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Abstract

Optimal transport plays a prominent role across numerous disciplines, including analysis,
probability, statistics, geometry, and machine learning. For many reasons, not only existence
and uniqueness of optimal transport maps, but also their stability with respect to variations
of the marginal distributions is of fundamental importance. Qualitative stability results have
long been established, but quantitative estimates are often needed both for numerical and
theoretical purposes. We review recent theoretical advances in this emerging and flourishing
field. We also discuss a range of applications, including embedding of subsets of the Wasser-
stein space into Hilbert spaces, linearized optimal transport, statistical optimal transport
and the random matching problem. These notes are based on my Cours Peccot delivered at
the Collège de France in May-June 2025.
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Program of the lectures:

� May 14th: General introduction (Section 1), statement of the main results (Section 2).

� May 21st: The Kantorovich functional (Section ??). This lecture is mostly based on a
work by Alex Delalande and Quentin Mérigot [26], revisited in [47].

� May 28th: Gluing techniques (Section ??), examples and counterexamples (Section ??).
This lecture is mostly based on my joint work with Quentin Mérigot [47].

� June 4th: Stability of maps (Section ??), generalizations (Section ??) and applications
(Section ??). This lecture is based on various works by many authors.

It is my great pleasure to thank Quentin Mérigot, who introduced me to this topic. I am
also thankful to Guillaume Carlier, Vincent Divol, William Ford, Michael Goldman, Antoine
Julia, Jun Kitagawa, Tudor Manole, Jonathan Niles-Weed, Pierre Pansu, Aram Pooladian and
Philippe Rigollet for various discussions.

To lighten the presentation, most references are gathered at the end of every chapter in a
bibliographical paragraph.
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1 General introduction

1.1 The optimal transport problem

The nearly 250 years old Monge transportation problem consists in finding the optimal way
to transport mass from a given source to a given target probability measure, while minimizing
an integrated cost.

Let ρ be a probability measure on a Polish (i.e., complete, separable metric) space X and µ
be a probability measure on a Polish space Y. For simplicity, one may assume X ,Y ⊂ Rd. Let
c be a non-negative measurable function on X × Y. An admissible mass transport plan is an
element γ of the space P(X ×Y) of probability measures over X ×Y whose marginals coincide
with ρ and µ, i.e., for all measurable sets A ⊂ X , B ⊂ Y,

γ(A× Y) = ρ(A) and γ(X ×B) = µ(B). (1.1)

These conditions mean that for any x ∈ X , y ∈ Y, the amount of mass taken from x coincides
with dρ(x), and the amount of mass arriving at y coincides with dµ(y). The set of all admissible
transport plans is

Π(ρ, µ) = {γ ∈ P(X × Y) | (1.1) holds}.

It is non-empty and convex. The optimal transport problem with cost c is the minimization
problem

inf
γ∈Π(ρ,µ)

∫
X×Y

c(x, y)dγ(x, y). (1.2)

A solution to (1.2) is called an optimal transport plan. In the particular case where X ,Y ⊂ Rd

and c(x, y) = |x− y|2, one finds the quadratic optimal transport problem

inf
γ∈Π(ρ,µ)

∫
Rd×Rd

|x− y|2dγ(x, y), (1.3)

which will be our main focus during the largest part of these lectures. The case of p-costs
c(x, y) = |x − y|p with p ≥ 1 is also of interest, and gives rise to the p-Wasserstein distance
defined as

Wp(ρ, µ) =

(
inf

γ∈Π(ρ,µ)

∫
Rd×Rd

|x− y|pdγ(x, y)

)1/p

.

Optimal transport and Wasserstein distances are used in an incredible number of fields. Here
is a very incomplete list of fields, with one or two applications and/or names for each:

� Engineering: move mass from one place to another while minimizing a total transportation
cost (Monge 1781).

� Economics: optimal allocation of resources between m production stations and n con-
sumption stations (Kantorovich 1942).

� Mathematical physics and modelling: interpretation of the Euler equation of fluid me-
chanics via a least action principle in the space of diffeomorphisms (Arnold 1966, Brenier
1989); interpretation of the heat equation as a gradient descent of entropy in the geometry
of mass transport (Otto 1998); construction of the semigeostrophic model in atmospheric
sciences (Cullen and Purser 1980’s); kinetic theory (Tanaka 1970’s).
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� Mathematics: analysis of the Monge-Ampère partial differential equation det(D2f) = g
(Caffarelli 1990’s); convex geometry; functional inequalities; definition of geometric and
topological properties in spaces without smooth structures, e.g., synthetic theory of Ricci
curvature (Lott-Sturm-Villani 2006-2009).

� Image processing: measure distance between images (image retrieval and comparison);
color transfer; image interpolation; super-resolution and denoising.

� Statistics: rate of convergence of empirical probability measures µn to their limit µ (Dudley
1969); estimation of coupling between data.

� Machine learning: generative modeling; interpolation of multiple data distributions (e.g.
samples, images, domains, etc) using Wasserstein barycenters; analysis of the training
dynamics of neural networks; analysis of sampling algorithms such as the Langevin Monte
Carlo algorithm.

Although the distance cost c(x, y) = |x − y| might seem more physical at first sight than
the quadratic cost (it is the natural cost in the Monge problem for instance), the quadratic cost
c(x, y) = |x−y|2 is actually the one which is most useful in the above examples due to Brenier’s
theorem recalled below, the link with the W2 distance which gives a Riemannian structure to
the space of probability measures, its smoothness which makes it suitable for optimization, its
computational advantages in relation to Sinkhorn’s algorithm, etc. The distance cost does not
come with as nice properties as the quadratic cost.

A solution to (1.3) (or (1.2)) exists under mild assumptions: for instance that X ,Y are
Polish spaces (i.e., complete and separable metric spaces) and that c is lower semi-continuous.
However, the solution to (1.3) (or (1.2)) is not unique in general. For instance, if A = (1, 0),
B = (−1, 0), C = (0, 1) and D = (0,−1) are the vertices of a square in R2, there is an infinite
number of solutions to (1.3) when ρ = 1

2(δA + δB) and µ = 1
2(δC + δD): for any a ∈ [0, 1],

γ =
1

2

(
aδ(A,C) + (1 − a)δ(A,D) + (1 − a)δ(B,C) + aδ(B,D)

)
is an admissible transport plan which is a solution of (1.3). Notice that in this example, the
mass leaving A is split into one part going to C and one part going to D.

Let us pause for a moment and ask what would happen if we would not allow mass-splitting,
i.e., if if we replace the infimum in (1.3) by a minimization over the admissible transport plans
γ ∈ Π(ρ, µ) which are supported on the graph of a univalued map T : X → Y: in other words,
all the mass at x ∈ X is sent into T (x) ∈ Y. The condition γ ∈ Π(ρ, µ) then turns into the
condition that for any measurable U ⊂ Y, ρ(T−1(U)) = µ(U), i.e., T#ρ = µ where # denotes
the pushforward operation. The associated admissible transport plan is γ = (Id, T )#ρ. We
obtain the so-called Monge problem:

inf
S:X→Y
S#ρ=µ

∫
Rd

|x− S(x)|2dρ(x). (1.4)

A solution to (1.4) is called an optimal transport map. Notice that without the absolute conti-
nuity assumption on ρ, the Monge problem does not necessarily have a solution. If ρ is a sum
of Dirac masses but µ is not, then there does not exist any S : X → Y such that S#ρ = µ.

There exists a simple assumption which guarantees that the solution to (1.3) is unique:
Brenier showed that the absolute continuity of the source measure ρ is a sufficient condition
for a unique solution to (1.3) to exist. And even more: he shows that in this case, the Monge
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problem (1.4) has a unique solution T , and that these solutions to the two problems are related
by γ = (Id, T )#ρ.

In the sequel, P(X ) denotes the set of probability measures on X ⊂ Rd, and Pp(X ) is the
set of probability measures on X with finite p-th moment:

Pp(X ) =

{
ρ ∈ P(X ) |

∫
X
|x|pdρ(x) < +∞

}
.

The weak topology on P(X ) (or topology of weak convergence, or narrow topology) is induced
by convergence against Cb(X ), i.e., bounded continuous functions.

Theorem 1.1 (Brenier). Let ρ, µ ∈ P2(Rd) and c(x, y) = |x− y|2 be the quadratic cost on Rd.
Assume that ρ is absolutely continuous with respect to the Lebesgue measure. Then there exists
between ρ and µ a ρ-a.e. unique optimal transport map T and a unique optimal transport plan
γ, and these solutions are related by γ = (Id, T )#ρ. Furthermore, the map T is the gradient of
a convex function ϕ : Rd → R ∪ {+∞}, and if (∇f)#ρ = µ for some other convex function f ,
then ∇f = ∇ϕ ρ-a.e.

If the support X of ρ is the closure of a bounded connected open set, ϕ is uniquely determined
on X up to additive constants. As a consequence of Brenier’s theorem, for any convex function
ϕ and any absolutely continuous ρ ∈ P2(Rd), the map ∇ϕ is the optimal transport map from ρ
to (∇ϕ)#ρ.

To turn (1.3) (or (1.4)) into a well-posed problem in the sense of Hadamard, there only
remains to show stability of the solution T with respect to perturbations of ρ and µ. The question
of stability is fundamental both from the theoretical and the numerical point of view. Soft
(compactness) arguments provide without any difficulty a qualitative stability result presented
in Section 1.2. However, quantitative results are needed in most applications, and for this more
difficult problem, tools have started to emerge only in the last five years. The purpose of these
notes is to review the recent theoretical advances in this now fastly developing field, and to
discuss applications to various problems.

1.2 Stability of optimal transport

Recall that weak convergence of measures is understood against continuous bounded test
functions. The following general qualitative stability result is true.

Proposition 1.2. Let (ρk)k∈N converge weakly to ρ and (µk)k∈N converge weakly to µ. For each
k ∈ N, let γk be an optimal transport plan between ρk and µk, and assume that

lim inf
k∈N

∫
X×Y

|x− y|2dγk(x, y) < +∞.

Then the optimal transport cost between ρ and µ is finite and, up to extraction of a subsequence,
γk converges weakly to some optimal transport plan γ between ρ and µ.

The proof relies on the Prokhorov theorem (to extract a converging subsequence) and on a
characterization of optimal transport plans as cyclically monotone sets. Proposition 1.2 actually
holds in general Polish spaces X and Y, with a continuous cost function c : X × Y → R such
that inf c > −∞.

In these lectures, we will fix the source measure ρ and consider stability with respect to the
target measure only. The problem we are interested in reads

If µ and ν are quantitatively close, prove that Tρ→µ and Tρ→ν are quantitatively close
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where Tρ→µ (resp. Tρ→ν) is the optimal transport map from ρ to µ (resp. ρ to ν) given by
Brenier’s theorem. There are several reasons for this choice of fixing the source measure:

� first, because the mapping µ 7→ Tρ→µ may be used to embed the Wasserstein space (or
part of it) into the Hilbert space L2(ρ) with a controlled distortion, as explained in Section
1.4. This is important in its own.

� Second, because Tρ→µ and Tρ→ν are in L2(ρ) according to Brenier’s Theorem 1.1, and
thus we may measure their distance simply in L2(ρ), whereas if we had ρ and ρ′ as source
measures, measuring distances between the maps would be less easy (instead, one would
probably measure the Wasserstein distance between optimal transport plans).

� Third, because in some applications, ρ is a perfectly known probability density, e.g. a
standard Gaussian.

� Finally, it is sometimes possible to deduce stability with respect to both marginals from
the proof techniques.

To summarize, in these lecture notes, some ρ ∈ P2(Rd), assumed to be absolutely continuous
with respect to the Lebesgue measure, is fixed. Therefore, we may drop in the notation the
reference to this source measure, and given µ ∈ P2(Rd) we call

� the optimal transport map and denote by Tµ ∈ L2(ρ) the unique solution to (1.4).

� the Kantorovich potential the unique convex function ϕµ ∈ L2(ρ) such that Tµ = ∇ϕµ and∫
X ϕµdρ = 0.

In the context of these lectures, the Kantorovich potential is always uniquely defined. This
uniqueness may fail, however, if the support of ρ consists of multiple connected components.

The source measure ρ being now fixed, we formulate the qualitative stability of optimal
transport maps as follows:

Proposition 1.3. The map µ 7→ Tµ from (P2(Rd),W2) to L2(ρ) is continuous.

Proof. Let (µn)n∈N and µ be in P2(Rd) such that W2(µn, µ) → 0. Then W2(ρ, µn) → W2(ρ, µ)
by the triangle inequality, hence∫

Rd

|x− Tµn(x)|2dρ(x) →
∫
Rd

|x− Tµ(x)|2dρ(x). (1.5)

Therefore, (Tµn) is bounded in L2(ρ).
Let

Kε = {x ∈ Rd | |x| ≤ ε−1, ρ(x) ≥ ε, dist(x, ∂Ω) ≥ ε}

where Ω = supp(ρ). Let us prove that for any ε > 0,

sup
n

∥Tµn∥L∞(Kε) < +∞. (1.6)

For this we rely on the fact that for any convex function f over Rd, any x ∈ Rd and η > 0,

∥∂f∥L∞ ≤ 6

βdηd

∫
B(x,4η)

|∇f |dλ (1.7)
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where λ denotes the Lebesgue measure on Rd. The proof of (1.7) is provided in Appendix ??.
Let us deduce (1.6) from (1.7). For any x such that B(x, 4ε) ⊂ Kε,

βdε
d

6
∥Tµn∥L∞(B(x,ε)) ≤

∫
B(x,4ε)

|Tµn |dλ ≤ ε−1
(∫

B(x,4ε)
|Tµn |2dρ

)1/2
(1.8)

by applying (1.7) to ϕµn , using that ρ(x) ≥ ε on Kε, and finally applying the Cauchy-Schwarz
inequality. Since (Tµn) is bounded in L2(ρ), the right-hand side in (1.8) for fixed ε > 0 is
uniformly bounded in n. Therefore ∥Tµn∥L∞(K′

ε)
is uniformly bounded in n for K ′

ε = {x ∈ Kε |
B(x, 4ε) ⊂ Kε}. Sending ε to 0, this implies that supn ∥Tµn∥L∞(K) < +∞ for any compact set
K included in the interior of the support of ρ. In particular, this implies (1.6).

From now on, we normalize ϕµn in a way that ϕµn(0) = 0. By Arzelà-Ascoli, up to extraction
of a subsequence omitted in the notation, (ϕµn) converges toward some ϕ uniformly over any
Kε. Of course, ϕ is convex. Passing to the limit n → +∞ in the inequality ϕµn(y) ≥ ϕµn(x) +
⟨y − x,∇ϕµn(x)⟩ yields that any limit point of (∇ϕµn(x)) is in ∂ϕ(x). This proves that at any
point x of differentiability of ϕ, (∇ϕµn) converges to ∇ϕ. Since ϕ is convex, it is differentiable
almost everywhere, thus Tµn(x) → T (x) for ρ-almost every x, where T = ∇ϕ. We deduce using
(1.6) and Lebesgue’s dominated convergence theorem that

(Tµn) converges (strongly) to T in L2(ρ,Kε) for any ε > 0. (1.9)

Also, since (Tµn) is bounded in L2(ρ), it converges weakly to some T ′ ∈ L2(ρ), and we
deduce from (1.9) that T ′ = T . Therefore ⟨Id, Tµn⟩L2(ρ) → ⟨Id, T ⟩L2(ρ), and plugging into (1.5)
we obtain that ∥Tµn∥L2(ρ) → ∥T∥L2(ρ). This proves that (Tµn) in fact converges strongly to T
in L2(ρ).

Finally, let us observe that T#ρ = µ since (Tµn) converges a.e. to T and (Tµn) is locally
uniformly bounded according to (1.6). Since T is the gradient of a convex function, Brenier’s
theorem implies that T = Tµ is the optimal transport map from ρ to µ. We conclude that the
full sequence (Tµn) converges strongly to T in L2(ρ).

The main problem under consideration in these notes will (almost) be the following one: for
a given absolutely continuous ρ ∈ P2(Rd), do there exist constant C,α > 0 such that for all µ, ν
with finite second moment,

∥Tµ − Tν∥L2(ρ) ≤ CW2(µ, ν)α (1.10)

holds? More generally, replacing W2 by Wp for some p ≥ 1, we will consider inequalities of the
type

∥Tµ − Tν∥L2(ρ) ≤ CWp(µ, ν)α, (1.11)

the strongest one being for p = 1 (since Wp ≤ Wq for p ≤ q) and α as large as possible. The
largest possible α is sometimes called the stability exponent (associated to ρ) in the sequel.

An important observation is that the reverse inequality

∥Tµ − Tν∥L2(ρ) ≥ W2(µ, ν) (1.12)

always holds: indeed, γ = (Tµ, Tν)#ρ is an admissible transport plan between µ and ν, and its
cost (∫

Rd×Rd

|x− y|2dγ(x, y)

)1/2

=

(∫
Rd

|Tµ(x) − Tν(x)|2dρ(x)

)1/2

= ∥Tµ − Tν∥L2(ρ)

is by definition not lower than the cost W2(µ, ν) of an optimal transport plan between µ and ν.
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Put together, the inequalities (1.10) and (1.12) imply that the mapping µ 7→ Tµ is a bi-Hölder
embedding of the Wasserstein space into L2(ρ). However, as we shall discuss in more details
in Section 1.4, it is known that if d ≥ 3, then (1.10) cannot hold uniformly over all probability
measures µ and ν on Rd with finite second moment (the case d = 2 seems open). In fact, it
is not possible to embed the Wasserstein space into any Lp space, even in a very weak sense.
Nevertheless, what we will discuss in depth in these lectures is that a stability bound such as
(1.10) can hold if one restricts to slightly smaller families of measures µ, ν. For instance, we will
show that under some assumptions on ρ, for any compact set Y ⊂ Rd, there exist C,α > 0 such
that (1.10) holds for any µ, ν supported in Y.

In these notes, we will also be interested in quantitative stability estimates for Kantorovich
potentials, which take the form

∥ϕµ − ϕν∥L2(ρ) ≤ C ′Wp′(µ, ν)α
′
. (1.13)

Actually the stability of optimal transport maps (1.11) will be deduced from the stability of
Kantorovich potentials (1.13), as explained in detail in Section ??. Kantorovich potentials are
interesting objects on their own, for many reasons. First, many numerical methods used to
solve optimal transport problem, for instance semi-discrete optimal transport and dual gradient
methods, rely on solving first the dual formulation of the problem, discussed in Section ??. In
these methods, one computes the Kantorovich potentials first, before taking the gradient to
obtain the optimal transport map. Also, the Sinkhorn algorithm, which is one of the best ways
to compute solutions of (regularized) optimal transport problems, computes the entropic version
of the Kantorovich potentials (discussed in Section ??). Finally, Kantorovich potentials have an
economic interpretation which may help understand their meaning (see [64, Chapter 5]).

Let us already mention that although these lecture notes are focused on the quadratic cost
in Rd given by c(x, y) = |x− y|2, most results remain valid for more general costs, for instance
p-costs c(x, y) = |x− y|p, p > 1 (see Section ??) and the quadratic cost c(x, y) = 1

2dist(x, y)2 on
Riemannian manifolds (see Section ??).

It is clear that inequalities like (1.11) and (1.13) are useful to justify the theoretical consis-
tance of “plugin methods” to compute optimal transport: if we want to compute the optimal
transport map or the Kantorovich potential from ρ to µ but do not know exactly µ (due to some
noise for instance) and have only access to some approximation ν of µ, these inequalities tell us
how close we may expect Tν to be from Tµ (and ϕν from ϕµ), depending on some Wasserstein
distance between µ and ν.

We shall not discuss numerical methods and algorithms used to compute optimal transport
in practice. The computational errors that they induce are another interesting subject for
mathematical analysis, not covered in these lecture notes.

1.3 The one-dimensional case

The case where d = 1, i.e., ρ, µ, ν are probability measures on R, is particularly simple.
Indeed, as soon as ρ is absolutely continuous on R, the mapping µ 7→ Tµ is an isometric embed-
ding:

∥Tµ − Tν∥Lp(ρ) = Wp(µ, ν) (1.14)

for any p ≥ 1. The stability problem is thus completely solvable in this case: the bound (1.10)
holds with C = α = 1. To prove (1.14) it is sufficient to observe that

γopt = (Tµ, Tν)#ρ (1.15)

7



is an optimal transport plan between µ and ν. Indeed, (1.14) then follows immediately:

W p
p (µ, ν) =

∫
R2

|x− y|pdγopt(x, y) =

∫
R
|Tµ(x) − Tν(x)|pdρ(x) = ∥Tµ − Tν∥pLp(ρ).

It is clear that γopt is an admissible transport plan between µ and ν since (Tµ)#ρ = µ and
(Tν)#ρ = ν. The difficulty is to show that it is optimal.

Optimal transport plans in 1d are always monotone. This means that if γ is an optimal
transport plan between two 1d probability measures, and (x, y) and (x′, y′) are in the support of
γ and x < x′, then necessarily y ≤ y′. This due to the convexity of the quadratic cost. Indeed,
for any x < x′ and y ≤ y′, the inequality

|x− y|2 + |x′ − y′|2 ≤ |x− y′|2 + |x′ − y|2

holds, which means that it is always less costly to transport mass from x to y and from x′ to y′

than to “cross trajectories” and transport mass from x to y′ and from x′ to y.
Applying this to the transport from ρ to µ, it is possible to give a completely explicit

expression for Tµ. Let us verify that

Tµ(m) = inf{x ∈ R | Fµ(x) ≥ Fρ(m)} (1.16)

where
Fµ : x 7→ µ((−∞, x])

denotes the cumulative distribution function. We first check that Tµ pushes forward ρ to µ. To
prove this, we observe that Tµ(m) ≤ x if and only if Fµ(x) ≥ Fρ(m). Setting µ̂ = Tµ#ρ, we thus
have

µ̂((−∞, x]) = ρ(T−1
µ ((−∞, x])) = ρ({m | Tµ(m) ≤ x})

= ρ({m | Fρ(m) ≤ Fµ(x)}) = Fµ(x) = µ((−∞, x])

hence µ̂ = µ. Moreover, Tµ is optimal since it is the only transport map from ρ to µ which
is monotone. The optimal transport map Tν from ρ to ν is of course given by an analogous
expression to (1.16).

Now, since Tµ and Tν are monotone, it is immediate to check that γopt is also monotone.
But there is only one monotone admissible transport plan between µ and ν, and thus γopt is
optimal.

Finally, what can be said about stability of Kantorovich potentials in 1d? If ρ satisfies the
Poincaré inequality, i.e., if there exists C > 0 such that∫

X
f dρ = 0 ⇒

∫
X
f2 dρ ≤ C

∫
X
|∇f |2 dρ,

then it follows from (1.14) (with p = 2) that ∥ϕµ − ϕν∥L2(ρ) ≤ CW2(µ, ν). As we shall see in
Section ?? (see notably Remark ??), this stability inequality for Kantorovich potentials is no
longer guaranteed if ρ does not satisfy the Poincaré inequality, even if the support of ρ is an
interval (in which case Kantorovich potentials are unique).

1.4 Applications: embedding of the Wasserstein space and linearized optimal
transport

In this section we describe one important application of quantitative stability estimates.
Further applications are discussed in Section ??.
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Let ρ ∈ P2(Rd) be absolutely continuous. When T = ∇ϕ is the gradient of a convex function,
the curve

[0, 1] ∋ t 7→ ((1 − t)Id + tT )# ρ ∈ P2(Rd) (1.17)

is a Wasserstein geodesic from ρ to T#ρ, meaning that it is a curve which minimizes the W2-
distance between any two of its points. The Wasserstein space (P2(Rd),W2) may then be viewed
formally as an “infinite-dimensional Riemannian manifold”. Its tangent space at ρ is naturally
defined as the set

TanρP2(Rd) = {∇ϕ− Id | ϕ convex, ϕ ∈ C∞
c (Rd)}

L2(ρ)
(1.18)

where ∇ϕ − Id is the (initial) tangent vector to the Wasserstein geodesic given by (1.17). In
(1.18), it is natural to take the closure: in analogy, the (solid) tangent cone at a boundary point
x of a closed convex set C ⊂ Rd is defined as the closure of the cone formed by all half-lines
emanating from x and intersecting C in at least one point distinct from x. On this Riemannian
manifold, the exponential map with base-point ρ is nothing else than

TanρP2(Rd) ∋ T 7→ T#ρ ∈ P2(Rd).

And the map µ 7→ Tµ − Id from P2(Rd) to L2(ρ) is the analog of the Riemannian logarithm. It
is an injective map, with image the tangent space (1.18).

If the stability inequality (1.10) holds for any µ, ν ∈ P2(Rd), this means that µ 7→ Tµ is a
bi-Hölder embedding from (P2(Rd),W2) to the Hilbert space L2(ρ) (using the reverse inequality
(1.12)). For instance, the previous section showed that in 1d, µ 7→ Tµ is an isometric embedding.
However, in dimension d > 1, it is known that Wasserstein spaces do not embed into any Banach
space, even for much coarser notions of embedding. Therefore, we will aim at establishing (1.10)
for strict subsets of P2(Rd), for instance for target probability measures µ, ν supported in a fixed
compact set, or with bounds on some moments. Working with this embedding is equivalent to
endow P2(Rd) with the “ρ-based” distance

W2,ρ(µ, ν) = ∥Tµ − Tν∥L2(ρ). (1.19)

Due to the linear structure of the Hilbert space L2(ρ), the logarithm map µ 7→ Tµ is also
used as a way to “linearize” optimal transport. For instance, to compute an “average” between
two measures µ and ν in the Wasserstein space, one usually resorts to the notion of Wasserstein
barycenter (or McCann interpolation), defined as a minimizer of

inf
χ∈P2(Rd)

1

2

(
W2(µ, χ)2 + W2(ν, χ)2

)
Solving this optimization problem is often complicated, but one may get an approximate solution
χ̂ by first fixing an absolutely continuous ρ ∈ P2(Rd), then computing Tµ, Tν and their average
1
2(Tµ + Tν), and finally considering

χ̂ =

(
1

2
(Tµ + Tν)

)
#

ρ.

Notice that 1
2(Tµ + Tν) is simply the average of the initial tangent vectors giving rise to the

geodesics from ρ to µ and ρ to ν. Then χ̂, which is the endpoint of the geodesic with this
tangent vector, is an approximation of the midpoint between µ and ν. It is also the midpoint

9



of the so-called generalized Wasserstein geodesic (in the terminology of Ambrosio-Gigli-Savaré)
between µ and ν defined as the curve

[0, 1] ∋ t 7→ ((1 − t)Tµ + tTν)# ρ ∈ P2(Rd).

In case µ = ρ, the generalized geodesic between µ and ν coincides with the Wasserstein geodesic
between µ and ν.

More generally, since it is often difficult to perform computations in Wasserstein spaces,
which are curved (and infinite dimensional), it is a current practice in applications to first make
computations in the Hilbert space L2(ρ), i.e., on the side of Tµ, before pushing forward ρ by the
result of the computations in L2(ρ).

1.5 Bibliographical notes

§1.1: There are many great books about optimal transport, in particular: the two books by
Villani [63] and [64], the one by Santambrogio for “applied mathematicians” [58], the book by
Peyré-Cuturi about computational aspects of optimal transport [56], and the very recent book
by Chewi-Niles Weed-Rigollet about statistical optimal transport [20]. To write the present text,
I also took inspiration from lecture notes by Quentin Mérigot at IHP, available on his webpage,
and from the PhD thesis of Delalande [24]. Brenier presented his theorem in a short note [12]
and gave details in an extended paper [13].

§1.2: The proof of Proposition 1.2 can be found in [64, Theorem 5.20]. Proposition 1.3 is a
consequence of [13, Theorem 1.3] together with [64, Theorem 6.9], at least when X is smooth,
bounded, and ρ is bounded above and below on X by positive constants. The idea of the proof we
provide was kindly communicated to us by Guillaume Carlier. The impossibility of embedding
the Wasserstein space in Hilbert and Banach spaces is studied for instance in [3]. The precise
statement is the following: if p > 1 and d ≥ 3, then Pp(Rd) does not admit a coarse embedding
into any Banach space of nontrivial type, and in particular does not admit a coarse embedding
into Hilbert space.

§1.3: For a more complete treatment of the 1d case, see Chapter 2 in Santambrogio’s book
[58].

§1.4: Wasserstein geodesics are the main subject of the book by Ambrosio-Gigli-Savaré [2].
For a quick view on the subject, see [58, Chapter 5.4]. The interpretation of W2 as a (pseudo)
Riemannian manifold is due to Otto [55], who used it to study the long-time behavior of the
porous medium equation. McCann introduced the concept of displacement interpolation in [50].

The paper [65] introduced the linearized optimal transport distance W2,ρ defined in (1.19)
and used it for pattern recognition in images. Since then, this distance has been used for
instance to perform super-resolution of highly corrupted images [44] and to detect and visualize
phenotypic differences between classes of cells [6].

Wasserstein barycenters have been introduced in [1], generalizing the concept of displacement
interpolation of McCann. This notion of barycenter has found many successful applications, for
instance in image processing [57], geometry processing [61], statistics [60] or machine learning
[23]. The book chapters [56, Chapter 9.2], [20, Chapter 8] survey the topic.
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2 Main results

In this chapter, we state the main results which will be covered in these lecture notes.

2.1 Warm-up: stability around regular optimal transport maps

The earliest quantitative stability result for optimal transport maps, due to Gigli, addressed
stability in the vicinity of a sufficiently regular map.

Theorem 2.1 (Gigli, Stability near regular OT maps). Let ρ be a probability measure on Rd,
absolutely continuous with respect to the Lebesgue measure, and with compact support. Let
Y ⊂ Rd be compact, and K > 0. Let µ, ν ∈ P(Y). If the optimal transport map Tµ from ρ to µ
is K-Lipschitz, then

∥Tµ − Tν∥L2(ρ) ≤ CW1(µ, ν)1/2

where C = (2Kdiam(supp(ρ)))1/2.

We provide a complete proof of Theorem 2.1 in Section ??, close in spirit to the other proofs
presented in these notes. This is not the original proof of Gigli.

The important weakness of Theorem 2.1 is that the assumption that Tµ is K-Lipschitz is
very strong. First, it implies that the support of µ is connected. Second, to prove that Tµ is
Lipschitz one has to invoke the regularity theory for optimal transport maps, which requires
very strong assumptions on µ. The Lipschitz regularity of the optimal transport map, studied
by many authors starting with Caffarelli, is indeed only known under restrictive assumptions:
Caffarelli proved this property under the assumption that the source and target measure have
bounded support, are bounded above and below by positive constants on their support, and that
the support of the target is convex; since this seminal result, some improvements and extensions
have been obtained, but the spirit remains the same. And it is also known that continuity of
the optimal transport map fails in some cases, even when the target has connected support:
Caffarelli gave the example of a source measure ρ supported on a 2d domain X obtained by
connecting two half disks by a thin corridor.

There is a whole line of research, notably in the statistical optimal transport community (see
Section ??), working under this kind of regularity assumptions on Tµ. They have established
stronger stability results (in terms of exponents) than what we present in these notes. For
instance, under the assumption that Tµ is bi-Lipschitz, it is known that ∥Tµ − Tν∥L2(ρ) ≲
W2(µ, ν), where the hidden constant depends on the Lipschitz constants of Tµ and T−1

µ . We
shall explain a bit the proof techniques in Section ??.

2.2 Main results

The discussion of the previous paragraph motivates us to look for results in which much
weaker assumptions are made on the measures, than those ensuring regularity of the optimal
transport map. Our main results state various assumptions on ρ under which we are able to
prove quantitative stability inequalities of the form (1.11)-(1.13), with nearly no assumption on
the target measures µ and ν. The discussion about the sharpness of these assumptions and the
resulting stability inequalities is pretty long, and therefore we decided to devote Section ?? to
this subject (see also a preliminary example in Section 2.4). In a nutshell, let us already mention
that

the results presented in these notes are pretty sharp for Kantorovich potentials, but we still
have less understanding of the stability of optimal transport maps.
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The field is progressing fast. Our understanding so far is that stability of Kantorovich potentials
is related to some Poincaré inequality on ρ, while stability of optimal transport maps should
hold under weaker (but still mysterious) assumptions. Notice that if the Poincaré inequality
holds for ρ, then

∥ϕµ − ϕν∥L2(ρ) ≤ C∥Tµ − Tν∥L2(ρ). (2.1)

Hence any stability inequality on optimal transport maps immediately implies a stability inequal-
ity on Kantorovich potentials! However, with our present knowledge, we are not able to prove
stability inequalities on optimal transport maps directly, except under regularity assumptions
as in Theorem 2.1. Therefore, we will have to proceed differently.

The first main result we discuss in these notes is the following:

Theorem 2.2 (Log-concave case). Let ρ = e−U−F be a probability density on Rd, with D2U ≥
κId, κ > 0, and F ∈ L∞(Rd). Then for any compact set Y, there exists C > 0 such that for any
µ, ν supported in Y,

∥ϕµ − ϕν∥L2(ρ) ≤ CW1(µ, ν)1/2(1 + | logW1(m, ν)|1/2). (2.2)

If moreover D2U ≤ κ′Id, then there exists C > 0 such that for any µ, ν supported in Y,

∥Tµ − Tν∥L2(ρ) ≤ CW1(µ, ν)1/9. (2.3)

Up to the logarithmic loss in (2.2), the inequality (2.2) is sharp, as discussed in Section ??.
The additional assumption D2U ≤ κ′Id made to prove (2.3) is probably only technical, but we
have not been able to avoid it.

Let us turn to the second main result of these notes, which handles the case of source measures
ρ with bounded support. Recall that a domain is a non-empty, bounded and connected open
set.

Theorem 2.3 (Non-degenerate densities on bounded domains). Let ρ be a probability density
on a John domain X ⊂ Rd, and assume that ρ is bounded above and below on X by positive
constants. Then for any compact set Y ⊂ Rd, there exists C > 0 such that for any µ, ν ∈ P(Y),

∥ϕµ − ϕν∥L2(ρ) ≤ CW1(µ, ν)1/2. (2.4)

If moreover ∂X has a finite (d − 1)-dimensional Hausdorff measure, then there exists C > 0
such that for any µ, ν ∈ P(Y),

∥Tµ − Tν∥L2(ρ) ≤ CW1(µ, ν)1/6. (2.5)

We do not know whether the assumption that ∂X has finite (d − 1)-dimensional Hausdorff
measure is technical or not. John domains are a vast family of domains which contains in
particular all bounded connected Lipschitz domains, but also some fractal domains like the
Koch snowflake.

Definition 2.4. A bounded open subset X of a metric space is called a John domain if there
exist x0 ∈ X and a constant η > 0 such that, for every x ∈ X , there is T > 0 and a rectifiable
curve γ : [0, T ] → X parametrized by the arclength (and whose length T depends on x) such that
γ(0) = x, γ(T ) = x0, and for any t ∈ [0, T ],

dist(γ(t),X c) ≥ ηt (2.6)

where X c denotes the complement of X .
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In Theorem 2.3, the target measures are assumed to be supported in a large compact set Y;
it is possible to relax this assumption, and work only under moment constraints, as done in [26].

Theorem 2.3 also holds when Rd is replaced by an arbitrary smooth connected Riemannian
manifold M , and optimal transport is considered with respect to the quadratic cost c(x, y) =
1
2dist(x, y)2 where dist denotes the Riemannian distance on M . In case M is compact without
boundary (e.g., the sphere), then we may choose X = Y = M . We shall detail a bit more this
generalization to Riemannian manifolds in Section ??.

2.3 Comments

There are two important directions to improve and generalize the results presented above:

� proving/disproving stability inequalities for a wider range of probability densities ρ

� improving the stability exponents (1/9 in (2.3), 1/6 in (2.5)) for the source measures ρ
considered in our main results.

To make progress on the second direction, which is blocked at the time of writing, new ideas are
needed. Therefore, we comment only on the first direction. Indeed, our proof strategy is robust
enough to handle other cases of interest. In all the following cases we are able to prove stability
inequalities for Kantorovich potentials and optimal transport maps (we do not discuss stability
exponents here, they are all dimension-free except for (2.7)):

(i) Degenerate densities ρ in bounded domains. The assumption in Theorem 2.3 that ρ is
bounded above and below on X is not always necessary. We illustrate this on two examples
which we find particularly relevant in applications. The first example is given by source
probability densities satisfying

c1dist(x, ∂X )δ ≤ ρ(x) ≤ c2dist(x, ∂X )δ

for some δ > −1 and c1, c2 > 0, when X is a bounded Lipschitz domain. These densities
blow-up or decay near ∂X . The second example is the source probability density

ρ(x) =
cd

|x|d−1
1B(0,1) (2.7)

on Rd, with cd is a normalising constant. This probability density is sometimes called the
spherical uniform distribution, and has been used in the literature to define multivariate
quantiles. The stability inequality is relevant in this application, see Section ??.

(ii) Source measures ρ on Rd which decay polynomially at infinity:

ρ(x) = f(x)(1 + |x|)−β (2.8)

with 0 < m ≤ f(x) ≤ M < +∞ uniformly over x ∈ Rd, and β > d + 2 so that ρ has
finite second moment. The reason why we find this family of source probability measures
interesting is that it is not possible to use the same proof strategy as for the families of
probability measures covered by Theorems 2.2 and 2.3, see Section ??.

(iii) Source measures with disconnected support. If we replace the beginning of the statement
of Theorem 2.3 by “Let ρ be a probability density on a finite union of John domains”, then
(2.5) still holds. Some modified version of (2.4) also holds, but one needs to be careful
since Kantorovich potentials are not unique when the support of ρ is not connected.
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Regarding the fact that the targets are assumed to be compactly supported in Theorems
2.2 and 2.3, we do not believe that this is a fundamental assumption. In [26], the assumption
that was used is that they have p-th moment for some p > d (for p < d, there exist unbounded
Brenier potentials). We guess that our proof techniques may also cover this case, but shall not
pursue this here.

As we explain in Section ??, the strategy we use to prove Theorem 2.2, Theorem 2.3 and
point (i) above allows us to recover the known fact that for any ρ satisfying the assumptions of
one of these results, the Poincaré inequality holds:∫

X

(
f −

∫
X
fdρ

)2

dρ ≤ C

∫
X
|∇f |2dρ (2.9)

(for ρ as in Theorem 2.2, X has to be replaced by Rd). The examples and counterexamples
of Section ?? show an analogy, but not an equivalence, between the fact that the Poincaré
inequality holds for ρ and the fact that a stability inequality for Kantorovich potentials holds.

2.4 An elementary example

In this paragraph, we show on a simple example that one cannot hope in general to have a
better exponent than 1/2 in (2.5).

Let ρ = ρ(x)dx = 1
π1D(x)dx is the uniform probability on the unit disk D ⊂ R2. For

θ ∈ R/2πZ, we set xθ = (cos(θ), sin(θ)) ∈ R2 and define the probability measure

µθ =
1

2
(δxθ

+ δxθ+π
).

The ρ-a.e. unique optimal transport map Tµθ
from ρ to µθ for the quadratic cost is explicit:

Tµθ
(x) =

{
xθ if ⟨x, xθ⟩ ≥ 0

xθ+π if ⟨x, xθ⟩ < 0

for x ∈ D. In other words, each point x ∈ D is sent to the closest point among xθ and xθ+π.
This cuts the disk into two (equal) halves, see Figure 1.

xθ

xθ+π

Tµθ

Tµθ

Figure 1: The optimal transport Tµθ
from ρ to µθ.

Fix θ ∈ R/2πZ, close to 0. Then, D may be written as D = A⊔B where A is the set of points
whose images under Tµ0 and Tµθ

are at angular distance θ, and B is the set of points whose
images under Tµ0 and Tµθ

are at angular distance π − θ. We find ρ(A) = 1 − θ
π and ρ(B) = θ

π ,
hence as θ → 0,

∥Tµθ
− Tµ0∥2L2(ρ) = |2 sin(θ/2)|2ρ(A) + |2 sin((π − θ)/2)|2ρ(B) ∼

θ→0

4|θ|
π

. (2.10)
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On the other hand, for θ close enough to 0 and p ≥ 1 arbitrary, the Wp distance between µ0

and µθ is obviously achieved by the map which sends x0 to xθ and xπ to xθ+π. Its p-cost is

Wp(µ0, µθ) = |2 sin(θ/2)| ∼
θ→0

|θ|. (2.11)

Putting together (2.10) and (2.11) for p = 2, we see that we cannot hope in this case to have a
better exponent than 1/2 in (2.5).

In this example, it is not difficult either to compute the difference in L2-norm between
Kantorovich potentials. For this, we denote by Dθ ⊂ R2 the line through the origin which is
perpendicular to the segment [xθ, xθ+π] (the dashed line on Figure 1) and observe that

ϕµθ
(x) = dist(x,Dθ) − C

for some constant C independent of θ (simply equal to the integral of D ∋ (x, y) 7→ |x|/π). It is
not difficult to see that

∥ϕµθ
− ϕµ0∥2L2(ρ) =

∫
D

(|x1 cos(θ) + x2 sin(θ)| − |x1|)2dx = θ2
∫
D
x22dx + O(θ3)

where x = (x1, x2). Therefore, one cannot hope in this case to have a better exponent than 1 in
(2.4).

The computations presented above can easily be generalized to any dimension and more
general sources than the uniform probability on the disk. Further examples where explicit
computations can be made will be discussed in Section ??.

2.5 Bibliographical notes

§2.1: Theorem 2.1 is due to [31] and another proof has been given in [51]. The regularity
theory of the Monge-Ampère equation and its link to regularity of optimal transport maps is
explained in the survey [27]. The counterexample to the continuity of the optimal transport
map is due to Caffarelli, see [16].

§2.2: Berman [7] was the first to obtain quantitative stability estimates without assuming
regularity of the OT map. He derived dimension-dependent stability exponents for ρ bounded
above and below on a compact, convex domain, using complex geometry. Then, Delalande
and Mérigot [26] improved his stability exponent, making it dimension-free, under the same
assumptions on ρ. But more importantly, they introduced a robust proof technique based on
the study of the Kantorovich functional, see Chapter ??.

John domains were named in honor of F. John who introduced them in his work on elasticity
[39]; Martio and Sarvas [49] introduced this terminology. They appear also in the theory of
quasi-conformal mappings and in geometric measure theory.

§2.4: The example in this section is due to [51].
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[59] Daniel Spielman. Spectral and Algebraic Graph Theory. Ongoing draft available at

[60] Sanvesh Srivastava, Cheng Li, and David B. Dunson. “Scalable Bayes via barycenter in
Wasserstein space.” Journal of Machine Learning Research 19.8 (2018): 1-35.

[61] Justin Solomon, Fernando de Goes, Gabriel Peyré, Marco Cuturi, Adrian Butscher, Andy
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