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Abstract. Hopf’s ratio ergodic theorem has an inherent symmetry which we
exploit to provide a simplification of standard proofs of Hopf’s and Birkhoff’s

ergodic theorems. We also present a ratio ergodic theorem for conservative

transformations on a σ-finite measure space, generalizing Kingman’s ergodic
theorem for subadditive sequences and generalizing previous results by Akcoglu

and Sucheston.

1. Introduction and statement of results

Birkhoff’s pointwise ergodic theorem [3] is a key tool in ergodic theory. It admits
many notable generalizations, including Hopf’s ratio ergodic theorem [5], King-
man’s subadditive ergodic theorem [10], and more recently Karlsson-Ledrappier
and Gouëzel-Karlsson theorems on cocycles of isometries [8, 4]. Since the work of
Kamae [6] and Katznelson and Weiss [9], there exist very short and easy proofs
of Birkhoff’s ergodic theorem. These proofs have also been adapted to Hopf’s and
Kingman’s ergodic theorems ([7] and [9, 11], respectively).

In this article, we provide a proof of Hopf’s and Kingman’s ergodic theorem, in
the context of conservative transformations preserving a σ-finite measure. We follow
the argument of Katznelson and Weiss [9] but add a noticeable twist: the state-
ment of the ratio ergodic theorem has a natural symmetry which is not present in
Birkhoff’s ergodic theorem, a symmetry which can be leveraged to simplify proofs.
This makes, in our opinion, Hopf’s theorem more fundamental, with Birkhoff’s the-
orem now appearing as a corollary (the inverse point of view is given in e.g. [12],
where Hopf’s theorem is deduced from Birkhoff’s by inducing).

As for the Kingman ratio ergodic theorem on a σ-finite measure space, a similar
result was obtained by Akcoglu and Suchestom [2] under an additional integrability
assumption. Our result does not make this assumption and the proof is significantly
simpler (in our opinion). As the reader may note there are no significant complica-
tions coming from working with σ-finite measures, but some parts may be simplified
quite a lot if one assumes ergodicity.

Definition 1.1. Consider a σ-finite measure space (X,B, µ) and a measure pre-
serving transformation T : X → X. The transformation T is said to be conservative
if:

∀A ∈ B : µ(A) > 0 ⇒ ∃n ≥ 1 : µ(A ∩ T−1A) > 0. (1)

A subset A ⊂ X is T -invariant if T−1A = A, and a function f : X → R is T -
invariant if f ◦T = f . The transformation T is ergodic (for µ) if for any measurable
T -invariant subset A, either µ(A) = 0 or µ(X \A) = 0.

Unless stated otherwise, we make throughout the standard assumption that
(X,B, µ, T ) is a conservative measure-preserving transformation on a σ-finite mea-
sure space. Most of the time, ergodicity shall not be assumed.

Given any f : X → R, we write Snf :=
∑n−1
k=0 f ◦ T k for the Birkhoff sums. Our

first goal is to give a proof of the following well-known:
1
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Theorem 1.2 (Hopf’s ratio ergodic theorem). Let (X,B, µ, T ) be a conservative,
measure preserving transformation on a σ-finite measure space. Let f , g ∈ L1(X,µ)
with g > 0 almost everywhere. Then the following limit exists µ-almost everywhere:

h := lim
n→∞

Snf

Sng
. (2)

The function h is finite µ-almost everywhere, T -invariant, and for any T -invariant
subset A ∈ B: ∫

A

f dµ =

∫
A

hg dµ. (3)

Note that, when f > 0 as well, there is a natural symmetry between f and g,
which we will exploit in our proof. This symmetry is lost in Birkhoff’s version,
where g ≡ 1.

We will proceed to prove a ratio version of Kingman’s theorem for subadditive
sequences. Recall that a sequence (an)n≥1 of measurable functions is said to be
subadditive (with respect to T ) if for n, m ≥ 1, we have µ-almost everywhere:

an+m ≤ an + am ◦ Tn. (4)

Theorem 1.3 (A Kingman ratio ergodic theorem). Let (X,B, µ, T ) be a conserva-
tive, measure preserving transformation on a σ-finite measure space. Let (an)n≥1
be a sub-additive measurable sequence of functions with values in [−∞,+∞], and
with (a1)+ ∈ L1(X,µ). Let g ∈ L1(X,µ) with g > 0 almost everywhere. Then the
following limit exists µ-almost everywhere:

h := lim
n→+∞

an
Sng

∈ [−∞,+∞).

If A ∈ B is a T -invariant set, then

inf
n

1

n

∫
A

an dµ = lim
n

1

n

∫
A

an dµ =

∫
A

hg dµ ∈ [−∞,+∞).

For a similar version of this theorem, but under an additional uniform integra-
bility condition on an, cf. [2]. To our knowledge the theorem is new in the stated
generality.

The remainder of this article is organized as follows. In Section 2 we prove
some classical lemmas about conservative dynamical systems, and the main lemma
(Lemma 2.3, which slightly generalizes the main theorem of [9]). In Section 3 we
prove Hopf’s ratio ergodic theorem, and in Section 4 the above Kingman ratio
ergodic theorem (whose proof uses Hopf’s ergodic theorem).

2. Main lemmas

First, and so that our proofs will be essentially self-contained, let us state and
prove some consequences of conservativity. For details the reader may consult e.g.
[1, Chap 1]. Conservativity is an a priori mild recurrence condition which is equiv-
alent to the following seemingly stronger recurrence condition. Let (X,B, µ, T ) be
a conservative, measure-preserving dynamical system. Then, given any measurable
subset A, almost everywhere on A,∑

n≥0

1A ◦ Tn = +∞. (5)

In other words, almost every point in A returns infinitely often to A. A consequence
is the following:
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Lemma 2.1. Let (X,B, µ, T ) be a measure-preserving and conservative transfor-
mation. Let f : X → R+ be measurable. Then, µ-almost everywhere on {f > 0}:

lim
n→+∞

Snf = +∞. (6)

Proof. For n ≥ 1, let An := {f ≥ 1
n}. Let Ωn := An ∩

⋂
m≥0

⋃
k≤m T

−kAn be the
set of points of An which return to An infinitely many times.

Since f is positive and takes value at least 1/n on An, Equation (6) follows for all
x ∈ Ωn. Let Ω∞ :=

⋃
n≥1 Ωn. Then Equation (6) holds on Ω∞. Since (X,B, µ, T )

is assumed to be conservative, µ(Ωn∆An) = 0, so that µ(Ω∞∆
⋃
n≥1An) = 0. But,⋃

n≥1An = {f > 0}, so Ω∞ has full measure in {f > 0}. �

Let (an)n≥1 be a super-additive sequence of functions and g ∈ L1(A,µ). We
define for every x ∈ X the following lower and upper limits:

0 ≤ h(x) = lim inf
n→∞

an(x)

Sng(x)
≤ h(x) = lim sup

n→∞

an(x)

Sng(x)
≤ +∞. (7)

Both h and h are measurable and, in fact, a.e. T -invariant:

Lemma 2.2. Let (X,B, µ, T ) be a measure-preserving and conservative transfor-
mation. Let (an)n≥1 be a super-additive sequence of functions, with a1 ≥ 0 a.e..

Let g ∈ L1(A,µ;R∗+). Then h ◦ T = h and h ◦ T = h almost everywhere.

Proof. We prove the result for h; the proof for h is essentially the same. Let (an)
and g be as in the lemma. Then:

an+1

Sn+1g
≥ a1 + an ◦ T
g + (Sng) ◦ T

By Lemma 2.1, limn→+∞ Sng = +∞ almost everywhere, whence, taking the liminf,

h ≥ h ◦ T.

The function η = h/(1+h) takes values in [0, 1] and we have A := {h > h◦T} =
{η > η ◦ T}. By Lemma 2.1, the map φ := η − η ◦ T verifies limn→+∞ Snφ = +∞
almost everywhere on A. But as Snφ = η− η ◦Tn+1 ∈ [−1, 1] everywhere, we must
have µ(A) = 0.

�

We can now state and prove our main lemma.

Lemma 2.3. Let (X,B, µ, T ) be a measure-preserving and conservative transfor-
mation. Let (an)n≥1 be a super-additive sequence of functions, with a1 ≥ 0 almost
everywhere. Let g ∈ L1(A,µ;R∗+).

Then h is T -invariant, and for all T -invariant A ∈ B,

lim inf
n→+∞

1

n

∫
A

an dµ ≥
∫
A

hg dµ. (8)

Proof. By Lemma 2.2, h is T -invariant, but with values a priori in [0,+∞]. For
ε > 0, we set

hε :=
h

1 + εh
,

with the convention that hε(x) = 1/ε when h(x) = +∞. Let:

nε := inf
{
k ≥ 1 : ak ≥ Sk(hεg)

}
.
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Then nε(x) = 1 whenever h(x) = 0. When h(x) > 0, we have hε(x) < h(x), so
nε(x) is finite by the definition of the limsup. Introduce a time-cutoff L ≥ 1 and
denote E = Eε,L := {nε ≤ L}. We then set:

ϕ(x) = ϕε,L(x) :=

{
1 if x /∈ E

nε(x) if x ∈ E .

One verifies that for every x ∈ X:

aϕ(x) ≥ Sϕ(x)(ghε1E).

When x ∈ E this is true by the very definition of nε(x), while for x /∈ E it holds
because the right hand side vanishes.

Define a sequence of stopping times:{
τ0(x) = 0,
τk+1(x) = τk(x) + ϕ

(
T τk(x)x

)
, k ≥ 0.

.

Note that 1 ≤ τk+1 − τk ≤ L for every k ≥ 0, and for all x ∈ X:

aτk(x)(x) ≥
k−1∑
j=0

aϕ(x) ◦ T τj (x) ≥
k−1∑
j=0

Sϕ(x)(hεg1E) ◦ T τj (x) = Sτk(x)(ghε1E)(x).

Let N ≥ 1 and x ∈ X. There exists k ≥ 1 such that N < τk(x) ≤ N +L. Then:

aN+L(x) ≥ aτk(x)(x) +

N+L∑
i=τk(x)+1

a1 ◦ T i ≥ Sτk(x)(hεg1E)(x) ≥ SN (ghε1E)(x),

which allows us to get rid of the intermediate stopping times. Take now a T -
invariant set A ∈ B and integrate the above inequality over A. By T -invariance:

1

N + L

∫
A

aN+L dµ ≥ 1

N + L

∫
A

SN (hεg1E) dµ =
N

N + L

∫
A

hεg1E dµ.

Letting N → +∞, we conclude that:

lim inf
n→+∞

1

n

∫
A

an dµ ≥
∫
A

hεg1E dµ.

Letting L→ +∞ and finally ε→ 0, we obtain by monotone convergence:

lim inf
n→+∞

1

n

∫
A

an dµ ≥
∫
A

hg dµ.

�

3. Proof of Hopf’s Ratio ergodic theorem

We are now ready to prove to prove Hopf’s ergodic theorem. Lemma 2.3 only
provides a upper bound on h. In most proofs using these techniques, the lower
bound on h follows by repeating the same argument, with a modified stopping time
(and some handwaving). Here we notice that the symmetry of Hopf’s ratio ergodic
theorem provides us with a shortcut:

Proof of Theorem 1.2. Let f , g ∈ L1(X,µ;R∗+). By Lemma 2.3, with an = Snf ,
for any T -invariant measurable A:∫

A

f dµ ≥
∫
A

hg dµ.

In particular, taking A = X, we see that hg ∈ L1(X,µ).

We now use the symmetry, and apply Lemma 2.3 with g and f . Since

lim sup
n→+∞

(Sng)/(Snf) = h−1,
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we get h−1f ∈ L1(X,µ), and in particular +∞ > h ≥ h > 0 almost everywhere.

We now apply Lemma 2.3 again, with hg and f . Since

lim sup
n→+∞

Sn(hg)

Snf
=
h

h
,

we get that, for any T -invariant measurable A,∫
A

f dµ ≥
∫
A

hg dµ ≥
∫
A

f
h

h
dµ.

As f > 0 a.e. and the integral is finite we conclude that h = h =: h almost
everywhere.

Let us now turn towards the proof of Theorem 1.2 without positivity assumption
on f . Since µ is σ-finite, we can write f = f+−f−, with f+ and f− in L1(X,µ;R∗+).
Then, µ-almost everywhere:

lim
n→+∞

Snf

Sng
= lim
n→∞

Snf+
Sng

− Snf−
Sng

= h+ − h− =: h.

In addition,
∫
A
f dµ =

∫
A

(f+ − f−) dµ =
∫
A

(h+ − h−)g dµ =
∫
A
hg dµ. �

Remark 3.1. The proof of Theorem 1.2 itself can be significantly shortened if
one assumes that (X,B, µ, T ) is ergodic: since h and h are then constant, applying
Lemma 2.3 to the pairs (f, g) and (g, f) yields directly:

h ≥
∫
X
f dµ∫

X
g dµ

≥ h.

There is, to our knowledge, not much gain to be had in the proof of Lemma 2.3.

In the ergodic case, the statement of Hopf’s ergodic theorem can be simplified.

Corollary 3.2 (Hopf’s theorem, ergodic version). Let (X,B, µ, T ) be a measure-
preserving, conservative and ergodic transformation. Let f , g ∈ L1(A,µ) with∫
X
g dµ 6= 0. Then µ-almost everywhere:

lim
n→+∞

Snf

Sng
=

∫
X
f dµ∫

X
g dµ

. (9)

Proof. We decompose as above f = f+ − f−, with f± integrable and positive. By
the Theorem 1.2, µ-almost everywhere,

lim
n→+∞

Sng

Snf±
= k±.

By ergodicity, the k± are constant and then non-zero, since
∫
X
g dµ = k±

∫
X
f± dµ 6=

0. Thus, almost everywhere:

lim
n→∞

Snf

Sng
= lim
n→∞

Snf+
Sng

− Snf−
Sng

=
1

k+
− 1

k−
=

∫
X

(f+ − f−) dµ∫
X
g dµ

=

∫
X
f dµ∫

X
g dµ

. �

As a special case, we may also consider when µ is a probability measure and
g ≡ 1 (thus integrable). T is automatically conservative by Poincaré recurrence
theorem. From Theorem 1.2 we deduce:

Corollary 3.3 (Birkhoff’s Ergodic Theorem). Let (X,B, µ, T ) be a measure pre-
serving transformation on a probability space. Let f ∈ L1(X,µ). Then the following
limit exists µ-almost everywhere:

f∗ := lim
n→+∞

1

n
Snf. (10)
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f∗ is T -invariant (up to a set of measure 0), and for any T -invariant measurable
subset A: ∫

A

f dµ =

∫
A

f∗ dµ. (11)

4. Kingman, σ-finite version

We proceed here with a ratio version of Kingman’s theorem for non-negative
super-additive sequences, from which Theorem 1.3 shall follow easily.

Proposition 4.1. Let (X,B, µ, T ) be a measure-preserving and conservative trans-
formation. Let (an)n≥1 be a super-additive sequence of functions, with a1 ≥ 0
almost everywhere. Let g ∈ L1(A,µ;R∗+).

Then the following limit exists µ-almost everywhere:

h := lim
n→+∞

an
Sng

∈ [0,+∞].

In addition, for any T -invariant measurable set A,

sup
n∈N

1

n

∫
A

an dµ = lim
n→+∞

1

n

∫
A

an dµ =

∫
A

hg dµ ∈ [0,+∞].

Proof. Let A be any T -invariant measurable set. By Lemma 2.3, we know that:

lim inf
n→+∞

1

n

∫
A

an dµ ≥
∫
A

hg dµ.

We want to prove the converse inequality (inverting the direction of the inequality,
and the lim inf and lim sup). Let K < supn≥1

1
n

∫
A
an dµ. Then we can find k ≥ 1

such that 1
k

∫
A
ak dµ > K. For M > 0, let fk,M := min{ak,MSkg,Mk}/k. By the

monotone convergence theorem, there exists M > 0 such that:∫
A

fk,M dµ > K.

Let n ≥ 2k, and let q, r be such that n = qk + r and 0 ≤ r < k. Then:

an =

k−1∑
i=0

an
k
≥
k−1∑
i=0

1

k

ai +

q−2∑
j=0

ak ◦ T i+jk + an−i−(q−1)k ◦ T i+(q−1)k


≥

(q−1)k−1∑
i=0

ak
k
◦ T i = S(q−1)k(ak/k) ≥ Sn−2kfk,M .

Let hk,M := lim infn→+∞ Snfk,M/Sng. Note that |Snfk,M − Sn−2kfk,M | ≤ 2kM ,
so that hk,M = lim infn→+∞ Sn−2kfk,M/Sng by Lemma 2.1. Hence, h ≥ hk,M . By
Hopf’s theorem (cf. Theorem 1.2),

K ≤
∫
A

fk,M dµ =

∫
A

hk,Mg dµ ≤
∫
A

hg dµ.

Since this is true for all K < supn≥1
1
n

∫
A
an dµ, we finally get:

lim sup
n→+∞

1

n

∫
A

an dµ ≤ sup
n≥1

1

n

∫
A

an dµ ≤
∫
A

hg dµ,

whence the sequence ( 1
n

∫
A
an dµ)n≥1 converges to its supremum, and:∫

A

hg dµ =

∫
A

hg dµ. (12)

All is left is to prove that h = h almost everywhere. ForM ≥ 0, take A := {h ≤M}.
Then hg is integrable on A, and since g > 0 a.e. Equation (12) implies h = h
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almost everywhere on A. Since this is true for all M ≥ 0, we get that h = h almost
everywhere on {h < +∞}, and obviously h = h on {h = +∞}. �

Let us finish the proof of Theorem 1.3.

Proof of Theorem 1.3. Up to taking the opposite sequences, we work with super-
additive sequences. Let (an)n≥1 be a super-additive sequence, and g a positive and
integrable function. Write a1 = a+1 −a

−
1 and bn := an+Sna

−
1 . Then (bn)n≥1 and g

satisfy the hypotheses of Proposition 4.1, and so do (Sna
−
1 )n≥1 and g. The (almost

everywhere) limits and integrals concerning (Sna
−
1 )n≥1 and g are finite, so we can

subtract them from the limits and integrals concerning (bn)n≥1 and g. �
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