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Abstract. We outline a version of a balayage formula in probabilistic potential theory adapted to measure-preserving dynamical
systems. This balayage identity generalizes the property that induced maps preserve the restriction of the original invariant measure.
As an application, we prove in some cases the invariance under induction of the Green—Kubo formula, as well as the invariance of a
new degree 3 invariant.

Résumé. Nous développons dans cette article une version de I’identité de balayage, outil de la théorie probabiliste du potentiel,
adaptée a I’étude de systemes dynamiques préservant la mesure. Cette identité de balayage généralise la propriété selon laquelle les
transformations induites préservent les restrictions de la mesure invariante d’origine. En application, nous démontrons, sous certaines
hypotheses, que la formule de Green—Kubo est invariante par un procédé d’induction, de méme qu’un nouvel invariant de degré 3.
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The central objects of the probabilistic theory of potential [4,18] are the solutions of the Poisson equation:

(I =P)f)=g.

where P is the transition kernel of a Markov chain and g is fixed. Its solutions exhibit, in particular, an invariance under
induction [18, Chapter 8.2]. Given a subset W of the state space, if Py is the transition kernel for the induced Markov
chain, then one can deduce the solutions of the equation (I — Py) f = g from those of the initial equation (/ — P)(f) = g.
This invariance, in turn, is a powerful tool to compute Py, and from there hitting probabilities: if one is given a starting
site and a number of targets, it is possible to compute the distribution of the first target hit by the Markov chain [19].

A number of physically or geometrically relevant dynamical systems, such as the Lorentz gas or the geodesic flow on
abelian covers of hyperbolic manifolds, behave globally or locally like random walks. For instance, they satisfy global
[13] and local central limit theorems, invariance principles [7], large deviations [21], etc. This raises the question of
adapting the probabilistic potential theory to such systems. In a previous work [16], the authors devised a method related
to this theory to estimate the hitting probability of a single far away target for such systems. It relied on a stronger form
of invariance under induction satisfied by Green—Kubo’s bilinear form:

ol (A,m,T; f, f) :=/Af2dm+ZZ/Af-foT”dm, 0.1)

n>1

which appear is the limiting variance in the central limit theorem. While the method used in [16] does not extend to a
larger number of targets, it suggests the possibility of applying potential theory to dynamical systems.

In this article, we show how to adapt the invariance under induction of the Poisson equation to general recurrent
measure-preserving dynamical systems. Let (A, m, 7') be a measure-preserving recurrent dynamical system, with £ the
transfer operator associated to (A, m, 7). Given B C A and T the first return map of T to B, the system (B, mg, Tp) is
recurrent; let £p be the associated transfer operator. Our first result shall be:
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Proposition 0.1. Let (A, m, T) be measure-preserving, with m a recurrent o -finite measure. Let B C A be such that
0 <m(B) < +o0.
Let p € [1,00] and f, g € LP (A, m) be such that g =0 on B¢ and:

I-0)f=g. 0.2)

Then:
(I —Lp)fip=2g8)B- 0.3)

This statement can be seen either as a generalization of the fact that, under these hypotheses, (B, m|g, Tg) is measure-
preserving, or as an application of a classical result from potential theory [18, Corollary 1.11] to the Markov kernel L.

Proposition 0.1 can be used to explain the invariance by induction of Green—Kubo’s formula (0.1), which was noticed
and leveraged in [16], as well as the existence of higher-order invariants.

In the first part of this article, we present a self-contained proof of Proposition 0.1, and investigate some general
properties of the Poisson equation such as existence and uniqueness of its solutions, and adaptations to more general,
dynamically relevant operators or functions. In Section 2 we make explicit the relationship between Proposition 0.1 and
the known results in the theory of Markov chains, and how one can go from one setting to the other. The invariance
under induction of Green—Kubo’s formula and its relation with the properties of the solutions of the Poisson equation
are discussed in Section 3. The insights gained are applied in Section 4 to study a degree 3 invariant. Finally, Section 5
discusses the distributional point of view on Green—Kubo’s formula.

1. Induction invariance and the transfer operator
1.1. General case

Let A be a Polish space, T : A — A be measurable, and m a o-finite! T-invariant measure on A. Assume that (A,m,T)
is recurrent. Let B C A be measurable, with 0 < m(B) < 4o00. Let ¢p : A — N* U {oo} be the first hitting time of B,
defined by:

pp(x):=inf{n >1:T"(x) € B}.

As the system (A, m, T) is recurrent, ¢ < +0o almost everywhere on B. The induced transformation on B is then
defined as:

To - B — B,
B x > T2 (x).

By the previous remark, 75 is well-defined m-almost everywhere on B.
The transfer operators £, Lp on L? are defined as the duals (or, when p = 1, as the restriction to L! of the dual) of
the Koopman (composition) operator on L7, where ¢ is the conjugate of p (i.e. g is such that % + % =1):

/E(f)-gdm:/f-gonm VfelP(A,m),Vg e L9(A, m),
A A

/CB(f)~gdm:/f~goTBdm Vf elL?(B,m),Vg € LY9(B, m).
B B

The Koopman operator acts by isometry on each L7, so the transfer operators are weak contractions on each LL”. Let us
turn to the proof of Proposition 0.1.

A classical result in ergodic theory states that, given a measure-preserving recurrent dynamical system (A, m, 7) and
B such that 0 < m(B) < +o00, the measure myg is Tg-invariant [1, Proposition 1.5.3]. Proposition 0.1 generalises this
result; see Corollary 1.1 for more details. Its proof follows the same line of thought, with more book-keeping.

In the proof of Proposition 0.1, we also make an effort to deal with the case m(B) = +o0. This is done by reinducing
on an arbitrary B C B whose measure is finite, which shows that mass can’t escape from B. The proof can be significantly
simplified if one is only interested in the finite measure case, for instance for pedagogical purposes.

UIn this article, the space of o -finite measures shall always include the space of finite measures.
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Proof of Proposition 0.1. Let f, g be as in the proposition. To simplify notations, we write simply ¢ for ¢p. For all
n>1,let A, :={p =n}, thenlet B, := A, N B and C,, := A, N B€. Denote by ¢ the conjugate of p.

RECURSIVE FORMULA

We claim that, for all » € LY(A, m), foralln > 1,

n
/f-hdm:/guhdm—}—z f-hoT¥dm+ | f-hoT"dm
B B k=1 By Cy

:fg-hdm+f1{¢5n}f-hoTBdm+f f-hoT"dm. (1.1
B B n
Indeed,
/f~hdm=/[g~|—/3(f)]~hdm
B B
:/g~hdm+/£(f)~13hdm
B A

:[g~hdm+/f-(13h)onm
B A

:/g~hdm+/ f-hoTdm
B A

:/g~hdm+ f-hoTdm+ f-hoTdm,
B Bl Cl

which is the induction basis. Now, assume that Equation (1.1) holds for some n > 1. Then, since gl¢, = 0:

f~hoT”dm=/E(f)-lcn-hoT”dm
Cp A

:/f-lcnoT~hoT"+ldm
A
:/ f-hoT" 'dm

An+]

= f-hoT’1+ldm+/ f-hoT" 'dm, (1.2)

By Chi
which is the induction step. Hence, Equation (1.1) holds for all n > 1.
CONVERGENCE FOR p = 00

Assume that m(B) < +o0o. Note that f =14, g =0 is a solution of Equation (0.2). Taking # = 1p in Equation (1.1)
yields:

m(B) =Y _m(Bi) +m(Cy).
k=1

so that m(C,,) = m(B N {¢ > n}). Since ¢ < 400 almost everywhere on B, we get that lim,,—, + .o m(Cp) = 0.

Let f,g € L®(A, m) with g =0 on B¢ and (I — £)f = g. Given h € L' (A, m), write w), () = sup{fE |h|dm :
m(E) <e}. Let g (u) :=inf{x > 0: m(|h| > x) < u}, and, for all € € [0, m(A)], wy,(¢) := fog gn(u)du. Then a);l <wp.In
addition, Leb(g, > x) = m(|h| > x); since T is measure-preserving, wpor» = wy, for all n > 0. Then, since & is integrable,
limg wp, = 0, and:

< I £ Lo 4,m) limsup wporn (m(Cp)) =0,
n——+00

lim sup
n——+00

/ f-hoT"dm
C}l
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so that, taking the limit in Equation (1.1),
/f-hdm:/g~hdm+ lim /1{¢<n}f~hoTBdm. (1.3)
B B n——+00 B -
Applying Equation (1.3) to g :=0, f = fllLea,u) and h:=|h|, by monotone convergence,

lim 1{¢5n}||f||mm,m~|h|oTBdm=[ Il Ao - 1kl o Tgdm.
B

n——+

The general case follows by the dominated convergence theorem:
/f-hdm:/g~hdm+/f-hoTBdm. (1.4)
B B B

This concludes the case p = oo and 0 < m(B) < +00. Now, assume that m(B) = 4+o00. Let 4 € L' (A, m) be non-
negative. Equation (1.1) applied with 14 and 0 implies, for all n > 1:

n
/hdmzZ/ hoT*dm,
B k=1" Bk

whence, by taking the limit, we only get || ghdm> f g h o Tg dm. We want to show that mass can’t escape from B when

working backwards.? To prove this, startlng from B C B with finite measure, we go backwards in time until we reach B,

then work backwards again until we reach B. Since we must eventually end up in B, _we must also eventually reach B.
Let ¢ > 0, and B C B be such that fB\E hdm<gand 0 < m(B) < 400. Define B, as in the beginning of this proof,

replacing B by B. Fix n > 1. For 1 <k < <n, let B¢ :=T~“"%(B;) N By. Then:

/hodem: hodem—}—/ hoT¥dm
By By k B\ Bk k

=/ hodem+/ hoTKdm
Br .k T~'B\T !By x

:/ hodem—}—/ hoTFdm
By«

By k+1

—i—/ hoTk1ldm
T='B\(T 7! By xUBg k+1)

n

:Z/ hoT‘dm+/ hoT"dm
t—=k Y Br.t T=0=RBA\Up_y T~ "0 By ¢

n

zZ/ hoT'dm.
=k ¥ Br.t

Since B C B, for each £, we have By = |_|£=1 By ¢. In other words, the set of orbits starting from B at time 0 and ending
in B at time n can be partitioned depending on the last time n — k < n at which they hit B. Hence,

n n
Z/ hodemzZ/NhoTedm.
k=17 Be ¢=1"Be

2Following [18], it may be more intuitive to think about the Markov chain dual to T, that is, the Markov chain with transition kernel £ on A. Then one
can talk about forward orbits instead of backward orbits, and the goal is to prove that this dual Markov chain comes back almost surely to B — or, in
other words, is recurrent.
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By the monotonic convergence theorem, the two terms in the above inequality converge respectively to || ghoTpdmand
to f ghoTygdm= f 5 hdm (thanks to the finite measure case, Equation (1.4)). Hence, due to (1.4) (applied with f =1
and g =0):

/hdmz/hoTBdmz/thmz/.hdm—e;
B B B B
as this is true for all ¢ > 0, we get fB hdm= fB h o Tg dm. As a consequence, for all & € L'(A, m),

f-hoT"dm
Ca

lim sup
n——+o00

< | fllLeea,mlimsup [ |kl oT"dm
n—+o00 JC,

=||f||m<A,m>U Ihldm—/ IhloTBdm}zo,
B B

which, due to (1.4), yields:

/f-hdm:/g~hdm+/f~h0TBdm
B B B
=/B[g+ﬁs(ﬁ3)]~hdm~

As this is true for all 7 € L' (A, m), we finally get Equation (0.3).
CONVERGENCE FOR p < 00
Assume that f € L”(A, m) and let h € L7(A, m). Then:

< f1c,llLrca,mlliliLea,m-

/ f-hoT"dm
C)‘I

By definition, || f1c, ||H’Z,,(A m) = I1£171¢, IL1(a.m)- Since | f|” is integrable and the sets (C,) are pairwise disjoint,
lim,— 40 [[1/171¢, IL1 (4.m) = 0, and so that the above quantity converges to 0 as n goes to infinity. Moreover

n
> f-hodemzf Lip<n)f-hoTpdm.
B

k=17 Br

Due to the case p = oo with g =0 and f =14, we know that Tp preserves mp (see also Corollary 1.1). Hence, h o Tp is
in LY(M, mg), with || o TgllLa(B,mz) = Il1]lLe(B,m ) From there, we know that f - (h o Tp) is integrable with respect
to mp. Therefore, by the dominated convergence theorem, the above sum converges to [, f - h o Tg dm and so, due to
Equation (1.1),

/ f~hdm=/ g-hdm—i—/ f-hoTpdm.
B B B
This equation can be rewritten as:
/(I —LB)fiB -hdm:/ g-hdm Vheli(mp),
B B
and thus (I — Lp) fijp = gp in L (m ). U
As a corollary to the p = oo case, we do get the classical result that (B, mp, T) is measure-preserving:

Corollary 1.1. Let (A, m, T) be measure-preserving, with m a recurrent o -finite measure. Let B C A be such that
m(B) > 0. Then (B, mg, Tg) is measure-preserving and recurrent.

Proof. Take again g =0 and f = 14 in Proposition 0.1. These two functions satisfy Equation (0.2), so:
15 =Lp(1p),

which means that mg is Tg-invariant. |
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Remark 1.2 (Coboundaries). Let (A, m, 7)) be measure-preserving, with m a recurrent o -finite measure. Let B C A
be such that m(B) > 0. Assume that 7T is invertible. Then the Koopman operator for 7 is the transfer operator for the
transformation T ~!. Proposition 0.1 implies that for f, g € L”(A, m) with g supported on B, if f — f o T = g, then
fiB — fiBoTp =g5.

This proposition is actually true without any assumption on the integrability of f and g, as well as for non-invertible
T (as it can be seen by a direct proof).

One of the strengths of Proposition 0.1 is that, for hyperbolic transformations, regular functions g such that f — foT =
g for some f may be rare. For instance, as a consequence of Liv§ic’s theorem [11], a Holder observable on an Anosov
system is a coboundary if and only if its average on all periodic orbits vanishes, which brings countably many obstructions.
On the other hand, for nice ergodic, non-invertible, hyperbolic systems, the transfer operator £ acts on spaces of regular
functions (for instance Holder functions). Then 1 is a simple eingenvalue isolated in the spectrum of £, so the only
obstruction to the existence of a function f such that f — L£(f) = g is that the global average of g must vanish.

Remark 1.3 (Recurrence and first return time). Let (A, m, T') be measure-preserving, and let B C A with m(B) > 0.
The hypothesis of recurrence in Proposition 0.1 can a priori be weakened. A second look at its proof shows that the
conclusion of the proposition holds if we relax the recurrence assumption on (A, m, 7') and:

— if m(B) < +00 and ¢p|p < +00 almost everywhere;
— or if m(B) = +o0 and if there exists an exhaustive sequence (B,) of subsets of B with ¢p,|p, < 400 almost every-
where,

where a sequence (By,) of subsets of B is said to be exhaustive if it is nondecreasing for the inclusion, all the B, have
finite measure, and | J,,.., B, = B almost everywhere.

As a consequence of Corollary 1.1 and Poincaré’s recurrence lemma, B satisfies either of the hypotheses above if and
only if (B, mg, Tp) is a recurrent measure-preserving dynamical system. This alternative set of hypotheses is thus not
more general than recurrence, but can be convenient, for instance when working with Markov chains in Section 2.2.

1.2. Existence and uniqueness of solutions for Poisson equation

Given a function g, Equations (0.2) and (0.3) are Poisson equations in f. In this subsection, we investigate the existence
and uniqueness of its solution, as well as some elementary properties such as a maximum principle. We begin with
uniqueness.

Lemma 1.4. Let (A, m, T) be measure-preserving, with m a recurrent o -finite measure. Let p € [1, 00], and fi, f2, 8 €
LP(A, m) such that:

I-DhHh=U-L)fr=3.

Then f1 — f2 is T -invariant almost everywhere. In particular, if (A, m, T) is also ergodic, then fi — f3 is constant almost
everywhere.

Proof. Working with f1 — f>, it is enough to prove that any solution f € IL? of the equation f = L(f) is T -invariant.
Assume that m(A) < +00. By Hurewicz’ ergodic theorem [9], there exists a 7'-invariant function 4 such that:

) 1
f= lim —

n—1
PAGESS
n—4+oon
k=0
Hence, f is T-invariant.
Now, assume that m(A) = 4o00. Let B C A be such that 0 < m(B) < 4-00. By Proposition 0.1, fip = Lp(f|p); by the
finite measure case, f|p is Tg-invariant. As this is true for all B C A with finite measure, f is T -invariant. (Il

We point out the importance of the recurrence and ergodicity assumptions in this statement. These assumptions will
be crucial in establishing the invariance by induction of the Green—Kubo formula in Section 3.

Now, let us study the existence of solutions to Equation (0.2). If (A, m, T) is ergodic and sufficiently hyperbolic
and g is smooth with average 0, such solutions can be found. For instance, assume that there exists a Banach space
14 € BC L'(A, m) such that £ acts quasi-compactly on B. This is the case, for instance, if (A, m, T) is a subshift of
finite type and B is the space of Lipschitz functions [3], or (A, m, T') is a piecewise expanding map of the interval and B
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is the space of functions with bounded variation [10]. Then, by ergodicity, 1 is a single eigenvalue of £ corresponding to
constant functions, and £ preserves By :={f € B : f 4 J dm=0}. Then (I — £) is invertible on By. Hence, for all g € By,
there exists a solution f € By of Equation (0.2).

However, a general theme when using induction for dynamical system is that even if the initial system (A, m, T) is
not hyperbolic, a well-chosen induced system (B, m, Tp) might be. That is, we may not find such a nice Banach space
for (A, m, T), but still have one for (B, m, Tp). Hence, a method to prove the existence of solutions to Equation (0.2) is
to find a solution of Equation (0.3), and to extend it to a solution of Equation (0.2). The following lemma states that this
is possible, with a control on the IL°° norm of the extension (also known as a maximum principle).

Lemma 1.5. Let (A, m, T') be measure-preserving, with m a o -finite measure, ergodic and recurrent. Let B C A be such
that 0 < m(B) < 4o0.
Let fp € L°°(B, m), g € L°°(A, m) be such that g =0 on B¢ and:

(I —Lp)fB=gB.

Then there is a unique function f € L°°(A, m) such that fip = fp and:
I-L)f=g.

In addition, || fllLea,m) = Il fBIIL<(B,m)-

Proof. Let g, fp be as in the lemma. Without loss of generality, assume that f > 0. For all n > 1, let A, := {¢ = n},
B, :=A, N B and C, := A, N B¢. Recurrence and ergodicity ensure that {B, C,, : n > 1} is a u-essential partition of A.
Define f on B by f1p:= fp, and on C, by:

+00
fle, = > L"(fslp).

k=n+1

Let n > 1. Extend fp to a function fyc, defined on BU C, by fauc,1c, =0. Then fic, = Lpuc,(fuc,)|c,- The
operator L£pgyc, is a weak contraction when acting on L°°(B U C,;, m), so that || fic, llL>(c,.m) < |l fauc, L (BUC,,m) =

Il Bl (B,m), and:

| f Lo ca,m) = sup Il fllLee(p,m)y = Il fB llLeo (B, m)-
De(B,Cyin>1)

Now, we check that f = £(f) + g. Letn > 1. Since T~1(C,,) = Aps1,

+00
L), =L(fa,,) =L(f13,,) + c( > e (f313k>>

k=n+2
+00
= > L(fsle) = flg,.
k=n+1

Since this is true for all n, we have f = L(f) = L(f) + g on B€. Since T~ (B) = A1, in the same way,

+o0
LHg=) Lfslp)=Ls(fB)=fp—g=flz—¢g.

k=1

Hence, f = L(f) + g almost everywhere on A.
The uniqueness of f comes from Lemma 1.4. ]

Remark 1.6. If we relax the recurrence and ergodicity assumptions in Lemma 1.5 and assume that B is a sweep-out set
(which means that ¢ < 0o m-a.e.), we keep the existence of f as in the conclusion of Lemma 1.5 but lose its uniqueness.

Finally, let us state Proposition 0.1 and Lemma 1.4 in another way. Let (A, m, T') be measure-preserving, withm a o -
finite measure, ergodic and recurrent. Let B C A be such that 0 < m(B) < +o00. Let B(B, m) be a subspace of L.°°(B, m),
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and By(B, m) :={g € B(B, m) : fB gdm=0}.Let T : By(B, m) — L°°(A, m) be aright inverse of (I — L) on By(B, m):
(I-LTg=g VgebBy(B,m).

Let I'p : By(B, m) — LL°°(B, m) be a right inverse of (I — Lp) on By(B, m). Then I' may not coincide with ' on B,

because these inverses may differ by a constant. However, this ambiguity vanishes if we integrate against an observable
h with average 0 and supported on B:

/F(g)~hdm:f Ts(gi8) - hipdm Vg € Bo(B,m),Vh € L)(B, m). (1.5)
A B

1.3. Operators with weights

One may want more flexibility in the choice of operators they work with, and in particular use general weighted operators
instead of the transfer operator £. In order to keep the discussion elementary, we put very stringent conditions on these
weights.

As in Section 1.1, let (A, m, T') be a recurrent measure-preserving dynamical system. Let B C A be measurable, with
0 < m(B) < 4o00. Given a measurable function ¢ : A — C such that esssup R (¢p) < o0 (where we write i for the real
part), let:

Lo(f):=L(e?f) VfeLl(A,m).
We also write Sy, ¢ (X) := Sy, (x) P (X).

Lemma 1.7. Let (A, m, T') be measure-preserving, with m a o -finite measure. Let B C A be such that m(B) > 0 and
such that (B, m g, Tg) is measure-preserving and recurrent® Let ¢ : A — C be measurable, with:

supesssup S,N(¢p) < +oo.

n>0

Let p €[1,00] and f, g € LP(A, m) be such that g =0 on B¢ and:

f=Ly(f)+¢g.

Then:
fip= £31(5¢B¢)(f|3) +gB, Wwhere Lpy = L',B(e‘”~).

Proof. The proof of this lemma mirrors the proof of Proposition 0.1. Let f, g and ¢ be as in the lemma. Let g be the
conjugate of p, and h € LY(A, m). Equation (1.1) becomes, for all n > 1:

n
/f-hdm:/g-hdm—i—z fe5k¢-horkdm+/ fe5? hoT"dm. (1.6)
B B k=1 Bk Cn

Note that:

feS?® hoT"dm
Cll

<m0t SN [ 1o T dm s O
Cn

where the limit as n goes to infinity follows from the arguments in the proof of Proposition 0.1. Finally,

+00 oo
Z/ feS”¢-hoT"dm=/ ZE"(eS’lqblB,,f)'hdm:/ Lp,(s,50)(f) - hdm,
n=1"Bn B, B

where the series converges in IL? (B, m). O

3Recall that, by Corollary 1.1, if (A, m, T) is measure-preserving and recurrent, then (B, m|g, Tp) is also measure-preserving and recurrent.
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Lemma 1.7 is especially interesting when applied to the so-called geometrical weights; for instance, if T is an Axiom A
diffeomorphism with strong unstable direction E“ and s € C with 3i(s) > 0, one may take ¢ (x) = —s In|det((DxT)|g«)|.
If B is a “nice” inducing set, such as a dynamical rectangle, then Tp is piecewise C!, and the tangent space of each
continuity components of 7T also admits a splitting into stable and unstable directions for 7. By the chain rule, for all x
inside one of these continuity components:

—sIn|det((DxTg)|x)

= (SpP) (x).

The potential S,,¢ admits the same geometric interpretation as ¢, but for T instead of T'.
1.4. Functions without localisation

Proposition 0.1 uses crucially the hypothesis that (I — £) f = g is supported on the set B on which we induce. However, in
practice, one may want to induce multiple times, or on small sets, in which case this hypothesis may prove inconvenient.
We now discuss what happens when one omits this localisation hypothesis, giving a variant of [18, Exercise 2.16]. In
order to simplify the discussion, we restrict ourselves to inducing sets B with finite measure.

Proposition 1.8. Let (A, m, T') be measure-preserving, with m a o -finite measure. Let B C A be such that 0 < m(B) <
4o00. Forn > 1, let C,, := {pp =n} N BC.
Let p €[1,00] and f, g € LP(A, m) be such that:

I-0Of=g,
and.:
Z”Ek(lckg) ||M(B’m) < +o00. (1.7)
k>1
Then:

(I —Lp) fis=gs+ Y Lce).

n>1

Proof. Let f, g be as in the proposition. For all n > 1, let A, := {¢ =n} and B, := A, N B. Denote by ¢ the conjugate
of p. Without the hypothesis that g vanishes on B¢, for all # € L9(A, m), for all n > 1, Equation (1.2) becomes

f-hoT"dm= g-hoT”dm+/ fhoT" 'dm+ f-hoT" 'dm,
Cp Cy Bn+1 Cn+1
whence Equation (1.1) becomes:
n n—1
/f-hdm:/g-hdm—i—z f-hodem+Z/ g~hodem+/ f-hoT"dm. (1.8)
B B i=1" Bx k=1 Ck Cn

The convergence of the right hand-side as n goes to infinity works out as in the proof of Proposition 0.1 for the terms
involving f, and uses the hypothesis on g for the remaining term. We get:

/Bf-hdm=/3[g+ﬁg(f|3)+Z£"(1cng)} hdm.

n>1

This equation holds for all # € L9(A, m), from which Proposition 1.8 follows. O

For p = 1, the additional hypothesis (1.7) on g comes for free. Indeed,

Yol ae,® g m =Z/C Igldm=/Bc lgldm < [IgllL1(a.m)-

n>1 n>1
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In particular, if m(A) < +o00, then one can work in LY(A, m) and immediately get that:

(I-Lp) fis=g5+ Y Lce),

n>1

where the series converges in ! (B, m). If f and g belong to ! (A, m) NIL”(A, m), then the series is also in L” (B, m).
However, proving directly that the series anl Lk (1¢, g) converges in L” (B, m) for some p > 1 is more delicate. In
the finite measure case, given » < p, Riesz—Thorin’s inequality yields:

S 16,8 1 gy < N8 ocam 3 mlgn =) 7

n>1 n>1

if the tails of ¢p decay fast enough (which implies m(A) < 400), this upper bound ensures that the series converges in
L" (B, m). In particular, if the tails of ¢ decay exponentially fast, then the loss of integrability is arbitrarily small.

Depending on the system, one may improve these rough estimates. For instance, if (A, m, T') is a Gibbs—Markov
map [1, Chapter 4], B is measurable with respect to the Markov partition and g is integrable and locally Lipschitz with
integrable Lipschitz seminorm, one may use a version [1, Proposition 4.6.2] together with [6, Lemme 1.1.13] to get that
the series in Equation (1.7) converges with p = co.

2. Relationship with recurrent Markov chains

The tools developped in Section 1 are analogous to those developped for Markov chains, in particular in [18, Chapter 8.2].
We aim to make this analogy explicit, in both directions:

— by constructing adequate subshifts, a Markov chain can be encoded into a dynamical system. We show what the
consequences of Proposition 0.1 on Markov chains are.

— conversely, any dynamical system can be seen as a Markov chain with transition kernel P, = 67(x). We show how to
recover the main results of Section 1 from known results on Markov chains.

As we shall see, these two points of views are mostly equivalent. Using Markov chains offers slightly more flexibility, but
requires more background. First, let us state a few relevant definitions about Markov chains on general state spaces.

2.1. Definitions and preliminary results

Let 2 be a Polish space, and P(£2) the space of probability measures on €2 with the topology of the total variation distance.
A Markov transition kernel on 2 is a map P : Q — P(2) such that x — P, (B) is measurable for each measurable
subset B C 2. By Kolmogorov’s extension theorem, there exists a Markov chain (X,),>0 with transition kernel P [18,
Theorem 2.8]. In this section, we shall assume that (X,,),>0 admits a o -finite stationary measure (.

A Markov chain (X,),>0 on £ with o-finite stationary measure y is said to be recurrent if, for any measurable ¥ C Q
with (W) > 0, almost everywhere for 1|, almost surely there exists some n > 1 such that X,, € W.

Given a recurrent Markov chain and W C 2 with (W) > 0, the return time to W is defined by Ty :=inf{n > 0: X, €
W}. The recurrence implies that Ty < +o0o almost everywhere. Then the sequence of hitting times (0 =: Ty o, Ty =:
Ty,1, Ty, ...) is well-defined almost everywhere on W. By the strong Markov property, if Xo € W then (X7, )n>0 is a
Markov chain, which we shall call the Markov chain induced on ¥. We shall denote its transition kernel by Py.

A Markov transition kernel P can be seen as an operator acting on the set of measurable bounded functions on €2, or,
neglecting what happens on p-negligible sets, on L°°(€2, u) by:

P () = /Q 7(@) dPo(0) = Eo (£ (X1 Xo = @) = Eu(£(X1)).

If u is stationary, then P acts on L7 (2, u) for all p € [1, +o00]. Conversely, one can recover P from its action on
L?(w, i) up to a pu-negligible set. In what follows, we identify a Markov transition kernel (modulo w) with its action as
an operator.

Given a Markov transition kernel P and a stationary measure u, its dual transition kernel is the operator P* defined
by:

/QP(f)-ng=/Qf-P*(g)dM Vfell(Q,n), Vg e L1(2, n),
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where 1/p + 1/g = 1. The following lemma states that recurrence transfers to the dual Markov chain. Its proof is close
both to that of [18, Proposition 3.10], and of Proposition 0.1.

Lemma 2.1. Let P be a Markov transition kernel on a Polish space Q2. Let i be a o -finite stationary measure, and P*
be the dual Markov transition kernel.
If w is recurrent for P, then it is recurrent for P*.

Proof. Let Q, P, and p be as in the hypotheses. Let W C € with 0 < (W) < +o00. Let f € L' (R, ) be non-negative
and supported on V. Then, almost everywhere on W:

Py(fiw) =Y 1u(Ply) (PLy)(f),

n>0

with convention P1g : f > P(1g f) for any E C Q. Let P* be the Markov transition kernel dual to P with respect to .
For every g € L*°(£2, ), non-negative and supported on W,

[ Pt zan =Y [ tuerar 1o gdu= [ 123 10(P 1) (P 10) 0 di @0

n>0 n>0

Note that Py (1y)(w) =P, (Ty < +00) = 1 almost everywhere on W. Taking f = g = 1y, which is possible since W has
finite measure, we get:

pe(‘ll)=[yZlq,(P*l\pc)n(P*lq,)(l\y)du=[PIP’CU(T* < +00) du(w),

n>0

where T* is the first hitting time of W for the dual Markov chain. Hence, P, (T* < +00) = 1 p-almost everywhere
on V. ]

As Corollary 1.1 follows from Proposition 0.1, it follows from Lemma 2.1 that py is Py-invariant. Indeed, taking
g =1y, forany f e L' (¥, u),

/P\p(f)du=[f~P$(1w)du=f fdu.
v v )\

As a consequence of Equation (2.1), (Py)* = (P*)y, where the first dual is taking with respect to u|g and the second
with respect to u.

2.2. From dynamical systems to Markov chains

Given a transition kernel P with stationary measure jt, a Markov chain can be realized on the canonical space A := Q&N
with the filtration (F)n>0 = (6 (Xo, ..., X»))n>0, and X, ((wk)k>0) := @, . Introducing the shift map:

{A—>A,
T_

(@n)n >0 (wnJrl)nZO ,

we see that X,, = Xg o T". In addition, this construction yields a o-finite T -invariant measure m on A, whose one-
dimensional marginals are all . In this subsection, we are given a Markov chain on € with transition kernel P and
recurrent stationary measure (4, and (A, m, T) shall denote its realization on its canonical space.

Let (¥,),>0 be an exhaustive sequence of subsets of €2 (recall Remark 1.3 for the definition of exhaustivity), and define
B, =W, x QN+ C A. Then (Bn)n>0 1s an exhaustive sequence for A, and the recurrence of the Markov chain implies
that p, g, < 400 p-almost everywhere on B,,. By Remark 1.3, we get the following result of independent interest:

Lemma 2.2. Let P be a Markov transition kernel on a Polish space <2, with o -finite stationary measure . Let (A, m, T)
be its realisation on its canonical space.
The measure | is recurrent for P if and only if the measure m is recurrent for T .
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Note that, if u is finite, recurrence follows more directly from Poincaré’s lemma. Hence we will be able to apply
Proposition 0.1 to the system (A, m, T'). For now, let us understand better the action of the transfer operator L.
For any p € [0, +00], there is an isometric embedding ¢ : L” (2, u) < L”(A, m) defined by:

t(f)(wo, w1, ...) = f(wo).
Denote by B”(A, m) its image; when working with functions in 57 (A, m), we may abuse notations and denote ¢(f)

by f.
Let f € BP(A,m) and h € LY(A, m) with 1/p + 1/q = 1. Then:

/Af.hordmzfAf(wo)-h(wl,...)dm(wo,...)

=f d(fQ J(@0) Poyh (@1, ....) di(an)) dm(wy,...)
A

du
Hence, for f € B”(A, m),

d(fq f(@0) Puy dit (o))

L(f)= a

2.2)

Note that, using the construction of the measure m — that is, the Markov property — this formula defines a function on
Q; that is, L(f) € BP(A, m). Hence, L preserves B (A, m). Since T acts by isometry on LY (A, m), the operator L is a
weak contraction on BP (A, m).

In what follows, we fix p € [1, +0o0], a subset ¥ C 2 such that u(¥) > 0, and functions f, g € B”(A, m) such that:

I-L)f =g
By Proposition 0.1,

(I —Lp)fip=gB-

The goal is then to understand £p, which can be done by studying the induced system (B, m|p, Tg). Notice that, since
fip and g|p are both in {i € B”(A, m) : Supp(h) C B}, the operator Lp acts on {h € B”(A, m) : Supp(h) C B} by the
equation above.

Let us define the set £(W¥) of excursions from W:

5@y=waowﬂ

n>0

Then any point in B = ¥ x QN+ whose T-orbit comes back infinitely often to B can be written uniquely as a concatena-
tion of words in £(V). We get a map ¢:

¢:B— EWY,

which by recurrence is well-defined m|z-almost everywhere and injective. Let S’ be the shift on £ (\I/)N. Then ¢ induces
an isomorphism of measured dynamical systems between (B, mg, Tg) and (€ (\Il)N , T B, S.

In addition, the map (o, . .., wp41) — wo from £(¥) to W induces a factor map 7 : (E(W)Y, §') — (W, §), with S
the shift on W, To sum up, the following diagram commutes:

B —2 ()N T PN

lTB ls’ lS
B —2 ()N —Z PN
which implies that my := 7.¢, m|p is S-invariant.

By construction, 7 o ¢ ((Xy)n>0) = (X1y,,)n>0 is @ Markov chain on W with transition kernel Py. Moreover, [ o
¢ ((Xn)n=0)1o = Xo, so the first marginal of my is p|y, and my is the S-invariant measure on the canonical space wN
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associated with the induced Markov chain (X7, ,)»>0 and the initial measure |y . In particular, uy is stationary for the
Markov chain induced on W.

Let Ly be the transfer operator for the system (¥, my, §). Functions in B” (A, m) supported on B quotient through
7 to get functions in B (WY, my). This yields a bijective isometry:

e {h € BP(A,m) : Supp(h) C B} — B (¥ my).

The transformation 7, conjugates the transfer operator Lg on {h € BP(A, m) : Supp(h) C B} with the transfer operator
Ly on B?(WN my). By Equation (2.2),

d(f\y f(a)O)P\Il,wo du(wo))

Lp(fip)= m

This discussion yields:
Corollary 2.3. Let Q2 be a Polish space, and P a Markov transition kernel on Q. Let v be a o-finite stationary and
recurrent measure.
Let W C Q be measurable, with (V) > 0. Let p € [1, 400] and f, g € LP (2, u) with Supp(g) C V. Assume that:
I-L)f =g
Then:
(I = Ly) fiw =g

The operators P and £ are in duality. Indeed, for f € L”(Q2, n) and h e L9(Q2, u) with 1/p+1/q =1,

/f-P(h)du=/ f(w)f h(w')dPy, (o) diu(w)
Q Q Q

d dP,d )
Q w

=/£(f)-hdu.
Q

By Lemma 2.2, the measure u is recurrent for the transition kernel £. Applying Corollary 2.3 to the transition kernel £
on 2 yields the same result for P: under the same hypotheses on f and g, if

(I-P)f=g,
then:
(I = Py) flw = gw.
2.3. From Markov chains to dynamical systems

As any Markov chain can be encoded as a dynamical system, the converse is also true. As mentioned in the introduction
of this section, a dynamical system can be seen as a Markov chain with transition kernel Py = 7).

Let (X,,)n>0 be a Markov chain on a Polish state space €2, with transition kernel P and recurrent stationary measure /.
In this Subsection, we recall a classical result in potential theory (and a variant of [18, Corollary 1.11]), and apply it to
dynamical systems.

Proposition 2.4. Let W C Q2 be measurable, with (V) > 0. Let f, g € L>°(2, ) with Supp(g) C V. Assume that:
I-P)f=g
Then:

(I — Py) flw = gv.
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Proof. Let W, f and g be as in the hypotheses of the proposition.
We define the stopping time:

Ty :=inf{n>0: X, € V).

Since the Markov chain is recurrent, for almost every w, either ﬁp < +o00 almost surely or ﬁp = 400 almost surely. Let

W = {Ty < +oo almost surely}. Using again the recurrence of the Markov chain, we see that W C W and the set W

is invariant. Without loss of generality, we restrict ourselves to W that is, we assume that Ty < +00 almost surely.
Let X,, =X, .7, Then X is a Markov chain on 2, with transition kernel P.Ifwe W, then Px = §,; otherwise,

Px = P,.In addltlon, recall that f = P(f) on W°. Hence,
P(H)=14P(f) +1ucP(f) =1y f + 1y P(f) = f.

In other words, for almost every w € 2, we have E, (f ()? D)= X 0,80 (f (}N( n))n>0 1s a martingale that is bounded almost
surely. In addition, it converges almost surely to f (X7, ). By the dominated convergence theorem, almost everywhere,

Eo(f(X7,)) =Eo(f(X0) = f (). (2.3)

Let F\p be the transition kernel of the Markov chain (Xg, X Ty» Xy - --)s 0 that Equation (2.3) reads ﬁ\p (f) = f.Recall
that Ty is the first positive time for which the Markov chain hits W. From the point of view of Markov operators, this
means that Py = P Py, and:

Py(f)=P(Pu(f))=P(f)=f—g

In particular, this equation holds on W, which is the conclusion of the proposition. (]

Let (A, m, T) be a dynamical system, with A Polish, and m a o -finite, T -invariant, recurrent measure. The transfor-
mation 7" gives rise to a recurrent transition kernel, which we will also denote by 7':

Ty :=81(x),

such that the operator T acting on L.” (A, m) is just the Koopman operator:

T(f)(x)=foT(x).

Given any B C A with positive measure, the transition kernel of the induced Markov chain is 7. When applied to 7,
Proposition 2.4 tells us that, for f, g € L”(A, m) with g supported on B, if f — foT =g, then f — f o Tg = g. This
result was mentioned in Remark 1.2.

The transfer operator L is then the Markov kernel dual to T'. For instance, if T is invertible, £ is the Koopman operator
for T~!; if T has countably many branches,

LHo= 3 Jf(y)

yeT=1({x}) am(y)

so the transition kernel corresponding to £ is:

L= > 1

acm()
yer Ty Y

The measure p is stationary for £ and, by Lemma 2.1, it is also recurrent. Let B have positive measure. Then £Lp, defined
as the dual of Tp, is also the Markov transition kernel induced by £ on B. The case p = oo of Proposition 0.1 follows
immediately.

Overall, the use of Lemma 2.1 makes this proof quite similar to, and not much shorter than, the direct proof of
Proposition 0.1. While it requires more background on Markov chains, seeing £ as the transition kernel of a stochastic
process has the advantage of allowing the explicit use of backwards stopping times, which makes some manipulations
easier.

Finally, let us recall the classical result asserting that solutions of the Poisson equation on W can be extended to
solutions of the Poisson equation on €2, and highlight its relation with Lemma 1.5.
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Lemma 2.5. Let P be a transition kernel on Q2 with invariant measure jv. Assume that | is o -finite and recurrent. Choose
v C Q with u(¥) > 0.
Let fy e LY, u), g € L*°(R2, ) be such that g =0 on V€ and.

(I — Py)fu=gw.

Then there is a unique function f € L>°(2, w) such that fiy = fy and:
(I=P)f=g

In addition, || f L@,y = Il fwllLeew, p)-

Proof. Let fy and g be as in the hypotheses of the lemma. As in the proof of Proposition 2.4, let T be the stopping time
inf{n >0: X, € ¥}. For w € €, let:

f@) :=Eu(f(X7).

Note that fiy = fo, and || fllLe@, ) = | follLew,w)- _
As in the proof of Proposition 2.4, we have Py (f) = f almost everywhere. On W€, we also have P(f) = Py (f) = f,
so(I—P)(f)=0=g.0On V¥,

P(Nw = P(Pu()),y = Po(fiw) = Pu(fo) = fiv — g

Hence, (I — P)(f) = g almost everywhere.
Uniqueness follows from the same argument as in Lemma 1.4, for instance by encoding the Markov chain. ]

If applied to the Markov chain with transition kernel £ on A, Lemma 2.5 immediately yields Lemma 1.5.

3. Poisson equation and Green—Kubo formula

Given an ergodic and recurrent dynamical system (A, m, 7)) and a function f : A — R, aset B C A with positive measure,
define the function Xp f : B — R as the sum of the values of f over the excursion before coming back to B:

¢p(x)—1

Sp(HE) = Y f(TFw).
k=0
Let f € L'(A, m). Then X5(f) € L'(B, mp), with integral

/zB(f)dmszdm. 3.1)
B A

This equation is a classical extension of Kac’s formula, which admits multiple proofs. The most direct one proceeds along
the lines of Proposition 0.1. It can also be proved by looking at the limit behaviour of Birkhoff sums, which shall be the
object of Section 5. Finally, in some cases, it can be recovered by using a well-chosen coboundary. For x € A, let:

0 if x € B,
C(f)m':{ PO foThq) ifx ¢ B. (32)
Then
Xp(flp — f=C(f)oT —C(f). (3.3)

In particular, if C(f) € L'(A, m), integrating over A yields Equation (3.1).
Let f e L'(A, m) NIL?(A, m) with null m-integral. We set, when it is well defined, the Green—Kubo formula:

ol (A,m,T; f, f) ::/AfzdnH—ZZ/Af~foT"dm

n>1

:/Af2dm+22//;f-£”(f)dm.

n>1
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These quantities UéK(A, m, T; f, f) appear in limit theorems whether m is finite [13, Equation 2.21] or infinite [16,
Theorem 2.4]. By [16, Corollary 1.13 and Appendix], the Green—Kubo formula, in some cases, satisfies the same kind of
invariance under induction as the integral:

oGk (A, m, T; f, f) =05k (B. mz. Tg: Tp(f). Za(f)).

making it a degree 2 analog of Equation (3.1). This observation was central in [16], as it allowed the estimation of hitting
probabilities in a diffusion model. The goal of this section is to prove rigorously this equality in some cases, and show
the relation between the invariance under induction of aéK and Proposition 0.1. We shall study its associated symmetric
bilinear form:

oxamTifo)= [ feam+ Y [ fo@am+ Y [ e pam.

n>1 n>1

We shall also use a notion of mixing:

Definition 3.1 (Mixing of functions). Let f, g be two functions defined on (A, m). We say that the dynamical system
(A, m, T) mixes (f,g) if the quantities [, g - L"fdm= [,goT"- fdmand [, f-L"¢dm= [, foT"-gdm are
well-defined and converge to a( f, g) = a(g, f) as n goes to infinity.

For instance, if m is a probability measure and (A, m, T') is mixing, then (A, m, 7') mixes any pair of square-integrable
functions, with a(f, ¢) = [, fdm- [, gdm.

The definition of Green—Kubo’s formula can be widened, for instance by allowing the infinite sums to converge only
in Abel’s sense. With such a modification, the mixing conditions in this section can be lifted. However, working with
absolutely converging series will be helpful in Section 4.

Theorem 3.2. Let (A, m, T) be a recurrent, ergodic, measure preserving dynamical system, with m a o -finite measure
and B C A with() <m(B) < +o0. Let p1, p2 € [1, +00] be such that % + é = 1. Let f1, f> be two integrable functions

defined on A with null integral, such that aéK(A, m, T; f1, f>) is well defined and such that

Z”Ul (Zs(f)1p) ”]LPi (Am) <100 (3.4)
n>0

and
Z”‘CVIEEB(ﬁ)”]LPi(B’m‘B) < 400, 3.5)
n>0

for i =1, 2. Assume moreover that (A, m, T) mixes (C(f1), f») and (1pZp(f1), C(f2)). Then the following quantities
are well defined and equal:

oGk (A, m, T fi, f2) = oG (B, myg, Tgs (1), Tp(f2))- (3.6)
If f1 or f> has non zero integral, then an error term may appear.

Remark 3.3. Assume that the conclusion (3.6) of Theorem 3.2 holds true, and that the quantity créK(B, myg, Tp; B,
Y (f2)) is well defined. Then, for every c € R,

ok (A, T; fi +c, f2) = ogg (A,m, T: f1, f)
=0k (B.mp, Tg: Tp(f1). Tp(f)
=0k (B, i, Ts; Tp(fi + ), T (f2))

— codx(B.myp, Tp: 95, Tp(f2)).

The rest of this section is devoted to the proof of Theorem 3.2, which is divided in two parts corresponding to the two
following sections:
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— invariance of ‘7(2;1( under addition of coboundaries. Then, by Equation (3.3), a function f is cohomologous to Xp(f)13,
ensuring that

oGk (A, m, T fi, f2) = ogg (A, m, T5 Zp(f)1s, Tp(f2)15).
— invariance under induction for functions supported on B, ensuring that
ogx (A m. T; Zp(f)1s, Sp(f2)1p) = 0k (B.mz, Ts: Tp(f1), Tp(f2)):

for this step we will use Proposition 0.1 together with Lemma 1.4, yielding

/BEBm)Zc”(EB(fj)lB)dm:/ S(f) Y L4 (Sp(f) dm.

n>0 B n>0
3.1. Invariance of O’éK under addition of coboundaries

The goal of this subsection is to prove that under the mixing assumptions of Theorem 3.2,
ook (A m, T; fi, f2) = ogx (A, m, T: Ep(f)1s, Tp(f2)1p). 3.7

To this end we prove the following general proposition.
Proposition 3.4. Let (A, m, T) be a measure preserving dynamical system, with m a o -finite measure. Let f, g be two
functions defined on A such that aéK(A, m, T'; f, g) is well defined. Let u be a function defined on A such that (A, m, T)
mixes (u, g). Then aéK(A, m,T; f+uoT —u,g) is well defined and

0qk(A,m, T; f, ) = g (A, m, T; f +uoT —u,g). (3.8)

Note that we do not assume in this result that the functions have null integral. This result will appear as a direct
consequence of the two following lemmas.

Lemma 3.5. Let (A, m, T) be a measure preserving dynamical system, with m a o -finite measure. Let g and u be two

functions defined on A such that fA g-L'udm= fA goT"-udmis well defined for any n > 0 and converges to (g, u)
when n goes to infinity. Then

Z/gﬁ”(uoT—u)dmZ/g-uonm—a(g,u). (3.9)
A A

n>0

Proof. Let N > 0. Then:

N N
ZfgE”(uoT—u)dm:Z/goT”-(uoT—u)dm
n=0 A n=0 A

=/g(uoT—u)dm
A

N
+ /goT"_l~udm—fgoT"-udm>
(), A

n=1

=/g~uonm—/goTN-udm
A A

:/g~uonm—/g£N(u)dm.
A A

Taking the limit as N goes to infinity yields Equation (3.9). ([
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Lemma 3.6. Let (A, m, T) be a measure preserving dynamical system, with m a o -finite measure. Let g and u be two

functions defined on A such that fA u-L'¢dm= fl uoT" - gdmis well defined for any n > 1 and converges to a(g, u)
when n goes to infinity. Then

Z/(uoT—u)L"(g)dm:oc(g,u)—/ ugdm. (3.10)
A A

n>0

Proof. Let N > 0. Then:
N N
Z/(MOT—u)ﬁ"(g)dm:Z/(uoT”'H —uoT”)gdm
n=0 A n=0 A

=/uoTN+1~gdm—/ugdm
A A

:/u.LN+1(g)dm—/ugdm.
A A

Taking the limit as N goes to infinity yields Equation (3.10). ]

Proof of Proposition 3.4. By bilinearity of G(Z}K’ it is enough to prove that the quantity oéK(A, m,T; f,uoT —u) is
well defined and null, or in other words that

—/g(uoT—u)dm—i—Z/gﬁ"(uoT—u)dm—}—Z/(uoT—u)[,"(g)dm:O,
A A A

n>0 n>0

which comes from Lemmas 3.5 and 3.6. O
3.2. Invariance of 0(2}1( under induction

‘We now focus on the second part of the proof of Theorem 3.2. We want to show that, under the hypotheses of this theorem,
gk (A.m, T3 Bp(fD)1s, Tp(f2)1p) = oGk (B, mis, Tp: T (f1), T5(f2))-
This follows from the next lemma:

Lemma 3.7. Let (A, m, T) be a recurrent, ergodic, measure preserving dynamical system, with m a o -finite measure.
Let B C A with0 <m(B) < 4o00. Let p1, p2 € [1, +00] be such that % + é = 1. Let g1, g2 be two integrable functions
with null integral defined on B such that

D 1L @) Lo gy < 00, G.11)
n>0

and
D 1581 pi 3 gy < F001 (3.12)
n>0

fori =1, 2. Then the following quantities are well defined and equal:
oGk (A, m, T; g11p, g21p) = ogx (B myp, T g1, £2).- (3.13)
Proof. Let G; := j;’f) L"(gi1p), which is well-defined and in ILPi (A, m) by the condition (3.11). Then (I — £)G; =

gilp. By Proposition 0.1, since g;13 is in L”/ (A, m), we have (I — L3)(G;)|p = gi.
The condition (3.12) implies:

gi=U—Lp)Yy Lhe inlP(B,m).

n>0
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Since the system is assumed to be ergodic, by Lemma 1.4, there exists a constant Co(G;) such that

+00
(Gi)ip =) Lpei+Co(Gy).
n=0

Integrating against g;1p, which has integral zero, we get:

Z/A(gle)ﬁ"(gilB)dm=/;(gle)ZE"(g,-IB)dm

n>0 n>0

:/ ng,-dm
B

+0o0
=/ g ) Lheidm
B

n=0

+o0
:Z/ gjﬁ'égidm.
B

n=0

Finally

UCZ;K(A,m,T:gllB,gle)=—/ g1g2dm+Z/ g1L"(g21p)dm
B B

n>0
+Z/gz£"<g113)dm
n>0 B
2_/ gngdm+Z/ g1£'é(g2)dm+2f g Lpg1dm
B B B
n>0 n>0
ZG(%K(B,HHB»TB;g],gZ)- 0

We can now finish the proof of Theorem 3.2.

Proof of Theorem 3.2. The quantity aéK(A,m, T; f1, f2) is well-defined by hypothesis. Since (A, m,T) mixes
(C(f1), f2), by Proposition 3.4, the following quantities are well-defined and equal:

oGk (A.m. T: fi, f2) = odx (A.m, T3 Zp(fi)15. f2).

Since (A, m, T') mixes (13X p(f1), C(f2)), applying again Proposition 3.4 yields:
oGk (A, m, T; fi, [)0Gk (A, m, T; Tg(fi)lp, Tp(f)18),

that is, Equation (3.7).

Due to condition (3.5), the quantity aéK(B, my, Tp; Lp(f1), Xp(f2)) is well-defined. Lemma 3.7 applied to g; :=
¥ p(f;) ensures that the following quantities are well defined and equal:

oGk (A, m, T; fi, f2) =05k (A, m, T; Sp(f1)1s, Tp(f2)1p)
=0dx (B.mig, Tg: Tp(f1), Tp(f2)). O

4. A degree 3 invariant

As an application of these methods, we shall now study a degree 3 analog of the Green—Kubo formula.
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4.1. Definition and property for t3

Informally, 0(2}]( (A, m, T; f, g) can be rewritten
GéK(AsmvT;fvg)ZZ/ f‘gOTndm,
A
nez

which can be made rigorous for many examples of invertible hyperbolic dynamical systems. A degree 3 analog would
then be, for suitable functions f, g, h:

Z/Af-goT".hoT'"dm, 4.1)

n,mez

as soon as the sum is absolutely convergent. To make sense of this formula when T is not invertible, note that:
/ f .go T" . hoT™ dm:/ f ° T—min{n,m,O} go Tn—min{n,m,O} ho Tm—min{n,m,O}dm.
A A

In what follows, we shall write )., for the sum over all permutations of {f, g, 2} in the formula. For instance,
> e fgh =6fgh. A careful reorganization of the sum above yields the following formula.

Definition 4.1. Let (A, m, 7') be a measure preserving dynamical system. Define:

(A, m, T; f,g,h) :=Z[é/Afghdm+%ZfAfg-L‘"(h)dm

Alt n>1

1
+§Z/Af-£”(gh)dm+ Z [Af-ﬁ"(gﬁ’"(h))dm}, 4.2)

n>1 n,m=>1

whenever the sums are absolutely convergent.
The following criterion can be used to check that the sum in Equation (4.2) is indeed convergent.

Lemma 4.2. Let (A, m, T) be a measure preserving dynamical system, with m o -finite. Let B be a Banach space of
functions continuously embedded in ]L(l)(A, m) NL3(A, m), and on which (L") >0 is summable. Assume moreover that

Ko := sup Z
h

AL B n>0
IfllB.lglB lIhllg=<1"—

< +o00. (4.3)

/ fL (gh)dm
A

Then the sum in Definition 4.1 converges absolutely, so that 3 is a well-defined trilinear symmetric form on B.

Observe that the assumption (4.3) holds true if there exists a function H defined on A with unit integral such that
ano | fA fL"Hdm| < 400 for every f € B (this is true for example for H = 14/ m(A) if m is finite) and such that

(f,e)— fg—H fA fg dm is continuous from B2 to a Banach space BB’ continuously embedded in IL(I) (A,m)N IL% (A, m)
and on which £" is summable.
Another strategy to prove (4.3) could be to prove the existence of a sequence (c,), of real numbers such that

sup ZAf(/J”(gh)—cn/Aghdm)dm

.8,heBB ~0
I£18lgls. Inls<1"=

When m is infinite, such an estimate is related to higher order terms in mixing estimates, (c,), being the speed of mixing

(see for example [15]).

< +o00. 4.4)
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Proof. The sum contains four parts. The first part contains a single term, which is finite since B C (A, m). For the
second term, we observe that

/A fe: E"(h)dm‘ <Ifglsr | L")

<IN lglis ks £ g s

which by hypothesis is summable in .
Consider the third term. By hypothesis,

2

n>0

/Af-ﬂ"(gh)dm = Kol flisliglslnls.

which is finite.
Finally, let us focus on the fourth term. We have:

2

n>0

<Kol fBlglB|L"| 5 55

/Af -L"(gL™(h))dm

which is summable in m. O

The function 73 admits a few equivalent definitions, which may be more convenient depending on the computations.
First, making the sums start at O instead of 1, we get the next lemma (beware the change of signs).

Lemma 4.3. Ifr3(A, m, T; f, g, h) is absolutely convergent, i.e. if

;/Afg-ﬁ”(h)dm‘Jr;Af~£”(gh)dm‘+n;] /Af~£”(g£m(h))dm < 00,
then
24, m, T f,g,h)=§[2Afghdm—%gﬁfg~ﬁ”(h)dm
—%Z/Af-ﬁn(gh)dm+ > /Af-E”(gE’"(h))dm]

n>0 n,m>0

Proof. Let us introduce the following notations:

aottem= [ geham afe =Y [ fe£radm,

n>i

Avi(figh) =) /A foLghydm,  Asgj(fig k)= Y / f-L" (gL (h))dm.

n>i n>i,m>j
Note that

A1 =A10— Ao, Ay = A — Ao,
A3z11=A4301—A1,1=A43,00— A20— A0+ Ao.

Therefore
A A A A A A
3 0 1,1 2,1 0 1,0 2,0
= — I —_— A = — — —_— A —A —A
T E <6 + > + 2 + 3,1,1) E (6 + > + > + A3,0,0 2,0 1,0)
Alt Alt
Ao Ao Ao
— T2 A .
E <6 3 3 + 3,0,0) O

Alt
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Another useful formula follows by fixing the value of n in Equation (4.1), and summing over m, which leads to the
following result expressing 7> in terms of aéK.

Lemma 4.4. It 1:3(A, m, T'; f, g, h) is absolutely convergent, then

(A m, T: f.g.h) =0l (A.m,T: fg.h) + Y 0 (A.m.T: f-goT" h)

n>1

+) ogk(A.m.T; foT" g.h). (4.5)

n>1

Proof. The absolute convergence of 7> implies the absolute convergence of the sums in the right hand side of Equation
(4.5), which is equal to:

/Afghdm—f—Z/Afg~£m(h)dm+Z/Ah-[,m(fg)dm—i-B(f,g,h)—f-B(g, fih)

m>1 m>1
ZAO(f7g’h)+A1,](f7g7h)+A2,l(h’ f,g)+B(f,g,h)+B(g,f,h)

A(fig. ) +ALGg L)+ Ay 1(h, f8)+ Aza(h, g, f)
2

=Ao(f.g. h)+
+ B(f.g.h) + B(g, f.h),

where the A; are defined in the proof of Lemma 4.3, and:

B(f,g,h):Z(/Af-goT"hdm

n>1

£ X [ regerrentams ¥ [ her(r-got")am)

m>1 m>1

=Z/A,Cn(fh)-gdm+ > Ag~£”(f£m(h))dm

n>1 n,m>1

+ Y /Ahc"’*"(gmf)der > /;gﬁ”*’"(hﬁ’”f)dm

1<n<m 1<m<n
=A21(8 i)+ A310(8, fLh) + Az q1(h, g, )+ As11(8,h, f) +ALi(h, g, f)

_Aoa(g, i)+ A (g h )+ AL, g, )+ A8 b f)
B 2

+ Az 1108 fLih)+As1(h, g, f)+As1,1(8. 0, f).

Putting all the terms together ends the proof of the lemma. (|

Remark 4.5. The functional 73 is also related to the spectrum of the transfer operator. Assume that £ acts quasi-
compactly on a Banach space of integrable functions including 1. Let (fi)1<i<3 in 3, and assume furthermore that

Z:=(z1,22,23) > Lz := E(e2?=l Zifi.y is analytic. Then the main eigenvalue A(Z) of £ is analytic in Z. We observe
that
dlni
071

0) =/ frdm,
A

and, if the f; have integral O,

Ik ) o (A, T f1, )
-~ 4 =0 5m’ ; ) .
021022 6K b2
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We refer for instance to [5] for further details. A painful computation, which we shall not reproduce here, yields

33 Ina

e () =AM, T f1, fo, f3).
021022023
This suggests the existence of higher order invariants, defined by:

" InA(z1,...,2n)
8Z1 ...8Zn

(0),

where A(z1, ..., z,) is the main eigenvalue of L(eXimzifin), Considering the widespread analogy that the main eigenvalue
of the perturbed transfer operator is the dynamical version of the characteristic function for sequences of i.i.d. random
variables, the functional thus defined are the dynamical version of the Ursell functions [17,20].

4.2. Quasi-invariance under induction

Given a measure preserving dynamical system (A, m, 7') and a subset B of A, we wish to study the relation between
AT fi, fo, f3) and T (B.myg, Tps Ep(f1), Ta(f2), Bp(f3)),

for functions f; on A with null integral, as we did with Theorem 3.2 for aéK(A, m, T; f1, f») and O’éK(B, mp, Tp;

2g(f1), Zp(f2))-

In what follows, we shall use two Banach spaces:

— a Banach space B; C L(IJ(B, mig) N L3(B, mg),
— a Banach space B, C L(l)(B, mig) N ]L% (B, myp),

and a function H € L' (B, m,g) such that fB Hdm=1. Letting
fBgi=fe~H [ fedm 4.6)
B

we shall furthermore assume that ( f, g) — f X g is continuous from B% to BB,. If m(B) < 400, the simplest — but not the
sole — choice is to take H := m(B) 153.

Theorem 4.6. Let (A, m, T) be a recurrent, ergodic, measure preserving dynamical system, with m a o -finite measure.
Let B C A with 0 <m(B) < +4o00. Let By, By and H be as above.
Assume that

“,C’;; ”Bl_)Bl’ HE" HBz%]L%(A,m)’ ” %”82*)]1‘%(3,“1\8)

are all summable.
Let fi, f>, f3 € LL(A, m) be such that

Yp(fi)e By forallie{l,2,3},

- 3(A,m, T; g1, g2, g3) is well defined for any choice of g; € {fi, Zp(fi)1s},

o2(A,m,T; fi, H1p) and o%(B,mg, Tg; X p(fi), H) are absolutely convergent,

— (A, m, T) mixes (gigjoT", C(g)) for any choice of g¢ € { fo, Xp(fe)1p} and any choice of i, j, k such that {i, j, k} =
{1,2,3}.

— (A, m, T) mixes (Hlp, C(f;)) foralli €{1,2,3}.

Then ©3 (B, mp, Tg; £p(f1), £5(f2), £p(f3)) is well defined, and

(A, m, T; fi, fo, f3) =7 (B, myg, Ts; Tp(f1), Tp(f2), Tp(f3))

1
+5 %;[Uéx(& mi. Tg: Sx(f1). So(f)

x (05k (A, m, T; f3, H1p) — 0§ (B, mp, Tp; p(f3), H))]. (4.7)
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In the light of Remark 4.5, this theorem may have avatars for higher order Ursell functions. Note, however, that its
proof does not involve the spectrum of £ directly.

Remark 4.7. The correcting term in (4.7) is in general non-zero, at least for the natural case f; = f. For instance, as
we will see in Section 4.3, if T is the Bernoulli shift on A := {0, 1}N with m := (pdg + (1 — [))51)‘8’N (p € (0, 1)) and if
f ((@n)n>0) := p — 1o(wop) (which is the simplest non constant centered function we can ever imagine) and B ={w € A :
wo = 0}, then

AW T; f, f, ) — (B, mg, Tp; S(f), Tp(f), Tp(f)) = =3p(1 — p)* £0.

For the Bernoulli shift and the set B as above, we expect the conditions of Theorem 3.2 to be satisfied for a wide classe
of functions f (e.g. Holder functions). If these conditions hold, and taking H = p~'1p, Equation (4.7) would become

A mT: f. f. ) =T (B.mys. Tg: (). T (f). Tp(f))
=30k (A, m, T; f, F[0dx(A,m, T; f. (H1p — 1)) — 0dx(B.mp, Tp; Tp(f), H)]
=308k (A, m, T; f, /)odg(B.mp, Tp: Tp(f), Sp(Hlp —1) — H)
=30Gk (A, m, T f, ogg (B, mp, Tp; p(f), —¢n)

which is non null as long as f is not a coboundary and X g( f) is not orthogonal to ¢p for oéK(B, mp, Tg; -, ).

Remark 4.8. Assume that m(B) < oo, and take H = 15/ m(B). Since Lplp = 1p and X p(f;) has null integral, the
term oéK(B, mp, Tp; £p(f3), H) vanishes in Equation (4.7).

Assume that m(A) < oo, and take H = ¢/ m(A). Assume moreover that (A, m, T') mixes (Xp(f;), C(14)). Then
the term oéK(A, m, T'; f3, H1p) vanishes in Equation (4.7). This follows from Proposition 3.4, since ¥p(14) = ¢p and
fi has null integral.

Similarly to the proof of Theorem 3.2, the scheme of our proof of Theorem 4.6 consists in the following steps:

— we show the invariance of 7> under addition of a coboundary. Then, by Equation (3.3) and the mixing assumptions,

P(A,m,T; fi, f, f3) =0 (A,m, T; p(fi)ls, S(f2)1p, Zp(f3)15).

— by Proposition 0.1 and Lemma 1.4, for any p € [1, oo] and any g € L”(B, m|p) such that 3~ | L5 8 lLr (B.mz) < 00
and ano I£" (g1B)llLr(A,m) < 00, there exists a constant Co(g) such that:

(Z c”(g13)> = L&)+ Cole). (4.8)

n>0 n>0

Proof of Theorem 4.6. Recall that f; = Xp(fi)1p + C(f;) o T — C(f;), using the notation C(-) introduced in Equation
(3.2). Using successively Lemma 4.4 and Proposition 3.4, the mixing assumption leads to:

A mT: fi, . f5) =1 (A.m, T; fi. fr. Sp(f3)1p)
=7 (A.m, T; fi, Sp(f2)1p. p(f3)15)
=7 (A,m, T; ()1, ()1, Z(f3)1p).
This finishes the first step of the proof.

Let us denote by ay, az, az, as the successive terms inside the sum ZAlt in the formula of 13(A, m, T; Zp(f1)lp,
Yp(f2)1p, Xp(f3)1p) given by Lemma 4.3. Notice that

a —/]"[ Su(fi)lp)dm = /]_[Eg(fl)dm (4.9)
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Applying Equation (4.8) with g = X p(f3) and p = 3, the second term can be written:

wi= Y [ EalFaZa(ls £ (2a(f1s) dm

n>0

= Z/BEB(fl)EB(fZ)'ﬁ%(EB(ﬁ))dm‘i‘CO(EB(f?:))/BEB(fl)EB(fZ)dHL

n>0
The third term can be rewritten as follows:

ai= Y [ EsL (Ea( 1 Za (1) dm

n>0

= 3 [ Ea (L (5 B Ea ()18 dm

n>0

+[BEB(fz)EB(f3)dm-Z/BEsm)ﬁ"(HIB)dm.

n>0
Applying Equation (4.8) with g = Xp(f2) X Xp(f3) and p = 3/2, since X p(f1) has null integral, we get:

3 fB S (S5(f2) B Sp(f)15)dm

n>0

-y A S5(f)LL (S(f2) B Sp(f3))dm

n>0

-y /; Sa(Ly(Zh(f)Ta(/2)dm

n>0

—/BEB(fz)EB(fs)dMZ/BEB(fl)E’}g(H)dm.

n>0

Moreover, due to Lemma 3.6,

> [ zatmer g am

n>0

=Z/Af],C”(ng)dm+a(H13,C(f1))—/AC(f])HIBdm

n>0

= Z/A f]ﬁn(HIB)dm“‘a(HlB, C(fl))v

n>0

since C(f1) is supported on A \ B. Therefore:

=Y fB S5(f)L(E5(L)Ep(f3)dm

n>0

+Z(/A flﬁ”(HIB)dm—/B23<f1>£’g(H>dm)/B23<fz>23(f3)dm

n>0
+ /B S5(f)Ss(fy) dm-a(Hlg, C(f)).

Now, applying Equation (4.8) with g = X (f3) and p = 3/2, we rewrite the last term as follows:

ai= 3 [ EaCIRL (Ea(15L" (Ep(fr)15)) dm

n,m>0

(4.10)

(4.11)
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-y /B Ss(FL (Za (1L (Sp(f)) dm

n,m>0

s /B Sa(fDL (Zp(f2)18) dm-Co(Zp(f3))

n>0

=y /I;ZB(fl)[:n(lB(ZB(fZ)X"Crg(zB(ﬁ))))dm

n,m=>0
Y /B Se(fi) - L' (H1p)dm: Y /B Su(f) L (Sa(f2)dm
n>0 m=>0

+3 /B Su(f) - Ly (Sp(f) dm-Co(S5(f3)).

n>0
Applying Equation (4.8) with g = Xp(f2) X L3 (X (f3)) and p = 3/2, and using the fact that Xg(f;) has hull

integral, we can replace L"(1p...) by L (...) in the above formula:

> [ ZaL (ta(2a () B L (Ea(/2) dim

n,m>0

-y /B Sa()L (Sa(f2) B L3 (Ep(f2))dm

n,m>0

= /B23(fl)c’g(zg(fz)ﬂ’é’(zB(fﬁ))dm

n,m=>0
-y /B Sy dm: Y /B 5L (Sp(f9) dm.
n,m>0 m>0

In addition, X5(f1) = f1 + C(f1) o T — C(f1), so that, by Lemma 3.6:

> [ Zatae s dm

n>0

:Z/Aflz:"(mB)dm+a(C(f1),H13)—/BC(fl)Hdm

n>0

=Z/Af1£"(H13>dm+a(C(f1>,H13),

n>0
again using the fact that C(f1) =0 on B. Finally, we get:

=Y [ ma(Lh(EatmLy(za(r) dm

n,m>0

+> (| AL HIg)dm— [ Sp(f)LE(H)dm
A B

n>0

X ZLEB(fz)Cg(EB(f3))dm

m=>0

s /B Sa(f) - £(Sp(f) dm-Co(Sp(f)

n>0

ta(Clf, H1p) Y /B S5 ()L (Sp( ) dm.

m=>0
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Combining this with Equations (4.9), (4.10) and (4.11), with the weights given by Lemma 4.3, yields:

(A, m, T; fi, f, f3) — 2 (B,mg, T; Zp(f1), Tp(f2), Tp(f3))

=§[—% fB S(f)Es(f2)dm-Co(Sp(f) “.12)
_%g(/Aflﬁn(HlB)dm—/BEB(fl)ﬁ?g(H)dm)/BEB(fZ)EB(ﬁ)dm “.13)
— Se(H15,CO) | =azacam 4.14)
+3 | =aey(Eacs) dm-Co(Za() *.15)
+§)</Aﬁﬁ"(mg)dm—/3zB<f1>£',§<H>dm>
<3 /B Sa(HL(Sh(f)dm (4.16)
Falttn C() 2 / 23<fz>£'g(23(f3>)dm]. “.17)

In the alternated sum above, we put together the lines (4.12) and (4.15) and the permutations (f;, f;, fi) and (f}, fi, f)-
We also put together the lines (4.13) and (4.16) and the permutations (f;, f;, fx) and (f;, fk, f;). Finally, we put together
the lines (4.14) and (4.17) and the permutations (f;, f;, fi) and (f;, fk, f;). This yields:

A, M, T; fi, fo, f3) — (B, mg, T; Sp(f1), Tp(f2), Tp(f3))
1
=§ZZ</A flc"(ng)dm—/BEg(fl)L%(H)dm)
Alt n>0
x oG (B.myp. Tp; Tp(f2). p(f3))

1
+5 208k (B.mis, Tas Bu(f1), Bu(f2)) - Co(Zn(f3)
Alt

1
+ 3 D obk(B.mis. Ts: Ta(f2). Ta(f3) - a(Hlg, C(f). (4.18)
Alt

By Lemma 3.5, and using the mixing conditions,

Co(=a() =¥ [ HE'(Eatts)am=Y [ HL(Es(s)dm

n>0 n>0
=Z/ H/:”(f3>dm+/ HC(f3)oTdm
n>0 B B
—a(H1p,C(f3)) =) fB HLy(Zp(f3))dm
n>0
=Zf Hﬁ"(f3>dm+/ HEp(f3)dm
n>0 B B
- /B Hfsdm—a(Hlg, C(£3)) = ) fB HLY(Zp(f3)dm,

n>0

since C(f3) o T = Xp(f3) — f3 on B. This, combined with Equation (4.18), leads to Equation (4.7). (Il



Probabilistic potential theory and induction of dynamical systems 1763

4.3. Invariants for a Bernoulli scheme

Let us show how the invariants o> and 73 play out on a simple example: a Bernoulli scheme. We shall see that the
conclusions of Theorems 3.2 and 4.6 hold true on a simple example by a straighforward computation.

Let A := {0, I}N and T be the one-sided shift on A. Fix p € (0, 1), and let u := (pdp + (1 — p)81)®N. Let f(w) :=
—(1 = p)1g(wo) + p1i(wo). Then [, fdu =0, and the random variables (f o T"),>0 are i.i.d.

Let us induce on the set B = {0} x {0, 1}N+, with (B) = p. Then £3(f) = —(1 — p) + pG, where the distribution of
G + 1 under p(:|B) is geometric of parameter p. By the strong Markov property, the random variables (X5 (f) o T§)n>0
are i.i.d.

By Kac’s formula,

0=/Afdu=/BEB(f)dM=M(B)[pE(G)—(1 -p]

so we recover E(G) = I_Tp.
Assuming we can use Theorem 3.2,

p=p = [ Fu=odeam 7.
= 0 (B, mis, Ta; T(f), Tu(f)) = w(BE[(pG — (1 = p))*],

which yields the correct identity Var(G) = 1;—21’
Finally, assuming we can use Theorem 4.6 with H = ¢pp =1 + G,

pa=p@r == [ Fau=rAm T 1)
=13 (B.mp, Tp: Z5(f). a(f). Tp(f))
— 302k (B.mi5. Tp: S5(f). T5(f))odk (B.m. Tg: Tp(f), 1+ G)
= w(B)E[(pG — (1 - p))’]
—3u(BE[(pG — (1 — p))’|E[(pG — (1 — p))(1 + G)]
= pE[(pG — (1 - p))’] = 3p(1 = PE[(pG — (1 - p))’]

3
= pE[(pG — (1= p))’] =3p(1 = p)*,
which yields the correct identity

37_A=p2-p)
5[(6 - @)= L7P2=P)
4
More generally, and up to checking the hypotheses of Theorems 3.2 and 4.6, this method yields closed forms for the
first 3 moments of Xp(f), when f is an observable of a finite-state Markov chain with null integral and B is a single
state.

5. The distributional point of view

The invariance under induction of Green—Kubo’s formula, Theorem 3.2, was proved for a small class of dynamical
systems preserving an infinite measure in [16]. The proof relied on a probabilistic interpretation of this formula, as
the asymptotic variance in a limit theorem. We now expand on this point of view, and give criterions — distinct from
Theorem 3.2 — to prove the invariance of Green—Kubo’s formula.

In this section, we always assume that (A, m, T') is ergodic and recurrent, and that B C A has positive finite measure.
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5.1. Invariance under induction of limits of Birkhoff sums

Assume first that f is non-negative. By Hopf’s ergodic theorem [8, §14, Individueller Ergodensatz fiir Abbildungen],
m-almost surely and m,g-almost surely respectively,

ZZ;(I)fOTk _fAfdm

lim == = , (5.1)
b0 Yl pork m(B)
i im0 ZB( T _ [y Ea(fHdm 52)

ntoo ylg Tk m(B)
For almost every x € B, taking the limit in Equation (5.1) along the subsequence (ZZ;& @p o Téf (X))n>0 yields:

iz opoT)—1

lim k=0 foT* _fAfdm
n—1 oTky—1 - :
n—+00 I(ESZO @poT¥) 150 Tk m(B)
. 1l poTh)—1 _
Since Z,((:(‘)ZO vpoly) foTk=Y1"0Sp(f) o Tk, we get:
i icoZB(N)oTE [y fdm
oo yMlyp o Tk m(B)

Comparing this limit with that of Equation (5.2) yields [, £3(f)dm= [, f dm. This holds for any positive function f.
As any integrable function is the difference of two positive integrable functions, we get the equality of the integrals for
any f e L1(A, m).

The same result holds true in continuous time, for suspension semi-flows. Let us consider a suspension semi-flow
(M, u, (Yy)y) over a dynamical system (M, v, T') with roof function ¢ : M — (0, 4+00). In other words,

- M= {(x,s) € M x [0, +00)} with the identification (x, s + ¢(x)) ~ (T (x), s),
— n=v ® Leb on the fundamental domain {(x, s) € M x [0, +00) : s < p(x)},
- Yi(x,85)=(x,t+s) forall (x,s) e Mandr=>0.

Let f € L'(M, w).Set Xp(f)(x) := O(p(x) f(x,s)ds. Using the same reasoning (with Hopf’s ergodic theorem for semi-
flows, and with g(x,s) = <p()c)’1 instead of 15 in the denominator), we get:

/M Eg(f)dm=/Mfdu.

As mentioned before, the Green—Kubo formula is a bilinear form which shares with the integral, at least in some cases,
such an invariance under induction (Theorem 3.2). We now present a distributional argument for this invariance.

5.2. Invariance under induction of the Green—Kubo formula

A short computation (see e.g. the proof of [16, Lemma A.2]) shows that

2
1 n—1
2 . k
o5 (A,m, T; f, f)= lim — T dm, 53
Gk ( fh)=lim A<ﬂ]§)f0 (5.3)
where the limit in the right hand-side is taken in the Cesaro sense. In particular, when m is a probability measure and
| fA f - foT"dm]| is summable, GéK(A, m, T'; f, f) is the limit of the variances of the Birkhoff sums.
For some systems with m infinite, it has been shown in [16] that

n—1 kY2
T)hd
UCZ;K(A,m, T; f, f)= lim fA(Zkzolfo ) m’
n=too [ (3 iZgho THRdm

5.4

for some density probability # with respect to m. Note that, when m is a probability measure and & = 14, Equation (5.4)
and (5.3) coincide.
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Moreover, as explained in [14], for a wide family of Z¢-extensions and for suitable null-integral observables, / A [
foT"dm= O(nl_%) for d # 2, and O(In(n)) for d = 2. Hence, in both cases above, aéK(A, m, T'; f) is the asymptotic
variance of (a_l,, ZZ;(I) f o T%),=¢ with respect to some probability measure 7 dm and for some sequence (a,),>o which
diverges to +o0.

Assume that m(A) = 1, and consider a measurable subset B of A of m-positive measure. Our goal is to use this
interpretation of the Green—Kubo formula in order to establish sufficient conditions ensuring that

0Gk(A.m, T f, f) =0l (B.myz. To: Tp(f). Tp(f)).

Inducing the system speeds up the process (Zz;g) fo Tk)nzo. If both the initial system (A, m, T') and the induced sys-
tem (B, mp, Tp) satisfy a central limit theorem with respective variances 03y (A, m, T; f, f) and m(B)~'6Zy (B, my3,
Tp; Zp(f), Zp(f)), and if we can control the time change between the corresponding processes, then we can show the

invariance under induction of aéK. The control on the time-change can be achieved using an invariance principle (see [2,
Chapter 14]).

Proposition 5.1. Let (A, m, T) be a recurrent and ergodic probability-preserving dynamical system. Let B C A be a
measurable set with positive measure. Let f € L2(A, m). Assume that oéK(A, m, T; f, f) and oéK(B, my, Tp; Xp(f),
Y g(f)) both converge in Cesaro sense.

Assume moreover that:

— the process (ﬁ(Z,E":t(J)_l X(f)o T/;)tZO)nZO converges in distribution (with respect to m(-|B) and to the metric J1)

to a Brownian motion of variance given by the quantity m(B)flaéK(B, myg, Tg; Xp(f), Zp(f));
— the sequence (ﬁ ZZ;& fo Tk)nzo converges in distribution to a centered Gaussian random variable with variance

ok (A.m, T; f, f).
Then ol (A, m, T; f, f) =0y (B, mg, Tg; Zp(f), Zp(f)).

Following directly [12, Theorem 1.1], the control on the change of time can also be achieved without an invariance
principle, as long as the dispersion of (ZZ;(I) (o — m(B) Yo Tg)nzo is controlled.

Proposition 5.2. Let a,b > 0 such that (1 — %)(1 — %) > % Let (M, u, (Yy);) be the suspension semi-flow over an
invertible ergodic probability-preserving dynamical system (B, m, Tg) with roof function ¢ € L*(B, m;R%). Let f €
L (M, ) with null integral, and write £g(f)(x) := Ow(x) f(Ys(x,0))ds.

Assume morover that:

— the sequence (ﬁ Zz;é Yp(f)o Té‘)nzo converges in distribution (with respect to m) to a Gaussian random variable

of variance 0123;

— the sequence (% fot f o Ysds);>0 converges in distribution (with respect to the measure M(M)_lu) to a Gaussian
random variable of variance M(M)*laﬁ;
— the sequence (Zz;é (pp — w(M)) o Tl’,f )n>0 converges in distribution to a Gaussian random variable.
2_ 2
Then oy =op.
5.3. Application to finite state Markov chains

Let (X,)n>0 be a Markov chain on a finite state space 2 with an irreducible transition kernel P. Let u be the unique
stationary probability on €2 for this Markov chain, and let ¥ € 2 be a single site.
Let f : Q — R be such that fQ fdu =0, and let £y (f) be the sum of f over an excursion from W.

By Kac’s formula, E(Xy(f)) = 0. Let us consider the variance of Xy (f). The stochastic process (ﬁ X

Zz;é S (Xi))n>o satisfies an invariance principle. In addition, the tails of the random variable £y ( f) decay exponentially
fast, and the excursions are independent. Hence, we can apply Proposition 5.1:

Var(Ew(f))=M(‘l’)<— | a2y [ f-(P*)"(f)du>

n>0
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= pu(¥) /Q f-@U—=P)y =1)(fHdp,

where the sum in the first line converge in Cesaro sense, and (I — P)~! is the inverse of (I — P) on functions with null
expectation.

5.4. Application to random walks and 7. -extensions

One of the motivations for this work is the study of hitting probabilities for Z¢-extensions of dynamical systems. As these
systems are generalisations of random walks, let us recall the problem for random walks.

Let (Xn)n>0 be a Markov chain on a countable state space €2, with irreducible transition kernel P and invariant
measure . Assume that p is recurrent, and let ¥ C 2 be finite. We are interested in the following question:

Starting from w € Y, what is the next site in \V that the Markov chain hits?

The answer is a random variable with values in W, whose distribution we would like to compute. Doing this for any
w € W is equivalent to computing Py.

Let B(W, u) :=CY and By(¥, ) :={h € B(Y, i : fq, hdu = 0}. The matrix Py acts on B(W, ).

It preserves constant functions, and since ji|y is Py -invariant, it preserves Bo (W, ). Hence we only need to understand
the action of Py on By (W, w). Irreducibility implies that (I — Py) is invertible on By (W, ).

As noticed at the end of Section 2.3, for any g € Bo(W, u), there exists a bounded function f : Q — C such that
(I — P)(f) = g. Hence, one can define a potential kernel I" : By(W¥, u) — L°°(€2, u) such that:

(I-P)l'(g)=g.

Let us also define 'y := (I — Py) ™! : Bo(W, ) — Bo(W, ). Then, by Proposition 2.4, for all g, h € Bo(V, ).,
[ r@ - hau=[ row-no.
w @

If I" is well understood, then one can recover information on I'y, and from there on Py =1 — F;l. For recurrent and
irreducible random walks on Z¢ (d € {1, 2}), the potential kernel I" can be computed or approximated very well using the
Fourier transform [19].

Let (A, m, T) be an ergodic dynamical system preserving the probability measure 1, and let F : A — Z¢ be measur-
able. Define:

- A=Ax Zd_;
- T(x,p):=(T(x), p+ F(x)) for (x, p) € A;
- m:=m® Lebya.

Then (A, m, T) is measure-preserving. To make discussions easier, for ¥ C 74 we write [U] := A x V. Under the
hypothesis that it is ergodic and recurrent, one may choose W C Z? finite, and ask:

Starting from (x, p) € [V], what is the next site in [\V] that the dynamical system hits?

As with Markov chains, we thus would like to compute the matrix Py whose entries are the probabilities that, starting
from ([{p}], m), the orbit next hits [{p’}]. One option to compute Py is to use the transfer operator £. For nice enough
systems, one can find a good Banach space B C L*°([V], m), with By ={h e B: f[\p] hdm = 0}, and such that:

— constant functions are in B;
— Bis dense in IL2([\II], m);
— I — Ly is invertible from By to itself (with inverse ['[y)).

Then I — L is invertible from By to L°°(A, m), by Lemma 1.5; denote by I" one of its inverses. It follows that, for all f
and g in By:

/ l"(g)~hdm:/ Iwi(g) -hdm.
[v] [v]

If I is well understood, then one can recover I'[gj, and from there L£[y). Under spectral assumptions, the potential kernel
" can again be computed or approximated very well using the Fourier transform (see e.g. [16, Proposition 1.6] for a
weaker variant).
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Note that, if one is only interested in the transition probabilities, then one only needs to compute f[q,] Liwi(g) -hdm

for g, h constant on each [{p}]. However, the set of functions constant on each [{p}] is typically4 not stable under Ly,
which motivates the use of a larger Banach space.

Finally, let us comment a result on hitting probabilities: [16, Corollary 1.9]. It was proved therein that, under technical
assumptions and when (A, m, T') is Gibbs—Markov:

ﬁ(trajectory starting from [{0}] hits [{ p}] before [{0}])

~poo Y _[2M(S, F =0) —M(S, F = p) —M(S, F = —p)].

n>0

This result can be seen as an asymptotic development of Pyjo, ;7 when p goes to infinity. The proof uses induction on
[{0, p}], and then the invariance of the Green—Kubo formula, instead of the invariance of the solutions of the Poisson
equation. The method of the proof was similar in spirit to that of Proposition 5.1, with additional difficulties due to the
infinite measure setting.

When looking for a stochastic transition matrix on n > 2 sites with prescribed invariant measure, one has (n — 1)2
degrees of freedom. The invariance of the Green—Kubo formula gives access only to the symmetrized potential kernel
'y + 'Y, which yields n(n — 1)/2 independent constraints. These are enough to recover 'y, and then Py, if and only if
n < 2. This explains both the success of the approach in [16], where |¥| = 2, and the necessity of more accurate tools if
one wish to work with more than two sites.
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