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Abstract

Optimal transport plays a prominent role across numerous disciplines, including analysis,
probability, statistics, geometry, and machine learning. For many reasons, not only existence
and uniqueness of optimal transport maps, but also their stability with respect to variations
of the marginal distributions is of fundamental importance. Qualitative stability results have
long been established, but quantitative estimates are often needed both for numerical and
theoretical purposes. We review recent theoretical advances in this emerging and flourishing
field. We also discuss a range of applications, including embedding of subsets of the Wasser-
stein space into Hilbert spaces, linearized optimal transport, statistical optimal transport
and the random matching problem. These notes are based on my Cours Peccot delivered at
the Collège de France in May-June 2025.
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Program of the lectures:

� May 14th: General introduction (Section 1), statement of the main results (Section 2).

� May 21st: The Kantorovich functional (Section 3). This lecture is mostly based on a work
by Alex Delalande and Quentin Mérigot [31], revisited in [54].

� May 28th: Gluing techniques (Section 4), examples and counterexamples (Section 5),
stability of maps (Section 6). This lecture is mostly based on my joint work with Quentin
Mérigot [54].

� June 4th: Generalizations (Section 7), applications (Section 8) and non-optimal transport
of measures (Transformers, diffusion models). This lecture is based on various works by
many authors.

It is my great pleasure to thank Quentin Mérigot, who introduced me to this topic. I am
also thankful to Guillaume Carlier, Vincent Divol, William Ford, Michael Goldman, Antoine
Julia, Jun Kitagawa, Tudor Manole, Jonathan Niles-Weed, Pierre Pansu, Aram Pooladian and
Philippe Rigollet for various discussions.

To lighten the presentation, most references are gathered at the end of every chapter in a
bibliographical paragraph.

1 General introduction

1.1 The optimal transport problem

The nearly 250 years old Monge transportation problem consists in finding the optimal way
to transport mass from a given source to a given target probability measure, while minimizing
an integrated cost.

Let ρ be a probability measure on a Polish (i.e., complete, separable metric) space X and µ
be a probability measure on a Polish space Y. For simplicity, one may assume X ,Y ⊂ Rd. Let
c be a non-negative measurable function on X × Y. An admissible mass transport plan is an
element γ of the space P(X ×Y) of probability measures over X ×Y whose marginals coincide
with ρ and µ, i.e., for all measurable sets A ⊂ X , B ⊂ Y,

γ(A× Y) = ρ(A) and γ(X ×B) = µ(B). (1.1)

These conditions mean that for any x ∈ X , y ∈ Y, the amount of mass taken from x coincides
with dρ(x), and the amount of mass arriving at y coincides with dµ(y). The set of all admissible
transport plans is

Π(ρ, µ) = {γ ∈ P(X × Y) | (1.1) holds}.

It is non-empty and convex. The optimal transport problem with cost c is the minimization
problem

inf
γ∈Π(ρ,µ)

∫
X×Y

c(x, y)dγ(x, y). (1.2)

A solution to (1.2) is called an optimal transport plan. In the particular case where X ,Y ⊂ Rd
and c(x, y) = |x− y|2, one finds the quadratic optimal transport problem

inf
γ∈Π(ρ,µ)

∫
Rd×Rd

|x− y|2dγ(x, y), (1.3)
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which will be our main focus during the largest part of these lectures. The case of p-costs
c(x, y) = |x − y|p with p ≥ 1 is also of interest, and gives rise to the p-Wasserstein distance
defined as

Wp(ρ, µ) =

(
inf

γ∈Π(ρ,µ)

∫
Rd×Rd

|x− y|pdγ(x, y)

)1/p

.

Optimal transport and Wasserstein distances are used in an incredible number of fields. Here
is a very incomplete list of fields, with one or two applications and/or names for each:

� Engineering: move mass from one place to another while minimizing a total transportation
cost (Monge 1781).

� Economics: optimal allocation of resources between m production stations and n con-
sumption stations (Kantorovich 1942).

� Mathematical physics and modelling: interpretation of the Euler equation of fluid me-
chanics via a least action principle in the space of diffeomorphisms (Arnold 1966, Brenier
1989); interpretation of the heat equation as a gradient descent of entropy in the geometry
of mass transport (Otto 1998); construction of the semigeostrophic model in atmospheric
sciences (Cullen and Purser 1980’s); kinetic theory (Tanaka 1970’s).

� Mathematics: analysis of the Monge-Ampère partial differential equation det(D2f) = g
(Caffarelli 1990’s); convex geometry; functional inequalities; definition of geometric and
topological properties in spaces without smooth structures, e.g., synthetic theory of Ricci
curvature (Lott-Sturm-Villani 2006-2009).

� Image processing: measure distance between images (image retrieval and comparison);
color transfer; image interpolation; super-resolution and denoising.

� Statistics: rate of convergence of empirical probability measures µn to their limit µ (Dudley
1969); estimation of coupling between data.

� Machine learning: generative modeling; interpolation of multiple data distributions (e.g.
samples, images, domains, etc) using Wasserstein barycenters; analysis of the training
dynamics of neural networks; analysis of sampling algorithms such as the Langevin Monte
Carlo algorithm.

Although the distance cost c(x, y) = |x − y| might seem more physical at first sight than
the quadratic cost (it is the natural cost in the Monge problem for instance), the quadratic cost
c(x, y) = |x−y|2 is actually the one which is most useful in the above examples due to Brenier’s
theorem recalled below, the link with the W2 distance which gives a Riemannian structure to
the space of probability measures, its smoothness which makes it suitable for optimization, its
computational advantages in relation to Sinkhorn’s algorithm, etc. The distance cost does not
come with as nice properties as the quadratic cost.

A solution to (1.3) (or (1.2)) exists under mild assumptions: for instance that X ,Y are
Polish spaces (i.e., complete and separable metric spaces) and that c is lower semi-continuous.
However, the solution to (1.3) (or (1.2)) is not unique in general. For instance, if A = (1, 0),
B = (−1, 0), C = (0, 1) and D = (0,−1) are the vertices of a square in R2, there is an infinite
number of solutions to (1.3) when ρ = 1

2(δA + δB) and µ = 1
2(δC + δD): for any a ∈ [0, 1],

γ =
1

2

(
aδ(A,C) + (1 − a)δ(A,D) + (1 − a)δ(B,C) + aδ(B,D)

)
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is an admissible transport plan which is a solution of (1.3). Notice that in this example, the
mass leaving A is split into one part going to C and one part going to D.

Let us pause for a moment and ask what would happen if we would not allow mass-splitting,
i.e., if if we replace the infimum in (1.3) by a minimization over the admissible transport plans
γ ∈ Π(ρ, µ) which are supported on the graph of a univalued map T : X → Y: in other words,
all the mass at x ∈ X is sent into T (x) ∈ Y. The condition γ ∈ Π(ρ, µ) then turns into the
condition that for any measurable U ⊂ Y, ρ(T−1(U)) = µ(U), i.e., T#ρ = µ where # denotes
the pushforward operation. The associated admissible transport plan is γ = (Id, T )#ρ. We
obtain the so-called Monge problem:

inf
S:X→Y
S#ρ=µ

∫
Rd

|x− S(x)|2dρ(x). (1.4)

A solution to (1.4) is called an optimal transport map. Notice that without the absolute conti-
nuity assumption on ρ, the Monge problem does not necessarily have a solution. If ρ is a sum
of Dirac masses but µ is not, then there does not exist any S : X → Y such that S#ρ = µ.

There exists a simple assumption which guarantees that the solution to (1.3) is unique:
Brenier showed that the absolute continuity of the source measure ρ is a sufficient condition
for a unique solution to (1.3) to exist. And even more: he shows that in this case, the Monge
problem (1.4) has a unique solution T , and that these solutions to the two problems are related
by γ = (Id, T )#ρ.

In the sequel, P(X ) denotes the set of probability measures on X ⊂ Rd, and Pp(X ) is the
set of probability measures on X with finite p-th moment:

Pp(X ) =

{
ρ ∈ P(X ) |

∫
X
|x|pdρ(x) < +∞

}
.

The weak topology on P(X ) (or topology of weak convergence, or narrow topology) is induced
by convergence against Cb(X ), i.e., bounded continuous functions.

Theorem 1.1 (Brenier). Let ρ, µ ∈ P2(Rd) and c(x, y) = |x− y|2 be the quadratic cost on Rd.
Assume that ρ is absolutely continuous with respect to the Lebesgue measure. Then there exists
between ρ and µ a ρ-a.e. unique optimal transport map T and a unique optimal transport plan
γ, and these solutions are related by γ = (Id, T )#ρ. Furthermore, the map T is the gradient of
a convex function ϕ : Rd → R ∪ {+∞}, and if (∇f)#ρ = µ for some other convex function f ,
then ∇f = ∇ϕ ρ-a.e.

If the support X of ρ is the closure of a bounded connected open set, ϕ is uniquely determined
on X up to additive constants. As a consequence of Brenier’s theorem, for any convex function
ϕ and any absolutely continuous ρ ∈ P2(Rd), the map ∇ϕ is the optimal transport map from ρ
to (∇ϕ)#ρ.

To turn (1.3) (or (1.4)) into a well-posed problem in the sense of Hadamard, there only
remains to show stability of the solution T with respect to perturbations of ρ and µ. The question
of stability is fundamental both from the theoretical and the numerical point of view. Soft
(compactness) arguments provide without any difficulty a qualitative stability result presented
in Section 1.2. However, quantitative results are needed in most applications, and for this more
difficult problem, tools have started to emerge only in the last five years. The purpose of these
notes is to review the recent theoretical advances in this now fastly developing field, and to
discuss applications to various problems.

4



1.2 Stability of optimal transport

Recall that weak convergence of measures is understood against continuous bounded test
functions. The following general qualitative stability result is true.

Proposition 1.2. Let (ρk)k∈N converge weakly to ρ and (µk)k∈N converge weakly to µ. For each
k ∈ N, let γk be an optimal transport plan between ρk and µk, and assume that

lim inf
k∈N

∫
X×Y

|x− y|2dγk(x, y) < +∞.

Then the optimal transport cost between ρ and µ is finite and, up to extraction of a subsequence,
γk converges weakly to some optimal transport plan γ between ρ and µ.

The proof relies on the Prokhorov theorem (to extract a converging subsequence) and on a
characterization of optimal transport plans as cyclically monotone sets. Proposition 1.2 actually
holds in general Polish spaces X and Y, with a continuous cost function c : X × Y → R such
that inf c > −∞.

In these lectures, we will fix the source measure ρ and consider stability with respect to the
target measure only. The problem we are interested in reads

If µ and ν are quantitatively close, prove that Tρ→µ and Tρ→ν are quantitatively close

where Tρ→µ (resp. Tρ→ν) is the optimal transport map from ρ to µ (resp. ρ to ν) given by
Brenier’s theorem. There are several reasons for this choice of fixing the source measure:

� first, because the mapping µ 7→ Tρ→µ may be used to embed the Wasserstein space (or
part of it) into the Hilbert space L2(ρ) with a controlled distortion, as explained in Section
1.4. This is important in its own.

� Second, because Tρ→µ and Tρ→ν are in L2(ρ) according to Brenier’s Theorem 1.1, and
thus we may measure their distance simply in L2(ρ), whereas if we had ρ and ρ′ as source
measures, measuring distances between the maps would be less easy (instead, one would
probably measure the Wasserstein distance between optimal transport plans).

� Third, because in some applications, ρ is a perfectly known probability density, e.g. a
standard Gaussian.

� Finally, it is sometimes possible to deduce stability with respect to both marginals from
the proof techniques.

To summarize, in these lecture notes, some ρ ∈ P2(Rd), assumed to be absolutely continuous
with respect to the Lebesgue measure, is fixed. Therefore, we may drop in the notation the
reference to this source measure, and given µ ∈ P2(Rd) we call

� the optimal transport map and denote by Tµ ∈ L2(ρ) the unique solution to (1.4).

� the Kantorovich potential the unique convex function ϕµ ∈ L2(ρ) such that Tµ = ∇ϕµ and∫
X ϕµdρ = 0.

In the context of these lectures, the Kantorovich potential is always uniquely defined. This
uniqueness may fail, however, if the support of ρ consists of multiple connected components.

The source measure ρ being now fixed, we formulate the qualitative stability of optimal
transport maps as follows:
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Proposition 1.3. The map µ 7→ Tµ from (P2(Rd),W2) to L2(ρ) is continuous.

Proof. Let (µn)n∈N and µ be in P2(Rd) such that W2(µn, µ) → 0. Then W2(ρ, µn) → W2(ρ, µ)
by the triangle inequality, hence∫

Rd
|x− Tµn(x)|2dρ(x) →

∫
Rd

|x− Tµ(x)|2dρ(x). (1.5)

Therefore, (Tµn) is bounded in L2(ρ).
Let

Kε = {x ∈ Rd | |x| ≤ ε−1, ρ(x) ≥ ε, dist(x, ∂Ω) ≥ ε}

where Ω = supp(ρ). Let us prove that for any ε > 0,

sup
n

∥Tµn∥L∞(Kε) < +∞. (1.6)

For this we rely on the fact that for any convex function f over Rd, any x ∈ Rd and η > 0,

∥∂f∥L∞ ≤ 6

βdηd

∫
B(x,4η)

|∇f |dλ (1.7)

where λ denotes the Lebesgue measure on Rd. The proof of (1.7) is provided in Appendix A.
Let us deduce (1.6) from (1.7). For any x such that B(x, 4ε) ⊂ Kε,

βdε
d

6
∥Tµn∥L∞(B(x,ε)) ≤

∫
B(x,4ε)

|Tµn |dλ ≤ ε−1
(∫

B(x,4ε)
|Tµn |2dρ

)1/2
(1.8)

by applying (1.7) to ϕµn , using that ρ(x) ≥ ε on Kε, and finally applying the Cauchy-Schwarz
inequality. Since (Tµn) is bounded in L2(ρ), the right-hand side in (1.8) for fixed ε > 0 is
uniformly bounded in n. Therefore ∥Tµn∥L∞(K′

ε)
is uniformly bounded in n for K ′

ε = {x ∈ Kε |
B(x, 4ε) ⊂ Kε}. Sending ε to 0, this implies that supn ∥Tµn∥L∞(K) < +∞ for any compact set
K included in the interior of the support of ρ. In particular, this implies (1.6).

From now on, we normalize ϕµn in a way that ϕµn(0) = 0. By Arzelà-Ascoli, up to extraction
of a subsequence omitted in the notation, (ϕµn) converges toward some ϕ uniformly over any
Kε. Of course, ϕ is convex. Passing to the limit n → +∞ in the inequality ϕµn(y) ≥ ϕµn(x) +
⟨y − x,∇ϕµn(x)⟩ yields that any limit point of (∇ϕµn(x)) is in ∂ϕ(x). This proves that at any
point x of differentiability of ϕ, (∇ϕµn) converges to ∇ϕ. Since ϕ is convex, it is differentiable
almost everywhere, thus Tµn(x) → T (x) for ρ-almost every x, where T = ∇ϕ. We deduce using
(1.6) and Lebesgue’s dominated convergence theorem that

(Tµn) converges (strongly) to T in L2(ρ,Kε) for any ε > 0. (1.9)

Also, since (Tµn) is bounded in L2(ρ), it converges weakly to some T ′ ∈ L2(ρ), and we
deduce from (1.9) that T ′ = T . Therefore ⟨Id, Tµn⟩L2(ρ) → ⟨Id, T ⟩L2(ρ), and plugging into (1.5)
we obtain that ∥Tµn∥L2(ρ) → ∥T∥L2(ρ). This proves that (Tµn) in fact converges strongly to T
in L2(ρ).

Finally, let us observe that T#ρ = µ since (Tµn) converges a.e. to T and (Tµn) is locally
uniformly bounded according to (1.6). Since T is the gradient of a convex function, Brenier’s
theorem implies that T = Tµ is the optimal transport map from ρ to µ. We conclude that the
full sequence (Tµn) converges strongly to T in L2(ρ).
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The main problem under consideration in these notes will (almost) be the following one: for
a given absolutely continuous ρ ∈ P2(Rd), do there exist constant C,α > 0 such that for all µ, ν
with finite second moment,

∥Tµ − Tν∥L2(ρ) ≤ CW2(µ, ν)α (1.10)

holds? More generally, replacing W2 by Wp for some p ≥ 1, we will consider inequalities of the
type

∥Tµ − Tν∥L2(ρ) ≤ CWp(µ, ν)α, (1.11)

the strongest one being for p = 1 (since Wp ≤ Wq for p ≤ q) and α as large as possible. The
largest possible α is sometimes called the stability exponent (associated to ρ) in the sequel.

An important observation is that the reverse inequality

∥Tµ − Tν∥L2(ρ) ≥W2(µ, ν) (1.12)

always holds: indeed, γ = (Tµ, Tν)#ρ is an admissible transport plan between µ and ν, and its
cost (∫

Rd×Rd
|x− y|2dγ(x, y)

)1/2

=

(∫
Rd

|Tµ(x) − Tν(x)|2dρ(x)

)1/2

= ∥Tµ − Tν∥L2(ρ)

is by definition not lower than the cost W2(µ, ν) of an optimal transport plan between µ and ν.
Put together, the inequalities (1.10) and (1.12) imply that the mapping µ 7→ Tµ is a bi-Hölder

embedding of the Wasserstein space into L2(ρ). However, as we shall discuss in more details
in Section 1.4, it is known that if d ≥ 3, then (1.10) cannot hold uniformly over all probability
measures µ and ν on Rd with finite second moment (the case d = 2 seems open). In fact, it
is not possible to embed the Wasserstein space into any Lp space, even in a very weak sense.
Nevertheless, what we will discuss in depth in these lectures is that a stability bound such as
(1.10) can hold if one restricts to slightly smaller families of measures µ, ν. For instance, we will
show that under some assumptions on ρ, for any compact set Y ⊂ Rd, there exist C,α > 0 such
that (1.10) holds for any µ, ν supported in Y.

In these notes, we will also be interested in quantitative stability estimates for Kantorovich
potentials, which take the form

∥ϕµ − ϕν∥L2(ρ) ≤ C ′Wp′(µ, ν)α
′
. (1.13)

Actually the stability of optimal transport maps (1.11) will be deduced from the stability of
Kantorovich potentials (1.13), as explained in detail in Section 6. Kantorovich potentials are
interesting objects on their own, for many reasons. First, many numerical methods used to
solve optimal transport problem, for instance semi-discrete optimal transport and dual gradient
methods, rely on solving first the dual formulation of the problem, discussed in Section 3.1.
In these methods, one computes the Kantorovich potentials first, before taking the gradient to
obtain the optimal transport map. Also, the Sinkhorn algorithm, which is one of the best ways
to compute solutions of (regularized) optimal transport problems, computes the entropic version
of the Kantorovich potentials (discussed in Section 7.1). Finally, Kantorovich potentials have
an economic interpretation which may help understand their meaning (see [72, Chapter 5]).

Let us already mention that although these lecture notes are focused on the quadratic cost
in Rd given by c(x, y) = |x− y|2, most results remain valid for more general costs, for instance
p-costs c(x, y) = |x − y|p, p > 1 (see Section 7.2) and the quadratic cost c(x, y) = 1

2dist(x, y)2

on Riemannian manifolds (see Section 7.3).
It is clear that inequalities like (1.11) and (1.13) are useful to justify the theoretical consis-

tance of “plugin methods” to compute optimal transport: if we want to compute the optimal
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transport map or the Kantorovich potential from ρ to µ but do not know exactly µ (due to some
noise for instance) and have only access to some approximation ν of µ, these inequalities tell us
how close we may expect Tν to be from Tµ (and ϕν from ϕµ), depending on some Wasserstein
distance between µ and ν.

We shall not discuss numerical methods and algorithms used to compute optimal transport
in practice. The computational errors that they induce are another interesting subject for
mathematical analysis, not covered in these lecture notes.

1.3 The one-dimensional case

The case where d = 1, i.e., ρ, µ, ν are probability measures on R, is particularly simple.
Indeed, as soon as ρ is absolutely continuous on R, the mapping µ 7→ Tµ is an isometric embed-
ding:

∥Tµ − Tν∥Lp(ρ) = Wp(µ, ν) (1.14)

for any p ≥ 1. The stability problem is thus completely solvable in this case: the bound (1.10)
holds with C = α = 1. To prove (1.14) it is sufficient to observe that

γopt = (Tµ, Tν)#ρ (1.15)

is an optimal transport plan between µ and ν. Indeed, (1.14) then follows immediately:

W p
p (µ, ν) =

∫
R2

|x− y|pdγopt(x, y) =

∫
R
|Tµ(x) − Tν(x)|pdρ(x) = ∥Tµ − Tν∥pLp(ρ).

It is clear that γopt is an admissible transport plan between µ and ν since (Tµ)#ρ = µ and
(Tν)#ρ = ν. The difficulty is to show that it is optimal.

Optimal transport plans in 1d are always monotone. This means that if γ is an optimal
transport plan between two 1d probability measures, and (x, y) and (x′, y′) are in the support of
γ and x < x′, then necessarily y ≤ y′. This due to the convexity of the quadratic cost. Indeed,
for any x < x′ and y ≤ y′, the inequality

|x− y|2 + |x′ − y′|2 ≤ |x− y′|2 + |x′ − y|2

holds, which means that it is always less costly to transport mass from x to y and from x′ to y′

than to “cross trajectories” and transport mass from x to y′ and from x′ to y.
Applying this to the transport from ρ to µ, it is possible to give a completely explicit

expression for Tµ. Let us verify that

Tµ(m) = inf{x ∈ R | Fµ(x) ≥ Fρ(m)} (1.16)

where
Fµ : x 7→ µ((−∞, x])

denotes the cumulative distribution function. We first check that Tµ pushes forward ρ to µ. To
prove this, we observe that Tµ(m) ≤ x if and only if Fµ(x) ≥ Fρ(m). Setting µ̂ = Tµ#ρ, we thus
have

µ̂((−∞, x]) = ρ(T−1
µ ((−∞, x])) = ρ({m | Tµ(m) ≤ x})

= ρ({m | Fρ(m) ≤ Fµ(x)}) = Fµ(x) = µ((−∞, x])

hence µ̂ = µ. Moreover, Tµ is optimal since it is the only transport map from ρ to µ which
is monotone. The optimal transport map Tν from ρ to ν is of course given by an analogous
expression to (1.16).
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Now, since Tµ and Tν are monotone, it is immediate to check that γopt is also monotone.
But there is only one monotone admissible transport plan between µ and ν, and thus γopt is
optimal.

Finally, what can be said about stability of Kantorovich potentials in 1d? If ρ satisfies the
Poincaré inequality, i.e., if there exists C > 0 such that∫

X
f dρ = 0 ⇒

∫
X
f2 dρ ≤ C

∫
X
|∇f |2 dρ,

then it follows from (1.14) (with p = 2) that ∥ϕµ − ϕν∥L2(ρ) ≤ CW2(µ, ν). As we shall see in
Section 5.3 (see notably Remark 5.3), this stability inequality for Kantorovich potentials is no
longer guaranteed if ρ does not satisfy the Poincaré inequality, even if the support of ρ is an
interval (in which case Kantorovich potentials are unique).

1.4 Applications: embedding of the Wasserstein space and linearized optimal
transport

In this section we describe one important application of quantitative stability estimates.
Further applications are discussed in Section 8.

Let ρ ∈ P2(Rd) be absolutely continuous. When T = ∇ϕ is the gradient of a convex function,
the curve

[0, 1] ∋ t 7→ ((1 − t)Id + tT )# ρ ∈ P2(Rd) (1.17)

is a Wasserstein geodesic from ρ to T#ρ, meaning that it is a curve which minimizes the W2-
distance between any two of its points. The Wasserstein space (P2(Rd),W2) may then be viewed
formally as an “infinite-dimensional Riemannian manifold”. Its tangent space at ρ is naturally
defined as the set

TanρP2(Rd) = {∇ϕ− Id | ϕ convex, ϕ ∈ C∞
c (Rd)}

L2(ρ)
(1.18)

where ∇ϕ − Id is the (initial) tangent vector to the Wasserstein geodesic given by (1.17). In
(1.18), it is natural to take the closure: in analogy, the (solid) tangent cone at a boundary point
x of a closed convex set C ⊂ Rd is defined as the closure of the cone formed by all half-lines
emanating from x and intersecting C in at least one point distinct from x. On this Riemannian
manifold, the exponential map with base-point ρ is nothing else than

TanρP2(Rd) ∋ T 7→ T#ρ ∈ P2(Rd).

And the map µ 7→ Tµ − Id from P2(Rd) to L2(ρ) is the analog of the Riemannian logarithm. It
is an injective map, with image the tangent space (1.18).

If the stability inequality (1.10) holds for any µ, ν ∈ P2(Rd), this means that µ 7→ Tµ is a
bi-Hölder embedding from (P2(Rd),W2) to the Hilbert space L2(ρ) (using the reverse inequality
(1.12)). For instance, the previous section showed that in 1d, µ 7→ Tµ is an isometric embedding.
However, in dimension d > 1, it is known that Wasserstein spaces do not embed into any Banach
space, even for much coarser notions of embedding. Therefore, we will aim at establishing (1.10)
for strict subsets of P2(Rd), for instance for target probability measures µ, ν supported in a fixed
compact set, or with bounds on some moments. Working with this embedding is equivalent to
endow P2(Rd) with the “ρ-based” distance

W2,ρ(µ, ν) = ∥Tµ − Tν∥L2(ρ). (1.19)

Due to the linear structure of the Hilbert space L2(ρ), the logarithm map µ 7→ Tµ is also
used as a way to “linearize” optimal transport. For instance, to compute an “average” between
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two measures µ and ν in the Wasserstein space, one usually resorts to the notion of Wasserstein
barycenter (or McCann interpolation), defined as a minimizer of

inf
χ∈P2(Rd)

1

2

(
W2(µ, χ)2 +W2(ν, χ)2

)
Solving this optimization problem is often complicated, but one may get an approximate solution
χ̂ by first fixing an absolutely continuous ρ ∈ P2(Rd), then computing Tµ, Tν and their average
1
2(Tµ + Tν), and finally considering

χ̂ =

(
1

2
(Tµ + Tν)

)
#

ρ.

Notice that 1
2(Tµ + Tν) is simply the average of the initial tangent vectors giving rise to the

geodesics from ρ to µ and ρ to ν. Then χ̂, which is the endpoint of the geodesic with this
tangent vector, is an approximation of the midpoint between µ and ν. It is also the midpoint
of the so-called generalized Wasserstein geodesic (in the terminology of Ambrosio-Gigli-Savaré)
between µ and ν defined as the curve

[0, 1] ∋ t 7→ ((1 − t)Tµ + tTν)# ρ ∈ P2(Rd).

In case µ = ρ, the generalized geodesic between µ and ν coincides with the Wasserstein geodesic
between µ and ν.

More generally, since it is often difficult to perform computations in Wasserstein spaces,
which are curved (and infinite dimensional), it is a current practice in applications to first make
computations in the Hilbert space L2(ρ), i.e., on the side of Tµ, before pushing forward ρ by the
result of the computations in L2(ρ).

1.5 Bibliographical notes

§1.1: There are many great books about optimal transport, in particular: the two books by
Villani [71] and [72], the one by Santambrogio for “applied mathematicians” [66], the book by
Peyré-Cuturi about computational aspects of optimal transport [64], and the very recent book
by Chewi-Niles Weed-Rigollet about statistical optimal transport [23]. To write the present text,
I also took inspiration from lecture notes by Quentin Mérigot at IHP, available on his webpage,
and from the PhD thesis of Delalande [29]. Brenier presented his theorem in a short note [14]
and gave details in an extended paper [15].

§1.2: The proof of Proposition 1.2 can be found in [72, Theorem 5.20]. Proposition 1.3 is a
consequence of [15, Theorem 1.3] together with [72, Theorem 6.9], at least when X is smooth,
bounded, and ρ is bounded above and below on X by positive constants. The idea of the proof we
provide was kindly communicated to us by Guillaume Carlier. The impossibility of embedding
the Wasserstein space in Hilbert and Banach spaces is studied for instance in [4]. The precise
statement is the following: if p > 1 and d ≥ 3, then Pp(Rd) does not admit a coarse embedding
into any Banach space of nontrivial type, and in particular does not admit a coarse embedding
into Hilbert space.

§1.3: For a more complete treatment of the 1d case, see Chapter 2 in Santambrogio’s book
[66].

§1.4: Wasserstein geodesics are the main subject of the book by Ambrosio-Gigli-Savaré [3].
For a quick view on the subject, see [66, Chapter 5.4]. The interpretation of W2 as a (pseudo)
Riemannian manifold is due to Otto [63], who used it to study the long-time behavior of the
porous medium equation. McCann introduced the concept of displacement interpolation in [57].
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The paper [73] introduced the linearized optimal transport distance W2,ρ defined in (1.19)
and used it for pattern recognition in images. Since then, this distance has been used for
instance to perform super-resolution of highly corrupted images [51] and to detect and visualize
phenotypic differences between classes of cells [7].

Wasserstein barycenters have been introduced in [1], generalizing the concept of displacement
interpolation of McCann. This notion of barycenter has found many successful applications, for
instance in image processing [65], geometry processing [69], statistics [68] or machine learning
[28]. The book chapters [64, Chapter 9.2], [23, Chapter 8] survey the topic.
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2 Main results

In this chapter, we state the main results which will be covered in these lecture notes.

2.1 Warm-up: stability around regular optimal transport maps

The earliest quantitative stability result for optimal transport maps, due to Gigli, addressed
stability in the vicinity of a sufficiently regular map.

Theorem 2.1 (Gigli, Stability near regular OT maps). Let ρ be a probability measure on Rd,
absolutely continuous with respect to the Lebesgue measure, and with compact support. Let
Y ⊂ Rd be compact, and K > 0. Let µ, ν ∈ P(Y). If the optimal transport map Tµ from ρ to µ
is K-Lipschitz, then

∥Tµ − Tν∥L2(ρ) ≤ CW1(µ, ν)1/2

where C = (2Kdiam(supp(ρ)))1/2.

We provide a complete proof of Theorem 2.1 in Section 3.2, close in spirit to the other proofs
presented in these notes. This is not the original proof of Gigli.

The important weakness of Theorem 2.1 is that the assumption that Tµ is K-Lipschitz is
very strong. First, it implies that the support of µ is connected. Second, to prove that Tµ is
Lipschitz one has to invoke the regularity theory for optimal transport maps, which requires
very strong assumptions on µ. The Lipschitz regularity of the optimal transport map, studied
by many authors starting with Caffarelli, is indeed only known under restrictive assumptions:
Caffarelli proved this property under the assumption that the source and target measure have
bounded support, are bounded above and below by positive constants on their support, and that
the support of the target is convex; since this seminal result, some improvements and extensions
have been obtained, but the spirit remains the same. And it is also known that continuity of
the optimal transport map fails in some cases, even when the target has connected support:
Caffarelli gave the example of a source measure ρ supported on a 2d domain X obtained by
connecting two half disks by a thin corridor.

There is a whole line of research, notably in the statistical optimal transport community (see
Section 8.1), working under this kind of regularity assumptions on Tµ. They have established
stronger stability results (in terms of exponents) than what we present in these notes. For
instance, under the assumption that Tµ is bi-Lipschitz, it is known that ∥Tµ − Tν∥L2(ρ) ≲
W2(µ, ν), where the hidden constant depends on the Lipschitz constants of Tµ and T−1

µ . We
shall explain a bit the proof techniques in Section 8.1.

2.2 Main results

The discussion of the previous paragraph motivates us to look for results in which much
weaker assumptions are made on the measures, than those ensuring regularity of the optimal
transport map. Our main results state various assumptions on ρ under which we are able to
prove quantitative stability inequalities of the form (1.11)-(1.13), with nearly no assumption on
the target measures µ and ν. The discussion about the sharpness of these assumptions and the
resulting stability inequalities is pretty long, and therefore we decided to devote Section 5 to this
subject (see also a preliminary example in Section 2.4). In a nutshell, let us already mention
that

the results presented in these notes are pretty sharp for Kantorovich potentials, but we still
have less understanding of the stability of optimal transport maps.
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The field is progressing fast. Our understanding so far is that stability of Kantorovich potentials
is related to some Poincaré inequality on ρ, while stability of optimal transport maps should
hold under weaker (but still mysterious) assumptions. Notice that if the Poincaré inequality
holds for ρ, then

∥ϕµ − ϕν∥L2(ρ) ≤ C∥Tµ − Tν∥L2(ρ). (2.1)

Hence any stability inequality on optimal transport maps immediately implies a stability inequal-
ity on Kantorovich potentials! However, with our present knowledge, we are not able to prove
stability inequalities on optimal transport maps directly, except under regularity assumptions
as in Theorem 2.1. Therefore, we will have to proceed differently.

The first main result we discuss in these notes is the following:

Theorem 2.2 (Log-concave case). Let ρ = e−U−F be a probability density on Rd, with D2U ≥
κId, κ > 0, and F ∈ L∞(Rd). Then for any compact set Y, there exists C > 0 such that for any
µ, ν supported in Y,

∥ϕµ − ϕν∥L2(ρ) ≤ CW1(µ, ν)1/2(1 + | logW1(m, ν)|1/2). (2.2)

If moreover D2U ≤ κ′Id, then there exists C > 0 such that for any µ, ν supported in Y,

∥Tµ − Tν∥L2(ρ) ≤ CW1(µ, ν)1/9. (2.3)

Up to the logarithmic loss in (2.2), the inequality (2.2) is sharp, as discussed in Section 5.2.
The additional assumption D2U ≤ κ′Id made to prove (2.3) is probably only technical, but we
have not been able to avoid it.

Let us turn to the second main result of these notes, which handles the case of source measures
ρ with bounded support. Recall that a domain is a non-empty, bounded and connected open
set.

Theorem 2.3 (Non-degenerate densities on bounded domains). Let ρ be a probability density
on a John domain X ⊂ Rd, and assume that ρ is bounded above and below on X by positive
constants. Then for any compact set Y ⊂ Rd, there exists C > 0 such that for any µ, ν ∈ P(Y),

∥ϕµ − ϕν∥L2(ρ) ≤ CW1(µ, ν)1/2. (2.4)

If moreover ∂X has a finite (d − 1)-dimensional Hausdorff measure, then there exists C > 0
such that for any µ, ν ∈ P(Y),

∥Tµ − Tν∥L2(ρ) ≤ CW1(µ, ν)1/6. (2.5)

We do not know whether the assumption that ∂X has finite (d − 1)-dimensional Hausdorff
measure is technical or not. John domains are a vast family of domains which contains in
particular all bounded connected Lipschitz domains, but also some fractal domains like the
Koch snowflake.

Definition 2.4. A bounded open subset X of a metric space is called a John domain if there
exist x0 ∈ X and a constant η > 0 such that, for every x ∈ X , there is T > 0 and a rectifiable
curve γ : [0, T ] → X parametrized by the arclength (and whose length T depends on x) such that
γ(0) = x, γ(T ) = x0, and for any t ∈ [0, T ],

dist(γ(t),X c) ≥ ηt (2.6)

where X c denotes the complement of X .
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In Theorem 2.3, the target measures are assumed to be supported in a large compact set Y;
it is possible to relax this assumption, and work only under moment constraints, as done in [31].

Theorem 2.3 also holds when Rd is replaced by an arbitrary smooth connected Riemannian
manifold M , and optimal transport is considered with respect to the quadratic cost c(x, y) =
1
2dist(x, y)2 where dist denotes the Riemannian distance on M . In case M is compact without
boundary (e.g., the sphere), then we may choose X = Y = M . We shall detail a bit more this
generalization to Riemannian manifolds in Section 7.3.

2.3 Comments

There are two important directions to improve and generalize the results presented above:

� proving/disproving stability inequalities for a wider range of probability densities ρ

� improving the stability exponents (1/9 in (2.3), 1/6 in (2.5)) for the source measures ρ
considered in our main results.

To make progress on the second direction, which is blocked at the time of writing, new ideas are
needed. Therefore, we comment only on the first direction. Indeed, our proof strategy is robust
enough to handle other cases of interest. In all the following cases we are able to prove stability
inequalities for Kantorovich potentials and optimal transport maps (we do not discuss stability
exponents here, they are all dimension-free except for (2.7)):

(i) Degenerate densities ρ in bounded domains. The assumption in Theorem 2.3 that ρ is
bounded above and below on X is not always necessary. We illustrate this on two examples
which we find particularly relevant in applications. The first example is given by source
probability densities satisfying

c1dist(x, ∂X )δ ≤ ρ(x) ≤ c2dist(x, ∂X )δ

for some δ > −1 and c1, c2 > 0, when X is a bounded Lipschitz domain. These densities
blow-up or decay near ∂X . The second example is the source probability density

ρ(x) =
cd

|x|d−1
1B(0,1) (2.7)

on Rd, with cd is a normalising constant. This probability density is sometimes called the
spherical uniform distribution, and has been used in the literature to define multivariate
quantiles. The stability inequality is relevant in this application, see Section 8.3.

(ii) Source measures ρ on Rd which decay polynomially at infinity:

ρ(x) = f(x)(1 + |x|)−β (2.8)

with 0 < m ≤ f(x) ≤ M < +∞ uniformly over x ∈ Rd, and β > d + 2 so that ρ has
finite second moment. The reason why we find this family of source probability measures
interesting is that it is not possible to use the same proof strategy as for the families of
probability measures covered by Theorems 2.2 and 2.3, see Section 4.2.

(iii) Source measures with disconnected support. If we replace the beginning of the statement
of Theorem 2.3 by “Let ρ be a probability density on a finite union of John domains”, then
(2.5) still holds. Some modified version of (2.4) also holds, but one needs to be careful
since Kantorovich potentials are not unique when the support of ρ is not connected.
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Regarding the fact that the targets are assumed to be compactly supported in Theorems
2.2 and 2.3, we do not believe that this is a fundamental assumption. In [31], the assumption
that was used is that they have p-th moment for some p > d (for p < d, there exist unbounded
Brenier potentials). We guess that our proof techniques may also cover this case, but shall not
pursue this here.

As we explain in Section 4.4, the strategy we use to prove Theorem 2.2, Theorem 2.3 and
point (i) above allows us to recover the known fact that for any ρ satisfying the assumptions of
one of these results, the Poincaré inequality holds:∫

X

(
f −

∫
X
fdρ

)2

dρ ≤ C

∫
X
|∇f |2dρ (2.9)

(for ρ as in Theorem 2.2, X has to be replaced by Rd). The examples and counterexamples of
Section 5 show an analogy, but not an equivalence, between the fact that the Poincaré inequality
holds for ρ and the fact that a stability inequality for Kantorovich potentials holds.

2.4 An elementary example

In this paragraph, we show on a simple example that one cannot hope in general to have a
better exponent than 1/2 in (2.5).

Let ρ = ρ(x)dx = 1
π1D(x)dx is the uniform probability on the unit disk D ⊂ R2. For

θ ∈ R/2πZ, we set xθ = (cos(θ), sin(θ)) ∈ R2 and define the probability measure

µθ =
1

2
(δxθ + δxθ+π).

The ρ-a.e. unique optimal transport map Tµθ from ρ to µθ for the quadratic cost is explicit:

Tµθ(x) =

{
xθ if ⟨x, xθ⟩ ≥ 0

xθ+π if ⟨x, xθ⟩ < 0

for x ∈ D. In other words, each point x ∈ D is sent to the closest point among xθ and xθ+π.
This cuts the disk into two (equal) halves, see Figure 1.

xθ

xθ+π

Tµθ

Tµθ

Figure 1: The optimal transport Tµθ from ρ to µθ.

Fix θ ∈ R/2πZ, close to 0. Then, D may be written as D = A⊔B where A is the set of points
whose images under Tµ0 and Tµθ are at angular distance θ, and B is the set of points whose
images under Tµ0 and Tµθ are at angular distance π − θ. We find ρ(A) = 1 − θ

π and ρ(B) = θ
π ,

hence as θ → 0,

∥Tµθ − Tµ0∥2L2(ρ) = |2 sin(θ/2)|2ρ(A) + |2 sin((π − θ)/2)|2ρ(B) ∼
θ→0

4|θ|
π
. (2.10)
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On the other hand, for θ close enough to 0 and p ≥ 1 arbitrary, the Wp distance between µ0
and µθ is obviously achieved by the map which sends x0 to xθ and xπ to xθ+π. Its p-cost is

Wp(µ0, µθ) = |2 sin(θ/2)| ∼
θ→0

|θ|. (2.11)

Putting together (2.10) and (2.11) for p = 2, we see that we cannot hope in this case to have a
better exponent than 1/2 in (2.5).

In this example, it is not difficult either to compute the difference in L2-norm between
Kantorovich potentials. For this, we denote by Dθ ⊂ R2 the line through the origin which is
perpendicular to the segment [xθ, xθ+π] (the dashed line on Figure 1) and observe that

ϕµθ(x) = dist(x,Dθ) − C

for some constant C independent of θ (simply equal to the integral of D ∋ (x, y) 7→ |x|/π). It is
not difficult to see that

∥ϕµθ − ϕµ0∥2L2(ρ) =

∫
D

(|x1 cos(θ) + x2 sin(θ)| − |x1|)2dx = θ2
∫
D
x22dx+O(θ3)

where x = (x1, x2). Therefore, one cannot hope in this case to have a better exponent than 1 in
(2.4).

The computations presented above can easily be generalized to any dimension and more
general sources than the uniform probability on the disk. Further examples where explicit
computations can be made will be discussed in Section 5.

2.5 Bibliographical notes

§2.1: Theorem 2.1 is due to [36] and another proof has been given in [59]. The regularity
theory of the Monge-Ampère equation and its link to regularity of optimal transport maps is
explained in the survey [32]. The counterexample to the continuity of the optimal transport
map is due to Caffarelli, see [18].

§2.2: Berman [8] was the first to obtain quantitative stability estimates without assuming
regularity of the OT map. He derived dimension-dependent stability exponents for ρ bounded
above and below on a compact, convex domain, using complex geometry. Then, Delalande
and Mérigot [31] improved his stability exponent, making it dimension-free, under the same
assumptions on ρ. But more importantly, they introduced a robust proof technique based on
the study of the Kantorovich functional, see Chapter 3.

John domains were named in honor of F. John who introduced them in his work on elasticity
[45]; Martio and Sarvas [56] introduced this terminology. They appear also in the theory of
quasi-conformal mappings and in geometric measure theory.

§2.4: The example in this section is due to [59].
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3 The Kantorovich functional

In this chapter, we introduce properly the Kantorovich relaxation of the Monge problem
and its dual formulation in terms of Kantorovich potentials. Then, we study the so-called
Kantorovich functional, whose strong convexity implies the stability of Kantorovich potentials.

3.1 The dual formulation of optimal transport

Monge formulated in 1781 the optimal transport problem as

inf
S:X→Y
S#ρ=µ

∫
X
|x− S(x)|dρ(x) (3.1)

where X ,Y ⊂ Rd, ρ is a probability measure on X , and µ a probability measure on Y. For many
reasons already explained, it is natural to put a square on the |x − S(x)| term, thus yielding
(1.4). It is only in 1942 that Kantorovich introduced what is now known as the Kantorovich
relaxation already mentioned in (1.3) and which we recall:

inf
γ∈Π(ρ,µ)

∫
X×Y

|x− y|2dγ(x, y). (3.2)

We show in this paragraph how to solve (3.2), and introduce along the way the primal and dual
Kantorovich potentials, which play a prominent role in these notes. At some places, we remain
at an informal level; complete references are given at the end of the section.

First we notice that for γ ∈ Π(ρ, µ),∫
X×Y

|x− y|2dγ(x, y) =

∫
X
|x|2dρ(x) +

∫
Y
|y|2dµ(y) − 2

∫
X×Y

⟨x, y⟩ dγ(x, y).

Since the first two terms in the right-hand side do not depend on γ, the quadratic optimal
transport problem (1.3) is equivalent to

sup
γ∈Π(ρ,µ)

∫
X×Y

⟨x, y⟩ dγ(x, y). (3.3)

We denote this supremum by I(ρ, µ).

3.1.1 The dual problem

The constraint γ ∈ Π(ρ, µ) may be written under the form of Lagrange multipliers. Let
M+(X ×Y) denote the set of positive Radon bounded measures supported over X ×Y, and let
Cb(E) denote the set of bounded continuous functions over a set E. For γ ∈ M+(X × Y).

inf
ϕ∈Cb(X )
ψ∈Cb(Y)

∫
X
ϕ(x) dρ(x) +

∫
Y
ψ(y) dµ(y) −

∫
X×Y

ϕ⊕ ψ dγ(x, y) =

{
0 if γ ∈ Π(ρ, µ)

−∞ otherwise

where ϕ⊕ ψ : (x, y) 7→ ϕ(x) + ψ(y). Therefore (3.3) is equivalent to

sup
γ∈M+(X×Y)

inf
ϕ∈Cb(X )
ψ∈Cb(Y)

∫
X×Y

(⟨x, y⟩ − ϕ⊕ ψ) dγ(x, y) +

∫
X
ϕ(x) dρ(x) +

∫
Y
ψ(y) dµ(y).
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The duality principle consists in exchanging the sup and the inf; we get

inf
ϕ∈Cb(X )
ψ∈Cb(Y)

[∫
X
ϕ(x) dρ(x) +

∫
Y
ψ(y) dµ(y) + sup

γ∈M+(X×Y)

∫
X×Y

(⟨x, y⟩ − ϕ⊕ ψ) dγ(x, y)

]
(3.4)

(after rearranging the terms). As we will see, this new optimization problem is equivalent
to (3.3), which may seem surprising at first sight. But let us first simplify (3.4) a bit. The
supremum inside the brackets can itself be seen as a constraint: it is equal to 0 if ϕ⊕ψ ≥ ⟨x, y⟩
for any x ∈ X , y ∈ Y, and equal to +∞ otherwise. Therefore we end-up with the dual problem

inf

{∫
X
ϕ(x) dρ(x) +

∫
Y
ψ(y) dµ(y) | ϕ ∈ Cb(X ), ψ ∈ Cb(Y), ϕ⊕ ψ ≥ ⟨x, y⟩

}
. (3.5)

We denote this infimum by J (ρ, µ).
It is immediate to check that J (ρ, µ) ≥ I(ρ, µ). Indeed, for any ϕ, ψ such that ϕ⊕ψ ≥ ⟨x, y⟩,

and any γ ∈ Π(ρ, µ) we have∫
X×Y

⟨x, y⟩ dγ(x, y) ≤
∫
X×Y

ϕ⊕ ψ dγ(x, y) =

∫
X
ϕ(x) dρ(x) +

∫
Y
ψ(y) dµ(y).

What is more surprising is that the reverse inequality J (ρ, µ) ≤ I(ρ, µ) is also true, but we shall
not show it here. The resulting equality

I(ρ, µ) = J (ρ, µ) (3.6)

is often referred to as the “Kantorovich duality”, or “strong duality”. It holds in great generality,
for general costs for instance.

The problem (3.3) has a maximizer under mild conditions (see [72, Theorem 5.10]), and the
standard proof of this fact goes as follows: consider a maximizing sequence (γn), use compactness
in the set of probability measures (Prokhorov theorem) to extract a converging subsequence,
and conclude that the limit is a maximizer using lower semi-continuity of the cost. Similarly, the
problem (3.5) admits a minimizer under mild assumptions, and a pair (ϕ, ψ) which minimizes
(3.5) is called a pair of Kantorovich potentials. But for both (3.3) and (3.5), the optimizers are
not necessarily unique.

3.1.2 Support of optimizers

Let us prove that if γ is a maximizer in (3.3) and (ϕ, ψ) is a minimizer in (3.5), then

support(γ) ⊂ {(x, y) ∈ X × Y | ϕ(x) + ψ(y) = ⟨x, y⟩}. (3.7)

For this we use (3.6) which yields∫
X×Y

((ϕ⊕ ψ)(x, y) − ⟨x, y⟩) dγ(x, y) = 0.

Since ϕ⊕ψ ≥ ⟨x, y⟩, this gives (3.7). The converse is true: if (3.7) holds for some γ ∈ Π(ρ, µ) and
(ϕ, ψ) such that ϕ⊕ ψ ≥ ⟨x, y⟩, then γ and (ϕ, ψ) are solutions of their respective optimization
problems.
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3.1.3 Semi-dual formulation

It is possible to give an equivalent unconstrained formulation of (3.5). Recall the definition
of the Legendre transform:

ϕ∗(y) = sup
x∈Rd

⟨y, x⟩ − ϕ(x).

If a function ϕ is defined only over a subset of Rd, we first extend ϕ by +∞ outside this subset
to define its Legendre transform. As a consequence, ϕ∗(y) = supx∈X ⟨y, x⟩ − ϕ(x) if ϕ ∈ Cb(X ).

For a given ϕ, the smallest possible ψ that one may choose to satisfy the constraints in (3.5)
is ψ = ϕ∗. Similarly, for a given ψ, the smallest possible ϕ that one may choose is ϕ = ψ∗.
Therefore, one has

J (ρ, µ) = inf

{∫
X
ϕ dρ+

∫
Y
ϕ∗ dµ | ϕ ∈ Cb(X )

}
= inf

{∫
X
ψ∗ dρ+

∫
Y
ψ dµ | ψ ∈ Cb(Y)

}
.

This leads us to the so-called semi-dual formulation of (3.5):

inf
ψ∈C0(Y)

∫
X
ψ∗ dρ+

∫
Y
ψ dµ (3.8)

(recall that Y is compact, so C0(Y) = Cb(Y)).
If we want to solve (3.8), it seems natural to write the first and second-order optimality

conditions with respect to ψ. This will be done in Section 3.3: the second integral is linear in
ψ, hence easy to differentiate, but the first part is non-linear in ψ.

3.1.4 Convex functions and proof of Brenier’s theorem

For any ϕ, ψ such that ϕ⊕ ψ ≥ ⟨x, y⟩, we have ψ ≥ ϕ∗ and ϕ ≥ ϕ∗∗, hence∫
X
ϕ dρ+

∫
Y
ψ dµ ≥

∫
X
ϕ∗∗ dρ+

∫
Y
ϕ∗ dµ.

Recall that a convex function is called proper if it has a non-empty domain, it never takes on
the value −∞ and also it is not identically equal to +∞. By the Fenchel-Moreau theorem, as
soon as ϕ is a proper lower semi-continuous convex function, ϕ∗∗ = ϕ. Therefore, in (3.5) we
may restrict the infimum to the set of pairs (ϕ, ϕ∗) of proper lower semi-continuous conjugate
functions on Rd. We do not discuss here the fact that in this case ϕ and ϕ∗ cannot be bounded
(unless constant) since they are convex, hence strictly speaking one would need to justify that the
result is the same as in (3.5) where the infimum is restricted to bounded continuous functions.

We recall that if ϕ : Rd → R∪ {+∞} is a convex function, then its subdifferential at x ∈ Rd
is defined as

∂ϕ(x) = {v ∈ Rd | ∀z ∈ Rd, ϕ(z) ≥ ϕ(x) + ⟨z − x, v⟩}.

The graph of the subdifferential is

∂ϕ =
⋃
x∈Rd

{x} × ∂ϕ(x).

If ϕ : Rd → R ∪ {+∞} is a proper lower semi-continuous convex function, then for all
x, y ∈ Rd,

ϕ(x) + ϕ∗(y) = ⟨x, y⟩ ⇔ y ∈ ∂ϕ(x) ⇔ x ∈ ∂ϕ∗(y). (3.9)
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Indeed,

ϕ(x) + ϕ∗(y) = ⟨x, y⟩ ⇔ ⟨x, y⟩ ≥ ϕ(x) + ϕ∗(y)

⇔ ∀z ∈ Rd, ⟨x, y⟩ ≥ ϕ(x) + ⟨y, z⟩ − ϕ(z)

⇔ ∀z ∈ Rd, ϕ(z) ≥ ϕ(x) + ⟨y, z − x⟩
⇔ y ∈ ∂ϕ(x).

By symmetry, the other equivalence follows, since ϕ∗∗ = ϕ by the Fenchel-Moreau theorem
(which uses the assumptions on ϕ).

Combining (3.9) and (3.7), we have obtained:

Proposition 3.1. Any optimal transport plan (i.e., any solution of (3.3)) has its support con-
tained in the graph of the subdifferential of a convex function.

The proof of Brenier’s theorem 1.1 is now straightforward.

Proof of Brenier’s theorem. Let γ be an optimal transport plan, and take ψ a proper lower
semi-continuous function on Rd that solves (3.8). For any (x0, y0) in the support of γ such that
ψ∗ is differentiable at x0, one has y0 = ∇ψ∗(x0) according to Proposition 3.1. Since ψ∗ is a
proper lower semi-continuous convex function on Rd, it is differentiable ρ-almost everywhere.
This implies that γ = (Id,∇ψ∗)#ρ. But ψ and γ have been chosen independently, so for any
other optimal transport plan γ̃ there also holds γ̃ = (Id,∇ψ∗)#ρ, in other words there is a
unique optimal transport plan γ. If f is another proper lower semi-continuous convex function
such that µ = (∇f)#ρ, then γ̃ = (Id,∇f) satisfies∫

Rd×Rd
⟨x, y⟩ dγ(x, y) ≤

∫
Rd
f(x) dρ(x) +

∫
Rd
f∗(y) dµ(y) =

∫
Rd

(f(x) + f∗(∇f(x))) dρ(x)

=

∫
Rd×Rd

⟨x, y⟩ dγ̃(x, y)

where the last equality comes from the Fenchel-Young equality case (3.9). Since γ is the unique
maximizer of (3.3), we get γ̃ = γ, and thus ∇f = ∇ψ∗ ρ-a.e.

3.1.5 Kantorovich-Rubinstein formula

We conclude this section with the following important formula.

Theorem 3.2 (Kantorovich-Rubinstein duality formula). For any µ, ν probability measures on
Y with finite first moment,

W1(µ, ν) = sup

{∫
Y
fdµ−

∫
Y
fdν | Lip(f) ≤ 1

}
. (3.10)

In these notes, we will only need the inequality ≥, which is easy to prove. For any γ ∈ Π(µ, ν)
and any 1-Lipschitz function f ,∫

Y
f dµ−

∫
Y
f dν =

∫
X×Y

(f(x) − f(y)) dγ(x, y) ≤
∫
X×Y

|x− y| dγ(x, y).

Taking the infimum over γ ∈ Π(µ, ν) and the supremum over 1-Lipschitz functions f , we get
that in (3.10) the left-hand side is larger than the right-hand side. For the converse inequality,
which is another instance of Kantorovich duality, we provide references at the end of this section.
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3.2 Proof of Theorem 2.1

With the Kantorovich potentials at hand, we will be able to give in this section a short proof
of Theorem 2.1. We start with a classical result which turns the Lipschitzness assumption on
Tµ into strong convexity of ψµ. For this we need the following definitions.

Definition 3.3. For K > 0, a function ϕ : Rd → R is K-smooth if K2 |x|
2 −ϕ(x) is convex, i.e.,

ϕ((1 − t)x0 + tx1) +
Kt(1 − t)

2
|x0 − x1|2 ≥ (1 − t)ϕ(x0) + tϕ(x1),

for any x0, x1 ∈ Rd and t ∈ [0, 1]. For λ > 0, a function ψ : Rd → R is λ-strongly convex if
ψ(y) − λ

2 |y|
2 is convex, i.e., for any y0, y1 ∈ Rd and t ∈ [0, 1],

ψ((1 − t)y0 + ty1) +
λt(1 − t)

2
|y0 − y1|2 ≤ (1 − t)ψ(y0) + tψ(y1). (3.11)

When ϕ, ψ ∈ C2, the first condition is simply D2ϕ ≤ K, and the second condition is D2ψ ≥ λ.
Now, if ϕ and ϕ∗ are C2 convex functions, differentiating the identity ∇ϕ(∇ϕ∗) = Id (which
comes from (3.9)) we get (∇2ϕ∗)−1 = ∇2ϕ(∇ϕ∗), and thus ∥∇2ϕ∥L∞ ≤ K if and only if ∇2ϕ∗ ≥
1
K , i.e., ϕ is K-smooth if and only if ϕ∗ is K−1-strongly convex. This result is actually true
without assuming that ϕ, ϕ∗ are C2 (see [55, Lemma 2.2] for a proof):

Lemma 3.4. Let ϕ : Rd → R be a convex function. Then ϕ is K-smooth if and only if ϕ∗ is
λ-strongly convex for λ = K−1.

In the sequel, if f ∈ C0(Y) and µ is a Radon measure on Y, then we set ⟨f | µ⟩ =
∫
Y fdµ.

The (distinct) notation ⟨·, ·⟩ denotes the Euclidean scalar product in Rd.
The proof of Theorem 2.1 mainly relies on the following inequality:

Lemma 3.5. Under the assumptions of Theorem 2.1, there holds

⟨ψµ − ψν | ν − µ⟩ ≥ 1

2K
∥Tν − Tµ∥2L2(ρ) (3.12)

where (ϕµ, ψµ) (resp. (ϕν , ψν)) is a pair of Kantorovich potentials associated to the transport
from ρ to µ (resp. ρ to ν).

Proof of Lemma 3.5. We take X = Rd. Using that µ = (Tµ)#ρ and ν = (Tν)#ρ we have

⟨ψµ | ν − µ⟩ =

∫
Rd

(ψµ(Tν(x)) − ψµ(Tµ(x)))dρ(x).

Since Tµ is K-Lipschitz, ϕµ is K-smooth and therefore ψµ = ϕ∗µ is K−1-strongly convex by

Lemma 3.4. Hence, letting t→ 0 in (3.11), we get that ψµ(y) − ψµ(z) ≥ ⟨y − z, v⟩ + 1
2K |y − z|2

for any v ∈ ∂ψµ(z). Now we fix x in the support of ρ and choose y = Tν(x) and z = Tµ(x).
Therefore z ∈ ∂ϕµ(x) (see Proposition 3.1) and (3.9) yields x ∈ ∂ψµ(z). We deduce

⟨ψµ | ν − µ⟩ ≥
∫
Rd

(
⟨Tν(x) − Tµ(x), x⟩ +

1

2K
|Tν(x) − Tµ(x)|2

)
dρ(x).

Since ψν is also convex (but not necessarily strongly convex), choosing y = Tµ(x) and z = Tν(x)
we obtain similarly

⟨ψν | µ− ν⟩ ≥
∫
Rd
⟨Tµ(x) − Tν(x), x⟩ dρ(x).

Adding the two previous inequalities we get (3.12).
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End of the proof of Theorem 2.1. Using the Kantorovich-Rubinstein duality formula (3.10), we
get that the left-hand side of (3.12) is bounded above by Lip(ψµ − ψν)W1(µ, ν). Finally, to
conclude the proof, it remains to observe that ψµ − ψν is diam(supp(ρ))-Lipschitz. Essentially
this is due to the fact that ∂ψµ and ∂ψν are subsets of the support of ρ, and here is a formal
proof: if y, y′ ∈ Y, let x, x′ in the support of ρ such that ψµ(y) = ⟨y, x⟩ − ϕµ(x) and ψν(y′) =
⟨y′, x′⟩ − ϕν(x′). These points exist due to (3.7) and (3.9). Then

(ψµ − ψν)(y) − (ψµ − ψν)(y′) = ψµ(y) − ψµ(y′) + ψν(y′) − ψν(y)

≤ ⟨y − y′, x⟩ + ⟨y′ − y, x′⟩ ≤ |y − y′|diam(supp(ρ)).

Exchanging the roles of y and y′ we get the Lipschitz bound and Theorem 2.1 follows.

3.3 The Kantorovich functional: definition and derivatives

The Kantorovich functional is defined as

Kρ : ψ 7→
∫
X
ψ∗dρ (3.13)

for ψ ∈ C0(Y). We prove here (some kind of) strong convexity of this functional under some
assumptions on ρ, and explain how it implies stability properties for Kantorovich potentials. The
Kantorovich functional Kρ is one part of the quantity appearing in the semidual formulation
(3.8). The other part is linear in ψ and thus does not affect the convexity properties of Kρ.
Also, it is immediate to see that Kρ is convex, since it is a convex combination of the convex
functions ψ 7→ ψ∗(x).

Let us explain on a basic example how one can deduce stability from strong convexity. Let
f : Rd → R with Hess(f) ≥ cId for some c > 0. Then for any x1, x2 ∈ Rd,

c∥x1 − x2∥2 ≤ ⟨∇f(x1) −∇f(x2), x1 − x2⟩ ≤ |x1 − x2||∇f(x1) −∇f(x2)| (3.14)

hence |x1 − x2| ≤ c−1|∇f(x1) −∇f(x2)|. In particular, if ∇f(x1) and ∇f(x2) are close to each
other, then x1 and x2 are close to each other. In other words, strong convexity of f implies that
the map ∇f(x) 7→ x is well-defined and stable.

x

y

x1 x2

y = f(x)

∇f(x2)

∇f(x1)

Figure 2: For a strongly convex function f , if ∇f(x1) and ∇f(x2) are close to each other, then
x1 and x2 are close to each other.
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To prove our main results, we shall develop an analogous computation for f = Kρ the
Kantorovich functional, defined on C0(Y) instead of Rd. We will see that if Kρ is taken as (3.13)
below, then for ψ ∈ C0(Y) the gradient ∇Kρ(ψ) is a measure, and

∇Kρ(ψ) = −(∇ψ∗)#ρ. (3.15)

In particular, ∇Kρ(ψµ) = −µ for ψµ the dual Kantorovich potential from ρ to µ. The above
computations show (heuristically) that if one is able to prove that Kρ is strongly convex in some
sense, then one gets a stability inequality of the form

µ, ν close to each other ⇒ ψµ, ψν close to each other.

If we consider again Lemma 3.5 under this new light, we see that it plays the role of the
left-hand side inequality in (3.14). And the Kantorovich-Rubinstein duality formula replaces
the Cauchy-Schwarz inequality used in (3.14), and yields an upper bound on

⟨ψµ − ψν | ν − µ⟩

since ψµ and ψν are Lipschitz when X is bounded. However, this application of the Kantorovich-
Rubinstein duality formula does not always yield sharp results, we shall comment on this again
in Remark 3.10.

To study the convexity of Kρ, we compute its first two derivatives. The equality (3.16) below
is a formal writing of (3.15).

Lemma 3.6. Let ϕ0, ϕ1 ∈ C2(Rd) be strongly convex functions. Define ψ0 = ϕ∗0, ψ1 = ϕ∗1, and
v = ψ1 − ψ0. For t ∈ [0, 1], define ψt = ψ0 + tv, and finally ϕt = ψ∗

t . Then, ϕt is a strongly
convex function, belongs to C2(Rd), and

d

dt
Kρ(ψt) = −

∫
X
v(∇ϕt(x))dρ(x) (3.16)

d2

dt2
Kρ(ψt) =

∫
X
⟨∇v(∇ϕt(x)), D2ϕt(x) · ∇v(∇ϕt(x))⟩dρ(x). (3.17)

Proof. The maximum in
max
y∈Y

⟨x, y⟩ − ψt(y)

is attained at yx ∈ Y for which x = ∇ψt(yx), which is equivalent to yx = ∇ψ∗
t (x) according to

(3.9). Therefore, by the envelope theorem,

ψ∗
t+ε(x) = max

y∈Y
⟨x, y⟩ − ψt(y) − εv(y) = ψ∗(x) − εv(∇ψ∗

t (x)) + o(ε) (3.18)

as ε→ 0. In other words d
dtψ

∗
t (x) = −v(∇ψ∗

t (x)), and integrating against ρ we get (3.16).
For (3.17), applying (3.16) to ψt we see that we need to evaluate

d

dt

∫
X
v(∇ϕt(x))dρ(x).

Using the chain rule and the fact that d
dt∇ϕt = ∇ d

dtϕt = −D2ϕt(x) · ∇v(∇ϕt(x)) due to (3.18),
we get (3.17).
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3.4 Variance inequality in compact convex sets

In this section, we prove a “variance inequality”, i.e., an upper bound on the variance of
the difference of two Kantorovich potentials corresponding to two different target measures. It
reflects a form of strong convexity of Kρ. The estimate (3.19) below is of fundamental importance
in the rest of these notes.

Recall that a probability density σ on a convex set Q ⊂ Rd is called logarithmically concave,
or log-concave, if there exists a convex function V : Q→ R such that σ = e−V . The Hessian of
V is denoted by D2V . Also, recall that the variance of a function f with respect to a probability
measure ρ on a set X is defined as

Varρ(f) =

∫
X

(
f −

∫
X
fdρ

)2

dρ.

Theorem 3.7. Let Q ⊂ Rd be a compact convex set with non-empty interior, let σ be a log-
concave probability density over Q and let ρ be another probability density over Q satisfying
mρσ ≤ ρ ≤ Mρσ for some constants Mρ ≥ mρ > 0. Let Y ⊂ Rd be a compact set, and let
RY = maxy∈Y ∥y∥. Then, for all ψ0, ψ1 ∈ C0(Y),

e−1mρ

Mρ

1

RYdiam(Q)
Varρ(ψ

∗
1 − ψ∗

0) ≤ ⟨ψ1 − ψ0 | ∇ψ∗
0#ρ−∇ψ∗

1#ρ⟩. (3.19)

An example to keep in mind is when σ is the characteristic function of Q, normalized to be
a probability density. Another important example is when ρ itself is log-concave, in which case
we may take σ = ρ and mρ/Mρ = 1.

Notice that the above estimate, in particular the constant in the left-hand side of (3.19),
is dimension-free. Also, the inequality (3.19) is not exactly a strong convexity estimate on Kρ

since primal (and not dual) Kantorovich potentials appear in the LHS. In the original proof of
[31], a true strong convexity estimate with dual potentials has been obtained. However it is not
strong enough to imply Theorem 2.2, contrarily to (3.19).

The fundamental tool on which our proof of Theorem 3.7 relies is the Brascamp-Lieb in-
equality, which is a kind of Poincaré inequality with respect to log-concave densities.

Theorem 3.8 (Brascamp-Lieb inequality). Let X ⊂ Rd be a compact, convex set and let ρ0 =
e−V dx be a probability measure on X , where V ∈ C2(X ) is assumed to be strictly convex. Then
every smooth function f on X verifies

Varρ0(f) ≤
∫
X
⟨∇f, (D2V )−1∇f⟩dρ0

We provide a proof of the Brascamp-Lieb inequality in Appendix B. The strength of this
inequality is that the Poincaré constant is 1, for an arbitrary strictly convex V ∈ C2(X ).

Sketch of proof of Theorem 3.7. Fix ψ0, ψ1 ∈ C0(Y). Let v = ψ1 − ψ0 and ψt = ψ0 + tv =
(1− t)ψ0 + tψ1 for t ∈ [0, 1]. Set also ϕt = ψ∗

t . In this sketch of proof, we assume that ϕt has all
the nice properties which make the involved objects well-defined. The approximation arguments
which allow to assume this are skipped. Then

⟨ψ1 − ψ0 | ∇ψ∗
0#ρ−∇ψ∗

1#ρ⟩ =
d

dt
Kρ(ψt)

∣∣∣
t=1

− d

dt
Kρ(ψt)

∣∣∣
t=0

=

∫ 1

0

d2

dt2
Kρ(ψt)dt

=

∫ 1

0

∫
Q
⟨∇v(∇ϕt), D2ϕt · ∇v(∇ϕt)⟩dρdt
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according to Lemma 3.6. We introduce wt(x) = v(∇ϕt(x)), then ∇wt = D2ϕt · ∇v(∇ϕt), and
we get ∫

Q
⟨∇v(∇ϕt), D2ϕt · ∇v(∇ϕt)⟩dρ =

∫
Q
⟨∇wt, (D2ϕt)

−1 · ∇wt⟩dρ (3.20)

(D2ϕt is invertible because thanks to some regularization argument we may assume that ψ0, ψ1

are C2).
There is a first approach to lower bound the last expression by directly applying Brascamp-

Lieb (with ρ0 = e−ϕt , properly normalized). This approach has the drawback that it yields
a constant in (3.19) much worse than the one stated, in particular not good enough to prove
Theorem 2.2.

To circumvent this, we write σ = e−V and set ρt = Z−1
t e−V−ϕt where Zt is a normalizing

constant, so that ρt is a probability measure. The idea is to apply Brascamp-Lieb with ρt. For
this, we need to replace ρ by ρt in the RHS of (3.20). We denote by mt and Mt the minimum
and the maximum of ϕt(x) over x ∈ Q, and let r = supt∈[0,1]Mt −mt. We get

ρt(x) ≥ Z−1
t e−Mtσ ≥ Z−1

t e−MtM−1
ρ ρ,

ρt(x) ≤ Z−1
t e−mtσ ≤ Z−1

t e−mtm−1
ρ ρ.

In particular,

Varρt(f) =

∫
X
|f − f |2dρt ≥ α

∫
X
|f − f |2dρ ≥ αVarρ(f)

where α = Z−1
t e−MtM−1

ρ and f =
∫
X fdρt. Then∫

Q
⟨∇wt, (D2ϕt)

−1 · ∇wt⟩dρ ≥
∫
Q
⟨∇wt, (D2ϕt +D2V )−1 · ∇wt⟩dρ

≥ Zte
mtmρ

∫
Q
⟨∇wt, (D2ϕt +D2V )−1 · ∇wt⟩dρt

≥ Zte
mtmρVarρt(wt)

≥ emt−Mt
mρ

Mρ
Varρ(wt)

≥ e−r
mρ

Mρ
Varρ(wt).

Integrating this inequality over t ∈ [0, 1], there remains to lower bound
∫ 1
0 Varρ(wt)dt. We notice

that d
dtϕt(x) = −v(∇ϕt(x)) = −wt(x) due to the same computation as in (3.18). Therefore we

deduce from Minkowski’s inequality∫ 1

0
Varρ(wt)dt ≥ Varρ

(∫ 1

0
wt dt

)
= Varρ

(∫ 1

0

dϕt
dt

dt

)
= Varρ(ϕ1 − ϕ0).

All in all,

⟨ψ1 − ψ0 | ∇ψ∗
0#ρ−∇ψ∗

1#ρ⟩ ≥ e−r
mρ

Mρ
Varρ(ϕ1 − ϕ0).

A short scaling argument that we do not detail allows to replace e−r by 1/er. Finally, there
remains to control r. Let x, x′ ∈ Q, and y ∈ Y such that ϕt(x) = ⟨x, y⟩ − ϕ∗t (y). Then

ϕt(x
′) ≥ ⟨x′, y⟩ − ϕ∗t (y) = ⟨x′ − x, y⟩ + ϕt(x) ≥ −diam(Q)RY + ϕt(x). (3.21)

Therefore Mt −mt ≤ diam(Q)RY , and taking the supremum over t ∈ [0, 1] we get that r has
the same upper bound, which concludes.
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Remark 3.9. At this point, it is possible to conclude the proof of the stability of Kantorovich
potentials when ρ is supported on a compact, convex set, and bounded above and below on its
support (i.e., (2.4) when X is assumed to be convex). This recovers, with an improved constant, a
result due to Delalande and Mérigot [31] (after anterior work by Berman, see the bibliographical
notes in Section 3.6). For this, one just needs to take ψ0 = ψµ, ψ1 = ψν , and upper bound the
right-hand side in (3.19) thanks to the Kantorovich-Rubinstein duality formula. This is very
similar to the argument at the end of the proof of Theorem 2.1 in Section 3.2.

3.5 Stability for log-concave sources: proof of the first part of Theorem 2.2

To prove (2.2), we truncate the primal Kantorovich potentials in large balls, apply Theorem
3.7 and show that we do not lose too much by this truncation argument.

Let ϕµ, ϕν be the Kantorovich potentials from ρ to µ and ρ to ν respectively. For r > 0 we
set Br = B(0, r) and we denote by ϕµ,r, ϕν,r the restriction of ϕµ and ϕν to Br, extended by +∞
outside Br. Then we set

ρr =
ρ|Br
ρ(Br)

, µr = (∇ϕµ,r)#ρr, νr = (∇ϕν,r)#ρr.

We also consider the dual Kantorovich potentials ψµ,r = ϕ∗µ,r, ψν,r = ϕ∗ν,r and recall that
ψ∗
µ,r = ϕµ,r and ψ∗

ν,r = ϕν,r.
We apply Theorem 3.7 to ρr, taking for σ the unique probability density over Br whose

density is proportional to e−U (recall that ρ = e−U−F ). This gives

Varρr(ϕµ,r − ϕν,r) ≤ Cρ,Yr⟨ψν,r − ψµ,r | µr − νr⟩.

Since ψµ,r−ψν,r is r-Lipschitz (by a similar computation to (3.21)), we obtain by the Kantorovich-
Rubinstein duality formula (3.10) that

Varρr(ϕµ,r − ϕν,r) ≤ Cρ,Yr
2W1(µr, νr).

Using various truncation estimates which we leave to the reader, we get

Varρ(ϕµ − ϕν) ≤ Cρ,Y
(
r2W1(µ, ν) + r2m0(r) +m1(r)

2 +m2(r)
)

where

mℓ(r) =

∫
Rd\Br

|x|ℓdρ(x) ≤ Cρ,ℓr
d+ℓ−2e−

1
2
κr2

(the last estimate uses D2U ≥ κId, κ > 0). We may assume W1(µ, ν) < 1, and optimize over r,
by taking

r = (4κ−1| logW1(µ, ν)|)1/2.

This yields (2.2).

Remark 3.10. Going back to the intuitions given at the beginning of Section 3.3, we see that
compared to the Cauchy-Schwarz inequality in (3.14), we sort of lose one factor |x − y| on
the right when using Kantorovich-Rubinstein. However, we prove in Section 5.2 that the 1/2
exponent in (2.2) is sharp (but probably not the log loss).

26



3.6 Bibliographical notes

§3.1: Monge’s original paper is [60]. The dual formulation of the Monge problem was in-
troduced by Kantorovich, the founding father of linear programming, in [47]. His goal was to
solve concrete problems for the Russian industry. The foreword to the English translation of
his paper [47], written by an American scientist in the journal Management Science in 1958, is
an historical gem: “[...] It is to be noted, however, that the problem of determining an effective
method of actually acquiring the solution of a specific problem is not solved in this paper. In
the category of development of such methods we seem to be currently, ahead of the Russians.”

For a smooth introduction to duality in optimal transport, we refer to [71, Chapter 1].
Brenier’s theorem was proved in [15]. The strong duality theorem (3.6) can be formulated for
general costs, see [72, Theorem 5.10]. The Kantorovich-Rubinstein formula is a particular case
of this strong duality, when the cost is the distance function: c(x, y) = |x− y|.

§3.2: The first result similar to Theorem 2.1 is due to Gigli [36], and in the form stated
above it is due to Mérigot-Delalande-Chazal [59].

§3.3: For a rigorous proof of Lemma 3.6, see [31, Proposition 2.2].
§3.4: Berman [8] was the first to prove an inequality of the form (3.19), using complex

geometry. In his result corresponding to the variance inequality (3.19), the right-hand side
is raised to the power 1/2d−1, which makes it non-optimal. Inspired by his paper, Mérigot-
Delalande-Chazal proved in [59] the inequality ∥Tµ − Tν∥L2(ρ) ≤ CWp(µ, ν)2/15, using a very
instructive proof technique. Their arguments are a sort of “discrete version” of the arguments
later developed in [31]. They first rely on an approximation argument allowing them to assume
that µ, ν are discrete, and then they leverage specific features of semi-discrete optimal transport,
notably the geometry of Laguerre cells. In their paper, the Brunn-Minkowski inequality plays
the same role as the Brascamp-Lieb in [31] and in the proof of Theorem 3.7 presented above. In
the paper [31], Delalande and Mérigot prove the same inequality as in Theorem 3.7, except with
a worse constant than ours (notably because they do not compare ρ to a log-concave measure
σ). Inspired by the paper [61] by Mischler and Trevisan, which proves a variance inequality with
a good constant for log-concave source measures, Mérigot and myself found in [54] the simple
proof of Theorem 3.7 presented in Section 3.4, which shortcuts several arguments of [31]. The
approximation arguments which are not presented in the proof of Theorem 3.7 above are written
in detail in [54].

Another approach to variance inequalities is possible, using entropic optimal transport and
the Prékopa-Leindler inequality. It has been introduced by Delalande in [30] (see also his well-
written PhD thesis [29]), and has been leveraged later, together with other tools, to prove
quantitative stability of optimal transport for p-costs [61] and in Riemannian manifolds [49].
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4 Gluing methods

In this chapter, we explain how to generalize the upper bound on the variance derived in
Theorem 3.7 to more general measures ρ. The techniques presented here are very robust, and
can handle non-degenerate densities on bounded domains (Theorem 2.3) as well as all families
of source measures ρ listed in Section 2.3. We call “gluing methods” the tools developed in this
chapter, since we use them to prove an upper bound on the variance of a function f with respect
to a measure ρ defined on a union of convex sets by combining upper bounds on the variance of
f with respect to the restriction of ρ to each of these convex sets. These gluing methods should
not be confused with the procedure of gluing measures in optimal transport, which is something
totally different.

4.1 Gluing arguments in a nutshell

This section remains at a panoramic level, while complete arguments are provided in the next
section. We start with a toy example. Let Q1, Q2 be two cubes in Rd such that Q1 ∩ Q2 ̸= ∅,
and let ρ be a probability density over Q1 ∪ Q2, bounded above and below on Q1 ∪ Q2. For
i = 1, 2, let

ρQi =
ρ|Qi
ρ(Qi)

(4.1)

be the restriction of ρ to Qi, normalized to be a probability measure. We show that

Varρ(f) ≤ C(VarρQ1
(f) + VarρQ2

(f)) (4.2)

for some explicit constant C, roughly proportional to the quotient max(ρ(Q1), ρ(Q2))/ρ(Q1∩Q2).
This is a quantitative version of the fact that if f is constant on Q1 and constant on Q2, then it
is constant on Q1 ∪Q2, since Q1 ∩Q2 ̸= ∅. The less the cubes overlap, the larger C has to be;
and if Q1 ∩Q2 = ∅, then (4.2) becomes false.

We will prove a general version of (4.2) for a finite or infinite collection F of (well-chosen)
cubes Qi whose union is equal to the whole domain X :

Varρ(f) ≤ C
∑
Qi∈F

ρ(Qi)VarρQi (f) (4.3)

for some C < +∞ (and any f). For this inequality to be true, one has to make some assumptions
on ρ; and to carefully design the family F .

Once (4.3) is shown, it takes only a few lines to complete the proof of the stability of
Kantorovich potentials, following similar arguments to what we did in Section 3.5. What we
need to assume is:

(1) the variation of ρ on each cube is uniformly bounded over F :

sup
Qi∈F

supQi ρ

infQi ρ
≤ E < +∞

(2) there exists A > 0 such that any Qi ∈ F intersects at most A other cubes Qj ∈ F (including
itself).

So let us show how to deduce stability of Kantorovich potentials from (4.3). We first prove that
for any ψ0, ψ1 ∈ C0(Y), there holds

Varρ(ψ
∗
1 − ψ∗

0) ≤ C ′⟨ψ0 − ψ1 | (∇ψ∗
1)#ρ− (∇ψ∗

0)#ρ⟩. (4.4)
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For this we apply Theorem 3.7 in each cube Qi, to ρQi defined by (4.1) (with σ the normalized
Lebesgue measure on Qi). We get

VarρQi (ψ
∗
1 − ψ∗

0) ≤ eERYdiam(X )⟨ψ0 − ψ1 | (∇ψ∗
1)#ρQi − (∇ψ∗

0)#ρQi⟩

Combining with (4.3) we get

Varρ(f) ≤ CeERYdiam(X )
∑
Qi∈F

⟨ψ0 − ψ1 | (∇ψ∗
1)#ρ|Qi − (∇ψ∗

0)#ρ|Qi⟩. (4.5)

We define a partition F ′ of X into convex sets as follows: x, x′ ∈ X belong to the same element
P ∈ F ′ if and only if they belong exactly to the same elements in F . Each P ∈ F ′ is an
intersection of at most A cubes according to (2), thus it is convex. Moreover,

⟨ψ0 − ψ1 | (∇ψ∗
1)#ρ|P − (∇ψ∗

0)#ρ|P ⟩ (4.6)

is non-negative for any P ∈ F ′ due to Theorem 3.7 (or more directly due to the convexity of KρP

- we do not need strong convexity here). The sum in (4.5) may be written as a sum over P ∈ F ′ of
the non-negative terms (4.6), each of them weighted by a coefficient between 1 and A. Recalling
that the elements of F ′ form a partition of X , we obtain (4.4) with C ′ = ACeERYdiam(X ).

Finally, we apply (4.4) to ψ0 = ϕ∗µ and ψ1 = ϕ∗ν , where the Legendre transform is computed
as a supremum over X , and ϕµ, ϕν are the Kantorovich potentials from ρ to µ and ρ to ν. We
get

Varρ(ψ
∗
1 − ψ∗

0) ≤ C ′⟨ϕµ − ϕν | ν − µ⟩ ≤ C ′diam(Y)W1(µ, ν)

where the last inequality comes from the Kantorovich-Rubinstein duality formula and the fact
that ϕµ and ϕν are diam(Y)-Lipschitz due to Proposition 3.1. This concludes the proof.

All in all, to establish the stability of Kantorovich potentials (2.4) (or stability of Kantorovich
potentials in other situations, like those described in Section 2.3) we only need to show that
(4.3) holds for some well-chosen family F . To prove (4.3) we designed two strategies, which are
complementary in terms of the families of probability measures ρ that they allow to handle:

� Strategy 1: an approach through spectral graph theory, which was chronologically the
first we found. In this case, the constant C in (4.3) is related to the spectral gap of the
Laplacian on a natural graph constructed from the family F . This strategy is sufficient
to prove most of our results, but sometimes in slightly weaker forms - for example with
this approach we are able to prove Theorem 2.3 only for bounded, connected Lipschitz
domains. In some specific cases, this strategy works whereas the second one fails, for
instance for measures ρ which decay polynomially at infinity (see (2.8)).

� Strategy 2: an approach inspired by the proofs of Sobolev-Poincaré inequalities in the
1980’s, where the elements of F are cubes, and we consider chains of cubes, called Boman
chains, in which the variances are controlled. When applicable, this approach yields the
results in their sharpest forms, and is exactly tailored to handle delicate cases like John
domains in Theorem 2.3, and degenerate densities in bounded domains as in Section 2.3.

We describe these two strategies in more details in the next two sections.

4.2 Strategy 1: Gluing variances via spectral graph theory

Assume that ρ is a probability measure on a metric space X , and F = {Qi}i∈V is a countable
family of subsets of X such that ⋃

i∈V
Qi = supp(ρ).
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As in Section 4.1, we assume that there exists A > 0 such that any Qi ∈ F intersects at most A
other subsets Qj ∈ F (including itself).

We construct a graph as follows: its vertices are given by the set V , and there is an edge
between i, j ∈ V if and only if ρ(Qi ∩Qj) > 0 (in which case we write i ∼ j). Each vertex i ∈ V
is endowed with a weight δi = ρ(Qi) and each edge (i, j) with a weigth wij = ρ(Qi ∩ Qj). We
consider

ℓ2(V, δ) =
{
u : V → R |

∑
i∈V

δiu(i)2 < +∞
}

and endow it with the scalar product ⟨u, v⟩δ =
∑

i∈V δiu(i)v(i) and the corresponding norm.
We also consider the quadratic form Q with domain D given by

Q(u) =
1

2

∑
i∼j

wij(u(i) − u(j))2, D = {u ∈ ℓ2(V, δ) | Q(u) < +∞}.

Finally we define the Laplacian

Lu(i) =
1

δi

∑
j∼i

wij(u(i) − u(j))

which is positive and selfadjoint with respect to the scalar product ⟨·, ·⟩δ. Due to (2) in Section
4.1, we know that for any i ∈ V , ∑

i∼j
wij ≤ Aδi, (4.7)

hence L is a bounded operator. We also know that
∑

i∈V δi < +∞ since ρ(X ) = 1; hence the
constant function 1 belongs to ℓ2(V, δ). Actually, it lies in the kernel of L, thus we define the
spectral gap of L as

λ2(L) = inf{Q(u) | ∥u∥δ = 1, ⟨u,1⟩ = 0}.

Depending on the graph, λ2(L) may be positive or equal to 0. The next lemma is crucial and
does not assume anything on ρ. It is useless if λ2(L) = 0 (e.g., if the graph is not connected).

Lemma 4.1. For any i ∈ V , let ρQi = 1
ρ(Qi)

ρ|Qi. Let f : Rd → R be a continuous function.
Then

Varρ(f) ≤ A

(
1 +

2A

λ2(L)

)∑
i∈V

ρ(Qi)VarρQi (f).

We describe the proof of Lemma 4.1 in broad lines. Let mi =
∫
Qi
fdρQi be the mean of f

over Qi. Developing the variance Varρ(f) thanks to the identity f(x)−f(y) = f(x)−mi+mi−
mj +mj − f(y), it is not difficult to prove that

Varρ(f) ≤ S
∑
i∈V

δiVarρQi (f) +
1

2

∑
i,j∈V

(mi −mj)
2δiδj

where S =
∑

i∈V δi ≤ A. To upper bound the second term of the right-hand side we observe
that ⟨m−m̃,1⟩δ = 0 where m̃ = S−1

∑
i∈V δimi is “the mean of the means”, hence by definition

of the spectral gap,

1

2

∑
i,j∈V

(mi −mj)
2δiδj = S∥m− m̃∥2δ ≤

S

λ2(L)
⟨m− m̃, L(m− m̃)⟩δ

=
S

2λ2(L)

∑
i,j∈V

wij(mi −mj)
2. (4.8)

30



Then, let mi∩j = 1
wij

∫
Qi∩Qj fdρ be the mean of f over Qi ∩Qj . It is not difficult to prove that

(mi∩j −mi)
2 ≤ ρ(Qi)

wij
Varρi(f)

and similarly for (mi∩j −mj)
2. This allows to upper bound the right-hand side of (4.8) by a

constant times
∑

i∈V ρ(Qi)Varρi(f), which concludes the proof of Lemma 4.1.
In applications of the above lemma to concrete cases (with explicit ρ and F), one needs to

prove λ2(L) > 0. For this, there is one extremely useful tool: the Cheeger inequality, which
gives a lower bounds on the spectral gap of general Laplace operators. In the present context,
due to the assumption (4.7), it takes the form

λ2(L) ≥ h2

2A
(4.9)

where h is a constant defined as follows:

h = inf
U⊂V

0<vol(U)≤vol(V )/2

|∂U |
vol(U)

with vol(U) =
∑

i∈U δi and |∂U | =
∑

i∈U,j /∈U wij .
With the Cheeger inequality at hand, we need to check in concrete applications whether

h > 0 or not. And this depends strongly on ρ and on the construction of the family F (and
thus on the corresponding graph). Also, is tempting to see the graph as a discretization of the
domain X , and to prove the Cheeger inequality on the graph as a consequence of a Cheeger
inequality on the continuous domain X , but it is not clear to me how to build a proof out of
this intuition.

Let me mention one concrete example where we have been able to construct F and to check
that h > 0. Consider ρ(x) = (1 + |x|)−β for some β > d+ 2; due to the radial symmetry of these
distributions, each set Q is taken as the intersection of an annulus and an angular sector, see
Figure 3. The associated graph is very simple, it is essentially the union of 2d line graphs (see
Figure 3), and the ratios |∂U |/vol(U) can be lower bounded “by hand”.

Similarly, if X is a bounded, connected Lipschitz domain, then taking for F the Whitney
decomposition of the domain (with enlarged cubes, see below), it is possible to analyze the
graph, which has some kind of hyperbolic structure.

4.3 Strategy 2: Gluing variances via Boman chains

In this section we explain the second gluing technique. This technique applies only to
measures with bounded support in Rd (sometimes obtained from measures with full support,
after a truncation argument). Roughly, it consists in fixing a central cube Q0 ∈ F and estimating
the variance in any cube Q ∈ F thanks to the variance in Q0, via the construction of a chain of
overlapping cubes going from Q0 to Q.

Definition 4.2 (Boman chain condition). Let A,B,C > 1 with B ∈ N. A probability measure
ρ on an open set X ⊂ Rd satisfies the Boman chain condition with parameters A,B,C ∈ R if
there exists a covering F of X by open cubes Q ∈ F such that

� For any x ∈ Rd, ∑
Q∈F

χQ(x) ≤ AχX (x). (4.10)
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x1

x2

Figure 3: Here, ρ is radially symmetric, for instance ρ(x) = (1 + |x|)−β. On the left, a few
examples of sets Q (in red, in blue with a grid and with crosshatches). The central set Q in
blue is different from the other ones, it covers the full unit disk, to make the graph on the right
is connected. On the right, the associated graph in a neighborhood of its central point.

� For some fixed cube Q0 in F , called the central cube, and for every Q ∈ F , there exists a
sequence Q0, Q1, . . . , QN = Q of distinct cubes from F such that for any j ∈ {0, . . . , N},

Q ⊂ BQj (4.11)

where BQj is the cube with same center as Qj and sidelength multiplied by B.

� Consecutive cubes of the above chain overlap quantitatively: for any j ∈ {0, . . . , N − 1},

ρ(Qj ∩Qj+1) ≥ C−1 max(ρ(Qj), ρ(Qj+1)). (4.12)

The condition (4.10) means that any point cannot belong to more than A cubes Q ∈ F .

Remark 4.3. Consecutive cubes of the above chain are comparable in size: for any j ∈
{0, . . . , N − 1},

C−1 ≤ ρ(Qj)

ρ(Qj+1)
≤ C. (4.13)

Indeed,
ρ(Qj)
ρ(Qj+1)

≥ ρ(Qj∩Qj+1)
ρ(Qj+1)

≥ C−1 as a consequence of (4.12), and the reverse bound in (4.13)

follows by the same argument.

Proposition 4.4. If ρ is a probability measure on a John domain X , with a density bounded
above and below on X , then ρ satisfies the Boman chain condition (for some A,B,C).

The proof of this result is sketched in Appendix C. It relies on the Whitney decomposition
of X , a classical tool which allows to partition any open set into cubes whose sidelength is
comparable to their distance to the boundary. The cubes of the Boman chain condition are
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obtained by enlarging each cube by a fixed given factor (e.g., each sidelength is multiplied by
6/5) to create some overlap between the cubes. See Figures 4 and 5 at the end of this chapter
for illustrations of the Whitney decomposition and of the cubes of the Boman chain condition.
Some kind of converse of Proposition 4.4 holds: if the characteristic function ρ of some bounded
open set X satisfies the Boman chain condition, then X is a John domain.

Theorem 2.3 follows directly from the arguments explained below (4.3), together with Propo-
sition 4.4 and the following result:

Proposition 4.5. If ρ satisfies the Boman chain condition, there exists C > 0 such that for
any f ,

Varρ(f) ≤ C
∑
Qi∈F

ρ(Qi)VarρQi (f). (4.14)

Proof. We set fQ = 1
ρ(Q)

∫
Q fdρ and aQ = (VarρQ(f))1/2. Then

Varρ(f) ≤
∫
X
|f(x) − fQ0 |2dρ(x) ≤

∑
Q∈F

∫
Q
|f(x) − fQ0 |2dρ(x)

≤ 2
∑
Q∈F

∫
Q
|f(x) − fQ|2dρ(x) +

∫
Q
|fQ − fQ0 |2dρ(x)

= 2
∑
Q∈F

ρ(Q)VarρQ(f) + 2
∑
Q∈F

ρ(Q)|fQ − fQ0 |2.

(4.15)

The first sum is bounded above by the right-hand side in (4.14), therefore we only need to upper
bound the second sum. The triangle inequality yields

|fQ − fQ0 | ≤
N−1∑
j=0

|fQj − fQj+1 | (4.16)

We estimate each term in the sum separately:

|fQj − fQj+1 |2 =
1

ρ(Qj ∩Qj+1)

∫
Qj∩Qj+1

|fQj − fQj+1 |2

≤ 2

ρ(Qj ∩Qj+1)

(∫
Qj∩Qj+1

|fQj − f(x)|2dρ(x) +

∫
Qj∩Qj+1

|fQj+1 − f(x)|2dρ(x)

)

≤ 2

ρ(Qj ∩Qj+1)

(∫
Qj

|fQj − f(x)|2dρ(x) +

∫
Qj+1

|fQj+1 − f(x)|2dρ(x)

)
≤ 2C(a2Qj + a2Qj+1

).

Taking the square root and plugging into (4.16), we obtain

|fQ − fQ0 | ≤ (2C)1/2
N−1∑
j=0

aQj + aQj+1 ≤ (8C)1/2
∑
Q⊂BQ̃

a
Q̃

where the sum
∑

Q⊂BQ̃ means that we sum over all cubes Q̃ ∈ F such that Q ⊂ BQ̃. By the
Boman chain condition, Qj and Qj+1 have this property, and notice that we use here the fact
that the elements of the Boman chain in Definition 4.2 are distinct.
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Therefore,

ρ(Q)|fQ − fQ0 |2 ≤ 8Cρ(Q)
( ∑
Q⊂BQ̃

a
Q̃

)2
= 8C

∫
Q

( ∑
Q⊂BQ̃

a
Q̃

)2
dρ(x)

= 8C

∫
Q

(∑
Q̃∈F

a
Q̃
χ
BQ̃

(x)
)2

dρ(x)

since for any x ∈ Q, the sum in the first line is equal to the sum in the second line.
Then we use an important lemma which says that∥∥∥∑

Q̃∈F

a
Q̃
χ
BQ̃

∥∥∥
L2(ρ)

≲
∥∥∥∑
Q̃∈F

a
Q̃
χ
Q̃

∥∥∥
L2(ρ)

. (4.17)

This lemma relies on some kind of Hardy-Littlewood maximal inequality (which merely requires
a doubling property for ρ, and the hidden constant in (4.17) only depends on the doubling
constant), see [54, Appendix A].

All in all,∑
Q∈F

ρ(Q)|fQ − fQ0 |2 ≲
∫
X

(∑
Q̃∈F

a
Q̃
χ
BQ̃

(x)
)2

dρ(x) ≲
∫
X

(∑
Q̃∈F

a
Q̃
χ
Q̃

(x)
)2

dρ(x)

≲
∫
X

∑
Q̃∈F

a2
Q̃
χ
Q̃

(x)dρ(x) =

∫
X

∑
Q̃∈F

ρ(Q̃)a2
Q̃

where in the third inequality we used the Cauchy-Schwarz inequality and the first condition in
Definition 4.2. Plugging into (4.15) we get the result.

Open question 4.6. Is there an analog of Proposition 4.5 for the entropy

Entρ(f) =

∫
X
f log fdρ−

(∫
X
fdρ

)
log
(∫

X
fdρ

)
instead of the variance?

4.4 Comments on John domains and relation to Sobolev-Poincaré inequali-
ties

Readers familiar with the literature on Sobolev-Poincaré inequalities may have noticed some
resemblance between our proof of Theorem 2.3 and the proof of Sobolev-Poincaré inequalities
in John domains.

Maybe the easiest way to see a link between Poincaré-type inequalities and stability of
Kantorovich potentials is to write that if the stability inequality for Kantorovich potentials
(1.13) (with p = 2) holds, then

∥ϕµ − ϕν∥L2(ρ) ≤ CW2(µ, ν)α ≤ C∥∇ϕµ −∇ϕν∥αL2(ρ)

according to (1.12). Hence some kind of Poincaré inequality with an exponent holds, but only
for differences of convex functions (with uniformly bounded gradient). We are not aware of any
literature on this kind of inequalities.

In another direction, it is possible to deduce from Proposition 4.5 the Poincaré inequality

∃CP > 0, ∀f ∈ C1(X ), Varρ(f) ≤ CP

∫
X
|∇f |2dρ (4.18)
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(but of course this requires ρ to satisfy the Boman chain condition, otherwise Proposition 4.5
does not apply). To prove (4.18), we first observe that there exists C ′

P > 0 such that for any
Q ∈ F there holds

VarρQ(f) ≤ C ′
P

∫
Q
|∇f |2dρQ. (4.19)

Indeed, since supQ
MρQ

mρQ
< +∞, it is sufficient to prove that (4.19) holds when ρQ is replaced by

the normalized Lebesgue measure on Q, with a Q-independent constant C ′
P . This latter fact is

true because all Q are cubes, with uniformly bounded diameter. Summing (4.19) over Q ∈ F
with weights ρ(Q), and using (4.10) we get (4.18).

Let fX = |X |−1
∫
X fdx. When X ⊂ Rd is a John domain, the Sobolev-Poincaré inequality(∫

X
|f − fX |pd/(d−p)dx

)(d−p)/pd
≤ C

(∫
X
|∇f |pdx

)1/p

(4.20)

holds for 1 ≤ p < d. This has been shown around 1985 by Bojarski, following ideas that he
attributes to Boman, and our gluing techniques are adapted from this literature. It is also known
that if X ⊂ Rd is a domain of finite volume that satisfies a separation property, and 1 ≤ p < d,
then

X satisfies (4.20) ⇔ X is a John domain. (4.21)

The separation property, which we do not discuss here, is automatically valid for simply con-
nected planar domains. And without an additional assumption on X such as the separation
property, the equivalence (4.21) is not true. Let us illustrate this on an example: take X = D\E
where D is the unit disk and E =

⋃∞
k=1Ek where Ek consists of k! equally spaced points on

the circle {|x| = 1 − 2−k}. Then X is not a John domain, but since E is of dimension 0, the
Sobolev-Poincaré inequality (4.20) holds in X (it can be deduced by integration by parts from
the Sobolev-Poincaré inequality in D). This example may be transposed to the optimal transport
setting with source measure ρ equal to the uniform density on X . Then optimal transport maps
and potentials coincide with those obtained when the source measure is equal to the uniform
probability density on D. And for the latter, stability follows from Theorem 2.3. Therefore we
have exhibited a non-John domain for which optimal transport stability inequalities hold. When
trying to prove a converse statement to Theorem 2.3, one should keep this example in mind.

Several families of examples of bounded connected domains which are not John domains
have been considered in the literature. For instance, domains with an outward cusp, and the
so-called room-and-passage domains. In Section 5.3 we show that in these examples, stability
of Kantorovich potentials fails, even in a very weak sense. This shows the relevance of the John
domain condition in Theorem 2.3, at least regarding stability of Kantorovich potentials.

4.5 Bibliographical notes

§4.1: A gluing argument for finite families F has been used in the work [20] in the slightly
different context of stability of Wasserstein barycenters. This insight was the starting point of
my collaboration with Quentin Mérigot [54], in which we worked out the general gluing methods
presented here. These methods turned out to be useful to address stability of optimal transport
in Riemannian manifolds too [49].

§4.2: Spectral graph theory is a classical topic, see for instance the books [25], [67] and the
beautiful expository notes by Luca Trevisan [70]. The Cheeger inequality in finite graphs is
of course covered in these references. For infinite graphs, the book chapter [48, Chapter 13.1]
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is particularly clear. I did not find any reference for the elementary Lemma 4.1, but it seems
difficult to believe that no one ever used such arguments.

§4.3: Boman introduced in [11] the chains now known as Boman chains. His goal was to
prove Lp estimates for solutions to some over-determined elliptic systems of PDEs in regions with
irregular boundary. Bojarski discovered in [10] how to use these chains to prove Sobolev-Poincaré
inequalities in John domains. We borrowed several computations from this very inspiring work.
The proof of Proposition 4.4 is due to him and relies on the Whitney decomposition, for which
we refer for instance to [37, Appendix J.1]. The converse fact that any bounded open subset of
Rd supporting Boman chains is a John domain was proved in [17].

§4.4: A converse to Bojarski’s result was proved in the paper “Sobolev-Poincaré implies
John” [16]. We borrowed our discussion about the separation property from this paper. Since
the 1980’s, many authors have been using variants of the Boman chain condition. It turns
out that for many results, a good framework is that of metric spaces endowed with a doubling
measure, see the memoir [39] which develops the theory of Sobolev spaces and proves Poincaré-
type inequalities in this setting.
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Figure 4: The Whitney decomposition of an H-shape in 2d. Each cube has a sidelength compa-
rable to its distance to the boundary of the H. Courtesy of Quentin Mérigot.
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Figure 5: A Boman family for the uniform probability density on the H-shape, obtained by
enlarging the sidelength of each cube of the Whitney decomposition by the same factor. This
induces some overlap between the cubes. Courtesy of Quentin Mérigot.
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5 Examples and counterexamples

In the previous chapters, we did not discuss the sharpness of our results. The only example we
provided, in Section 2.4, showed that for optimal transport maps, without further assumptions
on the target measures, the inequality

∥Tµ − Tν∥L2(ρ) ≤ CW1(µ, ν)α (5.1)

fails for α > 1/2: there exists no C > 0 such that for any µ, ν supported in Y = D2, (5.1) holds.
In this section, we discuss the sharpness of our results regarding stability of Kantorovich

potentials, by providing explicit computations on carefully chosen examples. This allows us to
show some kind of sharpness in two respects:

� we show that the stability exponents α = 1/2 for Kantorovich potentials in our main
results is sharp in the Gaussian case (but the additional log-factor is probably not sharp),
and becomes sharp in bounded domains as the dimension goes to +∞.

� we show that in typical examples of domains X which are not John domains, no bound
of the form (1.11) can hold when ρ has a density bounded above and below on X . This
shows that our “John domain” assumption in Theorem 2.3 is truly meaningful.

The main idea which guides the design of our examples is that to test stability, it seems
much easier to choose convex potentials ϕ1, ϕ2 and to compute the Wasserstein distance between
(∇ϕ1)#ρ and (∇ϕ2)#ρ, than to choose two measures µ, ν and to try to compute the associated
potentials ϕµ, ϕν . Of course, the two points of view are in the end equivalent.

For the stability of optimal transport maps, unfortunately we have no good example to test
the sharpness of stability exponents beside that of Section 2.4. In particular, we do not know
the optimal exponents in (2.3) and (2.5).

5.1 Asymptotic sharpness of exponent in the ball

When ρ is the uniform density on the unit ball Bd(0, 1) of Rd, Theorem 2.3 provides us with
an inequality of the form

∥ϕµ − ϕν∥L2(ρ) ≤ CdW1(µ, ν)α (5.2)

with α = 1/2. We show that the exponent α = 1/2 is asymptotically sharp as d→ +∞.
Denote by ωd the Euclidean volume of the unit ball Bd(0, 1) of Rd and by σd−1 the Euclidean

area of the unit sphere Sd−1 ⊂ Rd. Let

ρd(x) =
1

ωd
1Bd(0,1)

be the uniform probability density on the unit ball of Rd. Consider for any ε ∈ (0, 1) the radial
and convex functions

ϕ(1)ε (x) = |x|, ϕ(2)ε (x) = max(|x|, ε).

Then ∫
Bd(0,1)

(
ϕ(2)ε − ϕ(1)ε

)
dρ =

σd−1

ωd

∫ ε

0
rd−1(ε− r)dr =

εd+1

d+ 1

and ∫
Bd(0,1)

(
ϕ(2)ε − ϕ(1)ε

)2
dρ =

σd−1

ωd

∫ ε

0
rd−1(ε− r)2dr =

2εd+2

(d+ 1)(d+ 2)
.
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Hence,
Var(ϕ(2)ε − ϕ(1)ε )1/2 ∼ Cdε

(d+2)/2 (5.3)

as ε → 0, with Cd = (2/(d + 1)(d + 2))1/2. Finally, denoting by δSd−1 the uniform probability
measure on Sd−1,

(∇ϕ(1)ε )#ρd = δSd−1 , (∇ϕ(2)ε )#ρd = (1 − εd)δSd−1 + εdδ0

hence
W1((∇ϕ(1)ε )#ρd, (∇ϕ(2)ε )#ρd) = εd.

We conclude that for any d,

Var(ϕ(2)ε − ϕ(1)ε )1/2 ∼
ε→0

CdW1((∇ϕ(1)ε )#ρd, (∇ϕ(2)ε )#ρd)
(d+2)/2d

i.e., it is necessary for α to be ≤ (d + 2)/2d in order for (5.2) to be true. This tends to 1/2 as
d→ +∞.

5.2 (Almost) sharpness of exponent for Gaussians

It seems natural to test the sharpness of our exponents in the Gaussian case too. Let

ρ(x) = (2π)−
d
2 e−

|x|2
2

be the standard Gaussian. In this case, recall that the stability inequality for Kantorovich
potentials is given by (2.2). Consider for any r ∈ (0,+∞) the radial and convex function

ϕr(x) = (|x| − r)+ − cr (5.4)

with cr chosen in a way that
∫
Rd ϕr(x)dρ(x) = 0. Brenier’s theorem guarantees that ∇ϕr is the

optimal transport map from ρ to (∇ϕr)#ρ. For r and r′ close enough (and r large enough), we
compare ∥ϕr − ϕr′∥L2(ρ) to W1(µ, ν) where µ = (∇ϕr)#ρ and ν = (∇ϕr′)#ρ.

For r large, we set r′ = r + 1
r and compute

(2π)d/2(cr − cr′) =

∫ +∞

r
(s− r)sd−1e−s

2/2ds−
∫ +∞

r′
(s− r′)sd−1e−s

2/2ds

= (r′ − r)

∫ +∞

r′
sd−1e−s

2/2ds+

∫ r′

r
(s− r)sd−1e−s

2/2ds

= O(rd−3e−r
2/2)

and

∥(| · | − r)+ − (| · | − r′)+∥2L2(ρ) = (r′ − r)2
∫ +∞

r′
sd−1e−s

2/2ds+

∫ r′

r
(s− r)2sd−1e−s

2/2ds

= Θ(rd−4e−r
2/2)

where we write f(r) = Θ(g(r)) if the quotient f(r)/g(r) remains bounded above and below by
positive constants as r → +∞. We deduce that

∥ϕr′ − ϕr∥2L2(ρ) = ∥(| · | − r)+ − (| · | − r′)+∥2L2(ρ) − |cr − cr′ |2 = Θ(rd−4e−r
2/2). (5.5)
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We then turn to the computation of W1((∇ϕr′)#ρ, (∇ϕr)#ρ). We observe that

(∇ϕr)#ρ = ρ(B(0, r))δ0 + (1 − ρ(B(0, r))σSd−1

where σSd−1 is the uniform probability measure on Sd−1. We have an analogous expression for
(∇ϕr′)#ρ, and we deduce

W1((∇ϕr′)#ρ, (∇ϕr)#ρ) = ρ(B(0, r′)) − ρ(B(0, r)) = Θ(rd−2e−r
2/2). (5.6)

It follows from (5.5) and (5.6) that

∥ϕr′ − ϕr∥L2(ρ) = Θ(W
1/2
1 | logW1|−1)

where W1 is a short notation for W1((∇ϕr′)#ρ, (∇ϕr)#ρ). This shows that the exponent 1/2 in
(2.2) is sharp (but the log factor probably not).

We also observe that the above example does not prove the sharpness of the exponent of
stability of optimal transport maps (2.3) (and indeed, we conjecture that the correct exponent
is 1/2 and not 1/6).

Remark 5.1. The above proof can be adapted to other contexts. For instance, when ρ(x) =
cβ,d(1 + |x|)−β (β > d + 2), it is possible to derive sharp stability exponents for Kantorovich
potentials using the same family of radial Kantorovich potentials (5.4). Also, when ρ blows up
at the boundary of a ball or is the spherical uniform distribution (see “Degenerate densities ρ
in bounded domains” in Section 2.3), this same family may be used to find upper bounds on the
stability exponents for Kantorovich potentials.

5.3 Strong instability for room-and-passage domains

We turn to another explicit computation, this time aimed at showing the relevance of the
John domain condition in Theorem 2.3. For this, we consider domains that are considered in
the literature as typical instances of non-John domains, and show that if ρ is bounded above
and below on such domain, then stability of Kantorovich potentials cannot hold, even in a very
weak sense.

We could seek for even stronger, and hope that the John domain condition is necessary and
sufficient for Theorem 2.3 to hold. However, this cannot be true, as explained in Section 4.4. In
analogy, John domains support Sobolev-Poincaré inequalities, but there exist non-John domains
which also support Sobolev-Poincaré inequalities. To remedy this issue, it has been shown that
a domain satisfying a certain separation property supports Sobolev-Poincaré inequalities if and
only if it is a John domain. The proof of this fact is delicate, and it would be interesting to look
for an analogous converse result to Theorem 2.3.

In this section we prove:

Theorem 5.2. There exists a non-empty, bounded, path-connected domain X ⊂ Rd such that
for any probability density ρ bounded above and below on X the inequality

∀µ, ν ∈ P(B(0, 2)), ∥ϕµ − ϕν∥L2(ρ) ≤ CWp(µ, ν)α (5.7)

fails for any C,α > 0 and p ∈ [1,+∞) (where ϕµ, ϕν denote the Kantorovich potentials between
ρ and µ and ρ and ν respectively).
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Figure 6: Room-and-passage domain

The counterexample X is a so-called “room-and-passage” domain, a typical example of a
non-John domain. It is endowed with a probability density which is bounded above and below
on the support, for instance the uniform density. We consider the case d = 2 for simplicity, but
the computations may be modified to cover any dimension d.

As depicted on Figure 6, a room-and-passage domain in R2 is a connected and bounded set
made of an infinite union of rectangles with variable lengths and widths. For simplicity, we
assume that the axes of these rectangles are parallel to the coordinate axes. We call length of
a rectangle the length of its side parallel to the x1 axis, and width that of its side parallel to
the x2 axis. The rectangles are of two types, which alternate along the x1-axis: the rooms Rn,
n ∈ N; and the passages Pn, n ∈ N. The key assumption we make is that the passages have a
width hn which decreases very fast as n tends to +∞, much faster than the other typical lengths
of Rn and Pn. To start, we keep hn free, as well as the other parameters of the rectangles, but
we shall fix them later.

Proof of Theorem 5.2. We write Pn = [tn, t
′
n] × [−hn/2, hn/2], and set

ϕn(x) = |x1 − tn|, ϕ′n(x) = |x1 − t′n| (5.8)

for x = (x1, x2) ∈ R2. Since ϕn (resp. ϕ′n) is convex, it differs from the Kantorovich potential
from ρ to (∇ϕn)#ρ (resp. (∇ϕ′n)#ρ) only by a constant. Now, the idea is that ∇ϕn and ∇ϕ′n
coincide on X \ Pn, and this set has ρ-volume almost 1, which makes (∇ϕn)#ρ and (∇ϕ′n)#ρ
extremely close in Wasserstein distance: their Wasserstein distance is proportional to ρ(Pn)
which is of order hn(t′n − tn). The quantity Var(ϕn − ϕ′n) is much larger (but very small too!)
since |ϕn − ϕ′n| is equal to |t′n − tn| in the largest part of X .

More precisely, both µn = (∇ϕn)#ρ and µ′n = (∇ϕ′n)#ρ are supported on {A,B} where
A = (−1, 0) and B = (1, 0), and the subset of points of X such that ∇ϕn ̸= ∇ϕ′n is Pn. Since
dist(A,B) = 2, we get that for any p ≥ 1,

Wp(µn, µ
′
n) = 2ρ(Pn)1/p. (5.9)

We turn to the computation of Varρ(ϕn − ϕ′n). For this, we observe that

ϕ′n(x) − ϕn(x) =

{
t′n − tn if x1 ≤ tn

tn − t′n if x1 ≥ t′n
(5.10)
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and
|ϕn(x) − ϕ′n(x)| ≤ |tn − t′n| if x ∈ Pn. (5.11)

Therefore
∥ϕn − ϕ′n∥2L2(ρ) ≥ |tn − t′n|2(1 − ρ(Pn)). (5.12)

Then, we evaluate the mean of ϕn − ϕ′n. We set

vn = ρ({x ∈ X | x1 ≤ tn}) and wn = ρ({x ∈ X | x1 ≥ t′n}).

Then vn → 1 and wn → 0 as n→ +∞, and for any n ∈ N∗,

vn + wn + ρ(Pn) = 1.

Therefore, for n large enough, using (5.10) and (5.11),

0 ≤
∫
X

(ϕ′n − ϕn)dρ ≤ (t′n − tn)vn + (tn − t′n)wn + ρ(Pn)|tn − t′n|

= (1 − 2wn)(t′n − tn).

(5.13)

We deduce that

Varρ(ϕn − ϕ′n) = ∥ϕn − ϕ′n∥2L2(ρ) −
(∫

X
(ϕn − ϕ′n)dρ

)2

≥ |tn − t′n|2(1 − ρ(Pn) − (1 − 2wn)2)

= |tn − t′n|2(4wn − ρ(Pn) − 4w2
n)

≥ |tn − t′n|2(ρ(Rn+1) − ρ(Pn)) (5.14)

since wn → 0 and wn ≥ ρ(Rn+1).
There remains to choose the parameters of the rooms Rn and the passages Pn. We choose

hn small enough compared to all other lengths, in particular ρ(Rn+1) − ρ(Pn) ≥ 1
2ρ(Rn+1) ≳

λ(Rn+1) where recall that ρ has density bounded below on X . Then for any α > 0 and p ∈
[1,+∞),

Wp(µn, µ
′
n)α

Varρ(ϕn − ϕ′n)
≲

λ(Pn)α/p

|tn − t′n|2λ(Rn+1)
≲

|tn − t′n|(α−2p)/ph
α/p
n

λ(Rn+1)
.

and we see that choosing hn small enough compared to all other parameters, this quantity tends
to 0 as n→ +∞, for any α > 0, p ∈ [1,+∞), which concludes the proof.

Remark 5.3. The above computations being essentially 1-dimensional, one may easily turn
them into an example of a source measure ρ whose support is a segment of R, and for which
stability does not hold even in a very weak sense.

Beside room-and-passage domains, domains with an outward cusp are another well-known
category of non-John domains. By outward cusp, we mean that in some local coordinates, the
equation defining the domain is |y| ≤ f(x) for some f : [0,+∞) → R with f ′(0) = 0. For
instance f(x) = xs with s > 1, or f(x) = e−1/x2 . The former are called (polynomial) s-cusps,
the latter exponential cusps. It is not difficult to modify the above computations to show that
domains with an exponential cusp could also be used to prove Theorem 5.2.

Regarding polynomial cusps, we need another definition. For s ≥ 1, an s-John domain is a
domain for which the condition (2.6) is replaced by

dist(γ(t),X c) ≥ ηts

i.e., the same condition as John domains except that t is replaced by ts in the right-hand side.
It follows that s-John domains may have polynomial s-cusps.
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Open question 5.4. Does a stability inequality ∥ϕµ − ϕν∥L2(ρ) ≤ CWp(µ, ν)α hold in s-John
domains, for some C, p, α which may depend on the domain (notably on s)?

In s-John domains with large s, the exponent α necessarily has to be less good (i.e., larger)
than 1/2. The reader can compute as an exercise an upper bound on the stability exponent in
a domain containing an s-cusp, using similar sequences as in (5.8).

Let us hazard a final speculative comment: it seems to us that there is at least a formal
resemblance between the example detailed in Section 5.3 and the Kannan-Lovasz-Simonovitz
conjecture. This conjecture asserts that the Poincaré constant of log-concave measures can be
checked on linear test functions. The analogy we see with our example is that we only need
simple test functions (namely, distance functions to hyperplanes) to prove that optimal transport
potentials are unstable. Therefore, it is tempting to formulate the following vague question:

Open question 5.5. Is it true that for more general ρ’s, some simple family of test functions
is sufficient to guarantee stability/instability of optimal transport potentials?

5.4 Bibliographical notes

The examples in Sections 5.1 and 5.2 come respectively from [49] and [54].
§5.3: The example presented in this section comes from [54]. Room-and-passage domains

date back at least to the 1937 monograph by Courant and Hilbert [26, pp. 521-523], who used
them to show that the embedding of H1(X ) in L2(X ) is not necessarily compact (see also [5]).
Indeed, consider ϕn a function which is equal to a constant in the n-th room Rn and which
drops linearly to 0 in the adjacent passages Pn−1 and Pn, reaching the value 0 at the midpoint
of each of these passages. Choosing the constant in a way that ∥ϕn∥L2(X ) = 1, we obtain an
orthonormal family of functions. If the passages are narrow enough (i.e., if hn is small enough),
then ∥∇ϕn∥L2(X ) → 0 as n→ +∞. Since no subsequence of (ϕn) converges in L2(X ), H1(X ) is
not compactly embedded in L2(X ). This example is fundamentally related to the fact that the
Poincaré inequality fails in X , and that 0 is in the essential spectrum of the Neumann Laplacian
on X . In this direction, Hempel-Seco-Simon [42] used room-and-passage domains to provide
examples of domains with prescribed essential spectrum. Finally, many papers have considered
s-John domains, see for instance [38].
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6 Stability of optimal transport maps: proof ideas

To establish stability of optimal transport maps, the main tool that we use is an inequality
of the form

∥∇f −∇g∥L2(ρ) ≤ CL2/3∥f − g∥1/3
L2(ρ)

(6.1)

for f, g convex and L-Lipschitz on the support of ρ (of course (6.1) cannot hold without some
assumption on f, g). Applying it to f = ϕµ, g = ϕν and using the stability of Kantorovich
potentials, it immediately yields the stability of optimal transport maps in John domains (2.5).
To get stability of optimal transport maps when the source measure ρ is log-concave, i.e., (2.3),
one needs additional truncation arguments that we will not detail here.

The surprising inequality (6.1) crucially relies on the assumption that both ϕµ and ϕν are
convex. Its proof relies on two main ingredients:

� first, a one-dimensional version of the inequality (6.1);

� second, integral geometric techniques which allow to extend the one-dimensional inequality
to higher dimensions.

Until now, this strategy has not led to optimal results, in the sense that the exponent 1/6
in Theorem 2.3 does not match the upper bound 1/2 on the exponent provided by the explicit
example written in Section 2.4. Perhaps one would need a direct approach to stability of optimal
transport maps, not going through stability of Kantorovich potentials, to get sharper exponents.

6.1 The 1d inequality

We start with a one-dimensional version of (6.1).

Proposition 6.1. Let I ⊂ R be a compact segment. Let u, v : I → R be two convex functions
whose derivatives (defined a.e. on I) are uniformly bounded over I. Then

∥u′ − v′∥2L2(I) ≤ 8(∥u′∥L∞(I) + ∥v′∥L∞(I))
4/3∥u− v∥2/3

L2(I)
. (6.2)

This inequality looks like a Poincaré inequality, but in the wrong sense! It holds only
because we are applying it to a difference of convex functions. Indeed, taking I = [0, 1], u = 0
and v = sin(nx) shows that (6.2) cannot hold without assuming something on u, v. One can
get some intuition about (6.2) by drawing the graphs of u′ and v′, which are non-decreasing
functions. Then u, v are obtained as areas under the curves and it may be seen that |u′ − v′|
cannot be large on some quantitative fraction of I without having |u − v| large at some point.
Another remark is that (6.2) is invariant under affine transformations, hence it is sufficient to
prove the result on I = [0, 1]. Finally, the exponents in (6.2) are optimal, as may be seen by
taking u(x) = L|x− 1

2 | and v = max(u, ε).
We shall only streamline the proof of Proposition 6.1, and for I = [0, 1] (which we may

assume thanks to a scaling argument). First integrating by parts,∫ 1

0
|u′ − v′|2 =

[
(u− v)(u′ − v′)

]1
0
−
∫ 1

0
(u− v)(u′′ − v′′)

≤ 2∥u− v∥L∞(∥u′∥L∞ + ∥v′∥L∞) + ∥u− v∥L∞

(∫ 1

0
|u′′| +

∫ 1

0
|v′′|
)

But since u is convex, ∫ 1

0
|u′′| =

∫ 1

0
u′′ = u′(1) − u′(0) ≤ 2∥u′∥L∞ ,
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and similarly for v, thus we conclude that∫ 1

0
|u′ − v′|2 ≤ 4∥u− v∥L∞(∥u′∥L∞ + ∥v′∥L∞). (6.3)

The second step is to bound the L∞ norm of f = u−v with its L2-norm using that the Lipschitz
constant of f = u − v is less than ∥u′∥L∞ + ∥v′∥L∞ . This second step does not use the fact
that f is the difference of two convex functions: considering the worst case scenario where f is
piecewise affine, equal to 0 except around the maximum of ∥f∥L∞ where it looks like a “tent”,
we get

∥f∥2L2([0,1]) ≥
1

4
min

(
∥f∥L∞

2∥f∥Lip
, 1

)
∥f∥2L∞ .

And a little more work combined with (6.3) allows to conclude.

6.2 Higher dimension: an integral-geometric argument

We prove the following generalization of Proposition 6.1 to higher dimensions

Proposition 6.2. Let L > 0 and let K be a compact subset of Rd whose boundary has finite
(d − 1)-dimensional measure. Then there exists C > 0 such that for any u, v : K → R convex
on any segment included in K and L-Lipschitz,

∥∇u−∇v∥L2(K) ≤ C∥u− v∥1/3
L2(K)

.

Then the stability of maps (2.5) follows immediately by combining (2.4) with Proposition 6.2
for K = X . To prove Proposition 6.2, one possibility is to rely on integral-geometric techniques,
i.e., expressing a multidimensional integral in terms of integrals over lines (or geodesics, in
Riemannian geometry). We start from the formula∫

Rd
f(x)2dx =

∫
e⊥

∫
R
f(y + te)2dtdy.

valid for any e ∈ Sd−1, where e⊥ denotes the hyperplane (through the origin) perpendicular to
the unit vector e. Applying this to f(x) = ⟨F (x), e⟩, and then integrating over e ∈ Sd−1, we get∫

Sd−1

∫
Rd
⟨F (x), e⟩2dxdσ(e) =

∫
Sd−1

∫
e⊥

∫
R
⟨F (y + te), e⟩2dtdydσ(e)

where σ is the uniform probability measure on Sd−1. We observe that the LHS is equal to
Cd∥F∥2L2(Rd) for some Cd > 0 depending only on d. We apply this to F given by ∇u−∇v inside

K, and extended by 0 outside K. We get

∥∇u−∇v∥2L2(K) = C−1
d

∫
Sd−1

∫
e⊥

∥u′ℓye − v′ℓye∥
2
L2(ℓye∩K)dydσ(e) (6.4)

where ℓye denotes the oriented line y+eR and uℓye = u|ℓye∩K , vℓye = v|ℓye∩K . The set ℓye ∩K may be
decomposed as a finite union of intervals Ii

ℓye
, i = 1, . . . , nℓye in which we can apply Proposition

6.1 (the 1d inequality, using that ∥u′∥L∞ , ∥v′∥L∞ ≤ L). We get

∥u′ℓye − v′ℓye∥
2
L2(ℓye∩K) =

n
ℓ
y
e∑

i=1

∥u′ℓye − v′ℓye∥
2
L2(Ii

ℓ
y
e
) ≤ 8(2L)4/3

n
ℓ
y
e∑

i=1

∥uℓye − vℓye∥
2/3

L2(Ii
ℓ
y
e
)

≤ 8(2L)4/3n
2/3

ℓye
∥uℓye − vℓye∥

2/3

L2(ℓye∩K)
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where the last inequality comes from Jensen’s inequality. Combining this with (6.4) and then
using Hölder’s inequality, we get

∥∇u−∇v∥2L2(K) ≲
∫
Sd−1

∫
e⊥
n
2/3

ℓye
∥uℓye − vℓye∥

2/3

L2(ℓye∩K)
dydσ(e)

≲

(∫
Sd−1

∫
e⊥
nℓyedydσ(e)

)2/3(∫
Sd−1

∫
e⊥

∥uℓye − vℓye∥
2
L2(ℓye∩K)dydσ(e)

)1/3

.

The second parenthesis is equal to Cd∥u − v∥2L2(K) due to the same argument which led to

(6.4). Regarding the first parenthesis, we observe that nℓye ≤ #(ℓye ∩ ∂K) and then we use the
Cauchy-Crofton formula, which asserts that∫

Sd−1

∫
e⊥

#(ℓye ∩ ∂K)dydσ(e) = H d−1(∂K) < +∞ (6.5)

where H d−1 denotes the (d − 1)-dimensional Hausdorff measure. This concludes the proof of
Proposition 6.2.

Here, we should warn the reader that for the Cauchy-Crofton formula (6.5) to hold, one
actually needs to assume that the boundary ∂K is rectifiable. If this is not assumed, then it is
still true that the left-hand side in (6.5) is finite when H d−1(∂K) < +∞ (but the equality in
(6.5) does not necessarily hold). To prove this and also to extend Theorem 2.3 to Riemannian
manifolds, we devised a more robust argument based on the definition of the integral-geometric
measure, with the help of Antoine Julia and Federer’s book [34]. This outer measure, defined
following Caratheodory’s construction, compares easily (almost by definition) with the (d− 1)-
dimensional Hausdorff measure and may be shown to count the number of intersections of short
geodesic curves with ∂X .

6.3 Where do we lose sharpness of the exponents?

If we summarize our proofs, we have proved stability of optimal transport maps thanks to a
chain of inequalities of the form

∥Tµ − Tν∥6L2(ρ) ≲ ∥ϕµ − ϕν∥2L2(ρ) ≲ ⟨ψν − ψµ, µ− ν⟩ ≲W1(µ, ν).

As seen in Section 5.1 the two inequalities on the right become asymptotically sharp as d →
+∞. The inequality on the left is sharp in any dimension. However, the example proving this
sharpness is not the same as in Section 5.1: take ρ = 1[0,1]d and

ϕ(1)ε (x) = |x1|, ϕ(2)ε (x) = max(ϕ(1)ε , ε)

for x = (x1, . . . , xd) ∈ Rd. Then ∥∇ϕ(1)ε − ∇ϕ(2)ε ∥2L2(ρ) = ε, whereas Var(ϕ
(1)
ε − ϕ

(2)
ε ) ≈ ε3,

showing the sharpness of the exponents in the left hand side inequality.
In other words, the cases of equality in this chain of inequalities do not match, and we have

no example where this chain of inequalities is indeed saturated. Thus, one of the main open
problems that remains to be solved is the following:

Open question 6.3. Obtain sharp exponents for the stability of optimal transport maps (in
(2.3) and (2.5) for instance).
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6.4 Bibliographical notes

§6.1: The one-dimensional inequality given in Proposition 6.1 was proved in [31]. This is
a refinement of Theorem 3.5 in [21], in which the upper bound involved the uniform distance
∥u− v∥L∞ .

§6.2: Integral-geometric techniques are explained in Federer’s book [34]. As already men-
tioned, there is an alternative path to prove Proposition 6.2, which relies on the Caratheodory
construction, see for instance [34, Chapter 2.10]. This alternative strategy was used in [49] to
extend Theorem 2.3 to Riemannian manifolds.
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stein barycenters of measures.” Journal of Mathematical Imaging and Vision 51 (2015):
22-45.

[13] Herm Jan Brascamp, and Elliott H. Lieb. “On extensions of the Brunn-Minkowski and
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