Équations sous-elliptiques : contrôle, singularités et théorie spectrale

Cyril Letrouit

Laboratoire Jacques-Louis Lions

Soutenance de thèse 4 octobre 2021

Introduction

Objectif - Étudier des phénomènes de propagation dans les équations sous-elliptiques : propagation de l'énergie, des singularités, des mesures de défaut, . . . et établir des liens avec la géométrie sous-Riemannienne (correspondance classique/quantique).

Motivation - L'étude des équations sous-elliptiques s'est faite principalement de 1960 à 1990 et elle n'a pas suffisamment bénéficié du développement de la géométrie sous-Riemannienne (de 1990 à aujourd'hui). Exemple de question : les minimiseurs anormaux, découverts au début des années 1990, jouent-ils un rôle dans les phénomènes de propagation des équations sous-elliptiques?

Plan de l'exposé - 1. Sous-Laplaciens. 2. Propagation de l'énergie.

3. Propagation des singularités. 4. Théorie spectrale de sous-Laplaciens.

$$\frac{\partial^2 u}{\partial x^2} + x \frac{\partial u}{\partial y} - \frac{\partial u}{\partial t} = f$$

- *M* une variété lisse, compacte, connexe de dimension *n*
- X_1, \ldots, X_m des **champs de vecteurs** lisses sur M (pas nécessairement indépendants) tels que

$$Lie(X_1,\ldots,X_m)=TM$$

(condition de Hörmander).

• μ un **volume** lisse sur M.

Alors le sous-Laplacien s'écrit

Sous-Laplaciens

$$\Delta = -\sum_{i=1}^{m} X_i^* X_i = \sum_{i=1}^{m} X_i^2 + \operatorname{div}_{\mu}(X_i) X_i,$$

où l'étoile est la transposition dans $L^2(M, \mu)$.

Il s'agit d'une généralisation du Laplacien Euclidien et de l'opérateur de Laplace-Beltrami sur les variétés Riemanniennes ([Hörmander 1967], [Rothschild-Stein 1976]).

Exemples de sous-Laplaciens

• **Heisenberg.** Champs $X_1 = \partial_x$ et $X_2 = \partial_y - x\partial_z$ dans \mathbb{R}^3 et $\mu = dxdydz$: $\Delta = \partial_x^2 + (\partial_y - x\partial_z)^2$

$$\Delta = O_X + (O_Y - I_Y)$$

Ici,
$$[X_1, X_2] = -\partial_z$$
.

• Martinet. Champs $X_1 = \partial_x$ et $X_2 = \partial_y + x^2 \partial_z$ dans \mathbb{R}^3 et $\mu = dxdydz$:

$$\Delta = \partial_x^2 + (\partial_y + x^2 \partial_z)^2.$$

Ici,
$$[X_1, X_2] = 2x\partial_z$$
 et $[X_1, [X_1, X_2]] = 2\partial_z$.

• ...

Hypoellipticité et sous-ellipticité

Les sous-Laplaciens sont **hypoelliptiques**, ce qui signifie que si V est un ouvert et $\Delta u \in C^{\infty}(V)$, alors $u \in C^{\infty}(V)$.

Les sous-Laplaciens satisfont aussi des inégalités de sous-ellipticité :

$$||u||_{H^{2/k}} \leq C(||u||_{L^2} + ||\Delta u||_{L^2}).$$

Le k qui apparaît est le **degré de non-holonomie**, nous allons le définir tout de suite. C'est une mesure du "degré de sous-ellipticité".

Distribution sous-Riemannienne

On appelle

Sous-Laplaciens

$$\mathcal{D} = \mathsf{Vect}(X_1, \dots, X_m) \subset TM$$

la distribution. Elle n'est pas forcément de rang (dimension) constant.

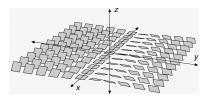
On pose
$$\mathcal{D}^0=\{0\}$$
, $\mathcal{D}^1=\mathcal{D}$ et, pour $\ell\geq 2$,

$$\mathcal{D}^\ell = \mathcal{D}^{\ell-1} + [\mathcal{D}, \mathcal{D}^{\ell-1}].$$

Ceci définit un **drapeau** en tout point $q \in M$

$$\{0\} = \mathcal{D}_q^0 \subseteq \mathcal{D}_q^1 \subset \ldots \subsetneq \mathcal{D}_q^{k(q)} = T_q M$$

Sous la condition de Hörmander, le théorème de Chow-Rashevsky (1937) stipule que, pour tous $q, q' \in M$, il existe un chemin tangent à \mathcal{D} reliant $q \ a \ a'$.



Questions abordées dans la thèse

Dans cette thèse, on s'intéresse à

1 la **propagation de l'énergie** dans les équations linéaires suivantes (avec sous-Laplacien) :

$$\partial_{tt}^2 u - \Delta u = 0$$
 (Ondes)
$$i\partial_t u + \frac{1}{2}\Delta u + Vu = 0.$$
 (Schrödinger)

On étudie le problème de l'**observabilité** (\Leftrightarrow contrôlabilité) de ces équations.

- 2 la propagation des singularités dans ces mêmes équations.
- la propagation (ou l'invariance) des mesures de défaut associées aux fonctions propres des sous-Laplaciens.
- → correspondance entre aspects **classiques** (géométrie sous-Riemannienne) et aspects **quantiques** (opérateurs sous-elliptiques).
- ightarrow une même idée : étudier le cône $\{\sigma_P(\Delta)=0\}\subset T^*M$.

Premier problème - Observabilité

Le problème de l'observabilité (exacte) est le suivant : étant donné $\omega \subset M$ mesurable et $T_0 > 0$ un temps, est-ce que toute solution u de l'équation que l'on considère (ondes ou Schrödinger) vérifie

$$\mathscr{E}_{(0,T_0),\omega}(u) \geq C\mathscr{E}_{(0,T_0),M}(u)$$

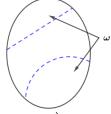
où C > 0 est indépendant de u? [Lions 1988].

Plan de cette partie :

- Observabilité des ondes sous-elliptiques :
- Observabilité de Schrödinger sous-elliptique.

Définition.

L'équation des ondes est (exactement) observable sur ω en temps T_0 s'il existe une constante $C_{T_0}(\omega) > 0$ telle que toute solution u de l'équation des ondes satisfait



$$\int_0^{T_0} \int_{\omega} |\partial_t u(t,x)|^2 d\mu(x) dt \geq C_{T_0}(\omega) \left(\|\partial_t u_{|t=0}\|_{L^2}^2 + \sum_{j=1}^m \|X_j u_{|t=0}\|_{L^2}^2 \right).$$

Les équations d'ondes sous-elliptiques ne sont jamais observables

Théorème ([L. 2020])

Soit $\omega \subset M$ un ensemble mesurable. On suppose que $M \setminus \omega$ contient dans son intérieur un point q tel qu'il existe $1 \le i, j \le m$,

$$[X_i,X_j](q)\notin \operatorname{Vect}(X_1(q),\ldots,X_m(q))=\mathcal{D}_q.$$

Alors quel que soit $T_0 > 0$, l'équation des ondes sous-elliptique **n'est pas** exactement observable sur ω en temps T_0 .

Idée : Utiliser des courbes Hamiltoniennes qui ne rencontrent pas ω .

On introduit le **symbole principal** du sous-Laplacien (=le Hamiltonien)

$$g^* = \sigma_P(-\Delta) \in C^{\infty}(T^*M).$$

Le symbole principal de l'opérateur des ondes $\partial_t^2 - \Delta$ est

$$p = -\tau^2 + g^* \in C^{\infty}(T^*(\mathbb{R} \times M)).$$

Le champ de vecteurs Hamiltonien associé à g^* (resp. p) est \vec{g}^* (resp. \vec{p}).

Définition. Une géodésique normale (parcourue à vitesse 1) est la projection d'une courbe intégrale du champ Hamiltonien :

$$t\mapsto x(t)=\pi(e^{t\vec{g}^*}\lambda_0)$$

où $\lambda_0 \in S^*M$, $g^*(\lambda_0) = 1/4$, et $\pi : T^*M \to M$ est la proj. canonique.

Lemme. Sous les hypothèses du théorème, $\forall T_0 > 0$, il existe une géodésique normale qui ne rencontre pas $\overline{\omega}$ sur l'intervalle $(0, T_0)$.

Autrement dit, la condition de contrôle géométrique de [Bardos-Lebeau-Rauch 1992] n'est pas vérifiée.

Conclusion de la preuve. On choisit une géodésique normale x(t) qui ne rencontre pas $\overline{\omega}$ dans l'intervalle $(0, T_0)$. Puis on construit une suite de solutions v_k dont l'énergie se concentre sur x. Cette construction est une adaptation directe des Gaussian beams [Ralston 1982], car on travaille dans $\{g^* \neq 0\}$, la partie du cotangent où Δ est "elliptique". Ceci nie l'observabilité car

$$\frac{\int_0^{T_0} \int_{\omega} |\partial_t v_k(t,x)|^2 d\mu(x) dt}{\|\nabla^{\mathrm{sR}} v_{k,0}\|_{L^2}^2 + \|v_{k,1}\|_{L^2}^2} \underset{k \to +\infty}{\longrightarrow} 0.$$

Comment trouver une géodésique qui ne rencontre pas $\overline{\omega}$?

Proposition. Soit q tel que $[X_i, X_i](q) \notin \text{Vect}(X_1(q), \dots, X_m(q)) = \mathcal{D}_a$. Alors, $\forall T_0 > 0$ et pour tout voisinage V de q dans M, il existe une géodésique normale $t \mapsto x(t)$ parcourue à vitesse 1 telle que $x(t) \in V$ pour tout $t \in (0, T_0)$.

Remarque. En choisissant un tel q dans l'intérieur de $M \setminus \omega$, et $V \subset M \setminus \overline{\omega}$, on obtient une géodésique normale qui ne rencontre pas $\overline{\omega}$.

Exemple (Heisenberg). $X_1 = \partial_{x_1}$ et $X_2 = \partial_{x_2} - x_1 \partial_{x_3}$, et $\Delta = X_1^2 + X_2^2$. On a $g^* = \xi_1^2 + (\xi_2 - x_1 \xi_3)^2$. On choisit la condition initiale x(0) = 0 et $\xi(0) = (1/2, 0, 1/2\varepsilon)$, donc $g^* = \frac{1}{4}$. Pour $\varepsilon > 0$, on trouve une géod.

 $x_1(t) = \varepsilon \sin(t/\varepsilon)$

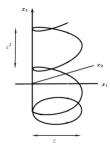
$$x_1(t) = \varepsilon \sin(t/\varepsilon)$$

$$x_2(t) = \varepsilon \cos(t/\varepsilon) - \varepsilon$$

$$x_3(t) = \varepsilon(t/2 - \varepsilon \sin(2t/\varepsilon)/4)$$

Plus ε est petit, plus la géodésique reste proche de son point de départ.

Preuve de la prop. Nilpotentisation, puis restriction au cas où les crochets de longueur > 3 s'annulent, puis preuve dans ce cas simple en "isolant un axe x_3 ".



Des bambous sous-Riemanniens!

Observabilité de Schrödinger sous-elliptique

On met en regard deux phénomènes :

- La sous-ellipticité fait "ralentir" la propagation de l'énergie des ondes;
- Pour l'équation de Schrödinger "usuelle" (sur une variété Riemannienne), il y a propagation à vitesse infinie de l'énergie.

Question. Est-ce que dans une équation de Schrödinger sous-elliptique, la propagation pourrait aussi ralentir et se faire à vitesse finie, voire à vitesse nulle? La réponse est : OUI. [Burq-Sun 2020], [L.-Sun 2020], [Fermanian-L. 2021].

Ces résultats d'observabilité pour l'équation de Schrödinger ne sont valides que dans des variétés particulières.

Dans la suite, nous décrivons la principale idée de [Fermanian-L. 2021], qui peut se résumer ainsi (voir aussi [Bahouri-Gérard-Xu 2000]) :

l'équation de Schrödinger sur un groupe de Heisenberg se décompose en une superposition d'équations de transport avec des vitesses différentes.

Mesures semiclassiques non-commutatives

On considère V un potentiel analytique sur M (\approx quotient du groupe de Heisenberg $G = \mathbb{H}_d$) et l'équation de Schrödinger sur M

$$i\partial_t u + \frac{1}{2}\Delta_M u + Vu = 0. (1)$$

De toute suite $(u^{\varepsilon})_{{\varepsilon}>0}$ bornée dans $L^{\infty}(\mathbb{R},L^2(M))$ on peut extraire une sous-suite telle que pour tout $\theta \in L^1(\mathbb{R})$ et tout symbole σ , on a

$$\int_{\mathbb{R}} \theta(t) (\operatorname{Op}_{\varepsilon_k}(\sigma) u^{\varepsilon_k}(t), u^{\varepsilon_k}(t))_{L^2(M)} dt \xrightarrow[k \to +\infty]{} \int_{\mathbb{R} \times M \times \widehat{G}} \theta(t) \operatorname{Tr}(\sigma(x, \lambda) \Gamma_t(x, \lambda)) d\gamma_t(x, \lambda) dt.$$

Si $(u^{\varepsilon})_{\varepsilon>0}$ est une famille de solutions de (1), on a

$$\Gamma_t(x,\lambda) = \sum_{n \in \mathbb{N}} \Gamma_{n,t}(x,\lambda)$$

pour $(x, \lambda) \in M \times \mathfrak{z}^*$, avec pour tout $n \in \mathbb{N}$,

$$\left(\partial_t - (n + \frac{d}{2})\mathcal{Z}^{(\lambda)}\right) \left(\Gamma_{n,t}(x,\lambda) d\gamma_t(x,\lambda)\right) = 0.$$

[Fermanian-Fischer 2019], [Fermanian-L. 2021]. On peut en déduire un résultat d'observabilité en temps fini. La non-observabilité en temps petit découle d'une construction de paquets d'ondes "non-commutatifs".

Deuxième problème - Propagation des singularités

Étant donnée une solution u de l'équation des ondes, on dit qu'il y a une singularité au temps t au point q si u(t) n'est pas C^{∞} en q.

Les singularités des ondes Euclidiennes se propagent selon des lignes droites à vitesse 1 (ou c pour $\partial_t^2 - c^2 \Delta$) et se réfléchissent sur les bords.

C'est aussi le cas dans le cadre plus général des variétés Riemanniennes, d'après le théorème de Hörmander [Hörmander 1971] : les lignes droites sont alors remplacées par des géodesiques.

Définition. Le **front d'onde** d'une distribution *u* est l'ensemble des co-directions $(x_0, \xi_0) \in T^*M \setminus 0$ où u n'est pas lisse. Plus précisément,

$$(x_0,\xi_0)\notin WF(u)\Leftrightarrow \exists A\in \Psi^0(M), \text{ elliptique en } (x_0,\xi_0), \text{ tel que } Au\in C^\infty(M).$$

Théorème de Hörmander. On considère l'EDP Pu = f. Si le symbole principal p de P est réel, alors $WF(u) \setminus WF(f) \subset p^{-1}(0)$, et $WF(u) \setminus WF(f)$ est invariant par le flot engendré par le champ Hamiltonien \vec{p} . Aux points où ce champ s'annule, le théorème de Hörmander ne dit rien.

Propagation des singularités - Cadre sous-elliptique

On considère $P = \partial_t^2 - \Delta$ où Δ est un sous-Laplacien. Alors

$$\left\{ \begin{array}{ll} p=0 \\ \vec{p}=0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{ll} -\tau^2+g^*=0 \\ -2\tau\partial_t+\vec{g^*}=0 \end{array} \right. \Leftrightarrow \tau=g^*=0.$$

Question. Comment se propagent les singularités dans $\Sigma = \{g^* = 0\}$?

Remarque. Σ ne dépend en fait que de la distribution : $\Sigma = \mathcal{D}^{\perp}$.

Remarque. Dans $\{g^* \neq 0\}$, la propagation des singularités est décrite par le théorème de Hörmander.

Soit $\omega_{\mathcal{D}^{\perp}}$ la restriction à \mathcal{D}^{\perp} de la forme symp. canonique sur T^*M . **Définition.** Un relevé anormal extrémal est une courbe absolument continue $t \mapsto \lambda(t) \in \mathcal{D}^{\perp} \setminus 0$ qui satisfait $\dot{\lambda}(t) \in \ker(\omega_{\mathcal{D}^{\perp}}(\lambda(t)))$ pour presque tout t. La projection de $\lambda(t)$ sur M, qui est presque partout tangente à la distribution, est appelée courbe singulière.

Théorème ([Melrose 1986], [L. 2021])

Les singularités dans $\Sigma = \mathcal{D}^{\perp}$ se propagent seulement le long des relevés anormaux extrémaux. Le support singulier se propage le long des courbes singulières à n'importe quelle vitesse choisie entre 0 et 1.

Idée de preuve

Qu'est-ce que la vitesse dans le théorème précédent? Il y a une métrique g "sous-Riemannienne" associée aux champs X_j :

$$g_q(v) = \inf \left\{ \sum_{j=1}^m u_j^2, \quad v = \sum_{j=1}^m u_j X_j(q) \right\}.$$

La vitesse instantanée d'une courbe $\gamma:I\to M$ tangente à $\mathcal D$ est $(g_{\gamma(t)}(\dot\gamma(t)))^{\frac12}.$

Idée de preuve. Comment dégénèrent les bicaractéristiques de p quand $\tau^2=g^*\to 0$? En chaque point de Σ , elles dégénèrent en un cône convexe contenu dans $(T\Sigma)^{\perp_\omega}$. De plus, les singularités se propagent nécessairement dans $T\Sigma$ (par préservation de τ et g^*). On conclut que les singularités se propagent dans

$$T\Sigma\cap (T\Sigma)^{\perp_{\omega}}=T\mathcal{D}^{\perp}\cap (T\mathcal{D}^{\perp})^{\perp_{\omega}}=\ker(\omega_{\mathcal{D}^{\perp}})$$

c'est-à-dire le long des relevés anormaux extrémaux.

Propagation des singularités dans les ondes avec sous-Laplacien de Heisenberg

Le cas Martinet

On considère l'équation des (demi-)ondes Martinet

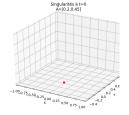
$$i\partial_t u - \sqrt{-\Delta}u = 0, \qquad \Delta = \partial_x^2 + (\partial_y + x^2 \partial_z)^2$$
 (2)

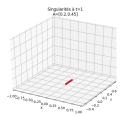
dans $\mathbb{R}_t \times \mathbb{R}^3$. La courbe $y \mapsto (0, y, 0)$ est une courbe singulière. On a prouvé que les singularités de certaines solutions se propagent le long de cette courbe à des vitesses strictement comprises entre 0 et 1.

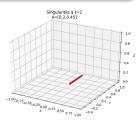
Théorème ([Colin de Verdière - L. 2021])

Pour toute union d'intervalles $A\subset [0,1]$, il existe u(t) une solution de (2) telle que

Supp Sing
$$(u(t)) = \{(0, y, 0) \in \mathbb{R}^3, y \in tA\}.$$







3ème problème - Fonctions propres hautes fréquences

Question. Comment l'énergie des fonctions propres d'un sous-Laplacien se répartit-elle sur la variété? NB : Les fonctions propres sont les "états stationnaires" de Schrödinger et des ondes.

À la différence de l'observabilité, il n'y a pas de propagation en temps.

On considère (pour ce slide) l'opérateur de **Laplace-Beltrami** Δ sur une variété Riemannienne (M,g) sans bord. On suppose que M est compacte, et donc Δ a une résolvante compacte.

On considère une suite de fonctions propres normalisées

$$-\Delta \psi_k = \lambda_k \psi_k, \qquad \lambda_k \to +\infty, \quad \|\psi_k\|_{L^2} = 1.$$

Notre objectif est d'obtenir des informations sur les fonctions propres ψ_k , dans la limite où $\lambda_k \to +\infty$. Par exemple, sur les limites faibles de la suite de mesures de probabilités $|\psi_k|^2 d \text{vol}_{\sigma}$.

Exemple. En courbure négative, il est conjecturé que les fonctions propres s'équirépartissent sur la variété (conjecture QUE de Rudnick-Sarnak).

Soit $(u_k)_{k\in\mathbb{N}^*}$ une suite bornée de $L^2(M)$, $u_k \to 0$. On dit qu'une mesure ν sur S^*M est une **mesure de défaut microlocale** de cette suite Gérard 1991 si, à extraction près, pour tout symbole a d'ordre 0, on a

$$(\operatorname{Op}(a)u_k, u_k)_{L^2(M)} \underset{k \to +\infty}{\longrightarrow} \int_{S^*M} a \ d\nu.$$

Les mesures de défaut microlocales de suites de fonctions propres normalisées sont appelées limites quantiques (QL).

Fait. Les QL de l'opérateur de Laplace-Beltrami sont invariantes par le flot géodésique. Cela découle du calcul

$$0 = ([\operatorname{Op}(a), \sqrt{-\Delta}]\psi_k, \psi_k)_{L^2(M)} \underset{k \to +\infty}{\longrightarrow} \frac{1}{i} \int_{S^*M} \{a, \sqrt{g^*}\} d\nu.$$

Question. Dans le cas sous-Riemannien le flot géodésique est **stationnaire** dans certaines co-directions, celles où $g^* = 0$. Peut-on trouver d'autres propriétés d'invariance des QL dans ces co-directions?

Les QL dans le cas sous-Riemannien

Théorème ([Colin de Verdière-Hillairet-Trélat 2018]) : Les QL sont supportées dans $S\Sigma$ ("à extraction d'une sous-suite de densité 1 de fonctions propres près"), c'est-à-dire là où le flot géodésique est stationnaire.

Théorème ([Colin de Verdière-Hillairet-Trélat 2018]) : Soit Δ un sous-Laplacien de **contact 3D** et $(\psi_k)_{k\in\mathbb{N}}$ une suite de fonctions propres normalisées de $-\Delta$ avec valeur propre $\lambda_k\to+\infty$. Toute QL ν de $(\psi_k)_{k\in\mathbb{N}}$ se décompose sous la forme $\nu=\nu_0+\nu_\infty$ où

- ν_0 "dans la partie elliptique" est invariante par le flot géodésique sous-Riemannien.
- ν_{∞} est supportée dans $S\Sigma$ et est invariante par le relevé dans $S\Sigma$ du flot de Reeb.

Question. Quelles propriétés d'invariance les QL vérifient-elles dans le cône caractéristique en général? Notamment quand il y a des anormales?

Sommes de sous-Laplaciens de Heisenberg

On considère le sous-Laplacien

$$\partial_{x_1}^2 + (\partial_{y_1} - x_1 \partial_{z_1})^2 + \ldots + \partial_{x_m}^2 + (\partial_{y_m} - x_m \partial_{z_m})^2$$

comme opérateur sur une variété compacte (produit de quotients à gauche du groupe de Heisenberg).

Résultat. On caractérise entièrement les QL supportées dans $S\Sigma$, à l'aide d'une infinité de dynamiques qui remplacent le flot de Reeb. Le sous-Laplacien se réécrit

$$-\Delta = R_1\Omega_1 + \ldots + R_m\Omega_m$$

où $R_i, \Omega_i \in \Psi^1(M)$ (dans des cônes), $R_i = |\partial_{z_i}|$, Ω_i oscillateur harmonique de valeurs propres 2n + 1, et tous ces opérateurs commutent.

On travaille sur les sous-espaces propres joints des Ω_i : on obtient une famille d'opérateurs $\sum_{i=1}^m (2n_i+1)R_i$, puis en prenant le symbole principal une famille de Hamiltoniens sur Σ homogènes de degré 1

$$\rho_s = \sum_{i=1}^m s_i |\zeta_i|$$

normalisés en prenant $s_1 + \ldots + s_m = 1$ (on note $s = (s_i)_{1 \le i \le m} \in \mathbf{S}$).

QL des sommes de sous-Laplaciens de Heisenberg

Théorème ([L. 2020])

Soit ν une limite quantique telle que supp $\nu \subset S\Sigma$. Alors on peut écrire

$$\nu = \int_{\mathbf{S}} \nu_s \, dQ(s) \tag{3}$$

οù

- dQ est une mesure de Radon positive sur le simplexe S
- les $(\nu_s)_{s \in S}$ sont des mesures de probabilité supportées dans $S\Sigma$ telles que pour Q-presque tout $s \in S$, ν_s est invariante par le flot $e^{t\vec{\rho}_s}$.

La réciproque est vraie : toute mesure de probabilité ν sur $S\Sigma$ qui s'écrit (3) (avec la propriété d'invariance) est une limite quantique.

(\sim sphère Riemannienne, oscillateur harmonique).

Questions ouvertes

Il y a de nombreuses questions ouvertes : décrire les **limites quantiques** dans d'autres modèles sous-elliptiques, calculer la taille des **ensembles nodaux** des fonctions propres de sous-Laplaciens (analogue de la conjecture de Yau et du théorème de Donnelly-Fefferman), . . .

Les deux problèmes les plus importants et les plus difficiles à mon avis sont les suivants :

- Comprendre à quoi ressemble une paramétrixe d'une équation des ondes sous-elliptique quand il y a des anormales (par exemple dans le cas Martinet). C'est une clé pour les asymptotiques de la chaleur, les formules de trace, ou pour comprendre encore mieux la propagation des singularités.
- Illustrer avec une expérience physique l'importance des anormales, par exemple le ralentissement de la propagation (électrons dans un champ magnétique).

"La difficulté de réussir ne fait qu'ajouter à la nécessité d'entreprendre."

Beaumarchais