quotient X = M/S1. A first illustration has been given in Example
1.6.

Let us describe this correspondance, following [Col16] (unpublished). We assume that M is
equipped with a free action of S1 (with coordinate θ) given by m 7→ θ ·m. Let D be a distribution
on M which is transverse to the action of S1 and invariant under the differential of the action,
and g be a metric on D which is also invariant under this differential. Then, M is a (principal)
bundle over X = M/S1 with projection p : M → X, and D is an Ehresmann connection on
this bundle (see [Mon02, Section 11.1]). The distribution D is the kernel of a 1-form Θ, which
is normalized by Θ(∂θ) = 1. On every open subset U of X where the bundle is trivialized, i.e.,
M = U × S1 with the action (x, φ) 7→ (x, θ + φ), the form Θ is given by Θ = dφ+ p∗A where A
is a 1-form on X. The 2-form dA = B on X is called the magnetic field, and it does not depend
on the choice of the trivialization. For more more on this, see [Mon94], [Mon95], [Mon02].

This approach relates results in sub-Riemannian geometry with results for magnetic fields,
both at the “classical” level (sub-Riemannian geodesics versus trajectories in magnetic fields)
and at the “quantum” level (spectral asymptotics of sub-Laplacians versus magnetic Schrödinger
operators). This is interesting because the classical motion of a charged particle in a varying
magnetic field is a well-studied problem, especially in view of the important applications to
physics (charged particles in the earth magnetic dipole, plasma physics, ...).

If X is oriented and of dimension 2 (thus M has dimension 3), then B = b dvolX for some
function b on X. The sub-Riemannian metric g is contact at any point where b 6= 0 and it has a
Martinet singularity along the curves where b = 0 and db 6= 0. Also, the quasi-contact case (in
which M has dimension 4) is related to magnetic fields in dimension 3. In this case, there exist
some nontrivial singular curves that correspond to lines of the magnetic field.

This powerful dictionary could serve as a motivation and as an inspiration to study physical
phenomena with a hidden sub-Riemannian geometry, such as magnetic mirrors (see Part 2 of
[Mon02] for other physical examples).
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8.3 Propagation of singularities

Our third focus in this concluding chapter is not related to singular curves; it illustrates on an
example the problem of adapting classical notions of Riemannian geometry (or elliptic PDEs)
to the “stratified setting” given by the sub-Riemannian flag. This example is the problem of
propagation of singularities, already addressed in Chapters 5 and 6. Recall that, using for the
definition of singularities the usual notion of wave-front set due to Hörmander,

• Chapter 5 explains how singularities of general subelliptic wave equations propagate;

• Chapter 6 constructs an explicit example where singularities propagate along abnormal
extremals. It can probably be extended to more general geometries, starting with non-flat
quasi-contact metrics and non-flat Martinet metrics.

We speculate that a different notion of singularity, adapted to sub-Riemannian geometry (i.e.,
taking into account the number of brackets needed to generate each direction), would yield more
refined results for what concerns the propagation of singularities contained in the characteristic
set (g∗)−1(0). To say it differently, Theorem 4 implies that in the absence of abnormal extremals,
singularities pointing in a characteristic direction do not move as time evolves. But this might
be due to the fact that the right notion of singularity in this region of phase-space is not the
usual one with Hörmander’s wave-front set. Semiclassical tools adapted to the graded structure
of the sub-Riemannian tangent space as in Chapter 4 might indicate what should be this refined
notion of singularity.

However, the transposition to the non-group setting of the tools of Chapter 4 is not straight-
forward. By that, we mean that if the sub-Riemannian manifold under study does not derive
from a group (e.g., H-type groups), representations do not make sense, and non-commutative
harmonic analysis cannot directly help. The hope is that the tangent space of sub-Riemannian
manifolds has a group structure (at least at regular points, see [Bel96, Section 5.5]); in general,
this group structure changes from point to point1, in which case there is no reason to hope
that non-commutative harmonic analysis could help. But it is sometimes possible to relate the
tangent spaces at different points (in 3D contact manifolds, for example): in these manifolds,
all hopes are permitted.

8.4 Spectral invariants and trace formulas

Another beautiful question is the following: can one hear something in a sub-Riemannian man-
ifold? This is the counterpart of Mark Kac’s well-known question “Can one hear the shape of a
drum?”

Mathematically, spectral invariants (also called “audible quantities”) are geometric quantities
which are determined by the knowledge of the spectrum. In Riemannian geometry, for instance,
if the spectrum of the Laplace-Beltrami operator is given, then one can compute just from this
data the volume of the manifold, and, in some cases, the lengths of its closed geodesics.

The same question can be raised in sub-Riemannian geometry, i.e., for sub-Laplacians. For
instance, in the equiregular case2, is the rank of the distribution a spectral invariant? And its
non-honolomic order? Or even its full growth vector? These simple questions have received no

1To say it differently, in contrast to the Riemannian case where tangent spaces at neighbor points are isometric,
this is far from being true in sub-Riemannian geometry. This induces moduli in the normal forms of Carnot groups,
as soon as the dimension is larger than or equal to 5. These normal forms are known in small dimension, see
[ABB12, Theorem 29].

2That is, when the growth vector does not depend on the point.
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answer for the moment, it is only known that the Hausdorff dimension is a spectral invariant.
Of course, not only the vector fields X1, . . . , Xm, but also the volume µ on M may play a role
in the answers.

An exemple of known spectral invariant for sub-Laplacians is the following. When M = S3

and P is the Popp probability measure (see [Mon02], [CHT18]), then 1/P (M) is the asymptotic
Hopf invariant of the Reeb vector field Z (with respect to P ) introduced in [Arn86]. It follows
from the Weyl formula proved in [CHT18] that the asymptotic Hopf invariant is a spectral
invariant.

A common way to find audible quantities in Riemannian geometry is to establish trace
formulas. It consists in computing quantities of the form∑

n∈N
f(λn)

where f is a (possibly complex-valued) function and λn describes the spectrum (with multi-
plicities) of −∆, i.e., −∆ϕn = λnϕn for smooth functions ϕn. Classical choices for f are the
following: f(x) = e−tx (heat equation), f(x) = |x|−s (zeta functions), f(x) = cos(t

√
x) (wave

equation), f(x) = e−itx/h (semi-classical Schrödinger equation).

The literature on trace formulas in Riemannian manifolds is vast. But in the sub-Riemannian
case, only few trace formulas have been established, and most of them are formulated with the
heat kernel. It would be of interest to prove trace formulas for other kernels. A possible
conjecture is the following:

Conjecture. In the absence of singular curves, the Duistermaat-Guillemin trace formula
[DG75, Corollary 1.2 and Theorem 4.5] holds for the wave trace distribution

W (t) =
∑
n∈N

eit
√
λn

outside t = 0: the singular support of W (t) is included in the set of lengths of periodic geodesics
and, assuming some non-degeneracy assumption, the principal term is given explicitly in terms
of the Poincaré map and the Morse index of the periodic geodesics.

The paper [Mel84] proves the above conjecture in a particular case.

A simple question, asked by Yves Colin de Verdière, is the following: in the 3D contact case,
are the periods of the closed Reeb orbits spectral invariants? Although several computations
support this conjecture, no proof has been found for the moment.

Another question is: are the periods of the closed singular curves of a 4D Engel distribution
spectral invariants? To answer this question, the first step is probably to compute the (semi-
classical) Schrödinger kernel in quotients of the Engel group. But this is not an easy task, since
elliptic functions come into play.

8.5 Observability and controllability

There are also interesting open questions that are still unanswered in the field of observabil-
ity/controllability of subelliptic PDEs.

Heat equation. As explained in Section 1.3.2, the observability properties of subelliptic heat
equations are known only in particular geometries. More general results would require a deeper
understanding of the geometric meaning of the solutions constructed in [BCG14] or [Koe17].
Let us formulate two conjectures:
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1. For any sub-Laplacian of step 2, if M \ω has non-empty interior, the observability property
for the associated heat equation fails for sufficiently small times T > 0;

2. For any sub-Laplacian of step > 3, if M \ ω has non-empty interior, the observability
property for the associated heat equation fails for any time T > 0.

These conjectures are inspired by the results mentioned in Section 1.3.2 and by the paper
[LL20] (see notably Section 1.4).

Schrödinger equation. Even in the Riemannian case, the observability properties of the
Schrödinger equation remain mysterious: although (GCC) is known to be a sufficient condition
for observability, it is not a necessary condition (see Section 1.3.1). In the sub-Riemannian case,
the problem is even “more open”, since no general sufficient condition is known for the moment,
except trivial ones: only very particular geometries have been explored (see Theorems 1.21,
2 and 3), and they rely on tools which are not robust enough to cover general (in particular
non-flat) sub-Riemannian geometries.

In consonance with Section 8.1, we can also ask the following question: how does the energy
of solutions of subelliptic Schrödinger equations propagate along singular curves, when the latter
exist?

8.6 Eigenfunctions and quasimodes

Despite recent progresses (recalled in Chapter 7), the properties of eigenfunctions and quasi-
modes of sub-Laplacians remain mostly unknown. Here are a few simple cases which could be
interesting:

• Higher-dimensional contact case. The Quantum Limits of 3D contact sub-Laplacians
have been studied in detail in [CHT18], but the higher dimensional contact case (see
Example 1.5) remains open, except in a flat case handled in the Appendix of [Let20a].

• Sasaki case. For Sasaki sub-Laplacians, which are a particular family of contact sub-
Laplacians of arbitrary dimension, we can however formulate a conjecture. To state it, we
recall the definition of this family.

Let (X,h) be a compact Riemannian manifold, and let M = S∗X be the unit cotangent
bundle of X, which is naturally endowed with the contact form α defined as the restriction
of the Liouville 1-form Λ = pdq toM . Let Z be the associated Reeb vector field. Identifying
the tangent and cotangent bundles of X thanks to the Riemannian metric h, the set M is
viewed as the unit tangent bundle TX of X. Using a metric g, for example the canonical
metric (or “Sasaki metric”, see [Sas58]), such that the restriction of the symplectic form to
D = ker(α) is the volume form of g, Z is identified with the vector field on the unit tangent
bundle of X generating the geodesic flow on S∗X. Therefore, with this identification, the
Reeb flow is the geodesic flow on M .

Sasaki sub-Laplacians, i.e., defined with such a contact metric g, are known to have all
fundamental frequencies3 equal to 1. This leads us to the following question:

Is any Quantum Limit of a Sasaki sub-Laplacian invariant under the Reeb flow?

3see [Agr96, Section 2.1] for a definition.
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8.7 Nodal sets

Let us finish with a totally open and beautiful question, which seems difficult. A nodal set is a
set ϕ−1

λ (0) where ϕλ is an eigenfunction of a (sub-)Laplacian: −∆ϕλ = λϕλ. For Riemannian
Laplacians, when the manifold and the metric are analytic, it is known since the work of Donnelly
and Fefferman [DF88] that there exist c, C > 0 such that

c
√
λ 6 H n−1(ϕ−1

λ (0)) 6 C
√
λ

where H n−1 is the (n−1)-dimensional Hausdorff measure (the dimension of the manifold being
n). Yau’s conjecture asserts that these bounds remain true if the manifold and the metric are
only assumed to be C∞. Many recent progress have been made recently in this field, see [LM18]
for a review.

One can wonder what happens to these bounds in the sub-Riemannian case. Indeed,
Hausdorff measures are already known to play an important role in the metric geometry of
sub-Riemannian structures: the topological dimension and the Hausdorff dimension of a sub-
Riemannian manifold do not coincide in general (see [Mit85]). Here is a possible conjecture:

Conjecture. Let ∆ = −
∑m

i=1X
∗
iXi be a sub-Riemannian Laplacian on a compact manifold M

endowed with a smooth volume µ. We assume that X1, . . . , Xm span an equiregular distribution
(see Section 8.4). Then there exists c > 0 such that

c
√
λ 6 H Q−1

sph (ϕ−1
λ (0)).

Here, H Q−1
sph denotes the Q−1-dimensional spherical Hausdorff measure, where Q is the homo-

geneous (or Hausdorff) dimension of the manifold M .

What could be the upper bound is not clear: maybe c′
√
λ, but it could also be c′λk/2,

where k is the step of the distribution. In any case, we expect that the proof of such bounds
would require the development of new tools, in particular in the geometric measure theory of
sub-Riemannian structures.



Appendix A

Technical tools and conventions

A.1 Symplectic geometry

Given a smooth d-dimensional manifold M , the canonical symplectic form on the cotangent
bundle T ∗M is

ω = dξ ∧ dx

in local symplectic coordinates (x, ξ). The Hamiltonian vector field Hf of a function f ∈ C∞(M)
is defined by the relation

ω(Hf , ·) = −df(·).

Alternatively, we use the notation
~f = Hf .

In the coordinates (x, ξ), it reads

Hf =

d∑
j=1

(∂ξjf)∂xj − (∂xjf)∂ξj .

In these coordinates, the Poisson bracket is

{f, g} = ω(Hf , Hg) =
d∑
j=1

(∂ξjf)(∂xjg)− (∂xjf)(∂ξjg),

which is also equal to Hfg and −Hgf .

The Hamiltonian lift of a vector field X on M is the function defined by hX(x, ξ) = ξ(X(x)).
Given two vector fields X and Y on M , we have {hX , hY } = h[X,Y ].

A.2 Pseudodifferential calculus

This section is a short reminder on basic properties of pseudodifferential operators. Most proofs
can be found in [Hor07a].

A.2.1 Pseudodifferential operators in Rd

Definition A.1. Let m ∈ R. The class of symbols of order m, denoted by Sm(Rd), is the set
of complex-valued functions a ∈ C∞(T ∗Rd) such that, for any α, β ∈ Nd, there exists Cαβ > 0
such that

∀(x, ξ) ∈ T ∗Rd, |∂αx ∂
β
ξ a(x, ξ)| 6 Cαβ(1 + |ξ|)m−|β|.
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We set

S−∞ =
⋂
m∈R

Sm.

Also, C∞b (Rd) denotes the set of smooth functions on Rd which are bounded and all of whose
derivatives are bounded, and S(Rd) denotes the Schwartz space.

Definition A.2 (Elliptic symbols). Let m ∈ R. A symbol a ∈ Sm(Rd) is elliptic if there exist
C,R > 0 such that

∀(x, ξ) ∈ T ∗Rd, |ξ| > R⇒ |a(x, ξ)| > C|ξ|m,

Theorem A.3. Let m ∈ R. If a ∈ Sm(Rd) and u ∈ S(Rd), the formula

OpRd(a)u(x) = (2π)−d
∫∫

Rd×Rd
ei(x−x

′)·ξa

(
x+ x′

2
, ξ

)
u(x′)dx′dξ

defines a function OpRd(a)u of S(Rd). Moreover, OpRd(a) is continuous from S(Rd) to S(Rd).

The map a 7→ OpRd(a) is called the Weyl quantization. We say that OpRd(a) is a pseu-
dodifferential operator with Weyl symbol a. We denote by Ψm(Rd) the set of pseudodifferential
operators of order m and we set

Ψ−∞ =
⋂
m∈R

Ψm(Rd).

A.2.2 Pseudodifferential operators on manifolds

The definitions of the previous section can be extended to manifolds. We consider M a smooth
compact d-dimensional manifold without boundary, and µ a smooth volume on M . Let π :
T ∗M →M be the canonical projection.

Definition A.4. [AG07, Chapter 7] A linear operator A : C∞(M)→ C∞(M) is called pseudod-
ifferential of order m if, for any local chart κ : U → V ⊂ Rd, the operator Ã : u 7→ [A(u◦κ)]◦κ−1

from C∞(V ) into C∞(V ) is pseudodifferential of order m in V , i.e., ∀ϕ,ψ ∈ C∞(V ), ϕÃψ ∈
Ψm(Rd). We then write A ∈ Ψm(M).

Proposition A.5. If a is real-valued, then Op(a)∗ = Op(a).

To a pseudodifferential operator A ∈ Ψm(M), we can associate its principal symbol σP (A)
and its sub-principal symbol σsub(A). The subprincipal symbol is usually defined for operators
acting on half-densities (this was a discovery of Leray [GKL64], see also [Zwo12, Section 9.1]);
here we make the identification f ↔ fdµ1/2 between functions and half-densities, taking into
account that the manifold M is equipped with a half-density. The principal and subprincipal
symbols are characterized by the action of pseudodifferential operators on oscillating functions:
if A ∈ Ψm(M) and u(x) = b(x)eikS(x) with b, S smooth and real-valued, then∫

M
A(u)udµ = km

∫
M

(
σP (A)(x, S′(x)) +

1

k
σsub(A)(x, S′(x))

)
|u(x)|2dµ(x) +O(km−2).

The map

(σP , σsub) : Ψm(M)/Ψm−2(M)→ Smhom(T ∗M)⊕ Sm−1
hom (T ∗M) (A.1)

is bijective, where Skhom(T ∗M) is the space of smooth homogeneous functions of order k defined
on the cone T ∗M \ 0 (see Appendix A.2.3). We have the following properties:
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• If m is an integer and A =
∑
|α|6m aα(x)Dα with the convention D = 1

i ∂x, then

σP (A) =
∑
|α|=m

aα(x)ξα.

• If A ∈ Ψ`(M) and B ∈ Ψm(M), then AB ∈ Ψ`+m(M) and σP (AB) = σP (A)σP (B).

• If A ∈ Ψ`(M) and B ∈ Ψm(M), then [A,B] ∈ Ψ`+m−1(M) and

σP ([A,B]) =
1

i
{σP (A), σP (B)}.

• If X is a vector field on M and X∗ is its formal adjoint in L2(M,µ), then X∗X ∈ Ψ2(M),
with σP (X∗X) = h2

X and σsub(X∗X) = 0.

• If a ∈ Sm(M), then, for any s ∈ R, Op(a) maps continuously the space Hs(M) to the
space Hs−m(M).

The characteristic set of A ∈ Ψm(M) is defined by

Char(A) = {(x, ξ) ∈ T ∗M \ {0}, σP (A)(x, ξ) = 0}.

Finally, the essential support of A ∈ Ψm(M), denoted by essupp(A), is the complement in T ∗M
of the points (x, ξ) which have a conic-neighborhood W so that A is of order −∞ in W , i.e.,

∀(N,α, β) ∈ N× Nd × Nd, sup
(x,ξ)∈W

|(∂αξ ∂βxa)(x, ξ)||ξ|N < +∞

(this definition depends indeed only on A).

A.2.3 Polyhomogeneous pseudodifferential operators

Sometimes, it is preferable to work with classes of polyhomogeneous symbols and operators.

The class of polyhomogeneous symbols Smphg is slightly smaller than the class Sm, but it has
two main advantages (see [Hor07a], the paragraph before Section 18.6, and [GL20, Appendix
A]):

• the principal and subprincipal symbols of a polyhomogeneous pseudodifferential operator
are functions (and not equivalence classes as in (A.1)) and they can be read easily on the
Weyl symbol;

• they are particularly suited for the definition of microlocal defect measures.

We write Smhom(T ∗M) for the set of positively homogeneous degree m functions on T ∗M :
that is, a ∈ Smhom(T ∗M) if a ∈ C∞(T ∗M) and there exists R > 0 such that for any (x, ξ) ∈ T ∗M
with |ξ| > R, and any λ > 1, we have a(x, λξ) = λma(x, ξ).

We also denote by Smphg(T ∗M) the set of polyhomogeneous symbols of degree m. Hence,

a ∈ Smphg(T ∗M) if a ∈ C∞(T ∗M), and for any j ∈ N there exists aj ∈ Sm−jhom (T ∗M) such

that for any N ∈ N, a −
∑N

j=0 aj ∈ Sm−N−1
phg (T ∗M). We denote by Ψm

phg(M) the space of
polyhomogeneous pseudodifferential operators of order m on M (see [GL20, Appendix A] for
the detailed properties).

Since we work with the Weyl quantization, the principal and subprincipal symbols of A =
Op(a) with a ∼

∑
j6m aj are simply σP (A) = am and σsub(A) = am−1.
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A.2.4 Wave-front set

Definition A.6. Let u ∈ D′(M). A point (x0, ξ0) ∈ T ∗M \ {0} is not in the wave-front set
WF (u) if there exists a conic neighborhood U of (x0, ξ0) such that for any smooth function
χ ∈ C∞c (π(U)), in any set of local coordinates, one has

∀N ∈ N, sup
ξ∈U
|χ̂u(ξ)||ξ|N < +∞.

This definition is independent of the choice of local coordinates. We say that u ∈ D′(M) is
smooth at (x0, ξ0) if (x0, ξ0) /∈WF (u). An equivalent definition is

WF (u) =
⋂
{Char(P ), Pu ∈ C∞(M)}

where P runs over all pseudodifferential operators of all orders. Therefore:

Theorem A.7. Singularities are contained in the characteristic manifold:

Pu = 0⇒WF (u) ⊂ Char(P ).

Proposition A.8. For any u ∈ D′(M), there holds

π(WF (u)) = Sing supp(u)

where Sing supp(u) denotes the singular support of u.
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Schrödinger equation on the torus. Journal of the European Mathematical Society,
vol. 16, no 6, p. 1253-1288, 2014.

[Ba86] Hajer Bahouri. Non prolongement unique des solutions d’opérateurs ”somme de
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[GL20] Jeffrey Galkowski, and Matthieu Léautaud. Control from an interior hypersurface.
Transactions of the American Mathematical Society, vol. 373, no 5, p. 3177-3233,
2020.

[GMMP00] Patrick Gérard, Peter A. Markowich, Norbert J. Mauser, and Frédéric Poupaud.
Homogenization Limits and Wigner Transforms Communications on Pure and Ap-
plied Mathematics, vol. 50, no 4, p. 323-379, 1997, and Erratum: Homogenization
Limits and Wigner Transforms. Communications on Pure and Applied Mathemat-
ics vol. 53, no 2, p. 280-281, 2000.

[GR15] Claudia Garetto, and Michael Ruzhansky. Wave equation for sums of squares on
compact Lie groups. Journal of Differential Equations, vol. 258, no 12, p. 4324-4347,
2015.



BIBLIOGRAPHY 239

[Hag80] George A. Hagedorn. Semiclassical quantum mechanics. I. The ~ → 0 limit for
coherent states. Communications in Mathematical Physics, vol. 71, no 1, p. 77-93,
1980.

[Hel88] Bernard Helffer. Semi-classical analysis for the Schrödinger operator and applica-
tions. Lecture Notes in Mathematics, Springer, 1988.
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[Mac10] Fabricio Macià. High-frequency propagation for the Schrödinger equation on the
torus. Journal of Functional Analysis, vol. 258, no 3, p. 933-955, 2010.
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2-microlocales. PhD thesis, École Polytechnique, Palaiseau, 1996.

[Mil12] Luc Miller. Resolvent conditions for the control of unitary groups and their approx-
imations. Journal of Spectral Theory, vol. 2, no 1, p. 1-55, 2012.

[Mit85] John Mitchell. On Carnot-Caratheodory metrics. Journal of Differential Geometry,
vol. 21, no 1, p. 35-45, 1985.

[Mon94] Richard Montgomery. Abnormal minimizers. SIAM Journal on Control and Opti-
mization, vol. 32, no 6, p. 1605-1620, 1994.

[Mon95] Richard Montgomery. Hearing the zero locus of a magnetic field. Communications
in Mathematical Physics, vol. 168, no 3, p. 651-675, 1995.

[Mon02] Richard Montgomery. A tour of subriemannian geometries, their geodesics and
applications. Number 91. American Mathematical Society, 2002.

[Mor78] Yoshinori Morimoto. On the hypoellipticity for infinitely degenerate semi-elliptic
operators. Journal of the Mathematical Society of Japan, vol. 30, no 2, p. :327-358,
1978.
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Titre : Équations sous-elliptiques : contrôle, singularités et théorie spectrale.

Mots Clefs : Équations aux dérivées partielles, géométrie sous-Riemannienne, analyse mi-
crolocale, théorie spectrale, théorie du contrôle.

Résumé : Dans cette thèse à la frontière entre analyse et géométrie, nous étudions des
équations aux dérivées partielles (EDPs) sous-elliptiques en utilisant des outils récents de
géométrie sous-Riemannienne et d’analyse microlocale.
Nous étudions tout d’abord la contrôlabilité et l’observabilité d’EDPs sous-elliptiques, en mon-
trant que plus une direction demande de crochets de Lie pour être engendrée, plus la propaga-
tion de l’énergie (et donc l’observabilité) se fait lentement dans cette direction. Nos résultats
s’appliquent de façon générale aux équations d’ondes sous-elliptiques linéaires, mais aussi à des
équations de type Schrödinger et à des équations d’ondes amorties.
Ensuite, nous étudions la propagation des singularités dans les équations d’ondes sous-
elliptiques : nous montrons que les singularités ne se propagent que le long des bicaractéristiques
nulles et le long des relèvements anormaux extrémaux de courbes singulières. Ce résultat fait
donc le lien avec des notions classiques de géométrie sous-Riemannienne. Nous l’illustrons dans
le cas Martinet, en construisant des données initiales dont les singularités se propagent le long
des courbes singulières à n’importe quelle vitesse entre 0 et 1.
Enfin, nous étudions les fonctions propres de certaines familles de Laplaciens sous-elliptiques,
dans la limite des hautes fréquences : nous montrons que leurs limites, appelées limites quan-
tiques, peuvent être décomposées en une infinité de morceaux, correspondant à une infinité de
dynamiques classiques sur la variété sous-jacente.

Title: Subelliptic equations: control, singularities and spectral theory.

Keys words: Partial differential equations, sub-Riemannian geometry, microlocal analysis,
spectral theory, control theory.

Abstract: In this thesis at the boundary between analysis and geometry, we study some
subelliptic partial differential equations (PDEs) with modern tools coming from sub-Riemannian
geometry and microlocal analysis.
We first study the controllability and observability of some subelliptic PDEs: we show that in
directions requiring more brackets to be generated, the propagation of energy (and hence the
observability) takes more time. Our results apply with full generality to linear subelliptic wave
equations, but also to some Schrödinger-type and damped wave equations.
Then, we study the propagation of singularities in subelliptic wave equations: we show that
singularities propagate only along null-bicharacteristics and abnormal extremal lifts of singular
curves. This result makes a bridge with classical notions in sub-Riemannian geometry. We
illustrate it in the Martinet case: we construct initial data whose singularities propagate along
any singular curve at any speed between 0 and 1.
Finally, we study the eigenfunctions of some families of subelliptic Laplacians, in the high-
frequency limit: we show that their limits, called quantum limits, can be decomposed in an
infinite number of pieces, corresponding to an infinite number of dynamics on the underlying
manifold.
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