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1 Subharmonic functions on open subsets of C (December 4th,
Thomas Gauthier)

The main reference for this part is [8].

1.1 Definitions

Definition 1.1 (Subharmonic function).
Let Ω ⊂ C be open and u : Ω→ R ∪ {−∞}. We say that u is subharmonic if u 6≡ −∞ and:

• u is upper semi-continuous (usc): for all α ∈ R, the set {u < α} is open.

• u satisfies the local submean inequality: ∀z ∈ Ω, ∃ε0 > 0, ∀r ∈ [0, ε0],

u(z) ≤ 1

2π

∫ 2π

0

u(z + reiθ) dθ. (1.1)

We denote by SH(Ω) the space of subharmonic functions on Ω.

Example 1.2.
Let f : Ω→ C be holomorphic with f 6≡ 0. Then ln |f | is subharmonic:

• We have {ln |f | < α} = {|f | < eα} = f−1(B(0, eα)) for α ∈ R.

• For z ∈ C and all small enough r > 0,

f(z) =
1

2π

∫ 2π

0

f(z + reiθ) dθ

ln |f |(z) ≤ 1

2π

∫ 2π

0

ln |f |(z + reiθ) dθ.

Example 1.3.
SH(Ω)s is a cone : if u, v are subharmonic on Ω and α, β ≥ 0, then αu+ βv is subharmonic on

Ω.
If u, v are subharmonic on Ω, then max{u, v} is also subharmonic on Ω.

Theorem 1.4 (Maximum principle).
Let Ω be open and connected and u subharmonic on Ω.

• If u attains its maximum in Ω, then u is constant.

• If lim supz→ζ u(z) ≤ 0 for all ζ ∈ ∂Ω, then u ≤ 0 on Ω.

Theorem 1.5 (Criterions for subharmonicity).
Let Ω be open and u : Ω→ R ∪ {−∞}. The following are equivalent:

• u is subharmonic on Ω.

• For all h : Ω→ R harmonic, if1 lim supz→ζ(u(z)− h(z)) ≤ 0 for all ζ ∈ ∂Ω, then u ≤ h on Ω.

• If furthermore u is C2: ∆u ≥ 0 on Ω.
1More simply, but less rigorously: if u ≤ h on ∂Ω and h is harmonic, then u ≤ h everywhere.
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1.2 Regularization

We assume that Ω is connected.
Let χ ∈ C∞(C,R+) be supported on D(0, 1) with integral 1. Write for ε > 0 and z ∈ C:

χε(z) :=
1

ε2
χ
(z
ε

)
.

For ε > 0, write Ωε := {z ∈ Ω : B(z, ε) ⊂ Ω}.

Proposition 1.6.
Let u ∈ SH(Ω). For all small enough ε, we have u ∗ χε ∈ SH(Ωε) ∩ C∞(Ωε,R).

The key fact is:

Lemma 1.7.

SH(Ω) ⊂ L1
loc(Ω).

Proof.
Let u be a subharmonic function on Ω which is not locally integrable. Then there exists z ∈ Ω

and r > 0 such that ∫
D(z,r)

|u|(w) d Leb(w) = +∞.

Since u is upper semi-continuous, it is bounded from above on compact subsets of Ω, and in particular
on D(z, r). Hence ∫

D(z,r)

u(w) d Leb(w) = −∞.

By the submean inequality, u ≡ −∞ on D(z, r). But then, by connectedness, u ≡ −∞ on Ω, which
is impossible.

1.3 Generalized Laplacian

For f ∈ C2(Ω,R), let

df =
∂f

∂x
dx+

∂f

∂y
dy.

Instead of using the real coordinates (x, y), we use complex coordinates (z, z):

df =
∂f

∂z
dz +

∂f

∂z
dz,

where ∂
∂z

= 1
2

(
∂
∂x
− i ∂

∂y

)
and ∂

∂z
= 1

2

(
∂
∂x
− i ∂

∂y

)
. More succintly, we may write

d = ∂ + ∂,

where ∂f = ∂f
∂z

dz and ∂f = ∂f
∂z

dz.
Then, the Laplace operator may be written

∂2

∂z∂z
=

1

4

(
∂2

∂x2
+

∂2

∂y2

)
=

1

4
∆,
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or again more succintly

i∂∂f =
1

2
(∆f)dx ∧ dy.

We are going to investigate the operator ddc = i
π
∂∂, defined by duality for u ∈ L1

loc by:〈
i

π
∂∂u, ϕ

〉
:=

∫
u · i

π
∂∂ϕ d Leb ∀ϕ ∈ C∞c (Ω,R).

Theorem 1.8.
If u ∈ SH(ω), then ddcu ≥ 0 in the sense of distributions. In particular, ddcu extends as a

positive continuous linear from on C0
c (Ω), i.e. as a Radon measure.

Proof.
We write L(ϕ) := 〈ddcu, ϕ〉.
Let ϕ ∈ C∞c (Ω,R) be nonnegative. Let (un) be a sequence of subharmonic smooth functions on

Ω decreasing to u. Then, by monotonic convergence and integration by parts,

L(ϕ) =

∫
Ω

u · ddcϕ d Leb

=

∫
Ω

lim
n→+∞

un · ddcϕ d Leb

= lim
n→+∞

∫
Ω

un · ddcϕ d Leb

= lim
n→+∞

1

2π

∫
Ω

un∆ϕ d Leb

= lim
n→+∞

1

2π

∫
Ω

(∆un)ϕ d Leb

≥ 0.

Let K ⊂ Ω be compact and V be a neighborhood of K compactly contained in Ω. Let ψ ∈
C∞c (Ω, [0, 1]) with Ψ ≡ 1 on V . If ϕ is smooth and supported on V , then |ϕ| ≤ ‖ϕ‖∞ ψ, so that
|L(ϕ)| ≤ ‖ϕ‖∞ |L(ψ)|.

Let ϕ ∈ C0
c (Ω,R) be supported on K. For all small enough ε, the function ϕ ∗χε is supported on

V . We thus extend L to ϕ, with ‖L‖ ≤ |L(ψ)|.

1.4 Potential of a measure

Let µ be a Borel, finite, nonnegative measure with compact support in C. The potential of µ is

pµ :

{
C → R ∪ {−∞}
z 7→

∫
C ln |z − w| dµ(w)

.

Theorem 1.9.
pµ is subharmonic on C, and harmonic on C \ Supp(µ);

pµ(z) =∞ µ(C) ln |z|+O
(
z−1
)

;

and ddcpµ = µ.
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Proof.
The first point follows from Fatou’s inequality and Fubini’s theorem. Let (zn)n∈N be converging

to z ∈ C. Then

lim sup
n→+∞

pµ(zn) ≤
∫
C

lim sup
n→+∞

ln |zn − w| dµ(w) ≤
∫
C

ln |z − w| dµ(w) = pµ(z),

so that pµ is upper semi-continuous.
Let z ∈ C and r > 0. Then

1

2π

∫ 2π

0

pµ(z + reiθ) dθ =
1

2π

∫ 2π

0

∫
C

ln |z + reiθ − w| dµ(w) dθ

=

∫
C

1

2π

∫ 2π

0

ln |z + reiθ − w| dθ dµ(w)

=

∫
C

ln max{|z − w|, r} dµ(w)

≥ pµ(z),

so that pµ is subharmonic. In addition, the last inequality is an equality for all small enough r if
z ∈ C \ Supp(µ), so that pµ is harmonic on C \ Supp(µ).

Let R be such that Supp(µ) ⊂ D(0, R). For all z such that |z| > R,

pµ(z) = µ(C) ln(z) +

∫
D(0,R)

ln
∣∣∣1− w

z

∣∣∣ dµ(w).

If |z| > 2R, then for all w ∈ Supp(µ), ∣∣∣ln ∣∣∣1− w

z

∣∣∣∣∣∣ ≤ 2R

|z|
,

whence pµ(z) =∞ µ(C) ln |z|+O (z−1).
Let ϕ ∈ C∞c (Ω,R). Then

〈ddcpµ, ϕ〉 =

∫
C
pµ · ddcϕ d Leb

=

∫
C

∫
C

ln |z − w| dµ(w)
1

2π
∆ϕ(z) d Leb(z)

=

∫
C

1

2π

∫
C

ln |z − w|∆ϕ(z) d Leb(z) dµ(w).

But:

1

2π

∫
C

ln |z − w| ·∆ϕ(z) d Leb(z) = lim
ε→0

1

2π

∫
{|z−w|>ε}

ln |z − w| ·∆ϕ(z) d Leb(z)

= lim
ε→0

1

2π

∫ 2π

0

(
ϕ(w + εeiθ)− ε ln(ε)

∂ϕ

∂r
(w + εeiθ)

)
dθ

= ϕ(w).
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1.5 Continuity principle and minimum principle

Proposition 1.10.
Let K ⊂ C be compact and µ be supported on K. For all z0 ∈ Supp(µ),

lim inf
z→z0

pµ(z) = lim sup
z→z0
z∈K

pµ(z).

In addition, infC pµ = infSupp(µ) pµ.

Proof.
If pµ(z0) = −∞, the result follows by upper semi-continuity of pµ.
Assume that pµ(z0) > −∞. Then µ({z0}) = 0. Hence, for all ε > 0, there exists r > 0 such that

µ(D(z0, r)) ≤ ε. For z ∈ C, let ζ ∈ K be a point which minimizes | · −z| on K. Then, for all w ∈ K,

|ζ − w|
|z − w|

≤ |ζ − z|+ |z − w|
|z − w|

≤ 2.

Hence,

pµ(z) = pµ(ζ)−
∫
C

ln

∣∣∣∣ζ − wz − w

∣∣∣∣ dµ(w) ≥ pµ(z)− ε ln(2)−
∫
C\D(ζ0,r)

ln

∣∣∣∣ζ − wz − w

∣∣∣∣ dµ(w).

If z converges to z0 ∈ K, then ζ also converges to z0. Hence,

lim inf
z→ζ0

pµ(z) ≥ lim sup
ζ→z0
ζ∈K

pµ(ζ)− ε ln(2).

As ε is arbitrary, we get the claim. The last statement follows by upper semi-continuity.

1.6 Energy of a measure

Let K ⊂ C be compact and µ be nonnegative, finite and supported on K.

Definition 1.11 (Energy of a measure).
We define the energy of µ as

I(µ) :=

∫
C
pµ dµ =

∫
C

ln |z − w| dµ(z) dµ(w). (1.2)

If µ({z0}) > 0, then I(µ) = −∞.

Definition 1.12 (Borel-polar subsets).
A subset E ⊂ C is Borel-polar if I(ν) = −∞ for all probability measures ν supported on E.

Borel-polar subsets are stable under countable unions. In particular, countable subsets are Borel-
polar. Conversely, if E has positive Lebesgue measure, then a uniform measure supported on E has
finite energy, so that E is not Borel-polar: Borel-polar subsets have Lebesgue measure zero.

Definition 1.13 (Equilibrium measures).
A probability measure ν ∈ P(K) is an equilibrium measure of K if

I(ν) = sup
µ∈P(K)

I(µ).
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Theorem 1.14.
A nonempty compact set K has an equilibrium measure. It is unique if K is non-Borel polar.

Proof.
Let µ ∈ P(K), and (µn)n∈N be a sequence of P(K) converging in distribution to µ. Note that

µn ⊗ µn converges to µ⊗ µ in distribution.
Let m ∈ R. Set gm(z, w) := max{ln |z−w|,m}. Then gm is continuous, and ln |z−w| ≤ gm(z, w),

so that
lim sup
n→+∞

I(µn) ≤ lim sup
n→+∞

∫
C2

gm dµn ⊗ µn =

∫
C2

gm dµ⊗ µ.

By monotonic convergence, limm→−∞
∫
C2 gm dµ ⊗ µ = I(µ). Hence, I is upper semi-continuous on

P(K).
To conclude, let (µn)n∈N be such that I(µn) converges to supµ∈P(K) I(µ). Up to extraction of a

subsequence, (µn)n∈N converges in distribution to ν ∈ P(K), and ν is an equilibrium measure.
The uniqueness relies on Frostman’s lemma:

Lemma 1.15 (Frostman).
If ν is an equilibrium measure of K, then pν ≥ I(ν) on C. In addition, there exists a Borel-polar

subset E ⊂ K such that pν ≡ I(ν) on K \ E.

We ignore polar sets (they have Lebesgue measure 0, so we can work outside of a polar set, and
conclude by upper semi-continuity). Let ν be an equilibrium measure on K, and ν ′ an equilibrium
measure on ∂K. Then pν ≥ I(ν), and pν ≡ I(ν) on K. In addition, pν′ ≥ I(ν ′), and pν′ ≡ I(ν ′) on
∂K. By the maximum principle, pν′ ≡ I(ν ′) on K.

pν−pν′ is harmonic on C\K, and constant (equal to I(ν)− I(ν ′)) on K. Hence pν−pν′ =∞ o(1).
By the maximum principle for harmonic functions, pν − pν′ ≤ I(ν)− I(ν ′) on C \K. Taking the

limit at∞, we get 0 ≤ I(ν)− I(ν ′). The same reasoning with pν′−pν yields 0 ≤ I(ν ′)− I(ν). Hence,
I(ν) = I(ν ′) and pν = pν′ .

All that remains is to prove Frostman’s lemma.

Proof of Frostman’s lemma.
By the minimum principle, we need to show that pν ≥ I(ν) on Supp(ν). Let Kn := K ∩ {pν ≥

I(ν) + 1
n
}.

We shall show that Kn is polar for all n, so that
⋃
n≥1Kn = K ∩ {pν > I(ν)} is also polar. If

not, there exists a probability measure µ supported on Kn with I(µ) > −∞. The main thrust of
the argument is that, if we exchange a little mass of ν where pν is small (i.e. where the measure ν
is too concentrated) with µ, which is supported where pν is large (i.e. where the measure ν is less
concentrated), we can improve the energy, which contradicts the hypothesis that ν be an equilibrium
measure.

As I(ν) =
∫
C pν dν, there exists z0 ∈ Supp(ν) such that pν(z0) ≤ I(ν). Since pν is upper

semi-continuous, there exists r > 0 such that pν < I(ν) + 1
2n

on D(z0, r).
Let ν1 := ν|D(z0,r)c

+ ν(D(z0, r))µ. For all t ∈ [0, 1], let νt := (1 − t)ν + tν1, which is supported
on K. We shall prove that I(νt) > I(ν) for all small enough non-zero t, which provides the desired
contradiction as ν maximizes the energy onK. Since I(µ) > −∞, the function t 7→ I(νt) is quadratic.
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We compute

dI(νt)

dt
(0) = 2

∫ ∫
ln |z − w| dν(z) d(ν1 − ν)(w)

= 2

∫
C
pν d(ν1 − ν)

= 2

(
ν(D(z0, r))

∫
C
pν dµ−

∫
D(z0,r)

pν dν

)
.

But µ is supported on Kn and pν ≥ I(ν) + 1
n
on Kn, so that

ν(D(z0, r))

∫
C
pν dµ ≥ ν(D(z0, r))

(
I(ν) +

1

n

)
.

In addition, pν ≤ I(ν) + 1
2n

on D(z0, r), so that∫
D(z0,r)

pν dν ≤ ν(D(z0, r))

(
I(ν) +

1

2n

)
.

Together, these two inequalities yield dI(νt)
dt

(0) ≥ ν(D(z0,r))
n

> 0, which is what we wanted.

This finishes the proof of the uniqueness of the equilibrium measure.
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2 Fekete tuples and equidistribution (December 18th, Thomas
Gauthier)

2.1 Fekete tuples and capacity

Let K ⊂ C be a non-polar compact subset.

Definition 2.1 (nth-diameter).
The nth diamter of K is

δn(K) := sup

{ ∏
1≤i<j≤n

|wi − wj|
2

n(n−1) : w1, . . . , wn ∈ K

}
.

A n-tuple (w1, . . . , wn) ∈ Kn is a Fekete n-tuple if it realizes the supremum.

A Fekete n-tuple always exists: the map{
Cn → R
(w1, . . . , wn) 7→

∏
1≤i<j≤n |wi − wj|

2
n(n−1)

is continuous, and Kn is compact.
There may not be a unique Fekete n-tuple : the image of a Fekete n-tuple by an isometry is a

Fekete n-tuple, so a circle or a disk has infinitely many Fekete n-tuples.

Theorem 2.2 (Fekete, Szëgo).
Let K be a non-polar compact subset of C. Then (δn(K))n∈N is non-increasing, and

lim
n→+∞

δn(K) = c(K) := sup
µ∈P(K)

eI(µ).

Proof.
The nth diameter in nonincreasing: Let n ≥ 1 and (w1, . . . , wn+1) be a Fekete (n+ 1)-tuple.

Fix 1 ≤ i0 ≤ n+ 1. Then ∏
1≤i<j≤n+1

i,j 6=i0

|wi − wj| ≤ δn(K)
n(n−1)

2 .

Taking the product over 1 ≤ i0 ≤ n+ 1,

δn+1(K)
(n−1)n(n+1)

2 ,=
∏

1≤i<j≤n+1

|wi − wj|n−1 ≤
(
δn(K)

n(n−1)
2

)n+1

= δn(K)
(n−1)n(n+1)

2 ,

which gives the claim. In particular, the sequence (δn(K))n∈N converges.

δn(K) ≥ c(K) for all n: Let n ≥ 1 and (w1, . . . , wn) ∈ Kn. Then

2

n(n− 1)

∑
1≤i<j≤n+1

ln(|wi − wj|) ≤ ln(δn(K)).
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Let us integrate each term with respect to µK ⊗ µK , where µK is the equilibrium measure of K.
Then

2

n(n− 1)

∑
1≤i<j≤n+1

∫
C2

ln(|wi − wj|) dµK(wi) dµK(wj) ≤ ln(δn(K))

2

n(n− 1)

∑
1≤i<j≤n+1

I(µK) ≤ ln(δn(K))

I(µK) ≤ ln(δn(K)).

But I(µK) = ln(c(K)), which gives the claim.

limn→+∞ δn(K) ≤ c(K) for all n: Let n ≥ 1 and (w1, . . . , wn) ∈ Kn be a Fekete n-tuple. Fix
ε > 0. Let µi,ε be the uniform measure on the circle S(wi, ε), and νn,ε be the average of (µi,ε)1≤i≤n.
Then νn,ε is a probability measure supported on B(K, ε), and

I(νn,ε) =

∫
C2

ln(|z − w|) dνn,ε(w) dνn,ε(z)

=
1

n2

n∑
i=1

∫
C2

ln(|z − w|) dµi,ε(w) dµi,ε(z) +
2

n2

∑
1≤i<j≤n

∫
C2

ln(|z − w|) dµi,ε(w) dµj,ε(z)

=
1

n2

n∑
i=1

I(µi,ε) +
2

n2

∑
1≤i<j≤n

∫
C
pµi,ε dµj,ε(z)

≥ 1

n
ln(ε) +

2

n2

∑
1≤i<j≤n

pµi,ε(wj)

where we used the submean inequality at the last step. Finally, by the submean inequality again,

pµi,ε(wj) =

∫
C

ln(|z − zj|] dµi,ε ≥ ln(|zi − zj|).

Hence,

I(νn,ε) ≥
1

n
ln(ε) +

2

n2

∑
1≤i<j≤n

ln(|zi − zj|) =
1

n
ln(ε) +

n− 1

n
ln(δn(K)).

In addition, νn,ε is supported on B(K, ε), so that

c(Kε) ≥ eI(νn,ε) ≥ ε
1
n (δn(K))1− 1

n .

Taking the limit as n→ +∞, we get c(Kε) ≥ limn→+∞ δn(K).
Since K ⊂ Kε, we have c(K) ≤ c(Kε). Now, take a sequence (εn)n≥1 which converges to 0, and

µKεn a sequence of equilibrium measures of Kεn . Let ν be a limit point in distribution, which exists
since all measure are supported on the compact K1. Then ν is supported on

⋂
n≥1Kεn = K, and in

particular c(K) ≥ eI(ν).
The semi-continuity of the energy yields

lim sup
n→+∞

c(Kεn) = lim sup
n→+∞

eI(µKεn ) ≤ eI(ν) ≤ c(K).

Hence, limε→0 c(Kε) = c(K), which finishes the proof.
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2.2 Equidistribution of Fekete tuples

Theorem 2.3 (Fekete).
Let K be a non-polar compact subset of C. Let (w1,n, . . . , wn,n)n≥2 be a sequence of Fekete n-tuples.

Then the sequence of probability measures
(

1
n

∑n
k=1 δwi,n

)
n≥2

converges in distribution to µK.

Proof.
Let ν ∈ P(K) be a limit point of

(
1
n

∑n
k=1 δwi,n

)
n≥2

for the weak-∗ convergence. Then, up to
extraction of a subsequence,

lim
n→+∞

2

n(n− 1)

n∑
1≤i<j≤n

δ(wi,n,wj,n) = ν ⊗ ν.

Let ε > 0. Take ϕε(z, w) := ln(max{|z − w|, ε}). Then

lim
n→+∞

2

n(n− 1)

n∑
1≤i<j≤n

∫
C2

ϕε dδ(wi,n,wj,n) =

∫
C2

ϕε dν ⊗ ν.

In addition,

ln(c(K)) = lim
n→+∞

ln(δn(K)) ≤
∫
C2

ϕε dν ⊗ ν ;

by monotonic convergence when ε vanishes, ln(c(K)) ≤ I(ν). But ν is supported on K, so that
Hence, ln(c(K)) = I(ν). In addition, K is non-polar, so its equilibrium measure is unique, and
ν = µK .

2.3 Quantitative equidistribution

Definition 2.4 (Green function).
Let K be a non-polar compact subset of C. Let µK be its equilibrium measure. The Green

function of K is
GK := pµK − I(µK).

Definition 2.5.
Let α ∈ (0, 1]. A compact K is α-Hölder if there exists C ≥ 0 such that |GK(x) − GK(y)| ≤

C|x− y|α for all x, y ∈ K, i.e. if its Green function is α-Hölder.

Theorem 2.6 (Favre, Rivera, Letelier, 2004; Pritsker, 2011).
Let α ∈ (0, 1] and C ≥ 0. Let K be a (C, α)-Hölder compact subset of C. There exists A(C, α) ≥ 0

such that, for all ϕ ∈ W 1,2 ∩ Lip(C,R), for all n ≥ 2 and any Fekete n-tuple (w1, . . . , wn),∣∣∣∣∣
∫
C
ϕ dµK −

1

n

n∑
k=1

ϕ(wi)

∣∣∣∣∣ ≤ A

√
ln(n)

n
‖ϕ′‖L2 +

1

n
1
α

‖ϕ‖Lip .

Proof.
Let n ≥ 2 and ε > 0. Set µn := 1

n

∑n
i=1 δwi and νn,ε := 1

n

∑n
i=1 λS(wi,ε), where λS(wi,ε) is the

uniform measure on S(wi, ε). Then∣∣∣∣∫
C
ϕ dµK −

∫
C
ϕ dµn

∣∣∣∣ ≤ ∣∣∣∣∫
C
ϕ dµK −

∫
C
ϕ dνn,ε

∣∣∣∣+

∣∣∣∣∫
C
ϕ dνn,ε −

∫
C
ϕ dµn

∣∣∣∣ .
12



The latter term of the right hand-side is at most ε ‖ϕ‖Lip. In addition,∫
C
ϕ dµK −

∫
C
ϕ dνn,ε =

∫
C
ϕ ddc(pµK − pνn,ε) = −

∫
C

dϕ ∧ dc(pµK − pνn,ε).

We use:

Lemma 2.7 (Key lemma).
Let ρ = ddcg be a signed measure, where g ∈ C0(P1(C),R). Then

(ρ, ρ) := −
∫
C2

ln(|z − w|) dρ(z) dρ(w) =

∫
C

dg ∧ dcg ≥ 0.

In addition, (ρ, ρ) = 0 if and only if ρ = 0.

For now, let us assume this lemma. Then∣∣∣∣∫
C
ϕ dµK −

∫
C
ϕ dνn,ε

∣∣∣∣ =

∣∣∣∣∫
C

dϕ ∧ dc(pµK − pνn,ε)
∣∣∣∣

≤

√∫
C

dϕ ∧ dcϕ×

√∫
C

d(pµK − pνn,ε) ∧ dc(pµK − pνn,ε).

But ∫
C

d(pµK − pνn,ε) ∧ dc(pµK − pνn,ε) = −
∫
C2

ln(|z − w|) d(pµK − pνn,ε)(z) d(pµK − pνn,ε)(w)

= −
∫
C2

ln(|z − w|) dµK(z) dµK(w)

−
∫
C2

ln(|z − w|) dνn,ε(z) dνn,ε(w)

+ 2

∫
C2

ln(|z − w|) dµK(z) dνn,ε(w)

= − ln(c(K))− I(νn,ε) + 2

∫
C
pµK dνn,ε.

Thus, ∣∣∣∣∫
C
ϕ dµK −

∫
C
ϕ dνn,ε

∣∣∣∣ ≤
√∫

C
dϕ ∧ dcϕ×

√
ln(c(K))− I(νn,ε) + 2

∫
C
GK dνn,ε

=

√∫
C

dϕ ∧ dcϕ×

√
ln(c(K))− ln(ε)

n
+ 2

∫
C
GK dνn,ε.

Since GK ≡ 0 on K,∫
C
GK dνn,ε =

1

n

n∑
i=1

∫
C
GK dλS(wi,ε) =

1

n

n∑
i=1

∫
C
(GK −GK(wi)) dλS(wi,ε) ≤ Cεα.

We finally get ∣∣∣∣∫
C
ϕ dµK −

∫
C
ϕ dνn,ε

∣∣∣∣ ≤
√∫

C
dϕ ∧ dcϕ×

√
ln(c(K))− ln(ε)

n
+ 2Cεα

13



We choose ε := 1

n
1
α
:

∣∣∣∣∫
C
ϕ dµK −

∫
C
ϕ dνn,ε

∣∣∣∣ ≤
√∫

C
dϕ ∧ dcϕ×

√
C + ln(c(K))

n
+

1

α

ln(n)

n
.

This yields the theorem with A =
√
C + ln(c(K)) + 1

α
. All that remains is to prove the lemma.

Proof of the key lemma.
Let ρ = ρ+ − ρ− be a signed measure, and assume that ρ+, ρ− are probability measures and

neither give mass to singletons. Let:

gρ(w) :=

∫
C

ln(|z − w|) dρ(z) = pρ+ − pρ−.

Then ddcgρ = ddcpρ+ − ddcpρ− = ρ = ddcg. Hence, g − gρ is harmonic on P1(C), and thus constant,
and

(ρ, ρ) = −
∫
C2

ln(|z − w|) dρ(z) dρ(w) = −
∫
C
gρ dρ =

∫
C

dgρ ∧ dcgρ =

∫
C

dg ∧ dcg.

If g is C1, then

dg ∧ dcg =
1

2π

(∣∣∣∣∂g∂x
∣∣∣∣2 +

∣∣∣∣∂g∂y
∣∣∣∣2
)

d Leb .

In particular,
∫
C dg ∧ dcg = ‖g′‖2

L2 ≥ 0.
If g is only continuous, we approximate it by convolution.
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3 Entropy of complex polynomials (January 15th, Thomas
Morand)

The references for this talk are [1, 2, 6, 8].

3.1 The Riemann sphere

Let Ĉ := C ∪ {∞} be the Riemann sphere. It is a compact space, which we may identify with
S2 ⊂ R3. Let z 7→ z∗ be the inverse of the stereographic projection. We define a distance, and its
associated topology, on Ĉ:

σ(z, w) = ‖z∗ − w∗‖R3 =
2|z − w|√

(1 + |z|2)(1 + |w|2)
∀z, w ∈ C,

σ(z,∞) = lim
w→∞

‖z∗ − w∗‖R3 =
|z|√

1 + |z|2
∀z ∈ C.

The open subsets of Ĉ are:

• the open subsets of C;

• the sets {∞} ∪ (C \K), with K ⊂ C compact.

The space Ĉ is a dimension 1 complex manifold, when endowed with the charts z 7→ z on C and
z 7→ 1/z on Ĉ \ {0}.

The spherical derivative of f : Ĉ→ Ĉ is

|f ′(z)|σ := lim
w→z

σ(f(w), f(z))

σ(w, z)
.

Definition 3.1.
A function f : Ĉ→ Ĉ is holomorphic if f (or 1/f) is analytical at each z0 ∈ C, and z 7→ f(1/z)

(or z 7→ 1/f(1/z) if f(∞) =∞) is analytical on a neighborhood of 0.
We denote by O(Ĉ) the space of holomorphic functions on Ĉ.

Proposition 3.2.
The set of holomorphic functions on Ĉ is the set of rational functions on C.

Proof.
Let f ∈ O(Ĉ) be nonconstant. Let {zi, i ∈ I} be the set of its poles. By removing theses poles,

we get a function h = f −
∑

i∈I gi − g which is continuous on Ĉ and thus continuous and bounded
on C. By Liouville’s theorem, h is constant, so f = h+ g +

∑
i∈I gi is rational.

3.2 Entropy

Let X be compact and f ∈ C(X,X). We denote by htop(f) its topological entropy, and by hµ(f)
its metric entropy.

Let d be a distance on X. For all n ∈ N and x, y ∈ X, set

dn(x, y) := max
0≤k≤n−1

d(fk(x), fk(y)).

Then dn is a distance on X. We denote by Bn(x, r) the associated open ball.
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Theorem 3.3 (Brin-Katok).
Let µ ∈ P(X) be ergodic. For µ-almost every x ∈ X,

hµ(f) = sup
ε>0

lim inf
n→+∞

− 1

n
ln(µ(Bn(x, ε))). (3.1)

A subset F ⊂ X is said to be (n, ε)-separated if, for all x 6= y ∈ F , we have dn(x, y) ≥ ε; or, in
other words, if the balls (Bn(x, ε/2))x∈F are pairwise disjoint.

Let Nd(f, ε, n) be the maximal cardinal of a (n, ε)-separated subset, and

hd(f, ε) := lim sup
n→+∞

1

n
ln(Nd(f, ε, n)).

Then
htop(f) = lim

ε→0
hd(f, ε) = sup

ε→0
hd(f, ε).

We recall:

Proposition 3.4 (Variational principle).

htop(f) = sup
µ∈P(X)

hµ(f). (3.2)

3.3 Dynamics

We now study specifically the dynamics of a polynomial P : Ĉ→ Ĉ of degree d ≥ 2.

3.3.1 Entropy of P

Theorem 3.5 (Misurewicz, Przytycki).
For any P ∈ C[X] of degree d,

htop(P ) ≥ ln(d). (3.3)

Proof.
We write L := supz∈Ĉ |P ′(z)|σ. Since Ĉ is compact and z 7→ |P ′(z)|σ is continuous, L < +∞. Let

α ∈ (0, 1); set ε := L
α
α−1 and B := {z ∈ Ĉ : |P ′(z)|σ ≥ ε}.

A subset of good preimages. Fix δ > 0 such that, whenever z 6= w ∈ B and σ(z, w) < δ, we
have P (z) 6= P (w).

Let n ∈ N and x be a regular value of P n. Then P−1({x}) contains d preimages. If d of these
preimages are in the good set B, we set Q1(x) to be those d preimages. Otherwise, we choose one of
these preimages y ∈ Bc, and set Q1(x) = {y}.

Since all the points in Q1(x) are regular values of P n−1, we may iterate this process, getting
Q2(x) ⊂ P−2({x}), . . ., Qn(x) ⊂ P−n({x}). By construction, Qn(x) is (n, δ)-separated.

A point whose preimages are mostly good. Set

A := {y ∈ C : Card(B ∩ {y, P (y), . . . , P n−1(y)}) ≤ αn}.

Let us show that, for all n ∈ N, there exists x ∈ Ĉ\P n(A) which is a regular value of P n. Let y ∈ A.
Then

|(P n)′(y)|σ ≤ |P ′(P n−1(y))|σ . . . |P ′(P (y))|σ|P ′(y)|σ.
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There are at least n−cαnb instances where |P ′(P n−k(y))|σ < ε, whence

|(P n)′(y)|σ < εn−cαnbLbαnc ≤ εn−αnLαn = 1.

By Sard’s lemma, there exists x ∈ Ĉ \ P n(A) which is a regular value of P n.

Lower bound on the entropy. Let x ∈ Ĉ \ P n(A) be a regular value of P n. Since x =
P n(Qn(x)) /∈ A, we have in particular Qn(x) ∩ A = ∅.

Let y ∈ Qn(x). Since y /∈ A, we have Card(B ∩ {y, P (y), . . . , P n−1(y)}) > αn. In other words, to
go from y to x, we have at least bαnc+ 1 good transitions, so that Card(Qn(x)) ≥ dαn.

Hence, Qn(x) is a (n, δ)-separated subset whose cardinal is at least dαn. Hence, hd(P, δ) =
lim supn→+∞

1
n

ln(dαn) ≥ α ln(d). Taking the limit as δ → 0, we get htop(P ) ≥ α ln(d). Since this
holds for all α ∈ (0, 1), finally, htop(P ) ≥ ln(d).

3.3.2 Julia set

Let P (X) =
∑d

k=0 akX
k be a polynomial of degree d ≥ 2. Then

|P (z)| = |z||zd−1|

∣∣∣∣∣
d∑

k=0

akz
k−d

∣∣∣∣∣ .
The rightmost term is bounded on C\B(0, 1). Since d ≥ 2, there existsM ≥ 0 such that |P (z)| ≥ 2|z|
whenever |z| ≥M . Hence, either (P n(z))n∈N is bounded, or it converges to ∞.

SetA(∞) := {z ∈ Ĉ : limn→+∞ P
n(z) =∞} andKP := A(∞)c = {z ∈ Ĉ : (P n(z))n∈N is bounded}

the filled-in Julia set. Set also JP := ∂KP the Julia set, and FP := J cP the Fatou set.

Lemma 3.6.
A(∞) is open.

Proof.
A(∞) =

⋃+∞
n=0 P

−n(B(0,M)c).

Theorem 3.7.

c(P−1(K)) =
(
c(K)
|ad|

) 1
d whenever K is compact [8, Theorem 5.2.5].

In particular, c(KP ) = |ad|−
1
d−1 .

3.3.3 Green function of P

Let us define
gP :=

{
C → R
z 7→ limn→+∞

1
dn

ln+ |P n(z)|.
Set u(z) := ln+ |P (z)| − d ln+ |z|. Whenever |z| > max{1,M}, we have u(z) = ln |P (z)| − d ln |z|, so
that u is continuous and bounded on Ĉ. In addition,

ln+ |z|+
+∞∑
n=0

1

dn+1
u(P n(z)) = ln+ |z|+ lim

N→+∞

N∑
n=0

[
1

dn+1
ln+ |P n+1(z)| − 1

dn
ln+ |P n(z)|

]
= lim

N→+∞

1

dN+1
ln+ |PN+1(z)|

= gP (z).
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Hence, gP is well-defined, continuous, and

gP ◦ P = dgP . (3.4)

The function gP is subharmonic as a uniform limit of continuous and subharmonic functions. In
addition, gP ≡ 0 on KP , and limn→+∞

1
dn

ln(|P n(z)|) for z /∈ KP . In particular, gP is harmonic on
A(∞).

3.3.4 Equilibrium measure

We know that gP : C → R is continuous, subharmonic, harmonic on A(∞), zero on KP , and such
that gP (z)− ln+ |z| =

∑+∞
n=0

1
dn+1u(P n(z)) is bounded.

Hence, ddcgP =: µP is the equilibrium measure of KP , and

I(µP ) = ln(c(KP )) = − 1

d− 1
ln(|ad|).

Definition 3.8.
Let f : Ĉ→ Ĉ be a proper function and ϕ ∈ C(Ĉ,R). Let µ be a measure on Ĉ. We set

f ∗ϕ := ϕ ◦ f,

and, by duality,
〈f∗µ, ϕ〉 := 〈µ, f ∗ϕ〉 = 〈µ, ϕ ◦ f〉.

Since f is proper, it has a topological degree d, and thus

f∗ϕ(x) =
∑

y∈f−1({x})

ϕ(y).

By duality,

〈f ∗µ, ϕ〉 := 〈µ, f∗ϕ〉 =

∫
Ĉ

∑
y∈f−1({x})

ϕ(y) dµ(x).

Proposition 3.9.

• P ∗ddcgP = ddc(gP ◦ P ).

• P ∗µP = dµP .

• P∗P
∗µP = dµP .

• P∗µP = µP .

Proof.
Assume the first point. Then

P ∗µP = P ∗ddcgP = ddc(gP ◦ P ) = dddcgP = dµP ,

which proves the second point.
Let ϕ ∈ C(Ĉ,R). Then

〈P∗P ∗µP , ϕ〉 = 〈P ∗µP , P ∗ϕ〉 = 〈µP , P∗P ∗ϕ〉.
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But

P∗P
∗ϕ(x) =

∑
y∈P−1({x})

(P ∗ϕ)(y)

=
∑

y∈P−1({x})

ϕ(P (y))

=
∑

y∈P−1({x})

ϕ(x)

= dϕ(x),

so that 〈P∗P ∗µP , ϕ〉 = 〈µP , dϕ〉 = d〈µP , ϕ〉. As this holds for all continuous ϕ, we get P∗P ∗µP = dµP ,
which is the third point.

Finally, P∗µP = P∗(d
−1P ∗µP ) = d−1P∗P

∗µP = d−1dµP = µP , which proves the fourth and last
point.‘

Hence, the Jacobian of P with respect to µP is constant and equal to d: if P is injective on B,
then µP (P (B)) = dµP (B). The measure µP is mixing, and thus ergodic.

Theorem 3.10.

h µP (P ) = ln(d).

Proof.
By the variational principle,

h µP (P ) ≤ h top(P ) ≤ ln(d).

By Brin-Katok’s theorem, for all α > 0, there exists ε > 0 and Xα a Borel subset of positive measure
(for µP ) such that, for all large enough n and all x ∈ Xα,

µP (Bn(x, ε)) ≤ d−(1−α)n.

Hence, h top(P ) ≥ ln(d).
Let α > 0, and U a neighborhood of the set V of critical values of P such that µP (U) ≤ α/2. Set

Xα(n) :=
{
x ∈ Ĉ : Card{0 ≤ k ≤ n− 1 : P k(x) ∈ U} ≤ nα

}
,

and Xα := lim infn→+∞Xα(n). By Birkhoff’s ergodic theorem, for µP -almost every x ∈ Ĉ,

lim
n→+∞

Card{0 ≤ k ≤ n− 1 : P k(x) ∈ U}
n

= lim
n→+∞

1

n

n−1∑
k=0

1U(P k(x)) = µP (U) ≤ α

2
.

In particular, µP -almost surely, the point x belongs toXα(n) for all large enough n, whence µP (Xα) =
1.

Let x ∈ Xα and ε < d(V, ∂U) be small enough. Note that P sends Bn−k(P
k(x), ε) into

Bn−k−1(P k+1(x), ε). If P k+1(x) ∈ U , then µP (Bn−k(P
k(x), ε)) ≤ µP (Bn−k−1(P k+1(x), ε)), since

µP is P -invariant. Otherwise, by taking ε small enough, we can ensure that P is injective on
Bn−k(P

k(x), ε), and

µP (Bn−k(P
k(x), ε)) = dµP (P (Bn−k(P

k(x), ε))) ≤ µP (Bn−k−1(P k+1(x), ε)).

Hence, for all x ∈ Xα and all large enough n,

µP (Bn(x, ε)) ≤ d−(1−α)n.
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4 Equidistribution of equilibrium measures (January 29th, Ma-
teo Ghezal)

The references for this talk are [5, 8].

4.1 Recalls

Let P be a monic polynomial of degree d ≥ 2.

Definition 4.1.
Let µ ∈ P(C) with compact support. We set

pµ(z) :=

∫
C

ln |z − w| dµ(w).

The energy of µ is then

I(µ) :=

∫
C
pµ(z) dµ(z) =

∫
C

∫
C

ln |z − w| dµ(z) dµ(w).

If K is compact, then the capacity of K is

c(K) := sup
µ∈P(K)

eI(µ).

Definition 4.2.
We set

A(∞) :=

{
z ∈ C : lim

n→+∞
P n(z) = +∞

}
.

The filled-in Julia set is KP := A(∞)c, and JP := ∂KP

If µP is the equilibrium measure of KP , then µP := ddcGP .

Theorem 4.3.

c(KP ) = 1 and I(µP ) = 0. (4.1)

4.2 Asymptotic distribution of preimages

For z0 ∈ JP , we set µn := d−n
∑

x:Pn(x)=z0
δx.

Theorem 4.4.
For all z0 ∈ JP , the sequence (µn)n≥0 converges in distribution to µP .

Proof.
We know that lim supn→+∞ pµn ≤ 0 on JP .
Let z ∈ KP . Then

pµn(z) = d−n
dn∑
k=1

ln |z − zk|,

were (zk)1≤k≤dn is an enumeration of P−n({z0}). Hence,

pµn(z) = d−n ln |P n(z)− z0|,

and lim supn→+∞ ln |P n(z)− z0| ≤ 0. In addition, we recall
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Lemma 4.5 (Frostman).

pµP ≥ I(µP ).

Hence, ∫
JP

lim sup
n→+∞

pµn dµP ≥ lim sup
n→+∞

∫
JP

pµn dµP = lim sup
n→+∞

∫
JP

pµn dµn ≥ 0.

Finally, lim supn→+∞ pµn(z0) ≥ 0 for µP -almost every z0 ∈ JP .
Let µ be a limit point of (µn)n≥0. Then lim supn→+∞ pµn(z) ≤ pµ(z) on JP , so that pµ(z) ≥ 0 for

µ-almost every z ∈ JP . Denote by Ω this set. Then µP (Ω) = 1, and Supp(µP ) ⊂ Ω.
But pµ is upper semi-continuous. Let (zn) be a sequence of Ω converging to z. Then pµ(z) ≥

lim supn→+∞ pµ(zn) ≥ 0. Hence, I(µ) =
∫
JP
pµ dµ ≥ 0 = I(µP ). By uniqueness of the equilibrium

measure, µ = µP .

Remark 4.6.
We can count points without multiplicity. We have µnddcd−n ln |P n(·) − z0| + o(1). Writing z1,

. . ., zmn the roots of P n − z0, we can use instead µ′n := m−1
n

∑mn
k=1 δzk . Indeed,

∣∣pµn − d−n ln |P n − z0|
∣∣ =

1

dn

∣∣∣∣∣
dn∑

k=mn+1

ln |zk − ·|

∣∣∣∣∣ .
If this error term is not in o(1), then there exists a point z such that P−1({z}) = {w}. But then
z = w is a super-attracting critical point.

Remark 4.7.
We can choose z0 ∈ KP such that P−1({z0}) 6= {z0}.

4.3 Asymptotic distribution of periodic points

Let Pern := {z ∈ C : P n(z) = z}, and

µn :=
1

Card(Pern)

∑
z:Pn(z)=z

δz.

We want to show that any accumulation point of (µn)n≥1 is supported on JP , and that µn =
ddcd−n ln |P n − z|+ o(1).

Let us prove the first point. Let µ be a limit point of (µn)n≥1 and U be a connected component of
the interior of KP . Then U contains at most one periodic point z. If z has multiplicity 2 or higher,
then it is parabolic, which is absurd. Hence, z in simple, and thus µn(U) ≤ d−n and µ(U) = 0.
Finally, µ is supported on JP .

The proof of the second point is very similar to the proof for the preimages. Actually, Brolin has
shown a more general statement:

Lemma 4.8 (Brolin).
Let E ⊂ H be two compact subsets such that c(E) = eV > 0. Let (µn)n≥1 be a sequence of

probability measures supported on H, converging to µ ∈ P(E).
If lim supn→+∞ pµn ≤ V , then µ = µE.
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4.4 Application

We can draw JP .

Corollary 4.9.
If z0 ∈ JP , then

JP =
⋃
n≥0

P−n(z0).

Proof.
Write X :=

⋃
n≥0 P

−n(z0). Since JP is P -invariant, we have X ⊂ JP . In addition, JP =
Supp(µP ) ⊂ X.
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5 Currents and plurisubharmonic functions (March 4th, Thomas
Gauthier)

5.1 Forms and currents on manifolds

5.1.1 Differential forms

Definition 5.1 (Differential forms).
Let U ⊂ Rn be open. A p-form on U is a section of Λp(T ∗U). In coordinates,

ϕ(x) =
∑

I⊂{1,...,n}
|I|=p

ϕI(x)dxi1 ∧ . . . ∧ dxip ,

where, if f1, . . ., fp are linear forms,

(f1 ∧ . . . ∧ fp)(x1, . . . , xp) = det(fj(xi)).

Example 5.2.
A 0-form is a smooth function.
Let f : U → Rn be a smooth function. Then

df(x) =
n∑
i=1

∂f

∂xi
(x)dxi

is a 1-form.

Proposition 5.3.
Let Ωp(U) be the space of C∞ p-forms on U . Then Ωp(U) is a R-vector space and a C∞(U)-modulo

of finite type: whenever ϕ, ψ ∈ Ωp(U) and f , g ∈ C∞(U), we have fϕ+ gψ ∈ Ωp(U).

5.1.2 Exterior product and differential

Definition 5.4 (Exterior product).
Let p, q be such that p+ q ≤ n. Let ϕ ∈ Ωp(U) and ψ ∈ Ωq(U). We define

ϕ ∧ ψ(x) :=
∑

I⊂{1,...,n}
|I|=p

∑
J⊂{1,...,n}
|J |=q

ϕI(x)ψJ(x)dxi1 ∧ . . . ∧ dxip ∧ dxj1 ∧ . . . ∧ dxjq . (5.1)

Remark 5.5.
The exterior product in noncommutative: ϕ ∧ ψ = (−1)pψ ∧ ϕ.
In Equation (5.1), whenever I ∩ J 6= ∅, the term in the sum vanishes.

Definition 5.6 (Derivation).
Let ϕ ∈ Ωp(U). We define

dϕ(x) :=
∑

I⊂{1,...,n}
|I|=p

dϕI ∧ dxi1 ∧ . . . ∧ dxip . (5.2)
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Remark 5.7.
We compute

d2ϕ =
∑

I⊂{1,...,n}
|I|=p

n∑
i=1

n∑
j=1

∂2f

∂xi∂xj
dxi ∧ dxj ∧ dxi1 ∧ . . . ∧ dxip .

But, by Schartz’s lemma, ∂2f
∂xi∂xj

= ∂2f
∂xj∂xi

, so that ∂2f
∂xi∂xj

dxi∧dxj = − ∂2f
∂xj∂xi

dxj∧dxi. Hence, d2ϕ = 0,
or more summarily, d2 = 0.

Definition 5.8 (Compactly-supported p-forms).
Given a p-form ϕ, we define its support as

⋃
I⊂{1,...,n}
|I|=p

Supp(ϕI).

We denote by Dp(U) the space of smooth compactly supported p-forms on U . It is endowed with a
generating family of semi-norms ‖ϕ‖K,N = max ‖ϕI‖CN (K) for any N ≥ 0 and K compactly embedded
in U .

5.1.3 Currents

Definition 5.9 ((n− p)-current).
A (n− p)-current on U is a continuous linear form T : Dp(U)→ R. We denote by (Dp(U))′ the

space of (n− p)-currents.
The space (Dp(U))′ is endowed with the weak-∗ topology: (Tn)n≥0 converges to T in (Dp(U))′ if

(〈Tn, ϕ〉)n≥0 converges to 〈T, ϕ〉 for all ϕ ∈ Dp(U).

Example 5.10.
D′(U) = (Dn(U))′.
Let S ⊂ U be a submanifold of dimension p. Set

〈[S], ϕ〉 :=

∫
S

ϕS.

Then [S] ∈ (Dp(U))′ is the integration current on S.
Let ψ ∈ Ωn−p(U). Then

〈ψ, ϕ〉 :=

∫
U

ψ ∧ ϕ.

Definition 5.11 (Derivation and exterior product).
Let T be a (n− p)-current. We define for ϕ ∈ Dp−1(U):

〈dT, ϕ〉 := (−1)p+1〈T, dϕ〉,

which gives a derivation on (Dp(U))′.
We define for α ∈ Ωq(U) and ϕ ∈ Dp−q(U):

〈T ∧ α, ϕ〉 := 〈T, α ∧ ϕ〉,

which gives a mixed exterior product between (Dp(U))′ and Ωq(U) whenever q ≤ p.

Example 5.12.
d[S] = (−1)p+1[∂S] by Stokes’ theorem.
dψ = dψ, where the left-hand side is understood as a current and the right-hand side as a differ-

ential form.
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Remark 5.13.
In coordinates, T =

∑
I⊂{1,...,n}
|I|=n−p

TIdxi1 ∧ . . . ∧ dxin−p, where TI ∈ D′(U).

For a given I, we can recover TI in the following way. Write J := Ic. For any f ∈ D(U),

〈TI , f〉 = 〈T, fdxj1 ∧ . . . ∧ xjp〉.

If we are given a family (TI)I⊂{1,...,n}
|I|=n−p

of distributions, for any ϕ ∈ Dp(U), we may define

〈T, ϕ〉 :=
∑

I⊂{1,...,n}
|I|=n−p

〈TI , ϕIc〉.

Example 5.14.
Let (fI)I⊂{1,...,n}

|I|=n−p
be a family of functions in L1

loc(U). Then

f :=
∑

I⊂{1,...,n}
|I|=n−p

fIdxi1 ∧ . . . ∧ dxin−p ∈ (Dp(U))′.

5.1.4 de Rham cohomology via currents

Definition 5.15 (Closed forms, exact forms).
A p-form ϕ is closed if dϕ = 0.
A p-form ϕ is exact if ϕ = dψ for some (p− 1)-form ψ.

Since d2 = 0, any exact form is closed.

Definition 5.16 (Cohomology groups).
Let M be a n-dimensional manifold. The pth cohomology group of M is the R-vector space

Hp(M) := {closed p forms}/{exact p forms} = Ker(d : Ωp(M)→ Ωp+1(M))

Example 5.17. By Poincaré’s lemma, if U is a star-shaped open set, then Hp(U) = 0 for all p ≥ 1.

Definition 5.18 (Closed currents, exact currents).
A (n− p)-current T is closed if dT = 0.
A (n− p)-current T is exact if T = dS for some (n− p− 1)-current S.

Lemma 5.19 (Poincaré-like lemma).
Let U be a star-shaped open set. If T is a closed current on U , then T is exact.

Corollary 5.20.

Hp(M) := {closed p currents}/{exact p currents}

Example 5.21. Let M = Pn(C) and H = {P = 0} ⊂M an hypersurface, where P ∈ C[X1, . . . , Xn]
is an homogeneous polynomial.

Then H is closed (without boundary) and {[H]}H2(Pn(C)) = deg(P ).
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5.2 Positivity of currents on complex manifolds

5.2.1 Hodge theory

Let U ⊂ Cn. The space Cn can be seen as R2n together with a complex multiplication operator J .
The correspondance from R2n to Cn can be written, for instance, with (x1, . . . , xn, y1, . . . , yn) 7→

(z1, . . . , zn) with zj = xj + iyj. We may then define{
dzj := dxj + idyj
dzj := dxj − idyj.

Any real r-form α can be written as

α =
∑
p+q=r

αp,q with αp,q :=
∑

I⊂{1,...,n}
|I|=p

∑
J⊂{1,...,n}
|J |=q

ip−qαp,q,I,Jdzi1 ∧ . . . ∧ dzip ∧ dzj1 ∧ . . . ∧ dzjq .

This yields a decomposition Ωr(M) =
⊕

p+q=r Ωp,q(M).

Let d := ∂ + ∂ :=
∑n

j=1
∂
∂xj

dxj +
∑n

j=1
∂
∂yj

dyj. Then

∂

∂zj
=

1

2

(
∂

∂xj
− i ∂

∂yj

)
,

∂

∂zj
=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
,

dzj =

(
∂

∂zj

)∗
,

dzj =

(
∂

∂zj

)∗
.

We get two operators {
∂ : Ωp,q(M)→ Ωp+1,q(M)

∂ : Ωp,q(M)→ Ωp,q+1(M).

These two operators satisfy ∂ ◦ ∂ = ∂ ◦ ∂ = 0. We may then define the Dolbeaut cohomology
Hp,q

∂
:= Ker(∂)/ Im(∂).

Definition 5.22 (Conjugation).
The conjugation from Ωp,q to Ωq,p is the operator which sends αp,q,I,Jdzi1∧. . .∧dzip∧dzj1∧. . .∧dzjq

to αp,q,I,Jdzi1 ∧ . . . ∧ dzip ∧ dzj1 ∧ . . . ∧ dzjq .

5.2.2 Positive forms, positive currents

Let β :=
∑n

j=1 dxj ∧ dyj = i
2
dzj ∧ dzj. Then βn is the Lebesgue measure. It is positive in the sense

that, whenever f ∈ D(Cn) is positive, we have 〈βn, f〉 ≥ 0.
Missing : strongly positive

Example 5.23.
Let ω := i

∑n
j,k=1 ak,ldzj ∧ dzk be a (1, 1)-form. Then ω ≥ 0 if and only if (aj,k(x)) is Hermitian

positive for all x ∈M .
Let ω be a (p, p)-form. Then ω ≥ 0 if and only if, for all p-dimensional complex submanifold

S ⊂M , we have ω|S ≥ 0 as a measure.
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Definition 5.24 (Strongly positive form).

Definition 5.25 (Positive current).
Let T be a current on a complex manifold M . We say that T has bidegree (p, p) or bidimension

(n− p, n− p) if T ∈ (D(p,p)(M))′.
Let T be a (p, p)-current. We say that T ≥ 0 if 〈T, ω〉 ≥ 0 for all strongly positive ω ∈

Dn−p,n−p(M).

Example 5.26.
Let f1, . . ., fN : M → C be holomorphic, so that V =

⋂N
j=1{fj = 0} is a complex analytic

subvariety. Set

〈[V ], ω〉 :=

∫
V \Vsing

ω|V \Vsing .

Then [V ] ≥ 0 and d[V ] = 0.

5.3 ddc and plurisubharmonic functions

Let dc := i
2π

(∂ − ∂), so that ddc = i
π
∂∂ : Ωp,q → Ωp+1,q+1.

Definition 5.27.
Let ϕ : M → [−∞,+∞) be non identically −∞. We say that ϕ is plurisubharmonic (PSH)

if:

• ϕ is upper semi-continuous;

• ϕ is sub-harmonic in each coordinate (plurisubharmonic): for all a ∈ M and all small enough
ε > 0, for all j,

ϕ(a) ≤ 1

2π

∫ 2π

0

ϕ(a+ εeiθej) dθ.

Lemma 5.28.
Let ϕ : M → [−∞,+∞). There is equivalence between:

• ϕ is PSH;

• ϕ is upper semi-continuous, and subharmonic along all holomorphic discs: for all holmorphic
u : D→M , the function ϕ ◦ u is subharmonic.

• ϕ is upper semi-continuous, locally integrable, and ddcϕ ≥ 0 as a (1, 1)-current.

For the third point: if ϕ is C2, then

ddcϕ =
n∑

j,k=1

i

2

∂2ϕ

∂zj∂zk
dzj ∧ dzk,

whence ddcϕ ≥ 0. If ϕ is not C2, then way can apply this reasoning to ϕ ∗ χε for some convolution
kernel χε, and let ε vanish.

Example 5.29.
If f is holomorphic, then ln |f | is PSH.
If u, v are PSH, then so is max{u, v}.
If n = dim(M) = 1, then plurisubharmonic functions are the same as subharmonic functions.
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6 Maximal plurisubharmonic functions and a complex Monge-
Ampère equation (March 18th, Damien Thomine)

The only reference for this talk is [7].
Unless specified otherwise, Ω is an open subset of Cn. Let us recall the following inclusions:

PH(Ω) H(Ω)

MPSH(Ω)

PSH(Ω) SH(Ω)

L1
loc(Ω)

• PH(Ω): PluriHarmonic (functions)

• H(Ω): Harmonic

• MPSH(Ω): Maximal PluriSubHarmonic

• PSH(Ω): PluriSubHarmonic

• SH(Ω): SubHarmonic

• L1
loc(Ω): locally integrable

All these spaces, excluding MPSH(Ω), have been previously defined. The space MPSH(Ω) of
Maximal PluriSubHarmonic functions will be the main focus of today’s talk.

6.1 (Sub)harmonic and pluri(sub)harmonic functions

Harmonic and pluriharmonic behave very differently under transformations: the notion of (sub)harmonicity
depends on a conformal structure, while the notion of pluri(sub)harmonicity depends on a complex
structure.

Proposition 6.1.
Let ϕ ∈ PH(Ω) (resp. PSH(Ω)). Let f : Ω′ → Ω be holomorphic. Then ϕ ◦ f ∈ PH(Ω′) (resp.

PSH(Ω′)).

Proof.
Let u : D→ Ω′ be holomorphic. Then f ◦u : D→ Ω is holomorphic, so ϕ ◦ (f ◦u) = (ϕ ◦ f) ◦u is

harmonic (resp. subharmonic). As this holds for all such u, the function ϕ ◦ f itself is pluriharmonic
(resp. plurisubharmonic).

In particular, PH and PSH functions can be defined on any complex manifold. By contrast:

Example 6.2.
The function ϕ(z1, z2) = |z1|2 − |z2|2 is harmonic on C2. Let f(z1, z2) := (2z1, z2). Then ϕ ◦

f(z1, z2) = 4|z1|2 − |z2|2 is neither harmonic nor subharmonic.

The issue is that begin harmonic only give a control on the average of a function on balls, and
holomorphic functions in dimension ≥ 2 can distort these balls. Being pluriharmonic gives a control
on all complex directions, and holomorphic functions are still conformal whe restricted to complex
lines.

To justify further the naturality of the notion of pluri(sub)harmonicity, let us note that PH(Ω)
(resp. PSH(Ω)) is the largest subspace of H(Ω) (resp. PH(Ω)) which is stable under holomorphic
transformations.

Theorem 6.3.
Let Ω ⊂ Cn be open. A function ϕ : Ω → R ∪ {−∞} is PSH if and only if ϕ ◦ T is SH for all

T ∈ GLn(C).
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6.2 Polar and pluripolar sets

Definition 6.4 (Polar and pluripolar sets).
A subset E ⊂ Ω ⊂ Cn is polar if there exists ϕ ∈ SH(Ω) such that ϕ ≡ −∞ on E.
A subset E ⊂M is pluripolar if, locally, there exists ϕ ∈ PSH(·) such that ϕ ≡ −∞ on E.

If f is boholomorphic, then E is pluripolar if and only if f(E) is pluripolar. Indeed, if E ⊂ {ϕ =
−∞} for some PSH function ϕ, then f(E) ⊂ {ϕ ◦ f−1 = −∞} and ϕ ◦ f−1 is PSH.

In charts, any pluripolar set is polar, since any PSH function is SH.
A finite union of pluripolar sets is pluripolar, since a sum of PSH functions is PSH. This actually

still holds for countable unions by Jakobson’s theorem.

Lemma 6.5.
Polar sets have Lebesgue measure zero.

Proof.
Let ϕ ∈ SH(Ω) and E := {ϕ = −∞}. We want to prove that Leb(E) = 0.
Let E ′ be the closure of the Lebesgue density points of E. Then E ′ is closed.
Let x ∈ E ′ and r > 0 such that B(x, 3r) ⊂ Ω. Let y ∈ B(x, r). Then:

• B(y, 2r) ⊂ B(x, 3r) ⊂ Ω, so that ϕ is well-defined on B(y, 2r).

• B(x, r) ⊂ B(y, 2r).

By the definition of E ′, the ball B(x, r/2) contains a Lebesgue density point of E, so Leb(E ∩
B(x, r)) > 0. Hence, Leb(E ∩B(y, 2r)) > 0. By the subharmonic property,

u(y) ≤ 1

Leb(B(y, 2r))

∫
B(y,2r)

u(z) dz = −∞.

Since this holds for all y ∈ B(x, r), we have B(x, r) ⊂ E. Hence all points of B(x, r) are Lebesgue
density points of E, so that B(x, r) ⊂ E ′. In particular, x ∈ E, so that E ′ ⊂ E. In addition, E ′
is open; since E ′ is closed, E ′ is an union of connected components of Ω. But ϕ ≡ −∞ on E ′, and
since ϕ is SH, we get that E ′ is empty. Hence, the set of Lebesgue density points of E is empty. By
the Lebsgue density theorem, Leb(E) = 0.

Corollary 6.6.
Pluripolar sets have Lebesgue measure 0.

Example 6.7.

• In Cn: (z1, . . . , zn) 7→ ln |zn| is PSH, so {ln |zn| = −∞} = {zn = 0} is pluripolar.

• Let f : U ⊂ Cn−1 → C be analytic. The graph of f is the image of {zn = 0} ⊂ U × C by the
biholomorphism (Z, zn) 7→ (Z, zn + f(Z)). Hence the graph of f is pluripolar:

Γ(f) := {(Z, f(Z)) : Z ∈ U} = {ϕ(Z, zn) = −∞} with ϕ(Z, zn) = ln |zn − f(Z)|.

• Since being pluripolar is a local notion, complex submanifolds (of codimension at least 1) are
pluripolar.

• Conversely, given f ∈ C(Cn−1,C), its graph Γ(f) is pluripolar if and only if f is holomorphic
(Shcherbina, 2005). For instance, {(z, z) : z ∈ C} is pluripolar, but {(z, z) : z ∈ C} is not.
Being pluripolar is not only about size, but also about orientation.

• Since points are pluripolar and countable unions of pluripolar sets are pluripolar, there are dense
pluripolar sets.
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6.3 Maximal plurisubharmonic functions

6.3.1 Definition

Recall that:

Proposition 6.8.
Let Ω ⊂ C be open and bounded. Let ϕ ∈ SH(Ω). Then, for all ψ ∈ H(Ω),

if lim sup
ξ

(ϕ− ψ) ≤ 0 ∀ξ ∈ ∂Ω, then ϕ ≤ ψ on Ω. (6.1)

The condition “lim supξ(u − h) ≤ 0 for all ξ ∈ ∂Ω” can loosely be understood as “ϕ ≤ ψ on
∂Ω”. This is a maximum principle: if an harmonic function dominates a subharmonic function on
the boundary of a bounded domain, then it dominates it everywhere.

This proposition can be read as a characterisation of harmonic functions: ψ is harmonic if and
only if is is subharmonic and satisfies Equation (6.1) for all subharmonic ϕ, or in other (loose) words,
if it is maximal among subharmonic functions with the same boundary conditions.

The higher dimensional analogue of this condition leads to:

Definition 6.9 (Maximal plurisubharmonic functions).
Let Ω ⊂ Cn be open and ψ ∈ PSH(Ω). We say that ψ is maximal if, for all U open and compactly

embedded in Ω, for all ϕ ∈ PSH(U),

if lim sup
ξ

(ϕ− ψ) ≤ 0 ∀ξ ∈ ∂U, then ϕ ≤ ψ on U. (6.2)

We denote by MPSH(Ω) the space of maximal PSH functions on Ω.

The introduction of compact neighborhoods U in this definition is to use the domination on
bounded open sets, while Ω itself may not be bounded.

Example 6.10.
The function ψ(z1, . . . , zn) := ln (max{|z1|, . . . , |zn|}) is maximal plurisubharmonic on Cn. It is

PSH as a maximum of PSH functions, and maximal because, for all w ∈ Cn\{0}, the map z 7→ ψ(zw)
is harmonic, and one can use the maximum principle on each direction Cw.

Following Klimek, the main ansatz is that MPSH (instead of PH) is often a good higher-dimensional
analogue of H. The first reason comes from its definition; the second will soon be stated.

6.3.2 Characterization of C2 MPSH functions

To make the notion of MPSH function clearer, we will characterize it, first for C2 functions.
Let ϕ ∈ C2(Ω). Then ϕ ∈ PSH(Ω) if and only if ddcϕ ≥ 0. But

ddcϕ =
i

2

n∑
j,k=1

∂2ϕ

dzjdzk
dzj ∧ dzk

is a (1, 1)-current, and as such is positive if and only if the matrix
(

∂2ϕ
dzjdzk

)
1≤j,k≤n

is Hermitian

positive. We shall denote by HessC(ϕ) (the complex Hessian) this matrix. Then HessC(ϕ) is positive
if and only if 〈~e,HessC(ϕ)~e〉 ≥ 0 for all ~e ∈ Cn. In particular, det(HessC(ϕ)) ≥ 0.
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Proposition 6.11.
Let ϕ ∈ C2 ∩ PSH(Ω).
ϕ ∈ MPSH(Ω) if and only if det(HessC(ϕ)) ≡ 0.

Proof.
Direct implication: We already know that det(HessC(ϕ)) ≥ 0. Assume that there exists x ∈ Ω

such that det(HessC(ϕ)) > 0. Since ϕ is C2, the matrix HessC(ϕ) is continuous. Hence there exists δ,
r > 0such that det(HessC(ϕ)) ≥ δ on B(x, r). Let ρ ∈ Cc(B(x, r),R+) be a non-zero bump function.
Then det(HessC(ϕ + tρ)) ≥ δ/2 > 0 for all small enough t. In particular, if t is small enough and
non-zero, ϕ+ tρ is a PSH function on B(x, r) which coincides with ϕ on the boundary of B(x, r) and
dominates it strictly on B(x, r). Hence ϕ is not maximal.

Indirect implication: Assume that det(HessC(ϕ)) ≡ 0 and that ϕ is not maximal. Then we
can find U open and compactly embedded in Ω, as well as φ ∈ PSH(U), such that φ ≤ ϕ on ∂U but
φ(x) > ϕ(x) for some x ∈ U .

We may replace φ by (φ− δ) ∗ χε for some small enough δ and some small enough ε (depending
on δ). Doing so gives another PSH function, with the same relations with respect to ϕ, but which is
in addition C2. Hence, without loss of generality, φ is C2.

We may further replace φ by φ − δ + ε ‖·‖2 for some small enough δ and some small enough ε
(depending on δ). Doing so gives another PSH function, with the same relations with respect to
ϕ, but whose complex Hessian is in addition positive definite everywhere. Hence, without loss of
generality, HessC(φ) is positive definite everywhere.

Let x ∈ U be a point minimizing ϕ − φ. Let ~e ∈ Ker(HessC(ϕ)(x)) \ {~0}. Finally, let f(z) :=
(ϕ − φ)(x + z~e). Then 0 is a local minimum of f , so ∆f(0) ≥ 0. On the other hand, ∆f(0) =
4〈~e,HessC(ϕ − φ)(x)~e〉 < 0, which brings a contradiction. Out initial additional hypothesis cannot
hold, and ϕ is maximal.

A C2 and MPSH function is thus not a function which is everywhere harmonic in all directions
(that could be a PH function), but everywhere harmonic in some direction.

Given ψ ∈ C2 ∩MPSH(Ω), the rank of HessC(ψ) is at most n− 1 everywhere. This rank may not
be constant. However, where this rank is maximal (equal to n− 1), we get a continuous field of lines
L(x) = Ker(HessC(ψ)(x)) ⊂ TxM with dim(L(·)) ≡ 1. It turns out that, if ϕ is C3, then L is C1 and
integrable, and as such defines a foliaiton by Riemann surfaces; on each of these curves, HessC(ϕ)
vanishes, so ϕ is harmonic.

Theorem 6.12 (Bedford, Kalka, 1977).
Let ψ ∈ C3 ∩MPSH(Ω). Let Ω′ := {x ∈ Ω : rk(HessC(ϕ)(x)) = n− 1}.
Then Ω′ is foliated by a family (Sα)α∈A of Riemann surfaces such that each ψ|Sα is harmonic.

Conversely, it is sometimes possible to construct a MPSH function from a foliation (e.g. a holo-
morphic foliation, or a codimension 1 foliation by complex hypersurfaces – Bedford, Kalka, 1977).

This finishes the characterisation of C2 MPSH functions. We want to extend it to a more general
class of MPSH functions; however, in order to do this, we need to give a meaning to HessC(ϕ) for
less regular PSH functions.

6.3.3 An homogeneous Monge-Ampère equation

Definition 6.13 (Complex Monge-Ampèere operator).
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The complex Monge-Ampère operator in Cn is

(ddc)n : ϕ 7→ (ddcϕ)n = (ddcϕ) ∧ . . . ∧ (ddcϕ),

with n terms in the exterior product.

Beware that this functional is not linear!

Example 6.14.
If ϕ is C2, then

(ddcϕ)n = 4nn! det(HessC(ϕ))dV,

where
dV =

(
i

2

)n
dz1 ∧ dz1 ∧ . . . ∧ dzn ∧ dzn

is the usual volume form.

In particular, if ϕ ∈ C2 ∩ PSH, then ϕ is MPSH if and only if (ddcϕ)n = 0. This gives another
justification for the analogy between MPSH functions in dimension n and harmonic functions in
dimension 1: then are both PSH solutions to the complex Monge-Ampère equation (ddcϕ)n = 0.

6.3.4 The Chern-Levine-Nirenberg inequality

The definition of (ddc)n involves second derivative. However, exploiting the form of convexity of
PSH functions, it is possible to control it for PSH functions using only sup norms. This opens the
possibility to extend the operator (ddc)n to less regular functions.

Theorem 6.15 (Chern-Levine-Nirenberg estimate).
Let Ω ⊂ Cn and U be an open set compactly embedded in Ω. Let K ⊂ Ω be a comapct neighborhood

of U . Then there exists a constant C(U,K) such that, for all (ϕ(j))1≤j≤n in C2 ∩ PSH(Ω),

0 ≤
∫
U

(ddcϕ(1)) ∧ . . . ∧ (ddcϕ(n)) ≤ C
∥∥ϕ(1)

∥∥
K,∞ . . .

∥∥ϕ(n)
∥∥
K,∞ . (6.3)

In particular, for all ϕ ∈ C2 ∩ PSH(Ω),

0 ≤
∫
U

(ddcϕ)n ≤ C ‖ϕ‖nK,∞ . (6.4)

Proof.
The goal is to replace all the (1, 1)-forms (ddcϕ(j)) by constant (1, 1)-form β which dominates

them. This is done by recursion on j.
Let β := i

2

∑n
j=1 dzj ∧ dzj be the standard Kähler form on Ω. It is strongly positive. Since the

space of positive (1, 1)-forms is a strictly convex cone, there exists R > 0 such that ω < R ‖ω‖Ω,∞ β
for all positive (1, 1)-form ω, in the sense that R ‖ω‖ β−ω is strongly positive. Then, for any positive
(n− 1, n− 1)-form η which is compactly supported with bounded coefficients,∫

Ω

η ∧ ω ≤ R ‖ω‖Ω,∞

∫
Ω

η ∧ β.
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Let (χj)1≤j≤n be a family of C∞c functions such that U ⊂ {χ1 = 1}, Supp(χj) ⊂ {χj+1 = 1} for
all j and Supp(χn) ⊂ K. Then

0 ≤
∫
U

(ddcϕ(1)) ∧ . . . ∧ (ddcϕ(n))

≤
∫

Supp(χ1)

χ1(ddcϕ(1)) ∧ . . . ∧ (ddcϕ(n))

=

∫
Supp(χ1)

ϕ(1)(ddcχ1) ∧ (ddcϕ(2)) ∧ . . . ∧ (ddcϕ(n))

≤ R ‖ddcχ1‖K,∞ ‖ϕ1‖K,∞
∫

Supp(χ1)

(ddcϕ(2)) ∧ . . . ∧ (ddcϕ(n)) ∧ β,

where the argument used at the second-to-third line is an integration by parts (an avatar of the
computation used to show that the Laplace operator ∆ is self-adjoint). Recursively, we get∫

U

(ddcϕ(1)) ∧ . . . ∧ (ddcϕ(n)) ≤ Rn ‖ddcχ1‖K,∞ . . . ‖ddcχn‖K,∞ ‖ϕ1‖K,∞ . . . ‖ϕn‖K,∞
∫

Supp(χn)

βn.

This is the claim, with

C(U,K) = Rn ‖ddcχ1‖K,∞ . . . ‖ddcχn‖K,∞
∫
K

βn.

Let (ϕk)k≥0 be a sequence of C2 PSH functions on Ω, converging locally uniformly (i.e. in L∞loc(Ω))
to ϕ. The function ϕ belongs to PSH(Ω). By the Chern-Levine-Nirenberg inequality, the sequence of
functions ((ddcϕk)

n)k≥0 is locally bounded in total variation. Hence, it is tight, and has limit points
in distribution (i.e. for the weak ∗ topology in Cc(Ω)∗). If this limit can be characterized, then this
gives a meaning to (ddcϕ)n as a nonnegative Radon measure.

Theorem 6.16.
Let Ω ⊂ Cn be open and (ϕ

(j)
k )1≤j≤n,k≥0 be n decreasing sequences of C2 ∩ PSH(Ω). Assume that

each (ϕ
(j)
k )k≥0 converges to ϕ(j) ∈ L∞loc ∩ PSH(Ω). Then (ddcϕ

(1)
k ∧ . . . ∧ (ddcϕ

(n)
k )k≥0 converges in

distribution.

Given ϕ ∈ L∞loc ∩ PSH(Ω) and ε > 0, the function ϕ can be approximated on Ωε by a decreasing
sequence of smooth PSH functions: ϕ(k) = ϕ ∗ χ1/k with a convolution kernel χ.

Hence, the operator (ddc)n, initially defined from C2 ∩ PSH(Ω) to C(Ω,R+) can be extended to
an operator from L∞loc ∩ PSH(Ω) to nonnegative Radon measures2.

In addition, Theorem 6.16 then stays true for ϕ(j)
k ∈ L∞loc ∩ PSH(Ω).

Remark 6.17.
This construction is parallel to the construction of Hessian measures for real convex functions.

Corollary 6.18.
The Chern-Levine-Nirenberg inequality stays true for functions in L∞loc ∩ PSH(Ω).

2The hypothesis that the limit belongs to L∞
loc(Ω) can be somewhat weakened.
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6.3.5 Comparison theorem

We have given a meaning to (ddcϕ)n for ϕ ∈ L∞ ∩PSH(Ω) as a nonnegative Radon measure. We no
go back to the characterization of MPSH functions. We will use:

Theorem 6.19 (Comparaison theorem; Bedford, Taylor, 1982).
Let Ω ⊂ Cn be open and bounded. Let ϕ1, ϕ2 ∈ L∞ ∩ PSH(Ω).
Assume that lim supξ(ϕ1 − ϕ2) ≤ 0 for all ξ ∈ ∂Ω (“ϕ1 ≤ ϕ2 on ∂Ω”). Then∫

ϕ2<ϕ1

(ddcϕ1)n ≤
∫
ϕ2<ϕ1

(ddcϕ2)n. (6.5)

Proof.
We prove it when ϕ1 and ϕ2 are continuous; the general case follows by a (lenghty) approximation

argument.
We replace Ω by {ϕ2 < ϕ1}, which is open by continuity. Without loss of generality, lim supξ(ϕ1−

ϕ2) = 0 for all ξ ∈ ∂Ω.
Let ε > 0. Set ϕ̃ε := max{ϕ2, ϕ1 − ε}, so that ϕ̃ε = ϕ2 on a neighborhood of ∂Ω. We first show

that we may replace ϕ2 by ϕ̃ε in the comparison theorem.
Let χ ∈ C∞c (Ω, [0, 1]) such that χ ≡ 1 on a neighborhood of {ϕ̃ε > ϕ2}. This is possible since the

latter subset does not intersect a neighborhood of ∂Ω. Then ddcχ = 0 whenever ϕ̃ε > ϕ2, so∫
Ω

χ · (ddcϕ̃ε)
n =

∫
Ω

ϕ̃ε · (ddcχ) ∧ (ddcϕ̃ε)
n−1

=

∫
Ω

ϕ2 · (ddcχ) ∧ (ddcϕ2)n−1

=

∫
Ω

χ · (ddcϕ2)n.

In addition,
∫

Ω
(1 − χ) · (ddcϕ̃ε)

n =
∫

Ω
(1 − χ) · (ddcϕ2)n since ϕ̃ε = ϕ2 whenever χ < 1, so that∫

Ω
(ddcϕ̃ε)

n =
∫

Ω
χ · (ddcϕ2)n.

Finally, ϕ1 is the increasing limit of (ϕ̃ε)ε>0. By another approximation principle for increas-
ing sequences of PSH functions (Bedford, Taylor, 1982), (ddcϕ1)n is the limit in distribution of
((ddcϕ̃ε)

n)ε>0, and convergence in distribution on an open set may only lessen the total mass of the
measures.

Corollary 6.20.
Let Ω ⊂ Cn be open and bounded. Let ϕ1, ϕ2 ∈ L∞ ∩ PSH(Ω).
Assume that lim supξ(ϕ1 − ϕ2) ≤ 0 for all ξ ∈ ∂Ω (“ϕ1 ≤ ϕ2 on ∂Ω”) and (ddcϕ1)n ≥ (ddcϕ2)n.

Then ϕ1 ≤ ϕ2.

Corollary 6.21.
Let Ω ⊂ Cn be open. Let ϕ ∈ L∞ ∩ PSH(Ω).
ϕ is MPSH if and only if (ddcϕ)n = 0.

Proof.
We only prove the indirect direction using the comparison theorem. If (ddcϕ)n = 0, then for all

U compactly embedded in Ω and all ϕ̃ ∈ L∞ ∩PSH(U) such that ϕ̃ ≤ ϕ on ∂U , we have in addition
(ddcϕ̃)n ≥ 0 = (ddcϕ)n, so that ϕ̃ ≤ ϕ by the previous corollary. The case of general ϕ̃ ∈ PSH(U)
follows by a truncation argument (apply is to max{ϕ̃,−R} and take R to +∞).
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7 Conjugation of automorphisms of C2 (April 8th, Thomas
Gauthier)

Theorem 7.1 (Dujardin, Cantat, March 28th 2024).
Let f , g : C2 → C2 be regular automorphisms conjugated by a biholomorphism ϕ. Then ϕ is a

polynomial automorphism.

Definition 7.2 (Automorphism).
We denote by Aut(C2) := {h = (P,Q) : C2 → C2, P,Q ∈ C[X] and h is bijective}. For h ∈

Aut(C2), we write deg(h) = max{deg(P ), deg(Q)} its algebraic degree, and

λ1(h) := lim
n→+∞

deg(hn)
1
n

its dynamical degree.

There are two cases:

• Either λ1(h) = 1. Then h is elementary: up to conjugation, it is a composition of maps
(x, y) 7→ (αx+ P (y), βy + γ).

• Or λ1(h) > 1. Then λ1(h) = deg(h) and, up to conjugation, h is a composition of Hénon
automorphisms (x, y) 7→ (αy + P (x), x) with deg(P ) ≥ 2.

In the latter case, we say that h is regular.

Lemma 7.3.
Let f1, f2 : P2(C)→ P2(C) be meromorphic.
deg(f1 ◦ f2) < deg(f1) deg(f2) if and only if there exists a curve C ⊂ P2(C) such that f1(C) ⊂

Ind(f2), where Ind(f2) is the (finite) set of points of indeterminacy of f2.

Proof.
We start with the direct part. Write f2 ◦ f1 = [P : Q : R] with deg(P ) = deg(Q) = deg(R) <

deg(f1) deg(f2), and f1 = [P1 : Q1 : R1], f2 = [P2 : Q2 : R2] with minimal degree. Then
P2(P1, Q1, R1), Q2(P1, Q1, R1), R2(P1, Q1, R1) have a common factor H. Then C := {H = 0}
satisfies the conclusion.

Let us prove the indirect part. Assume that C = {H = 0} is such that f2 ◦ f1|C = [0 : 0 : 0].
Then f2 ◦ f1 = [P : Q : R] = [HP̃ : HQ̃ : HR̃] = [P̃ : Q̃ : R̃] on {H 6= 0}. Hence, deg(f2 ◦ f1) ≤
deg(f1) deg(f2)− deg(H).

Example 7.4.
Let f(x, y) := (αy + P (x), x) be a Hénon automorphism. Then f([x : y : z]) = [αyzd−1 +

P (x/z)zd : xzd−1 : zd], so Ind(f) ⊂ {z = 0}. By dividing coordinates by zd−1, we find x = 0 and
Ind(f) = [0 : 1 : 0].

Let us write:

G+
f := lim

n→+∞

1

dn
ln+ ‖fn‖ ,

G−f := lim
n→+∞

1

dn
ln+

∥∥f−n∥∥ .
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Theorem 7.5 (Fornaess, Sibony).
Let T ≥ 0 be a closed form of bidegree (1, 1). Assume that c =

∫
T ∧ ddcG−f < +∞ and

Supp(T ) ⊂ {G+
f = 0}. Then T = cddcG+

f .

In other words, the Julia set carries only one closed form of bidegree (1, 1).
We can now prove Dujardin and Cantat’s theorem.

Proof. Write T± := ddcG±f . If ϕ ◦ f = g ◦ ϕ, then

ddc(G+
f ◦ ϕ) = ϕ∗T+

g

= lim
n→+∞

1

dn
ln+ ‖gn ◦ ϕ‖

= lim
n→+∞

1

dn
ln+ ‖ϕ ◦ fn‖

= cT+
f .

Hence, ϕ∗(T+
g ∧T−g ) = T+

f ∧T
−
f . From there, (ddc max(G+

f , G
−
f ))2 = T+

g ∧T−g , so that max(G+
f , G

−
f )◦

ϕ ≤ max(c, c−1) max(G+
f , G

−
f ).

Finally, max(G+
f , G

−
f ) = ln ‖ϕ‖ + O(1) is bounded by O(‖·‖) + O(1), so ‖ϕ‖ has polynomial

growth. So does its inverse, so ϕ is a polynomial automorphism.
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8 Quasi-plurisubharmonic functions on Pn(C) (June 10th, Yu-
gang Zhang)

Let Ω ⊂ Cn be open.

Definition 8.1 (Plurisubharmonic functions).
A function ϕ : Ω→ [−∞,+∞) is plurisubharmonic (PSH) if:

• ϕ is upper-semicontinuous: lim supy→x ϕ(y) = ϕ(x) for all x ∈ Ω.

• ϕ is locally integrable.

• For all x ∈ Ω and all small enough r > 0, we have ϕ(x) ≤ 1
Leb(B(x,r))

∫
B(x,r)

ϕ(y) dy. Equiva-
lently, for all a ∈ Ω and all small enough b ∈ Cn, the function z 7→ ϕ(a+ bz) is SH.

Definition 8.2 ((1, 1)-current).
A current of bidegree (1, 1) is a differential form with distributional coefficients

T =
∑

1≤j≤k≤n

Tjkdzj ∧ dzk.

Such a current is positive if the distributions Tjk are measures and
∑

1≤j≤k≤n cjckTjk ≥ 0 for all
c ∈ Cn.

Proposition 8.3 (Maximal principle).
There is no nonconstant PSH function on Pn(C).

Definition 8.4 (Quasi-plurisubharmonic functions).
A function ϕ : Ω→ [−∞,+∞) is quasi-plurisubharmonic (QPSH) if, locally, ϕ is the sum of

a PSH function and a C∞ function.
If ω is a (1, 1)-differential form, we say that a function ϕ is ω-plurisubharmonic if it is quasi-

plurisubharmonic and ω + ddcϕ ≥ 0. We denote by PSH(Ω, ω) the space of ω-PSH functions.

In particular, QPSH function is upper-semicontinuous.

Example 8.5.
Let f be a nondegenerate homogeneous polynomial of degree d in n+ 1 variables. Let ωFS be the

Fubini-Study form on Pn(C). Then the function x 7→ ln
(
‖f(x)‖
‖x‖d

)
is ωFS-PSH.

More precisely, if F : Pn(C)→ Pn(C) is the map induced by f on Pn(C), then

1

d
F ∗ωFS = ωFS + ddc ln

(
‖f(x)‖
‖x‖d

)
.

Proposition 8.6.
Let ω, ω1, ω2 be (1, 1)-differential forms.

• PSH(Pn(C), ω) is convex.

• If ω1 ≤ ω2, then PSH(Pn(C), ω1) ⊂ PSH(Pn(C), ω2).

• Let c > 0. Then PSH(Pn(C), cω) = cPSH(Pn(C), ω).
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• Let [ω1] = [ω2]. Let f be such that ω2 = ω2+ddcf . Then PSH(Pn(C), ω2) = PSH(Pn(C), ω1)−f .

• Let ϕ, ψ ∈ PSH(Pn(C), ω). Then max{ϕ, ψ} ∈ PSH(Pn(C), ω) and ln(eϕ+eψ) ∈ PSH(Pn(C), ω).

We only prove the last statement.

Proof.
Let ω be a (1, 1)-differential form and ϕ, ψ ∈ PSH(Pn(C), ω). Then

ddc ln(eϕ + eψ) =
eϕddcϕ+ eψddcψ

eϕ + eψ
+
eϕ+ψd(ϕ− ψ) ∧ dc(ϕ− ψ)

(eϕ + eψ)2
≥ eϕddcϕ+ eψddcψ

eϕ + eψ
.

By convexity, the right hand-side is at least ω.

Theorem 8.7 (Hartog’s lemma).
Let Ω ⊂ Cn be open. Let (uj) be a sequence of PSH functions which are locally uniformly bounded

over.

• If uj does not converge to −∞ locally uniformly, then it admits a subsequence converging in
L1

loc to a function u ∈ PSH(Ω).

• If uj converges in u in (C∞(Ω))∗, then

1. u is PSH.

2. The convergence is in L1
loc(Ω,R).

3. lim supj→+∞ uj ≤ u everywhere, with equality almost everywhere.

4. For all compact K and all h ∈ C0, lim supj→+∞maxK(uj − h) ≤ maxK(u− h).

Proposition 8.8.
Let T{ω}Pn(C) := {ω′ ≥ 0, closed, [ω′] = [ω]}. Then there is a short exact sequence

0→ R→ PSH(Pn(C), ω)→ T{ω}Pn(C)→ 0.

The third arrow is ϕ 7→ ω + ddcϕ.

Proposition 8.9.
The space F0 := {ϕ ∈ PSH(Pn(C), ω) : supϕ = 0} is relatively compact in PSH(Pn(C), ω) for

the L1
loc topology.

Let µ ∈ P(Pn(C)) be such that PSH(Pn(C), ω) ⊂ L1(Pn(C), µ). Then the space Fµ := {ϕ ∈
PSH(Pn(C), ω) :

∫
ϕ dµ = 0} is relatively compact in PSH(Pn(C), ω) for the L1

loc topology.
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9 Equidistribution for endomorphisms of Pn(C) (July 1st, Yu-
gang Zhang)

Let f : Pn(C) → Pn(C) be an endomorphism of degree d, with its measure of maximal entropy µf .
The goal of this talk is to prove:

Theorem 9.1 (Briend, Duval [3, 4]).

1

dnk

∑
{y: fk(y)=y
y repulsive}

δy → µf , (9.1)

where the convergence is weak.

Theorem 9.2 (Briend, Duval [3, 4]).
µf is the unique probability measure such that

1

dn
f ∗µf = µf (9.2)

and which does not charge Ef .

9.1 Construction of µf
Let ωFS ∈ OPn(C)(1) be the Fubini-Study metric on Pn(C).

We know that f ∗OPn(C)(1) = OPn(C)(d), and

1

d
f ∗ωFS = ωFS + ddcu

for some u ∈ C∞. Iterating this relation, we get

1

dk
(fk)∗ωFS = ωFS + ddc

k−1∑
j=0

u ◦ f j

dj
.

Set v :=
∑+∞

j=0
u◦fj
dj

. Then v is continuous; set Tf := ωFS + ddcv. By construction,

1

d
f ∗Tf = Tf .

Finally, we set µf := T nf . Note that Tf 6= 0 since it has mass 1.

9.2 Uniqueness of µf
We note that, by duality, for all smooth ϕ and distribution T ,

〈f ∗T, ϕ〉 = 〈T, f∗ϕ〉,

where f∗ϕ(x) =
∑
{y: f(y)=x} ϕ(y).

Lemma 9.3.
Let x, y be such that µx,k(Cf ), µy,k(Cf ) converge to the same limit. Then ψk(x)−ψk(y) converges

to 0.
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Let Cf := {z : det(Dzf) = 0}. Set Vj :=
⋃`
j=1(Cf ) and V∞ :=

⋃+∞
j=1(Cf ). Then V∞ is pluripolar.

The proof of Lemma 9.3 uses the following result:

Lemma 9.4.
Let ε > 0. There exists ` ≥ 0 such that, on any generic flat disc ∆ (i.e. contained in a projective

line not inside V∞) which is relatively compact in Pn(C)\V`, for all large enough k, we can construct
(1− ε)dkn inverse branches for fk, with images ∆−kj such that supj Diam(∆k

j )→k→+∞ 0.

Proof. The map f ` has dn` inverse branches f−`j on ∆, with images ∆−kj . If ∆−kj avoids V`, we can
iterate and get dn inverse branches for f `+1.

Note that deg f−`(L) = f−`(Hn−1)H = d(n−1)`Hn = d(n−1)`. Set a := deg(V`), and fix ` such that
2a
d`

d
d−1

< ε.

By Bézout’s theorem, Card(Vf∩f−1(L)) ≤ ad(n−1)`. Hence, if ∆−`i ∩∆−`j 6= ∅, we get dn`−ad(n−1)`

disjoint discs in Vf . Hence, we get at the end d(n−1)(`+1)(1− ad−`) inverse branches for f `+1.
Recursively, we get for all k ≥ ` at least dnk(1− a(1 + d−1 + . . .+ d−n+`+1)) ≥ dnk(1− ε

2
) inverse

branches.
We need to prove that the maximal diameter of these discs converge to 0. First, we control their

area. Since Leb(f−k(L)) = d(n−1)k, there are at most ε
2
dnk discs with an area at least 2

ε
d−k; we can

throw such discs away.
Finally, each f−kj is normal. This let us control the distortion of each branch, so that the diameter

can be controled by the area.

Proof of Lemma 9.3.
Let ε > 0. Let ` be given by the second lemma. Let ϕ ∈ C(Pn(C),R) with ‖ϕ‖∞ ≤ 1. Let z,

w ∈ Pn(C) \ V`.
Assume that the line from w to z is not inside V∞. Find a disc ∆ in this line, containing both w

and z and avoiding V∞. Then

|〈µw,k − µz,k, ϕ〉| =
1

dnk

∣∣∣∣∣∣
dnk∑
j=1

(ϕ(wj)− ϕ(zj))

∣∣∣∣∣∣
≤ 1

dnk

∣∣∣∣∣∣
(1−ε)dnk∑
j=1

(ϕ(wj)− ϕ(zj))

∣∣∣∣∣∣+
1

dnk

∣∣∣∣∣∣
dnk∑

j=(1−.ε)dnk+1

(ϕ(wj)− ϕ(zj))

∣∣∣∣∣∣
The first term is small because the diameter of the branches are small, so wj and zj are close. The
second term is at most 2ε.

With some additional work, this proves the lemma when w, z /∈ V∞.

Let νk := 1
dnk

∑
fk(y)=y
y repulsive

and ν be a limit point of (νk). Then ν has mass at most 1. We may

prove:

Lemma 9.5.
For almost every x, there exists r > 0 such that ν(B(x, r)) ≥ (1− 3ε)2µf (B(x, r)).

The convergence of (νk) to µf follows readily: letting ε vanish, we get ν ≥ µf ; since µf is a
probability measure and ν has mass at most 1, we get ν = µf . This uses an analogue of 9.4 where
the discs ∆ are replaced by the balls B(x, r).
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Lemma 9.6.
Let ε > 0. There exists ` ≥ 0 such that, for all x ∈ Pn(C) \ V`, there exists r > 0 such

that we can construct (1 − ε)dkn inverse branches for fk on B(x, r), with images B−kj such that
supj Diam(Bk

j )→k→+∞ 0.
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