TD N°5: Espaces et injections de Sobolev

Dans toute la suite, n désigne un entier naturel non nul et on note B_r la boule de \mathbb{R}^n centrée en 0 et de rayon r > 0.

Exercice 1 : espaces de Hölder

Soient Ω un ouvert de \mathbb{R}^n , $\delta \in]0,1[$ et k un entier ≥ 1 . On rappelle que u est höldérienne sur Ω d'exposant δ si

$$[u]_{C^{\delta}(\Omega)} := \sup_{x,y \in \Omega, x \neq y} \frac{|u(x) - u(y)|}{|x - y|^{\delta}} < +\infty$$

et on définit la semi-norme

$$[u]_{C^{k+\delta}(\Omega)} = \max_{|\alpha|=k} [D^{\alpha}u]_{C^{\delta}(\Omega)}.$$

On note $C^{k+\delta}(\Omega)$ l'espace des fonctions $u \in C^k(\Omega)$ telles que la norme

$$||u||_{C^{k+\delta}(\Omega)} = ||u||_{C^k(\Omega)} + [u]_{C^{k+\delta}(\Omega)}$$

est finie. Montrer que l'espace de Hölder $C^{k+\delta}(\Omega)$ est un espace de Banach.

Exercice 2 : injections de Sobolev

Soit $s \in [0, n/2]$. On note q := 2n/(n-2s) et on rappelle les notations suivantes :

$$||f||_{\dot{H}^s} := \left(\int_{\mathbb{R}^n} |\xi|^{2s} |\widehat{f}(\xi)|^2 d\xi \right)^{1/2} \quad \text{et} \quad ||f||_{H^s} := \left(\int_{\mathbb{R}^n} (1 + |\xi|^2)^s |\widehat{f}(\xi)|^2 d\xi \right)^{1/2}$$

De la question 1. à la question 4., on considère $f \in \mathcal{S}(\mathbb{R}^n)$ telle que $||f||_{\dot{H}^s} = 1$.

1. Montrer que pour tout $\lambda > 0$,

$$||f||_{L^q}^q = q \int_0^{+\infty} \lambda^{q-1} |\{|f| > \lambda\}| d\lambda,$$

où $\{|f|>\lambda\}$ est l'ensemble $\{x\in\mathbb{R}^n:|f(x)|>\lambda\}$ et $|\{|f|>\lambda\}|$ la mesure de Lebesgue de cet ensemble.

2. Soit $A_{\lambda} > 0$ une constante qui dépend de λ . Pour tout $\lambda > 0$, on décompose f sous la forme $f = g_{\lambda} + h_{\lambda}$ (décomposition des hautes et basses fréquences) où g_{λ} et h_{λ} sont définies par :

$$\widehat{g_{\lambda}}(\xi) = \widehat{f}(\xi) \quad \text{si} \quad |\xi| \leq A_{\lambda}, \qquad \widehat{g_{\lambda}}(\xi) = 0 \qquad \quad \text{si} \quad |\xi| > A_{\lambda}$$

$$\widehat{h_{\lambda}}(\xi) = 0$$
 si $|\xi| \le A_{\lambda}$, $\widehat{h_{\lambda}}(\xi) = \widehat{f}(\xi)$ si $|\xi| > A_{\lambda}$.

Déterminer A_{λ} de sorte que $\{|g_{\lambda}| > \lambda/2\} = \emptyset$.

[Indication : on pourra montrer que $||g_{\lambda}||_{\infty} \leq C_1(s,n)A_{\lambda}^{\frac{n}{2}-s}||f||_{\dot{H}^s}$ où $C_1(s,n)$ est une constante strictement positive dépendant uniquement de n et de s.]

3. Pour le A_{λ} défini à la question précédente, montrer que

$$||f||_{L^q}^q \le 4q \int_0^{+\infty} \lambda^{q-3} ||h_\lambda||_2^2 d\lambda.$$

4. Montrer que

$$||f||_{L^q} \le C ||f||_{\dot{H}^s}$$

où C est une constante positive.

5. Montrer que l'espace de Sobolev $H^s(\mathbb{R}^n)$ s'injecte continûment dans $L^p(\mathbb{R}^n)$ pour tout p tel que $2 \le p \le 2n/(n-2s)$.

6. Soit p > 2 et $s \ge s_p := n(1/2 - 1/p)$. Prouver qu'il existe une constante C > 0 telle que pour tout $f \in H^s$,

$$||f||_{L^p} \le C ||f||_{L^2}^{1-\theta} ||f||_{\dot{H}^s}^{\theta} \text{ avec } \theta = s_p/s.$$

Exercice 3 : espaces de Sobolev sur un ouvert de \mathbb{R}^n

Soit Ω un ouvert borné à bord régulier de \mathbb{R}^n . On rappelle que

$$H^{1}(\Omega) = \left\{ u \in L^{2}(\Omega) : \exists g_{i} \in L^{2}(\Omega), \int_{\Omega} u \, \partial_{i} \phi = -\int_{\Omega} g_{i} \, \phi, \, \forall \, \phi \in \mathcal{C}_{0}^{1}(\Omega), \, \forall \, i = 1, \dots, n \right\}$$

et que $H_0^1(\Omega)$ est l'adhérence de $C_0^1(\Omega)$ dans $H^1(\Omega)$. On rappelle également que si $u \in H^1(\Omega)$, il existe une suite $(u_k)_{k \in \mathbb{N}}$ de $C_0^{\infty}(\mathbb{R}^n)$ telle que la suite $(u_k)_{k \in \mathbb{N}}$ converge vers u dans $H^1(\Omega)$.

1. Soit $u \in H^1(\Omega)$ et $v \in C_b^1(\Omega)$ (c'est-à-dire que v et ses dérivées sont bornées sur Ω). Montrer que $uv \in H^1(\Omega)$ et les dérivées au sens faible vérifient

$$\partial_j(uv) = (\partial_j u)v + u(\partial_j v), \quad \forall j = 1, \dots, n.$$

- 2. Montrer que si $u \in H^1(\Omega)$ et $\eta \in \mathcal{C}^1_0(\Omega)$ alors $\eta u \in H^1_0(\Omega)$.
- 3. Soit $G \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ une fonction à dérivée bornée. Montrer que si $u \in H^1(\Omega)$ alors $G \circ u \in H^1(\Omega)$ et que les dérivées au sens faible vérifient

$$\partial_j(G \circ u) = (G' \circ u)\partial_j u, \quad \forall j = 1, \dots, n.$$

Pour aller plus loin:

— Dans un billet intitulé "A type diagram for function spaces" sur son blog, Terence Tao parvient en un diagramme à recenser une quantité gigantesque d'espaces fonctionnels, et à les classifier selon deux propriétés : l'intégrabilité et la dérivabilité. Excellent pour se clarifier les idées sur les espaces fonctionnels!