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Introduction

L’équation d’Euler est, avec l’équation de Navier-Stokes, l’une des deux équations fondamentales
de la mécanique des fluides, qui est la branche de la physique dédiée à l’étude du comportement
des liquides, des gaz et des plasmas, traditionnellement regroupés sous le terme de "fluides".
Cette équation a été posée pour la première fois en 1757 par Leonhard Euler pour décrire le
mouvement des fluides dits "parfaits", c’est-à-dire non-visqueux. Lorsque le fluide est de plus
supposé incompressible, ce qui est en première approximation le cas de l’eau par exemple, elle
s’écrit en termes mathématiques

∂tu+ u · ∇u = −∇p (1)

où u : R3 → R3 est la vitesse du fluide et p : R3 → R modélise la pression du fluide. Cette
équation est couplée à la condition d’incompressibilité

∇ · u = 0. (2)

Le système (1)-(2) constitue l’équation d’Euler incompressible (en trois dimensions), et il peut
être dérivé à partir des principes fondamentaux de la physique. Il ne décrit en principe qu’une
approximation des phénomènes physiques observés, puisqu’aucun fluide n’est vraiment parfaite-
ment non-visqueux (à l’exception du cas très particulier des superfluides), ni parfaitement in-
compressible. Concrètement, il est souvent utilisé en cosmologie pour modéliser les différentes
formes de matière qui emplissent l’univers, ou encore en aérodynamique pour les phénomènes
de turbulence.

Plus de 250 ans après sa découverte, ce système reste très mal compris, tout comme l’équation
de Navier-Stokes incompressible qui constitue son analogue visqueux (c’est-à-dire avec un terme
supplémentaire −ν∆u dans le membre de gauche de l’équation (1)). D’un point de vue physique
par exemple, certains phénomènes observés dans la vie quotidienne et régis en première approxi-
mation par ces équations, comme la formation des vagues ou la turbulence au voisinage des ailes
d’avion restent très mystérieux et sont des sujets de recherche actifs. Sur le plan mathématique,
c’est encore pire puisque le sens à donner à ces équations n’est même pas clair. Nous allons
illustrer maintenant ce dernier point par deux exemples.

D’un côté, des théorèmes de non-unicité de certains types de solutions de l’équation d’Euler
(dites solutions "faibles") ont fleuri au cours des vingt dernières années ([Sch93], [Shn97], [DLSJ09]).
Ces résultats très paradoxaux décrivent, sur le plan théorique uniquement, des fluides au repos
à un certain instant, qui se mettent à s’agiter pendant quelques secondes, avant de retourner au
repos. Ces théorèmes n’ont aucune valeur prédictive (selon toute vraisemblance, de tels fluides
n’existent dans la nature !), mais montrent seulement la richesse mathématique de l’équation
d’Euler ainsi que les limites de la modélisation mathématique.

D’un autre côté, l’existence de solutions "fortes" globales (c’est-à-dire définies pour tout
temps) n’a jamais été prouvée. L’énoncé précis de ce problème est pourtant extrêmement simple.
Il s’agit de savoir si, pour tout champ de vitesse initial u0 ∈ C∞(R3)∩L2(R3) avec la condition
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de décroissance à l’infini |∂αxu0(x)| ≤ CαK(1 + |x|)−K pour tous α,K, il existe une solution
u(t, x) ∈ C∞(R+ × R3) du système (1)-(2) telle que u(0, ·) = u0. Notons au passage que
l’appartenance de u0 à l’espace L2(R3) signifie simplement que le fluide doit avoir une énergie
finie.

Comme on le voit sur ces exemples, l’équation d’Euler en trois dimensions est, dans toute sa
généralité, très difficile à comprendre. Cependant, certaines hypothèses simplificatrices souvent
issues d’observations physiques permettent d’en tirer des versions simplifiées, dont on espère
pouvoir mieux comprendre la structure. La plus célèbre de ces simplifications est certainement
celle qui consiste à considérer que les fluides considérés ont en fait un mouvement planaire.
On parle alors de fluides bidimensionnels, et le système (1)-(2), toujours valable mais posé
dans R2 et pas dans R3, constitue l’équation d’Euler incompressible en deux dimensions. Cette
approximation est courante en météorologie où l’on peut parfois considérer que le mouvement
de l’air varie peu sur de petites échelles verticales. Même si cela n’est pas tout de suite visible,
l’équation d’Euler en deux dimensions ("Euler 2d") est beaucoup plus abordable que son analogue
tridimensionnel ("Euler 3d").

C’est précisément sur l’équation d’Euler 2d incompressible que porte ce mémoire. Il existe
des espaces de Banach relativement simples dans lesquels cette équation est bien posée, comme
L∞ ∩L1(R2) (théorème de Yudovich [Yud63b]), c’est-à-dire que pour des données initiales dans
ces espaces, on a existence et unicité de la solution du système (1)-(2), et continuité de la
solution par rapport à la donnée initiale. Cela constitue une différence majeure avec le cas
tridimensionnel, et le problème n’est donc pas de montrer l’existence ou l’unicité de solutions,
mais plutôt d’étudier leurs propriétés. Cela peut signifier par exemple étudier leur comportement
en temps long, comprendre les trajectoires de particules qui suivent le flot des solutions, ou encore
montrer des propriétés statistiques sur les solutions.

Une différence importante entre l’équation d’Euler 2d incompressible et son analogue tridi-
mensionnel est sa structure particulièrement simple d’équation de "transport". En fait, en
prenant le rotationnel de l’équation (1), il est facile de voir que résoudre Euler 2d incompressible
revient à résoudre

∂tω + u · ∇ω = 0 (3)

où ω = rot u est un scalaire, qui est appelé vorticité. Cette équation traduit mathématiquement
le fait que la vorticité est conservée le long du flot de u. En trois dimensions, si l’on prend
aussi le rotationnel de (1), on obtient l’équation (3) avec un terme supplémentaire ω · ∇u dans
le membre de droite, et c’est de ce terme, parfois appelé d’"étirement de la vorticité" ("vorticity
stretching"), que proviennent les difficultés de la 3d.

Le plan de ce mémoire est le suivant. Les parties sont presque entièrement indépendantes et
associent des résultats connus à des résultats originaux.

Dans le chapitre 1, nous expliquons des résultats récents [KŠ14], [Zla15] qui quantifient la
croissance de ||∇ω||L∞(Ω) au cours de l’évolution de l’équation d’Euler 2d. Malgré son apparence
purement académique, ce problème est en réalité fondamental dans la compréhension des prob-
lèmes d’existence et d’explosion dans les équations d’Euler en 2d et 3d. En 2d, il est classique
que la norme ||∇ω||L∞(Ω) croît au plus double exponentiellement en temps, mais la question de
savoir si cette borne est optimale n’a été résolue que récemment [KŠ14]. Ici, nous améliorons
un résultat de Zlatos [Zla15] et nous prouvons que pour α > 0, une norme C1,α de la vorticité
croît exponentiellement dans le tore pour des données initiales lisses bien choisies.
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Dans le chapitre 2, nous étudions une nouvelle classe de solutions autosimilaires dans le
domaine Ω = R2\{0}. Précisément, nous trouvons toutes les solutions d’Euler 2d de la forme
u(t, x) = tαU(tβx) où U : Ω → R2 est un profil qui ne dépend que de la distance à l’origine
(c’est-à-dire de la coordonnée radiale, et pas de la coordonnée angulaire).

Dans le chapitre 3, nous nous intéressons à l’équation d’Euler 2d dans des domaines peu
réguliers. Un théorème classique établit l’existence et l’unicité de solutions d’Euler 2d dans
L∞(Ω) dès que le domaine Ω a un bord de classe C1,1. Récemment, Gérard-Varet et Lacave
ont prouvé dans [GVL13] et [GVL15] un résultat d’existence pour Euler 2d dans une classe
d’ouverts Ω très généraux, qui peuvent être très irréguliers. Cependant, ils n’ont pas prouvé
de résultat d’unicité. Ici, nous décrivons une piste de recherche infructueuse mais toutefois
intéressante pour prouver l’unicité dans les domaines à bord lipschitzien, en combinant des idées
de transport optimal et de γ-convergence.

Dans le chapitre 4, nous nous intéressons au problème de la préservation de la symétrie par
l’équation d’Euler 2d. Dans des domaines symétriques par rapport à un axe, et pour une vorticité
initiale ω0 impaire par rapport à cet axe, on peut montrer que l’équation d’Euler préserve cette
symétrie au cours du temps. Ici, on montre que cette configuration est extrêmement instable en
étudiant l’exemple du domaine R2\{x1 ≤ 0, x2 = 0}.

Enfin, dans le chapitre 5, nous étudions les solutions stationnaires d’Euler 2d, c’est-à-dire les
solutions pour lesquelles u (et donc ω) ne dépend pas du temps t. Ces solutions sont intéressantes
à double titre. Tout d’abord, elles peuvent s’obtenir par des problèmes de minimisation ([Arn13],
[Shn93]) et ont une structure géométrique très riche [CŠ12]. Deuxièmement, il est souvent
conjecturé qu’elles constituent des sortes d’attracteurs pour les solutions instationnaires, et
qu’elles sont donc fondamentales pour comprendre le comportement en temps long d’Euler 2d.
Dans ce chapitre, nous allons nous intéresser à leur stabilité par perturbation de domaine, en
utilisant les techniques d’analyse complexe de [GVL13].

Je remercie Isabelle Gallagher pour avoir supervisé ce mémoire, pour les discussions nom-
breuses qu’elle m’a accordées, et pour ses conseils tout au long de ce travail. Je remercie aussi
Fabrice Béthuel, Yann Brenier, Raphaël Cerf, Emmanuel Dormy, David Gérard-Varet, Julien
Guillod, Cyril Imbert et Christophe Lacave pour le temps qu’ils m’ont consacré.
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Chapter 1

Growth of vorticity gradient

1.1 Introduction and motivations
The vorticity formulation of the 2d incompressible Euler equation in a domain Ω reads

∂tω + u · ∇ω = 0 (1.1)

where u : Ω → R2 denotes the velocity of the fluid and ω := curl u : Ω → R its vorticity.
Compared to the standard formulation (1)-(2), it has the advantage of making the pressure
disappear. The unknown is ω and the velocity u appearing in (1.1) is recovered from ω through
Biot-Savart law

u(x) =
∫

Ω
∇⊥GΩ(x, y)ω(y)dy (1.2)

where GΩ is the Green function of the domain Ω solving −∆yGΩ(x, ·) = δx with Dirichlet
conditions on the boundary ∂Ω and ∇⊥ is the operator ∇⊥ = (∂x2 ,−∂x1). The formulations
(1)-(2) and (1.1) can be shown to be equivalent for example in the case where Ω is of regularity
C1,1 and ω ∈ L∞ ∩ L1(Ω).

In this chapter, we will quantify the growth in time of ||∇ω||L∞(Ω) for particular choices of
initial data and domains. At first sight, it may seem unclear why this question is relevant in the
study of the 2d Euler equation. We will now give one of its main motivations.

As explained in the introduction, it is still unknown whether every smooth initial datum
u0 ∈ C∞(R3) gives rise to a globally defined solution u of 3d Euler. However, Beale, Kato and
Majda established in [BKM84] the following far-reaching theorem.

Theorem 1 ([BKM84]). Recall that if an initial velocity field u0 is in Hs, s ≥ 3, with ||u0||H3 ≤
N0 for some N0 > 0, then there exists T0 > 0 depending only on N0 such that equations (1)-(2)
have a solution in the class

u ∈ C([0, T ];Hs) ∩ C1([0, T ];Hs−1) (1.3)

at least for T = T0(N0). Let u be such a solution and suppose there is a time T∗ such that the
solution cannot be continued in the class (1.3) to T = T∗. Assume that T∗ is the first such time.

Then ∫ T∗

0
||ω(t, ·)||L∞dt =∞, (1.4)

and in particular

lim sup
t↑T∗

||ω(t, ·)||L∞ =∞. (1.5)
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In 2d, this criterion could not be true, since the L∞ norm of ω is preserved during the
evolution of 2d Euler. But one can notice that, taking the gradient of equation (1.1), we obtain

∂t∇ω + (u · ∇)(∇ω) = −∇ω · ∇u, (1.6)

which is very similar to the vorticity formulation of the 3d Euler equation

∂tω + (u · ∇)ω = ω · ∇u. (1.7)

Heuristically, equations (1.6) and (1.7) show that ∇ω should play in 2d approximately the
same role as ω in 3d. In 3d, theorem 1 roughly says that the growth of ω in L∞ norm controls
the rate of blow-up of the Euler equation. One could therefore imagine that understanding the
mechanism of explosion in 3d should be approximately as difficult as understanding the growth
of ∇ω in 2d.

The following theorem, established by Yudovich [Yud63a], makes the picture clearer in 2d.

Theorem 2 ([Yud63a], [KŠ14]). Let Ω be a bounded domain with C1,1 boundary. Let ω0(x) be
a C∞ initial datum for the 2D Euler equation. Then the solution ω(t, x) satisfies

1 + log
(

1 + ||∇ω(t, x)||L∞
||ω0||L∞

)
≤
(

1 + log
(

1 + ||∇ω0||L∞
||ω0||L∞

))
exp(C||ω0||L∞t) (1.8)

for some constant C which may depend only on the domain Ω.

One could ask whether this bound double exponential bound on ||∇ω||L∞ is optimal. The
answer to this question was found only very recently, in the seminal paper by Kiselev and Sverak
[KŠ14]. They constructed an example of C∞ solution of (1)-(2) in the unit disk which exhibits
the aforementioned double exponential growth.

Zlatoš adapted their construction in [Zla15] to the case of the torus T2, constructing a
solution of (1)-(2) with (single) exponential growth of the vorticity gradient. However, the
regularity of the vorticity in his example is only C1,α for 0 < α ≤ 1. In the same paper [Zla15],
Zlatoš constructs a C∞ solution of (1)-(2) with a (single) exponential growth of the hessian of
the vorticity, that is of ||D2ω||L∞(T2). Our goal is to prove that his example also displays an
exponential growth of ||D1+αω||L∞(T2) for all 0 < α ≤ 1, where we obviously have to give a
precise definition of what is meant by ||D1+αω||L∞(T2). In a certain sense, the limiting case
α = 0 quantifies the growth of the vorticity gradient, and it is therefore the most interesting
one, although we do not reach it with this construction.

Let us define the norm that we will use to quantify the growth of D1+αω.

Definition 1.9. Let Ω ⊂ Rn be an open set, f : Ω→ R be a scalar function and 0 < α ≤ 1. We
define the homogeneous Hölder semi-norm

|f |Ċ1,α = sup
x 6=y

||∇f(x)−∇f(y)||∞
||x− y||α2

,

where, for a vector v = (v1, ..., vn), we have set ||v||∞ = supi |vi| and ||v||2 is the usual euclidean
norm.

Following Zlatoš [Zla15], we work in (2T)2 instead of the torus T2 in order to simplify
notations. (2T)2 is the square [−1, 1) with identified opposite sides.
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Theorem 3. For any A <∞ and any 0 < α ≤ 1, there exist T0 ≥ 0 and ω0 ∈ C∞((2T)2) with
||ω0||L∞ = 1 such that the solution of (1)-(2) satisfies for all T ≥ T0,

sup
t≤T
||ω(t, ·)||Ċ1,α ≥ eAT .

The next section will be devoted to the proof of this theorem.

1.2 Proof of theorem 3
For the sake of completeness, we will recall the whole construction done by Zlatoš in [Zla15].
However, before starting, we prove the following elementary lemma, which will be needed in the
proof.

Lemma 1.10. Let I ⊂ R be an open interval containing 0 and a > 0 be a positive real number
such that [0, a] ⊂ I. If b > 0 and f ∈ C∞(I) verify f(0) = 0, f ′(0) = 0 and f(a) = b, then for
all 0 < α ≤ 1,

|f |Ċ1,α(I) ≥ ba
−1−α

Proof. If b = 0, there is nothing to prove. We therefore only consider the case b > 0. We
will proceed by contradiction. Suppose |f ′(x) − f ′(y)| < ba−1−α|x − y|α for all x, y ∈ I. Since
f ′(0) = 0, we then have f ′(x) < ba−1−αxα for all x ∈ [0, a], so that

f(a) ≤
∫ a

0
ba−1−αsαds = ba−1−α a

1+α

α+ 1 ≤
b

α+ 1 < b.

This contradicts the assumption f(a) = b and concludes the proof.

Keeping in mind this preliminary lemma, we can start the proof of theorem 3. For x ∈ [0, 1]2
we introduce the notation Q(x) := [x1, 1]× [x2, 1].

The starting point is the following lemma, proved in [Zla15], and which was strongly inspired
by an analoguous lemma in [KŠ14].

Lemma 1.11 ([Zla15]). Let ω(t, ·) ∈ L∞((2T)2) be odd in both x1 and x2. If x1, x2 ∈ [0, 1/2],
then

uj(t, x) = (−1)j
(

4
π

∫
Q(2x)

y1y2
|y|4

ω(t, y)dy +Bj(t, x)
)
xj (j = 1, 2) (1.12)

where, for some universal C,

|B1(t, x)| ≤ C||ω(t, ·)||L∞
(

1 + min
(

log
(

1 + x2
x1

)
, x2
||∇ω(t, ·)||L∞([0,2x2]2)

||ω(t, ·)||L∞

))
,

|B2(t, x)| ≤ C||ω(t, ·)||L∞
(

1 + min
(

log
(

1 + x1
x2

)
, x1
||∇ω(t, ·)||L∞([0,2x1]2)

||ω(t, ·)||L∞

))
.

It roughly means that in the configuration where the vorticity is odd with respect to both
x1 and x2, the dynamics of a point driven by the velocity field u is nearly hyperbolic. We will
not recall the proof of this lemma, since it is written down in full details in [Zla15].

We now come back to the proof of theorem 3, and firstly fix A < ∞ and 0 < α ≤ 1. We
will also need a parameter δ, whose value will be chosen at the end of the proof, and which has
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to be thought as being very small. Pick ω0 : (2T)2 → [−1, 1] which is smooth, odd in both x1
and x2, non-negative on [0, 1]2 and equal to 1 on a subset of [0, 1]2 of measure 1 − δ, and with
ω0(x1, x2) = sin3(πx1) sin(πx2) when min{|x1|, |x2|} ≤ δ

4 .

Let us first prove that
∂x1ω(t, 0, x2) = 0 (1.13)

for all t ≥ 0 and x2 ∈ 2T = [−1, 1). We set v(t, x) = ∂x1ω(t, x). Differentiating the relation
∂tω + u · ∇ω = 0 with respect to x1, we get that v satisfies

∂tv + ∂x1u1v + u1∂x1v + ∂x1u2∂x2ω + u2∂x2v = 0. (1.14)

We notice that by the symmetry assumptions, u1 = 0 and ω = 0 along the line x1 = 0. Therefore,
restricting equation (1.14) to the line x1 = 0, we get

∂tw + ∂x1u1w + u2∂sw = 0,

where we have set w(t, s) = v(t, 0, s) for s ∈ 2T. Since the vector field u is smooth and w(0, ·) ≡ 0,
the only solution of this equation is w ≡ 0. Coming back to ω, we see that we have obtained
∂x1ω(t, 0, x2) = 0 for all t ≥ 0 and x2 ∈ 2T, which is what we wanted to show. Note that by
symmetry, we even have ∇ω(t, 0) = 0 for all t ≥ 0.

We now take T ≥ T0 = 1
A

∣∣∣log δ
4

∣∣∣, so that e−AT ≤ δ
4 and consider X(t) solving X ′(t) =

u(t,X(t)) with X(0) = (e−AT , η), where η ≤ e−AT will be fixed later. We also introduce
T ′ := min{T, T ∗}, with T ∗ the exit time of X from the square [0, e−AT ]2.

In the case where
sup
t≤T
||∇ω(t, ·)||L∞([0,2 exp(−AT )]2) > eAT ,

since ∇ω(t, 0) = 0, we obtain supt≤T ||ω(t, ·)||Ċ1,α ≥ (2
√

2)−αe(1+α)AT , which is greater than
eAT for T ≥ T0, possibly after having reduced δ. This concludes the proof of theorem 3 in this
case.

Let us therefore suppose in the sequel

sup
t≤T
||∇ω(t, ·)||L∞([0,2 exp(−AT )]2) ≤ eAT .

Since X(t) ∈ [0, e−AT ]2 for t ≤ T ′, it follows that

x2||∇ω(t, ·)||L∞([0,2x2]2) ≤ 1 (1.15)

when t ≤ T ′ and x = X(t). The same estimate also holds with x2 replaced by x1. Hence,
equality (1.12) holds with |Bj(t, x)| ≤ 2C for t ≤ T ′.

An important remark that what first made in [KŠ14] is that for the kind of ω0 that we have
chosen (odd in both x1 and x2, and with a proportion at least 1− δ of the square [0, 1]2 covered
by points of vorticity 1), the integral in (1.12) multiplied by 4/π is not less than 1

D | log δ| for
x ∈ [0, δ]2 and some universal constant D > 0. Hence, for t ≤ T ′,

u1(t,X(t)) ≤ −
( 1
D
| log δ| − 2C

)
X1(t),
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u2(t,X(t)) ≥
( 1
D
| log δ| − 2C

)
X2(t). (1.16)

From now, we suppose δ < e−2CD, so that u1(t,X(t)) ≤ 0 for t ≤ T ′, and hence X1(T ′) < e−AT .
The equation (1.16) gives that for t ≤ T ′,

X2(t) ≥ η exp
(( 1

D
| log δ| − 2C

)
t

)
(1.17)

We now fix η = exp
(
−AT + 2CT − T

D | log δ|
)
, which is less than exp(−AT ) for δ small enough.

For this value of η, we directly infer from (1.17) that T ′ ≤ T and hence X2(T ′) = e−AT by
definition of T ′.

By lemma 1.11 and (1.15), we note that∣∣∣∣ ddt [logX1(t) + logX2(t)]
∣∣∣∣ ≤ 4C

for t ≤ T ′. Therefore

logX1(T ′) ≤ logX1(0)− logX2(T ′) + logX2(0) + 4CT ′ ≤
(
−A+ 6C − 1

D
| log δ|

)
T

Since the vorticity is transported along the flow of u, we also notice that

ω(T ′, X(T ′)) = ω0(X(0)) = sin3(πe−AT ) sin(πη) ≥ ηe−3AT = exp
(
−4AT + 2CT − T

D
| log δ|

)
.

We can now apply lemma 1.10 to f(s) = ω(T ′, s, e−AT ). We know by (1.13) that f ′(0) = 0
and, by definition of ω0, we also have f(0) = 0. Using for a the point X(T ′), we obtain

||ω(t, ·)||Ċ1,α ≥ ||f ||Ċ1,α ≥ exp
(
−4AT + 2CT − T

D
| log δ|+ (1 + α)(AT − 6CT + T

D
| log δ|)

)
Finally, we choose δ very small, so that this last expression is greater than eAT , which means

δ < exp
(
D

α
((4 + 6α)C + (4− α)A)

)
.

For such a choice,
sup
t≤T
||ω(t, ·)||Ċ1,α ≥ eAT .

for T ≥ T0. This concludes the proof of theorem 3.
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Chapter 2

Self-similar solutions in R2\{0}

The study of self-similar solutions of the equations of fluid mechanics traces back at least to
Leray [Ler34]. In this paper, Leray raises the question of the existence of solutions of the
Navier-Stokes equation

∂tu+ u · ∇u− ν∆u = −∇p, ∇ · u = 0 (2.1)

of the form
u(t, x) = 1√

2a(T − t)
U

(
x√

2a(T − t)

)
(2.2)

where T ∈ R and a > 0. One of the interesting features of such possible solutions is that they
develop a singularity at time T . However, it was proved in [NRŠ96] that under the additional
assumption (which is in particular verified if u is of finite energy) that U ∈ L3(R3), there is no
such self-similar solution.

The quest for self-similar solutions is much more natural in the case of the Navier-Stokes
equation than for the Euler equation. One can see it through scaling arguments, and we will
explain it now, partly following Terence Tao in [Tao07]. The main observation, which is a
mathematical translation of the phenomenon of turbulence, is that the behaviour of the 3d
Navier-Stokes equation at fine scales is much more nonlinear than at coarse scales. In fact, the
3d Navier-Stokes equation obeys a scaling invariance, which means that if (u, p) is a solution
of the Navier-Stokes equation (2.1), then u(λ)(t, x) = 1

λu( t
λ2 ,

x
λ) is also a solution of (2.1) with

associated pressure p(λ)(t, x) = 1
λ2 p( t

λ2 ,
x
λ). Moreover, this scaling is the only one for which

such a property holds. The parameter λ > 1 should be thought as being large, and, still
following Terence Tao [Tao07], the transformation from u to u(λ) can be imagined as a magnifying
glass, "taking fine-scale behaviour of u and matching it with an identical (but rescaled, and
slowed down) coarse-scale behaviour of u(λ)". For the Euler equation, there is a whole one-
parameter family of scalings u(λ,α)(t, x) = 1

λu( t
λα+1 ,

x
λα ) which preserve the fact of being a

solution. Therefore, in the case of the Euler equation, there is no natural relation to couple the
space and time variables as in (2.2) in order to look for self-similar solutions.

In the sequel, we will be working in Ω = R2\{0}. We fix α > 0 a positive real number and
we look for all solutions of 2d Euler in Ω of the form

u(t, x) = tαU(tβx) (2.3)

with α, β ∈ R and U a vector field only depending on the distance to the origin, which means
that for r > 0 and θ ∈ [0, 2π[,

U(r, θ) = f(r)−→er + g(r)−→eθ , (2.4)
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where (−→er ,−→eθ ) is the standard basis of the polar coordinates.
We will in fact show the following theorem.

Theorem 4. The field u is a (globally defined) self-similar solution of 2d Euler in R2\{0}
verifying (2.3)-(2.4) if and only if we are in one of the following three cases.

1. There exists K ∈ R such that

f ≡ 0 and g(r) = Kr
−α
β . (2.5)

2. β = 0, α = −1, and there exists c 6= 0 and K ∈ R such that

f(r) = c

r
and g(r) = K

r
exp

(
r2

c

)
. (2.6)

3. β 6= 0, α+ β = −1 and there exists c 6= 0 such that c
β > 0 and K ∈ R and

f(r) = c

r
and g(r) = K

r

(
βr2 + c

β + c

)1+ 1
2β

. (2.7)

Remark 2.8. We must already say that the tangency condition u·n = 0 which is usually required
for the solutions of the Euler equation in domains with boundary is only satisfied for (2.5).

2.1 The ODE satisfied by g

Since the field u is incompressible, we must have ∇ · U = 0, and therefore

1
r

∂(rf)
∂r

+ ∂g

∂θ
= 0, (2.9)

from which it immediately follows that f(r) = c/r for some c ∈ R. Hence, we obtain

U(r, θ) = c

r
−→er + g(r)−→eθ , (2.10)

and we can use it in equation (2.3) to get

u(t, x) = ctα−β

r
−→er + tαg(tβr)−→eθ . (2.11)

We now compute ∂tu and u · ∇u :

∂tu = (α− β)tα−β−1 c

r
−→er + αtα−1g(tβr)−→eθ + βtα+β−1rg′(tβr)−→eθ . (2.12)

u · ∇u =
(
ctα−β

r

∂

∂r
+ tαg(tβr)

r

∂

∂θ

)(
ctα−β

r
−→er + tαg(tβr)−→eθ

)

= −t2(α−β) c
2

r3
−→er + t2α

c

r
g′(tβr)−→eθ + t2α−β

c

r2 g(tβr)−→eθ − t2α
g(tβr)2

r
−→er ,

where we used the rules of derivation

∂−→er/∂r = 0, ∂−→er/∂θ = −→eθ , ∂−→eθ/∂r = 0 et ∂−→eθ/∂θ = −−→er .
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If we put these expressions in the Euler equation

∂tu+ u · ∇u = ∇p = ∂p

∂r
−→er + 1

r

∂p

∂θ
−→eθ , (2.13)

we obtain the derivatives for the pressure

∂p

∂r
= (α− β)tα−β−1 c

r
− t2(α−β) c

2

r3 − t
2α g(tβr)2

r
(2.14)

∂p

∂θ
= αrtα−1g(tβr) + βtα+β−1r2g′(tβr) + ct2αg′(tβr) + t2α−β

c

r
g(tβr). (2.15)

Of course, it is necessary that
∫ 2π

0
∂p
∂θdθ = 0, which can be rewritten, since thanks to equation

(2.15) the quantity ∂p
∂θ does not depend on θ,

αrtα−1g(tβr) + βtα+β−1r2g′(tβr) + ct2αg′(tβr) + t2α−β
c

r
g(tβr) = 0. (2.16)

We can simplify this equation by performing the change of variables tβr → r, and we get
the following ODE on g :

αrtα−β−1g(r) + βtα−β−1r2g′(r) + ct2αg′(r) + t2α
c

r
g(r) = 0. (2.17)

If c 6= 0, since this equation has to be satisfied for all t > 0, it is necessary that α− β − 1 = 2α,
that is α + β + 1 = 0. In the sequel, we suppose that it is the case. We finally obtain the
following ODE on g :

(βr2 + c)g′(r) +
(
αr + c

r

)
g(r) = 0. (2.18)

If c = 0, equation (2.18) also derives from (2.17), but without the condition that α+ β + 1 = 0.
We will deal with this case separately.

2.2 Solution of the ODE on g

The form of the solutions of equation (2.18) on R+ depends on the parameters α, β and c. We
have to distinguish several cases in order to find all possible solutions.

The first case is the case c = 0. We notice that if g is not trivial, then β 6= 0. This is assumed
to hold in the sequel. Let us also suppose for the moment that α 6= 0. Then the solutions to
(2.18) are given by

g(r) = g(1)r−
α
β . (2.19)

In the case α = 0, it not difficult to see that the solutions to (2.18) also have this form. This
finishes the first case c = 0. In all other cases, we therefore implicitly assume that c 6= 0.

The second case is the case β = 0, c 6= 0. In this case, the solutions of (2.18) are easily found
to be

g(r) = g(1)
r

exp
(
r2 − 1
c

)
. (2.20)

The third case is the case β 6= 0, c 6= 0 and c
β > 0. As before, the equation (2.18) is integrable

and its solutions are the g(r) verifying

g(r) = g(1)
r

(
βr2 + c

β + c

)1+ 1
2β

. (2.21)
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The last case is the case β 6= 0, c 6= 0 and c
β < 0. Here, we formally find that

g(r) = g(1)
r

exp
(
β − α
β

∫ r

1

s

s2 + c
β

ds

)
,

but the inner integral cannot make sense for every r > 0. Hence, in this case, there is no solution
of (2.18) defined on (0,+∞).

We have to verify that the expressions (2.19), (2.20) and (2.21) derive from a pressure, which
means that there exists p verifying the equations (2.14) and (2.15) for the expression of g given
by (2.19), (2.20) or (2.21). Since we already know that the right-hand side of (2.15), namely

αrtα−1g(tβr) + βtα+β−1r2g′(tβr) + ct2αg′(tβr) + t2α−β
c

r
g(tβr),

is equal to zero, it is sufficient to find p(t, r, θ) not depending on θ and satisfying

∂p

∂r
= (α− β)tα−β−1 c

r
− t2(α−β) c

2

r3 − t
2α g(tβr)2

r
. (2.22)

With the expressions of g that were found above in (2.19), (2.20) and (2.21), at a fixed time t,
equation (2.22) reduces to an ODE in r which can be integrated for r ∈ (0,+∞).

Hence, the proof of theorem 4 is complete.

Remark 2.23. One can note that for any α ∈ R, the self-similar solution

u(t, x) = tα

r
−→er (2.24)

has the additional property that it is irrotational. It is due to the fact that we removed the origin.

Remark 2.25. As already mentioned, the tangency to the boundary condition u ·n = 0 is NOT
satisfied, even in a weak sense, except for the solutions given by (2.5).

Remark 2.26. None of the solutions listed in theorem 4 lies in any Lp space, and in particular
none of them has finite energy. However, they all have "weak singularities" in 0, in the sense they
belong to some Lp,∞loc spaces. For example, the solution (2.6) is in L2,∞(K) for every compact
set K.
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Chapter 3

Uniqueness in rough domains

The Cauchy problem for the 2d Euler equation in bounded domains is often considered as being
well understood since Wolibner established in [Wol33] its well-posedness for smooth initial data
and Yudovich proved in [Yud63a] the existence and uniqueness of weak solutions for bounded
vorticities. However, these results only apply to the case of regular enough domains, and the
critical regularity for the boundary of the domain happens to be C1,1. The reason for it is
that the proofs heavily rely upon elliptic regularity estimates that do not hold for more singular
domains.

Remark 3.1. In the context of smooth bounded domains Ω, a solution u of the 2d Euler equation
in Ω with initial datum u0 is a vector field u(t, x) which satisfies

∂tu+ u · ∇u = −∇p, and ∇ · u = 0, (3.2)

supplemented with the initial and tangency conditions

u(0, ·) = u0 and u · n = 0, (3.3)

where n is a unitary vector normal to Ω.

Recently, Gérard-Varet and Lacave proved in [GVL13] and [GVL15] a result of existence of
weak solutions for bounded vorticities in a very large set of singular domains. Let us describe
their result. The open sets Ω considered are obtained by removing from a simply connected
domain Ω̃ a finite number of obstacles C1, ..., Ck. More precisely they can be written

Ω := Ω̃\
(
∪ki=1C

i
)
, k ∈ N (3.4)

with the following assumptions

(H1) Ω̃ is a bounded simply connected domain.

(H2) C1, ..., Ck are disjoint connected compact subsets of Ω̃, none of which is reduced to a point.

Within this setting, it is possible to establish the existence of global weak solutions of the
Euler equation with Lp vorticity. In our case, we will only focus on the case p =∞, since this is
the only case for which uniqueness is known in smooth domains [Yud63b]. We consider initial
data satisfying

u0 ∈ L2(Ω), curl u0 ∈ L∞(Ω), div u0 = 0, u0 · n|∂Ω = 0. (3.5)
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Because of the irregularity of Ω, the conditions u0 · n|∂Ω = 0 and div u0 have to be understood
in a weak sense : for any φ ∈ C1

c (R2),∫
Ω
u0 · ∇φ = −

∫
Ω
div u0φ = 0. (3.6)

Similarly to (3.6), the weak form of the divergence free condition and of the tangency condition
on the Euler solution u will read :

∀φ ∈ D
(
[0,+∞);C1

c (R2)
)
,

∫
R+

∫
Ω
u · ∇φ = 0. (3.7)

Finally, the weak form of the momentum equation on u is :

∀φ ∈ D ([0,+∞)× Ω) with div φ = 0,
∫ ∞

0

∫
Ω

(u · ∂tφ+ (u⊗ u) : ∇φ) = −
∫

Ω
u0 · φ(0, ·). (3.8)

The main theorem of [GVL13] is

Theorem 5. Assume that Ω is of type (3.4), with (H1)-(H2). Let u0 be as in (3.5). Then there
exists

u ∈ L∞(R+;L2(Ω)), with curl u ∈ L∞(R+ × Ω)

which is a global weak solution of (3.2)-(3.3) in the sense of (3.6)-(3.7)-(3.8).

In a few words, this existence theorem follows from a property of domain continuity for the
Euler equations. Namely, the strong solutions un of the Euler equations (with smooth initial
vorticity ωn0 approximating ω0) in smooth approximate domains Ωn converge to a solution u
in Ω. By approximate domains, we mean converging to Ω in the Hausdorff topology. These
approximate domains read

Ωn := Ω̃n\
(
∪ki=1O

i
n

)
(3.9)

for some smooth Jordan domains Ω̃n and Oin. A keypoint is the so-called γ-convergence of Ωn

to Ω.
We will now give the precise definition of regularization that we use in the sequel.

Definition 3.10. Assume that Ω is of type (3.4), with (H1)-(H2) and u0 in an initial datum in
Ω satisfying (3.5). We call regularization of Ω and u0 any pair of sequences (Ωn)n∈N, (ωn0 )n∈N
verifying the following properties.

1. For all n ∈ N and i = 1, ..., k, Ω̃n and Oin are smooth Jordan domains such that the number
of connected components of D\Ωn is bounded in n.

2. The convergences dH(Ωn,Ω) → 0 and dH(Oin, Oi) → 0 hold, where dH is the Hausdorff
distance between open sets (cf appendix B of [GVL13]).

3. For all n ∈ N, ωn0 ∈ L∞(Ωn). Moreover, for all p ∈ [1,+∞], we have ωn0 ⇀ ω0 := curl
weakly in Lp(D) and ||ωn0 ||Lp(D) ≤ ||ω0||Lp(D) where D is a large compact set containing Ω
and all Ωn’s.

Our goal was initially to prove that in bounded domains Ω of type (3.4), with (H1)-(H2),
and for bounded vorticity ω, the solution u to the 2d Euler equation constructed above does
not depend on the choice of the open sets Ωn of regularization of Ω or on the vorticities ωn
which approximate ω. This would have been a big step towards proving uniqueness for all such
domains Ω. But we did not manage to prove it. However, we feel that it is worth explaining the
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few things we understood on this problem, and therefore we devote this chapter to it. Since there
is no positive result at the end, this chapter is not as formal as the others, and sometimes we will
rely on purely heuristic arguments. However, we made efforts to try to keep it as comprehensible
and rigorous as possible.

Let us first make precise the problem that we consider.

Problem 3.11. Assume that Ω is of type (3.4), with (H1)-(H2). Let u0 as in (3.5). Determine
whether there exists u ∈ L∞(R+;L2(Ω)) with curl u ∈ L∞(R+ × Ω) that satisfies the following
property : for every regularization (in the sense of Definition 3.10) Ωn, ωn0 of Ω, ω0, the unique
global solution un of the 2d Euler equation in Ωn with initial vorticity ωn0 strongly converges to u
without any extraction of subsequence. The strong convergence used in this context is the strong
L2(0, T ;D) convergence for all T > 0 and for a large open set D fixed from the beginning, which
contains Ω and all the Ωn’s for n large enough.

The use of the strong L2(0, T ;D) convergence is natural in this context since the proof of
Theorem 5 consists in considering a regularization (Ωn), (ωn0 ) of Ω, ω0 and in using compactness
to find an extraction σ for which uσ(n) strongly converges in L2(0, T ;D) for all T > 0 to some
u, which finally happens to be a weak solution of the 2d Euler equation in Ω with initial datum
ω0. In some sense, our problem is to show that u does not depend on the regularization and
that σ can be taken to be the identity.

3.1 Heuristic considerations
Heuristically, if the answer to Problem 3.11 is yes, any proof should use a theorem of the following
flavour.

(Meta)-theorem 3.12. Fix T > 0. If U and V are two smooth open sets at very small
Hausdorff distance of Ω (possibly depending on T ) and ω0 ∈ C∞(U) and ω′0 ∈ C∞(V ) are two
initial data that are close in some chosen norm, then the solutions of the Euler equation in U
(resp. V ) with initial data ω0 (resp. ω′0) denoted by ω(t, ·) and ω′(t, ·) remain close in the same
norm on the whole time interval [0, T ].

This meta-theorem means that ω and ω′ cannot diverge from each other too quickly if they
were very close at the beginning. Since ω is driven by the vector field u, we see that to prove
such a result, it would be necessary to show that if two distributions of vorticity ω ∈ C∞(U) and
ω′ ∈ C∞(V ) are close enough in some norm, then the vector fields u and v that they generate
respectively in U and V are also somehow close in some other norm. It happens that this result
holds true if one restricts to domains Ω (approximated by U and V ) which satisfy a property of
ε-cone, as proved by Savaré and Schimperna in [SS02].

To state their result properly, we need to recall the definition of the ε-cone property.

Definition 3.13 ([HP06], Definition 2.4.1). Let y be a point of R2, ξ be a unitary vector and
ε > 0. We call cone of vertex y, of direction ξ and of dimension ε the cone denoted by C(y, ξ, ε)
defined by

C(y, ξ, ε) = {z ∈ R2, (z − y, ξ) ≥ cos(ε)|z − y| and 0 < |z − y| < ε}.

Note that the vertex y does not belong to C(y, ξ, ε). We say that an open set Ω has the ε-cone
property if

∀x ∈ ∂Ω, ∃ξx unitary vector such that ∀y ∈ Ω ∩B(x, ε), C(y, ξx, ε) ⊂ Ω.
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Remark 3.14. It is possible to show ([HP06], Theorem 2.4.7) that an open set Ω with a bounded
frontier has the ε-cone property if and only if its boundary is lipschitzian. Therefore, the ε-cone
property is far weaker than the classical condition of being C1,1 needed to apply Yudovich’s
theory.

We can now state (a slightly simplified version of) the theorem of Savaré and Schimperna
[SS02].

Theorem 6 ([SS02], Theorem 1). Let Ω be an open set satisfying the ε-cone property, Ωn a
sequence of open sets all contained in a large open set D, ω ∈ L2(D). Then there exists a
constant C depending only on Ω such that

||ψωΩn − ψ
ω
Ω||H1(D) ≤ C||ω||

1/2
H−1(D)||ω||

1/2
L2(D)dH(Ωn,Ω)1/2, (3.15)

where we denoted by ψωΩ the solution of ∆ψ = ω in Ω with Dirichlet boundary condition (and
similarly for Ωn).

Remark 3.16. The H−1 norm which is used in D ⊂ RN in this section is the norm given by

||ω||H−1(D) := inf{
∑

0≤i≤N
||fi||2L2}

where the inf is taken over all the decompositions

ω = f0 +
∑

1≤i≤N

∂fi
∂xi

, f0, ..., fN ∈ L2(D).

It might seem unclear why Theorem 6 is related to our problem. In fact, since the velocity
field u in the Euler equation satisfies div(u) = 0, there exists ψ : R×Ω→ R such that u = ∇⊥ψ
where ∇⊥ = (∂x2 ,−∂x1). The function ψ is called the stream function. The definition of the
vorticity ω = curl u implies that ω and ψ are related by ∆ψ = ω. We now see how theorem 6
comes into play. Keeping the same notation as in the theorem, the left hand side of inequality
(3.15) is in fact directly related to the L2 norm of the difference of the velocities computed in
Ωn and in Ω. In other words, the inequality (3.15) gives us a control on the difference of two
velocities computed in different domains from the same distribution of vorticity.

We borrow from [HP06] a second result that allows to extend theorem 6 to the case where
the distribution of vorticities are also distinct.

Theorem 7 ([HP06], proposition 3.2.1). There exists a constant C depending only on the big
open set D such that for all open set W ⊂ D, we have

||ψfW ||H1
0 (D) ≤ C||f ||H−1(D). (3.17)

We now use the triangular inequality to get

||ψωnΩn − ψ
ω
Ω||H1(D) ≤ ||ψωnΩn − ψ

ω
Ωn ||H1(D) + ||ψωΩn − ψ

ω
Ω||H1(D),

which we combine with inequalities (3.15) and (3.17) to obtain

||ψωnΩn − ψ
ω
Ω||H1(D) ≤ C||ωn − ω||H−1(D) + C||ω||1/2H−1(D)||ω||

1/2
L2(D)dH(Ωn,Ω)1/2. (3.18)

For a fixed Ω and a fixed ω, we set εn = C||ω||1/2H−1(D)||ω||
1/2
L2(D)dH(Ωn,Ω)1/2, and we know that

εn → 0 as n→∞. We write the velocities un = ∇⊥ψωnΩn and u = ∇⊥ψωΩ, so that the inequality
(3.18) becomes

||un − u||L2(D) ≤ C||ωn − ω||H−1(D) + εn. (3.19)

17



This inequality is precisely what we were looking for : it controls the difference of the
velocity fields by the difference of the vorticities. Moreover, the norms seem to be particularly
well adapted : for the velocities, the energy norm is the one we want to control to get the
strong L2(0, T ;D) convergence which is involved in the statement of problem 3.11, and for the
vorticities, the H−1(D) seems to be the natural counterpart to the L2 norm for the velocities
because of the relation ω = curl u.

Recall that our initial idea was to establish an inequality like (3.19) and then to prove that
this inequality implies that the vorticities ωn and ω cannot diverge from each other too quickly
by a kind of Gronwall lemma. However, we will now explain why inequality (3.19) alone cannot
imply that the vorticities stay close, and show that a second inequality, which does not hold in
our case, is necessary to establish this result.

To get intuition, let us imagine that at a given time t, the vorticities ωn and ω in inequality
(3.19) are very concentrated bumps centered on different points x and y which are very close.
We suppose moreover that the supports of these bumps do not intersect. We focus on the
short time evolution of these two bumps under the velocity fields un and u. The point is that
inequality (3.19) alone (which means that we do not use anything else than this inequality and
the fact that the vorticities are transported by the velocities) does not tell us that ωn and ω stay
close to each other, even during a very short time. To see it, imagine that un = u. Therefore
inequality (3.19) is automatically satisfied. However, if un = u varies very quickly in time, it
can happen that its values around the bump of ω are very different from its values around the
bump of ωn since we supposed that the supports of ω and ωn do not intersect, although very
close. Hence, even if they are very close and driven by the same velocity field, the vorticities
may quickly diverge.

To put it into a rigorous form, we will now describe a very interesting paper of Loeper
[Loe06], which uses all these ideas to give a short proof of the uniqueness part of Yudovich’s
theorem in the case - and this is precisely where our argument fails - of a bounded C1,1 domain
Ω.

3.2 Rigorous arguments through optimal transport
The precise statement of the theorem which is reproved in [Loe06] is the following.

Theorem 8 ([Yud63b] ; [Loe06], theorem 4.6). Let ω0 belong to L1 ∩ L∞(R2). There exists a
unique solution in R2 of the system

∂tω +∇⊥Ψ · ∇ω = 0, −∆Ψ = ω, ω|t=0 = ω0. (3.20)

such that ω(t) ∈ L∞(R+ × R2).

Following [Loe06], we introduce the quadratic Wasserstein distance, which will be the right
notion to quantify the distance between two distributions of vorticity.

Definition 3.21. Let ω1, ω2 be two positive measures on Rd of same total mass, which we
denote by TM(ω1) = TM(ω2) = M . We define

W2(ω1, ω2) = inf
γ

(∫
Rd×Rd

|x− y|2dγ(x, y)
)1/2

, (3.22)

where γ runs on all positive measures on Rd × Rd with marginals ω1 and ω2.
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An interesting property of the Wasserstein distance is that it is somehow comparable to some
H−1 norm. The H−1 norm which we use in this context is slightly different from the one of the
previous section. It is given by

||f ||H−1(Rd) = sup
(∫

Rd
fg, g ∈ C∞c (Rd),

∫
|∇g|2(x)dx ≤ 1

)
. (3.23)

Proposition 3.24 ([Loe06], proposition 2.8). Let ρ1, ρ2 be in P(Rd) ∩ L∞(Rd). Then

||ρ1 − ρ2||H−1(Rd) ≤ max{||ρ1||L∞ , ||ρ2||L∞}1/2 W2(ρ1, ρ2).

As a direct consequence, one can show the following proposition.

Proposition 3.25 ([Loe06], theorem 4.4). Let ω1, ω2 be two positive measures on Rd of same
finite total mass M and with densities in L∞ with respect to the Lebesgue measure. Let Ψi, i =
1, 2, solve −∆Ψi = ωi with Ψi(x)→ 0 when |x| → ∞. Then

||∇Ψ1 −∇Ψ2||L2(Rd) ≤ [max{||ω1||L∞ , ||ω2||L∞}]1/2 W2(ω1, ω2). (3.26)

Let now ω0 be a given initial vorticity as in the statement of theorem 8. Still following
[Loe06], we introduce the quantity

Q(t) = 1
2

∫
R2
|ω0(x)||X2(t, x)−X1(t, x)|2dx, (3.27)

where Xi, i = 1, 2 denote the characteristics associated to the flows ∇⊥Ψi, which means

∂tXi(t, x) = ∇⊥Ψi(t,Xi(t, x)), X(0, x) = x.

At this point, we shall emphasize that the results of Di Perna and Lions [DL89] ensure that
these characteristics are uniquely defined for a given u = ∇⊥Ψi ∈ W 1,1. This unique solution
can be represented as ωi(t) = Xi(t)#ω0.

Our goal is to prove that if Q(0) = 0, then Q(t) = 0 for all t ≥ 0. Therefore we compute the
derivative of Q,

dQ

dt
=
∫
R2
|ω0(x)|(X1 −X2) · (∇⊥Ψ1(X1)−∇⊥Ψ2(X2))(t, x)dx.

We now use the triangular inequality and the Cauchy-Schwarz inequality to get

dQ

dt
≤

∫
R2
|ω0(x)||X1 −X2||∇Ψ1(t,X1)−∇Ψ2(t,X1)|(t, x)dx

+
∫
R2
|ω0(x)||X1 −X2||∇Ψ2(t,X1)−∇Ψ2(t,X2)|(t, x)dx

≤ Q(t)1/2
(
T1(t)1/2 + T2(t)1/2

)
,

where
T2(t) =

∫
R2
|ω1(t, x)||∇Ψ1(t, x)−∇Ψ2(t, x)|2dx,

T1(t) =
∫
R2
|ω0(x)||∇Ψ2(t,X1(t, x))−∇Ψ2(t,X2(t, x))|2dx.

Proposition 3.25 gives an upper bound for T2, which turns out to be T2(t) ≤ 4||ω0||2L∞Q(t),
with the factor 4 coming from the separation between the positive and the negative part of
ω. For T1(t), we need an upper bound on the spatial variations of ∇Ψ2. This is given by the
following lemma.
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Lemma 3.28 ([Loe06], lemma 3.1). For all T > 0, there exists CT depending only on ||ω||L∞ +
||ω||L1 and T such that

∀t ∈ [0, T ),∀(x, y) ∈ R3 × R3, |x− y| ≤ 1
2 , |∇Ψ(t, x)−∇Ψ(t, y)| ≤ C|x− y| log 1

|x− y|
.

From this lemma, we deduce

T1(t) ≤ C2
T

∫
R2
|ω0(x)|

(
|X1 −X2|2 log2 1

|X1 −X2|

)
dx

= C2
T

4

∫
R2
|ω0(x)|

(
|X1 −X2|2 log2 |X1 −X2|2

)
dx

Then we choose T small enough such that ||X1 − X2||L∞([0,T ]×R2) ≤ 1
e . Since the map

x 7→ x log2 x is concave for 0 ≤ x ≤ 1/e we get by Jensen’s inequality

T1(t) ≤ C2
T

4

(∫
R2
|ω0(x)||X1(t, x)−X2(t, x)|2

)
log2

(∫
R2
|ω0(x)||X1(t, x)−X2(t, x)|2

)
= C2

T

2 Q(t) log2(2Q(t)).

Finally, adding all previous results, we get

d

dt
Q(t) ≤ CQ(t)

(
1 + log 1

Q(t)

)
.

Since Q(0) = 0 and
∫ δ

0
1

s(1−log s)ds = +∞ for all sufficiently small δ > 0, we can conclude by
Osgood’s criterion that Q ≡ 0. This finishes the proof of theorem 8.

3.3 Conclusion
We now draw general conclusions on the previous section.

The main conclusion is that an inequality like (3.19) or proposition 3.25 is not sufficient to
obtain uniqueness of Yudovich solutions in rough domains. It is absolutely necessary to also
control the small-scale space variations of u, with an inequality similar to the one of lemma 3.28,
which is available only for C1,1 domains.

The second conclusion is that the proof of uniqueness of the solutions constructed by Gérard-
Varet and Lacave [GVL13] is probably as difficult as to directly prove uniqueness of Yudovich
solutions in rough domains : it requires the understanding of the small-scale variations of u near
the boundary of the domain.

The third conclusion is that the Wasserstein distance, thanks to its relation to H−1 norms,
is particularly well-adapted to the measure of distance between velocities, or more generally to
the measure of distances between objects whose shape is quite similar, but whose supports move
with respect to each other.
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Chapter 4

Instability of symmetric
configurations

An interesting feature of the Euler equation (as well as the Navier-Stokes equation) is that it
preserves symmetry. To make this into a precise mathematical statement, we could write the
following proposition, stated only in 2d for the sake of simplicity.

Proposition 4.1. Let Ω ⊂ R2 be a smooth domain, supposed to be symmetric with respect to
the line x1 = 0. Let u0 : Ω→ R2 be a smooth velocity field which is also symmetric with respect
to the line x1 = 0 and which verifies u0 ∈ L2(Ω) and ω0 := curl u0 ∈ L∞ ∩ L1(Ω). Then the
unique Yudovich solution u(t, x) of the 2d Euler equation with initial datum u0 is also symmetric
with respect to the line x1 = 0 for all t > 0.

Proof. We set Ω′ = {x ∈ Ω, x1 > 0} (which is not smooth) and u′0 the restriction of u0 to Ω′.
The symmetry of u0 with respect to line x1 = 0 implies that the tangency condition (3.6) is
satisfied and therefore by theorem 5 there exists a solution u′(t, x) of 2d Euler in Ω′ with initial
condition u′0. If we symmetrize it with respect to the line x1 = 0, we get a solution u(t, x) of 2d
Euler in Ω with initial condition u0. Because of Yudovich’s theorem in Ω which is smooth, we
know that it is the unique solution of 2d Euler in Ω with initial datum u0.

Remark 4.2. This proof emphasizes the fact that if we did not know that uniqueness holds in
the domain Ω, there possibly could happen some symmetry breaking : we could imagine that there
would exist an other solution of 2d Euler in Ω with initial datum u0 that loses the symmetry with
respect to the line x1 = 0 in finite time. This situation somehow recalls the symmetry breaking
numerically appearing in the computations of Guillod and Šverák [GŠ17] in the context of the
3d Navier-Stokes solutions. To push this idea further, we tried to consider the situation where
Ω is not smooth but possesses some cusp on its symmetry axis (and therefore non-uniqueness
could possibly happen since Yudovich’s theory does not apply in this case anymore), but we did
not manage to find explicitly any symmetry breaking solution. Chapters 2, 3 and 4 were inspired
by this problem.

4.1 Loss of continuity for the vorticity
An interesting result related to the preservation of symmetry was found by Kiselev and Zlatoš
[KZ15]. They exhibited a particular symmetric domain with two cusps on its symmetry axis,
an initial continuous distribution of vorticity ω0 and a solution ω of 2d Euler (in vorticity
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formulation), with this initial condition, that loses its continuity in finite time. We will briefly
explain their proof to motivate our result.

Let
D̃±r = [(−r, r)× (±1− r,±+ r)] ∪Br(−r,±1) ∪Br(r,±1)

be the "stadium" domains in R2 with width r > 0 and centered at (0,±1). By smoothing a little
bit their connections between their circular arcs and their horizontal intervals, we can define
D±r that are also rescaled copies of each other, centered at (0,±1) and are infinitely smooth.
Finally, let

D′ := D+
1 ∪D

−
1 ∪ [(−1, 1)× {0}]

and D := D+
1 be the upper part of D′.

If ω0 ∈ L∞(D′) is odd in x2, proceeding exactly as in the proof of proposition 4.1, we see
that there is a unique odd-in-x2 solution ω to 2d Euler on D′ × R. Moreover, if ω0 ∈ C(D′),
then it follows from Yudovich theory that ω(t, ·) ∈ C(D) for all t > 0. The main theorem of
[KZ15] provides a necessary and sufficient condition for ω to remain continuous on the whole
domain D′.

Theorem 9. [KZ15] Let ω0 ∈ C(D′) be non-negative on D and odd in x2. Then the unique
odd-in-x2 solution ω to 2d Euler on D′ × R is continuous for all t > 0 if and only if ω0 = 0 on
∂D.

Proof. If ω0 = 0 on ∂D, then ω(t, ·) = 0 for all t > 0 on ∂D. Combined to the fact that ω is
continuous in D+

1 and D−1 , it implies that ω is continuous on D′ × R.
Suppose now ω0(x0) > 0 for some x0 ∈ ∂D. We will make the whole reasoning in D. By

continuity of ω0, there exists in D a non-nul area of points with ω0 ≥ η for some η > 0. Invoking
the transport of the vorticity and the conservation of D by the flow, we can choose δ such that
D+

1−2δ contains for all t > 0 an area at least δ of points y verifying ω(y, t) ≥ δ.
We now show that |KD(x, y)| can be uniformly bounded by below for x ∈ ∂D and y ∈ D+

1−2δ.
We set

κ := inf{GD(x, y) | x ∈ ∂D+
1−δ, y ∈ D+

1−2δ}

and we notice that by compactness, κ > 0. To establish a principle of comparison, we take v
a solution of ∆v = 0 on D\D+

1−δ with v = 0 on ∂D and v = κ on ∂D+
1−δ. By the maximum

principle, we know that v > 0 in the interior of this domain and thanks to Hopf’s lemma we get

ε := inf{|∇v(x)| | x ∈ ∂D} > 0.

Hence GD(x, y) ≥ v(x) for x ∈ D\D+
1−δ and y ∈ D+

1−2δ by the maximum principle since this
inequality holds on ∂(D\D+

1−δ) and both functions are harmonic in x. We know that KD(x, y)
is tangent to ∂D, and this also holds for ∇⊥v since v = 0 on ∂D. Using GD(x, y) ≥ v(x), we can
conclude that |KD(x, y)| ≥ |∇⊥v(x)| ≥ ε and the desired result follows. In particular, KD(x, y)
"always goes in the same sense" on the boundary of the domain D.

We now use this last result coupled to the Biot-Savart law and to the fact that ω is positive
on D : for x ∈ ∂D,

|u(t, x)| = 2
∣∣∣∣∫
D
KD(x, y)ω(t, y)dy

∣∣∣∣ ≥ 2
∣∣∣∣∣
∫
D

+
1−2δ

KD(x, y)ω(t, y)dy
∣∣∣∣∣ ≥ 2εδ2.

Therefore u(t, x) "also always goes in the same sense" and is bounded by below in norm.
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Finally, let T be such that X(T, x0) is at the origin, where X is the flow of u. The previous
results show that T < 0. We take a sequence of points yn converging to x0 in the interior ofD and
zn their images by the symmetry with respect to x2. We have X(T, yn)→ 0 and X(T, zn)→ 0
but, since the vorticity is carried by the flow, ω(X(T, yn))→ ω0(x0) and ω(X(T, zn))→ −ω0(x0)
by oddness of ω0. This shows that the vorticity ω(T, ·) is discontinuous at the origin.

A natural question is then to try to extend theorem 9 to the non-symmetric case. More
precisely, the problem could be the following.

Problem 4.3. Does there exist a non-symmetric domain Ω and ω a solution of the 2d Euler
equation in Ω with continuous initial datum ω0 which loses its continuity in finite time ?

We shall already say that we will not give any definitive answer to this problem, but we
will show a computation which suggests that the strategy of [KZ15] cannot be adapted to this
general case. An adaptation of the strategy of [KZ15] would have been to work in a "nearly
symmetric" domain Ω and a "nearly-symmetric" distribution of vorticity that would push some
small domains of distinct vorticities on both sides of the cusp to its vertex, therefore generating
the loss of continuity, exactly as described in the proof of theorem 9. Such a scenario would
have required a kind of "stability" of the configuration studied in [KZ15], but our computations
show that it is actually very unstable.

4.2 An explicit computation in R2\{x1 ≤ 0, x2 = 0}
We consider the following situation, which can be considered as a toy model in order to under-
stand problem 4.3. Let S := R2\{(x1, x2) ∈ R2, x1 ≤ 0, x2 = 0} and H := {(x1, x2) ∈ R2, x1 >
0} be a half-plane. The biholomorphism which sends S to H is the square root, denoted by
z → z1/2, with the standard definition of the complex logarithm. In order to compute the ve-
locity field generated on the boundary of S by a given distribution of vorticity, we first aim at
computing the value of ∇⊥G(x, y) where G is the Green function of S and x ∈ ∂S.

The Green function of H is

GH(x, y) = 1
2π (log |x− y| − log |x̃− y|),

with x̃ = (−x1, x2). Still denoting by G the Green function of S, we deduce that

G(x, y) = 1
2π (log |x1/2 − y1/2| − log |x̃1/2 − y1/2|)

Our goal is to compute∇⊥G(x, y) for x in a neighborhood ofD = {(x1, x2) ∈ R2, x1 ≤ 0, x2 =
0}, and especially around 0. We have to distinguish the case when x is above the half-line D,
and the case when it is below D. In the sequel, we fix y ∈ S and we write y1/2 = (a, b) ∈ H.

If k > 0 is fixed, ε > 0 is some (small) varying parameter and x = −k + iε, then x1/2 =
i
√
k+ ε

2
√
k

+ε2ψk(ε)+ iε2φk(ε) for some functions φk, ψk : R+ → C which are bounded and have
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bounded derivative in the limit ε→ 0. Therefore

4πG(x, y) = log
∣∣∣∣i√k + ε

2
√
k

+ ε2ψk(ε) + iε2φk(ε)− y1/2
∣∣∣∣2

− log
∣∣∣∣i√k + iε2φk(ε)−

ε

2
√
k
− ε2ψk(ε)− y1/2

∣∣∣∣2
= log

((
−a+ ε

2
√
k

+ ε2ψk(ε)
)2

+ (
√
k − b+ ε2φk(ε))2

)

− log
((

a+ ε

2
√
k

+ ε2ψk(ε)
)2

+ (
√
k − b+ ε2φk(ε))2

)

We deduce the expression of the partial derivative which is of interest for us (the one which
generates the tangential velocity) :

4π∂2G(x, y) =
−a√
k

+O(ε)

a2 + (
√
k − b)2 +O(ε)

−
a√
k

+O(ε)

a2 + (
√
k − b)2 +O(ε)

.

Evaluating in ε = 0, we obtain

∂2G(x, y) = −a
2π
√
k(a2 + (

√
k − b)2)

. (4.4)

If we do the same computation for x = −k− iε, which means that we are below D, we find :

∂2G(x, y) = a

2π
√
k(a2 + (

√
k − b)2)

,

which is the opposite of the previous result. One could have expected the change of sign : since
G is positive in the interior of the domain and equal to 0 on the boundary, the gradient of G on
the boundary points towards the interior, and therefore the sign of ∂2G has to change when one
crosses D. We also notice that the a appearing in the expression of ∂2G is always positive since
y1/2 = (a, b) is an element of H. Finally, let us mention the fact that in the expression of ∂2G,
there is a

√
k in the denominator, which means that the velocity should behave as k−1/2 near

the origin. It was already highlighted for example in [LMW14]. This denominator will play a
key role in the sequel.

We immediately deduce from the previous results that ∇⊥G is tangent to D but that it is
not in the same direction just above and below D. Then, how is it possible that in the proof of
theorem 9, it is found that around the cusp of the double-stadium, the velocity has the same
direction on both sides of the cusp ? To answer this question, we have to compute precisely the
velocity field generated by a symmetric pair of dirac masses of vorticity, i.e. a vorticity of the
form ω = δ(x,y) − δ(x,−y).

Again, we have to separate the case where x is just above and just below D. Slightly above
D, with the expression of G, we get :

u(x) = −a
2π
√
k
× 1
a2 + (

√
k − b)2

+ a

2π
√
k
× 1
a2 + (

√
k + b)2

,
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which means (we detail all lines since key cancellations happen) :

u(x) = a

2π
√
k

(
1

a2 + (
√
k + b)2

− 1
a2 + (

√
k − b)2

)

= a

2π
√
k
× (a2 + (

√
k − b)2)− (a2 + (

√
k + b)2)

(a2 + (
√
k + b)2)(a2 + (

√
k − b)2)

= a

2π
√
k
× −4b

√
k

(a2 + (
√
k + b)2)(a2 + (

√
k − b)2)

= −2ab
π(a2 + (

√
k + b)2)(a2 + (

√
k − b)2

Similarly, below D, we find

u(x) = a

2π
√
k

(
1

a2 + (
√
k + b)2

− 1
a2 + (

√
k − b)2

)
= −2ab
π(a2 + (

√
k + b)2)(a2 + (

√
k − b)2

.

Therefore, although ∂2G is not in the same sense just above and just below D, the velocity
field u generated by an odd distribution of vorticity remains the same while crossing D. This is
due to several cancellations which appear in the computations above.

Remark 4.5. In the case of a general symmetric domain Ω, we can adapt without any difficulty
these computations and obtain analoguous results since there exists a biholomorphism T which
sends H to Ω and preserves the symmetry. The image of the pair of Dirac masses of vorticity
by T is also symmetric, and the same cancellations happen.

We now perturb the previous configuration : in the domain S, we will put a vorticity +1
in y and a vorticity −1 in z, but this time y and z will not be symmetric with respect to the
axis x1. We could imagine that if y and z are "nearly symmetric", the velocity field will not
be very different of what we found in the symmetric case. But we will see that it is not the
case, and that the whole picture dramatically changes. In the sequel, we consider two points
y = (a, b) ∈ S and z = (c, d) ∈ S. In the case of a symmetric pair, we would have a = c and
b = −d.

Firstly, we compute u just above D. Using (4.4), we get :

u(x) = −a
2π
√
k(a2 + (

√
k − b)2)

+ c

2π
√
k(c2 + (

√
k − d)2)

= 1√
k
× c(a2 + (

√
k − b)2)− a(c2 + (

√
k − d)2)

(a2 + (
√
k − b)2)(c2 + (

√
k − d)2)

= 1√
k
× a2c+ b2c− ac2 − ad2 + 2

√
k(ad− bc) + k(c− a)

(a2 + (
√
k − b)2)(c2 + (

√
k − d)2)

(4.6)

Similarly, below D, we have

u(x) = a√
k(a2 + (

√
k + b)2)

− c√
k(c2 + (

√
k + d)2)

= 1√
k
× a(c2 + (

√
k + d)2)− c(a2 + (

√
k + b)2)

(a2 + (
√
k + b)2)(c2 + (

√
k + d)2)

= 1√
k
× ac2 + ad2 − a2c− b2c+ 2

√
k(ad− bc) + k(a− c)

(a2 + (
√
k + b)2)(c2 + (

√
k + d)2)

(4.7)
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We see that in the symmetric case a = c, b = −d, the first term of the numerators of (4.6)
and (4.7) both equal 0, and there only remain the terms with

√
k or k. Moreover the term in√

k is the same above and below D. But as soon as the symmetry is broken, u(x) blows up in
1/
√
k, and the term in 1/

√
k has not the same sign in (4.6) and (4.7). The following table sums

up the results.

Symmetric distribution and symmetric domain No symmetry
u keeps the same direction Typically, u may change its direction

around the cusp. around the cusp
No blow-up of |u| around the cusp. Strong blowp of |u| around the cusp.

To conclude with this toy model, it is now clear that around a cusp, some minor modifications
in the distribution of vorticity may lead to huge effects. In particular, any non-symmetric
perturbation of some symmetric configuration can generate big singularities in the norm and
the direction of the velocity field. Therefore, the sketch of proof given at the end of the previous
section cannot conclusive, because the symmetric configuration becomes very unstable if one
allows symmetry breaking. However, it seems to us that the computations of this chapter have
some interest by themselves because they clarify the very specific features of the symmetric
distributions of vorticity.
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