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Foreword

After the foundational works of Gaspard Monge (1781), Leonid Kantorovich (1942), and
many others, optimal transport has witnessed explosive growth since the 1980s. This owes
much to the universality of the question it addresses: what is the most efficient way of moving
“mass” from one distribution to another, given a cost of moving mass between points? This basic
question lies at the crossroads of numerous mathematical fields nowadays, including analysis,
probability, statistics, geometry and optimization, and optimal transport has led to powerful
applications, notably in machine learning, economics, physics, computer vision and biology.

A fundamental object in optimal transport is the optimal transport map Tρ→µ connecting
two probability measures ρ and µ. Brenier showed at the turn of the 1990s its existence and
uniqueness under natural assumptions, for instance for the quadratic cost in Rd, when ρ, µ have
second moments and ρ has a density with respect to the Lebesgue measure. Moreover, any
optimal transport map is the gradient of a convex function, called a Kantorovich potential.

For many reasons, not only existence and uniqueness of optimal transport maps, but also
their stability with respect to variations of the marginal distributions ρ and µ is of fundamental
importance: taken together, existence, uniqueness and stability form the three pillars of a well-
posed problem. For instance, in numerical simulations, the source and the target measures are
replaced by discrete approximations and it is desirable to quantify the discrepancy between the
optimal transport map and its numerical approximation. In statistics, where the marginals come
from real data and are only known through samples, one may estimate the optimal transport
map using the samples, but it raises the question of the accuracy of this estimator compared
to the “true” optimal transport map. Fundamentally, this is also a stability problem. In both
numerical and statistical applications, the main question is thus the following one:

for a fixed source density ρ, does a small modification of the target measure µ result in a small
modification of the optimal transport map Tρ→µ? If yes, is it possible to quantify the answer?

Qualitative stability results have long been established: already Brenier in his seminal 1991
paper [20] had discovered that under the same assumptions on the source measure ρ as in his
existence and uniqueness theorem, the map µ 7→ Tρ→µ is continuous in the natural topologies.
In other words, a small perturbation of the target measure results in a small perturbation of
the optimal transport map. This continuity statement is however only qualitative and does not
come with effective bounds, whereas for both numerical and theoretical purposes, quantitative
estimates are often needed.

It is only recently that the first quantitative stability bounds have been proved, with key
contributions by Gigli, Berman, Delalande, Mérigot, and others. The interest in the subject has
also been strengthened by applications, notably to statistics, to the geometry of the Wasserstein
space and to the convergence of the Sinkhorn algorithm, which is used to solve a regularized
version of the optimal transport problem, called entropic optimal transport. It is our purpose
in these lecture notes to review the theoretical advances on quantitative stability estimates, to
point out what is not yet understood, and to highlight the applications of this emerging and
flourishing field.

These notes are based on my Cours Peccot delivered at the Collège de France in May-June
2025. Preparing these lectures has been a great source of pleasure for me, and I would like to
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thank all attendees, as well as the Collège de France for posting online the videos of the lectures1.
I express my deepest thanks to Quentin Mérigot for this very fruitful collaboration, and to Jun
Kitagawa for our successful collaboration on a second paper. I also greatly benefited from nu-
merous discussions on optimal transport with many colleagues, in particular with Yann Brenier,
Guillaume Carlier, Vincent Divol, William Ford, Michael Goldman, Marc Hallin, Antoine Julia,
Tudor Manole, Jonathan Niles-Weed, Pierre Pansu, Gabriel Peyré, Aram Pooladian, Philippe
Rigollet and François-Xavier Vialard. I finally thank my wife Claire for everything (and for
attending one of my lectures!).

The manuscript is organized into five chapters, and Chapters 4 and 5 may be read inde-
pendently of the rest. To lighten the presentation, most references are collected at the end of
each chapter in a bibliographical paragraph. Chapter 1 introduces the problem, and recalls fun-
damental facts of optimal transport theory, in particular Brenier’s theorem. It describes some
of the initial motivations for developing a quantitative theory of stability, notably the so-called
linearized optimal transport framework, which draws upon our knowledge of the geometry of the
Wasserstein space. It also presents two important quantitative stability results, whose proofs
are the main thread of Chapters 2 and 3. Although relatively recent, the tools developed in
Chapter 2 will sound familiar to most people working in optimal transport. The Kantorovich
functional

�
ψ∗dρ is the main character of this chapter, and its strong convexity, shown using

functional inequalities, is one of the key ingredients to prove quantitative stability estimates.
The mathematics of Chapter 3 might sound more exotic: they find their roots in the proofs of
Sobolev–Poincaré inequalities developed in the 1980s, as well as in spectral graph theory. How-
ever, they provide natural and very efficient tools to extend the stability estimates of Chapter 2.
To go beyond quadratic optimal transport in Euclidean spaces, we add in Chapter 4 yet another
ingredient: entropic optimal transport. This penalized version of the original optimal transport
problem, which is a very efficient computational tool, gives us a regularized analogue of the
Kantorovich functional whose strong concavity makes it possible to handle more general costs.
We conclude by presenting three important applications of optimal transport stability bounds
in Chapter 5: to statistical optimal transport, Wasserstein barycenters, and to the convergence
of the Sinkhorn algorithm. They illustrate the theoretical and the numerical relevance of this
theory.

Although this manuscript is mainly devoted to quantitative stability bounds in optimal trans-
port, it also provides short and self-contained introductions to several topics such as statistical
optimal transport, entropic optimal transport, Wasserstein barycenters, and spectral graph the-
ory, which, we hope, will stimulate the readers’ curiosity and inspire them to delve into these
nice research areas.

All comments, suggestions and bug reports are very welcome and can be sent to my email
address cyril.letrouit@universite-paris-saclay.fr.

Cyril Letrouit
Orsay, September 2025.

1Available at https://www.college-de-france.fr/fr/agenda/conferencier-invite/

stabilite-quantitative-du-transport-optimal
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1 Introduction: optimal transport and stability

1.1 The optimal transport problem

The nearly 250 years old Monge transportation problem consists in finding the optimal way
to transport mass from a given source to a given target probability measure, while minimizing
an integrated cost.

Let ρ be a probability measure on a Polish (i.e., complete, separable metric) space X and µ
be a probability measure on a Polish space Y. Let c be a non-negative measurable function on
X ×Y. An admissible mass transport plan is an element γ of the space P(X ×Y) of probability
measures over X ×Y whose marginals coincide with ρ and µ, i.e., for all measurable sets A ⊂ X ,
B ⊂ Y,

γ(A× Y) = ρ(A) and γ(X ×B) = µ(B). (1.1)

These conditions mean that for any x ∈ X , y ∈ Y, the amount of mass taken from x coincides
with dρ(x), and the amount of mass arriving at y coincides with dµ(y). The set of all admissible
transport plans is

Π(ρ, µ) = {γ ∈ P(X × Y) | (1.1) holds}.

It is non-empty and convex. The optimal transport problem with cost c is the minimization
problem

inf
γ∈Π(ρ,µ)

�
X×Y

c(x, y)dγ(x, y). (1.2)

A solution to (1.2), i.e., an admissible transport plan γ which attains the infimum, is called an
optimal transport plan. In the particular case where X ,Y ⊂ Rd and c(x, y) = |x− y|2, one finds
the quadratic optimal transport problem

inf
γ∈Π(ρ,µ)

�
Rd×Rd

|x− y|2dγ(x, y), (1.3)

which will be our main focus in the sequel. The case of p-costs c(x, y) = |x− y|p with p ≥ 1 is
also of interest, and gives rise to the p-Wasserstein distance defined as

Wp(ρ, µ) =

(
inf

γ∈Π(ρ,µ)

�
Rd×Rd

|x− y|pdγ(x, y)

)1/p

.

Wasserstein distances are indeed distances, and they verify Wp ≤Wq for 1 ≤ p ≤ q.

Optimal transport and Wasserstein distances are used in an incredible number of fields,
among which:

� Engineering. Monge formulated in 1781 the problem of moving a pile of sand from one
place to another while minimizing a total transportation cost.

� Economics. Around 1942, Kantorovich was interested in the optimal allocation of resources
between m production stations and n consumption stations. He used his duality theory
to solve this problem, which is an instance of the optimal transport problem.

� Mathematical physics, modelling and PDEs. Arnold (1966) and then Brenier (1989) stud-
ied the Euler equation of fluid mechanics via a least action principle in the space of dif-
feomorphisms. Otto interpreted in the 1990s the heat equation as a gradient descent of
entropy in the geometry of mass transport. In another direction, Tanaka used Wasserstein
distances in the 1970s to prove relaxation to equilibrium for the spatially homogeneous
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Boltzmann equation. And Caffarelli analyzed in the 1990s the Monge-Ampère partial dif-
ferential equation det(D2f) = g, resulting in a regularity theory for optimal transport
maps.

� Geometry and related areas. Optimal transport has also led to the discovery of new
functional inequalities with geometric content, and to new proofs of old ones. Among them,
we can mention the Brunn-Minkowski, Brascamp-Lieb and Prékopa-Leindler inequalities,
which we review in Section 2.4). In metric geometry, optimal transport has been used
to give a meaning to Ricci curvature in non-smooth spaces X , relying on displacement
convexity of certain functions on the Wasserstein space P2(X ) (Lott-Sturm-Villani 2004-
2009).

� Image processing. Relevant features of images (colors, contours, orientations, textures)
may be represented as histograms, or densities. Optimal transport is then used as a
powerful tool to compare images, interpolate between them, transfer colors, or segment
images.

� Statistics and machine learning. Wasserstein distances are widely used to measure dis-
tances between probability distributions, since the work of Dudley in 1969 who analyzed
the rate of convergence of empirical probability measures µn to their limit µ. More recently,
optimal transport has been used to interpolate multiple data distributions (e.g. samples,
images, domains, etc) using Wasserstein barycenters; to analyze the training dynamics of
neural networks, and sampling algorithms such as the Langevin Monte Carlo algorithm.

Many other fields, applications and names are of course missing: our purpose is only to illustrate
the diversity of fields in which one may encounter optimal transport and Wasserstein distances.
Although the cost function c(x, y) = |x − y| might seem more physical at first glance than the
quadratic cost – for instance, in problems like moving materials at minimal cost on a construction
site –, the quadratic cost c(x, y) = |x− y|2 is actually the one which is most useful in the above
applications. This is partly due to the fact that the W2 distance gives a Riemannian structure
to the space of probability measures (with notions of geodesics, interpolation, etc), but also to
very convenient existence and uniqueness properties.

Existence and uniqueness of optimal transport maps. Recall that Polish spaces are
complete, separable, metric spaces. A solution to (1.3) (or (1.2)) exists under mild assumptions:

Proposition 1.1. If X ,Y are Polish spaces and c : X × Y → R+ ∪ {+∞} is lower semi-
continuous, then there exists a solution to (1.2).

We shall not prove this proposition, see [105, Theorem 1.3] for a proof. The solution to (1.3)
(or (1.2)) is not unique in general. For instance, if A = (1, 0), B = (0, 1), C = (−1, 0), and
D = (0,−1) are the vertices of a square in R2 (endowed with the quadratic cost), there is an
infinite number of solutions to (1.3) when ρ = 1

2(δA+δC) and µ = 1
2(δB +δD): for any a ∈ [0, 1],

γ =
1

2

(
aδ(A,B) + (1 − a)δ(A,D) + (1 − a)δ(C,B) + aδ(C,D)

)
is an admissible transport plan which is a solution of (1.3). Notice that in this example, the
mass leaving A is split into one part going to B and one part going to D.
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Let us pause for a moment and ask what would happen if we did not allow mass-splitting,
i.e., if we replace the infimum in (1.3) by a minimization over the admissible transport plans
γ ∈ Π(ρ, µ) which are supported on the graph of a univalued map T : X → Y: in other words,
all the mass at x ∈ X will be sent into T (x) ∈ Y. The condition γ ∈ Π(ρ, µ) then turns into the
set of equalities:

for any measurable U ⊂ Y, ρ(T−1(U)) = µ(U)

which may be simply stated in terms of the pushforward operation # as T#ρ = µ. The associated
admissible transport plan is γ = (Id, T )#ρ. We obtain the so-called Monge problem:

inf
S:X→Y
S#ρ=µ

�
Rd

|x− S(x)|2dρ(x). (1.4)

A solution to (1.4) is called an optimal transport map. Note that the Monge problem does not
necessarily have a solution. If ρ is a sum of Dirac masses but µ is not, then there does not exist
any S : X → Y such that S#ρ = µ.

To avoid this issue, there exists a simple assumption which guarantees that the solution to
(1.3) is unique: Brenier showed that the absolute continuity of the source measure ρ together
with moments assumptions on ρ and µ is a sufficient condition for a unique solution to (1.3)
to exist. And even more: he shows that in this case, the Monge problem (1.4) has a unique
solution T , and that these solutions to the two problems are related by γ = (Id, T )#ρ.

In the sequel, P(X ) denotes the set of probability measures on X ⊂ Rd, and Pp(X ) is the
set of probability measures on X with finite p-th moment:

Pp(X ) =

{
ρ ∈ P(X ) |

�
X
|x|pdρ(x) < +∞

}
.

The weak topology on P(X ) (or topology of weak convergence, or narrow topology) is induced
by convergence against Cb(X ), i.e., bounded continuous functions.

Theorem 1.2 (Existence and uniqueness of optimal transport maps, Brenier). Let ρ, µ ∈ P2(Rd)
and c(x, y) = |x− y|2 be the quadratic cost on Rd. Assume that ρ is absolutely continuous with
respect to the Lebesgue measure. Then there exists between ρ and µ a ρ-almost everywhere
unique optimal transport map T and a unique optimal transport plan γ, and these solutions
are related by γ = (Id, T )#ρ. Furthermore, the map T is the gradient of a convex function
ϕ : Rd → R ∪ {+∞}, and if (∇f)#ρ = µ for some other convex function f , then ∇f = ∇ϕ
ρ-almost everywhere.

If the support X of ρ is the closure of a bounded connected open set, ϕ is uniquely determined
on X up to additive constants. As a consequence of Brenier’s theorem, for any convex function
ϕ and any absolutely continuous ρ ∈ P2(Rd), the map ∇ϕ is the optimal transport map from ρ
to (∇ϕ)#ρ.

To turn (1.3) (or (1.4)) into a well-posed problem in the sense of Hadamard, there only
remains to show stability of the solution T with respect to perturbations of ρ and µ. The question
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of stability is fundamental both from the theoretical and the numerical point of view. Soft
(compactness) arguments provide without any difficulty a qualitative stability result presented
in Section 1.2. However, quantitative results are needed in most applications, and for this more
difficult problem, tools have started to emerge only recently. The purpose of these notes is to
review the theoretical advances in this now rapidly developing field, and to discuss applications
to various problems.

1.2 Stability of optimal transport

The following general qualitative stability result holds:

Proposition 1.3 (Qualitative stability of plans). Let (ρk)k∈N converge weakly to ρ and (µk)k∈N
converge weakly to µ. For each k ∈ N, let γk be an optimal transport plan between ρk and µk,
and assume that

lim inf
k∈N

�
X×Y

|x− y|2dγk(x, y) < +∞.

Then the optimal transport cost between ρ and µ is finite and, up to extraction of a subsequence,
γk converges weakly to some optimal transport plan γ between ρ and µ.

We will not give the proof of this proposition, written in detail in [106, Theorem 5.20].
Proposition 1.3 actually holds in general Polish spaces X and Y, with a continuous cost function
c : X × Y → R such that inf c > −∞. The proof relies on the Prokhorov theorem, used to
extract a converging subsequence of plans, and on a characterization of optimal transport plans
as cyclically monotone sets. We provide a taste of the latter argument in the 1 dimensional case
in Proposition 1.6.

In these lectures, we will fix the source measure ρ and consider stability with respect to
the target measure only. We denote by Tρ→µ the optimal transport map from ρ to µ given by
Brenier’s theorem. The problem we are interested in reads:

if µ and ν are quantitatively close, prove that Tρ→µ and Tρ→ν are quantitatively close.

There are several reasons for this choice of fixing the source measure:

� first, because the mapping µ 7→ Tρ→µ may be used to embed the Wasserstein space (or
part of it) into the Hilbert space L2(ρ) with a controlled distortion. We shall come back
to this important idea in Section 1.4.

� Second, because Tρ→µ and Tρ→ν are in L2(ρ) according to Brenier’s Theorem 1.2, and thus
we may measure their distance simply in L2(ρ). If we had ρ and ρ′ as source measures,
measuring distances between the maps would be less easy: instead, one would probably
measure the Wasserstein distance between optimal transport plans.

� Third, because in some applications, ρ is a perfectly known probability density, e.g. a
standard Gaussian.

� Finally, it is sometimes a first step towards a proof of stability with respect to perturbations
of both marginals.

To summarize, in these lecture notes, some ρ ∈ P2(Rd), assumed to be absolutely continuous
with respect to the Lebesgue measure, is fixed. Therefore, we shall drop in the notation the
reference to this source measure. Given µ ∈ P2(Rd) we call

� the optimal transport map and denote by Tµ ∈ L2(ρ) the unique solution to (1.4);
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� the Kantorovich potential the unique convex function ϕµ ∈ L2(ρ) such that Tµ = ∇ϕµ
and

�
X ϕµdρ = 0. In these lectures, we focus on the case where the support of ρ is the

closure of a connected open set, and thus the Kantorovich potential is always uniquely
defined since any two functions whose gradients coincide almost everywhere differ by a
constant. Uniqueness may fail, however, if the support of ρ consists of multiple connected
components. Nevertheless, most of our results can be adapted to this case at the expense of
shifting Kantorovich potentials by an appropriate constant on each connected component.
We shall not pursue this here.

The source measure ρ being now fixed, we formulate the qualitative stability of optimal
transport maps as follows:

Proposition 1.4 (Qualitative stability of maps). The map µ 7→ Tµ from (P2(Rd),W2) to L2(ρ)
is continuous.

This result is already contained in the paper by Brenier [20] where he proves Theorem 1.2.
We give here a different (self-contained) proof.

Proof of Proposition 1.4. Let (µn)n∈N and µ be in P2(Rd) such that W2(µn, µ) → 0 as n→ +∞.
Then W2(ρ, µn) →W2(ρ, µ) by the triangle inequality, hence

�
Rd

|x− Tµn(x)|2dρ(x) −→
n→+∞

�
Rd

|x− Tµ(x)|2dρ(x). (1.5)

Therefore, (Tµn)n∈N is bounded in L2(ρ).
Let Ω = supp(ρ) and

Kε = {x ∈ Rd | |x| ≤ ε−1, ρ(x) ≥ ε, dist(x, ∂Ω) ≥ ε}.

Here and in the sequel, we identify the absolutely continuous measure ρ to its density with
respect to the Lebesgue measure λ on Rd. Let us prove that for any ε > 0,

sup
n∈N

∥Tµn∥L∞(Kε) < +∞. (1.6)

For this we rely on the fact that for any convex function f over Rd, any x ∈ Rd and η > 0,

∥∂f∥L∞(B(x,η)) ≤
6

ωdηd

�
B(x,4η)

|∇f |dλ (1.7)

where ωd denotes the volume of the unit ball in Rd and

∥∂f∥L∞(B(x,η)) = sup
y∈B(x,η)

sup
g∈∂f(y)

|g|.

The proof of (1.7) is postponed to the end of the proof of Proposition 1.4. Let us deduce (1.6)
from (1.7). For any x such that B(x, 4ε) ⊂ Kε,

ωdε
d

6
∥Tµn∥L∞(B(x,ε)) ≤

�
B(x,4ε)

|Tµn |dλ ≤ 1

ε

(�
B(x,4ε)

|Tµn |2dρ
)1/2

(1.8)

by applying (1.7) to ϕµn , using that ρ(x) ≥ ε on Kε, and finally applying the Cauchy-Schwarz
inequality. Since (Tµn) is bounded in L2(ρ), the right-hand side in (1.8) for fixed ε > 0 is
uniformly bounded in n. Therefore, setting

K ′
ε = {x ∈ Kε | B(x, 4ε) ⊂ Kε}
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we obtain that ∥Tµn∥L∞(K′
ε)

is uniformly bounded in n. Sending ε to 0, this implies that
supn ∥Tµn∥L∞(K) < +∞ for any compact set K included in the interior of the support of ρ. In
particular, this implies (1.6).

Let x0 such that ρ(x0) > 0. Then ϕµn(x0) < +∞ for any n, and we may normalize ϕµn in
a way that ϕµn(x0) = 0. By Arzelà-Ascoli, up to extraction of a subsequence omitted in the
notation, (ϕµn) converges toward some ϕ uniformly over any Kε. Of course, ϕ is convex, and we
denote its gradient by T . We also denote by ⟨·, ·⟩ the Euclidean scalar product. Passing to the
limit n→ +∞ in the inequality

ϕµn(y) ≥ ϕµn(x) + ⟨y − x,∇ϕµn(x)⟩

yields that any limit point of (∇ϕµn(x)) is in ∂ϕ(x). This proves that at any point x of differ-
entiability of ϕ, (∇ϕµn(x)) converges to T (x) = ∇ϕ(x). Since ϕ is convex, it is differentiable
almost everywhere, thus

Tµn(x) → T (x) for ρ-almost every x. (1.9)

We deduce using (1.6) and Lebesgue’s dominated convergence theorem that

(Tµn)n∈N converges strongly to T in L2(ρ,Kε) for any ε > 0. (1.10)

Also, since (Tµn)n∈N is bounded in L2(ρ), it converges weakly to some T ′ ∈ L2(ρ) (up to
extraction of a subsequence, omitted in the notation), and we deduce from (1.10) that T ′ = T ,
ρ-almost everywhere. Since Id ∈ L2(ρ), ⟨Id, Tµn⟩L2(ρ) → ⟨Id, T ⟩L2(ρ), and plugging into (1.5) we
obtain that ∥Tµn∥L2(ρ) → ∥T∥L2(ρ). By a classical argument, strong convergence follows from
weak convergence together with convergence in norm; this proves that (Tµn) converges strongly
to T in L2(ρ).

Finally, let us observe that T#ρ = µ: indeed, for any open set A, using (1.9) and Lebesgue’s
dominated convergence theorem,

µn(A) = ρ(T−1
µn (A)) =

�
Rd

1{x|Tµn (x)∈A}dρ −→
n→+∞

�
Rd

1{x|T (x)∈A}dρ = ρ(T−1(A))

and since the left-hand side converges to µ(A), we get the result. Since T is the gradient of a
convex function, Brenier’s theorem implies that T = Tµ is the optimal transport map from ρ to
µ. We conclude that the full sequence (Tµn) converges strongly to T in L2(ρ).

There remains to prove (1.7). We follow the proof of [25, Lemma 2.3]. There are two main
steps, the first one being to prove the inequality

∥∂f∥L∞(B(x,η)) ≤
1

η
oscB(x,2η)(f) (1.11)

where oscA(f) = supu,v∈A |f(u)− f(v)|. Let y ∈ B(x, η) and g ∈ ∂f(y). We assume |g| ≠ 0. For
any z ∈ B(x, 2η),

⟨g, z − y⟩ ≤ f(z) − f(y) ≤ oscB(x,2η)(f).

Choosing z = y + η g
|g| , we get |g| ≤ 1

ηoscB(x,2η)(f). This inequality also holds if |g| = 0. Taking

the sup over y ∈ B(x, η) and g ∈ ∂f(y) we get (1.11).
The second step is to prove

oscB(x,2η)(f) ≤ 6

ωdηd−1

�
B(x,4η)

|∇f |dλ. (1.12)
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Together with (1.11), this immediately yields (1.7). There remains to show (1.12). We consider
y0 ∈ argminB(x,2η)f , y1 ∈ argmaxB(x,2η)f , and g1 ∈ ∂f(y1). For any y ∈ Rd and g ∈ ∂f(y),

|g||y − y0| ≥ ⟨g, y − y0⟩ ≥ f(y) − f(y0) ≥ f(y1) + ⟨g1, y − y1⟩ − f(y0)

and we deduce

|g| ≥
oscB(x,2η)(f) + ⟨g1, y − y1⟩

|y − y0|
.

Let us assume that g1 ̸= 0. Then for y ∈ B1 := B(y1 + η g1
|g1| , η) ⊂ B(x, 4η), there holds

⟨g1, y − y1⟩ ≥ 0. It is also the case if g1 = 0. Therefore

�
B(x,4η)

|∇f |dλ ≥
�
B1

oscB(x,2η)(f)

|y − y0|
dλ ≥ λ(B1)

6η
oscB(x,2η)(f)

since |y − y0| ≤ |y − y1| + |y1 − y0| ≤ 6η. Using λ(B1) = ωdη
d, we get (1.12), which concludes

the proof.

The main problem under consideration in these notes will (almost) be the following one: for
a given absolutely continuous ρ ∈ P2(Rd), do there exist constants C,α > 0 such that for all
µ, ν with finite second moment,

∥Tµ − Tν∥L2(ρ) ≤ CW2(µ, ν)α (1.13)

holds? More generally, replacing W2 by Wp for some p ≥ 1, we will consider inequalities of the
type

∥Tµ − Tν∥L2(ρ) ≤ CWp(µ, ν)α, (1.14)

the strongest one being for p = 1 (since Wp ≤Wq for p ≤ q).
An important observation is that the reverse inequality

∥Tµ − Tν∥L2(ρ) ≥W2(µ, ν) (1.15)

always holds: indeed, γ = (Tµ, Tν)#ρ is an admissible transport plan between µ and ν (since its
marginals are µ and ν), and its cost(�

Rd×Rd
|x− y|2dγ(x, y)

)1/2

=

(�
Rd

|Tµ(x) − Tν(x)|2dρ(x)

)1/2

= ∥Tµ − Tν∥L2(ρ)

is by definition not lower than the cost W2(µ, ν) of an optimal transport plan between µ and ν.
Put together, the inequalities (1.13) and (1.15) imply that the mapping µ 7→ Tµ is a bi-Hölder

embedding of the Wasserstein space into L2(ρ). However, as we shall discuss in more details
in Section 1.4, it is known that if d ≥ 3, then (1.13) cannot hold uniformly over all probability
measures µ and ν on Rd with finite second moment (the case d = 2 seems open). In fact, it
is not possible to embed the Wasserstein space into any Lp space, even in a very coarse sense.
Nevertheless, what we will discuss in depth in these lectures is that a stability bound such as
(1.13) can hold if one restricts to slightly smaller families of measures µ, ν. For instance, we will
show that under some assumptions on ρ, for any compact set Y ⊂ Rd, there exist C,α > 0 such
that (1.13) holds for any µ, ν supported in Y. In this case, since Y is assumed compact, one
seeks for α as large as possible. The largest possible α is sometimes called the stability exponent
(associated to ρ and Y) in the sequel.

11



In these notes, we will also be interested in quantitative stability estimates for Kantorovich
potentials, which take the form

∥ϕµ − ϕν∥L2(ρ) ≤ C ′Wp′(µ, ν)α
′
. (1.16)

Kantorovich potentials are interesting objects on their own, for many reasons. First, many
numerical methods used to solve optimal transport problem, for instance semi-discrete optimal
transport and dual gradient methods, rely on solving first the dual formulation of the problem,
discussed in Section 2.1. In these methods, one computes the Kantorovich potentials first,
before taking the gradient to obtain the optimal transport map. Also, the Sinkhorn algorithm,
which is one of the best ways to compute solutions to (regularized) optimal transport problems,
computes the entropic version of the Kantorovich potentials (see Section 5.3 for more details).
Finally, Kantorovich potentials have an economic interpretation which may help understand
their meaning (see [106, beginning of Chapter 5]).

Let us already mention that although the first three chapters are focused on the quadratic
cost in Rd given by c(x, y) = |x−y|2, most results remain valid for more general costs, for instance
p-costs c(x, y) = |x − y|p, p > 1 (see Section 4.3) and the quadratic cost c(x, y) = 1

2dist(x, y)2

on Riemannian manifolds (see Section 4.4).
It is clear that inequalities like (1.14) and (1.16) are useful to justify the theoretical consis-

tance of “plugin methods” to compute optimal transport: if we want to compute the optimal
transport map or the Kantorovich potential from ρ to µ but do not know exactly µ (due to some
noise for instance) and have only access to some approximation ν of µ, these inequalities tell us
how close we may expect Tν to be from Tµ (and ϕν from ϕµ), depending on some Wasserstein
distance between µ and ν.

1.3 Stability in 1 dimension

The case where d = 1, i.e., ρ, µ, ν are probability measures on R, is particularly simple.
Indeed, as soon as ρ is absolutely continuous on R, the mapping µ 7→ Tµ is an isometric embed-
ding:

Proposition 1.5. For any absolutely continuous ρ ∈ P(R), any µ, ν ∈ P(R), and any p ≥ 1,
there holds

∥Tµ − Tν∥Lp(ρ) = Wp(µ, ν) (1.17)

The stability problem is thus completely solvable in this case: the bound (1.13) holds with
C = α = 1.

We turn to the proof of Proposition 1.5. The main ingredient is to show that

γopt = (Tµ, Tν)#ρ (1.18)

is an optimal transport plan between µ and ν. Indeed, (1.17) then follows immediately:

W p
p (µ, ν) =

�
R2

|x− y|pdγopt(x, y) =

�
R
|Tµ(x) − Tν(x)|pdρ(x) = ∥Tµ − Tν∥pLp(ρ).

It is clear that γopt is an admissible transport plan between µ and ν since (Tµ)#ρ = µ and
(Tν)#ρ = ν. The difficulty is to show that it is optimal. If p = 1, it is not difficult to check that
any transport plan, and in particular γopt, is optimal: all transport plans have the same cost.
Therefore we focus on the case p > 1 in the sequel.

Given ρ, µ ∈ P(R), we call monotone transport plan any transport plan γ ∈ Π(ρ, µ) such
that

∀(x, y), (x′, y′) ∈ supp(γ), x < x′ ⇒ y ≤ y′.
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Proposition 1.6. Let p > 1. For any ρ, µ ∈ P(R), there exists a unique optimal transport
plan between ρ and µ, a unique monotone transport plan between ρ and µ, and these two plans
coincide.

Proof. We only need to prove that

(i) any optimal transport plan is monotone, and

(ii) there exists a unique monotone transport plan.

We first show (i). The proof is based on the convexity of the p-cost: for any x < x′ and y ≤ y′,
the inequality

|x− y|p + |x′ − y′|p ≤ |x− y′|p + |x′ − y|p

means that it is always less costly to transport mass from x to y and from x′ to y′ than to “cross
trajectories” and transport mass from x to y′ and from x′ to y. Let γ be an optimal transport
plan (which exists, according to Proposition 1.1). For the sake of a contradiction, assume that
it is not monotone, and let (x, y), (x′, y′) in the support of γ such that x < x′ and y > y′. By
the strict convexity of the p-cost, there exists δ > 0 such that

|x− y|p + |x′ − y′|p − |x− y′|p − |x′ − y|p + 4δ < 0. (1.19)

Let r > 0 such that γ(B(x, r) × B(y, r)) > 0, γ(B(x′, r) × B(y′, r)) > 0, small enough so that
B(x, r) ∩B(x′, r) = ∅, B(y, r) ∩B(y′, r) = ∅, and for any x̃ ∈ B(x, r), x̃′ ∈ B(x′, r), ỹ ∈ B(y, r),
ỹ′ ∈ B(y′, r),

||x̃− ỹ|p − |x− y|p| ≤ δ,
∣∣|x̃′ − ỹ′|p − |x′ − y′|p

∣∣ ≤ δ∣∣|x̃− ỹ′|p − |x− y′|p
∣∣ ≤ δ,

∣∣|x̃′ − ỹ|p − |x′ − y|p
∣∣ ≤ δ.

(1.20)

Let γ1, γ2 be two couplings, whose marginals have mass ε > 0 each, such that γ1 is supported
in B(x, r) × B(y, r), γ2 is supported in B(x′, r) × B(y′, r), and γi ≤ γ for i = 1, 2 (in the sense
that

�
fdγi ≤

�
fdγ for any f ≥ 0). Let ρi be the first marginal of γi, and µi be the second

marginal of γi. We consider σ1 an arbitrary coupling between ρ1 and µ2, and σ2 an arbitrary
coupling between ρ2 and µ1. Then

γ′ = γ − γ1 − γ2 + σ1 + σ2

is a transport plan between ρ and µ: its marginals coincide with those of γ by definition, and it
is non-negative since γi ≤ γ, and the supports of γ1 and γ2 are disjoint. We observe that γ′ has
strictly lower cost than γ: indeed,

�
c dγ′ −

�
c dγ = −

�
c dγ1 −

�
c dγ2 +

�
c dσ1 +

�
c dσ2

≤ ε(|x− y|p + |x′ − y′|p − |x− y′|p − |x′ − y|p + 4δ) < 0

due to (1.20) and (1.19). This is in contradiction with the optimality of γ. Therefore, γ is
monotone.

To prove (ii), we fix a monotone transport plan γ and show that

γ((−∞, a] × (−∞, b]) = min(µ((−∞, a]), ν((−∞, b])). (1.21)

This implies that the mass of γ on (−∞, a] × (−∞, b] is uniquely determined by µ and ν, for
any (a, b) ∈ R2. Since γ is a transport plan, the mass of γ on (−∞, a) × (b,+∞) and on
(a,+∞)× (−∞, b] is also uniquely determined by µ and ν. But these sets generate all Borel sets
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of R2, hence we conclude from (1.21) that there exists a unique monotone transport plan γ. There
remains to prove (1.21). For this, we set A = (−∞, a) × (b,+∞) and B = (a,+∞) × (−∞, b),
and we observe that since γ is monotone, either γ(A) = 0 or γ(B) = 0. Therefore

γ((−∞, a] × (−∞, b]) = min(γ((−∞, a] × (−∞, b] ∪A), γ((−∞, a] × (−∞, b] ∪B))

= min(µ((−∞, a]), ν((−∞, b]))

i.e., (1.21) holds.

We finally conclude the proof of (1.17). It follows from Proposition 1.6 that the optimal
transport maps Tµ and Tν are non-decreasing, due to the fact that the corresponding optimal
transport plans are concentrated on the graphs of Tµ and Tν . From this, it is immediate to
check that γopt given by (1.18) is also monotone. Using again Proposition 1.6, we get that γopt
is the unique optimal transport plan between µ and ν.

Finally, what can be said about stability of Kantorovich potentials in 1 dimension? If ρ
satisfies the Poincaré inequality, i.e., if there exists C > 0 such that�

X
f dρ = 0 ⇒

�
X
f2 dρ ≤ C

�
X
|∇f |2 dρ,

then it follows from (1.17) (with p = 2) that ∥ϕµ − ϕν∥L2(ρ) ≤ CW2(µ, ν). As we shall see in
Section 3.7.3, in particular in Remark 3.12, this stability inequality for Kantorovich potentials
is no longer guaranteed if ρ does not satisfy the Poincaré inequality, even if the support of ρ is
an interval (in which case Kantorovich potentials are unique): there exists ρ supported on an
interval such that any inequality of the form ∥ϕµ − ϕν∥L2(ρ) ≤ CW2(µ, ν)α for α ∈ (0, 1) fails.

1.4 Embeddings of the Wasserstein space and linearized optimal transport

The geometry of the Wasserstein space (P2(Rd),W2) is known to be curved, and complicated.
Using optimal transport maps, one may hope to embed the Wasserstein space into simpler spaces
(e.g., Hilbert or Banach spaces), at the cost of introducing a small distortion which one needs to
quantify. As we will see, this boils down to proving quantitative stability estimates for optimal
transport maps, and actually this observation was one of the initial motivations for developing
this theory.

The Wasserstein space as a (pseudo) Riemannian manifold. The Wasserstein space
(P2(Rd),W2) being a metric space, it is natural to look for its (constant-speed) geodesics, i.e.,
the curves (µt)t∈[0,1] for which there exists c > 0 such that for any 0 ≤ s, t ≤ 1,

W2(µs, µt) = c|s− t|.

In (P2(Rd),W2), any geodesic is of the following form (see for instance [96, Theorem 5.27]):
there exists an optimal transport plan γ for the quadratic cost between µ0 and µ1 such that
µt = πt#γ for any t ∈ [0, 1], where πt : (x, y) 7→ (1− t)x+ ty. Conversely, any curve of this form
is a geodesic. In particular, if ρ ∈ P2(Rd) is absolutely continuous and µ ∈ P2(Rd), then there
exists a unique geodesic between ρ and µ, and it is given by

t 7→ ((1 − t)Id + tTµ)# ρ ∈ P2(Rd) (1.22)

where Tµ denotes the optimal transport map from ρ to µ. Differentiating (1.22) with respect to
t, we obtain that Tµ − Id can be regarded as an element of the tangent space at ρ, namely the
initial tangent vector of the Wasserstein geodesic from ρ to µ. This is part of a more general
interpretation of (P2(Rd),W2) as a (pseudo) Riemannian manifold, a viewpoint initiated by Otto
[87] and systematically investigated notably by Ambrosio, Gigli and Savaré [2].
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Embeddings of the Wasserstein space. On this (pseudo) Riemannian manifold, the expo-
nential map with base-point ρ is nothing else than

expρ : TanρP2(Rd) → P2(Rd), T 7→ T#ρ

and the inverse mapping

logρ : P2(Rd) → L2(ρ), µ 7→ Tµ − Id

is the analog of the Riemannian logarithm. The map logρ is injective, and it provides an
embedding of the Wasserstein space into the Hilbert space L2(ρ). One may ask whether it is
a “good” embedding, i.e., whether the geometry of the Wasserstein space is preserved, at least
coarsely, under this embedding. Working with this embedding is equivalent to endow P2(Rd)
with the “ρ-based” distance

W2,ρ(µ, ν) = ∥Tµ − Tν∥L2(ρ). (1.23)

Then our question may be reformulated as: how do the distances W2 and W2,ρ compare to each
other?

If the stability inequality (1.13) holds for any µ, ν ∈ P2(Rd), this means that µ 7→ Tµ is a
bi-Hölder embedding from (P2(Rd),W2) to the Hilbert space L2(ρ) (using the reverse inequality
(1.15)), and the two distances would be comparable: W2 ≲ W2,ρ ≲ Wα

2 . For instance, the
previous section showed that for d = 1, µ 7→ Tµ is an isometric embedding, and W2 = W2,ρ.
However, in dimension d ≥ 2, it is known that Wasserstein spaces do not embed into large
families of Banach spaces (including Hilbert spaces), even for much coarser notions of embedding.
Therefore, we will aim at establishing (1.13) for strict subsets of P2(Rd), for instance for target
probability measures µ, ν supported in a fixed compact set, or with bounds on some moments.
In other words, we embed only some strict subset of the Wasserstein space with a bi-Hölder
embedding into L2(Rd).

We will only state one result to illustrate the impossibility to embed Wasserstein spaces into
Banach spaces. First, recall that a Banach space Y is said to have type p ∈ [1, 2] if there exists
a constant C < +∞ such that for every finite sequence (yi)

n
i=1 ⊂ Y ,

E

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
p

≤ Cp
n∑
i=1

∥xi∥p,

where (εi)
n
i=1 are independent Rademacher random variables (P(εi = ±1) = 1/2). Every Banach

space has type 1 trivially. A space has type 2 if it behaves, in some sense, like a Hilbert space
regarding averages of random sums; in particular, Hilbert spaces have type 2. The space Lp has
type p for 1 ≤ p < 2, type 2 for 2 ≤ p < +∞, and type 1 for p = +∞.

To state the result, we also need the following definition:

Definition 1.7 (Coarse embedding). Given two metric spaces X and Y , a coarse embedding is
a map f : X → Y such that there exist two non-decreasing functions ρ−, ρ+ : [0,+∞) → [0,+∞)
with limt→+∞ ρ−(t) = +∞ and such that for all x, y ∈ X,

ρ−(dX(x, y)) ≤ dY (f(x), f(y)) ≤ ρ+(dX(x, y)).

Any bi-Lipschitz or bi-Hölder embedding is coarse, but this notion is actually much weaker,
since it allows for instance for non-continuous f . However, the following result, due to Andoni,
Naor and Neiman in [5], and which we do not prove, shows the impossibility to embed coarsely
Wasserstein spaces.
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Theorem 1.8. [5] For every p > 1 and d ≥ 3, the space (Pp(Rd),Wp) does not admit a coarse
embedding into any Banach space of type > 1 (in particular, into Hilbert spaces and Lq spaces,
1 < q < +∞).

This result is not known in dimension d = 2, but other non-embeddability results valid also
in dimension 2 have been proved, see [93] for an account on such results.

Linearized optimal transport. Due to the linear structure of the Hilbert space L2(ρ), the
logarithm map µ 7→ Tµ is also used as a way to “linearize” optimal transport. For instance,
to compute an “average” between two measures µ and ν in the Wasserstein space, one usually
resorts to the notion of Wasserstein barycenter (or McCann interpolation), defined as a minimizer
of

inf
χ∈P2(Rd)

(1 − t)W2(µ, χ)2 + tW2(ν, χ)2 (1.24)

for some t ∈ [0, 1]. Solving this optimization problem is often complicated. One may get another
notion of average by first fixing an absolutely continuous ρ ∈ P2(Rd), then computing Tµ, Tν
and their average (1 − t)Tµ + tTν), and finally considering

χ̂ = ((1 − t)Tµ + tTν)# ρ. (1.25)

Notice that (1−t)Tµ+tTν is simply the weighted average of the initial tangent vectors giving rise
to the geodesics from ρ to µ and ρ to ν. The measure χ̂, which is the endpoint of the geodesic
with this tangent vector, is in general different from the solution to (1.24). It is actually located
on the generalized Wasserstein geodesic (in the terminology of Ambrosio-Gigli-Savaré) between
µ and ν, defined as the curve

[0, 1] ∋ t 7→ ((1 − t)Tµ + tTν)# ρ ∈ P2(Rd).

In case µ = ρ, the generalized geodesic between µ and ν coincides with the Wasserstein geodesic
between µ and ν. The advantage of (1.25) over (1.24) is that once Tµ and Tν are known, χ̂ can
be computed quickly for any t (at least, if it is possible to compute quickly the pushforward
under an optimal transport map, a question addressed in [25]), whereas (1.24) requires to solve
a new minimization problem every time t is changed.

More generally, since it is often difficult to perform computations in Wasserstein spaces,
which are curved (and infinite dimensional), it is a current practice in applications to first make
computations in the Hilbert space L2(ρ), i.e., on the side of Tµ, before pushing forward ρ by the
result of the computations in L2(ρ).

1.5 Stability around regular optimal transport maps

The earliest quantitative stability result for optimal transport maps, due to Gigli around
2010, addressed stability in the vicinity of a sufficiently regular map.

Theorem 1.9 (Stability near regular optimal transport maps). Let ρ be a probability measure
on Rd, absolutely continuous with respect to the Lebesgue measure, and with compact support.
Let Y ⊂ Rd be compact, and K > 0. Let µ, ν ∈ P(Y). If the optimal transport map Tµ from ρ
to µ is K-Lipschitz, then

∥Tµ − Tν∥L2(ρ) ≤ CW1(µ, ν)1/2

where C = (2Kdiam(supp(ρ)))1/2.

We provide a complete proof of Theorem 1.9, due to Chazal, Delalande and Mérigot, in
Section 2.2. It is not the original proof of Gigli, it is closer in spirit to the other proofs presented
in these notes.
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Comments on the regularity assumption in Theorem 1.9. The important weakness of
Theorem 1.9 is that the assumption that Tµ is K-Lipschitz is very strong. First, it implies that
the support of µ is connected. Second, to prove that Tµ is Lipschitz one has to invoke the regu-
larity theory for optimal transport maps, which requires strong assumptions on µ (stronger than
having a connected support). The Lipschitz regularity of the optimal transport map, studied by
many authors starting with Caffarelli, has been established only under restrictive assumptions:
Caffarelli proved this property under the assumption that the source and target measure have
bounded support, are bounded above and below by positive constants on their support, and that
the support of the target is convex. Since this seminal result, some improvements and extensions
have been obtained, but the spirit remains the same. And it is also known that continuity of
the optimal transport map fails in some cases, even when the target has connected support:
Caffarelli gave the example of a source measure ρ supported on a two-dimensional domain X
obtained by connecting two half disks by a thin corridor, and for which the optimal transport
map is not continuous.

There is a whole line of research, notably in the statistical optimal transport community,
working under this kind of Lipschitz regularity assumptions on Tµ. Strong stability results
(in terms of exponents) have been established: for instance, under the assumption that Tµ is
bi-Lipschitz, Theorem 5.2 shows that ∥Tµ − Tν∥L2(ρ) ≲ W2(µ, ν), where the hidden constant
depends on the Lipschitz constants of Tµ and T−1

µ . We shall prove this result in Section 5.1.

1.6 Main results

The discussion of the previous paragraph motivates us to look for results in which much
weaker assumptions are made on the measures, than those ensuring regularity of the optimal
transport map. The results presented below state various assumptions on ρ under which we
are able to prove quantitative stability inequalities of the form (1.14)-(1.16), with nearly no
assumption on the target measures µ and ν. The discussion about the sharpness of these
assumptions and about the resulting stability inequalities is postponed Section 3.7. In a nutshell,
let us already mention that

the results presented in this manuscript are (almost) sharp for Kantorovich potentials, whereas
our understanding of the stability of optimal transport maps is still incomplete.

The field is progressing fast. Our understanding so far is that stability of Kantorovich potentials
is related to some Poincaré inequality on ρ, while stability of optimal transport maps should
hold under weaker (but still mysterious) assumptions. If the Poincaré inequality holds for ρ,
then

∥ϕµ − ϕν∥L2(ρ) ≤ C∥Tµ − Tν∥L2(ρ), (1.26)

hence any stability inequality on optimal transport maps immediately implies a stability inequal-
ity for Kantorovich potentials! However, with our current knowledge, we are not able to prove
stability inequalities on optimal transport maps directly, except under regularity assumptions
as in Theorem 1.9. The proofs are indirect: first we prove the stability of Kantorovich poten-
tials, then we deduce the stability of optimal transport maps thanks to some “reverse Poincaré
inequality”. We shall come back to this several times.

In the sequel, absolutely continuous measures (with respect to the Lebesgue measure in Rd)
are identified to their density. The first main result is the following:

Theorem 1.10 (Quantitative stability – Log-concave source densities). Let ρ = e−U−F be a
probability density on Rd, with F ∈ L∞(Rd) and D2U ≥ κId for some κ > 0. Then for any
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compact set Y, there exists C > 0 such that for any µ, ν supported in Y,

∥ϕµ − ϕν∥L2(ρ) ≤ CW1(µ, ν)1/2(1 + | logW1(µ, ν)|1/2). (1.27)

If moreover D2U ≤ κ′Id, then for any ε > 0 there exists C > 0 such that for any µ, ν supported
in Y,

∥Tµ − Tν∥L2(ρ) ≤ CW1(µ, ν)
1
8
+ε. (1.28)

We show in Section 3.7.2 that the inequality (1.27) is sharp, up to the logarithmic loss. The
additional assumption D2U ≤ κ′Id made to prove (1.28) is probably only technical, but we have
not been able to avoid it.

The second main result handles the case of source measures ρ with bounded support. To
state it, we introduce John domains, a vast family of domains introduced by Fritz John in the
1960s, containing in particular all bounded connected Lipschitz domains, but also some fractal
domains like the Koch snowflake.

Definition 1.11. A bounded open subset X of a metric space is called a John domain if there
exist x0 ∈ X and a constant η > 0 such that, for every x ∈ X , there is T > 0 and a rectifiable
curve γ : [0, T ] → X parametrized by the arclength (and whose length T depends on x) such that
γ(0) = x, γ(T ) = x0, and for any t ∈ [0, T ],

dist(γ(t),X c) ≥ ηt (1.29)

where X c denotes the complement of X .

Theorem 1.12 (Quantitative stability – Non-degenerate source densities on bounded domains).
Let ρ be a probability density on a John domain X ⊂ Rd, and assume that ρ is bounded above
and below on X by positive constants. Then for any compact set Y ⊂ Rd, there exists C > 0
such that for any µ, ν ∈ P(Y),

∥ϕµ − ϕν∥L2(ρ) ≤ CW1(µ, ν)1/2. (1.30)

If moreover ∂X has a finite (d − 1)-dimensional Hausdorff measure, then there exists C > 0
such that for any µ, ν ∈ P(Y),

∥Tµ − Tν∥L2(ρ) ≤ CW1(µ, ν)1/6. (1.31)

Theorem 1.12 also holds when Rd is replaced by an arbitrary smooth connected Riemannian
manifold M , and optimal transport is considered with respect to the quadratic cost c(x, y) =
1
2dist(x, y)2 where dist denotes the Riemannian distance on M . In case M is compact without
boundary (e.g., the sphere), then we may choose X = Y = M . We shall present in detail this
generalization to Riemannian manifolds in Section 4.4.

1.7 Comments

Many comments can be made about Theorems 1.10 and 1.12. First, regarding the fact that
the targets are assumed to be compactly supported in both results, we do not believe that this is
a fundamental assumption. In [42], the assumption that was used is that target measures have
p-th moment for some p > d (for p < d, there exist unbounded Brenier potentials). We guess
that our proof techniques may also cover this case, but shall not pursue this here.

We do not know whether the assumption that ∂X has finite (d − 1)-dimensional Hausdorff
measure in Theorem 1.12 is technical or not.
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As we explain in Section 3.6, the strategy we use to prove Theorem 1.10, Theorem 1.12 and
point (i) below allows us to recover the known fact that for any ρ satisfying the assumptions of
one of these results, the Poincaré inequality holds:

�
X

(
f −

�
X
fdρ

)2

dρ ≤ C

�
X
|∇f |2dρ (1.32)

(for ρ as in Theorem 1.10, X has to be replaced by Rd). The examples and counterexamples
in Section 3.7 show an analogy, but not an equivalence, between the fact that the Poincaré
inequality holds for ρ and the fact that a stability inequality for Kantorovich potentials holds.

Finally, there are two important directions to improve and generalize Theorems 1.10 and
1.12:

→ proving stability inequalities for a wider range of probability densities ρ;

→ improving the stability exponents (1/8 + ε in (1.28), 1/6 in (1.31)) for the source measures
ρ considered in our main results.

Progress on the second direction is currently stalled, and new ideas are required to move it
forward. Therefore, we comment only on the first direction. Indeed, our proof strategy is robust
enough to handle other cases of interest. In all the following cases the methods presented in the
next chapters are sufficient to prove stability inequalities for Kantorovich potentials and optimal
transport maps (we do not discuss stability exponents here, they are all dimension-free except
for (1.33)):

(i) Degenerate densities ρ in bounded domains. The assumption in Theorem 1.12 that ρ is
bounded above and below on X is not always necessary. We illustrate this on two examples
which we find particularly relevant in applications. The first example is given by source
probability densities satisfying

c1dist(x, ∂X )δ ≤ ρ(x) ≤ c2dist(x, ∂X )δ

for some δ > −1 and c1, c2 > 0, when X is a bounded Lipschitz domain. These densities
blow-up (δ < 0) or decay (δ > 0) near ∂X . The second example is the source probability
density

ρ(x) =
cd

|x|d−1
1Bd(0,1)\{0} (1.33)

on Rd, with cd a normalising constant and 1A the characteristic function of a set A. This
probability density is sometimes called the spherical uniform distribution, and has been
used in the literature to define multivariate quantiles.

(ii) Source measures ρ on Rd which decay polynomially at infinity:

ρ(x) = f(x)(1 + |x|)−β (1.34)

with f bounded above and below by positive constants uniformly over x ∈ Rd, and β > d+2
so that ρ has finite second moment. We shall see later that this family of source probability
measures is interesting because one cannot use the same proof strategy as for the families
of probability measures covered by Theorems 1.10 and 1.12, see Section 3.5.

(iii) Source measures with disconnected support. If we replace the beginning of the statement
of Theorem 1.12 by “Let ρ be a probability density on a finite union of John domains”,
then (1.31) still holds. Some modified version of (1.30) also holds, but one needs to be
careful since Kantorovich potentials are not unique when the support of ρ is not connected.
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1.8 An elementary example

In this paragraph, we show on an example that one cannot hope in general to have an
exponent strictly larger than 1/2 in (1.31). Let ρ = ρ(x)dx = 1

π1D(x)dx be the uniform
probability on the unit disk D ⊂ R2. For θ ∈ R/2πZ, we set xθ = (cos(θ), sin(θ)) ∈ R2 and
define the probability measure

µθ =
1

2
(δxθ + δxθ+π). (1.35)

The ρ-a.e. unique optimal transport map Tµθ from ρ to µθ for the quadratic cost is explicit:

Tµθ(x) =

{
xθ if ⟨x, xθ⟩ ≥ 0

xθ+π if ⟨x, xθ⟩ < 0

for x ∈ D. In other words, each point x ∈ D is sent to the closest point among xθ and xθ+π.
This cuts the disk into two (equal) halves, see Figure 1.

xπ+θ

xθ

Tµθ

Tµθ

Figure 1: The optimal transport Tµθ from ρ to µθ.

Fix θ ∈ R/2πZ, close to 0. Then, D may be written as D = A ⊔ (D \A) where

A = {(r cos(θ), r sin(θ)) | 0 < r < 1, θ ∈ (−π
2

+ θ,
π

2
− θ) ∪ (

π

2
+ θ,−π

2
− θ)}

is the set of points whose images under Tµ0 and Tµθ are x0, xθ, or xπ, xπ+θ, i.e., the images are
at angular distance θ. Of course, D \ A is the set of points whose images under Tµ0 and Tµθ
are x0, xπ+θ, or xπ, xθ, i.e., far apart, at angular distance π − θ. We find ρ(A) = 1 − θ

π and

ρ(D \A) = θ
π , hence as θ → 0,

∥Tµθ − Tµ0∥2L2(ρ) = |2 sin(θ/2)|2ρ(A) + |2 sin((π − θ)/2)|2ρ(D \A) ∼
θ→0

4|θ|
π
. (1.36)

On the other hand, for θ close enough to 0 and p ≥ 1 arbitrary, the Wp distance between µ0
and µθ is obviously achieved by the map which sends x0 to xθ and xπ to xθ+π. Its p-cost is

Wp(µ0, µθ) = |2 sin(θ/2)| ∼
θ→0

|θ|. (1.37)

Putting together (1.36) and (1.37) for p = 2, we see that we cannot hope in this case to have an
exponent strictly larger than 1/2 in (1.31).

In this example, it is also possible to compute the difference in L2-norm between Kantorovich
potentials. For this, we denote by Dθ ⊂ R2 the line through the origin which is perpendicular
to the segment [xθ, xθ+π] (the dashed line on Figure 1) and observe that

ϕµθ(x) = dist(x,Dθ) − C
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for some constant C independent of θ (simply equal to the integral of the function x 7→ dist(x,Dθ)
on D, which does not depend on θ). Then

∥ϕµθ − ϕµ0∥2L2(ρ) =

�
D

(|x1 cos(θ) + x2 sin(θ)| − |x1|)2dx = θ2
�
D
x22dx+O(θ3)

where x = (x1, x2). Therefore, one cannot hope in this case to have a better exponent than 1 in
(1.30).

The computations presented above can easily be generalized to any dimension and more
general sources than the uniform probability on the disk. Actually, Gigli derived in [53, Theorem
5.1]2 more general conditions under which the maps µ 7→ Tµ is not better than 1

2 -Hölder.

1.9 Bibliographical notes

§1.1: There are many great books about optimal transport. We refer for instance to the two
books by Villani [105] and [106], the one by Santambrogio for “applied mathematicians” [96],
the book by Peyré-Cuturi about computational aspects of optimal transport [89], and the very
recent book by Chewi-Niles Weed-Rigollet about statistical optimal transport [32]. To write
the present text, we also took inspiration from the lecture notes by Quentin Mérigot at Institut
Henri Poincaré, available on his webpage, and from the PhD thesis of Delalande [40]. Brenier
presented his theorem in a short note [19] and gave details in an extended paper [20].

§1.2: The proof of Proposition 1.3 can be found in [106, Theorem 5.20]. Proposition 1.4 is
a consequence of [20, Theorem 1.3] together with [106, Theorem 6.9]. The idea of the proof we
provide was kindly communicated to us by Guillaume Carlier.

§1.3: For a more complete treatment of the one-dimensional case, see Chapter 2 in Santam-
brogio’s book [96].

§1.4: Wasserstein geodesics are the main subject of the book by Ambrosio-Gigli-Savaré [2].
For a quick view on the subject, see [96, Chapter 5.4]. The interpretation of W2 as a (pseudo)
Riemannian manifold is due to Otto [87], who used it to study the long-time behavior of the
porous medium equation. McCann introduced the concept of displacement interpolation in [77].

The paper [107] introduced the linearized optimal transport distance W2,ρ defined in (1.23)
and used it for pattern recognition in images. Since then, this distance has been used for
instance to perform super-resolution of highly corrupted images [67] and to detect and visualize
phenotypic differences between classes of cells [9].

Wasserstein barycenters have been introduced in [1], generalizing the concept of displacement
interpolation of McCann. This notion of barycenter has found many successful applications, for
instance in image processing [94], geometry processing [101], statistics [100] or machine learning
[39]. Section 5.2 of this manuscript contains a brief introduction to the topic, see the book
chapters [89, Chapter 9.2], [32, Chapter 8] for more detailed treatments.

§1.5: Theorem 1.9 was first proven by [53]. The statement and the proof we give are borrowed
from [79]. In [73], these ideas were used to prove error estimates for semi-discrete and fully-
discrete algorithms to compute optimal transport plans and maps. The regularity theory of the
Monge-Ampère equation and its link to regularity of optimal transport maps is explained in
the survey [44]. The counterexample to the continuity of the optimal transport map is due to
Caffarelli, see [23].

2be careful, a preliminary version of the paper, available online, contained a mistake, which has been corrected
in the published version.
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§1.6: Motivated by semi-discrete optimal transport, in which the target measure is discrete
(or discretized) but not the source measure, Berman [11] was the first to obtain quantita-
tive stability estimates without assuming regularity of the optimal transport map. He derived
dimension-dependent stability exponents for ρ bounded above and below on a compact, con-
vex domain, using complex geometry. Delalande and Mérigot [42] then improved his stability
exponent, making it dimension-free under the same assumptions on ρ. But more importantly,
they introduced a robust proof technique based on the study of the Kantorovich functional, see
Chapter 2.

John domains were named in honor of Fritz John who introduced them in his work on
elasticity [60]; Martio and Sarvas [76] introduced this terminology. They appear also in the
theory of quasi-conformal mappings and in geometric measure theory.

§1.8: The example in this section is due to [79].
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2 The Kantorovich functional

In this chapter, we begin by carefully introducing the Kantorovich relaxation of the Monge
problem, together with its dual formulation in terms of Kantorovich potentials. These are
very classical results, presented with great precision in several textbooks (see the references in
Section 2.7). Rather than stating them in their most general and technical form, we choose
to present the results and the underlying ideas at a more intuitive level. This naturally leads
us to the definition and study of the so-called Kantorovich functional. We then establish the
Brascamp–Lieb inequality, which allows us to prove its strong convexity, and from this we deduce
the stability of Kantorovich potentials when ρ is log-concave.

2.1 The dual formulation of optimal transport

Monge formulated in 1781 the optimal transport problem as

inf
S:X→Y
S#ρ=µ

�
X
|x− S(x)|dρ(x) (2.1)

where X ,Y ⊂ Rd, ρ is a probability measure on X , and µ a probability measure on Y. For many
reasons already explained, it is natural to put a square on the |x − S(x)| term, thus yielding
(1.4). It is only in 1942 that Kantorovich introduced what is now known as the Kantorovich
relaxation already mentioned in (1.3) and which we recall:

inf
γ∈Π(ρ,µ)

�
X×Y

|x− y|2dγ(x, y). (2.2)

We show in this paragraph how to solve (2.2), and introduce along the way the primal and dual
Kantorovich potentials, which play a prominent role in these notes.

First we notice that for γ ∈ Π(ρ, µ),
�
X×Y

|x− y|2dγ(x, y) =

�
X
|x|2dρ(x) +

�
Y
|y|2dµ(y) − 2

�
X×Y

⟨x, y⟩ dγ(x, y).

Since the first two terms in the right-hand side do not depend on γ, the quadratic optimal
transport problem (1.3) is equivalent to

sup
γ∈Π(ρ,µ)

�
X×Y

⟨x, y⟩ dγ(x, y). (2.3)

We denote this supremum by I(ρ, µ).

2.1.1 The dual problem

It is possible to remove the constraint γ ∈ Π(ρ, µ) in (2.3) by introducing appropriate
Lagrange multipliers. This leads to what is called the dual problem, which turns out to be
equivalent to the primal problem (2.3). To derive the dual problem, it is not a problem to work
at a formal level; once derived formally however one needs to show its equivalence with the
primal problem.

The formal derivation of the dual problem goes as follows. For any measure γ on X × Y,

inf
ϕ∈C0(X )
ψ∈C0(Y)

�
X
ϕ(x) dρ(x) +

�
Y
ψ(y) dµ(y) −

�
X×Y

ϕ⊕ ψ dγ(x, y) =

{
0 if γ ∈ Π(ρ, µ)

−∞ otherwise
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where ϕ⊕ψ : (x, y) 7→ ϕ(x)+ψ(y). This may be seen as follows: if for instance the first marginal
of γ is not equal to ρ, we consider a set A ̸= ∅ such that ρ(A) ̸= γ(A×Y), take for ϕ a continuous
approximation of λ1A and ψ ≡ 0, and let λ go to ±∞. This proves that (2.3) is equivalent to

sup
γ

inf
ϕ∈C0(X )
ψ∈C0(Y)

�
X×Y

(⟨x, y⟩ − ϕ⊕ ψ) dγ(x, y) +

�
X
ϕ(x) dρ(x) +

�
Y
ψ(y) dµ(y)

where the supremum is taken over all measures γ, not only those in Π(ρ, µ). The duality principle
consists in exchanging the sup and the inf; we get

inf
ϕ∈C0(X )
ψ∈C0(Y)

[�
X
ϕ(x) dρ(x) +

�
Y
ψ(y) dµ(y) + sup

γ

�
X×Y

(⟨x, y⟩ − ϕ⊕ ψ) dγ(x, y)

]
(2.4)

(after rearranging the terms). As we will see, this new optimization problem is equivalent to
(2.3), which may seem surprising at first sight. But let us first simplify (2.4) a bit. The supremum
inside the brackets can itself be seen as a constraint: it is equal to 0 if ϕ ⊕ ψ ≥ ⟨x, y⟩ for any
x ∈ X , y ∈ Y, and equal to +∞ otherwise. Therefore we end-up with the dual problem

inf

{�
X
ϕ(x) dρ(x) +

�
Y
ψ(y) dµ(y) | ϕ ∈ C0(X ), ψ ∈ C0(Y), ϕ⊕ ψ ≥ ⟨x, y⟩

}
. (2.5)

We denote this infimum by J (ρ, µ).
It is immediate to check that J (ρ, µ) ≥ I(ρ, µ). Indeed, for any ϕ, ψ such that ϕ⊕ψ ≥ ⟨x, y⟩,

and any γ ∈ Π(ρ, µ) we have�
X×Y

⟨x, y⟩ dγ(x, y) ≤
�
X×Y

ϕ⊕ ψ dγ(x, y) =

�
X
ϕ(x) dρ(x) +

�
Y
ψ(y) dµ(y).

What is more surprising is that the reverse inequality J (ρ, µ) ≤ I(ρ, µ) is also true. The
resulting equality

I(ρ, µ) = J (ρ, µ) (2.6)

is often referred to as the Kantorovich duality, or strong duality. It holds in great generality,
in Polish spaces and for any lower semi-continuous cost. This is a very classical result, but we
shall not cover it here. We refer instead for instance to [105, Chapter 1].

The problem (2.3) admits a solution (i.e., a maximizer) for any ρ, µ ∈ P2(Rd) (see [106,
Theorem 5.10]). Similarly, the problem (2.5) admits a minimizer for any ρ, µ ∈ P2(Rd), and a
pair (ϕ, ψ) which minimizes (2.5) is called a pair of Kantorovich potentials. But for both (2.3)
and (2.5), the optimizers are not necessarily unique.

2.1.2 Support of optimizers

Let us prove that if γ is a maximizer in (2.3) and (ϕ, ψ) is a minimizer in (2.5), then

supp(γ) ⊂ {(x, y) ∈ X × Y | ϕ(x) + ψ(y) = ⟨x, y⟩}. (2.7)

For this we use (2.6) which yields�
X×Y

((ϕ⊕ ψ)(x, y) − ⟨x, y⟩) dγ(x, y) = 0.

Since ϕ⊕ψ ≥ ⟨x, y⟩, this gives (2.7). The converse is true: if (2.7) holds for some γ ∈ Π(ρ, µ) and
(ϕ, ψ) such that ϕ⊕ ψ ≥ ⟨x, y⟩, then γ and (ϕ, ψ) are solutions of their respective optimization
problems, as a consequence of the definitions of I(ρ, µ), J (ρ, µ), and of the equality (2.6).
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2.1.3 Semi-dual formulation

It is possible to give an equivalent unconstrained formulation of (2.5). Recall the definition
of the Legendre transform:

ϕ∗(y) = sup
x∈Rd

⟨y, x⟩ − ϕ(x). (2.8)

If a function ϕ is defined only over a subset of Rd, we first extend ϕ by +∞ outside this subset
to define its Legendre transform. As a consequence, ϕ∗(y) = supx∈X ⟨y, x⟩ − ϕ(x).

For a given ϕ, the smallest possible ψ that one may choose to satisfy the constraint ϕ⊕ψ ≥
⟨x, y⟩ in (2.5) is ψ = ϕ∗. Similarly, for a given ψ, the smallest possible ϕ that one may choose
is ϕ = ψ∗. Therefore, one has

J (ρ, µ) = inf

{�
X
ϕ dρ+

�
Y
ϕ∗ dµ | ϕ ∈ C0(X )

}
= inf

{�
X
ψ∗ dρ+

�
Y
ψ dµ | ψ ∈ C0(Y)

}
.

This leads us to the semi-dual formulation of (2.5):

inf
ψ∈C0(Y)

�
X
ψ∗ dρ+

�
Y
ψ dµ. (2.9)

If we want to solve (2.9), it seems natural to write the first and second-order optimality
conditions with respect to ψ. This will be done in Section 2.3: the second integral is linear in
ψ, hence easy to differentiate, but the first part is non-linear in ψ.

2.1.4 Convex functions and proof of Brenier’s theorem

For any ϕ, ψ such that ϕ⊕ ψ ≥ ⟨x, y⟩, we have ψ ≥ ϕ∗ and ϕ ≥ ϕ∗∗, hence�
X
ϕ dρ+

�
Y
ψ dµ ≥

�
X
ϕ∗∗ dρ+

�
Y
ϕ∗ dµ.

Recall that a convex function is called proper if it has a non-empty domain, it never takes on
the value −∞ and also it is not identically equal to +∞. The Fenchel-Moreau theorem ensures
that if ϕ is a proper lower semi-continuous convex function, then ϕ∗∗ = ϕ. Therefore, in (2.5) we
may restrict the infimum to the set of pairs (ϕ, ϕ∗) of proper lower semi-continuous conjugate
functions on Rd.

We recall that if ϕ : Rd → R∪ {+∞} is a convex function, then its subdifferential at x ∈ Rd
is defined as

∂ϕ(x) = {v ∈ Rd | ∀z ∈ Rd, ϕ(z) ≥ ϕ(x) + ⟨z − x, v⟩}.
The graph of the subdifferential is

∂ϕ =
⋃
x∈Rd

{x} × ∂ϕ(x).

If ϕ : Rd → R ∪ {+∞} is a proper lower semi-continuous convex function, then for all
x, y ∈ Rd,

ϕ(x) + ϕ∗(y) = ⟨x, y⟩ ⇔ y ∈ ∂ϕ(x) ⇔ x ∈ ∂ϕ∗(y). (2.10)

Indeed,

ϕ(x) + ϕ∗(y) = ⟨x, y⟩ ⇔ ⟨x, y⟩ ≥ ϕ(x) + ϕ∗(y)

⇔ ∀z ∈ Rd, ⟨x, y⟩ ≥ ϕ(x) + ⟨y, z⟩ − ϕ(z)

⇔ ∀z ∈ Rd, ϕ(z) ≥ ϕ(x) + ⟨y, z − x⟩
⇔ y ∈ ∂ϕ(x).
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By symmetry, the other equivalence follows, since ϕ∗∗ = ϕ by the Fenchel-Moreau theorem
(which uses the assumptions on ϕ).

Combining (2.10) and (2.7), we have obtained:

Proposition 2.1. Any optimal transport plan (i.e., any solution of (2.3)) has its support con-
tained in the graph of the subdifferential of a convex function.

The proof of Brenier’s Theorem 1.2 is now straightforward.

Proof of Brenier’s theorem. Let γ be an optimal transport plan, and take ψ a proper lower
semi-continuous function on Rd that solves (2.9). For any (x0, y0) in the support of γ such that
ψ∗ is differentiable at x0, one has y0 = ∇ψ∗(x0) according to Proposition 2.1. Since ψ∗ is a
proper lower semi-continuous convex function on Rd, it is differentiable ρ-almost everywhere.
This implies that γ = (Id,∇ψ∗)#ρ. But ψ and γ have been chosen independently, so for any
other optimal transport plan γ̃ there also holds γ̃ = (Id,∇ψ∗)#ρ. In other words, there is a
unique optimal transport plan γ. If f is another proper lower semi-continuous convex function
such that µ = (∇f)#ρ, then γ̃ = (Id,∇f) satisfies

�
Rd×Rd

⟨x, y⟩ dγ(x, y) ≤
�
Rd
f(x) dρ(x) +

�
Rd
f∗(y) dµ(y) =

�
Rd

(f(x) + f∗(∇f(x))) dρ(x)

=

�
Rd×Rd

⟨x, y⟩ dγ̃(x, y)

where the last equality comes from the Fenchel-Young equality case (2.10). Since γ is the unique
maximizer of (2.3), we get γ̃ = γ, and thus ∇f = ∇ψ∗ ρ-a.e.

2.1.5 Kantorovich-Rubinstein formula

We conclude this section with the following important formula, which we will use several
times.

Theorem 2.2 (Kantorovich-Rubinstein duality formula). For any µ, ν probability measures on
a compact set Y ⊂ Rd,

W1(µ, ν) = sup

{�
Y
fdµ−

�
Y
fdν | Lip(f) ≤ 1

}
. (2.11)

More generally, for any µ, ν probability measures on a Polish space Y (i.e., a complete, separable,
metric space, with distance denoted by dist(·, ·)),

inf
γ∈Π(µ,ν)

�
Y×Y

dist(x, y)dγ(x, y) = sup

{�
Y
fdµ−

�
Y
fdν | Lip(f) ≤ 1

}
. (2.12)

In these notes, we will only need the inequality ≥, which is easy to prove. For any γ ∈ Π(µ, ν)
and any 1-Lipschitz function f ,�

Y
f dµ−

�
Y
f dν =

�
Y×Y

(f(x) − f(y)) dγ(x, y) ≤
�
Y×Y

dist(x, y) dγ(x, y).

Taking the infimum over γ ∈ Π(µ, ν) in the right-hand side, and the supremum over 1-Lipschitz
functions f in the left-hand side, we get that in (2.11) the left-hand side is larger than the
right-hand side. For the converse inequality, which is another instance of Kantorovich duality,
we provide references at the end of this chapter. The version of the Kantorovich-Rubinstein
duality formula in Polish spaces will be useful for us when dealing with Wasserstein barycenters,
in Section 5.2.
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2.2 Proof of Theorem 1.9

With the Kantorovich potentials at hand, we will be able to give in this section a short proof
of Gigli’s Theorem 1.9, which we recall here for convenience.

Theorem (Stability near regular optimal transport maps). Let ρ be a probability measure on
Rd, absolutely continuous with respect to the Lebesgue measure, and with compact support. Let
Y ⊂ Rd be compact, and K > 0. Let µ, ν ∈ P(Y). If the optimal transport map Tµ from ρ to µ
is K-Lipschitz, then

∥Tµ − Tν∥L2(ρ) ≤ CW1(µ, ν)1/2

where C = (2Kdiam(supp(ρ)))1/2.

We start with a classical result which turns the Lipschitzness assumption on Tµ into strong
convexity of ψµ. For this we need the following definitions.

Definition 2.3. For K > 0, a function ϕ : Rd → R is K-smooth if K2 |x|
2 −ϕ(x) is convex, i.e.,

ϕ((1 − t)x0 + tx1) +
Kt(1 − t)

2
|x0 − x1|2 ≥ (1 − t)ϕ(x0) + tϕ(x1),

for any x0, x1 ∈ Rd and t ∈ [0, 1]. For λ > 0, a function ψ : Rd → R is λ-strongly convex if
ψ(y) − λ

2 |y|
2 is convex, i.e., for any y0, y1 ∈ Rd and t ∈ [0, 1],

ψ((1 − t)y0 + ty1) +
λt(1 − t)

2
|y0 − y1|2 ≤ (1 − t)ψ(y0) + tψ(y1). (2.13)

When ϕ, ψ ∈ C2, the first condition is simply D2ϕ ≤ K, and the second condition is D2ψ ≥ λ.
Now, if ϕ and ϕ∗ are C2 convex functions, differentiating the identity ∇ϕ(∇ϕ∗) = Id (which
comes from (2.10)) we get (∇2ϕ∗)−1 = ∇2ϕ(∇ϕ∗), and thus ∥∇2ϕ∥L∞ ≤ K if and only if
∇2ϕ∗ ≥ 1

K , i.e., ϕ is K-smooth if and only if ϕ∗ is K−1-strongly convex. This result is actually
true without assuming that ϕ, ϕ∗ are C2 (see [73, Lemma 2.2] for a proof):

Lemma 2.4. Let ϕ : Rd → R be a convex function. Then ϕ is K-smooth if and only if ϕ∗ is
λ-strongly convex for λ = K−1.

In the sequel, if f ∈ C0(Y) and µ is a real-valued Radon measure on Y, then we set

⟨f | µ⟩ =

�
Y
fdµ. (2.14)

The (distinct) notation ⟨·, ·⟩ denotes the Euclidean scalar product in Rd.
The proof of Theorem 1.9 mainly relies on the following inequality:

Lemma 2.5. Under the assumptions of Theorem 1.9, there holds

⟨ψµ − ψν | ν − µ⟩ ≥ 1

2K
∥Tν − Tµ∥2L2(ρ) (2.15)

where (ϕµ, ψµ) (resp. (ϕν , ψν)) is a pair of Kantorovich potentials associated to the transport
from ρ to µ (resp. ρ to ν).
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Proof of Lemma 2.5. Since µ = (Tµ)#ρ and ν = (Tν)#ρ we have

⟨ψµ | ν − µ⟩ =

�
Rd

(ψµ(Tν(x)) − ψµ(Tµ(x)))dρ(x).

Since Tµ is K-Lipschitz, ϕµ is K-smooth and therefore ψµ = ϕ∗µ is K−1-strongly convex by
Lemma 2.4. Hence, letting t→ 0 in (2.13), we get that

ψµ(y) − ψµ(z) ≥ ⟨y − z, v⟩ +
1

2K
|y − z|2

for any v ∈ ∂ψµ(z). Now we fix x in the support of ρ and choose y = Tν(x) and z = Tµ(x).
Therefore z ∈ ∂ϕµ(x) (see Proposition 2.1) and (2.10) yields x ∈ ∂ψµ(z). We deduce

⟨ψµ | ν − µ⟩ ≥
�
Rd

(
⟨Tν(x) − Tµ(x), x⟩ +

1

2K
|Tν(x) − Tµ(x)|2

)
dρ(x).

Since ψν is also convex (but not necessarily strongly convex), choosing y = Tµ(x) and z = Tν(x)
we obtain similarly

⟨ψν | µ− ν⟩ ≥
�
Rd
⟨Tµ(x) − Tν(x), x⟩ dρ(x).

Adding the two previous inequalities we get (2.15).

End of the proof of Theorem 1.9. Using the Kantorovich-Rubinstein duality formula (2.11), we
get that the left-hand side of (2.15) is bounded above by Lip(ψµ − ψν)W1(µ, ν). Finally, to
conclude the proof, it remains to observe that ψµ − ψν is diam(X )-Lipschitz. Essentially this is
due to the fact that ∂ψµ and ∂ψν are subsets of the support of ρ. Here is a formal proof: if y, y′ ∈
Y, let x, x′ in the support of ρ such that ψµ(y) = ⟨y, x⟩ − ϕµ(x) and ψν(y′) = ⟨y′, x′⟩ − ϕν(x′).
These points exist due to (2.7) and (2.10). Then

(ψµ − ψν)(y) − (ψµ − ψν)(y′) = ψµ(y) − ψµ(y′) + ψν(y′) − ψν(y)

≤ ⟨y − y′, x⟩ + ⟨y′ − y, x′⟩ ≤ |y − y′|diam(X ).

Exchanging the roles of y and y′ we get the Lipschitz bound and Theorem 1.9 follows.

2.3 The Kantorovich functional: definition and derivatives

The Kantorovich functional is defined as

Kρ : ψ 7→
�
X
ψ∗dρ (2.16)

for ψ ∈ C0(Y). This functional is one part of the quantity appearing in the semidual formulation
(2.9). We prove here (some kind of) strong convexity of this functional under some assumptions
on ρ, and explain how it implies stability properties for Kantorovich potentials. The other term�
ψdµ which appears in (2.9) is linear in ψ and thus does not affect the convexity properties of

Kρ. Also, it is immediate to see that Kρ is convex, since it is a convex combination of the convex
functions ψ 7→ ψ∗(x).

Let us explain on a basic example how one can deduce stability from strong convexity. Let
f : Rd → R with D2f ≥ cId for some c > 0, where D2f denotes the Hessian of f . Then for any
x1, x2 ∈ Rd,

c∥x1 − x2∥2 ≤ ⟨∇f(x1) −∇f(x2), x1 − x2⟩ ≤ |x1 − x2||∇f(x1) −∇f(x2)| (2.17)
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x

y

x1 x2

y = f(x)

∇f(x2)

∇f(x1)

Figure 2: For a strongly convex function f , if ∇f(x1) and ∇f(x2) are close to each other, then
x1 and x2 are close to each other.

hence |x1 − x2| ≤ c−1|∇f(x1) −∇f(x2)|. In particular, if ∇f(x1) and ∇f(x2) are close to each
other, then x1 and x2 are close to each other. In other words, strong convexity of f implies that
the map ∇f(x) 7→ x is well-defined and stable.

To prove our main results, we shall develop an analogous computation for f = Kρ the
Kantorovich functional, defined on C0(Y) instead of Rd. We will see that if Kρ is taken as (2.16)
below, then for ψ ∈ C0(Y) the gradient ∇Kρ(ψ) is a measure, and

∇Kρ(ψ) = −(∇ψ∗)#ρ. (2.18)

In particular, ∇Kρ(ψµ) = −µ for ψµ the dual Kantorovich potential from ρ to µ. The above
computations show (heuristically) that if one is able to prove that Kρ is strongly convex in some
sense, then one gets a stability inequality of the form

µ, ν close to each other ⇒ ψµ, ψν close to each other.

If we consider again Lemma 2.5 under this new light, we see that it plays the role of the
left-hand side inequality in (2.17). And the Kantorovich-Rubinstein duality formula replaces
the Cauchy-Schwarz inequality used in (2.17), and yields an upper bound on

⟨ψµ − ψν | ν − µ⟩

since ψµ and ψν are Lipschitz by the following observation, which we will use many times:

Lemma 2.6. If X ⊂ Rd is a compact set and f ∈ C0(X ), then the Legendre transform f∗ is
Lipschitz, with Lipschitz constant at most supx∈X |x|.

Proof of Lemma 2.6. Let y, y′ ∈ Rd. Let x such that f∗(y) = ⟨x, y⟩ − f(x). Then

f∗(y) − f∗(y′) = ⟨x, y⟩ − f(x) − f∗(y′) ≤ ⟨x, y − y′⟩ ≤ |x||y − y′|.

Reversing the roles of y and y′, we get the result.

To study the (strong) convexity of Kρ, we compute its first two derivatives. The equality
(2.19) below is a formal writing of (2.18).

29



Lemma 2.7. Let ϕ0, ϕ1 ∈ C2(Rd) be strongly convex functions. Define ψ0 = ϕ∗0, ψ1 = ϕ∗1, and
v = ψ1 − ψ0. For t ∈ [0, 1], define ψt = ψ0 + tv, and finally ϕt = ψ∗

t . Then, ϕt is a strongly
convex function, belongs to C2(Rd), and

d

dt
Kρ(ψt) = −

�
X
v(∇ϕt(x))dρ(x) (2.19)

d2

dt2
Kρ(ψt) =

�
X
⟨∇v(∇ϕt(x)), D2ϕt(x) · ∇v(∇ϕt(x))⟩dρ(x). (2.20)

Proof. A perfectly rigorous proof may be found in [42, Proposition 2.2]. Here, we shall remain
at a formal level, assuming that all objects are well-defined. The maximum in

max
y∈Y

⟨x, y⟩ − ψt(y)

is attained at yx ∈ Y for which x = ∇ψt(yx), which is equivalent to yx = ∇ψ∗
t (x) according to

(2.10). Therefore, by the envelope theorem,

ψ∗
t+ε(x) = max

y∈Y
⟨x, y⟩ − ψt(y) − εv(y) = ψ∗(x) − εv(∇ψ∗

t (x)) + o(ε) (2.21)

as ε→ 0. In other words d
dtψ

∗
t (x) = −v(∇ψ∗

t (x)), and integrating against ρ we get (2.19).
For (4.24), applying (2.19) to ψt we see that we need to evaluate

d

dt

�
X
v(∇ϕt(x))dρ(x).

Using the chain rule and the fact that

d

dt
∇ϕt(x) = ∇ d

dt
ϕt(x) = ∇ d

dt
ψ∗
t (x) = −D2ϕt(x) · ∇v(∇ϕt(x))

due to (2.21), we get (4.24).

2.4 Brascamp-Lieb and Prékopa-Leindler inequalities

In this section, we make a small detour in the world of functional inequalities: indeed, to
show the strong convexity of the functional Kρ, the Brascamp-Lieb inequality (due to Herm Jan
Brascamp and Eliott Lieb in 1976) will play a key role. Therefore, in this section, we state and
prove this inequality, which is a kind of Poincaré inequality with respect to log-concave densities.
It can be proved as a consequence of the following inequality due to Prékopa and Leindler.

Theorem 2.8 (Prékopa-Leindler inequality). Let f, g, h : Rd → [0,∞) be integrable functions
and 0 < λ < 1. Assume that for any x, y ∈ Rd,

h(λx+ (1 − λ)y) ≥ fλ(x)g1−λ(y). (2.22)

Then, �
Rd
h ≥

(�
Rd
f

)λ(�
Rd
g

)1−λ
.

Before showing Theorem 2.8, let us explain its relation to the classical Brunn-Minkowski
inequality, which asserts that for any two compact subsets A,B of Rd,

|A+B|1/d ≥ |A|1/d + |B|1/d (2.23)

30



where | · | denotes the d-dimensional volume. The Prékopa-Leindler inequality is actually a
functional version of the Brunn-Minkowski inequality: for instance, Theorem 2.8 implies (2.23),

as shown by the following elementary argument. Let m = |A|1/d + |B|1/d and let λ = |A|1/d
m , so

that 1 − λ = |B|1/d
m . Applying Theorem 2.8 with f = 1

Ã
, g = 1

B̃
and h = 1

λÃ+(1−λ)B̃ where

Ã = 1
|A|1/dA and B̃ = 1

|B|1/dB (both Ã and B̃ have volume 1) we get

1 ≤ |λÃ+ (1 − λ)B̃| =
∣∣∣A+B

m

∣∣∣
from which (2.23) follows.

Proof of Theorem 2.8. We first show that it is sufficient to prove the result in dimension d = 1.
Assume that Theorem 2.8 holds in dimensions d1 and d2, and let us show that it also holds in
dimension d = d1 + d2. Let f, g, h satisfy the assumptions in dimension d = d1 + d2, and notice
that the functions f(x1, ·), g(y1, ·) and h(λx1 + (1 − λ)y1, ·) satisfy (2.22) (in dimension d2).
Therefore,

∥h(λx1 + (1 − λ)y1, ·)∥L1(Rd2 ) ≥ ∥f(x1, ·)∥λL1(Rd2 )∥g(y1, ·)∥1−λL1(Rd2 )

Defining H(x1) = ∥h(x1, ·)∥L1(Rd2 ) and similarly F,G, we have

H(λx1 + (1 − λ)y1) ≥ F (x1)
λG(y1)

1−λ.

Applying Theorem 2.8 (in dimension d1) we get

∥H∥L1(Rd1 ) ≥ ∥F∥λ
L1(Rd2 )∥G∥

1−λ
L1(Rd2 ).

But ∥H∥L1(Rd1 ) = ∥h∥L1(Rd1+d2 ) according to Tonelli’s theorem, and similarly for F,G, which
concludes the proof in dimension d = d1 + d2.

There remains to show that Theorem 2.8 holds for d = 1. By homogeneity we may assume�
R f =

�
R g = 1. We may also assume by an approximation argument that f, g are continuous

and positive. We consider the probability measures dµ(x) = f(x)dx and dν(x) = g(x)dx, and
denote by Fµ(t) =

� t
−∞ f(x)dx and Fν(t) =

� t
−∞ g(x)dx their cumulant functions. Consider

T = F−1
ν ◦ Fµ the optimal transport map from µ to ν, which is monotone according to Section

1.3 (even strictly monotone, since we assumed f, g > 0). The change of variables formula
yields f(x) = g(T (x))T ′(x). Applying (2.22) with y = T (x) and using the change of variables
z = λx+ (1 − λ)T (x), we get

�
R
h(z)dz =

�
R
h(λx+ (1 − λ)T (x))(λ+ (1 − λ)T ′(x))dx ≥

�
R
fλ(x)g1−λ(T (x))T ′(x)1−λdx

=

�
R
fλ(x)f1−λ(x)dx = 1

where we used the arithmetic-geometric inequality λa+ (1 − λ)b ≥ aλb1−λ.

It is also possible to prove the Prékopa-Leindler inequality directly in dimension d using a
generalization of the above one-dimensional argument, see [105, Section 6.1.4].

We now state the Brascamp-Lieb inequality and provide a proof extracted from Bobkov-
Ledoux [12] (see also [65, Exercise 2.2.11]). Recall that a probability density σ on a convex
set Q ⊂ Rd is called logarithmically concave, or log-concave, if there exists a convex function
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V : Q → R such that σ = e−V . Also, recall that the variance of a function f with respect to a
probability measure ρ on a set X is defined as

Varρ(f) =

�
X

(
f −

�
X
fdρ

)2

dρ

and that it may be characterized as

Varρ(f) = min
λ∈R

�
X

(f − λ)2dρ. (2.24)

Theorem 2.9 (Brascamp-Lieb variance inequality). Let ρ0 = e−V dx be a probability measure
on Rd, where V ∈ C2(Rd) is assumed to be strictly convex. Then every smooth function f on
Rd verifies

Varρ0(f) ≤
�
Rd
⟨∇f, (D2V )−1∇f⟩dρ0.

As we said already, the Brascamp-Lieb inequality is a kind of Poincaré inequality with respect
to log-concave densities. Its strength is that for an arbitrary strictly convex V ∈ C2(Rd), the
Poincaré constant is 1.

Proof of Theorem 2.9. For u : Rd → R ∪ {+∞}, let

I(u) = log

�
Rd
e−u

∗
.

It follows from the definition of the Legendre transform that

(λu+ (1 − λ)v)∗(λx+ (1 − λ)y) ≤ λu∗(x) + (1 − λ)v∗(y).

Hence applying Theorem 2.8 to f = e−u
∗
, g = e−v

∗
and h = e−(λu+(1−λ)v)∗ , we get that

eI(λu+(1−λ)v) =

�
Rd
e−(λu+(1−λ)v)∗ ≥

(�
Rd
e−u

∗
)λ(�

Rd
e−v

∗
)1−λ

= eλI(u)+(1−λ)I(v)

which means that I is concave. Let us compute the second derivative of I. First, letting
ut = u+ tw,

d

dt
eI(ut) =

d

dt

�
Rd
e−u

∗
t =

�
Rd
w(∇u∗t )e−u

∗
t

thus
d

dt
I(ut) = e−I(ut)

�
Rd
w(∇u∗t )e−u

∗
t .

Then

d2

dt2
I(ut) =

(
− d

dt
I(ut)

)
e−I(ut)

�
Rd
w(∇u∗t )e−u

∗
t + e−I(ut)

�
Rd

d

dt

(
w(∇u∗t )e−u

∗
t

)
= −

(
e−I(ut)

�
Rd
w(∇u∗t )e−u

∗
t

)2

+ e−I(ut)
�
Rd
w(∇u∗t )2e−u

∗
t

− e−I(ut)
�
Rd
⟨(D2u∗t )∇w(∇u∗t ),∇w(∇u∗t )⟩e−u

∗
t

= Varρt(f) −
�
Rd
⟨(D2u∗t )

−1∇f,∇f⟩dρt.
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where ρt = e−I(ut)e−u
∗
t = e−u

∗
t

�
Rd e

−u∗t
and f = w ◦ ∇u∗t . Hence for any f (since ∇u∗t is a diffeomor-

phism)

Varρt(f) ≤
�
Rd
⟨(D2u∗t )

−1∇f,∇f⟩dρt.

Taking t = 0 and u = V ∗, i.e., u∗0 = u∗ = V , this concludes the proof.

For the application we have in mind, we need the following version of the Brascamp-Lieb
inequality in compact convex sets (instead of Rd), which can be deduced from Theorem 2.9 by
an elementary approximation argument:

Theorem 2.10 (Brascamp-Lieb inequality in compact convex sets). Let X ⊂ Rd be a compact,
convex set and let ρ0 = e−V dx be a probability measure on X , where V ∈ C2(X ) is assumed to
be strictly convex. Then every smooth function f on X verifies

Varρ0(f) ≤
�
X
⟨∇f, (D2V )−1∇f⟩dρ0

2.5 Variance inequality in compact convex sets

In this section, we prove a “variance inequality”, i.e., an upper bound on the variance of
the difference of two Kantorovich potentials corresponding to two different target measures. It
reflects a form of strong convexity of Kρ. The estimate (2.25) below, proved thanks to the
Brascamp-Lieb inequality, will be of fundamental importance in the sequel.

Theorem 2.11 (Variance inequality for Kantorovich potentials). Let Q ⊂ Rd be a compact
convex set with non-empty interior, let σ be a log-concave probability density over Q and let ρ be
another probability density over Q satisfying mρσ ≤ ρ ≤Mρσ for some constants Mρ ≥ mρ > 0.
Let Y ⊂ Rd be a compact set, and let RY = maxy∈Y ∥y∥. Then, for all ψ0, ψ1 ∈ C0(Y),

mρ

Mρ

1

eRYdiam(Q)
Varρ(ψ

∗
1 − ψ∗

0) ≤ ⟨ψ1 − ψ0 | ∇ψ∗
0#ρ−∇ψ∗

1#ρ⟩. (2.25)

An example to keep in mind is when σ is the characteristic function of Q, normalized to be
a probability density. Another important example is when ρ itself is log-concave, in which case
we may take σ = ρ and mρ/Mρ = 1.

The inequality (2.25) is not exactly a strong convexity estimate on Kρ since primal (and not
dual) Kantorovich potentials appear in the left-hand side. In the original proof of [42], a true
strong convexity estimate with dual potentials was obtained. However it was not strong enough
to imply Theorem 1.10, contrarily to (2.25). Moreover, the constant in (2.25) is dimension-free,
whereas the estimate in [42] was not.

Proof of Theorem 2.11. Fix ψ0, ψ1 ∈ C0(Y). Let v = ψ1−ψ0 and ψt = ψ0 + tv = (1− t)ψ0 + tψ1

for t ∈ [0, 1]. Set also ϕt = ψ∗
t . In the sequel, we assume that ϕt has all the nice properties

which make the involved objects well-defined, in particular we assume that Lemma 2.7 applies
and that ψ0, ψ1 are C2. The reduction to this case relies on approximation arguments written
in detail in [72], which we do not reproduce here. Readers might wonder how it is possible to
reduce to a case where so much regularity is assumed: at first sight, this puts us in the setting of
Theorem 1.5, where the Lipschitzness of Tµ yields a C1,1 bound on ψµ. However, the key point
here is that the final estimate (2.25) does not involve any bound on the regularity of primal and
dual potentials, whereas the Lipschitz constant of Tµ appears explicitly in the constant C in
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Theorem 1.5. Therefore, (2.25) is amenable to regularization arguments, whereas Theorem 1.5
is not.

We have

⟨ψ1 − ψ0 | ∇ψ∗
0#ρ−∇ψ∗

1#ρ⟩ =
d

dt
Kρ(ψt)

∣∣∣
t=1

− d

dt
Kρ(ψt)

∣∣∣
t=0

=

� 1

0

d2

dt2
Kρ(ψt)dt

=

� 1

0

�
Q
⟨∇v(∇ϕt), D2ϕt · ∇v(∇ϕt)⟩dρdt

according to Lemma 2.7. We introduce wt(x) = v(∇ϕt(x)), then ∇wt = D2ϕt · ∇v(∇ϕt), and
we get �

Q
⟨∇v(∇ϕt), D2ϕt · ∇v(∇ϕt)⟩dρ =

�
Q
⟨∇wt, (D2ϕt)

−1 · ∇wt⟩dρ (2.26)

(D2ϕt is invertible thanks to Lemma 2.4, because we assumed that ψ0, ψ1 are C2).
There is a first approach to lower bound the last expression by directly applying the Brascamp-

Lieb inequality (with ρ0 = e−ϕt , properly normalized). This approach has the drawback that it
yields a constant in (2.25) much worse than the one stated, in particular not good enough to
prove Theorem 1.10.

To circumvent this, we write σ = e−V and set ρt = Z−1
t e−V−ϕt where Zt is a normalizing

constant, so that ρt is a probability measure. The idea is to apply the Brascamp-Lieb inequality
with ρt. For this, we need to replace ρ by ρt in the right-hand side of (2.26). We denote by mt

and Mt the minimum and the maximum of ϕt(x) over x ∈ Q, and let r = supt∈[0,1]Mt−mt. We
get

ρt(x) ≥ Z−1
t e−Mtσ ≥ Z−1

t e−MtM−1
ρ ρ,

ρt(x) ≤ Z−1
t e−mtσ ≤ Z−1

t e−mtm−1
ρ ρ.

In particular, using (2.24),

Varρt(f) =

�
X
|f − f |2dρt ≥ α

�
X
|f − f |2dρ ≥ αVarρ(f) (2.27)

where α = Z−1
t e−MtM−1

ρ and f =
�
X fdρt. Then

�
Q
⟨∇wt, (D2ϕt)

−1 · ∇wt⟩dρ ≥
�
Q
⟨∇wt, (D2ϕt +D2V )−1 · ∇wt⟩dρ

≥ Zte
mtmρ

�
Q
⟨∇wt, (D2ϕt +D2V )−1 · ∇wt⟩dρt

≥ Zte
mtmρVarρt(wt) (due to Theorem 2.10)

≥ emt−Mt
mρ

Mρ
Varρ(wt) (due to (2.27))

≥ e−r
mρ

Mρ
Varρ(wt).

Integrating this inequality over t ∈ [0, 1], there remains to lower bound
� 1
0 Varρ(wt)dt. We notice

that d
dtϕt(x) = −v(∇ϕt(x)) = −wt(x) due to the same computation as in (2.21). Therefore we

deduce from Minkowski’s inequality
� 1

0
Varρ(wt)dt ≥ Varρ

(� 1

0
wt dt

)
= Varρ

(� 1

0

dϕt
dt

dt

)
= Varρ(ϕ1 − ϕ0).
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All in all,

⟨ψ1 − ψ0 | ∇ψ∗
0#ρ−∇ψ∗

1#ρ⟩ ≥ e−r
mρ

Mρ
Varρ(ϕ1 − ϕ0). (2.28)

A scaling argument will allow us to replace e−r by 1/er. Given λ > 0, we notice that
(λψ)∗ = λψ∗(·/λ). Applying the previous inequality to the functions ψλi = λψi and to the
dilated probability density ρλ = (x 7→ λ−1x)#ρ, and remarking that both Mt and mt are
multiplied by λ under this scaling, we get

λ⟨ψ1 − ψ0|∇ψ∗
0#ρ−∇ψ∗

1#ρ⟩ ≥
mρ

Mρ
e−λrλ2Varρ(ψ

∗
1 − ψ∗

0).

Choosing λ = r−1, we see that we can replace the constant e−r in (2.28) by 1/er.
Finally, there remains to control r. Let x, x′ ∈ Q, and y ∈ Y such that ϕt(x) = ⟨x, y⟩−ϕ∗t (y).

Then
ϕt(x

′) ≥ ⟨x′, y⟩ − ϕ∗t (y) = ⟨x′ − x, y⟩ + ϕt(x) ≥ −diam(Q)RY + ϕt(x). (2.29)

Therefore Mt −mt ≤ diam(Q)RY , and taking the supremum over t ∈ [0, 1] we get that r has
the same upper bound, which concludes.

Remark 2.12. At this point, it is possible to conclude the proof of the stability of Kantorovich
potentials when ρ is supported on a compact, convex set, and bounded above and below on its
support (i.e., (1.30) when X is assumed to be convex). This recovers, with an improved constant,
a result due to Delalande and Mérigot [42] (after anterior work by Berman, see the bibliographical
notes in Section 2.7). For this, one just needs to take ψ0 = ψµ, ψ1 = ψν , and upper bound the
right-hand side in (2.25) thanks to the Kantorovich-Rubinstein duality formula. This is very
similar to the argument at the end of the proof of Theorem 1.9 in Section 2.2.

2.6 Stability of Kantorovich potentials for log-concave sources

In this section, we prove the first part of Theorem 1.10, namely (1.27). The key steps for
this are to truncate the primal Kantorovich potentials in large balls, apply Theorem 2.11 and
show that we do not lose too much by this truncation argument.

Let ϕµ, ϕν be the Kantorovich potentials in the quadratic optimal transport problems from
ρ to µ and ρ to ν respectively. For r > 0 we set Br = B(0, r) and we denote by ϕµ,r, ϕν,r the
restriction of ϕµ and ϕν to Br, extended by +∞ outside Br. Then we set

ρr =
ρ|Br
ρ(Br)

, µr = (∇ϕµ,r)#ρr, νr = (∇ϕν,r)#ρr.

We also consider the dual Kantorovich potentials ψµ,r = ϕ∗µ,r, ψν,r = ϕ∗ν,r and recall that
ψ∗
µ,r = ϕµ,r and ψ∗

ν,r = ϕν,r.
We apply Theorem 2.11 to ρr, taking for σ the unique probability density over Br whose

density is proportional to e−U (recall that ρ = e−U−F ). This gives

Varρr(ϕµ,r − ϕν,r) ≤ Cρ,Yr⟨ψν,r − ψµ,r | µr − νr⟩.

Since ψµ,r−ψν,r is r-Lipschitz (by a similar computation to (2.29)), we obtain by the Kantorovich-
Rubinstein duality formula (2.11) that

Varρr(ϕµ,r − ϕν,r) ≤ Cρ,Yr
2W1(µr, νr).

Using various truncation estimates which we do not detail here (but which are detailed in [72]),
we get

Varρ(ϕµ − ϕν) ≤ Cρ,Y
(
r2W1(µ, ν) + r2m0(r) +m1(r)

2 +m2(r)
)
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where

mℓ(r) =

�
Rd\Br

|x|ℓdρ(x).

Observe that mℓ(r) ≤ Cρ,ℓr
d+ℓ−2e−

1
2
κr2 since D2U ≥ κId. Now, we notice that the quantity

∥ϕµ∥L2(ρ) is uniformly bounded over µ ∈ P(Y), since ϕµ is RY -Lipschitz (due to Lemma 2.6),
has vanishing mean, and ρ has a finite second moment. Hence, ∥ϕµ − ϕν∥L2(ρ) is uniformly
bounded over µ, ν ∈ P(Y), and we may assume W1(µ, ν) < 1 since otherwise the inequality
(1.27) is trivial. Finally, we optimize over r, by taking

r = (4κ−1| logW1(µ, ν)|)1/2.

This yields (1.27).

2.7 Bibliographical notes

§2.1: Monge’s original paper is [80]. The dual formulation of the Monge problem was in-
troduced by Kantorovich, the founding father of linear programming, in [61]. His goal was to
solve concrete problems for the Russian industry. The foreword to the English translation of
his paper [61], written by an American scientist in the journal Management Science in 1958, is
an historical gem: “[...] It is to be noted, however, that the problem of determining an effective
method of actually acquiring the solution of a specific problem is not solved in this paper. In
the category of development of such methods we seem to be currently, ahead of the Russians.”

For a smooth introduction to duality in optimal transport, we refer to [105, Chapter 1].
Brenier’s theorem was proved in [20], after several works by many authors, among which Knott
and Smith, and Rachev and Rüschendorf. The strong duality theorem (2.6) can be formulated
for general costs, see [106, Theorem 5.10]. The Kantorovich-Rubinstein formula is a particular
case of this strong duality, when the cost is the distance function: c(x, y) = |x− y|.

§2.2: The first result similar to Theorem 1.9 is due to Gigli [53], and in the form stated in
Section 2.2 it is due to Mérigot-Delalande-Chazal [79]. Similar ideas have been developed later
for numerical purposes (see for instance [73]) and in statistical optimal transport (see Section
5.1).

§2.3: For a rigorous proof of Lemma 2.7, see [42, Proposition 2.2].

§2.4: The Prékopa-Leindler inequality dates back to [92], [69], and the Brascamp-Lieb in-
equality to [18]. We refer to [105, Chapter 6] for a nice presentation of these inequalities, and
related ones. The Brascamp-Lieb inequality in compact convex sets (Theorem 2.10) is a par-
ticular case of [71], [66], but in the simple Euclidean setting considered here, it follows directly
from Theorem 2.9.

§2.5: Berman [11] was the first to prove an inequality of the form (2.25), using complex geom-
etry. In his result corresponding to the variance inequality (2.25), the right-hand side is raised to
the power 1/2d−1, which makes it non-optimal. Inspired by his paper, Mérigot-Delalande-Chazal
proved in [79] the inequality ∥Tµ−Tν∥L2(ρ) ≤ CWp(µ, ν)2/15, using a very instructive proof tech-
nique. Their arguments are a sort of “discrete version” of the arguments later developed in [42].
They first rely on an approximation argument allowing them to assume that µ, ν are discrete,
and then they leverage specific features of semi-discrete optimal transport, notably the geometry
of Laguerre cells. In their paper, the Brunn-Minkowski inequality (2.23) plays the same role as
the Brascamp-Lieb inequality in [42] and in the proof of Theorem 2.11 presented above. In the
paper [42], Delalande and Mérigot prove the same inequality as in Theorem 2.11, except with a
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dimension-dependent constant which is worse constant than ours (notably because they do not
compare ρ to a log-concave measure σ). Inspired by the paper [81] by Mischler and Trevisan,
which proves a variance inequality with a good constant for log-concave source measures, we
found with Mérigot in [72] the simple proof of Theorem 2.11 presented in Section 2.5, which
shortcuts several arguments of [42]. The approximation arguments which are not presented in
the proof of Theorem 2.11 above are written in detail in [72].

Another approach to variance inequalities is possible, using entropic optimal transport and
the Prékopa-Leindler inequality. This approach is presented in Chapter 4.
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3 Gluing methods

In this chapter, we pursue a broad generalization of the results from the previous chapter.
To this end, we introduce what we call gluing methods (not to be confused with the ‘gluing
lemma’ in optimal transport). These methods combine two key ingredients: on the one hand,
decompositions of domains and measures into local pieces, to which the techniques of Chapter
2 apply; on the other hand, arguments that assemble these local estimates into global ones.
The approach is inspired by proofs of Sobolev–Poincaré inequalities developed in the 1980s.
We then present in Section 3.7 a series of examples and counterexamples, providing explicit
source and target measures for which optimal transport maps can be computed. These cases
serve both to test the optimality of the main results and to illustrate the sharpness of their
assumptions. They also demonstrate how optimal transport maps can be computed explicitly
in concrete situations, thereby making the stability theory more tangible. We finally explain
in Section 3.8 how quantitative stability estimates on optimal transport maps can be derived
from the quantitative stability of Kantorovich potentials. These estimates are likely not optimal,
and this part of the theory remains therefore not entirely satisfactory. However, at the time of
writing, the results presented here represent the current state of the art.

3.1 Gluing arguments in a nutshell

This section remains at a panoramic level, while complete arguments are provided in the
next sections. We start with a toy example. Let Q1, Q2 be two open sets in Rd such that
Q1 ∩ Q2 ̸= ∅, and let ρ be a probability density over Q1 ∪ Q2, bounded above and below on
Q1 ∪Q2. For i = 1, 2, let

ρQi =
ρ|Qi
ρ(Qi)

(3.1)

be the restriction of ρ to Qi, normalized to be a probability measure. We show that

Varρ(f) ≤ C(VarρQ1
(f) + VarρQ2

(f)) (3.2)

for some explicit constant C, roughly proportional to the quotient max(ρ(Q1), ρ(Q2))/ρ(Q1∩Q2).
This is a quantitative version of the fact that if f is constant on Q1 and constant on Q2, then
it is constant on Q1 ∪Q2, since Q1 ∩Q2 ̸= ∅. The less Q1 and Q2 overlap, the larger C has to
be; and if Q1 ∩Q2 = ∅, then (3.2) becomes false.

We will prove a general version of (3.2) for a finite or infinite collection F of well-chosen
sets Qi (often chosen to be cubes) whose union is equal to the whole domain X :

Varρ(f) ≤ C
∑
Qi∈F

ρ(Qi)VarρQi (f) (3.3)

for some C < +∞ (and any f). For this inequality to be true, one has to make some assumptions
on ρ; and to carefully design the family F .

3.1.1 From (3.3) to the stability of Kantorovich potentials.

Once (3.3) is shown, it takes only a few lines to complete the proof of the stability of
Kantorovich potentials. For instance, if the Qi are cubes covering X ⊂ Rd, what we need to
assume is:

(1) the variation of ρ on each cube is uniformly bounded over F :

sup
Qi∈F

supQi ρ

infQi ρ
≤ E < +∞ (3.4)
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(2) there exists A > 0 such that any Qi ∈ F intersects at most A other cubes Qj ∈ F (including
itself).

So let us show how to deduce stability of Kantorovich potentials from (3.3).
Claim. There exists C ′ > 0 such that ψ0, ψ1 ∈ C0(Y), there holds

Varρ(ψ
∗
1 − ψ∗

0) ≤ C ′⟨ψ0 − ψ1 | (∇ψ∗
1)#ρ− (∇ψ∗

0)#ρ⟩. (3.5)

Proof of the claim. For this we apply Theorem 2.11 in each cube Qi, to ρQi defined by (3.1)
(with σ the normalized Lebesgue measure on Qi). We get

VarρQi (ψ
∗
1 − ψ∗

0) ≤ eERYdiam(X )⟨ψ0 − ψ1 | (∇ψ∗
1)#ρQi − (∇ψ∗

0)#ρQi⟩ (3.6)

Combining with (3.3) we get

Varρ(f) ≤ CeERYdiam(X )
∑
Qi∈F

⟨ψ0 − ψ1 | (∇ψ∗
1)#ρ|Qi − (∇ψ∗

0)#ρ|Qi⟩ (3.7)

(recall that ρ|Qi is simply the restriction of ρ to Qi, not renormalized). The right-hand side in
(3.7) is a sum of positive terms (due to (3.6)) and

∑
ρ|Qi ≤ Aρ (when absolutely continuous

measures and densities are identified), so (3.5) is almost proved.
Here is a formal proof. We define a partition F ′ of X into convex sets as follows: x, x′ ∈ X

belong to the same element P ∈ F ′ if and only if they belong exactly to the same elements in
F . Each P ∈ F ′ is an intersection of nP ≤ A cubes according to (2), thus it is convex. The sum
in (3.7) may be written equivalently as∑

P∈F ′

nP ⟨ψ0 − ψ1 | (∇ψ∗
1)#ρ|P − (∇ψ∗

0)#ρ|P ⟩

Moreover, each term in this sum is non-negative due to Theorem 2.11 (or more directly due to
the convexity of KρP - we do not need strong convexity here). Recalling that the elements of F ′

form a partition of X , we obtai∑
P∈F ′

nP ⟨ψ0 − ψ1 | (∇ψ∗
1)#ρ|P − (∇ψ∗

0)#ρ|P ⟩ ≤ A
∑
P∈F ′

⟨ψ0 − ψ1 | (∇ψ∗
1)#ρ|P − (∇ψ∗

0)#ρ|P ⟩

= A⟨ψ0 − ψ1 | (∇ψ∗
1)#ρ− (∇ψ∗

0)#ρ⟩.

Therefore (3.5) holds with C ′ = ACeERYdiam(X ).

Finally, we apply the claim (3.5) to ψ0 = ϕ∗µ and ψ1 = ϕ∗ν , where the Legendre transform is
computed as a supremum over X , and ϕµ, ϕν are the Kantorovich potentials from ρ to µ and ρ
to ν. We get

Varρ(ψ
∗
1 − ψ∗

0) ≤ C ′⟨ϕµ − ϕν | ν − µ⟩ ≤ C ′diam(Y)W1(µ, ν)

where the last inequality comes from the Kantorovich-Rubinstein duality formula and the fact
that ϕµ and ϕν are diam(Y)-Lipschitz due to Proposition 2.1. This concludes the proof.

3.1.2 Two strategies to prove (3.3).

All in all, to establish the stability of Kantorovich potentials (1.30) (or stability of Kan-
torovich potentials in other situations, like those described in Section 1.7) we only need to show
that (3.3) holds for some well-chosen family F . To prove (3.3) we designed two strategies, which
are complementary in terms of the families of probability measures ρ that they allow to handle:
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� Strategy 1: an approach inspired by the proofs of Sobolev-Poincaré inequalities in the
1980’s, where the elements of F are cubes, and we consider chains of cubes, called Boman
chains, in which the variances are controlled. When applicable, this approach yields the
results in their sharpest forms, and is exactly tailored to handle delicate cases like John
domains in Theorem 1.12, and degenerate densities in bounded domains as in Section 1.7.

� Strategy 2: an approach through spectral graph theory. In this case, the constant C in
(3.3) is related to the spectral gap of the Laplacian on a natural graph constructed from
the family F . This strategy is sufficient to prove most of our results, but sometimes in
slightly weaker forms - for example with this approach we are able to prove Theorem 1.12
only for bounded, connected Lipschitz domains. In some specific cases, this strategy works
whereas the first one fails (explaining why we care about it!), for instance for measures ρ
on Rd which decay polynomially at infinity.

We describe these two strategies in more details in Sections 3.3 and 3.5. In the first strategy,
the construction of the family F is based on a classical decomposition of any open set as a union
of cubes, called the Whitney decomposition. In Section 3.2 we recall this decomposition and
construct the family F when X is assumed to be a John domain.

3.2 Whitney decomposition and Boman chain condition

In this section, we first discuss the Whitney decomposition of open sets. Recall that a dyadic
cube in Rd is a cube of the form{

(x1, . . . , xd) ∈ Rd | mj2
−ℓ ≤ xj ≤ (mj + 1)2−ℓ for any j ∈ [d]

}
(3.8)

for some ℓ ∈ Z and m = (m1, . . . ,md) ∈ Zd. The Whitney decomposition is a decomposition of
any open set X into dyadic cubes in a way that each of these cubes has a sidelength which is
comparable to its distance from the boundary of X . Discovered in 1934 by Hassler Whitney to
prove its extension theorem, it has been used since then in many areas to localize arguments: in
harmonic analysis to localize singular integrals, in PDEs to localize estimates near boundaries
of irregular domains, etc. An illustration is provided in Figure 3.

Proposition 3.1 (Whitney decomposition). Let X be an open, proper and non-empty subset of
Rd. Then there exists a family of closed dyadic cubes (Pj)j∈N such that

(a) The Pj’s have disjoint interiors and ⋃
j∈N

Pj = X .

(b) If ℓ(P ) denotes the sidelength of a cube P and X c = Rd \ X , then for any j ∈ N,
√
dℓ(Pj) ≤ dist(Pj ,X c) ≤ 4

√
dℓ(Pj). (3.9)

(c) If the boundaries of two cubes Pj and Pk touch then

1

4
≤ ℓ(Pj)

ℓ(Pk)
≤ 4. (3.10)

(d) For a given Pj there exist at most 12d − 4d cubes Pk’s that touch it.
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(e) Let 1 < σ < 5/4 and, for j ∈ N, denote by Qj the cube with same center as Pj and
ℓ(Qj) = σℓ(Pj). Then ∑

j∈N
1Qj ≤ 12d

where 1Qj is the characteristic function of Qj.

Proof of Proposition 3.1. Observe that if A,B are dyadic cubes, then either A ∩ B = ∅, or
A ⊂ B, or B ⊂ A. Thus for any x ∈ X , it makes sense to consider the largest dyadic cube P
that contains x and such that

√
dℓ(P ) ≤ dist(P,X c). Denoting this cube by P (x), we see that

the family {P (x)}, once removed the redundancies, is a family of disjoint dyadic cubes. Let us
check that this family has all desired properties.

First, each x ∈ X belongs to one of these cubes, and P (x) ⊂ X for any x ∈ X , therefore (a)
holds. The left-hand side inequality in (3.9) is satisfied by definition. For the other inequality,
we assume for the sake of a contradiction that dist(Pj ,X c) > 4

√
dℓ(Pj) for some j ∈ N, and we

consider P ′
j any dyadic cube with same center as Pj , and doubled sidelength. Then, since the

diameter of Pj is equal to
√
dℓ(Pj), we have

dist(P ′
j ,X c) ≥ dist(Pj ,X c) − diam(P ′

j) > 4
√
dℓ(Pj) − diam(P ′

j) = diam(P ′
j)

which contradicts the definition of Pj and concludes the proof of (b). Assume now that Pj and
Pk touch. Then

√
dℓ(Pj) ≤ dist(Pj ,X c) ≤ dist(Pj , Pk) + dist(Pk,X c) ≤ 0 + 4

√
dℓ(Pk)

which proves (c). To prove (d), note that any cube Pj is touched by exactly 3d− 1 dyadic cubes
of the same sidelength. But each of them can contain at most 4d cubes Pk of length at least
one-quarter of the length of Pj . This fact combined with (c) yields (d). Finally, to prove (e),
we first observe that each Qj is contained in X by (b). If x ∈ X , then x ∈ Pj0 for some j0 ∈ N.
If Pj does not touch Pj0 , then Qj does not touch Pj0 by the definition (3.8) of dyadic cubes.
Therefore, x may belong only to the cubes Qj for which Pj touches Pj0 , and there are at most
12d − 4d + 1 such cubes (including Pj0) according to (d).

Jan Boman discovered in 1982 that under some regularity assumptions on an open set X ⊂
Rd, its Whitney decomposition could be used to construct chains of cubes with certain useful
properties, going from one “central cube” to cubes near the boundary. He used it to show Lp

estimates for some overdetermined elliptic systems of PDEs, and it was discovered a few years
later by Bogdan Bojarski that these same “Boman chains” could be leveraged to prove Sobolev-
Poincaré inequalities in Euclidean open sets (in a rather sharp form). We will extract from
Bojarski’s arguments an inequality of the form (3.3), which is exactly what is needed to prove
the stability of Kantorovich potentials as we explained in Section 3.1. But let us first introduce
the Boman chain condition, and show that it is satisfied in John domains.

Definition 3.2 (Boman chain condition). A probability measure ρ on an open set X ⊂ Rd is
said to satisfy the Boman chain condition with parameters A,B,C > 0 if there exists a covering
F of X by open cubes Q ∈ F such that

� Any point cannot belong to more than A cubes Q ∈ F : for any x ∈ Rd,∑
Q∈F

1Q(x) ≤ A1X (x). (3.11)
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� For some fixed cube Q0 in F , called the central cube, and for every Q ∈ F , there exists a
sequence Q0, Q1, . . . , QN = Q of distinct cubes from F (a “Boman chain”) such that for
any j ∈ {0, . . . , N},

Q ⊂ BQj (3.12)

where BQj is the cube with same center as Qj and sidelength multiplied by B.

� Consecutive cubes of the above chain overlap quantitatively: for any j ∈ {0, . . . , N − 1},

ρ(Qj ∩Qj+1) ≥ C−1 max(ρ(Qj), ρ(Qj+1)). (3.13)

We notice that consecutive cubes of a Boman chain are comparable in size: for any j ∈
{0, . . . , N − 1},

C−1 ≤ ρ(Qj)

ρ(Qj+1)
≤ C. (3.14)

Indeed,
ρ(Qj)

ρ(Qj+1)
≥ ρ(Qj ∩Qj+1)

ρ(Qj+1)
≥ C−1

as a consequence of (3.13), and the reverse bound in (3.14) follows by the same argument.
The main case where Bomain chains exist is the following:

Proposition 3.3 (John implies Boman). If ρ is a probability measure on a John domain X ⊂ Rd,
with a density bounded above and below on X , then ρ satisfies the Boman chain condition (for
some A,B,C).

The cubes Q of the Boman chain condition are obtained by dilating the cubes of the Whitney
decomposition of X by a factor slightly greater than 1. We refer to Figure 4 for an illustration
of the cubes of the Boman chain condition. This picture should be compared with Figure 3 in
which the Whitney decomposition of the same domain is drawn.

Proof of Proposition 3.3. Fix an arbitrary σ ∈ (1, 5/4) and denote by F the family of cubes Qj =
σPj obtained from the Whitney decomposition (Proposition 3.1). Without loss of generality, we
may assume that Q0 contains the central point x0 highlighted in the definition of John domains.
Consider an arbitrary Q ∈ F , and denote by x be the center of Q. Let γ : [0, T ] → X be a curve
from x to x0 satisfying (1.29), and enumerate the cubes Q = QN , . . . , Q0 intersecting γ, ordered
in such a way that Qj ∩ Qj+1 is non-empty for all j. We may also remove redundancies and
assume that in this chain of cubes, any two cubes are distinct.

First, (3.11) is a consequence of property (e) of Proposition 3.1. Moreover, since Qj∩Qj+1 ̸=
∅, as we already saw in the proof of property (e) in Proposition 3.1, necessarily the boundaries
of the Whitney cubes Pj and Pj+1 touch, and thus (3.10) holds. From this, (3.13) follows
immediately.

There only remains to check (3.12). Let yj denote the center of Qj (in particular yN = x,
and yj is also the center of Pj). By the triangle inequality, the distance from yj to any point
in QN is at most |x − yj | +

√
dℓ(QN ), hence (3.12) boils down to showing the existence of B

depending only on X such that

|x− yj | +
√
dℓ(QN )

1
2ℓ(Qj)

≤ B. (3.15)
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Figure 3: The Whitney decomposition of an H-shape in 2 dimensions. Each cube has a sidelength
comparable to its distance to the boundary of the H. Courtesy of Quentin Mérigot.

Let us show that there exists κ > 0 depending only on X such that

|x− yj | ≤ κdist(yj ,X c), ℓ(QN ) ≤ κdist(yj ,X c). (3.16)

Since d(yj ,X c) ≤
√
dℓ(Pj) ≤

√
dℓ(Qj), (3.15) follows immediately from (3.16). We turn to the

proof of (3.16). Pick t ∈ [0, T ] such that γ(t) ∈ Qj . Then

|x− yj | ≤ |x− γ(t)|+ |γ(t)− yj | ≤
1

η
dist(γ(t),X c) + diam(Qj) ≤

1

η
dist(yj ,X c) +

η + 1

η
diam(Qj)

thanks to the triangle inequality and (1.29). Since the diameter of Qj is bounded above by
σdist(yj ,X c) according to (3.9), we obtain the first inequality in (3.16). Without loss of gener-
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Figure 4: A Boman family for the uniform probability density on the H-shape, obtained by
enlarging the sidelength of each cube of the Whitney decomposition by the same factor. This
induces some overlap between the cubes. Courtesy of Quentin Mérigot.

ality, we assume from now on that η ≤ 1, and we prove that for any t ∈ [0, T ],

dist(γ(t),X c)

dist(x,X c)
≥ η

2
. (3.17)

By contradiction, if this does not hold, then

dist(x,X c) ≤ |x− γ(t)| + dist(γ(t),X c) ≤ |x− γ(t)| +
η

2
dist(x,X c).

Since η ≤ 1, we deduce dist(x,X c) ≤ 2|x − γ(t)| ≤ 2
ηdist(γ(t),X c) where the last inequality

comes from (1.29). Therefore (3.17) holds. To show the second inequality in (3.16), we finally

44



write

ℓ(QN ) = σℓ(PN ) ≤ σ√
d

dist(x,X c) ≤ 2σ

η
√
d

dist(γ(t),X c)

where t ∈ [0, T ] is chosen to satisfy γ(t) ∈ Qj . Since

dist(γ(t),X c) ≤ dist(yj ,X c) + diam(Qj) ≤ (1 + σ)dist(yj ,X c),

this concludes the proof of (3.16).

Let us mention that some partial converse to Proposition 3.3 holds: if the characteristic
function ρ of some bounded open set X satisfies the Boman chain condition, then X is a John
domain.

3.3 Strategy 1: Gluing variances with Boman chains

In this section we explain the first gluing technique. This technique applies only to measures
with bounded support in Rd. Roughly, for a measure ρ satisfying the Boman chain condition
(for some A,B,C), it consists in estimating the variance in any cube Q ∈ F to the variance in
the central cube Q0, via the construction of a Boman chain of overlapping cubes going from Q0

to Q. The proof of the first part of Theorem 1.12, namely the stability of Kantorovich potentials
(1.30), follows almost directly from the following proposition:

Proposition 3.4 (Gluing variances with Boman chains). Let ρ be a probability measure satisfy-
ing the Boman chain condition, with covering family F . Assume also that ρ is doubling on the
family F : there exists D > 0 such that

∀Q ∈ F , ρ(2Q) ≤ Dρ(Q) (3.18)

where 2Q denotes the cube with same center as Q, and doubled sidelength. Then there exists
C > 0 such that for any f ,

Varρ(f) ≤ C
∑
Qi∈F

ρ(Qi)VarρQi (f). (3.19)

Proof of the stability of Kantorovich potentials (1.30) in John domains. Let ρ be a probability
density on a John domain X ⊂ Rd, and assume that ρ is bounded above and below on X by
positive constants. According to Proposition 3.3, it satisfies the Boman chain condition for
some A,B,C > 0. Therefore, the condition (3.4) holds, and moreover each cube of the family
F appearing in the Definition 3.2 of the Boman chain condition intersects at most A+ 1 other
cubes. Therefore, we can apply Section 3.1.1, and it follows that (1.30) holds.

Proof of Proposition 3.4. We set fQ = 1
ρ(Q)

�
Q fdρ and aQ = (VarρQ(f))1/2. Then

Varρ(f) ≤
�
X
|f(x) − fQ0 |2dρ(x) ≤

∑
Q∈F

�
Q
|f(x) − fQ0 |2dρ(x)

≤ 2
∑
Q∈F

�
Q
|f(x) − fQ|2dρ(x) +

�
Q
|fQ − fQ0 |2dρ(x)

= 2
∑
Q∈F

ρ(Q)VarρQ(f) + 2
∑
Q∈F

ρ(Q)|fQ − fQ0 |2.

(3.20)
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The first sum is bounded above by the right-hand side in (3.19), therefore we only need to upper
bound the second sum. The triangle inequality yields

|fQ − fQ0 | ≤
N−1∑
j=0

|fQj − fQj+1 | (3.21)

We estimate each term in the sum separately:

|fQj − fQj+1 |2 =
1

ρ(Qj ∩Qj+1)

�
Qj∩Qj+1

|fQj − fQj+1 |2

≤ 2

ρ(Qj ∩Qj+1)

(�
Qj∩Qj+1

|fQj − f(x)|2dρ(x) +

�
Qj∩Qj+1

|fQj+1 − f(x)|2dρ(x)

)

≤ 2

ρ(Qj ∩Qj+1)

(�
Qj

|fQj − f(x)|2dρ(x) +

�
Qj+1

|fQj+1 − f(x)|2dρ(x)

)
≤ 2C(a2Qj + a2Qj+1

).

Taking the square root and plugging into (3.21), we obtain

|fQ − fQ0 | ≤ (2C)1/2
N−1∑
j=0

aQj + aQj+1 ≤ (8C)1/2
∑
Q⊂BQ̃

a
Q̃

where the sum
∑

Q⊂BQ̃ means that we sum over all cubes Q̃ ∈ F such that Q ⊂ BQ̃. By the
Boman chain condition, Qj and Qj+1 have this property, and notice that we use here the fact
that the elements of the Boman chain in Definition 3.2 are distinct.

Therefore,

ρ(Q)|fQ − fQ0 |2 ≤ 8Cρ(Q)
( ∑
Q⊂BQ̃

a
Q̃

)2
= 8C

�
Q

( ∑
Q⊂BQ̃

a
Q̃

)2
dρ(x)

= 8C

�
Q

(∑
Q̃∈F

a
Q̃
1
BQ̃

(x)
)2

dρ(x)

since for any x ∈ Q, the sum in the first line is equal to the sum in the second line.
Then we use an important lemma which says that∥∥∥∑

Q̃∈F

a
Q̃
1
BQ̃

∥∥∥
L2(ρ)

≲
∥∥∥∑
Q̃∈F

a
Q̃
1
Q̃

∥∥∥
L2(ρ)

. (3.22)

Its proof is postponed slightly below.
All in all,∑

Q∈F
ρ(Q)|fQ − fQ0 |2 ≲

�
X

(∑
Q̃∈F

a
Q̃
1
BQ̃

(x)
)2

dρ(x) ≲
�
X

(∑
Q̃∈F

a
Q̃
1
Q̃

(x)
)2

dρ(x)

≲
�
X

∑
Q̃∈F

a2
Q̃
1
Q̃

(x)dρ(x) =

�
X

∑
Q̃∈F

ρ(Q̃)a2
Q̃

where in the third inequality we used the Cauchy-Schwarz inequality and the first condition in
Definition 3.2. Plugging into (3.20) we get the result.
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Proof of (3.22). Without loss of generality, we assume in the sequel that B ≥ 1 (where B
appears in (3.12)). For x ∈ X , denote by Fx the set of Q ∈ F for which x ∈ Q. For any
g ∈ L1(ρ), set

Mg(x) = sup
Q∈Fx

1

ρ(BQ)

�
BQ

|g(y)|dρ(y).

We first prove that
∥Mg∥L2(ρ) ≤ D′∥g∥L2(ρ) (3.23)

for some D′ > 0. To this end it is sufficient to prove that there exists D > 0 such that

∀α > 0, ρ(Sα) ≤ Dα−1∥g∥L1(ρ) (3.24)

where Sα = {x ∈ X | Mg(x) > α}. Indeed, (3.23) follows directly from (3.24), together with
the L∞(ρ)-boundedness of M and the Marcinkiewicz interpolation theorem [45, Theorem 9.1 in
Chapter VIII.9].

Let us prove (3.24). For any x ∈ Sα, let Qx ∈ Fx such that

�
BQx

|g(y)|dρ(y) ≥ αρ(BQx).

From the standard Vitali covering argument, we get a countable subset S′
α ⊂ Sα such that

Sα ⊂
⋃
x∈S′

α

5B
√
dQx,

and BQx ∩ BQx′ = ∅ for any distinct x, x′ ∈ S′
α. Using that ρ is doubling (3.18), that B ≥ 1

and the disjointness of the sets BQx, we obtain (with D changing from one inequality to the
other)

ρ(Sα) ≤ D
∑
x∈S′

α

ρ(Qx) ≤ D
∑
x∈S′

α

ρ(BQx) ≤ α−1D
∑
x∈S′

α

�
BQx

|g(y)|dρ(y)

≤ α−1D∥g∥L1(ρ)

which concludes the proof of (3.24) and (3.23).
We turn to the proof of (3.22). Recall that aQ ≥ 0 for any Q ∈ F (this is the only property

of the sequence (aQ)Q∈F that we use below). Also, there holds Mg(y) ≥ 1
ρ(BQ)

�
BQ |g(x)|dρ(x)

for any y ∈ Q. Hence,∣∣∣�
Rd

∑
Q∈F

aQχBQ(x)g(x)dρ(x)
∣∣∣ ≤ ∑

Q∈F
aQρ(BQ)

1

ρ(BQ)

�
BQ

|g(x)|dρ(x)

≤
∑
Q∈F

aQ
ρ(BQ)

ρ(Q)

�
Q
Mg(y)dρ(y)

≤ C
∑
Q∈F

aQ

�
Q
Mg(y)dρ(y)

= C

�
Rd

∑
Q∈F

aQχQ(y)Mg(y)dρ(y),
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where we used again (3.18) to get the last inequality. Combining with (3.23), we get∣∣∣�
Rd

∑
Q∈F

aQχBQ(x)g(x)dρ(x)
∣∣∣ ≤ C

∥∥∥∑
Q∈F

aQχQ

∥∥∥
L2(ρ)

∥Mg∥L2(ρ)

≤ CD′
∥∥∥∑
Q∈F

aQχQ

∥∥∥
L2(ρ)

∥g∥L2(ρ)

which concludes the proof, by duality.

3.4 The Cheeger inequality in spectral graph theory

Coming back to our initial goal of proving inequalities of the form

Varρ(f) ≤ C
∑
Qi∈F

ρ(Qi)VarρQi (f)

we develop in this section and the next one a second strategy. It is based on spectral graph
theory, and notably on the Cheeger inequality which is an inequality between the spectral gap
of a graph, i.e., the lowest eigenvalue of the associated Laplacian, and a geometric constant
called the isoperimetric constant. We gather in this section general facts regarding Laplacians
in infinite weighted graphs, and establish the appropriate version of the Cheeger inequality.

3.4.1 Weighted graphs

Let V be a countable set equipped with the discrete topology, and endowed with a function
δ : V → (0,∞). We denote by δi the value of δ at i ∈ V . The function δ can be turned into
a Radon measure on V of full support by the formula δ(U) =

∑
i∈U δi for U ⊆ V . Next, let

w : V × V → [0,∞), and denote by wij = w(i, j) its values. We assume that it is symmetric
(wij = wji), vanishing on the diagonal (wii = 0), and that it satisfies

∀i ∈ V,
∑
j∈V

wij < +∞.

We denote by E its set of edges, i.e., the set of all (i, j) ∈ V ×V such that wij > 0. If (i, j) ∈ E,
we say that i and j are neighbors. When each vertex has only finitely many neighbors, we say
that the weighted graph (V,E, δ, w) is locally finite.

3.4.2 Graph Laplacians

We denote by Cc(V ) the space of real valued functions on V with finite support and consider
the weighted ℓ2-space on vertices

ℓ2(V, δ) =
{
u : V → R |

∑
i∈V

δiu(i)2 < +∞
}
.

We endow ℓ2(V, δ) with the scalar product ⟨u, v⟩δ =
∑

i∈V δiu(i)v(i) and denote by ∥u∥δ =√
⟨u, u⟩δ the corresponding norm. Let Q = Qw be the quadratic form with domain D given by

Q(u) =
1

2

∑
i,j∈V

wij(u(i) − u(j))2, D =
{
u ∈ ℓ2(V, δ) | Q(u) <∞

}
.
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This is a Dirichlet form, playing the role of an energy. The corresponding Laplacian is the
positive selfadjoint operator L acting as

Lu(i) =
1

δi

∑
j∈V

wij(u(i) − u(j)). (3.25)

Notice that Q(u) = 1
2⟨Lu, u⟩δ. In the case that will be considered in the next section, there

exists C < +∞ such that
∀i ∈ V, Cδi ≥

∑
j∈V

wij . (3.26)

In particular, L is a bounded operator. The function 1 ∈ D equal to 1 on all V is in the kernel
of L, therefore we define the spectral gap of L by

λ2(L) = inf{Q(u) | ∥u∥δ = 1, ⟨u,1⟩δ = 0}.

It is non-negative, but not necessarily strictly positive, even if the graph is connected. The
Cheeger inequality is a lower bound on λ2(L) in terms of a constant measuring how well the
graph is connected, called the isoperimetric constant of G.

3.4.3 Isoperimetric constant and Cheeger inequality

For U ⊂ V we denote its volume by

vol(U) =
∑
i∈U

δi

and size of its boundary by

|∂U | =
∑

i∈U, j /∈U

wij . (3.27)

The isoperimetric constant of G is defined as

h = inf
U⊂V

0<vol(U)≤ 1
2

|∂U |
vol(U)

. (3.28)

Equivalently, we may take the infimum over all sets U (without the restriction on the volume),
but in this case we need to replace the denominator vol(U) by min(vol(U), vol(V \ U)). In
other words, the isoperimetric constant is large if for any set U ⊂ V , the size of its boundary
is non-negligible compared either to vol(U) or to vol(V \ U) (the latter case arises typically if
vol(U) is too large).

In this context, the Cheeger inequality reads:

Proposition 3.5 (Cheeger inequality in weighted graphs). If (3.26) holds, then

λ2(L) ≥ h2

2C

where C is the constant in (3.26).

The Cheeger inequality originates from the work of Cheeger [28], who proved an analogous
inequality on manifolds.
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Proof of Proposition 3.5. We provide an elementary proof assuming that V is finite. A proof
of Proposition 3.5 for infinite graphs may be found in [82, Theorem 3.5]. Let n = |V |. For
u ∈ ℓ2(V, δ), we consider the Rayleigh quotient

R(u) =
Q(u)

∥u∥2δ
. (3.29)

Let ε > 0 and u : V → R such that R(u) ≤ λ2(L) + ε and ⟨u,1⟩δ = 0. Up to relabelling the
vertices, we may assume that

u(1) ≥ . . . ≥ u(n).

Let Sk = {1, . . . , k} for k ∈ [n], and

αG = min
k∈[n]

|∂Sk|
min(vol(Sk), vol(V \ Sk))

.

Let r ∈ [n] denote the largest integer such that vol(Sr) ≤ 1
2vol(G). Since

∑
i∈[n] δiu(i) = 0,∑

i∈[n]

δiu(i)2 = min
c∈R

∑
i∈[n]

δi(u(i) − c)2 ≤
∑
i∈[n]

δi(u(i) − u(r))2

The positive part and the negative part of u(i)− u(r), denoted by u+(i) and u−(i) respectively,
are defined as follows:

u+(i) =

{
u(i) − u(r) if u(i) ≥ u(r)

0 otherwise
u−(i) =

{
|u(i) − u(r)| if u(i) ≤ u(r)

0 otherwise.

Then

R(u) =

∑
i,j wij(u(i) − u(j))2∑

i δiu(i)2

≥
∑

i,j wij(u(i) − u(j))2∑
i δi(u(i) − u(r))2

≥
∑

i,j wij
(
(u+(i) − u+(j))2 + (u−(i) − u−(j))2

)∑
i δi(u+(i)2 + u−(i)2)

.

Without loss of generality we have R(u+) ≤ R(u−) and therefore λ2(L) + ε ≥ R(u+) since
a+c
b+d ≥ min(ac ,

b
d). If we assume λ2(L) + ε ≥ R(u−) instead, the subsequent computations can be

carried out in the same way. Then we have

λ2(L) + ε ≥ R(u+) =

∑
i,j wij(u+(i) − u+(j))2∑

i δiu+(i)2

=

∑
i,j wij(u+(i) − u+(j))2∑

i δiu+(i)2
·
∑

i,j wij(u+(i) + u+(j))2∑
i,j wij(u+(i) + u+(j))2

(3.30)

≥

(∑
i,j wij |u+(i)2 − u+(j)2|

)2
2C (

∑
i δiu+(i)2)2

(see explanations below) (3.31)

=

(∑
i(u+(i)2 − u+(i+ 1)2)|∂Si|

)2
2C (

∑
i δiu+(i)2)2

(3.32)

50



where in the last line |∂S| =
∑

k∈S,ℓ/∈S wkℓ. To go from (3.30) to (3.31) we apply the Cauchy-
Schwarz inequality for the numerator; for the denominator we use (3.26). To go from (3.31) to
(3.32) we observe that in the numerator of (3.31) each edge i ∼ j contributes wij |u+(i)−u+(j)|2
to the sum, while in the numerator of (3.32), each edge i ∼ j (with for instance j > i) is in the
boundary of ∂Si′ for i′ = i, . . . , j − 1, and thus contributes wij

∑j−1
i′=i u+(i)2 − u+(i+ 1)2 which

is exactly equal to wij |u+(i) − u+(j)|2.
We finish our computations: we set vol′(S) = min(vol(S), vol(G) − vol(S)), we have

λ2(L) + ε ≥
(∑

i(u+(i)2 − u+(i+ 1)2)αGvol′(Si)
)2

2C (
∑

i δiu+(i)2)2
(3.33)

=
α2
G

2C

(∑
i u+(i)2(vol′(Si) − vol′(Si−1))

)2
(
∑

i δiu+(i)2)2

=
α2
G

2C

where (3.33) follows from (3.32) and the definition of αG, and in the last line we used the fact

that vol(Sr) ≤ 1
2vol(G). This being true for any ε > 0, we obtain λ2(L) ≥ α2

G
2C , which concludes

the proof since αG ≥ h.

3.5 Strategy 2: Gluing variances with spectral graph theory

Armed with these elements of spectral theory, we will explain in this section the second
strategy for proving an inequality of the type

Varρ(f) ≤ C
∑
Qi∈F

ρ(Qi)VarρQi (f). (3.34)

Assume that ρ is a probability measure on a metric space X , and that F = {Qi}i∈V is a
countable family of subsets of X such that⋃

i∈V
Qi = supp(ρ).

We do not assume that the Qi’s are cubes (and actually, neither that X ⊂ Rd). However, as in
Section 3.1, we assume:

(2) there exists A > 0 such that any Qi ∈ F intersects at most A other subsets Qj ∈ F
(including itself).

We construct the following graph: its vertices are given by the set V , and there is an edge
between i, j ∈ V if and only if ρ(Qi ∩Qj) > 0, in which case we write i ∼ j. Each vertex i ∈ V
is endowed with a weight δi = ρ(Qi), and each edge (i, j) with a weigth wij = ρ(Qi ∩Qj). We
do not repeat the definitions of Section 3.4: in the sequel we consider the weighted ℓ2-space
ℓ2(V, δ), the scalar product ⟨u, v⟩δ, the corresponding norm ∥ · ∥δ, the quadratic form Q with
domain D, and the Laplacian

Lu(i) =
1

δi

∑
j∼i

wij(u(i) − u(j)).

Due to (2), we know that for any i ∈ V ,∑
i∼j

wij ≤ Aδi. (3.35)
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We also have
∑

i∈V δi < +∞ since ρ(X ) = 1; hence the constant function 1 : V → R belongs to
ℓ2(V, δ).

The next lemma, which does not assume anything on ρ, is the sought inequality of the form
(3.34). Notice that it is useless if λ2(L) = 0, e.g., if the graph is not connected.

Lemma 3.6 (Gluing variances with spectral graph theory). Let ρQi = 1
ρ(Qi)

ρ|Qi for any i ∈ V .

Then, for any continuous function f : Rd → R, there holds

Varρ(f) ≤ A

(
1 +

2A

λ2(L)

)∑
i∈V

ρ(Qi)VarρQi (f).

Proof of Lemma 3.6. Let mi =
�
Qi
fdρQi be the mean of f over Qi, and let S =

∑
i∈V δi ≤ A.

Developing the variance Varρ(f) thanks to the identity f(x) − f(y) = f(x) −mi + mi −mj +
mj − f(y), we get

Varρ(f) ≤ S
∑
i∈V

δiVarρQi (f) +
1

2

∑
i,j∈V

(mi −mj)
2δiδj . (3.36)

We only need to find an upper bound on the second term in the right-hand side. We observe
that ⟨m−m̃,1⟩δ = 0 where m̃ = S−1

∑
i∈V δimi is “the mean of the means”. Hence by definition

of the spectral gap,

1

2

∑
i,j∈V

(mi −mj)
2δiδj = S∥m− m̃∥2δ ≤

S

λ2(L)
⟨m− m̃, L(m− m̃)⟩δ

=
S

2λ2(L)

∑
i,j∈V

wij(mi −mj)
2. (3.37)

For any i ̸= j such that wij > 0, consider the mean mi∩j = 1
wij

�
Qi∩Qj fdρ of f over Qi ∩ Qj .

There holds
1

2
(mi −mj)

2 ≤ (mi∩j −mi)
2 + (mi∩j −mj)

2.

For any such i, j ∈ V ,

(mi∩j −mi)
2 =

(
1

ρ(Qi ∩Qj)

�
Qi∩Qj

(f −mi)dρ

)2

≤ 1

ρ(Qi ∩Qj)

�
Qi∩Qj

(f −mi)
2dρ

≤ 1

ρ(Qi ∩Qj)

�
Qi

(f −mi)
2dρ =

ρ(Qi)

wij
VarρQi (f),

and similarly for (mi∩j −mj)
2. We deduce

1

2
(mi −mj)

2 ≤ δi
wij

VarρQi (f) +
δj
wij

VarρQj (f).

Plugging into (3.37) we get

1

2

∑
i,j∈V

(mi −mj)
2δiδj ≤

S

λ2(L)

∑
i∈V

∑
j|Qi∩Qj ̸=∅

(δiVarρQi (f) + δjVarρQj (f))

≤ 2AS

λ2(L)

∑
i∈V

δiVarρQi (f).

Together with (3.36) and recalling S ≤ A, this concludes the proof of Lemma 3.6.
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In applications of Lemma 3.6 to concrete cases, with explicit ρ and F , one needs to prove
λ2(L) > 0 (otherwise the bound is trivial!). In general, proving a spectral gap for an operator
can be a hard task. Here, it seems natural to rely on the Cheeger inequality (Proposition 3.5):

λ2(L) ≥ h2

2A
.

Depending on ρ, on the construction of the family F , and thus on the corresponding graph,
we need to check in concrete applications whether h > 0 or not. If h > 0, then λ2(L) > 0
and Lemma 3.6 together with Section 3.1.1 can be used to prove the stability of Kantorovich
potentials. If h = 0, we cannot draw any conclusion from Cheeger’s inequality.

One example where we have been able to construct F , to check that h > 0, and to con-
clude that Kantorovich potentials are stable, is the family of polynomially decaying probability
densities on Rd:

Theorem 3.7 (Stability of Kantorovich potentials for polynomially decaying densities). Assume
that ρ(x) = c(1 + |x|)−β on Rd, with β > d + 2 and c > 0 a normalizing constant. Let Y ⊂ Rd
be a compact set. Then, there exists C > 0 such that for any probability measures µ, ν supported
in Y,

∥ϕµ − ϕν∥L2(ρ) ≤ CW1(µ, ν)θ

∥Tµ − Tν∥L2(ρ) ≤ CW1(µ, ν)θ
′

where θ = 1
2(1 − 2

β−d) > 0 and θ′ = β−d−2
8β−2d−4 > 0. Moreover, the exponent θ in the first bound is

sharp.

Due to the radial symmetry of these distributions, we have constructed the family F in a
way that each set Q, except a central one, is the intersection of an annulus and an angular sector
(see Figure 5). The associated graph is very simple, it is essentially the union of 2d line graphs
(see Figure 5). The ratios |∂U |/vol(U) can be lower bounded “by hand”, but we shall not detail
the computations here, we refer to [72] for details.
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x1

x2

Figure 5: Here, ρ is radially symmetric, for instance ρ(x) = c(1 + |x|)−β. On the left, a few
examples of sets Q (in red, in blue with a grid and with crosshatches). The central set Q in
blue is different from the other ones, it covers the full unit disk, to make the graph on the right
connected. On the right, the associated graph in a neighborhood of its central point.

3.6 Comments related to Poincaré inequalities

Stability of Kantorovich potentials and Sobolev-Poincaré inequalities. Let us make
a few comments on the relation between the stability of Kantorovich potentials, and Sobolev-
Poincaré inequalities. Maybe the easiest way to see a link between them is to write that if the
stability inequality for Kantorovich potentials (1.16) (with p = 2) holds, then

∥ϕµ − ϕν∥L2(ρ) ≤ CW2(µ, ν)α ≤ C∥∇ϕµ −∇ϕν∥αL2(ρ)

according to (1.15). Hence some kind of Poincaré inequality with an exponent holds, but only
for differences of convex functions (with uniformly bounded gradient). We are not aware of any
literature on this kind of inequalities.

Also, some part of our proof of Theorem 1.12 is shared with the proof of Sobolev-Poincaré
inequalities in John domains. Let us recall the result:

Theorem 3.8 (Sobolev-Poincaré inequality in John domains). Let fX = |X |−1
�
X fdx. When

X ⊂ Rd is a John domain, the Sobolev-Poincaré inequality(�
X
|f − fX |pd/(d−p)dx

)(d−p)/pd
≤ C

(�
X
|∇f |pdx

)1/p

(3.38)

holds for 1 ≤ p < d.

Theorem 3.8 has been shown around 1985 by Bojarski, following ideas that he attributes to
Boman, and our gluing techniques are adapted from this literature. We shall not demonstrate
this theorem, but only the Poincaré inequality

∃CP > 0, ∀f ∈ C1(X ), Var(f) ≤ CP

�
X
|∇f |2dx (3.39)
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when X is a John domain. Here the variance is taken with respect to the normalized Lebesgue
measure ρ = dx on X . The Poincaré inequality (3.39) is weaker than (3.38), since it can be
deduced from (3.38) (for p = 2, and d ≥ 3) using Hölder’s inequality.

To prove (3.39), we observe that there exists C ′
P > 0 such that for any Q ∈ F there holds

VarρQ(f) ≤ C ′
P

�
Q
|∇f |2dρQ. (3.40)

This is because all Q are cubes, with uniformly bounded diameter, and ρQ is the normalized
Lebesgue measure on Q. Summing (3.40) over Q ∈ F with weights ρ(Q), and using (3.11) we
get (3.39).

Towards an equivalence in Theorem 1.12? Theorem 3.8 can be strengthened into an
equivalence, under an additional assumption. If X ⊂ Rd is a domain of finite volume that
satisfies a separation property, and 1 ≤ p < d, then

X satisfies (3.38) ⇔ X is a John domain. (3.41)

The separation property, which we do not discuss here, is automatically valid for simply con-
nected planar domains. And without an additional assumption on X such as the separation
property, the equivalence (3.41) is not true. Let us illustrate this on an example: take X = D\E
where D is the unit disk and E =

⋃∞
k=1Ek where Ek consists of k! equally spaced points on

the circle {|x| = 1 − 2−k}. Then X is not a John domain, but since E is of dimension 0, the
Sobolev-Poincaré inequality (3.38) holds in X (it can be deduced by integration by parts from
the Sobolev-Poincaré inequality in D).

This example may be transposed to the optimal transport setting with source measure ρ
equal to the uniform density on X . Then optimal transport maps and potentials coincide with
those obtained when the source measure is equal to the uniform probability density on D. And
for the latter, stability follows from Theorem 1.12. Therefore we have exhibited a non-John
domain for which optimal transport stability inequalities hold. When trying to prove a converse
statement to Theorem 1.12, one should keep this example in mind.

Several families of examples of bounded connected domains which are not John domains
have been considered in the literature. For instance, domains with an outward cusp, and the
so-called room-and-passage domains. In Section 3.7.3 we show that in these examples, stability
of Kantorovich potentials fails, even in a very weak sense. This shows the relevance of the John
domain condition in Theorem 1.12, at least regarding stability of Kantorovich potentials.

3.7 Examples and counterexamples

In the previous sections, we did not discuss the sharpness of our results. The only example we
provided, in Section 1.8, showed that for optimal transport maps, without further assumptions
on the target measures, the inequality

∥Tµ − Tν∥L2(ρ) ≤ CW1(µ, ν)α (3.42)

fails for α > 1/2: there exists no C > 0 such that for any µ, ν supported in Y = D2, (3.42)
holds.

In this section, we discuss the sharpness of our results regarding stability of Kantorovich
potentials, by providing explicit computations on carefully chosen examples. This allows us to
show some kind of sharpness in two respects:
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� we show that the stability exponents α = 1/2 for Kantorovich potentials in (1.27) is sharp
in the Gaussian case (but the additional log-factor is probably not sharp), and that the
exponent 1/2 in (1.30) is asymptotically sharp as the dimension tends to +∞.

� We show that in typical examples of domains X which are not John domains, no bound
of the form (1.14) can hold when ρ has a density bounded above and below on X . This
shows that our “John domain” assumption in Theorem 1.12 is truly meaningful.

The main idea which guides the design of our examples is the following: to test our quantita-
tive stability estimates, it seems much easier to choose convex potentials ϕ1, ϕ2 and to compute
the Wasserstein distance between (∇ϕ1)#ρ and (∇ϕ2)#ρ, than to choose two measures µ, ν and
to try to compute the associated potentials ϕµ, ϕν . Indeed, solving a given optimal transport
problem is difficult, whereas pushing forward through gradients of convex functions provides us
directly with optimal transport maps and Kantorovich potentials between pairs of probability
measures.

However, we should warn the reader that for the stability of optimal transport maps, we
unfortunately have no good example to test the sharpness of stability exponents beside that of
Section 1.8. In particular, we do not know the optimal exponents in (1.28) and (1.31).

3.7.1 Asymptotic sharpness of exponent in the ball

When ρ is the uniform density on the unit ball Bd(0, 1) of Rd, Theorem 1.12 provides us
with an inequality of the form

∥ϕµ − ϕν∥L2(ρ) ≤ CdW1(µ, ν)α (3.43)

with α = 1/2. We show that the exponent α = 1/2 is asymptotically sharp as d→ +∞:

Proposition 3.9. Let ρd be the uniform density on the unit ball Bd(0, 1) of Rd. If (3.43) holds
for any µ, ν supported in the unit ball, then

α ≤ d+ 2

2d

(a quantity which tends to 1/2 as d→ +∞).

Proof. Denote by ωd the Euclidean volume of the unit ball Bd(0, 1) of Rd and by σd−1 the
Euclidean area of the unit sphere Sd−1 ⊂ Rd. In particular,

ρd(x) =
1

ωd
1Bd(0,1).

Consider for any ε ∈ (0, 1) the radial and convex functions

ϕ(1)ε (x) = |x|, ϕ(2)ε (x) = max(|x|, ε).

Then �
Bd(0,1)

(
ϕ(2)ε − ϕ(1)ε

)
dρ =

σd−1

ωd

� ε

0
rd−1(ε− r)dr =

εd+1

d+ 1

and �
Bd(0,1)

(
ϕ(2)ε − ϕ(1)ε

)2
dρ =

σd−1

ωd

� ε

0
rd−1(ε− r)2dr =

2εd+2

(d+ 1)(d+ 2)
.
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Hence,
Var(ϕ(2)ε − ϕ(1)ε )1/2 ∼ Cdε

(d+2)/2 (3.44)

as ε → 0, with Cd = (2/(d + 1)(d + 2))1/2. Finally, denoting by δSd−1 the uniform probability
measure on Sd−1,

(∇ϕ(1)ε )#ρd = δSd−1 , (∇ϕ(2)ε )#ρd = (1 − εd)δSd−1 + εdδ0

hence
W1((∇ϕ(1)ε )#ρd, (∇ϕ(2)ε )#ρd) = εd.

We conclude that for any d,

Var(ϕ(2)ε − ϕ(1)ε )1/2 ∼
ε→0

CdW1((∇ϕ(1)ε )#ρd, (∇ϕ(2)ε )#ρd)
(d+2)/2d

i.e., it is necessary that α ≤ (d+ 2)/2d in order for (3.43) to be true.

3.7.2 (Almost) sharpness of exponent for Gaussians

It seems natural to test the sharpness of our exponents in the Gaussian case too. Let

ρ(x) = (2π)−
d
2 e−

|x|2
2 (3.45)

be the standard Gaussian. In this case, recall that the stability inequality for Kantorovich
potentials is given by (1.27):

∥ϕµ − ϕν∥L2(ρ) ≤ CW1(µ, ν)1/2(1 + | logW1(µ, ν)|1/2).

The following proposition shows that this bound is sharp, up to the log factor.

Proposition 3.10. Let ρ be the standard Gaussian given by (3.45). If an inequality of the form

∥ϕµ − ϕν∥L2(ρ) ≤ CdW1(µ, ν)α

holds for any µ, ν supported in the unit ball, then α ≤ 1/2.

Actually, we prove something slightly stronger: if

∥ϕµ − ϕν∥L2(ρ) ≤ CdW1(µ, ν)1/2(1 + | logW1(µ, ν)|β)

holds, then β ≥ −1.

Proof of Proposition 3.10. Consider for any r ∈ (0,+∞) the radial and convex function

ϕr(x) = (|x| − r)+ − cr (3.46)

with cr chosen in a way that
�
Rd ϕr(x)dρ(x) = 0. Brenier’s theorem guarantees that ∇ϕr is the

optimal transport map from ρ to (∇ϕr)#ρ. For r and r′ close enough (and r large enough), we
compare ∥ϕr − ϕr′∥L2(ρ) to W1(µ, ν) where µ = (∇ϕr)#ρ and ν = (∇ϕr′)#ρ.

For r large, we set r′ = r + 1
r and compute

(2π)d/2(cr − cr′) =

� +∞

r
(s− r)sd−1e−s

2/2ds−
� +∞

r′
(s− r′)sd−1e−s

2/2ds

= (r′ − r)

� +∞

r′
sd−1e−s

2/2ds+

� r′

r
(s− r)sd−1e−s

2/2ds

= O(rd−3e−r
2/2)
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and

∥(| · | − r)+ − (| · | − r′)+∥2L2(ρ) = (r′ − r)2
� +∞

r′
sd−1e−s

2/2ds+

� r′

r
(s− r)2sd−1e−s

2/2ds

= Θ(rd−4e−r
2/2)

where we write f(r) = Θ(g(r)) if the quotient f(r)/g(r) remains bounded above and below by
positive constants as r → +∞. We deduce that

∥ϕr′ − ϕr∥2L2(ρ) = ∥(| · | − r)+ − (| · | − r′)+∥2L2(ρ) − |cr − cr′ |2 = Θ(rd−4e−r
2/2). (3.47)

We then turn to the computation of W1((∇ϕr′)#ρ, (∇ϕr)#ρ). We observe that

(∇ϕr)#ρ = ρ(B(0, r))δ0 + (1 − ρ(B(0, r))σSd−1

where σSd−1 is the uniform probability measure on Sd−1. We have an analogous expression for
(∇ϕr′)#ρ, and we deduce

W1((∇ϕr′)#ρ, (∇ϕr)#ρ) = ρ(B(0, r′)) − ρ(B(0, r)) = Θ(rd−2e−r
2/2). (3.48)

It follows from (3.47) and (3.48) that

∥ϕr′ − ϕr∥L2(ρ) = Θ(W
1/2
1 | logW1|−1)

where W1 is a short notation for W1((∇ϕr′)#ρ, (∇ϕr)#ρ).

We also observe that the above example does not prove the sharpness of the exponent of
stability of optimal transport maps (1.28) (and indeed, we conjecture that the correct exponent
is 1/2 and not 1/6).

The above proof can be adapted to other contexts. For instance, when ρ(x) = cβ,d(1+ |x|)−β
(β > d+2), it is possible to derive sharp stability exponents for Kantorovich potentials using the
same family of radial Kantorovich potentials (3.46). Also, when ρ blows up at the boundary of
a ball or is the spherical uniform distribution (see “Degenerate densities ρ in bounded domains”
in Section 1.7), this same family may be used to find upper bounds on the stability exponents
for Kantorovich potentials.

3.7.3 Strong instability for room-and-passage domains

We turn to another explicit computation, this time aimed at showing the relevance of the
John domain condition in Theorem 1.12. For this, we consider domains that are considered in
the literature as typical instances of non-John domains, and show that if ρ is bounded above
and below on such domain, then stability of Kantorovich potentials cannot hold, even in a very
weak sense.

We could seek for even stronger, and hope that the John domain condition is necessary and
sufficient for Theorem 1.12 to hold. However, this cannot be true, as explained in Section 3.6. In
analogy, John domains support Sobolev-Poincaré inequalities, but there exist non-John domains
which also support Sobolev-Poincaré inequalities. To remedy this issue, it has been shown that
a domain satisfying a certain separation property supports Sobolev-Poincaré inequalities if and
only if it is a John domain. The proof of this fact is delicate, and it would be interesting to look
for an analogous converse result to Theorem 1.12.

In this section we prove:
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Theorem 3.11 (Instability of Kantorovich potentials in room-and-passage domains). There
exists a non-empty, bounded, path-connected domain X ⊂ Rd such that for any probability
density ρ bounded above and below on X the inequality

∀µ, ν ∈ P(B(0, 1)), ∥ϕµ − ϕν∥L2(ρ) ≤ CWp(µ, ν)α (3.49)

fails for any C,α > 0 and p ∈ [1,+∞) (where ϕµ, ϕν denote the Kantorovich potentials between
ρ and µ and ρ and ν respectively).

The counterexample X is a so-called “room-and-passage” domain, a typical example of a
non-John domain. It is endowed with a probability density which is bounded above and below
on the support, for instance the uniform density. We consider the case d = 2 for simplicity, but
the computations may be modified to cover any dimension d.

x1

x2

R1

P1

R2

P2

t1 t′1 t2 t′2
h1

Figure 6: A room-and-passage domain

Proof of Theorem 3.11. As depicted on Figure 6, a room-and-passage domain in R2 is a con-
nected and bounded set made of an infinite union of rectangles with variable lengths and widths.
For simplicity, we assume that the axes of these rectangles are parallel to the coordinate axes.
We call length of a rectangle the length of its side parallel to the x1 axis, and width that of its
side parallel to the x2 axis. The rectangles are of two types, which alternate along the x1-axis:
the rooms Rn, n ∈ N; and the passages Pn, n ∈ N. The key assumption we make is that the
passages have a width hn which decreases very fast as n tends to +∞, much faster than the
other typical lengths of Rn and Pn. To start, we keep hn free, as well as the other parameters
of the rectangles, but we shall fix them later.

We write Pn = [tn, t
′
n] × [−hn/2, hn/2], and set

ϕn(x) = |x1 − tn|, ϕ′n(x) = |x1 − t′n| (3.50)

for x = (x1, x2) ∈ R2. Since ϕn (resp. ϕ′n) is convex, it differs from the Kantorovich potential
from ρ to (∇ϕn)#ρ (resp. (∇ϕ′n)#ρ) only by a constant. Now, the idea is that ∇ϕn and ∇ϕ′n
coincide on X \ Pn, and this set has ρ-volume almost 1, which makes (∇ϕn)#ρ and (∇ϕ′n)#ρ
extremely close in Wasserstein distance: their Wasserstein distance is proportional to ρ(Pn)
which is of order hn(t′n − tn). The quantity Var(ϕn − ϕ′n) is much larger (but very small too!)
since |ϕn − ϕ′n| is equal to |t′n − tn| in the largest part of X .
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More precisely, both µn = (∇ϕn)#ρ and µ′n = (∇ϕ′n)#ρ are supported on {A,B} where
A = (−1, 0) and B = (1, 0), and the subset of points of X such that ∇ϕn ̸= ∇ϕ′n is Pn. Since
dist(A,B) = 2, we get that for any p ≥ 1,

Wp(µn, µ
′
n) = 2ρ(Pn)1/p. (3.51)

We turn to the computation of Varρ(ϕn − ϕ′n). For this, we observe that

ϕ′n(x) − ϕn(x) =

{
t′n − tn if x1 ≤ tn

tn − t′n if x1 ≥ t′n
(3.52)

and
|ϕn(x) − ϕ′n(x)| ≤ |tn − t′n| if x ∈ Pn. (3.53)

Therefore
∥ϕn − ϕ′n∥2L2(ρ) ≥ |tn − t′n|2(1 − ρ(Pn)). (3.54)

Then, we evaluate the mean of ϕn − ϕ′n. We set

vn = ρ({x ∈ X | x1 ≤ tn}) and wn = ρ({x ∈ X | x1 ≥ t′n}).

Then vn → 1 and wn → 0 as n→ +∞, and for any n ∈ N∗,

vn + wn + ρ(Pn) = 1.

Therefore, for n large enough, using (3.52) and (3.53),

0 ≤
�
X

(ϕ′n − ϕn)dρ ≤ (t′n − tn)vn + (tn − t′n)wn + ρ(Pn)|tn − t′n|

= (1 − 2wn)(t′n − tn).

(3.55)

We deduce that

Varρ(ϕn − ϕ′n) = ∥ϕn − ϕ′n∥2L2(ρ) −
(�

X
(ϕn − ϕ′n)dρ

)2

≥ |tn − t′n|2(1 − ρ(Pn) − (1 − 2wn)2)

= |tn − t′n|2(4wn − ρ(Pn) − 4w2
n)

≥ |tn − t′n|2(ρ(Rn+1) − ρ(Pn)) (3.56)

since wn → 0 and wn ≥ ρ(Rn+1).
There remains to choose the parameters of the rooms Rn and the passages Pn. We choose

hn small enough compared to all other lengths, in particular ρ(Rn+1) − ρ(Pn) ≥ 1
2ρ(Rn+1) ≳

λ(Rn+1) where recall that ρ has density bounded below on X . Then for any α > 0 and p ∈
[1,+∞),

Wp(µn, µ
′
n)α

Varρ(ϕn − ϕ′n)
≲

λ(Pn)α/p

|tn − t′n|2λ(Rn+1)
≲

|tn − t′n|(α−2p)/ph
α/p
n

λ(Rn+1)
.

and we see that choosing hn small enough compared to all other parameters, this quantity tends
to 0 as n→ +∞, for any α > 0, p ∈ [1,+∞), which concludes the proof.

Remark 3.12. The above computations being essentially 1-dimensional, one may easily turn
them into an example of a source measure ρ whose support is a segment of R, and for which
stability does not hold even in a very weak sense.
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To understand the general philosophy of the room-and-passage example, let us recall that
if the support of a probability density ρ is disconnected, Kantorovich potentials are not unique
in general. Room-and-passage domains, while connected, are “nearly disconnected”: at finer
and finer scales, the passages that keep them connected become extremely narrow compared
to the size of the pieces they connect. We can make a thought experiment: choose one of the
passages, and send its width h to 0. When h = 0, the domain is disconnected and potentials
are not unique; when h goes to 0, the Kantorovich potentials, while unique, become more and
more unstable. This is to be expected: just before losing uniqueness, stability is lost.

Beside room-and-passage domains, domains with an outward cusp are another well-known
category of non-John domains. By outward cusp, we mean that in some local coordinates, the
equation defining the domain is |y| ≤ f(x) for some f : [0,+∞) → R with f ′(0) = 0. For
instance f(x) = xs with s > 1, or f(x) = e−1/x2 . The former are called (polynomial) s-cusps,
the latter exponential cusps. It is not difficult to modify the above computations to show that
domains with an exponential cusp could also be used to prove Theorem 3.11.

Regarding polynomial cusps, we need another definition. For s ≥ 1, an s-John domain is a
domain for which the condition (1.29) is replaced by

dist(γ(t),X c) ≥ ηts

i.e., the same condition as John domains except that t is replaced by ts in the right-hand side.
It follows that s-John domains may have polynomial s-cusps.

Open question 3.13. Does a stability inequality ∥ϕµ − ϕν∥L2(ρ) ≤ CWp(µ, ν)α hold in s-John
domains, for some C, p, α which may depend on the domain (notably on s)?

In s-John domains with large s, the exponent α necessarily has to be less good (i.e., larger)
than 1/2. One can compute as an exercise an upper bound on the stability exponent in a domain
containing an s-cusp, using similar sequences as in (3.50).

Let us hazard a final speculative comment: it seems to us that there is at least a formal
resemblance between the example detailed in Section 3.7.3 and the Kannan-Lovasz-Simonovitz
conjecture. This conjecture asserts that the Poincaré constant of log-concave measures can be
checked on linear test functions. The analogy we see with our example is that we only need
simple test functions (namely, distance functions to hyperplanes) to prove that optimal transport
potentials are unstable. Therefore, it is tempting to formulate the following vague question:

Open question 3.14. Is it true that for more general ρ’s, some simple family of test functions
is sufficient to guarantee stability/instability of optimal transport potentials?

3.8 Stability for quadratic optimal transport maps in Rd

Until now, we have only proved quantitative stability estimates for Kantorovich potentials.
To conclude this chapter, we establish the quantitative stability of optimal transport maps,
under some assumptions. The arguments used here are very different from those used so far.
Actually, the stability of optimal transport maps is deduced from that of Kantorovich potentials,
using an additional final step: the main tool in this section will be an inequality of the form

∥∇f −∇g∥L2(ρ) ≤ CL2/3∥f − g∥1/3
L2(ρ)

(3.57)

for f, g convex and L-Lipschitz on the support of ρ (of course (3.57) cannot hold without some
assumption on f, g). Applying it to f = ϕµ, g = ϕν and using the stability of Kantorovich
potentials will immediately yield the stability of optimal transport maps in John domains (1.31).
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To get stability of optimal transport maps when the source measure ρ is log-concave, i.e., (1.28),
one needs additional truncation arguments that we will not detail here.

The surprising inequality (3.57) crucially relies on the assumption that both ϕµ and ϕν are
convex. Its proof relies on two main ingredients:

� first, a one-dimensional version of the inequality (3.57);

� second, integral geometric techniques which allow to extend the one-dimensional inequality
to higher dimensions.

Until now, this strategy has not led to optimal results, in the sense that the exponent 1/6 in
Theorem 1.12 does not match the upper bound 1/2 on the exponent provided by the explicit
example written in Section 1.8. Perhaps one would need a direct approach to stability of optimal
transport maps, not going through stability of Kantorovich potentials, to get sharper exponents.
This is of the main open questions in the field.

3.8.1 The 1d inequality

We start with a one-dimensional version of (3.57).

Proposition 3.15. Let I ⊂ R be a compact segment. Let u, v : I → R be two convex functions
whose derivatives (defined a.e. on I) are uniformly bounded over I. Then

∥u′ − v′∥2L2(I) ≤ 8(∥u′∥L∞(I) + ∥v′∥L∞(I))
4/3∥u− v∥2/3

L2(I)
. (3.58)

This inequality looks like a Poincaré inequality, but in the wrong sense! It holds only
because we are applying it to a difference of convex functions. Indeed, taking I = [0, 1], u = 0
and v = sin(nx) shows that (3.58) cannot hold without assuming something on u, v. One can
get some intuition about (3.58) by drawing the graphs of u′ and v′, which are non-decreasing
functions. Then u, v are obtained as areas under the curves and it may be seen that |u′ − v′|
cannot be large on some quantitative fraction of I without having |u − v| large at some point.
Another remark is that (3.58) is invariant under affine transformations, hence it is sufficient to
prove the result on I = [0, 1]. Finally, the exponents in (3.58) are optimal, as may be seen by
taking u(x) = L|x− 1

2 | and v = max(u, ε).

Proof of Proposition 3.15. As explained above, we may assume I = [0, 1] thanks to a scaling
argument. First integrating by parts,

� 1

0
|u′ − v′|2 =

[
(u− v)(u′ − v′)

]1
0
−
� 1

0
(u− v)(u′′ − v′′)

≤ 2∥u− v∥L∞(∥u′∥L∞ + ∥v′∥L∞) + ∥u− v∥L∞

(� 1

0
|u′′| +

� 1

0
|v′′|
)

But since u is convex,

� 1

0
|u′′| =

� 1

0
u′′ = u′(1) − u′(0) ≤ 2∥u′∥L∞ ,

and similarly for v, thus we conclude that

� 1

0
|u′ − v′|2 ≤ 4∥u− v∥L∞(∥u′∥L∞ + ∥v′∥L∞). (3.59)

62



The second step is to bound the L∞ norm of f = u − v with its L2-norm using that the
Lipschitz constant of f = u − v is less than L = ∥u′∥L∞ + ∥v′∥L∞ . This second step does not
use the fact that f is the difference of two convex functions: considering the worst case scenario
where f is piecewise affine, equal to 0 except around the maximum of ∥f∥L∞ where it looks like
a “tent” with slope L, we get

∥u− v∥2L2(I) ≥
1

4
min

( ε

2L
, 1
)
ε2 (3.60)

where ε = ∥u− v∥L∞ .
We separate two cases. If ε ≥ 2L, then we deduce from (3.60) that ∥u− v∥L2(I) ≥ ε

2 . Hence

8(∥u′∥L∞(I) + ∥v′∥L∞(I))
4/3∥u− v∥2/3

L2(I)
≥ 8L4/3(ε/2)2/3 ≥ 8L2 ≥ ∥u′ − v′∥2L2 ,

which concludes in this case. If ε ≤ 2L, then (3.60) yields ε3 ≤ 8L∥u− v∥2L2(I), hence

∥u− v∥L∞(I) ≤ 2L1/3∥u− v∥2/3
L2(I)

and plugging into (3.59) we also get (3.58).

3.8.2 Higher dimension: an integral-geometric argument

The second step is to generalize Proposition 3.15 to higher dimensions:

Proposition 3.16. Let L > 0 and let K be a compact subset of Rd whose boundary has finite
(d − 1)-dimensional measure. Then there exists C > 0 such that for any u, v : K → R convex
on any segment included in K and L-Lipschitz,

∥∇u−∇v∥L2(K) ≤ C∥u− v∥1/3
L2(K)

.

Proof. To prove Proposition 3.16, one possibility is to rely on integral-geometric techniques,
i.e., expressing a multidimensional integral in terms of integrals over lines (or geodesics, in
Riemannian geometry). We start from the formula

�
Rd
f(x)2dx =

�
e⊥

�
R
f(y + te)2dtdy.

valid for any e ∈ Sd−1, where e⊥ denotes the hyperplane (through the origin) perpendicular to
the unit vector e. Applying this to f(x) = ⟨F (x), e⟩, and then integrating over e ∈ Sd−1, we get

�
Sd−1

�
Rd
⟨F (x), e⟩2dxdσ(e) =

�
Sd−1

�
e⊥

�
R
⟨F (y + te), e⟩2dtdydσ(e)

where σ is the uniform probability measure on Sd−1. We observe that the left-hand side is equal
to Cd∥F∥2L2(Rd) for some Cd > 0 depending only on d. We apply this to F given by ∇u − ∇v
inside K, and extended by 0 outside K. We get

∥∇u−∇v∥2L2(K) = C−1
d

�
Sd−1

�
e⊥

∥u′ℓye − v′ℓye∥
2
L2(ℓye∩K)dydσ(e) (3.61)
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where ℓye denotes the oriented line y+eR and uℓye = u|ℓye∩K , vℓye = v|ℓye∩K . The set ℓye ∩K may be
decomposed as a finite union of intervals Ii

ℓye
, i = 1, . . . , nℓye in which we can apply Proposition

3.15 (the 1d inequality, using that ∥u′∥L∞ , ∥v′∥L∞ ≤ L). We get

∥u′ℓye − v′ℓye∥
2
L2(ℓye∩K) =

n
ℓ
y
e∑

i=1

∥u′ℓye − v′ℓye∥
2
L2(Ii

ℓ
y
e
) ≤ 8(2L)4/3

n
ℓ
y
e∑

i=1

∥uℓye − vℓye∥
2/3

L2(Ii
ℓ
y
e
)

≤ 8(2L)4/3n
2/3

ℓye
∥uℓye − vℓye∥

2/3

L2(ℓye∩K)

where the last inequality comes from Jensen’s inequality. Combining this with (3.61) and then
using Hölder’s inequality, we get

∥∇u−∇v∥2L2(K) ≲
�
Sd−1

�
e⊥
n
2/3

ℓye
∥uℓye − vℓye∥

2/3

L2(ℓye∩K)
dydσ(e)

≲

(�
Sd−1

�
e⊥
nℓyedydσ(e)

)2/3(�
Sd−1

�
e⊥

∥uℓye − vℓye∥
2
L2(ℓye∩K)dydσ(e)

)1/3

.

The second parenthesis is equal to Cd∥u − v∥2L2(K) due to the same argument which led to

(3.61). Regarding the first parenthesis, we observe that nℓye ≤ #(ℓye ∩ ∂K) and then we use the
Cauchy-Crofton formula, which asserts that

�
Sd−1

�
e⊥

#(ℓye ∩ ∂K)dydσ(e) = H d−1(∂K) < +∞ (3.62)

where H d−1 denotes the (d − 1)-dimensional Hausdorff measure. This concludes the proof of
Proposition 3.16.

Here, we should warn the reader that for the Cauchy-Crofton formula (3.62) to hold, one
actually needs to assume that the boundary ∂K is rectifiable. If this is not assumed, then it is
still true that the left-hand side in (3.62) is finite when H d−1(∂K) < +∞ (but the equality in
(3.62) does not necessarily hold). To prove this and also to extend Theorem 1.12 to Riemannian
manifolds, we devised a more robust argument based on the definition of the integral-geometric
measure, with the help of Antoine Julia and Federer’s book [49]. This outer measure, defined
following Caratheodory’s construction, compares easily (almost by definition) with the (d− 1)-
dimensional Hausdorff measure and may be shown to count the number of intersections of short
geodesic curves with ∂X .

3.8.3 Conclusion of the proof of Theorem 1.12

To prove the stability of optimal transport maps in the John domain case, i.e., (1.31),
we simply combine the stability of Kantorovich potentials (1.30) (proved in Section 3.3) with
Proposition 3.16 for K = X .

We shall not detail the proof of the stability of optimal transport maps in the log-concave
case (i.e., (1.28)). It relies not only on Proposition 3.16, but also on truncation arguments closely
related to those of Section 2.6.

To conclude this chapter, we would like to ask the following question: where did we lose
sharpness of the exponents? Indeed, as we already mentioned, there is a gap between the
stability inequality for optimal transport maps (1.31), which displays an exponent 1/6, and the
concrete examples, in which the optimal transport maps are always more stable than this and
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the stability exponent is 1/2 (see for instance Section 1.8). If we summarize our proofs, we have
proved stability of optimal transport maps thanks to a chain of inequalities of the form

∥Tµ − Tν∥6L2(ρ) ≲ ∥ϕµ − ϕν∥2L2(ρ) ≲ ⟨ψν − ψµ, µ− ν⟩ ≲W1(µ, ν). (3.63)

Indeed, the right-most inequality is the “Kantorovich-Rubinstein” argument done several times,
the middle inequality has been proven using the strong convexity of the Kantorovich functional
(together with gluing arguments), and the left-most inequality comes from Proposition 3.16.

As seen in Section 3.7.1 the two inequalities on the right become asymptotically sharp as
d→ +∞. The inequality on the left is sharp in any dimension: take ρ = 1[0,1]d and

ϕ(1)ε (x) = |x1|, ϕ(2)ε (x) = max(ϕ(1)ε , ε)

for x = (x1, . . . , xd) ∈ Rd. Then ∥∇ϕ(1)ε − ∇ϕ(2)ε ∥2L2(ρ) = ε, whereas Var(ϕ
(1)
ε − ϕ

(2)
ε ) ≈ ε3,

showing the sharpness of the exponents in the left hand side inequality.
In other words, each of the three inequalities in (3.63) is sharp! But their equality cases do

not match, and we have no example where this chain of inequalities is indeed saturated. Thus,
one of the main open problems that remains to be solved is the following:

Open question 3.17. Obtain sharp exponents for the stability of optimal transport maps (in
(1.28) and (1.31) for instance).

3.9 Bibliographical notes

§3.1: The starting point of our collaboration with Quentin Mérigot [72], in which we worked
out the general gluing methods presented here, was the work [26] in which a basic gluing argu-
ment for finite families F was performed in the slightly different context of stability of Wasser-
stein barycenters. Our methods turned out to be useful to address stability of optimal transport
in Riemannian manifolds too [64] (see Section 4.4). Other methods for decomposing measures
and proving Poincaré inequalities (or other functional inequalities) exist in the literature, for
instance Eldan’s stochastic localization [48].

§3.2: The Whitney decomposition was discovered in 1934 by Hassler Whitney [108]. Boman
introduced in [14] the chains now known as Boman chains. His goal was to prove Lp estimates for
solutions to some over-determined elliptic systems of PDEs in regions with irregular boundary.
Bojarski discovered in [13] how to use these chains to prove Sobolev-Poincaré inequalities in
John domains. The proof of Proposition 3.3 is due to him. The converse fact that any bounded
open subset of Rd supporting Boman chains is a John domain was proved in [22].

§3.3: The proof of Proposition 3.4 is inspired by Bojarski’s computations in [13].

§3.4: Spectral graph theory is a classical topic, see for instance the books [34], [99] and
the beautiful expository notes by Luca Trevisan [103]. The Cheeger inequality in finite graphs
is of course covered in these references, and our proof is adapted from [34, Theorem 2.2]. For
infinite graphs, the book chapter [62, Chapter 13.1] is particularly clear. A more general Cheeger
inequality, applying as well to infinite graphs which do not verify (3.26) has been proved in [62,
Theorem 13.4]. Our presentation follows closely [10].

§3.5: I did not find any reference for the elementary Lemma 3.6, but it seems difficult to
believe that no one ever used such arguments.

§3.6: The converse to Bojarski’s result, namely the left-to-right implication in (3.41), was
proved in the paper [21]. We borrowed our discussion about the separation property from this
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paper. Since the 1980’s, many authors have been using variants of the Boman chain condition.
It turns out that for many results, a good framework is that of metric spaces endowed with a
doubling measure, see the memoir [55] which develops the theory of Sobolev spaces and proves
Poincaré-type inequalities in this setting.

§3.7: The example in Section 3.7.1 comes from from [64], and those of Sections 3.7.2 and
3.7.3 come from [72]. Room-and-passage domains date back at least to the 1937 monograph by
Courant and Hilbert [37, pp. 521-523], who used them to show that the embedding of H1(X )
in L2(X ) is not necessarily compact (see also [4]). Indeed, consider ϕn a function which is equal
to a constant in the n-th room Rn and which drops linearly to 0 in the adjacent passages Pn−1

and Pn, reaching the value 0 at the midpoint of each of these passages. Choosing the constant
in a way that ∥ϕn∥L2(X ) = 1, we obtain an orthonormal family of functions. If the passages
are narrow enough (i.e., if hn is small enough), then ∥∇ϕn∥L2(X ) → 0 as n → +∞. Since
no subsequence of (ϕn) converges in L2(X ), H1(X ) is not compactly embedded in L2(X ). This
example is fundamentally related to the fact that the Poincaré inequality fails in X , and that 0 is
in the essential spectrum of the Neumann Laplacian on X . In this direction, Hempel-Seco-Simon
[56] used room-and-passage domains to provide examples of domains with prescribed essential
spectrum. Finally, many papers have considered s-John domains, see for instance [54].

§3.8: The one-dimensional inequality given in Proposition 3.15 was proved in [42]. This is
a refinement of Theorem 3.5 in [27], in which the upper bound involved the uniform distance
∥u− v∥L∞ . Federer’s book [49] provides a general perspective on integral-geometric techniques,
notably those of Section 3.8.2. As already mentioned, there is an alternative path to prove
Proposition 3.16, which relies on the Caratheodory construction, see for instance [49, Chap-
ter 2.10]. This alternative strategy was used in [64] to extend Theorem 1.12 to Riemannian
manifolds.

66



4 Stability of optimal transport for more general costs

While the previous chapters were focused on quadratic optimal transport in Euclidean spaces,
we turn in this chapter to more general costs. Our goal is to prove quantitative stability esti-
mates for optimal transport maps and Kantorovich potentials obtained as solutions to optimal
transport problems with more general costs.

We focus on the generalization of Theorem 1.12. To this end, we make a small detour in
the world of entropic optimal transport (EOT): this penalized version of the optimal transport
problem is both an important theoretical topic and a major computational tool. Section 4.1 is a
brief self-contained introduction to this subject. In Section 4.2, inspired by EOT, we define the
regularized Kantorovich functional, a variant of the Kantorovich functional. Finally, in Sections
4.3 and 4.4 we state the main results of this chapter, namely the quantitative stability bounds
for the p-cost in Rd and for the squared distance on Riemannian manifolds. We discuss their
proofs which rely on strong concavity estimates for the regularized Kantorovich functional.

Another possible direction would be to extend the validity of Gigli’s Theorem 1.9, which
shows stability “around regular transport maps”. The generalization of Gigli’s theorem has
been achieved in the paper [3] for the squared distance on Riemannian manifolds, and in [52]
for more general costs. For instance, the results of [52] apply to the so-called reflector cost

c(x, y) = − log(1 − x · y) on Sd−1.

We do not discuss these developments here.

Notation. Recall that the duality pairing between continuous functions and real-valued Radon
measures is denoted by ⟨· | ·⟩. For instance, ⟨c | γ⟩ stands for the integral

�
X×Y c(x, y)dγ(x, y).

4.1 Entropic optimal transport

Let X and Y be compact metric spaces. Given ε > 0, a cost function c : X ×Y → R bounded
from below, and two probability measures ρ and µ on X and Y respectively, the entropic optimal
transport problem reads

inf
γ∈Π(ρ,µ)

⟨c | γ⟩ + εH(γ | ρ⊗ µ) (4.1)

where H denotes the entropy

H(α | β) =

{�
f(log(f) − 1) dβ if α has a density w.r.t. β, denoted by f

+∞ otherwise.
(4.2)

Usually, the entropy is simply f log f , but subtracting f makes later computations slightly nicer
(and when both α and β are probability measures, subtracting f in the integral simply amounts
to subtracting a constant to the entropy). In (4.2), for short, we denote by x(log x − 1) the
function equal to x(log x − 1) where x > 0, equal to 0 where x = 0, and equal to +∞ where
x < 0. For ε = 0, one recovers the usual quadratic optimal transport problem in its Kantorovich
formulation (1.3). For ε > 0, the penalization term εH(γ | ρ ⊗ µ) forces the optimal transport
plan to have some density with respect to the transport plan ρ ⊗ µ, which is the most naive
transport plan between ρ and µ since it distributes equally over µ any piece of mass of ρ.

Entropic optimal transport has the big advantage that (4.1) always has a unique solution,
whereas recall that multiple solutions of the Kantorovich problem may exist.

Proposition 4.1. Given ε > 0 and two probability measures ρ and µ, the entropic optimal
transport problem (4.1) admits a unique solution.
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Proof. The existence follows from the lower semi-continuity of the functional

γ 7→ ⟨c | γ⟩ + εH(γ | ρ⊗ µ)

over the compact set Π(ρ, µ). The uniqueness is a consequence of the strict convexity of H,
which comes from the strict convexity of x(log x− 1).

The computation of the unique solution to (4.1) is more tractable from a computational
point of view than that of the unregularized optimal transport problem (1.3), thanks to the
Sinkhorn algorithm presented in Section 5.3, which has an exponential convergence rate under
some assumptions on the marginals.

Remark 4.2. Entropic optimal transport plans, i.e., minimizers of (4.1), have full support with
respect to ρ⊗ µ. The proof of this fact is left to the reader: it follows from the infinite negative
slope of f log f which allows to create a transport plan with strictly lower cost from any transport
plan whose support is strictly contained in the support of ρ ⊗ µ. As a consequence, the unique
solution to (4.1) is not a map in general (but it is a transport plan between ρ and µ).

As for (1.3), there is an equivalent dual formulation of (4.1). It is based on the following
formula:

Proposition 4.3. Let β be a finite (positive) Radon measure on a compact set Z, and let α be
a real-valued Radon measure on Z. Then,

H(α | β) = sup
f∈C0(Z)

⟨f | α⟩ − ⟨ef | β⟩. (4.3)

In particular, α 7→ H(α | β) is convex and weakly-* lower semi-continuous. In addition, the
supremum in (4.3) is attained at f ∈ C0(Z) if and only if ef is the density of α with respect to
β.

Remark 4.4. The above formula is quite close to the Donsker-Varadhan variational formula,
which is stated in (5.26). But to obtain the standard formulation of duality for entropic optimal
transport, (4.3) is the correct identity to use.

Proof of Proposition 4.3. Let h : R → R ∪ {+∞} defined by h(x) = x(log x − 1) if x > 0,
h(0) = 0 and h(x) = +∞ for x < 0. Its Legendre transform is

h∗(s) = sup
x>0

xs− h(x) = es.

Assume first that α has a density g with respect to β. Since h is convex and lower semi-
continuous, there holds h = h∗∗ by the Fenchel-Moreau theorem, hence

H(α | β) =

�
h(g(x))dβ(x) =

�
h∗∗(g(x))dβ(x) =

�
sup
s∈R

(sg(x) − h∗(s))dβ(x).

In particular, for any bounded measurable function f , we have

H(α | β) ≥ ⟨f | gβ⟩ − ⟨ef | β⟩ = ⟨f | α⟩ − ⟨ef | β⟩

with equality if g = ef almost everywhere. This proves (4.3) in this case.
Let us now assume that α does not have a density with respect to β, and let us prove that the

supremum in the right-hand side of (4.3) is also equal to +∞. Pick A ⊂ Z such that β(A) = 0
and α(A) ̸= 0. Let f = λ1A for some λ ∈ R. Recall Lusin’s theorem (see [96, Memo 1.6]),

68



adapted for signed measures: if f : Z → R is measurable, then for every ε > 0, there exists
a compact set K ⊂ Z and a continuous function f̃ : Z → R such that |α(Z \ K)| < ε, and
f = f̃ on K, and ∥f̃∥L∞(Z) is bounded above independently of ε. Taking for fn the function f̃
associated to a sequence εn → 0, we get

⟨fn | α⟩ − ⟨efn | β⟩ −→
n→+∞

⟨f | α⟩ − ⟨ef | β⟩. (4.4)

Finally, letting λ→ ±∞, we get that (4.3) holds also when α is not absolutely continuous with
respect to β.

The strict convexity of α 7→ H(α | β) is an immediate consequence of the strict convexity of
x 7→ x(log(x) − 1).

Dual formulation. To establish the dual formulation of (4.1) we first remove the positivity
constraint on γ in (4.1), which is guaranteed to be satisfied for minimizers due to the definition
of the entropy: in other words, we denote by Π′(ρ, µ) the set of signed measures γ on X × Y
such that for all measurable sets A ⊂ X , B ⊂ Y,

γ(A× Y) = ρ(A) and γ(X ×B) = µ(B).

and we consider

inf
γ∈Π′(ρ,µ)

�
X×Y

c(x, y)dγ(x, y) + εH(γ | ρ⊗ µ). (4.5)

Although the infimum is taken over a larger set in (4.5) than in (4.1), these two infima are equal.
Indeed, if γ is not non-negative, then we can check that H(γ | ρ⊗µ) = +∞: taking g such that
⟨g | γ⟩ < 0 for some continuous function g ≥ 0, and f = −λg in Proposition 4.3, there holds

H(γ | ρ⊗ µ) ≥ λ⟨γ | −g⟩ − ⟨e−λg | ρ⊗ µ⟩ −→
λ→+∞

+∞.

Hence, we focus on (4.5) in the sequel, and we proceed as in Section 2.1.1 for the dual formulation
of the Kantorovich problem. Using (4.3), the minimization problem (4.1) may be equivalently
written as

inf
γ∈Π′(ρ,µ)

sup
ϕ,ψ,f

⟨c− ϕ⊕ ψ | γ⟩ + ⟨ϕ | ρ⟩ + ⟨ψ | µ⟩ + ε⟨f | γ⟩ − ε⟨ef | ρ⊗ µ⟩

where the supremum is taken over continuous functions ϕ, ψ, f . The dual problem is obtained
by inverting the inf and the sup:

sup
ϕ,ψ,f

inf
γ∈Π′(ρ,µ)

⟨c− ϕ⊕ ψ + εf | γ⟩ + ⟨ϕ | ρ⟩ + ⟨ψ | µ⟩ − ε⟨ef | ρ⊗ µ⟩. (4.6)

In (4.6), the infimum over γ is equal to −∞, unless c − ϕ ⊕ ψ + εf = 0 in which case f =
(ϕ⊕ ψ − c)/ε. Therefore (4.6) reads

sup
(ϕ,ψ)∈C0(X )×C0(Y)

J ε(ϕ, ψ) (4.7)

where
J ε(ϕ, ψ) = ⟨ϕ | ρ⟩ + ⟨ψ | µ⟩ − ε⟨e

ϕ⊕ψ−c
ε | ρ⊗ µ⟩.

The problem (4.7) is called the dual problem, as opposed to (4.1), which is the primal problem.
It is a concave maximization problem, due to the convexity of the exponential. To find the
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solution (ϕ, ψ) to the dual problem (4.7), we write the first-order optimality conditions. For this
we introduce

ψc,ε(x) = −ε log

(�
Y
e
ψ(y)−c(x,y)

ε dµ(y)

)
. (4.8)

for ψ ∈ C0(Y), and

ϕc,ε(y) = −ε log

(�
X
e
ϕ(x)−c(x,y)

ε dρ(x)

)
(4.9)

for ϕ ∈ C0(X ). These so-called regularized c-transforms play the same role as the Legendre
transform (2.8) in the unregularized optimal transport problem. And the optimality conditions
below are analogues of the relations ϕ = ψ∗ and ψ = ϕ∗ for Kantorovich potentials in the
unregularized case (see Section 2.1.3).

Proposition 4.5 (First-order optimality conditions). The optimality conditions ∇ϕJ ε = 0 and
∇ψJ ε = 0 are respectively equivalent to ϕ(x) = ψc,ε(x) for ρ-a.e. x ∈ X , and ψ(y) = ϕc,ε(y) for
µ-a.e. y ∈ Y.

Proof. We have for v ∈ C0(X )

1

t
(J ε(ϕ+ tv, ψ) − J ε(ϕ, ψ)) = ⟨v | ρ⟩ − ε

t

(
⟨e

(ϕ+tv)⊕ψ−c
ε − e

ϕ⊕ψ−c
ε | ρ⊗ µ⟩

)
hence

d

dt
J ε(ϕ+ tv, ψ)

∣∣∣∣
t=0

= ⟨v | ρ⟩ − ⟨ve
ϕ⊕ψ−c

ε | ρ⊗ µ⟩. (4.10)

The first-order optimality condition is thus for ρ-a.e. x ∈ X ,

1 =

�
Y
e
ϕ(x)+ψ(y)−c(x,y)

ε dµ(y) = e
ϕ(x)
ε

�
Y
e
ψ(y)−c(x,y)

ε dµ(y),

i.e., ϕ(x) = ψc,ε(x). The relation ψ = ϕc,ε is proved similarly.

There is another way to formulate the first-order optimality conditions, which derives directly
from (4.10). Fix (ϕ, ψ) and let

γ = e
ϕ⊕ψ−c

ε ρ⊗ µ.

Let also ΠX and ΠY denote the projections onto the first and second variables respectively.
Then

∇ϕJ ε(ϕ, ψ) = 0 ⇔ ΠX#γ = ρ (4.11)

and
∇ψJ ε(ϕ, ψ) = 0 ⇔ ΠY#γ = µ.

Theorem 4.6 (Strong duality). There exists a solution (ϕ, ψ) ∈ C0(X ) × C0(Y) to the dual
problem (4.7). Moreover, the strong duality relation Primal = Dual holds, i.e., the supremum
(4.7) is equal to the infimum (4.1). Finally, the unique minimizer γ in (4.1) is given by

γ = e
ϕ⊕ψ−c

ε ρ⊗ µ. (4.12)

We give a complete proof of Theorem 4.6. We first show the following weak duality result,
which is an easy step:

70



Lemma 4.7 (Weak duality). For any potentials (ϕ, ψ) ∈ C0(X )×C0(Y) and any transport plan
γ ∈ Π(ρ, µ), one has

J ε(ϕ, ψ) ≤
�
X×Y

c dγ + εH(γ | ρ⊗ µ) (4.13)

with equality if γ = e
ϕ⊕ψ−c

ε ρ⊗µ. In particular the weak duality inequality Dual ≤ Primal holds,
i.e., the supremum (4.7) is upper bounded by the infimum (4.1).

Proof of Lemma 4.7. Let f = 1
ε (ϕ⊕ ψ − c). Then

J ε(ϕ, ψ) = ⟨c | γ⟩ + ε⟨f | γ⟩ − ε⟨ef | ρ⊗ µ⟩
≤ ⟨c | γ⟩ + εH(γ | ρ⊗ µ),

with equality according to Proposition 4.3 if and only if the density of γ with respect to ρ ⊗ µ
is ef .

Then, we prove an important fact regarding the modulus of continuity of regularized c-
transforms. A modulus of continuity for the cost c is a function ωc : R → R such that

∀x, x′ ∈ X , y ∈ Y, |c(x′, y) − c(x, y)| ≤ ωc(dX (x, x′))

where dX denotes the distance on X . Moduli of continuity of ψc,ε and ϕc,ε are defined in the
same way (it is even simpler since there is only one variable).

Lemma 4.8. For any (ϕ, ψ) ∈ C0(X ) × C0(Y), any modulus of continuity for the cost c is a
modulus of continuity of the regularized c-transforms ψc,ε and ϕc,ε.

Proof. We prove this property only for ψc,ε, the proof being similar for ϕc,ε. Let ωc be a modulus
of continuity for the cost c. For any x, x′ ∈ X , we have

ψc,ε(x′) − ψc,ε(x) = ε
(

log
(
⟨e

ψ−c(x,·)
ε | µ⟩

)
− log

(
⟨e

ψ−c(x′,·)
ε | µ⟩

))
= ε
(

log
(
⟨e

ψ−c(x′,·)
ε e

c(x′,·)−c(x,·)
ε | µ⟩

)
− log

(
⟨e

ψ−c(x′,·)
ε | µ⟩

))
≤ ε
(

log
(
⟨e

ψ−c(x′,·)
ε e

ωc(dX (x,x′))
ε | µ⟩

)
− log

(
⟨e

ψ−c(x′,·)
ε | µ⟩

))
≤ ωc(dX (x, x′))

where dX denotes the distance on X .

Proof of Theorem 4.6. To prove Theorem 4.6, we first notice that it is sufficient to prove its
first part. Indeed, if there exists a solution (ϕ, ψ) ∈ C0(X ) × C0(Y) to the dual problem, then

we let γ = e
ϕ⊕ψ−c

ε and we observe that for this choice of functions ϕ, ψ, γ, equality holds in
(4.13) according to Lemma 4.7. This proves that Primal ≤ Dual, i.e., the infimum (4.1) is upper
bounded by the supremum in (4.7). Together with Lemma 4.7, this proves the other statements
in Theorem 4.6.

There remains to prove the existence of a solution (ϕ, ψ) ∈ C0(X ) × C0(Y) to the dual
problem (4.7). The idea is to prove that the supremum can be taken over a compact subset of
C0(X ) × C0(Y) where the potentials are uniformly continuous. Using repeatedly Proposition
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4.5, which shows that for a fixed ψ, the concave function J ε(ϕ, ψ) is maximal when ϕ = ψc,ε

(and similarly for fixed ϕ it is maximal when ψ = ϕc,ε), we have

sup
ϕ,ψ

J ε(ϕ, ψ) = sup
ψ∈C0(Y)

J ε(ψc,ε, ψ) = sup
ψ∈C0(Y)

J ε(ψc,ε, (ψc,ε)c,ε)

= sup
ψ∈C0(Y)

J ε(((ψc,ε)c,ε)c,ε, (ψc,ε)c,ε)

= sup
ψ∈C0,ωc (Y)

J ε(ψc,ε, ψ)

where in the last line C0,ωc(Y) denotes the space of continuous functions on Y with modulus of
continuity ≤ ωc. Since for any constant C ∈ R, one has J ε(ϕ+ C,ψ − C) = J ε(ϕ, ψ), we may
impose without loss of generality that ⟨ψ | µ⟩ = 0 in the optimization problem. In particular ψ
takes both non-negative and non-positive values. Together with the fact that

max
Y

ψ − min
Y
ψ ≤ ωcdiam(Y)

we get ∥ψ∥∞ ≤ ωcdiam(Y). We deduce that

{ψ ∈ C0,ωc(Y) | ⟨ψ | µ⟩ = 0}

is a compact subset of C0(Y). Since ψ 7→ J ε(ψc,ε, ψ) is continuous on this set, we conclude
thanks to Arzelà-Ascoli’s theorem that the supremum in (4.7) is attained.

From Theorem 4.6 and the uniqueness of the minimizer γ in (4.1), we also get the uniqueness
of the maximizer in (4.7) up to a constant: for any two maximizers (ϕ1, ψ1) and (ϕ2, ψ2) of (4.7),
there exists a constant C such that

ϕ1 = ϕ2 + C ρ− a.e, ψ1 = ψ2 − C µ− a.e.

4.2 The regularized Kantorovich functional

4.2.1 Definition of the regularized Kantorovich functional

To obtain quantitative stability results for more general costs than the quadratic cost in Rd,
it seems natural to seek for an extension of the arguments presented in Section 2.5. Since they
rely primarily on the Kantorovich functional, let us first reconsider its definition (we replace X
by an open set U for reasons which will become clear only in Section 4.4):

Kρ(ψ) =

�
U
ψ∗dρ

where ψ∗(x) = supy⟨x, y⟩ − ψ(y) is the Legendre transform of ψ. The reason why the scalar
product ⟨x, y⟩ appears in the definition of Kρ is that the quadratic optimal transport problem
can be reformulated equivalently in terms of the cost ⟨x, y⟩ (see (2.3) and the dual problem
(2.5)). But for a general cost c(x, y), the scalar product has to be replaced by c(x, y) in order
to generalize the Kantorovich duality theory presented in Section 2.1. This gives birth to the
so-called c-transform

ψc(x) = inf
y∈Y

c(x, y) − ψ(y). (4.14)

(Note that an inf replaces here the sup of the Legendre transform, this is due to the minus sign
in front of the scalar product in the identity |x− y|2 = |x|2− 2⟨x, y⟩+ |y|2). Therefore a natural
generalization of the Kantorovich functional could be�

U
ψcdρ.
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However, this is not a good choice: actually, it is hopeless to try to prove its strong concavity
3 using the same tools as for the unregularized Kantorovich functional. To see why, we proceed
as in Lemma 2.7 and compute the Hessian of this functional. Let ψt = ψ0 + tv for some
ψ0, v ∈ C0(Y). Then

d

dt
ψct (x) = −v(y(t, x))

where y(t, x) is the point (assumed in these formal computations to be unique) where y 7→
c(x, y) − ψt(y) reaches its infimum. Therefore, informally,

d

dt

�
U
ψctdρ = −

�
U
v(y(t, x))dρ(x)

Taking a second derivative, we get

d2

dt2

�
U
ψctdρ = −

�
U

(dy

dt
(t, x)

)
∇v(y(t, x))dρ(x) (4.15)

Let us compute formally d
dty(t, x). For this we write

0 =
d

dt
[∇2c(x, y(t, x)) −∇ψt(y(t, x))]

= ∇2
d

dt
c(x, y(t, x)) − d

dt
[∇ψt(y(t, x))]

=
dy

dt
(t, x)∇2

2c(x, y(t, x)) − dy

dt
(t, x)∇2ψt(y(t, x)) −∇v(y(t, x))

where ∇2c(·, ·) denotes the gradient in the second variable of the cost function c. When c(x, y) =
−⟨x, y⟩ as in Section 2.3, the first term vanishes and we get

d

dt
y(t, x) = −(∇2ψt(y(t, x)))−1∇v(y(t, x)).

Plugging into (4.15) we recover the relation of Lemma 2.7. However, for a general cost c, we
obtain an expression for dy

dt which involves ∇2
2c. This seems to destroy the strategy to prove the

strong convexity of the functional. In other words, the fact that the quadratic optimal transport
problem can be reformulated in terms of the linear cost ⟨x, y⟩ makes the computations quite
specific when computing the Hessian of the Kantorovich functional Kρ.

To avoid these issues, one possible idea is to replace ψc by the regularized c-transform

ψc,ε : x 7→ −ε log

(�
Y
e
ψ(y)−c(x,y)

ε dµ(y)

)
(4.16)

introduced in (4.8) and consider the functional

�
U
ψc,εdρ.

Under the assumption that the support of µ coincides with Y, we have ψc,ε → ψc pointwise as
ε → 0. This functional is almost perfect, but it depends on the measure µ, since the definition
of ψc,ε itself depends on µ. This is an important issue: the arguments in the quadratic case
rely crucially on the fact that the definition of Kρ(ψ) does not depend on a target measure µ.

3and not convexity, signs are changed here since ψc is defined as an infimum!
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The argument ψ of the functional Kρ is “free”, and the target measures are only recovered a
posteriori as (∇ψ∗)#ρ.

Therefore, following an idea of Delalande, we finally introduce the regularized Kantorovich
functional

Kε
ρ(ψ) =

�
U
ψc,ε,σ dρ (4.17)

where, for some probability measure σ on Y,

ψc,ε,σ : x 7→ −ε log

(�
Y
e
ψ(y)−c(x,y)

ε dσ(y)

)
.

In other words, we just replace µ by σ in (4.16). Notice that Kε
ρ is concave, whereas Kρ was

convex. This is due to the fact that c-transforms are defined as an infimum, whereas the Legendre
transform is defined as a supremum. Of course this is just a sign convention, which seems to
be the most natural one. The only property that we need to impose on σ is that its support
coincides with Y; the existence of such σ for any Y is easily seen by picking a dense and countable
set in Y and constructing σ as a sum of weighted Dirac deltas on this set.

4.2.2 Strong convexity of the regularized Kantorovich functional

Following the ideas introduced in Section 2.5, we would like to prove that Kε
ρ is strongly

concave, in order to deduce later some stability properties of Kantorovich potentials. To prove
strong concavity of Kε

ρ, one could compute its second derivative and try to use the Brascamp-
Lieb inequality (what we did in the unregularized case, in Section 2.5) or another functional
inequality. We give below the expression of this second derivative, but it is not clear from there
how to deduce strong concavity. Instead, we take inspiration from the proof of the Brascamp-
Lieb inequality (Theorem 2.9) given in Section 2.4: we will deduce the strong concavity of Kε

ρ

from the concavity of the functional

Iερ(ψ) = log
(�

U
eψ

c,ε,σ
dρ
)

This functional is an analog of

I(ψ) = log
(�

U
e−ψ

∗
dx
)

which appears in Section 2.4.
The following statement is given in a general Riemannian manifold M , since we will need

it at this level of generality in Section 4.4. For p-costs in Section 4.3, we only need the easier
Corollary 4.10 below, stated in M = Rd.

Theorem 4.9 (Concavity of Iερ). Let U be a geodesically convex subset of a Riemannian manifold
M , whose Ricci tensor is denoted by Ric. Let also Y be a compact set, and c : M ×Y → R. We
assume that there exists λ ∈ R and V ∈ C2(U) such that:

� The cost is semi-concave: for all y ∈ Y, all x0, x1 ∈ U , and any minimizing geodesic
(xt)t∈[0,1] connecting x0 to x1, one has

c(xt, y) ≥ (1 − t)c(x0, y) + tc(x1, y) − λ(1 − t)tdist(x0, x1)
2

2
. (4.18)

� The ∞-Bakry–Emery tensor is lower bounded by λ on U :

D2V + Ric ≥ λ. (4.19)
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Let ρV be the probability measure on U

dρV =
1

Z
exp(−V )dvol

where Z =
�
U exp(−V )dvol is a normalizing constant. Then the functional Iε

ρV
is concave.

Proof of Theorem 4.9 in a simple case. We consider the simpler case where U ⊂ Rd, λ = 0,
V = 0 and x 7→ c(x, y) is concave for any y ∈ Y. For ψ0, ψ1 ∈ C0(Y), and ψt = (1 − t)ψ0 + tψ1,
we have

c(xt, y) − ψt(y) ≥ (1 − t)(c(x0, y) − ψ0(y)) + t(c(x1, y) − ψ1(y))

where xt = (1−t)x0+tx1. Dividing the above inequality by −ε, exponentiating, integrating over
Y against dσ, and finally using the convexity of the function v ∈ C0(Y) 7→ log(

�
Y e

v(y)dσ(y))
we obtain

ψc,ε,σt (xt) ≥ (1 − t)ψc,ε,σ0 (x0) + tψc,ε,σ1 (x1).

Exponentiating and using the Prékopa-Leindler inequality (Theorem 2.8) we conclude that

�
U
eψ

c,ε,σ
t (x)dρ0(x) ≥

(�
U
eψ

c,ε,σ
0 (x)dρ0(x)

)1−t(�
U
eψ

c,ε,σ
1 (x)dρ0(x)

)t
, (4.20)

which shows the concavity of Iερ0 .

Instead of proving Theorem 4.9, we have in fact proved the following particular case:

Corollary 4.10. If x 7→ c(x, y) on Rd is concave for any y ∈ Y, then Iερ0 is concave.

To prove Theorem 4.9 in full generality (we will not do it! see [64]), one would need to apply
the following weighted Prékopa-Leindler inequality, due to Cordero, McCann and Schmucken-
schläger in 2006 [36]:

Theorem 4.11 (Weighted Prékopa-Leindler inequality). Let m = e−V dvol be a measure on a
geodesically convex subset U of a Riemannian manifold M where

D2V + Ric ≥ λ (4.21)

for some λ ∈ R. Denote by dist the Riemannian distance. Let s ∈ [0, 1] and f, g, h : U → R+ be
such that for any x, y ∈ U and

z ∈ Zs(x, y) := {z ∈ U | dist(x, z) = sdist(x, y) and dist(z, y) = (1 − s)dist(x, y)}

there holds
h(z) ≥ e−λs(1−s)dist

2(x,y)/2f1−s(x)gs(y).

Then
�
U hdm ≥

(�
U fdm

)1−s (�
U gdm

)s
.

Let us turn to the consequences of Theorem 4.9. Since some computations are heavy and
could obscure the key ideas, we will only give the final expressions; detailed computations may
be found in [64]. Let us first introduce some notation for quantities which will naturally appear
when we compute the derivatives of Kε

ρ and Iερ. To each potential ψ ∈ C0(Y) and any point
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x ∈ U , we associate a probability density µ̂xε [ψ] (with respect to σ) and the corresponding
probability measure µxε [ψ] on Y:

µxε [ψ] := µ̂xε [ψ]dσ, µ̂xε [ψ](y) :=
e−

c(x,y)−ψ(y)
ε�

Y e
− c(x,z)−ψ(z)

ε dσ(z)
.

Similarly, given ψ ∈ C0(Y), we consider the Gibbs density associated to ψc,ε,σ denoted by ρ̂ε[ψ],
and the associated Gibbs measure ρε[ψ], i.e.

ρε[ψ] := ρ̂ε[ψ]dρ, ρ̂ε[ψ](x) :=
eψ

c,ε,σ(x)�
U e

ψc,ε,σ(z)dρ(z)
.

Finally, in the sequel we shall sometimes use the notation Eα(v) =
�
vdα for a measure α and

a function v. This notation is of course redundant with the notation ⟨v | α⟩ which we use most
of the time, but the interpretation in terms of expectation is sometimes insightful (especially
because we shall use the total variance law at some point).

To leverage the concavity of Iε
ρV

, we compute its second derivative in direction v ∈ C0(Y):

⟨D2Iερ(ψ)v, v⟩ = Varx∼ρε[ψ](Eµxε [ψ](v)) − 1

ε
Ex∼ρε[ψ](Varµxε [ψ](v)). (4.22)

The regularized Kantorovich functional Kε
ρ is twice differentiable at any ψ ∈ C0(Y). We identify

∇Kε
ρ(ψ) to a measure, given by

∀v ∈ C0(Y), ⟨v | ∇Kε
ρ(ψ)⟩ = −

�
U
⟨v | µxε [ψ]⟩dρ(x). (4.23)

and this is also equal, with the above notation, to −Ex∼ρ(Eµxε [ψ](v)). The second derivative is
given by

⟨D2Kε
ρ(ψ)v, v⟩ = −1

ε

�
U

Varµxε [ψ](v)dρ(x) (4.24)

and this can also be written −1
εEx∼ρ(Varµxε [ψ](v)). We notice a strong resemblance between

(4.24) and the second term in (4.22), which we can leverage to prove a strong concavity estimate
for Kε

ρ:

−⟨D2Kε
ρ(ψ)v, v⟩ =

1

ε
Ex∼ρ(Varµxε [ψ](v))

≥ C−1
0

ε
Ex∼ρε[ψ](Varµxε [ψ](v)) (⋆)

≥ C−1
0 Varx∼ρε[ψ](Eµxε [ψ](v)) (since ⟨D2Iερ(ψ)v, v⟩ ≤ 0)

≥ C−2
0 Varx∼ρ(Eµxε [ψ](v)). (⋆)

(4.25)

The two lines denoted by (⋆) are obtained by noticing that C−1
0 ρ ≤ ρε[ψ] ≤ C0ρ for some

constant C0 independent of ε and ψ, due to Lemma 4.8. Following the same arguments which
led to (2.28), we obtain:

Theorem 4.12 (Strong concavity of Kε
ρ). Under the same assumptions as in Theorem 4.9, there

holds
VarρV (ψc,ε,σ1 − ψc,ε,σ0 ) ≤ C2

0 ⟨ψ1 − ψ0 | ∇Kε
ρV (ψ0) −∇Kε

ρV (ψ1)⟩

where ∇Kε
ρV

is given by the formula (4.23) and ⟨· | ·⟩ denotes the duality between continuous

functions and Radon measures, as introduced in (2.14).
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Proof of Theorem 4.12. We set ψt = ψ0+t(ψ1−ψ0) and v = ψ1−ψ0. The identity d
dtψ

c,ε,σ
t (x) =

−⟨v | µxε [ψt]⟩ and the above inequality yield

VarρV (ψc,ε,σ1 − ψc,ε,σ0 ) = VarρV
(� 1

0

d

dt
ψc,ε,σt dt

)
≤
� 1

0
VarρV

( d

dt
ψc,ε,σt

)
dt

=

� 1

0
Varx∼ρV (Eµxε [ψt](v))dt

≤ −C2
0

� 1

0
⟨D2Kε

ρV (ψt)v, v⟩dt

= C2
0 ⟨ψ1 − ψ0 | ∇Kε

ρV (ψ0) −∇Kε
ρV (ψ1)⟩

which the sought inequality.

In the next two sections, we explain how to leverage this strong concavity of the regularized
Kantorovich functional Kε

ρ to establish quantitative stability estimates for the (unregularized)
optimal transport problem, with more general costs than the quadratic cost which has been our
focus until here. Indeed, the quadratic cost c(x, y) = |x − y|2 in Euclidean spaces is not the
only cost of interest in the theory and in applications of optimal transport: in Section 4.3, we
consider p-costs c(x, y) = |x− y|p in Rd, for p > 1; and in Section 4.4 the squared distance cost
in Riemannian manifolds.

4.3 Quantitative stability for p-costs in Euclidean spaces

Monge’s initial problem was formulated in his memoir [80] for the distance cost |x − y| in
Rd. However, uniqueness of the optimal transport map fails for this cost, as may be easily seen
on R:

A B C D

On the above picture, if ρ is supported between A and B, and µ is supported between C and
D, then all maps transporting ρ to µ have the same cost, and uniqueness thus fails. Intuitively,
one may understand it as follows. Let z be a point between B and C, which is fixed arbitrarily
(for instance, the midpoint of the segment [BC]). Let T be a map such that T#ρ = µ. If x is in
the support of ρ, and T (x) denotes its image in the support of µ, we may decompose the path
from x to T (x) into a path from x to z, followed by a path from z to T (x). Therefore

�
R
|x− T (x)|dρ(x) =

�
R
|x− z|dρ(x) +

�
R
|z − T (x)|dρ(x) =

�
R
|x− z|dρ(x) +

�
R
|z − y|dµ(y).

We see that this quantity does not depend on T , and is thus the same for any transport map T
from ρ to µ.

To recover existence and uniqueness (a Brenier type theorem) one may prefer to look at the
family of costs c(x, y) = h(x− y) where h : Rd → [0,+∞) is a strictly convex function.

Theorem 4.13 (Optimal transport map for strictly convex cost). Let ρ, µ ∈ P(Rd) with compact
support, and let the cost be c(x, y) = h(x− y) with h : Rd → [0,+∞) strictly convex. Then the
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Kantorovich problem (1.2) has a unique solution γ, and this solution is induced by a Borel map
T : Rd → Rd such that γ = (Id, T )#ρ, and solution to the Monge problem

inf
S:Rd→Rd
S#ρ=µ

�
Rd
h(x− S(x))dρ(x).

We have also
T (x) = x− (∂h)−1 (∇ϕ(x)) for ρ-a.e. x, (4.26)

for some c-concave ϕ, meaning that ϕ is the c-transform of some ψ : Rd → R ∪ {±∞}:

ϕ(x) = inf
y∈Rd

c(x, y) − ψ(y), (4.27)

and ψ is itself the c-transform of ϕ.

The fact that h is strictly convex is crucial: it ensures that the inverse of the subdifferential
∂h is univalued. One may guarantee that ϕ, called a Kantorovich potential (for the cost c),
is Lipschitz on the support of ρ, thus differentiable ρ-almost everywhere. For given ρ, µ, it is
also unique up to constants as soon as ρ has a connected support. When ρ is fixed, as in the
quadratic case, we will simply denote by ϕµ the unique Kantorovich potential from ρ to µ that
satisfies

�
X ϕµdρ = 0.

The above statement applies in particular to the p-cost c(x, y) = 1
p |x−y|

p for p > 1, in which
case

T (x) = x− (∇ϕ(x))(1/(p−1))

for ρ-almost every x, where we use the notation v(α) = |v|α−1v. For p = 2, we recover Brenier’s
theorem: the potentials ϕ̃ and ψ̃ solutions to the Kantorovich problem (2.5) are related to the
the c-concave functions ϕ and ψ in Theorem 4.13 by ϕ̃ = 1

2 | · |
2 − ϕ and ψ̃ = 1

2 | · |
2 − ψ. The

reason why the formula (4.26) is natural is that if x is a minimum in the c-transform relation
ψ(y) = infx∈Rd c(x, y) − ϕ(x), then ∇xc(x, y) = ∇ϕ(x), i.e., ∇h(x − y) = ∇ϕ(x), which gives
(4.26).

Theorem 4.14 (Stability of Kantorovich potentials for C2 costs). Let ρ be a log-concave prob-
ability measure with bounded convex support X ⊂ Rd, and let Y ⊂ Rd be compact. Let also
c : X × Y → [0,+∞) be a C2 cost function. Then there exists C < +∞ such that for any
µ, ν ∈ P(Y),

∥ϕµ − ϕν∥L2(ρ) ≤ CW1(µ, ν)1/2 (4.28)

where ϕµ and ϕν are the (unique zero-mean) Kantorovich potentials associated to the optimal
transport problem with cost c, from ρ to µ and ρ to ν respectively.

The above theorem, due to Mischler and Trevisan [81], applies in particular to p-costs
c(x, y) = 1

p |x− y|p, p ≥ 2. When p ∈ (1, 2], a similar stability estimate as (4.28) holds, but with
a worse exponent. Also, for any p > 1, the optimal transport maps enjoy quantitative stability
estimates too, but we shall not discuss this here. Notice that ρ is only assumed log-concave, and
thus it is not necessarily bounded below on X . Also, it could be generalized to non-convex X
using gluing methods, but we shall not pursue this here.

Let us sketch some proof ideas for Theorem 4.14. The cost c being C2 on the bounded set
X ×Y, there exists λ ≥ 0 such that the semi-concavity estimate (4.18) holds: indeed, for γ > 0
large enough, the cost

c̃(x, y) = c(x, y) − γ

2
|x|2 (4.29)
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is concave in its first variable uniformly in y ∈ Y. Now we notice that this shift of the cost
results in a shift of Kε

ρ of γ
2

�
U |x|2dρ, which is a quantity independent of ψ. Applying Theorem

4.12 with λ = 0, c̃ which is concave, V ≡ 0, (in order to satisfy (4.19), since Ric = 0), we get
that there exists C0 > 0 such that for any ψ0, ψ1 ∈ C0(Y),

Varρ(ψ
c,ε,σ
1 − ψc,ε,σ0 ) ≤ C0⟨ψ1 − ψ0 | µε[ψ1] − µε[ψ0]⟩

where ⟨v | µε[ψ]⟩ =
�
X ⟨v | µxε [ψ]⟩dρ(x). Sending ε to 0 and applying the above inequality to

ψ0 = ψµ and ψ1 = ψν , we collect

Varρ(ψ
c
ν − ψcµ) ≤ C0⟨ψν − ψµ | ν − µ⟩

since one can prove that µε[ψµ] → µ as ε → 0, and similarly µε[ψν ] → ν. The left-hand side is
equal to ∥ϕµ − ϕν∥2L2(ρ), and the right-hand side is upper bounded by CW1(µ, ν) thanks to the
Kantorovich-Rubinstein formula and Lemma 2.6, which concludes the proof of Theorem 4.14.

4.4 Quantitative stability in Riemannian manifolds

It seems natural to investigate the stability of optimal transport maps (and potentials) also
on Riemannian manifolds. Indeed, the extension of optimal transportation theory to probability
densities on general Riemannian manifolds, rather than only on Euclidean spaces, is interesting
both for theory and applications. On the theoretical side, there are many links between optimal
transport and Riemannian geometry, plenty of which are presented in the book [106]. On the
side of applications, it often happens that data distributions are supported on Riemannian
manifolds, for instance in medical imaging, where Riemannian optimal transport is used to
match 3D anatomical structures, among many other applications.

The analogue of Brenier’s theorem in the Riemannian context was proved by McCann in
[78]:

Theorem 4.15 (McCann’s Riemannian theorem). Let M be a connected, complete, smooth
Riemannian manifold. Let ρ, µ be probability measures on M with compact support, and let
the cost function c(x, y) be equal to 1

2dist(x, y)2, where dist is the Riemannian distance on M .
Further, assume that ρ is absolutely continuous with respect to the volume measure on M . Then
there is a ρ-a.e. unique solution of the Monge problem (1.4) between ρ and µ, and it can be
written as

T (x) = expx (−∇ϕ(x)) (4.30)

where ϕ = ψc is the c-transform, in the sense of (4.27), of some ψ : M → R ∪ {±∞}. Here,
∇ is the Riemannian gradient and expx denotes the exponential map with footpoint x: in other
words, T (x) is the endpoint (at time 1) of the geodesic issued from x, with initial tangent vector
−∇ϕ(x) in the tangent space TxM .

In a recent work with Jun Kitagawa and Quentin Mérigot [64], we proved quantitative
stability estimates for optimal transport maps and Kantorovich potentials when the cost is the
squared distance c(x, y) = 1

2dist(x, y)2 in a Riemannian manifold. These estimates are similar
to those obtained in the previous chapters in the Euclidean setting (recall that John domains
in general metric spaces were introduced in Definition 1.11):

Theorem 4.16 (Quantitative stability in Riemannian manifolds). Let M be a smooth and con-
nected d-dimensional Riemannian manifold, endowed with the quadratic cost c(x, y) = 1

2dist(x, y)2

where dist denotes the Riemannian distance. Let X ⊂ M be a John domain and Y ⊂ M be
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compact, and let ρ be a probability measure absolutely continuous with respect to the Rieman-
nian volume on X , with density bounded from above and below by positive constants. Then there
exists C > 0 such that for any µ, ν ∈ P(Y),

∥ϕµ − ϕν∥L2(ρ) ≤ CW1(µ, ν)1/2 (4.31)

where ϕµ denotes the (unique zero-mean) Kantorovich potential from ρ to µ, and similarly ϕν
denotes the unique Kantorovich potential from ρ to ν. Moreover, if the boundary ∂X of X has
finite (d− 1)-dimensional Hausdorff measure, then(�

M
dist(Tµ(x), Tν(x))2dρ(x)

) 1
2

≤ CW1(µ, ν)1/6 (4.32)

where Tµ and Tν are the optimal transport maps from ρ to µ and ρ to ν respectively.

We focus here on explaining in broad lines the stability of Kantorovich potentials (4.31).
We shall not discuss at all the stability of optimal transport maps (4.32), which follows from
the stability of Kantorovich potentials using integral-geometric techniques generalizing those of
Section 3.8.2. For a detailed proof of Theorem 4.16, we refer to [64].

Proof of (4.31). The proof of (4.31) consists in applying Theorem 4.12 in small balls, before
operating a gluing argument. The squared Riemannian distance cost is indeed semiconcave (but
not concave!) in small balls, as we explain below. We proceed in four steps.

Step 1: Variance inequality in small balls. For the first step of the proof we work in a small
enough ball. Let x0 ∈ X , and consider B(x0, r) ⊂M such that 2r is smaller than the injectivity
radius at x0, in particular any two points in B(x0, r) are joined by a unique geodesic. It follows
for instance from results by Ohta [86, Lemma 3.3] that there exists λ ≥ 0 such that for any
x0, x1, y ∈ B(x0, r), and for any t ∈ [0, 1],

dist2(xt, y) ≥ (1 − t)dist2(x0, y) + tdist2(x1, y) − λt(1 − t)dist2(x0, x1) (4.33)

where (xs)s∈[0,1] denotes the unique geodesic from x0 to x1, traveled at speed 1. This is a

semiconcavity estimate for x 7→ dist2(x, y).
Besides, in B(x0, r), the potential V0 : x 7→ dist(x, x0)

2 is also strongly convex. Since the
Ricci curvature in the compact set B(x0, r) is bounded below,

D2V + Ric ≥ λ

for V (x) = Kdist(x, x0)
2 with K chosen large enough. Therefore we may apply Theorem 4.12

in U = B(x0, r) and obtain a variance inequality

VarρV (ψc,ε,σ1 − ψc,ε,σ0 ) ≤ C0⟨ψ1 − ψ0 | µVε [ψ1] − µVε [ψ0]⟩ (4.34)

where

ρV =
exp(−V )1B(x0,r)�
B(x0,r)

exp(−V )dvol
dvol, ⟨v | µVε [ψ]⟩ =

�
X
⟨v | µxε [ψ]⟩dρV (x).

Step 2: Uniformity. The previous arguments were accomplished in a sufficiently small ball,
and a priori the size r of the ball, the positive number K and the constant C0 depend on the
point x0. But due to the boundedness of X , it is actually possible to take all these parameters
uniform (i.e., independent) in x0.
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Step 3: Gluing argument. To obtain a global variance inequality, we use the same gluing
arguments as in Section 3: we cover the set X by a finite number of balls in which the previous
steps may be applied, and then we use a gluing inequality of the form (3.3). We get

Varρ(ψ
c,ε,σ
1 − ψc,ε,σ0 ) ≤ C0⟨ψ1 − ψ0 | µε[ψ1] − µε[ψ0]⟩

where ⟨v | µε[ψ]⟩ =
�
X ⟨v | µxε [ψ]⟩dρ(x) (actually, we skip here a short argument allowing to

replace ρV by ρ).
Step 4: Conclusion. Sending ε to 0 and applying the above inequality to ψ0 = ψµ and

ψ1 = ψν , we collect
Varρ(ψ

c
ν − ψcµ) ≤ C0⟨ψν − ψµ | ν − µ⟩

since one can prove that µε[ψµ] → µ as ε→ 0, and similarly µε[ψν ] → ν. Finally, we observe that
the right-hand side is equal to ∥ϕµ− ϕν∥2L2(ρ) and that the right-hand side is upper bounded by

CW1(µ, ν) thanks to the Kantorovich-Rubinstein duality formula, which concludes the proof.

Open question 4.17. The proof sketched above does not rely on the differentiable structure of
Riemannian manifolds. Therefore, it would be natural to generalize it to more general metric
measure spaces where the Prékopa-Leindler inequality is known to hold. We believe it would be
particularly interesting to develop a theory of stability of optimal transport for two categories of
metric measure spaces: the curvature-dimension spaces CD(K,N) introduced by Sturm [102] and
Lott-Villani [74] to develop a synthetic theory of Ricci curvature; and sub-Riemannian manifolds,
for which optimal transport has been studied for instance in [50] and [8].

Open question 4.18. Does quantitative stability of Kantorovich potentials and optimal trans-
port maps for the squared distance cost hold when the source measure is ρ = e−V dvol on a
non-compact Riemannian manifold satisfying the Bakry-Emery condition D2V + Ric > 0? This
would be a natural generalization of Theorem 1.10.

4.5 Bibliographical notes

§4.1: This section is mostly taken from the lecture notes by Mérigot at the Institut Henri
Poincaré, available on his webpage. Other introductions to entropic optimal transport may
be found in the lecture notes by Nutz [85] and in the book chapters [89, Chapter 4] and [32,
Chapter 3]. Entropic optimal transport is related to a minimal entropy problem considered
by Schrödinger in 1931 (see the survey [70]). It has attracted a lot of interest since Cuturi’s
groundbreaking work [38] which showed how to solve it “at lightspeed” using the Sinkhorn
algorithm. See Section 5.5 for more references.

§4.2: The regularized Kantorovich functional was introduced by Delalande in [41] and his
PhD thesis [40] for the quadratic cost. It was then noticed in [81], [33] and [64] that it could be
generalized to any semi-concave cost.

§4.3: Theorem 4.13 about the existence of an optimal transport for p-costs, p > 1, can be
found in [2, Theorem 6.2.4]. The results of Mischler and Trevisan [81] are more general than
Theorem 4.14: their statements cover the whole range of p-costs, p > 1, and hold for optimal
transport maps (not only Kantorovich potentials).

§4.4: McCann’s Theorem 4.15, proved in [78], was the first general optimal transport theorem
on a Riemannian manifold. This result is an important ingredient in [35] and [36], which develop
a Riemannian version of classical interpolation inequalities such as the Prékopa-Leindler and
the Borell-Brascamp-Lieb inequality. Theorem 4.11 is proved in [36], which deals with weighted
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Riemannian manifolds. Regarding optimal transport stability, an extension of Gigli’s result
(Theorem 1.9) to Riemannian manifolds was proved in [3, Section 3]. Riemannian optimal
transport has also found nice applications, see for instance [101] and the works of Jean Feydy,
Alain Trouvé, François-Xavier Vialard, and many others.
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5 Further applications

In this last chapter, we review several applications of optimal transport stability bounds.
One of the most important applications is to the statistical estimation of optimal transport
maps, detailed in Section 5.1. We then discuss in Section 5.2 an application of the methods
developed in Chapters 2 and 3 to the stability of Wasserstein barycenters, which define in a
natural way weighted averages of probability measures, and are broadly used in applications.
A final key application concerns the convergence of the Sinkhorn algorithm. This algorithm
was invented by Richard Sinkhorn in 1964 to show that a positive matrix, iteratively scaled by
normalizing rows and columns alternately, becomes doubly stochastic. It was discovered in 2013
by Marco Cuturi that the Sinkhorn algorithm could actually be used to solve “at lightspeed”
the entropic optimal transport problem. This observation has led to tremendous progress in the
field of computational optimal transport. We show in Section 5.3 the exponential convergence
of Sinkhorn’s algorithm in the continuous setting, and we highlight the deep connections with
the quantitative stability of entropic optimal transport. We conclude this chapter with some
perspectives and open problems for future research.

5.1 Statistical optimal transport

Stability of optimal transport has been used as a fundamental tool in statistical optimal
transport. In this field, a key question is to estimate objects which arise from the optimal
transport framework when the two measures are unknown but we have access to (sometimes
random) samples of them. In the sequel, we focus on the following question: given samples
X1, . . . , Xn ∼ ρ and Y1, . . . , Ym ∼ µ, how can we estimate the optimal transport map T from
ρ to µ via an estimator T̂ constructed on the basis of the samples? A possible measure of
performance is the squared error

�
X
|T̂ (x) − T (x)|2dρ(x).

The primary goal is to design estimators that come with strong theoretical statistical guaran-
tees—that is, they achieve a specified level of accuracy with high probability—regardless of their
computational cost. This will be our main focus here. A secondary goal, which has also been
explored in the literature, is to develop estimators that are not only theoretically sound but also
computationally efficient.

Although many types of estimators have been used in the literature, we shall focus here
on two of them, among the most important ones: plug-in estimators and semi-dual estimators.
Both are defined below. These estimators are the only ones known to be minimax optimal over
typical classes of source measures and of smooth optimal transport maps: this means that given
a class M of “nice” source measures ρ and a class C of smooth optimal transport maps, they
minimize the quantity

sup
ρ∈M
T∈C

E
�
X
|T̂ (x) − T (x)|2dρ(x)

where the expectation is taken with respect to the data X1, . . . , Xn ∼ ρ and Y1, . . . , Ym ∼ T#ρ.
Despite many advances in this field, some important open questions remain unsolved. One of

them pertains to the assumptions that are made on the optimal transport map to be estimated:
in almost all works on the topic, it is assumed that the optimal transport map is at least
Lipschitz (or bi-Lipschitz, meaning that the inverse map is well-defined and also Lipschitz) to
obtain good statistical guarantees. The tools presented in these notes allow to derive statistical
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non-guarantees for the estimation of non-smooth optimal transport maps, but they are not
optimal, see Remark 5.3 below.

5.1.1 Plug-in estimators

We start our presentation with plug-in estimators. Their principle is particularly simple:
they are defined as optimal transport maps (or optimal couplings) between measures derived
from the observations, appropriately extended so that they define functions on Rd. They are of
different types.

Perhaps the most natural plug-in estimators are the empirical estimators. For simplicity,
assume that the number of observations X1, . . . , Xn of the source measure is equal to the number
of observations Y1, . . . , Ym of the target measure, i.e., m = n. Let ρn = 1

n

∑n
i=1 δXi and µn =

1
n

∑n
i=1 δYi , and consider the discrete optimal transport problem

min
γ∈Π(ρn,µn)

�
|x− y|2dγ(x, y). (5.1)

In favorable cases, there is a unique solution to (5.1), induced by a transport map Tn. It may be
computed thanks to the Hungarian algorithm or Bertsekas’ auction algorithm. But in any case,
a solution to (5.1) is only defined on the samples X1, . . . , Xn. To extend it to the whole source
space X , different possibility have been considered, notably the 1-nearest neighbor extension:
T̂ (x) is defined as Tn(Xi), where Xi is the closest sample point to x.

Smooth estimators are another category of plug-in estimators. They are also based on
approximations ρn and µm of ρ and µ, but this time they are constructed in a way that they are
smooth. Such approximations may be constructed using wavelets, kernels, or simply the optimal
transport map from ρn to µm, if it exists and it is smooth. Contrarily to empirical estimators,
smooth estimators may become more accurate when ρ and µ are assumed more regular.

Theoretical guarantees on plug-in estimators are based on quantitative stability bounds.
These bounds require strong assumptions on the optimal transport maps, often verified using
the Caffarelli regularity theory of optimal transport. We give one example of such bounds, due
to Manole and Balakrishnan [6].

Theorem 5.1 (Quantitative stability of maps under regularity assumptions). Let ρ ∈ P2(X )
with X ⊂ Rd and ρ is absolutely continuous. Assume that the Kantorovich potential ϕ0 : X → R
from ρ to µ ∈ P2(Rd) is α-strongly convex (D2ϕ0 ≥ αId) and β-smooth (D2ϕ0 ≤ βId) for some
α, β > 0. Let T0 = ∇ϕ0. For any ρ̂, µ̂, let γ̂ denote an optimal coupling of ρ̂ and µ̂. Then

1

β

�
X×Y

|y − T0(x)|2dγ̂(x, y) ≤ 1

α
W 2

2 (µ̂, µ) + βW 2
2 (ρ̂, ρ) + 2W2(ρ̂, ρ)W2(µ̂, µ).

In the so-called 1-sample setting where the absolutely continuous measure ρ ∈ P2(X ) is
known, there is an optimal map T̂ between ρ and µ̂, and Theorem 5.1 implies:

Theorem 5.2. Under the same assumptions as Theorem 5.1, let T̂ denote the optimal transport
map from ρ to µ̂, and T0 denote the optimal transport map from ρ to µ. Then

1

β

�
X
|T̂ (x) − T0(x)|2dρ ≤ 1

α
W 2

2 (µ̂, µ).

It is worth comparing Theorem 5.2 to Theorem 1.9: Theorem 5.2 needs stronger assumptions
(bi-Lipschitzness of the optimal transport map instead of Lipschitzness) but yields a W 2

2 bound,
whereas Theorem 1.9 would only yield W2 if applying the inequality W1 ≤W2.
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If ρ̂ and/or µ̂ are obtained by taking n i.i.d. samples from ρ and µ respectively, the bounds
in terms of Wasserstein distances in Theorem 5.1 and Theorem 5.2 may be turned into bounds
in expectation, e.g., an upper bound on E(∥T̂ − T0∥2L2(ρ)) in Theorem 5.2, thanks to classical

estimates (see [51]) such as

E(W 2
2 (µ̂, µ)) ≤ C


n−1/2 if d ≤ 3

n−1/2 log(n) if d = 4

n−2/d if d ≥ 5.

(5.2)

valid for any compactly supported µ.
We now prove Theorem 5.2 (but not the stronger Theorem 5.1, which requires additional

ideas). The proof is quite close to the proof of Theorem 1.9 in Section 2.2.

Proof of Theorem 5.2. We consider the dual functional

Sρ,µ̂(ϕ) =

�
X
ϕ dρ+

�
Y
ϕ∗ dµ̂.

It will be convenient to write this proof with expectations instead of integrals, and more generally
with a probabilistic perspective instead of the more analytic viewpoint of Section 2.2. Let γ̂
denote an optimal coupling of ρ and µ̂, and let (X,Y ) ∼ γ̂. We have

Sρ,µ̂(ϕ0) − Sρ,µ̂(ϕ̂) = E(ϕ0(X) + ϕ∗0(Y ) − ϕ̂(X) − ϕ̂∗(Y )).

There holds ϕ̂(X) + ϕ̂∗(Y ) = ⟨X,Y ⟩, γ̂-almost surely. Also, the equality case in the Fenchel-
Young inequality yields ϕ0(X) = ⟨X,T0(X)⟩ − ϕ∗0(T0(X)) (recall that T0 = ∇ϕ0). Hence,

Sρ,µ̂(ϕ0) − Sρ,µ̂(ϕ̂) = E[ϕ∗0(Y ) − ϕ∗0(T0(X)) − ⟨X,Y − T0(X)⟩].

Given any random variable Z with law µ̂, we can equivalently write

Sρ,µ̂(ϕ0) − Sρ,µ̂(ϕ̂) = E[ϕ∗0(Z) − ϕ∗0(T0(X)) − ⟨X,Z − T0(X)⟩] − E⟨X,Y − Z⟩.

Since (X,Y ) is an optimal coupling between ρ and µ̂, E⟨X,Y ⟩ ≥ E⟨X,Z⟩, and we obtain

Sρ,µ̂(ϕ0) − Sρ,µ̂(ϕ̂) ≤ E[ϕ∗0(Z) − ϕ∗0(T0(X)) − ⟨X,Z − T0(X)⟩].

The X in the scalar product can be replaced by ∇ϕ∗0(T0(X)), since ∇ϕ∗0(T0(X)) = X almost
surely. Moreover, ϕ∗0 is 1/α-smooth according to Lemma 2.4, hence

Sρ,µ̂(ϕ0) − Sρ,µ̂(ϕ̂) ≤ 1

α
E∥Z − T0(X)∥22. (5.3)

This holds for any random variable Z ∼ µ̂. We choose Z in a way that the right-hand side
is minimal: since T0(X) ∼ µ, we pick Z so that (T0(X), Z) is an optimal coupling between µ
and µ̂. The right-hand side of (5.3) is equal to 1

αW
2
2 (µ, µ̂) in this case, which concludes the

proof.

Remark 5.3. Let us observe that the results presented in the first chapters may be used to
derive statistical guarantees on plug-in estimators without assuming that the optimal transport
map is Lipschitz. We only need to make the same assumptions as, for instance, in Theorem
1.12, namely that ρ is supported on a John domain (e.g., a compact connected set with Lipschitz
boundary), has a positive density on this set, and that µ is compactly supported. In this case,
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applying Theorem 1.12 to ν = µ̂ obtained as the empirical distribution of n i.i.d. samples of µ,
we get

E(∥Tµ − T̂∥2L2(ρ)) ≲ E(W2(µ, µ̂)1/3) ≲ n−1/3d (5.4)

(for the last inequality we assumed d ≥ 5 and used (5.2)). Notice that this bound does not reach
the minimax optimal rate discussed below around Theorem 5.5.

Open question 5.4. It would be very interesting to develop statistical tools estimating optimal
transport maps with minimax optimal rates, without assuming (as much) regularity of the optimal
transport map.

Not assuming any regularity of the optimal transport map, we may expect different minimax
rates of convergence than those for regular optimal transport maps written in Theorem 5.5.
One reason for this is that optimal transport map estimation is deeply related to the density
estimation problem in Wasserstein distance. Indeed, to estimate a transport map with a plug-
in estimator we need to estimate the target density, as in (5.4). And for the latter density
estimation problem, the work [84] shows that for X = [0, 1]d, the class of densities bounded
from below, which corresponds to regular optimal transport maps since Caffarelli’s regularity
theory applies to such target measures on [0, 1]d, is strictly easier to estimate than the class of
all densities, for which the optimal transport map is not regular in general.

5.1.2 Semi-dual estimators

We turn to a second type of estimators, the so-called semi-dual estimators. They are based
on the semidual formulation of optimal transport ϕ0 ∈ argminϕ∈C0(X ) Sρ,µ where recall that

Sρ,µ(ϕ) =

�
X
ϕ dρ+

�
Y
ϕ∗ dµ. (5.5)

This semi-dual formulation is trivially equivalent to (2.9). For

ρn =
1

n

n∑
i=1

δXi , µm =
1

m

m∑
j=1

δYj

consider

ϕ̂ ∈ argmin
ϕ∈F

�
X
ϕ dρn +

�
Y
ϕ∗ dµm (5.6)

where F is some class of differentiable functions, possibly depending on n,m. The semi-dual
estimator of the optimal transport map is defined as T̂ = ∇ϕ̂. We will focus in the rest of this
section the following important result due to Hütter and Rigollet [59] whose proof heavily relies
on stability estimates:

Theorem 5.5 (Minimax estimation of smooth optimal transport maps, informal statement).
If the optimal transport map T0 = ∇ϕ0 is bi-Lipschitz and Cα for some α > 1 (possibly not
an integer), then for an appropriate choice of the family F (depending on α), the semidual
estimator ∇ϕ̂ achieves for m = n the rate

E∥∇ϕ̂−∇ϕ0∥2L2(ρ) ≲ n−
2α

2α−2+d (log n)2 ∨ 1

n
. (5.7)

This rate is off the minimax optimal rate only by the factor (log n)2.
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The rate (5.7) suffers from the curse of dimensionality: for s fixed, the exponent is equivalent
to −2/d as d → +∞. The choice of the family F appearing in (5.6) and in Theorem 5.5 is of
paramount importance. Since the Kantorovich potential ϕ0 is assumed to be quite regular, it is
natural to take for F some L2 basis where regularity may be read in the decay of the coefficients,
e.g., a wavelet basis. Actually, the basis is often truncated at a certain threshold, depending on
n,m and on the parameter α controlling the regularity of ϕ0, in order to reduce the variance of
the estimator. This truncation introduces a small bias, and statisticians choose the tuncation
threshold to minimize the sum of the variance and the bias (this is an example of a bias-variance
tradeoff). Other choices of F exist, depending on the problem under consideration. For instance,
if ρ and µ are Gaussian the optimal transport is known to be linear. In this case, a clever choice
for F is the set of convex quadratic maps, so that the estimated transport map becomes linear.

The above definition (5.6) fits exactly into the framework of empirical risk minimization
(ERM). In ERM, to approximate the solution to an optimization problem where the function to
be optimized (the “true risk”) is unknown, one solves an optimization problem over an empirical
risk, computed with a known set of training data. The analysis of these estimators is related to
the theory of M -estimators (estimation of a maximum).

To study the theoretical guarantees associated to the estimator ∇ϕ̂ with ϕ̂ given by (5.6), a
fundamental role is played by the behavior of the semi-dual functional Sρ,µ near the solution ϕ0
of (5.5). Under the assumption that T0 is bi-Lipschitz, it is possible to prove the existence of
C1, C2 > 0 (which depend on the Lipschitz constants of T0) such that

C1∥∇ϕ−∇ϕ0∥2L2(ρ) ≤ Sρ,µ(ϕ) − Sρ,µ(ϕ0) ≤ C2∥∇ϕ−∇ϕ0∥2L2(ρ) (5.8)

for any differentiable ϕ. The demonstration of (5.8) is based on the same ingredients as the
proofs of Theorem 1.9 and Theorem 5.2, therefore we do not detail it here. Combining (5.8)
with the optimality of ϕ̂ for Sρn,µm , we get

C1∥∇ϕ̂−∇ϕ0∥2L2(ρ) ≤ Sρ,µ(ϕ̂) − Sρn,µm(ϕ̂) − (Sρ,µ(ϕ0) − Sρn,µm(ϕ0)).

Since ϕ0 and ϕ̂ are regular, it is possible to upper bound the right-hand side (in expectation)
using empirical process theory, and this allows to conclude that E∥∇ϕ̂−∇ϕ0∥2L2(ρ) is small.

5.2 Stability of Wasserstein barycenters

Another important application of the methods presented in these notes is to the stability
of Wasserstein barycenters. These objects are defined as means, in the Wasserstein space, of
probability measures. If X is a Polish space, ρ1, . . . , ρk are k probability measures on X , and
p1, . . . , pk ≥ 0 verify p1 + . . .+ pk = 1, a Wasserstein barycenter is a “weighted average” of the
ρj , with weights pj . Precisely, it is a probability measure µ on X that minimizes the quantity

1

2

k∑
j=1

pjW
2
2 (ρj , µ).

When k = 2, one recovers the notion of interpolation between two measures in the Wasserstein
space, first studied by McCann. More generally, one may consider averages of an infinite number
of probability measures on X , with weights given by a probability measure P on the set of
probability measures on X : for P ∈ P(P2(X )), a Wasserstein barycenter is a minimizer µP of
the functional

FP : µ 7→ 1

2

�
P(X )

W 2
2 (ρ, µ)dP(ρ). (5.9)
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This definition of a barycenter as a solution to a variational problem involving the squared
distance can be extended to any metric space, replacing the Wasserstein distance by the distance
on the space. Wasserstein barycenters have found applications in shape interpolation [101],
texture synthesis and mixing [94], color harmonization [15], etc.

Wasserstein barycenters exist and are unique under mild assumptions. We provide here an
existence and uniqueness statement in a simple framework, to avoid unnecessary complications:

Theorem 5.6 (Existence and uniqueness of Wasserstein barycenters). Let X be a compact
subset of a connected d-dimensional Riemannian manifold, and let P be a probability measure
on P(X ). Then, the set of Wasserstein barycenters (i.e., minimizers of (5.9)) is non-empty.
Moreover, if P(Pa.c.(X )) > 0 where Pa.c.(X ) denotes the set of probability measures on X abso-
lutely continuous with respect to the Riemannian volume, then there exists a unique Wasserstein
barycenter.

To be perfectly rigorous, we should justify that the set Pa.c.(X ) ⊂ P(X ) is measurable
with respect to the weak-* topology. Since we do not want to obscure the discussion, we will
only refer the reader to [63, Section 2.2]. Let us also mention that without the assumption
P(Pa.c.(X )) > 0, Wasserstein barycenters are not necessarily unique: for instance, if X = S2
and N,S denote antipodal points on X , then P = 1

2(δδN + δδS ) has multiple barycenters: any
measure supported on the equator associated to N and S is a Wasserstein barycenter for P.

Proof of Theorem 5.6. Since X is compact, the set P(X ) is compact by Prokhorov’s theorem.
Besides, the mapping µ 7→W 2

2 (ρ, µ) is Lipschitz, uniformly over ρ ∈ P(X ), hence FP is Lipschitz.
It follows that it admits a minimizer, which proves the first part of the statement.

We next show that FP is a convex function with respect to linear interpolation of measures.
Let µ0, µ1, ρ ∈ P(X ). We consider the optimal transport plans γ0 from ρ to µ0, and γ1 from ρ to
µ1. We set µs = (1 − s)µ0 + sµ1 and γs = (1 − s)γ0 + sγ1. The transport plan γs has marginals
ρ and µs, hence, denoting by dist the Riemannian distance,

W 2
2 (ρ, µs) ≤

�
X×X

dist(x, y)2dγs(x, y)

= (1 − s)

�
X×X

dist(x, y)2dγ0(x, y) + s

�
X×X

dist(x, y)2dγ1(x, y) (5.10)

= (1 − s)W 2
2 (ρ, µ0) + sW 2

2 (ρ, µ1)

which shows the convexity of µ 7→W 2
2 (ρ, µ), and consequently the convexity of FP, with respect

to linear interpolation.
Let us show that the convexity of FP is strict if P(Pa.c.(X )) > 0. The uniqueness statement

follows immediately. We first prove that for ρ ∈ Pa.c.(X ), the application µ 7→ W 2
2 (ρ, µ) is

strictly convex. Assume W 2
2 (ρ, µs) = (1 − s)W 2

2 (ρ, µ0) + sW 2
2 (ρ, µ1) for some s ∈ (0, 1). Then,

γs has to be the unique optimal transport plan from ρ to µs, according to the above inequality.
By McCann’s theorem (Theorem 4.15), γs = (Id, Fs)#ρ where Fs denotes the optimal transport
map from ρ to µs. In particular, γs is supported on the graph of Fs. But we also have

γs = (1 − s)(Id, F0)#ρ+ s(Id, F1)#ρ

which means that γs has mass on the graphs of both F0 and F1. This is possible only if
F0 = F1 = Fs ρ-almost everywhere, which in turn implies µ0 = µ1. We conclude that µ 7→
W 2

2 (ρ, µ) is strictly convex when ρ is absolutely continuous. Therefore FP is strictly convex
when P(Pa.c.(X )) > 0, which concludes the proof.
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Practitioners often do not have access exactly to P and to the measures ρ ∈ P(X ) in the
support of P, but nevertheless they would like to compute an approximate barycenter, as close
as possible to the “true” barycenter. In other words, they would like to know if Wasserstein
barycenters are stable with respect to perturbations of P.

Like for stability of optimal transport maps, it is possible to show the qualitative stability
(also called “consistency”) of Wasserstein barycenters using weak compactness arguments. For
p ≥ 1, we consider the Wasserstein distances on P(P(X ))

Wp(P,Q) = min
γ∈Π(P,Q)

�
P(X )×P(X )

W2(ρ, ρ̃)dγ(ρ, ρ̃). (5.11)

If P ∈ P(P(X )) is the limit of some sequence Pn ∈ P(P(X )), then any limit of Wasserstein
barycenters for Pn as n → +∞ is a Wasserstein barycenter for P. A precise statement is the
following:

Theorem 5.7 (Qualitative stability of Wasserstein barycenters). Let X be a compact subset
of a connected d-dimensional Riemannian manifold. Let (Pj)j≥1 ⊂ P(P(X )) be a sequence of
probability measures on P(X ) and let µj be a barycenter of Pj, for all j ∈ N. Assume that
W1(Pj ,P) → 0 as j → +∞, for some P ∈ P(P(X )). Then, any limit of the sequence (µj)j≥1 is
a Wasserstein barycenter of P.

The statement is given with a convergence assumption in W1-norm for coherence with Propo-
sition 5.8 below. We could have assumed equivalently W2(Pj ,P) → 0 since P(X ) is compact.

Proof of Theorem 5.7. Let µ be a limit of the sequence (µj)j≥1. Up to extraction of a subse-
quence, which we omit in the notation, we may assume that the full sequence converges to µ.
Let µ̃j be a random measure of distribution Pj , and let µ̃ be a random measure of distribution
P. The Skorokhod representation theorem allows to choose µ̃j and µ̃ on the same probability
space, and in a way that µ̃j converges almost surely to µ̃. For ν ∈ P(X ), there holds

EW 2
2 (ν, µ̃) = W2

2 (δν ,P)

= lim
j→+∞

W2
2 (δν ,Pj) since W2(Pj ,P) → 0

= lim
j→+∞

EW 2
2 (ν, µ̃j)

≥ lim
j→+∞

EW 2
2 (µj , µ̃j) since µj is a barycenter for Pj

≥ E lim inf
j→+∞

W 2
2 (µj , µ̃j) using Fatou’s lemma

≥ EW 2
2 (µ, µ̃).

In the last line we used the lower semi-continuity of W2, together with the convergence of µj to
µ, and the almost sure convergence of µ̃j to µ̃. This proves that µ is a Wasserstein barycenter
for P.

To go beyond the qualitative result given by Theorem 5.7 and prove stability in a quantitative
form, one may first consider the 1-dimensional case. Although R is not compact, our proof below
shows that Wasserstein barycenters on R exist and are unique, without assuming anything on
P.

Proposition 5.8. Let P,Q ∈ P(P2(R)), then there exist unique Wasserstein barycenters µP, µQ
associated to P and Q, and

W2(µP, µQ) ≤ W1(P,Q).
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Proof. The optimal transport map Tρ from the Lebesgue measure λ[0,1] on [0, 1] to any measure
ρ on R is explicit and verifies W2(ρ, µ) = ∥Tρ − Tµ∥L2([0,1]) according to (1.17), where L2([0, 1])
is taken with respect to λ[0,1]. Hence

FP(µ) =
1

2

�
P(R)

∥Tρ − Tµ∥2L2([0,1])dP(ρ) (5.12)

Thus, existence and uniqueness of the Wasserstein barycenter come from the existence and
uniqueness of barycenters in the Hilbert space L2([0, 1]) (which follows from the strict convexity
of the squared norm). The right-hand side in (5.12) is minimal for Tµ = TµP given by

x ∈ (0, 1) 7→ TµP(x) =

�
P(R)

Tρ(x)dP(ρ)

and therefore FP is minimal for µ = µP = (TµP)#λ[0,1]. For any γ ∈ Π(P,Q) we have, using
Minkowski’s inequality,

W2(µP, µQ) = ∥TµP − TµQ∥L2([0,1])

= ∥
�
P(R)

Tρ dP(ρ) −
�
P(R)

Tρ dQ(ρ)∥L2([0,1])

= ∥
�
P(R)×P(R)

(Tρ − Tρ′)dγ(ρ, ρ′)∥L2([0,1])

≤
�
P(R)×P(R)

∥Tρ − Tρ′∥L2([0,1])dγ(ρ, ρ′)

=

�
P(R)×P(R)

W2(ρ, ρ
′)dγ(ρ, ρ′).

Taking the infimum over γ ∈ Π(P,Q), this concludes the proof.

To prove the quantitative stability of Wasserstein barycenters in dimension d ≥ 2, we assume
for simplicity that we are in the Euclidean setting and consider X a compact subset of Rd. It also
seems natural to require uniqueness of the minimizer (otherwise it is hard to give a meaning to
“quantitative stability”). Therefore, following Theorem 5.6, we assume P(Pa.c.(X )) > 0, which
guarantees uniqueness of the Wasserstein barycenter. Actually, we make the following set of
assumptions, which we comment below:

Assumption 5.9. There exist αP, cP,mP,MP, perP ∈ (0,+∞), and a measurable set SP ⊂ P(X )
such that P(SP) = αP and for all ρ ∈ SP,

1. ρ ∈ Pa.c.(X ),

2. the density of ρ on its support is bounded below by mP, and above by MP,

3. the (d− 1)-dimensional Hausdorff measure of the boundary of the support of ρ is bounded
above by perP,

4. for any ψ0, ψ1 ∈ C0(X ),

cPVarρ(ψ
∗
1 − ψ∗

0) ≤ Kρ(ψ1) −Kρ(ψ0) − ⟨ψ1 − ψ0 | −(∇ψ∗
0)#ρ⟩. (5.13)
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Point 4. is simply a strong convexity estimate on Kρ (or almost, since again in the left-hand
side we have ψ∗

0 and ψ∗
1, and not ψ0 and ψ1). It is written in a different form than the ones we

encountered previously. In some sense, instead of |x− y|2 ≲ ⟨x− y,∇f(x)−∇f(y)⟩ as in (2.17),
we have here |x − y|2 ≲ f(y) − f(x) − ⟨y − x | ∇f(x)⟩. In finite dimension, these two forms of
strong convexity are equivalent; but in infinite dimension (here, in the space of measures) it is
less clear, only one implication is obviously true.

It is possible to show that any absolutely continuous ρ with density bounded above and
below on its support, and whose support is a John domain, satisfies (5.13). The case where the
John domain is actually convex is covered in [26, Appendix B.1], and the case of a general John
domain may be shown using in addition the gluing techniques of Chapter 3. However, to avoid
discussions that may not be particularly useful and that would divert us from our main purpose,
we will not pursue this here. Instead, we state the main result of this section, conditionally on
Assumption 5.9.

Theorem 5.10 (Quantitative stability of Wasserstein barycenters). Let P,Q ∈ P(P(X )) and
assume that P satisfies Assumption 5.9. Let µP be the Wasserstein barycenter of P, and µQ be a
barycenter of Q. Then there exists a constant C < +∞ depending only on αP, cP,mP,MP,perP
and the dimension d such that

W2(µP, µQ) ≤ CW1(P,Q)1/6. (5.14)

Proof of Theorem 5.10. We rely on a dual formulation of the minimization problem (5.9). By
Kantorovich duality (see Section 2.1.1),

1

2
W 2

2 (ρ, µ) = ⟨1

2
| · |2 | ρ⟩ + ⟨1

2
| · |2 | µ⟩ − min

ψ∈C0(X )
T (ψ) (5.15)

where

T (ψ) =

�
X
ψ∗dρ+

�
Y
ψ dµ.

In the sequel, the subdifferential of a functional A : P(X ) → R at µ ∈ P(X ) is the set ∂A(µ) of
functions f ∈ C0(X ) such that

∀ν ∈ P(X ), A(ν) −A(µ) ≥ ⟨f | ν − µ⟩.

Fixing ρ, the function W 2
2 (ρ, ·) is convex (see (5.10)) and its subdifferential at µ ∈ P(X ) is given

by

∂

[
1

2
W 2

2 (ρ, ·)
]

(µ) =

{
1

2
| · |2 − ψρ→µ | ψρ→µ ∈ argmin

ψ∈C0(X )

T (ψ)

}
(to see this, use (5.15) and an envelope theorem, particularly easy since each function in the
minimum in (5.15) is linear). Integrating against P, the subdifferential of FP at µ verifies:{�

P(X )

(
1

2
| · |2 − ψρ→µ

)
dP(ρ) | ψρ→µ ∈ argmin

ψ∈C0(X )

T (ψ) for P-a.e. ρ

}
⊂ ∂FP(µ) (5.16)

(looking for a reverse inclusion is useless here, and not immediate since we are in infinite dimen-
sion). Thus for any µ, ν, and for any collection (ψρ→µ)ρ∈P(X ) of Kantorovich potentials we get
by definition of the subdifferential of FP

FP(ν) − FP(µ) − ⟨
�
P(X )

(
1

2
| · |2 − ψρ→µ

)
dP(ρ), ν − µ⟩ ≥ 0. (5.17)
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This is a convexity inequality for FP. We will strengthen it into the following strong convexity
estimate:

FP(ν) − FP(µ) − ⟨
�
P(X )

(
1

2
| · |2 − ψρ→µ

)
dP(ρ), ν − µ⟩ ≥ CW 6

2 (µ, ν). (5.18)

Let us show (5.18). For any ρ satisfying the four points in Assumption 5.9, and any c ∈ R, we
have

W 6
2 (µ, ν) ≤ ∥Tρ→µ − Tρ→ν∥6L2(ρ) ≤ C∥ψ∗

ρ→µ − ψ∗
ρ→ν − c∥2L2(ρ).

The first inequality is simply (1.15), and the second inequality comes from Lemma 3.16 since
ψ∗
ρ→µ and ψ∗

ρ→ν are RY -Lipschitz with RY = supy∈Y |y| (see Lemma 2.6). The constant C
depends only on the constants in Assumption 5.9. Taking the infimum over c ∈ R, we recover
Varρ(ψ

∗
ρ→µ − ψ∗

ρ→ν) in the right-hand side. From (5.13) we get

W 6
2 (µ, ν) ≲ Kρ(ψρ→µ) −Kρ(ψρ→ν) − ⟨ψρ→µ − ψρ→ν | ν⟩.

Due to (5.15), the right-hand side is also equal to

1

2
W 2

2 (ν, ρ) − 1

2
W 2

2 (µ, ρ) − ⟨1

2
| · |2 − ψρ→µ | ν − µ⟩,

and finally integrating against P we obtain (5.18).
Let µ = µP and ν = µQ be the Wasserstein barycenters with respect to P and Q. Notice that

for an appropriate choice of Kantorovich potentials (ψρ→µ)ρ∈P(X ), the integral in the left-hand
side of (5.17) vanishes at µ = µP. Indeed, µP is a minimizer of the convex functional FP, thus
0 ∈ ∂FP(µP), given by (5.16). Therefore, applying the strong convexity of FP at µP, we get

CW 6
2 (µP, µQ) ≤ FP(µQ) − FP(µP).

By definition of µQ as a minimizer of FQ, we have FQ(µP) − FQ(µQ) ≥ 0, hence

CW 6
2 (µP, µQ) ≤ FP(µQ) − FQ(µQ) + FQ(µP) − FP(µP) = ⟨1

2
(W 2

2 (·, µQ) −W 2
2 (·, µP)) | P−Q⟩.

Since 1
2(W 2

2 (·, µQ) −W 2
2 (·, µP)) is 2diam(X )-Lipschitz, the Kantorovich-Rubinstein duality for-

mula (2.12) (since P(X ) is a Polish space) yields (5.14).

5.3 Stability of entropic optimal transport and convergence of the Sinkhorn
algorithm

Our final application pertains to the numerical resolution of the entropic optimal transport
problem

inf
γ∈Π(ρ,µ)

�
X×Y

c(x, y)dγ(x, y) + εH(γ | ρ⊗ µ) (5.19)

introduced in Section 4.1. We showed in Theorem 4.6 that it is equivalent to the following dual
problem:

sup
(ϕ,ψ)∈C0(X )×C0(Y)

J ε(ϕ, ψ) (5.20)

where
J ε(ϕ, ψ) = ⟨ϕ | ρ⟩ + ⟨ψ | µ⟩ − ε⟨e

ϕ⊕ψ−c
ε | ρ⊗ µ⟩.
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Sinkhorn’s algorithm. To solve this dual problem, the Sinkhorn algorithm proceeds by al-
ternate maximization: starting at an arbitrary ψ0 ∈ C0(Y), it replaces alternatively the first and
the second argument of J ε by the maximizers of ϕ 7→ J ε(ϕ, ψ) and ψ 7→ J ε(ϕ, ψ) respectively.
In other words, it performs the following sequence of iterations:

ϕt+1 ∈ argmax
ϕ∈C0(X )

J ε(ϕ, ψt)

ψt+1 ∈ argmax
ψ∈C0(Y)

J ε(ϕt+1, ψ).
(5.21)

The maxima in the above equations are actually explicit: it follows from Proposition 4.5 that
the maximizer in the first line of (5.21) is ψc,εt where

ψc,ε(x) = −ε log

(�
Y
e
ψ(y)−c(x,y)

ε dµ(y)

)
,

and the maximizer in the second line is ϕc,εt+1 where

ϕc,ε(y) = −ε log

(�
X
e
ϕ(x)−c(x,y)

ε dρ(x)

)
.

Therefore, the sequence of iterations (5.21) is equivalent to

ϕt+1 = ψc,εt , ψt+1 = ϕc,εt+1. (5.22)

We saw in Theorem 4.6 that (5.20) admits a solution. Actually, this solution is (ρ ⊗ µ)-a.e.
unique by the strict concavity of J ε, which is a consequence of the strict convexity of the
exponential. Moreover, it is a fixed point (ϕ, ψ) of the iterations (5.22) (due to Proposition 4.5
again), and therefore it is of the form (ψc,ε, ψ), for some ψ satisfying ψ = (ψc,ε)c,ε.

Relation to the strong concavity of J ε. Along the sequence of iterations (5.21) (or equiv-
alently (5.22)), the value of J ε progressively increases. Since J ε is concave, it is expected that
these iterations converge to the solution (ϕ, ψ) to (5.20) as t → +∞. The question we will ad-
dress is the speed of convergence of this algorithm as t → +∞. As always, convergence speeds
of optimization algorithms depend on the convexity/concavity properties near the optimizer of
the function which is optimized. Here, it will be related to the strong concavity properties of
J ε.

This is in turn directly related to the stability of Kantorovich potentials with respect to
perturbations of the marginals. Let us explain why. Observe that ∇ϕJ ε(ϕt+1, ψt) = 0 for any t,
since ϕt+1 is a maximizer of ϕ 7→ J ε(ϕ, ψt). We saw in (4.11) that this implies ΠX#γt = ρ, where

γt = e
ϕt+1⊕ψt−c

ε ρ⊗ µ is the optimal entropic transport plan associated to the pair of potentials
(ϕt+1, ψt). However, ΠY#γt is not equal in general to µ since the maximizer of ψ 7→ J ε(ϕt+1, ψ)
is ψt+1, and not ψt. In other words, γt /∈ Π(ρ, µ). But the first marginal of γt is nevertheless
equal to ρ, and this is where we reconnect with our leitmotif: using this observation, some proofs
of convergence of Sinkhorn’s algorithm (for instance in [29]) implement an argument based on
the stability of the optimal entropic plan with respect to the second marginal. This stability is
directly related to the strong concavity of J ε.

The arguments presented here are slightly different: we will leverage directly the strong
concavity of J ε, and will not need to establish the stability of the optimal entropic plan with
respect to perturbations of the marginals. However, all these phenomena are totally related!

There exists a vast literature on the convergence of Sinkhorn’s algorithm. We chose to
focus only on one recent result, for which the techniques presented in the previous chapters
are particulary well suited; other approaches exist, and we shall mention some of them in the
bibliographical notes of Section 5.5.
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Main result. To study the convergence of Sinkhorn’s algorithm, we introduce the following
quantity:

E(ψ) = max
ϕ∈C0(X )

J ε(ϕ, ψ).

By definition, E(ψt) = J ε(ϕt+1, ψt). The function E admits a µ-a.e. unique maximizer denoted
by ψopt, due to the (ρ ⊗ µ)-a.e. uniqueness of the maximizer of J ε. The main result of this
section, due to [33], is the following:

Theorem 5.11. Assume that X is convex, and that there exists ξ ∈ R+ such that for all y ∈ Y,
x 7→ c(x, y) is ξ-semi-concave, and

∥c∥osc := sup
x∈X ,y∈Y

c(x, y) − inf
x∈X ,y∈Y

c(x, y) < +∞.

Then for any integer t ≥ 0, the Sinkhorn iterates (ψt)t≥0 defined in (5.21) satisfy

E(ψopt) − E(ψt+1) ≤ (1 − αε2)(E(ψopt) − E(ψt)) (5.23)

for some α > 0 (independent of ε) provided either one of the following additional assumptions
holds:

� The domain X is compact, the measure ρ admits a density f bounded above and below by
positive constants on X .

� There exists a convex function V : X → R such that ρ = e−V (x) and D2V ≥ ξId.

The rest of this section is devoted to the proof of Theorem 5.11, following [33]. The main
ingredients are Propositions 5.12 and 5.13. We denote by

δt = E(ψopt) − E(ψt)

the quantity appearing in (5.23). The first ingredient is a lower bound on δt − δt+1, in terms of
a variance with respect to the target measure µ (whereas in the previous chapters the variances
were usually taken with respect to ρ):

Proposition 5.12. For any t ≥ 0, the Sinkhorn iterates (ψs)s≥0 defined in (5.21) satisfy

δt ≤ 2
√
ε−1Varµ(ψopt − ψt)(δt − δt+1) +

14c∞
3

ε−1(δt − δt+1). (5.24)

The above lower bound on δt− δt+1 can be “closed” thanks to the following upper bound on
the variance in terms of δt, which expresses the strong concavity of E:

Proposition 5.13. Under the assumptions of Theorem 5.11, for any t ≥ 0, the Sinkhorn iterates
(ψs)s≥0 defined in (5.21) satisfy

Varµ(ψopt − ψt) ≤ C1ε
−1δt (5.25)

for some C1 > 0 independent of ε (taken < 1).

Before showing Propositions 5.12 and 5.13, we explain how to prove Theorem 5.11 using
these two propositions. Depending on which one of the two terms in the right-hand side of
(5.24) is the largest, we are in one of the two following cases:

Case 1: If δt ≤ 4
√
ε−1Varµ(ψopt − ψt)(δt − δt+1), then we plug (5.25) into this bound, we

square both sides, divide by δt and rearrange the terms. We get δt+1 ≤ (1 − αε2)δt.
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Case 2: If δt ≤ 28c∞
3 ε−1(δt − δt+1), then rearranging the terms yields δt+1 ≤ (1 − αε2)δt.

In both cases, we have established Theorem 5.11.

We turn to the proof of the above two propositions. Recall that in Section 4.2, we introduced
the regularized Kantorovich functional Kε

ρ, which depends on an auxiliary measure σ. Here, we
use this same functional, with µ in place of σ. In other words, in this section,

Kε
ρ(ψ) =

�
X
ψc,εdρ

where recall that

ψc,ε(x) = −ε log

(�
Y
e
ψ(y)−c(x,y)

ε dµ(y)

)
.

The functional Kε
ρ is concave. We reintroduce the notation

µxε [ψ] := µ̂xε [ψ]dµ, µ̂xε [ψ](y) :=
e
ψ(y)−c(x,y)

ε�
Y e

ψ(z)−c(x,z)
ε dµ(z)

and µε[ψ] =
�
X µ

x
ε [ψ]dρ(x), i.e.,

⟨v | µε[ψ]⟩ =

�
X
⟨v | µxε [ψ]⟩dρ(x)

for any v ∈ C0(X ). This notation already appeared in Section 4.2, with σ in place of µ. Notice
that µε[ψ] is the second marginal of the probability measure

exp

(
ψc,ε(x) + ψ(y) − c(x, y)

ε

)
ρ⊗ µ ∈ P(X × Y).

In particular, µε[ψopt] = µ (see Theorem 4.6). The family (µxε [ψ])x∈X is simply the disintegration
of µε[ψ] with respect to ρ.

Finally, in the sequel,

KL(α | β) =

�
X

dα

dβ
log
(dα

dβ

)
dβ

denotes the Kullback-Leibler divergence. Compared to H introduced in (4.2), it satisfies

KL(α | β) = 1 +H(α | β)

for any probability measures α, β on X . Let us recall the Donsker-Varadhan variational repre-
sentation of the Kullback-Leibler divergence: for any probability measures α, β,

KL(α | β) = sup
h∈Cb

{⟨h | α⟩ − log⟨eh | β⟩} (5.26)

or equivalently by the Fenchel-Moreau theorem since KL is convex:

∀h, log⟨eh | β⟩ = sup
α≪β

{⟨h | α⟩ − KL(α | β)} (5.27)

The strong concavity of Kε
ρ is proved (and used) only in the proof of Proposition 5.13.

However, we start with the proof of Proposition 5.12.
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Proof of Proposition 5.12. One may check that for any ψ,

(ψc,ε)c,ε − ψ = ε log
dµ

dµε[ψ]
. (5.28)

As a consequence

KL(µ | µε[ψ]) =
1

ε
⟨(ψc,ε)c,ε − ψ | µ⟩.

In particular,

δt − δt+1 = E(ψt+1) − E(ψt) ≥ J ε(ϕt+1, ψt+1) − J ε(ϕt+1, ψt) = εKL(µ | µε[ψt]). (5.29)

Since E is concave, letting v = ψopt − ψt we have E(ψopt) ≤ E(ψt) + d
drE(ψt + rv)

∣∣∣
r=0

. Since

d

dr
E(ψt + rv)

∣∣∣
r=0

= ⟨v | µ⟩ +
d

dr
Kε
ρ(ψt + rv)

∣∣∣
r=0

= ⟨v | µ− µε[ψt]⟩

according to (4.23), we get
δt ≤ ⟨ψopt − ψt | µ− µε[ψt]⟩.

We deduce that for any η > 0,

δt ≤ η−1
(
⟨η(ψopt − ψt) | µ− µε[ψt]⟩ − KL(µ | µε[ψt])

)
+ η−1KL(µ | µε[ψt])

≤ η−1 sup
µ′∈P(X )

(
⟨η(ψopt − ψt) | µ′ − µε[ψt]⟩ − KL(µ′ | µε[ψt])

)
+ η−1KL(µ | µε[ψt])

= η−1 logEµε[ψt](exp(ηf)) + η−1KL(µ | µε[ψt])

(5.30)

where f(y) = ψopt − ψt − Eµε[ψt](ψopt − ψt). The last line follows from (5.27) and the fact that

⟨η(ψopt − ψt) | µ′ − µε[ψt]⟩ = ⟨ηf | µ′⟩.

Recall the Bernstein inequality: if Z ≤ b almost surely, then

E(eλ(Z−E(Z))) ≤ exp

(
λ2

2 E(Z2)

1 − bλ
3

)
for all λ ∈ [0, 3/b).

Since f is contained in an interval of length at most 2∥c∥osc (due to Lemma 4.8), we get that
for any η ∈ (0, 3

2∥c∥osc ),

logEµε[ψt](exp(ηf)) ≤
η2Varµε[ψt](ψopt − ψt)

2(1 − η 2∥c∥osc
3 )

.

Plugging into (5.30) we find

δt ≤ inf
η∈(0, 3

2∥c∥osc
)

{
ηVarµε[ψt](ψopt − ψt)

2(1 − η 2∥c∥osc
3 )

+ η−1KL(µ | µε[ψt])

}

≤
√

2Varµε[ψt](ψopt − ψt)KL(µ | µε[ψt]) +
2∥c∥osc

3
KL(µ | µε[ψt])

where the final inequality follows by optimizing over η. And combining with (5.29) we get

δt ≤
√

2ε−1Varµε[ψt](ψopt − ψt)(δt − δt+1) +
2∥c∥osc

3
ε−1(δt − δt+1). (5.31)
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In order to complete the proof, we need to replace the variance with respect to µε[ψt] by a
variance with respect to µ. To make this change, we use the following inequality, which follows
from the variational representation for the Hellinger distance and its comparison to the Kullback-
Leibler divergence (see [33, Appendix A.4] for a proof): for any mutually absolutely continuous
measures ν1, ν2 on X , and for any function f : X → [a, b], there holds

Varν1(f) ≥ 1

2
Varν2(f) − (b− a)2 min(KL(ν1 | ν2),KL(ν2 | ν1)). (5.32)

Since ∥ψopt − ψt∥osc ≤ 2∥c∥osc (again due to Lemma 4.8), we have

Varµε[ψt](ψopt − ψt) ≤ 2Varµ(ψopt − ψt) + 8∥c∥2oscKL(µ | µε[ψt])
≤ 2Varµ(ψopt − ψt) + 8∥c∥2oscε−1(δt − δt+1).

Plugging into (5.31) and using
√
a+ b ≤

√
a+

√
b, we get (5.24).

Proof of Proposition 5.13. We have, as in (4.23),

d

dr
Kε
ρ(ψ + rv) = −⟨v | µε[ψ + rv]⟩

Choosing v = ψopt − ψt and r = 1, we have µε[ψ + rv] = µε[ψopt] = µ, hence

δt = E(ψopt) − E(ψt)

= J ε(ψc,εopt, ψopt) − J ε(ψc,εt , ψt)

= ⟨ψc,εopt | ρ⟩ + ⟨ψopt | µ⟩ − ⟨ψc,εt | ρ⟩ − ⟨ψt | µ⟩

= Kε
ρ(ψopt) −Kε

ρ(ψt) −
d

dr
Kε
ρ(ψt + rv)

∣∣∣
r=1

=

� 1

0

d

dr
Kε
ρ(ψt + rv)dr − d

dr
K(ψt + rv)

∣∣∣
r=1

= −
� 1

0

� 1

r

d2

ds2
Kε
ρ(ψt + sv)dsdr.

(5.33)

From second to third line we used the fact that the term ⟨e
ϕ⊕ψ−c

ε | ρ⊗ µ⟩ is equal to 1 both for
(ψ,ψ) = (ψc,εopt, ψopt) and (ϕ, ψ) = (ψc,εt , ψt), due to the first-order optimality condition (4.11).
We now prove the key concavity estimate

d2

ds2
Kε
ρ(ψ + sv) ≤ −CVarµε[ψ+sv](v) (5.34)

where C > 0 is some constant independent of ε ∈ (0, 1). We recall from (4.24) the identity

− d2

ds2
Kε
ρ(ψ + sv) =

1

ε
Ex∼ρ(Varµxε [ψ+sv](v))

=
1

ε
(Varµε[ψ+sv](v) − Varx∼ρ(Eµxε [ψ+sv](v))

(in the second line we use the law of total variance). We plug this into the inequality (4.25):

−C2
0

d2

ds2
Kε
ρ(ψ + sv) ≥ Varx∼ρ(Eµxε [ψ+sv](v))

= ε
d2

ds2
Kε
ρ(ψ + sv) + Varµε[ψ+sv](v).
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This proves (5.34).
In (5.34), the variance is taken with respect to µε[ψ + sv], whereas we are looking for a

variance with respect to µ. Again, we rely on (5.32). Plugging into (5.33), we get

C−1δt ≥
� 1

0

� 1

r

1

2
Varµ(v) − (2∥c∥osc)2KL(µ | µε[ψt + sv])dsdr

=
1

4
Varµ(v) − 4∥c∥2osc

� 1

0

� 1

r
KL(µ | µε[ψt + sv])dsdr.

(5.35)

Next we handle the double integral as follows: using (5.28), the optimality of ψopt and the
concavity of E, we get

KL(µ | µ[ψt + sv]) =
1

ε
⟨((ψt + sv)c,ε)c,ε − (ψt + sv), µ⟩

=
1

ε

(
J ε
(
(ψt + sv)c,ε, ((ψt + sv)c,ε)c,ε

)
− J ε((ψt + sv)c,ε, ψt + sv)

)
≤ 1

ε

(
J ε(ψc,εopt, ψopt) − J ε((ψt + sv)c,ε, ψt + sv)

)
=

1

ε
(E(ψopt) − E((1 − s)ψt + sψopt))

≤ 1 − s

ε
(E(ψopt) − E(ψt))

=
1 − s

ε
δt.

Plugging into (5.35) we get (5.25).

Remark 5.14 (Relation to matrix factorization). When ρ and µ are discrete measures, the
algorithm (5.21) is in fact a reformulation, using a logarithmic change of variables, of the original
Sinkhorn algorithm [98]. Originally, Sinkhorn’s algorithm takes as input a square matrix A with
non-negative entries, and returns a factorization A = D1BD2, where D1 and D2 are diagonal
matrices, and B is doubly stochastic. The algorithm runs by normalizing alternatively the rows
and the columns of A so that after each step, either each row sums to 1, or each column sums
to 1. For this, one simply divides each element by the sum of the elements in its row (and the
step after, one divides each element by the sum of the elements in its column).

Let us explain the relation of the iterations (5.21) with this algorithm. Let ρ =
∑N

i=1 ρiδxi
and µ =

∑N
j=1 µjδyj be two non-negative discrete measures, and let cij = c(xi, yj) be a cost

function. Then the solution to the (primal) entropic optimal transport (5.19) is given by

γij = e
ϕi+ψj−cij

ε ρiµj

for some ϕ, ψ ∈ RN (see Theorem 4.6). The iterates (5.22) read

ϕ
(t+1)
i = −ε log

 N∑
j=1

e
ψ
(t)
j

−cij
ε µj

 , ψ
(t+1)
j = −ε log

(
N∑
i=1

e
ϕ
(t)
i

−cij
ε ρi

)
.

and the associated transport plan is

γ(t) = e
ϕ
(t)
i

+ψ
(t)
j

−cij
ε ρiµj .
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Performing the change of variables u
(t)
i = e

ϕ
(t)
i
ε ρi, v

(t)
j = e

ψ
(t)
j
ε µj and Kij = e−

cij
ε , the iterations

become 
u
(t+1)
i = ρi

(Kv(t))i

v
(t+1)
j =

µj
(K⊤u(t+1))j

γ(t) = diag(v(t))Kdiag(u(t)),

where diag(x) denotes the square diagonal matrix with entries xi. The transport plan γ(t) con-
verges toward a matrix with satisfies

∑N
j=1 γij = ρi for any i, and

∑N
i=1 γij = µj for any j. In

particular, if ρi = µj = 1 for any i, j, then the limits of the diagonal matrices diag(v(t)) and
diag(u(t)) as t→ +∞ provide a factorization of the matrix K into a doubly stochastic matrix γ.

5.4 Perspectives

Beside the open problems already pointed out in this document, we mention two other open
directions of research that we find relevant. Many others exist!

First, it would be interesting to extend qualitative and quantitative stability results to the
many variants of optimal transport which have been studied over the years (and used in appli-
cations!), in particular:

� Multi-marginal optimal transport. It is a generalization of optimal transport to more
than two probability distributions, relevant in some physical applications such as density
functional theory. We refer to the survey [88].

� Unbalanced optimal transport compares arbitrary positive measures, not restricted to
probability distributions. It allows mass to be created or destroyed at some cost, which
is much more realistic in many scenarios than classical optimal transport. For instance,
it can match biological cell populations with different sample sizes. This generalization of
optimal transport makes it more robust to outliers and missing data, and thus relevant for
applications. We refer to one of the first papers on the topic [30], and to the survey [97].

� Partial optimal transport. It is a generalization of optimal transport where only a fixed
fraction of the mass is transported (and it is thus related to unbalanced optimal trans-
port). More precisely, given non-negative f, g ∈ L1, one seeks to transport a fraction
m ≤ min(∥f∥L1 , ∥g∥L1) of the mass of f onto g as cheaply as possible. Introduced in the
mathematical community by Caffarelli and McCann in [24], it has found applications in
imaging, for instance in image retrieval [95].

� Sliced optimal transport has been introduced in [94] and is based on the computation of
the Wasserstein distances between all 1-dimensional projections of the two measures under
consideration. The associated distance, called sliced Wasserstein distance, is given by

SW2(ρ, µ) =

( 
Sd−1

W 2
2 ((πe)#ρ, (πe)#µ)dH d−1(e)

)1/2

where πe is the orthogonal projection onto the line Re, and H d−1 denotes the Hausdorff
measure on the sphere Sd−1. It is particularly simple to approximate numerically, and it
compares well to the Wasserstein distance:

SW2 ≤W2 ≤ CSWβ
2

for β = 1/(2(d+ 1)) and some C > 0 depending on the dimension and on the radius of a
large ball containing the support of the measures (see [16, Chapter 5]).
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One could also wonder why the transport between two measures would always need to be
optimal in some sense! And indeed, there exist many well-known non-optimal couplings between
pairs of probability measures, whose study even preceded that of optimal transport. To name
only two:

� the Knothe-Rosenblatt rearrangement. For two probability measures in Rd, it consists
in rearranging monotonically the marginal distributions of the first coordinate, and then
the conditional distributions, iteratively. We refer for instance to [106, Chapter 1] for
a precise description. One advantage of the Knothe-Rosenblatt rearrangement is its low
computational cost, due to its simple 1-dimensional structure. However, it is unsuitable
for many applications due to its strong dependency on the order in which the dimensions
are handled.

� The Moser coupling. It has been used by Moser in [83] to show that between any two man-
ifolds endowed with normalized volume forms there exists a differentiable homeomorphism
matching the volume forms. Interpreting the normalized volumes as probability densities,
the homeomorphism can be equivalently seen as a transport map. It has the advantage
of being obtained as the solution to an elliptic equation, with the associated regularity
properties. We refer to [105, Chapter 1, Appendix] for a precise description.

The stability of these couplings with respect to perturbations of the marginal measures is an open
problem too. Interest in this problem is motivated by the fact that non-optimal transport maps
between measures are a fundamental tool in many recent developments in machine learning,
sampling and imaging.

5.5 Bibliographical notes

§5.1: Statistical optimal transport is a very active field, and giving an exhaustive list of
references would be impossible. We prefer to refer to the nice book recently written on the
topic by Sinho Chewi, Jonathan Niles-Weed and Philippe Rigollet [32]. We also recommand
the survey [7]. One of the first papers on the subject, to which we borrowed Theorem 5.5, is
[59]. The semidual estimation approach was then systematically explored in [47]. An important
reference regarding plug-in estimators is [75]. Theorem 5.1 and Theorem 5.2 are proved in [6],
which also discusses the importance of stability bounds in this field. Regarding computationally
tractable estimators of the optimal transport map, a good reference is [104]. Another family of
estimators which we did not discuss are those derived from the entropic optimal transport map,
see for instance [90]. Such estimators have also been used in [91] which is one of very few works
dealing with the estimation of discontinuous optimal transport maps.

§5.2: Wasserstein barycenters were introduced in the work of Agueh and Carlier [1], as
a generalization of McCann’s theory of interpolation [77] to more than two measures. They
established in this work foundational results such as existence and duality.

The computational aspects of Wasserstein barycenters were first considered in [94], where
Rabin, Peyré, Delon and Bernot introduced the sliced Wasserstein to compute them fastly, at
least in low dimensions. Slightly later, Cuturi and Doucet [39] applied entropic optimal transport
to barycenters, making them computationally practical. We refer to [89, Chapter 9.2] for an
account on Wasserstein barycenters from the numerical point of view.

More general existence and uniqueness statements than Theorem 5.6 exist, see for instance
[68, Theorem 2]. Theorem 5.7 is a weak version of Theorem 3 in [68]. Theorem 5.6 is Theorem
3.1 in [63]. The statement of Proposition 5.8 comes from [26, Section 1.2.2].
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The book chapter [32, Chapter 8] is devoted to statistical perspectives on Wasserstein
barycenters and references gathered in [32, Chapter 8.4].

§5.3: The Sinkhorn algorithm was invented in 1964 [98] in the context of matrix factorization.
In the literature, it bears various names, for instance the iterative proportional fitting procedure
(IPFP), the RAS algorithm in economics, or the matrix scaling algorithm in computer science.
Cuturi discovered in 2013 [38] that it could be used to solve fastly the entropic optimal transport
problem, and thus to infer an approximate solution to the unregularized optimal transport
problem. To address the convergence of Sinkhorn’s algorithm, one possibility is to use the Hilbert
projective metric, see [89, Section 4.2]. Another method relying on couplings and stochastic
control has been recently developed in [29]. The approach presented here, due to [33], relies on
the convexity properties of the (regularized) Kantorovich functional. There is actually a very
large corpus on the convergence of Sinkhorn’s algorithm, see the detailed literature reviews in
[33, Section 1.1] and [29, Section 1.2]. Sinkhorn’s algorithm iterates over entropic Kantorovich
potentials, but there is also some literature (not related to Sinkhorn’s algorithm) on the stability
of entropic optimal transport maps. These maps, which are defined as barycentric projections of
optimal entropic plans, are not necessarily admissible transport maps (they do not transport ρ to
µ) but they are nevertheless natural objects. They converge to the unregularized transport map
when it exists, as the regularization parameter tends to 0 (under mild additional assumptions).
We refer to [46] for interesting results in this direction.

We did not mention in this chapter other interesting applications of optimal transport stabil-
ity theory. For instance, in [58], stability estimates have been used to derive precise asymptotics
for the random matching problem with quadratic cost in dimension d ≥ 3. They have also
been helpful to give a constructive proof of the existence of global-in-time weak solutions of the
3-dimensional incompressible semi-geostrophic equations [17].
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[89] Gabriel Peyré, and Marco Cuturi. “Computational optimal transport: With applications
to data science.” Foundations and Trends in Machine Learning 11.5-6 (2019): 355-607.

[90] Aram-Alexandre Pooladian, and Jonathan Niles-Weed. “Entropic estimation of optimal
transport maps.” arXiv preprint arXiv:2109.12004 (2021).

[91] Aram-Alexandre Pooladian, Vincent Divol, and Jonathan Niles-Weed. “Minimax estimation
of discontinuous optimal transport maps: The semi-discrete case.” International Conference
on Machine Learning. PMLR, 2023.
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