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Titre : Théorie ergodique, théorie du potentiel : Etude d’extensions abéliennes

Mots clés : Théorie ergodique, Théorie du potentiel, Marche aléatoire, Métastabilité

Résumé : Ce mémoire présente des travaux
a I'intersection de deux traditions
mathématiques: d’'une part [I'analyse
spectrale des opérateurs de transfert en
théorie ergodique, et d'autre par la théorie
probabiliste du potentiel, qui porte sur les
chaines de Markov.

Les extensions abéliennes sont une
généralisation, dans le cadre des systemes
dynamiques, des marches aléatoires. Les
techniques développées pour les marches
aléatoires se transposent parfois a ces
extensions : le théoréme central limite et le
théoreme central limite local en sont des
exemples.

Nous présentons ici une transposition de la
théorie probabiliste du potentiel, et plus
précisément le calcul de probabilités
d'atteintes entre parties éloignées d’un tel
systéme dynamique.

Ce sujet est en outre I|'occasion de
découvrir diverses facettes de la théorie
des systemes dynamiques: théoremes
limites en loi pour des sommes de Birkhoff ;
résonances de Ruelle pour des billards de
Sinai; identité de balayage, invariants
d’'induction et formule de Green-Kubo ; ou
encore temps d’atteinte de petites cibles et
états métastables pour n’en citer que
quelques-uns.

Title : Ergodic theory, potential theory : A study of Abelian extensions

Keywords : Ergodic theory, Potential theory, Random walk, Metastability

Abstract : The works included in this memoir
are at the intersection of two mathematical
traditions : spectral analysis of transfer
operators in ergodic theory on the one hand,
and probabilistic potential theory - which
applies to Markov processes - on the other
hand.

Abelian extensions are a generalization, in
the setting of dynamical systems, of random
walks. Tools developped for random walks
may sometimes be transposed to these
extensions. This is the case, for instance, of
the Central Limit Theorem and the Local
Central Limit Theorem.

We present therein a transposition of the
probabilistic potential theory, more
precisely the computation of hitting
probabilities between parts of such a
system which are far enough one from the
other.

This subject is also an opportunity to
discover other aspects of dynamical
systems : limits in distribution for Birkhoff
sums ; Ruelle resonances for Sinai billiards ;
balayage identity, induction invariants and
the Green-Kubo formula ; or hitting time of
small targets and metastability.
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Introduction

Au cours des dix années passées, un projet de recherche m’a particuliérement tenu a coeur. Il
porte sur les applications de la théorie probabiliste du potentiel a une classe de systémes dynamiques,
les Z®-extensions, et a donné lieu & quatre publications |184, 185222, 226].

L’objet final de ce projet a été I’étude des probabilités de transitions dans des Z%-extensions récur-
rentes. Ces systémes dynamiques généralisent les marches aléatoires sur Z%. Le calcul de probabilités
de transition de marches aléatoires est établi depuis longtemps, et fait appel a la théorie probabiliste
du potentiel [213]. On s’attend & pouvoir développer une théorie similaire pour des Z?-extensions
dont les transitions sont engendrées par un systéme dynamique chaotique.

Adapter la théorie du potentiel & de tels systémes dynamiques ne se fait pas sans mal. Cela
demande une assez large variété de techniques et des idées de nature dynamique : opérateur de
transfert, perturbations de valeurs propres, méthode de Nagaev—Guivarc’h, temps d’atteinte de petits
événements, théorémes limites distributionnels... La seule formulation du cadre de recherche et des
énoncés n’est pas évidente.

Ce mémoire, au-dela d’une présentation des principaux résultats de ce projet, se veut une intro-
duction a ce domaine de recherche. J’y présenterai les principales idées et techniques en jeu, avec
pour objectif de remettre dans leur contexte les problématiques et la stratégie de [226]. J’y ai inclus
certaines démonstrations, souvent simplifiées, quand il m’a semblé que les techniques utilisées étaient
suffisamment générales.

Les quatre travaux au centre de ce mémoire, par ordre chronologique d’écriture, sont les suivants :

Travaux portant sur la théorie probabiliste du potentiel

e [222| Variations on a central limit theorem in infinite ergodic theory. Ergodic Theory
and Dynamical Systems, 35 (2015), no. 5, 1610-1657.

e [185] Probabilistic potential theory and induction of dynamical systems. Avec Fran-
coise Péne. Annales de I'Institut Henri Poincaré, Probabilités et Statistiques, 57
(2021), no. 3, 1736-1767.

o |184] Potential kernel, hitting probabilities and distributional asymptotics. Avec
Frangoise Péne. Ergodic Theory and Dynamical Systems, 40 (2020), no. 7, 1894
1967.

o [226] Potential theory and Z%-extensions. arXiv :2112.08339v1. Déposé le 15 dé-
cembre 2021. A paraitre aux Mémoires de la Société Mathématique de France. 83

bp.

J’ai cependant pour objectif de présenter diverses techniques de théorie ergodique. J’en profiterai
pour aborder, & I'occasion, mes autres travaux de recherche, qui ne sont pas si éloignés.
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Autres travaux de ’auteur

e [220] A spectral gap for transfer operators of piecewise expanding maps. Discrete
and Continuous Dynamical Systems, 30 (2011), no. 3, 917-944.

o [221] A generalized central limit theorem in infinite ergodic theory. Probability
Theory and Related Fields, 158 (2014), no. 3-4, 597-636.

e [223| Local time and first return time for periodic semi-flows. Israel Journal of
Mathematics, 215 (2016), no. 1, 53-98.

o [224] Sinai billiard maps with Ruelle resonances. Nonlinearity, 33 (2020), no. 12,
6971.

e [225| Keplerian shear in ergodic theory. Annales Henri Lebesgue, 3 (2020), 649-676.

e |186] Central limit theorems for the Z*-periodic Lorentz gas. Avec Frangoise Péne.

Israel Journal of Mathematics, 241 (2021), 539-582.

Afin de les distinguer des autres travaux, a partir de maintenant, les articles de recherche auxquels
j’ai contribué seront cités en rouge.

Ce texte est structuré comme suit. La premiére partie, Théorie spectrale de l'opérateur de transfert,
est une introduction générale aux systémes dynamiques chaotiques, y compris du point de vue mesuré.
J’y introduit ensuite les outils principaux de ces travaux : l'opérateur de transfert, ses propriétés
spectrales et ses perturbations. Cette partie se termine par une démonstration, classique, du théoréme
central limite pour des systémes dynamiques par la méthode de Nagaev—Guivarc’h.

Dans la seconde partie, Z-extensions, nous introduirons lesdites extensions, qui généralisent les
marches aléatoires. Les méthodes spectrales de la premiére partie, poussées dans leurs retranchements,

donneront les premiers théorémes de [185|. J’en profiterai aussi pour parler de résonances de Ruelle
dans les billards [224].

La troisieme partie, Transformations induites et théorie du potentiel, part dans une autre direction.
Les objets centraux sont la notion de systéme induit et ses liens avec la théorie du potentiel via
I'identité de balayage. Si cette partie est essentiellement extraite de [184], je reviendrai briévement
sur certains de mes travaux de thése [221,222].

Tous les éléments sont alors en place pour la quatriéme partie, Théorie du potentiel et Z°-
extensions, qui se concentre sur [226].

Enfin, j’ai choisi d’achever ce mémoire sur une conclusion qui présente un autre point de vue sur
ces recherches : non pas une synthése, mais un récit du déroulement de ce projet.

Les buts d’'un tel mémoire sont multiples : introduction & un domaine de recherche, revue —
partielle et partiale — de la littérature, présentation d’un projet de recherche achevé, offre de nouvelles
pistes de recherches... J’espére avant tout que tout lecteur ou lectrice y trouvera quelque chose qui
I'intéressera.
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Premiére partie
Théorie spectrale de 'opérateur de transfert

Dans un premier temps, nous allons présenter divers exemples de systémes dynamiques chaotiques,
du point de vue topologique (Section : Dynamiques expansives) et mesuré (Section : Un point de
vue mesure).

Nous nous attarderons, dans la Section [2] sur deux points plus spécialisés. D’une part, la théorie
ergodique sera abordée dans le cadre de mesures potentiellement infinies, afin de pouvoir s’appliquer
par la suite aux Z?extensions. D’autre part, nous introduirons les transformations Gibbs-Markov,
dont les propriétés sont utilisées extensivement dans [226|, et jouent donc un roéle particulier dans
le projet de recherche associé.

Enfin, la Section[3]: L’ opérateur de transfert est dédiée aux opérateurs de transfert et aux proprié-
tés spectrales de leur action sur des espaces de Banach bien choisis. Nous y aborderons notamment
les espaces de distributions anisotropes, trés utiles dans I'étude des transformations Anosov et des
billards de Sinai, ainsi que les perturbations d’opérateurs et leur application & la démonstration d’un
théoréme central limite.

1 Dynamiques expansives

1.1 Transformations expansives

Nous nous concentrerons dans cette partie du mémoire sur des dynamiques uniformément hy-
perboliques, et plus précisément des dynamiques expansives. Un cas particulier en est donné par les
transformations uniformément dilatantes du cercle.

Définition 1.1 (Transformations expansives et uniformément expansives).

Soit (A,d) un espace métrique et T : A — A mesurable. Le systéeme dynamique (A,d,T) est
expansif sl existe § > 0 tel que, pour tout x # y, il existe n > 0 tel que d(T™(z),T"(y)) > 6.
Autrement dit, la dynamique va séparer d’au moins ¢ toute paire de points distincts.

Le systeme dynamique (A,d,T) est uniformément expansif s’il exviste A > 1 et 6 > 0 tels que,
pour tous x, y tels que d(x,y) <9,

d(T(z), T(y)) > Ad(z,y).

L’expansivité uniforme implique 'expansivité avec la méme constante §. L’expansivité garantit
une forme d’instabilité de la dynamique. Une erreur, aussi petite qu’elle soit, sur la condition initiale
conduit & des trajectoires qualitativement différentes, a distance au moins 0 'une de I'autre a un
instant donné. Donnons quelques exemples de telles dynamiques.

1.2 Transformations du cercle et de 'intervalle

Un exemple simple de dynamique expansive est donné par les transformations uniformément
dilatantes du cercle ou de I'intervalle.

Définition 1.2 (Transformation C'*? uniformément dilatante du cercle).
Soit 6 € (0,1). Une transformation T : S; — S; est C**? uniformément dilatante 8% :

1. Pour simplifier notre présentation, nous demandons ici que la transformation T elle-méme soit uniformé-
ment dilatante. En général, il suffit d’exiger que T ait une itérée dilatante, c’est-a-dire qu’il existe N > 1 tel que
ming, [(TN)'] > 1.
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o T c€C'Sy,Sy) et T" est O-hildérienne,
e A :=ming, |T"| > 1.

Une transformation C'™? uniformément dilatante du cercle est uniformément expansive avec la
méme constante A. La condition de régularité de la dérivée T n’a pas encore d’influence, mais sera
primordiale quand nous étudierons les aspects mesurés de telles transformations.

Exemple 1.3.
Soient n un entier tel que |n| > 2 et t un réel tel que |t| < ‘/%—:q)(w —1)~0.109(|n| — 1), ou ®
est le nombre d’or. Alors la transformation

Tntl{Sl — Sl

)

T = nr+ ter@m)

est une transformation analytique uniformément dilatante du cercle.

1.0 ; T
0.8 - \
0.6 \ ‘ \
0.4 \

0.2 \

0.0 — . u . .
0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 1 — Graphe de la transformation 73 ¢ 15.

Donnons deux autres exemples de transformations expansive de l'intervalle, elles aussi ayant un
caractére uniformément hyperbolique. Commencons par la famille des S-transformations. qui ne sont
pas globalement C'™? mais seulement lisses par morceaux.

Définition 1.4 (f-transformation de I'intervalle).
Soit > 1. La B-transformation est définie par :

0,1 — [0,1)
Tﬁ'{m — Bz [1]

Soient 5 > 1et x # y € [0,1]. La S-transformation Tj a une nombre fini de discontinuités, dont la
taille est donc minorée par un oy > 0. Tant que T™(x) et T"(y) sont dans le méme domaine de conti-
nuité de 7", leur distance est multipliée par un facteur § a chaque itération. Comme d(7"(z), 7" (y))
est borné par 1, les points T"(z) et T"(y) vont finir par tomber dans des domaines de continuité
différents de T', disons & un instant N > 1. Si TV (z) et TV (y) sont trop proches, ils vont étre trés
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1.0

f / /
/ / /
/ / /
0.8 / / /
/ / /
/ / /
0.6 - / / /
/ / /
/ / /
044 / / /
/ .-"I /
/ :,f' /
f / /
0.2 / / |
/ / / /
/ / / /
0.0 T - T — T -
0.0 0.2 0.4 0.6 0.8

1.0
FIGURE 2 — Graphe de la -transformation 7.

proches et de part et d’autre d’'une méme discontinuité, et donc TV*1(x) et TV 1(y) vont étre séparés
d’au moins dy/2. On peut donc s’assurer que max{d(T (x), TN (y)), d(TN T (z), TN*1(y))} est borné
inférieurement par une constante strictement positive, et donc que 7 est expansive.

Enfin, donnons un exemple ayant une infinité de branches, la transformation de Gauss.
Définition 1.5 (Transformation de Gauss).

La transformation de Gauss est donnée par

1
T = [1]
1.0 T T T |
| | |I \
‘ | | | '\\
[ \
|| \
0.8 | | | I|I \'.
| |
I \
‘ || ||I \.\
0.6 || \ \
‘ | I| | \
| | I| \ N
. _
0.4 | I \
| | I| ' \
[ | ' \
‘ IR \
0.2 | | || |I II \\
| | |
‘ ‘ | || II".
| \
0.0 I . :
0.0 0.2 0.4 0.6

1.0
FIGURE 3 — Graphe de la transformation de Gauss.
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Cette transformation n’est pas expansive au sens de la Définition [I.1, mais va néanmoins exhiber
le méme type d’instabilité. De plus, elle constituera un exemple simple dans la suite de ce texte.

Remarquons que 'ensemble de définition de la transformation de Gauss n’est pas stable par T ; un
sous-ensemble stable serait, par exemple, [0, 1]\ Q. De plus, la dérivée de la transformation de Gauss
en 1 est de —1, ce qui est a priori un autre obstacle a I'expansivité uniforme. On peut cependant
modifier la métrique pour faire de T" une transformation uniformément expansive sur chaque intervalle
( 1 l] avec constante d’expansivité uniforme, par exemple en choisissant

n+l’n
(| 1
/—dt’:‘ln< +x>' (1.1)
. 1+ 1+y

Remarque 1.6 (Développement en fraction continue).

La transformation de Gauss T est intimement liée aux développements en fractions continues des
réels. Soit x € (0, 1) irrationnel. Alors T"(x) est bien défini pour tout n, et x admet un développement
en fractions continues :

d(z,y) =

1
$:[Oibl,b2,...]:0+—l .
De plus, ﬁ <zx< i et T(z) = [0 : by, bs,...]. Par récurrence, pour tout k > 1, l’entier by, est
l'unique entier tel que T*1(x) € (ﬁ, i)

1.3 Transformations markoviennes

Une seconde classe d’exemples est constituées de systémes symboliques, dont les plus simples sont
les sous-décalages de type fini.

Définition 1.7 (Sous-décalage de type fini).
Soit I un ensemble fini et M une matrice |I| x |I| a coefficients dans {0,1}. Le sous-décalage de
type fini défini par M est la donnée de lespace X3, := {z € IV : M, =1VYn > 0}, et de la

TnTn+1
transformation
+ +
5 { Iy — X5

(%)nzo = (l‘n+1)nzo

Y

Uespace 33, C IN étant bien un compact o-invariant.

Un élément z € IN peut étre vu comme un chemin infini sur le graphe (orienté, a boucles)
complet dont les sommets sont les éléments de I. Une matrice de transition M équivaut a la donnée
de transitions autorisées pour de tels chemins, et X7, a 'espace des chemins autorisés.

Rien ne dit a priori que ¥}, est non vide. Pour cela, on peut faire une hypothese plus forte :
I'irréductibilité du systéeme (X7}, o), exprimée ici comme propriété combinatoire de la matrice M.
Définition 1.8 (Irréductibilité).

Soit I un ensemble fini. Une matrice de transition M sur I est dite irréductible si, pour tous 1,
j €1, il existe n > 1 tel que (M™);; > 1.

Sous cette condition, I'espace topologique X}, est un compact non vide. Il peut étre muni d’une
métrique générant sa topologie. Le choix le plus fréquent consiste a définir le temps de séparation

s(z,y) :=inf{n >0 : z, # yn}, (1.2)
puis, pour un ¢ € (0,1) quelconque, de poser
dg(x,y) := 675@Y). (1.3)
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La transformation o est alors #-lipschitzienne, et le systéme (X1, T') est expansif. Le systeme (X7, T)
est de plus markovien : il existe une partition a« = {{x € X}, : 29 =i},1 € I} de X}, telle que I'image
T'(a) de tout élément a € a est une union d’éléments de a (ou, autrement dit, est o(a)-mesurable).
Une telle partition permet de définir des cylindres : ce sont les sous-ensembles de 1, de la forme

n—1
a=lag,...,an 1] ={x €0l mp=apVk <n} € \/T_koz,
k=0

oun >0et (ag,...,a,—1) € Q™

Certaines transformations de la Sous-section peuvent se coder symboliquement. Pour cela, on
construit une partition a de l'espace A, et & un point x € A on associe la suite des éléments de la
partition auxquels appartient 7"(z). Cela donne un une application i : A — o!. Les transformations
de la Sous-section étant expansives, si les éléments de la partition sont assez petits (de diamétre
plus petit que la constante § intervenant dans la définition de la propriété d’expansivité), h est
injective. De plus, h vérifie la relation de commutation

hoT =o0oh. (1.4)

La dynamique des sous-décalages de type fini est facile a étudier ; on peut espérer, en choisissant
une partition bien choisie, que I'image h(A) est un tel sous-décalage. C’est le cas pour une transfor-
mation uniformément dilatante du cercle. Soient n le degré de la transformation T" et xy un point fixe
de T. Ecrivons zy < x5 < ... < T, les préimages de z. Choisissons o := {[z;, 7,41) : i € Z/nZ}.

Alors T'(a) = S; pour tout a € a, ce qui assure que h(S;) = o

Un des défauts de cette stratégie est que, dans cet exemple, h n’est pas continue : en effet, I’espace
A est connexe non trivial, et I'espace d’arrivé o' a une topologie totalement discontinue. Les points
qui posent probléme sont ceux dont l'orbite passe par un des z;. Heureusement, ces points sont
dénombrables, donc comparativement rares. Quand nous introduirons des mesures, ces ensembles de
points problématiques seront typiquement négligeables du point de vue de la mesure.

La situation est plus complexe pour les -transformations. Ces transformations ne sont pas me-
surablement conjuguées les unes aux autres, ne serait-ce que pour des questions d’entropie. Pour des
raisons de cardinalité, seul un nombre dénombrable de [-transformations peuvent étre conjuguées
a un sous-décalage de type fini. C’est le cas si § est un nombre de Pisot, c’est-a-dire un entier al-
gébrique supérieur & 1 dont tous les conjugués sont inférieur a 1 strictement. Par exemple, pour le
nombre d’or 3 = ¢, le choix de partition o = {[0,¢™'), [¢7!, 1)} permet de conjuguer mesurablement
la ¢-transformation au sous-décalage sur deux symboles de matrice de transition

M:Gé)

L’application de Gauss met en évidence une autre limite de la conjugaison avec des sous-décalages
de type fini. On dispose d’un partition évidente de I'intervalle (0, 1] :

1 1
o= = tn>1p,
{(n—l—l n] }

telle que T'(a) = [0, 1) pour tout a € a. Cependant, cette partition n’est pas finie. L’extension de la
notion de sous-décalage a des alphabets infinis est délicate : un nombre infini de symboles permet une
diversité de comportements telle qu’il est plus difficile de formuler des énoncés généraux, ce qui incite
a ajouter des hypothéses supplémentaires. Par exemple, dans le but d’étudier les mesures de Gibbs
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d’un sous-décalage sur un alphabet dénombrable, R.D. Mauldin, M. Urbanski [172] et O. Sarig [203]
utilisent la propriété de grandes images et préimages : il existe une partie finie J C [ telle que, pour
tout ¢ € I, il existe Jin, Jous € J tels que

M;

ini jout

Cette condition garantit une forme de récurrence rapide et est nécessaire pour définir des mesures
de Gibbs au sens de Bowen [203, Theorem 1]. Elle est satisfaite par une version symbolique de la
transformation de Gauss (pour laquelle on peut prendre J = {(1/2,1]}).

Pour plus d’informations sur le codage de transformations hyperboliques, en en particulier des
constructions détaillées en dimension 2, nous renvoyons le lecteur a [6].

2 Un point de vue mesuré

Un systéme dynamique expansif est sensible aux conditions initiales : une différence aussi petite
soit-elle des conditions initiales aboutira tot ou tard a une divergence macroscopique des trajectoires
(d’au moins §, ot 0 est le parameétre introduit dans la Définition [1.1).

Dans le cas des transformations C'** uniformément dilatantes du cercle, cette divergence a lieu a
vitesse exponentielle. En effet, soit 7" : S; — S; une telle transformation, et A := min |7”|. Il existe § tel
que, si d(z,y) < 8, alors d(T'(z), T(y)) > Md(z,y). En itérant, si d(T%(z), T*(y)) < d pour tout k < n,
alors d(T"(x),T™(y)) > A"d(x,y). Par conséquent, le temps de séparation de = et y (c’est-a-dire, ici,
le temps nécessaire pour que leurs orbites soient distances d’au moins ¢ est d’au plus w,
c’est-a-dire de I'ordre de |In(d(z,y))|. Remarquons au passage que la fonction n ~ min |T™)] est

sur-multiplicative, donc min|T(”)|% converge vers un réel Ay, > A > 1. Asymptotiquement, la
(=0 < \n

divergence des trajectoires proches se fait a vitesse A,

Face a cette imprévisibilité fondamentale, le point de vue de la théorie ergodique consiste & munir
le systéme dynamique de mesures, et d’étudier le comportement d’orbites génériques. Pour de nom-
breux systémes chaotiques et des mesures bien choisies, on observe numériquement un comportement
proche d’objets probabilistes tels que des suites de variables aléatoires indépendantes ou des chaines

de Markov.

2.1 Mesures invariantes

Rappelons un peu de vocabulaire de théorie ergodique.

Définition 2.1 (Invariance, ergodicité, mélange).
Soit (A, T) un systéeme dynamique mesurable sur un espace polonais et j € P(A). On dit que :
e La mesure u est invariante si Top = p, d.e. si (T 'B) = p(B) pour tout borélien B.
o Le systeme dynamique (A, pu, T') est ergodique si p est invariante et si tout ensemble mesurable
T-invariant est de mesure 0 ou 1.
o Le systeme dynamique (A, u,T) est mélangeant si lim, oo (T "B NC) = u(B)u(C) pour
tous boréliens B, C'.

Avec ces définitions, le mélange implique 'ergodicité, qui implique I'invariance. Il est possible de
définir une notion intéressante de mélange pour des systémes dynamiques non ergodiques [225|, mais
cela n’est pas I'objet de ce mémoire.
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Exemple 2.2 (Transformation de Gauss).

Revenons a la transformation de Gauss T sur [0,1]. Celle-ci préserve la mesure de probabilité
= ﬁﬁdx Comme nous le verrons dans I’Exemple le systeme dynamique ([0,1], u,T) est
mélangeant.

Nous parlerons beaucoup de systémes dynamiques préservant une mesure infinie. La définition de
I'invariance d’une telle mesure ne change pas, mais les notions d’ergodicité et de mélange sont plus
subtiles.

Définition 2.3 (Invariance, ergodicité, mélange).
Soit (A, T) un systéme dynamique mesurable sur un espace polonais et p une mesure a—ﬁmeEI
invariante sur A. On dit que :

e Le systéeme dynamique (A, p,T) est ergodique si tout borélien B tel que T™'B = B est ou
bien de mesure nulle, ou bien de complémentaire de mensure nulle.

o Un ensemble mesure B C A est dit récurrent si, pour p-presque tout xr € B, il existe n > 1
tel que T™(x) € B. Le systeme dynamique (A, p,T) est conservatif si tout B mesurable est
récurrent.

o Si de plus p est une mesure de probabilité, le systéeme dynamique (A, pu,T) est mélangeant si
lim, oo f(ANT"B) = pu(A)pu(B) pour tous boréliens A et B.

Avant de continuer, nous introduisons une notation commune et bien utile.

Notation 2.4 (Somme de Birkhoft).
Etant donné un systeme dynamique (A, T) et f: A — R (ou n’importe quel monoide...), on note
pour tout n € N

n—1
Sif=> foT*
k=0
ses sommes de Birkhoft. Si la transformation T' n’est pas ambigiie, nous noterons simplement S, f.

2.1.1 Ergodicité et conservativité

En mesure finie, la conservativité se déduit de 'ergodicité par le lemme de récurrence de Poin-
caré. De plus, 'ergodicité est caractérisée par les théorémes ergodiques de Birkhoff [29] et de von
Neumann [232] :

Théoréme 2.5 (Birkhoff, 1931 ; von Neumann, 1932 [29,232]).
Soit (A, p, T) un systéme dynamique préservant une mesure de probabilité. Il y a équivalence
entre :
o (A, u,T) est ergodique.
o Pour tout f € LY(A, u) et p-presque stirement,

. Suf
1 = dp.
w5 [ o

n—+oco N

o Pour tout f € L2(A, ) et dans L*(A, p),

. Suf
1 = dg.
im /Af It

n—+oo nN

2. Dans ce mémoire, les mesures finies seront a fortiori o-finies.
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En mesure infinie, la conservativité ne découle plus de l'ergodicité : par exemple, la fonction
T : x — x4+ 1 définit une transformation ergodique non conservative de (Z, Leb). Pour éviter ce
cas de figure, nous parlerons en mesure infinie de systémes ergodiques conservatifs, qui ont plusieurs
caractérisations confortables.

Lemme 2.6.
Soit (A, T) un systéme dynamique mesurable sur un espace polonais et | une mesure o-finie
invariante sur A. Il y a équivalence entre :
o (A, u,T) est ergodique et conservatif.
e Pour tout B de mesure strictement positive, pour presque tout x € A, il existe n > 1 tel que
T"(z) € B.
e Pour tout B de mesure strictement positive, pour presque tout v € A, il existe une suite
strictement croissante d’entiers (ng)ren telle que T™ (x) € B pour tout k.
e Pour toute fonction mesurable positive f : A — R, si u(f > 0) > 0, alors lim,, 1, Spf = +00
presque partout.

De plus, les théoréemes ergodiques de Birkhoff et de von Neumann sont peu utiles en mesure
infinie 1] |1, Exercice 2.2.1] : dans ce cadre, % converge presque strement vers 0 pour toute
fonction intégrable f. Nous utiliserons a la place le théoréme ergodique de Hopf [124} §14, Individueller

Ergodensatz fiir Abbildungen|, qui généralise le théoréme ergodique de Birkhoff :

Théoréme 2.7 (Théoréme ergodique de Hopf).

Soit (A, u, T) un systéme dynamique qui préserve une mesure o-finie. Le systéme (A, u,T) est

ergodique et conservatif si et seulement si, pour toutes fonctions f, g € L' (A, ) telles que fA gdu#0
et p-presque partout,

g S _ Jafdi

notoo Spg [, gdp

Si p est une mesure de probabilité, on retrouve le théoréme de Birkhoff en choisissant g := 1 4.

(2.1)

2.1.2 Mélange

En mesure finie, la notion de mélange peut souvent se quantifier. Il faut pour cela exprimer
le mélange sous forme fonctionnelle et non a l'aide de boréliensrﬂ En général, pour des systémes
dynamiques uniformément hyperboliques, on s’attend alors & une décroissance exponentielle des cor-
rélations, c’est-a-dire a une perte rapide de la “mémoire” du systéme, comme dans I’exemple suivant :

Théoréme 2.8.

Soit T € C*(Sy,S:1) une transformation uniformément dilatante du cercle. Alors il existe une
unique mesure de probabilité invariante p = h(x)dz absolument continue par rapport a la mesure
de Lebesque. De plus, il existe C > 1 et A > 0 tels que pour toutes fonctions f € L'(S;,Leb) et
g € C(Sy,C), pour tout n >0,

portgdu— [ fau [ gdu‘ < O™l o l9lers, - (2.2)
S1 S1 S1

Ce type de théoréme reste valide dans un cadre beaucoup plus largelﬂ [10,|38}74,|75], y compris
pour des flots [14,(79,/161] et pour des observables seulement héldériennes. Nous y reviendrons en
Sous-sous-section [3.3.2]

3. La décroissance quantitative dépendant alors de la régularité des fonctions considérées, les indicatrices de boré-
liens pouvant étre trés peu réguliéres.
4. TI serait vain d’énumérer tous les systémes ayant cette propriété, et plus encore tous les travaux portant dessus.
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La notion de mélange, ainsi ses conséquences quantitatives dans certaines systémes telles que
la décroissance exponentielle des corrélations, nous sera souvent utile : convergence de la formule
de Green-Kubo (Equation (3-16))), propriété de trou spectral (Sous-sous-section , ou encore
contraction de cone (démonstration de la Proposition [12.7).

L’extension de la notion de mélange a la mesure infinie est délicate. Soit (A, p,T) un systéme
dynamique ergodique et conservatif préservant une mesure p infinie. Une notion naturelle de mé-
lange implique que lim,, ., u(T~"B N C) = 0 pour tous boréliens B, C' de mesure finie [149]. 11
existe néanmoins des variantes intéressantes de la notion de mélange. La plus fréquente consiste a
renormaliser la quantité p(7~"B N C). Il est aussi possible d’adopter une approche fonctionnelle,
c’est-a-dire d’étudier plus généralementﬂ des quantités du type f 4 fgoT" du; divers choix de
classes de fonctions pour f et g mettent alors en évidence autant de phénomeénes dynamiques.

Pour la premiére approche, nous renvoyons le lecteur aux travaux, par exemplef] de M. Tha-
ler [218|, S. Gouézel [113], H. Bruin, I. Melbourne et D. Terhesiu [40,173,174] pour des transformations
avec un point fixe neutre indifférent ; et F. Péne, D. Terhesiu [179}/180,/187] ou encore D. Dolgopyat
et P. Nandori [82] pour les billards de Sinai. Pour la seconde approche, le lecteur pourra par exemple
consulter les travaux de C. Bonanno, P. Giulietti et M. Lenci [34,/157] ou encore D. Dolgopyat et
P. Nandori [83].

2.2 Distorsion holdérienne et propriété de Gibbs

Soient # € (0,1] et T une transformation uniformément dilatante C'*? du cercle R/Z. Notons

g = ﬁ Trivialement, T" a la propriété de distorsion holdérienne : il existe C' > 1 telle que, pour

tous x, y € S; suffisamment proches,

1 9(x) 0

—d(T(z), T(y))? < == < Cd(T(x),T(y))°. 2.3

o d(T(@), T(y)) ) (T'(x), T(y)) (2.3)
Cette propriété se transmet aux itérées de 7. Notons g™ := W et d le degré topologique de T'.

Etant donné un intervalle ouvert I du cercle, ’'ensemble 77" (1) est 'union de d” intervalles ouverts.
Alors :

Lemme 2.9.

Soient 0 € (0,1] et T une transformation uniformément dilatante C**° du cercle. Il existe C > 1
telle que, pour tout intervalle ouvert I, pour tout n > 0, pour tous x, y dans la méme composante
conneze de T~"(1I),

%Wwfé

< Cd(z,y)’. (2.4)

Démonstration.

On se place sous les hypothéses du lemme, en supposant pour simplifier que || < 1/2. Il suffit de
montrer que In(g™) est f-holdérienne avec une semi-norme holdérienne uniformément bornée. Par
la formule de dérivation en chaine,

In(g"™) = 5, In(g).

Soit C' telle que |In(g)(2") —In(g)(v")| < Cd(T(2"),T(y')) pour tous z’, y' suffisamment proches.
Soit A := min|T’|. Les points T%(x), T*(y) appartiennent & la méme composante connexe de
T==F)(I) pour tout k < n, et comme |I| < 1/2, les distances se mesurent dans les intervalles

5. On retrouve la définition classique du mélange en choisissant f = 1¢ et g = 1p.
6. La liste est loin d’étre exhaustive!
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T=("=F)(I) (en particulier la fonction k — d(T*(z), T*(y)) est bien croissante). On observe alors que
d(T"(x), T*(y)) < A~""Pd(T" (), T"(y)), d'ot

In(g™)(x) — In(g™)(y)| < Z Cd(T"(x), T*(y))’

<C<ZA s > (T (), T"(y))"

O n mn
< ———d(T"(x), T"(y))" [
1—A
La propriété de distorsion héldérienne est centrale dans ’étude des systémes dynamiques hyper-
boliques en régularité C**+?. Par exemple, placons-nous sous les conditions du Lemme , en utilisant
la méme constante C. Soit x € T~"(I) et J la composante connexe de I contenant z. Alors

7] = / 1(z) dz = / 1(2) - g o (Thp)) A (2) d,

donc

CY g™ (x) = C~ /1 ™ (z)dz < |J] < 0/ " (z) dz = C|I|g"™ (z).

Autrement dit, 7 m II et g™ (x) sont du méme ordre de grandeur, uniformément en € J et enn >0 :

il s’agit d'un cas particulier de la propriété de Gibbs |38, Théoréme 1.2] |10, Definition 1.18].

La propriété de distorsion holdérienne apparait dans la démonstration d’inégalité de Lasota-Yorke,
qui sera présentée en Sous-sous-section [3.3.3et qui permet de montrer la quasi-compacité d’opérateurs
de transfert, et de la ’existence de mesures invariantes absolument continues par rapport a la mesure
de Lebesgue. Elle est aussi un probléme-clef dans le procédé d’induction probabiliste suggéré en
Sous-section 8.4

2.3 Transformations Gibbs-Markov

Les transformations Gibbs-Markov forment une classe de systémes dynamiques symboliques dila-
tants mesurés, avec potentiellement une infinité de symboles. Comme mentionné en Sous-section [1.3),
les comportements de transformations markoviennes sur une infinité de symboles peut étre extré-
mement divers. Afin de garantir une récurrence rapide, on y ajoute une propriété de grande image,
qui peut étre vue comme une version mesurée de la propriété de grande image topologique utilisée
par R.D. Mauldin, M. Urbanski et O. Sarig déja évoquée. De plus, on impose une forme de distor-
sion lipschitzienne, pendant mesuré de la distorsion héldérienne[] de la sous-section Cette classe
de transformations comprend a la fois des transformations de nature géométrique (transformations
de T'intervalle) et symbolique. Nous renvoyons le lecteur a |1}|4,|112] pour des introductions plus
complétes a ces transformations.

Définition 2.10 (Transformations Gibbs-Markov).

Soient (A, d) un espace métrique polonais borné, A sa tribu borélienne et p une mesure de probabi-
lité sur (A, A). Soit T : A — A mesurable. Soit o une partition modulo  de A en sous-ensembles de
mesure strictement positive. Supposons que T est une transformation markovienne pour la partition
a, que o engendre A, et que p est T-invariante.

7. Dans ce cadre symbolique, les distances utilisées peuvent étre aisément modifiées, de telle sorte que la distinction
entre fonctions lipschitziennes et holdériennes est sans importance.
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On dit que (A, a,d,pu,T) est une transformation Gibbs-Markov si elle a de plus les propriétés
suivantes :

e Grande image : inf,c, p(Ta) > 0;

e Dilatation : il existe A > 1 tel que d(Tx, Ty) > Ad(z,y) pour tous a € « et (x,y) € a X a;

e Distorsion lipschitzienne : il existe C > 0 tel que, pour tout a € « et presque tous (x,y) € axa,

du du du

La partition image jouera un réle important. Celle-ci est moins fine que « ; remarquons cependant
que, si les images des éléments de o ont une mesure minorée, ce n’est pas nécessairement les cas des
éléments de a*.

Définition 2.11 (Partition image).
Soit (A, o, d, u, T') une transformation Gibbs-Markov. Chaque élément de la partition « est envoye,
modulo i, sur une union T'(a) d’éléments de ov. On note o* = \/ ., T'(a) la partition image.

Remarque 2.12 (Invariance de la mesure).

Nous avons ajouté pour simplifier ’hypothése que la mesure p est T-invariante; ce n’est pas
le cas dans les références citées [1),14,/112]. Si u est seulement supposée non singuliére, on peut
trouver une mesure invariante équivalente pour lequel le systéme est encore Gibbs-Markov dés que la
transformation est irréductible et Card(a*) < +o0 ; voir par exemple |4, Théoréme 3.1].

2.4 Exemples de transformations Gibbs-Markov

Nous présentons maintenant un certain nombre de systémes dynamiques Gibbs-Markov, ou dont
I’étude fait intervenir des transformations Gibbs-Markov. Plus qu’un simple inventaire ou une justi-
fication de I’étude de cette classe de transformations, il faut y voir une introduction aux objets qui
apparaissent dans la plupart des travaux de ’auteur.

Revenons pour commencer sur un exemple explicite : la transformation de Gauss.

Exemple 2.13 (Transformation de Gauss).
Soit T : x — {1/x} la transformation de Gauss sur A = [0,1]. Nous avons vu que :

o T préserve la mesure de probabilité p = ﬁﬁd% par l’Exemple .

o [l lui est associé une partition naturelle & = (ap)p>1, 0U a, = (n+r1’ %], comme EVoqué en
Remarque [1.6,

o Comme mentionné en FEquation (1.1), il lui est associée la distance

L 1
ot = ()]
. 14t I+y
Comme T, est surjective pour tout n, on a u(T(a,)) = p(A) =1 pour tout n, donc la propriété de
la grande image est satisfaite. La transformation T est dilatante grace a ce choix de distance, avec

constante A = 2. Finalement, le lecteur pourra vérifier la propriété de distorsion lipschitzienne ; ici,

la famille de fonctions dugﬂan est uniformément lipschitzienne, et le fait que d(z,y) = In(2)u([z, y])

d(z,y) =

aitde a conclure.

Pour cette transformation, o* = {A} est triviale.
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2.4.1 Modéles probabilistes

Les sous-décalages de type fini munis de la mesure d’équilibre associée a un potentiel héldérien
sont des transformations Gibbs-Markov. En particulier, les chaines de Markov sur des espaces d’états
finis sont Gibbs-Markov.

La possibilité d’avoir des espaces d’états infinis autorise des exemples plus variés. Par exemple,
le décalage complet sur Z, muni d’une mesure de probabilité produit, est une transformation Gibbs-
Markov. En d’autres termes, on peut traiter dans ce cadre toutes les suites de variables aléatoires
indépendantes identiquement distribuées sur Z, ou sur n’importe quel ensemble dénombrable.

2.4.2 Flots d’Anosov

Les systémes pouvant s’encoder par des sous-décalages de type fini rentrent aussi dans ce cadre.
Le cas le plus connu est celui des difféomorphismes Anosov :

Définition 2.14 (Difféomorphisme Anosov).

Soit M wune variété riemannienne compacte, et T : M — M wun difféomorphisme. Le systéme
(M, T) est dit Anosov s’il existe une décomposition continue de ’espace tangent & M en deuz sous-
fibrés E* (le sous-espace stable) et E* (le sous-espace instable) :

T.M = E*(z) ® E*(z)
telle que, pour trois constantes C' > 0 et Ag, A, > 1, on ait :
e Invariance de la décomposition : (DT)E® = E® et (DT)E" = E,

o Contraction dans la direction stable : ’ D ‘7}35 ‘ < CA;" pour tout n > 0,

e Dilatation dans la direction instable : HDT@Z < CA,™ pour tout n > 0.

Gréace au travaux de R. Bowen [37] et M. Ratner [197], on sait que les transformations Anosov
peuvent étre encodées par des sous-décalages de type fini. Le travail de Bowen s’applique aussi
aux transformations Axiome A, c’est-a-dire ayant un attracteur compact vérifiant des conditions
semblables a celles des transformations Anosov.

La stratégie consistant a encoder les trajectoires de la dynamique s’adapte aussi aux flots Anosov,
c’est-a-dire a des flots (¢;)ier de classe C! sur des variétés riemanniennes M tels que l'on ait une
décomposition continue

T.M = E*(z) ® E°(z) ® E“(x),

ot E° est la direction du flot et les fibrés E¥ et E“ vérifient des conditions similaires & celles de la
Définition [2.14] ainsi qu’a des flots Axiome A. Dans ce cas, on peut trouver une section de Poincaré
pour le flot telle que la transformation de premier retour admette un codage par un sous-décalage de
type fini.

L’exemple le plus connu de flot Anosov est le flot géodésique sur une surface riemannienne com-
pacte de courbure sectionnelle strictement négative. Quand M est une surface de courbure négative
constante, des codages géométriquement explicites ont été développés ; ces techniques remontent dans

un cadre Axiome AE] aux travaux de J. Hadamard |119] en 1898, et ont été perfectionnées notamment
par C. Series [207].

8. Bien entendu, les travaux de J. Hadamard précédent de beaucoup la notion de flot Axiome A. Il a néanmoins
étudié le flot géodésique sur une surface hyperbolique géométriquement finie et de volume infini qui, quand on le
restreint & son ensemble topologiquement récurrent, est Axiome A. Ce contexte précis (géométriquement fini, volume
infini) rend le codage particuliérement naturel : I’ensemble des orbites récurrentes est homéomorphe a (un flot de
suspension au-dessus d’) un sous-décalage de type fini. Curieusement, les billards dispersifs planaires, qui en sont les
analogues dans le cadre des billards de Sinai, ont été étudiés beaucoup plus tard [104].
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Fig. 2.

FIGURE 4 — Une surface hyperbolique sur laquelle J. Hadamard a étudié le flot géodésique 119,
Figure 2|.

Les transformations Gibbs-Markov permettent de coder des dynamiques plus diverses, en particu-
lier non compactes. Par exemple, la surface modulaire PSLy(Z)\ PSL2(R) est un orbifold de courbure
constante égale & —1 et ayant une pointe (non bornée, mais de volume fini).

FIGURE 5 — Une représentation de la surface modulaire PSLy(Z)\ PSLy(R) par F. Dal’Bo [66, Cha-
pitre II, Figure 9| ; |67, Chapitre II, Figure 9]. 2007, EDP Sciences; 2011, Springer. Copyright 2007,
Francoise Dal’Bo. Reproduit avec la permission de I'auteure.

Etant donnée une section de Poincaré bornée, les excursions depuis cette section ont, qualitative-
ment, un nombre dénombrable de comportement possibles, correspondant au nombre de tours autour
de la pointe avant de revenir. Le codage de la transformation de premier retour va donc se faire avec
un alphabet infini dénombrable [209], mais vérifiant les axiomes des transformations Gibbs-Markov
pour la mesure volume[] Ce codage a été utilisé notamment par J. Aaronson et M. Denker [2] pour
étudier la récurrence du flot géodésique sur €\ Z muni de sa structure hyperbolique de volume fini
invariante par z — z + 1.

Remarque 2.15 (Réduction & un systéme markovien unilatére).

Un flot d’Anosov est un systéeme dynamique inversible. Aprés avoir construit une section de
Poincaré inversible, il sera codé par une transformation markovienne inversible, par exemple un
sous-décalage de type fini bilatére[[] :

Sy={zel’: M, =1VneZ}

T(x) = (Tni1)nez VT € Ly,

9. On peut méme obtenir ainsi la transformation de Gauss, dont la dynamique est intimement liée aux développe-
ments en fractions continues [66}/208].
10. Merci & M. Demers d’avoir souligné ce point.
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pour une certaine matrice de transition M. L’espace Yy; peut étre métrisé, par exemple, par la
distance d(z,y) = 2~ PNk @nFynl},

Ce cadre est différent de celui des décalages unilatéres introduits en Sous-section[1.5); par exemple,
le systeme (X, T) n'est pas expansif. On peut cependant se ramener a des décalages unilatéres, grice
a un argument de R. Bowen. Pour toute fonction f : Xy — C qui est 0-héldérienne, il existe une
fonction 0/2-héldérienne u telle que fy := f+uoT — u ne dépende que des coordonnées dans le
futur (x,)n>0. Quitte a remplacer f par fy, on se raméne donc au systéme markovien unilatére 37, .

Cette technique est trés efficace pour analyser le comportement des sommes de Birkhoff de f. En

effet,
Sn(f) = Su(f4) +u—uoT™,

et le terme (u—uoT™) est en général négligeable devant S, (fy).

Cependant, pour d’autres propriétés, telles que le mélange quantitatif (décroissance exponentielle
des corrélations), la réduction a un sous-décalage unilatére a des limites. Par exemple, étant donnée
JINS P(EM>,

foT”-gd,u:/ f+oT"-gd,u+/ (woT™ —uoT" 1) gdu,
S )

Py M

et le dernier terme sz (woTm —uo T 1Y) g du n'est a priori pas négligeable. Les limites de
cette stratégie ont incité a développer de nouvelles méthodes s’appliquant directement a des systémes
inversibles, contournant méme le codage. Nous renvoyons le lecteur a la Sous-sous-section [3.4.4), in-
troduisant des espaces de Banach de distributions anisotropes,pour ['un des princpaux développements
dans cette direction.

2.4.3 Transformations non-uniformément hyperboliques

Les transformations Gibbs-Markov se sont avérées utiles pour étudier des transformations non-
uniformément hyperboliques. Nous nous restreignons aux transformations non-uniformément hyper-
boliques en dimension 1, ou du moins dont la direction instable est de dimension 1. Ces transforma-
tions sont de loin les transformations non-uniformément hyperboliques les plus étudiées, bien que de
rares études ont été menées en dimension supérieure [89).

Soit A le cercle ou un intervalle compact. Une transformation 7' : A — A est dite non-uniformément
hyperbolique 8’il existe un ensemble fini de points I, fixés par T et tels que 7" = 1 sur I, et si de plus
T est dilatante hors de I, c’est-a-dire que 7"(z) > 1 pour tout z € A\ I.

Si I'orbite d’un point arrive prés de I, alors, la dérivée de T étant proche de 1, il lui faudra
beaucoup de temps pour s’extraire d’un petit voisinage de I. Par conséquent, les orbites typiques
pour la mesure de Lebesgue passent beaucoup de temps prés de I. On observe un phénoméne de
chaos intermittent : les orbites typiques alternent de longues périodes de stabilité apparente (quand
elles sont proches de I) et de courtes périodes de comportement chaotique.

De telles transformations ont été initialement étudiées par Y. Pomeau et P. Manneville [195],
avec des motivations issues de I’hydrodynamique et de phénoménes convectifs chaotiques de facon
intermittenteE. Des transformations non-uniformément hyperboliques apparaissent en effet lors de

11. Les cellules de convection de Rayleigh-Bénard en particulier.
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bifurcations dans le modéle de Lorean [195]. Des études numériques de telles transformations ont
été menées notamment par P. Gaspard et X.J. Wang [105], ainsi que des études théoriques par
M. Thaler [216,217].

La famille de transformations non-uniformément hyperboliques la plus couramment étudiée a été
introduite plus tardivement par C. Liverani, B. Saussol et S. Vaienti [164].

Définition 2.16 (Transformations de Liverani-Saussol-Vaienti).
Soit n > 0. La transformation de Liverani-Saussol-Vaienti (ou transformation LSV) T, : [0, 1] —
[0,1] de paramétre n est définie par :

[ z(1+(22)") Yz e (0,1/2]
Tx) = { 22 — 1 Vo e (1/2,1] (2:6)

1.0

0.8

0.6 1

0.4 /

0.2 e

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 6 — Graphe de la transformation de Liverani — Saussol — Vaienti de parametre n = 1.5.

Cette famille de transformations a ’avantage d’avoir une combinatoire trés simple, mais d’ex-
hiber une grande variété de comportements quand 7 varie. De nombreuses transformations non-
uniformément hyperboliques en dimension 1 vont se comporter comme une transformation LSV pour
un parameétre bien choisi. Par exemple, 'application

T:{ (—m/2,7/2) — (—7/2,7/2)

x —  tan(x) [r]

qui permet de comprendre le comportement du systéme dynamique z — tan(z) sur R, a un point fixe
neutre en 0. Comme tan(z) = z(1+ %) +0O(2), la transformation T va se comporter qualitativement

12. Celui-ci est défini par les trois équations différentielles
T = oly—2);
gy o= —wrtrr-y;
z = xzy—bz.

dépendant de trois parameétres o, b et r. Ce systéme est chaotique pour o = 10, b = 8/3 et r assez grand. Le phénomeéne
de chaos intermittent apparait pour r ~ 166, 06.
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comme la transformation LSV de parameétre n = 2. Pour prendre un autre exemple, 'application
- { 0,1) — [0.1)
x —
introduite par A. Rényi [198] en 1957 en tant que variante de la transformation de GaussE, va se

comporter qualitativement comme la transformation LSV de paramétre n = 1.

T 1.0 T T
15 ] / / / .'I | ]|
| | o
1o [ | / ' ‘
- | | 0.8 | / | |f}_,.l' |
o [ A
0.5 ‘ .'I [ I,."' |'I,-'”" |
|' 0.6 - / A | | |
‘ II .’"’f / |II I |
. | /o | |‘
)
| | | / L || |
| | 0.4 7 - | | ‘
-0.5 |I | /L ' [
[ / .
| A |
" /A
-1.0 ‘ || { || 0.2 Ve I. |I || |
»'J. I - |I I
f g / |
H” I." | ! [ ‘ ‘
-1.5 | ;ll T T T { 0.0 T T : — T il
00 05 10 15 0.0 0.2 0.4 0.6 0.8 1.0

-1.5 -1.0 -0.5

FIGURE 7 — Graphes des transformations x — tan(z) [r] et 2 — = [1] respectivement.

Pour toute valeur de 7, le systéme dynamique ([0, 1], Leb, T})) est ergodique, mais ne préserve pas
la mesure pour n > 0. Il admet, a constante multiplicative pres, une unique mesure invariante absolu-

ment continue y,, = h,(z) da. La fonction h, a un pole d’ordre 7 en 0 [216]. Ainsi, la transformation
de Rényi définie ci-dessus préserve la mesure +dz sur [0, 1].

En particulier, pour n > 1, la mesure p, est infinie. Ce résultat quantifie au passage ’argument
heuristique avancé précédemment : plus 7 est élevé, plus les orbites typiques pour la mesure de

Lebesgue vont passer de temps prés du point fixe neutre 0.
Les systémes dynamiques ([0, 1], u,,, T;,) différent en de nombreux points des systémes hyperbo-

liques. Mentionnons notamment :
e pour 7 € (0,1), une décroissance polynomialeE des corrélations [235, Theorem 5| : il existe

une constante C' > 0 telle que pour f, g : [0,1] — C lipschitziennes,
(2.7)

_(1_
frgoTy du, — [ }fdm,/[ ]gdun < Ol flluip N9llipm G-1),
0,1 0,1

[0,1]
et Pexposant est optimal [110,202].
e le théoréme central limite standard (avec renormalisation en \/Lﬁ) pour des observables holdé-
riennes n’est valable que quand les corrélations de I'Equation (2.7]) sont sommables, c’est-a-dire

pour 7 € [0,1/2) [235, Theorem 5|.

13. Variante a laquelle est associée son propre type de développement en fractions continues.
14. Et non exponentielle, comme dans le cadre des transformations uniformément dilatantes du cercle — comparer

avec le Théoréme @
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Nous ne détaillerons pas toutes les propriétés des transformations non-uniformément hyperboliques.
La méthode la plus fréquente pour étudier les transformations non-uniformément hyperboliques
consiste & induire sur un sous-ensemble bien choisi. Pour les transformations LSV, on choisit d’induire

sur B = (1/2,1]. On définit le temps de premier retour en B par :
¢np(r) =inf{n >1 : T)(z) € B}. (2.8)
Posons T, p(z) := Tf”’B(x) (x) pour x € B. Alors (B, u,(:|B), T, ) est un systéme dynamique ergo-

dique et préservant la mesure. De plus, en choisissant pour d’ la distance usuelle et pour « la partition
engendrée par les ensembles ({¢, 5 = n})n>1, le systéme (B, o, d', pu,(-|B), T, 5) est Gibbs-Markov.

On peut donc voir le comportement de ([0, 1], y1,, 7)) comme celui de la transformation hyperbolique
(B, i1y (:|B), T}, ), entrecoupé de périodes d’attente de longueur ¢, . Ce procédé d’'induction sera

présenté plus en détail en Partie [[T]]

1.0
]

0.9 | | | |
|

0.8 | [
|

0.7

0.5
0.7 0.8

FIGURE 8 — Transformation induite par la transformation de Liverani — Saussol — Vaienti de para-

meétre n = 1.5 sur Uintervalle (1/2,1].

Le temps de premier retour a des queues lourdes : pour tout n > 0, il existe une constante C' > 0
(2.9)

telle que
1
(@8 > n|B) 20 O .

Les temps d’attentes peuvent étre donc trés longs (d’espérance infinie si n > 1), ce qui rend le lien
entre le systéme induit (B, u,(-|B), T,.5) et le systéme initial ([0, 1], u,, T;)) parfois subtil.

Remarque 2.17 (Transformation de Boole).
De fagon similaire, la transformation de Gauss est la transformation induite sur [0,1] par la

transformation de Boole T": Ry — R définie par
1/x Ve (0,1] (2.10)

T<I):{ r—1 Vze(l,+o0)
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Cette transformation se comporte comme une transformation non-uniformément hyperbolique dont
le point fixe neutre serait en +00, et plus précisément comme la transformation LSV de paramétre
n=1.

En effet, soit p = ﬁp%xdaj la mesure sur [0,1] invariante pour la transformation de Gauss,
introduite a I’Exemple[2.2. Alors, pour tout n > 1,

In(1+ 1) 1

p(epa =>n) = pu(T(x) >n) =plr <1/n) = W st M

1

Le temps de premier retour en [0, 1] a donc une queue en Cn™", ce qui correspond bien au paramétre

n =1 dans ’Equation (2.9).

2.4.4 Transformations unimodales

Les transformations Gibbs-Markov sont intervenues dans I’étude de certaines transformations uni-
modales via la construction dite des tours de Young. Commencons par présenter ces transformations
unimodales.

Définition 2.18 (Transformation unimodale).

Soit A = [a,b] un segment et T' € C(A, A). La transformation T est dite unimodale s’il existe un
point ¢ € (a,b) tel que T soit strictement croissante (respectivement, strictement décroissante) sur
la, c] et strictement décroissante (respectivement, strictement croissante) sur [c,b].

Dans la suite de ce texte, on supposera de plus que les transformations unimodales considérées
sont de classe C?, et que T"(c) # 0.

La dynamique d’une transformation unimodale est soumise a la compétition de deux effets, la
contraction prés du point critique ¢ et ’éventuelle expansion loin de ¢ :

e Si ¢ est périodique, disons de période p > 1, alors la dérivée de TP vaut 0 pour tout point de
I'orbite de ¢, qui est donc super-attractive. Les orbites périodiques attractives sont stables;
toute transformation C'-proche de T aura donc encore une orbite de période p attractive.
Dans ce cas, I'unique mesure de probabilité T-invariante supportée par un voisinage de cette
orbite est la mesure uniforme sur celle-ci.

e A D'inverse, la dérivée de T peut étre supérieure & 1 loin de ¢. Tant que la plupart des orbites
ne passent pas trop souvent trop pres de ¢, leur exposant de Lyapunov peut étre strictement
positif, ce qui entraine de I'instabilité.

Le second cas peut étre formalisé et quantifié par les conditions de Collet-Eckmann |58|. Nous en
donnons ici la version utilisée par L.S. Young [235].

Définition 2.19 (Conditions de Collet-Eckmann).

Une transformation unimodale vérifie les conditions de Collet-Eckmann s’/ existe des parametres
M>1,a,0>0cet\>1 tels que :

e pour tout x tel que x, ..., TM"Y(x) ¢ B(c,6), on a [(TM) (x)| > A\M.

e pour toutn > 0 et tout x tel quex, ..., T" 1 (x) & B(c,d) et T"(x) € B(c,d), on a|(T") ()| >

A
o |(T™)(T(c))| > A" pour tout n > 0.
o |T"(c) —c| > e " pour tout n > 1.

Ces conditions impliquent l'existence d’'une mesure de probabilité p absolument continue par
rapport a la mesure de Lebesgue [26]58|.
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Exemple 2.20 (Famille quadratique).
Pour tout k € [0,4], définissons :

10,1 — [0, 1]
T, : { e o ke(l-o) (2.11)
10 —
0.8 j’/ \\
f \,
x'f; hY

0.6 - /

024 |/ \

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 9 — Graphe de T5g7.

D’aprés les travaux de M. Lyubich (169, Density theorem| d’une part, et J. Graczyk et G. Swiatek
d’autre part [115,116], Ty, posséde une orbite périodique attractive pour tout k dans un ouvert dense de
[0,4]. Dans ce cas, le complémentaire du bassin d’attraction de cette orbite est de mesure de Lebesque
nulle, donc T}y, n’admet pas de mesure de probabilité invariante absolument continue par rapport a la
mesure de Lebesque. Sur ce sujet, nous renvoyons a l'article de revue [210)].

Cependant, Ty, satisfait les conditions de Collet-Eckmann pour k dans un ensemble de mesure de
Lebesgue positive, et en particulier de densité 1 en 4. Par conséquent, pour la plupart des paramétres
k proches de 4, la transformation Ty, admet une mesure de probabilité invariante absolument continue
d’exposant de Lyapunov strictement positif [26,/58,126].

Dans les cadre des transformations unimodales, la construction des tours de Young consiste a
trouver une partie A C A = [a, b], une partition a (potentiellement infinie) de A et une fonctionE
R: A — N* tels que :

S(z) := TH®)(z) € A pour p-presque tout x € A ;

R est constante sur les éléments de «;

{R < n} est 'union d’'un nombre fini d’éléments de «a;

(A, a,d’, Leb, S) est une transformation Gibbs—MarkovH, ou d’ est la distance usuelle sur A ;
pour tous z, y tels que R(z) = R(y), les points z, y sont dans le méme ensemble a € «, si
et seulement si T%(x) et T%(y) sont dans la méme composante connexe de A\ {c} pour tout
0 <k < R(z) = R(y). Autrement dit, les éléments de « sont des ensembles de points qui
restent ensemble jusqu’au temps markovien R ;

15. Parfois appelée temps markovien, car elle sera supposée constante sur les éléments de la partition de Markov c.
16. L.S. Young suppose de plus que les branches sont surjectives, ce qui découle naturellement de sa construction
pour les transformations unimodales mais n’est en général pas nécessaire.
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e la transformation T satisfait de bonnes estimées de dilatation et de distorsion[’] entre les
temps de retour markoviens.

La principale différence avec le procédé d’induction utilisé pour étudier les transformations non-

uniformément hyperboliques en Sous-sous-section [2.4.3] ou avec 'utilisation de sections de Poincaré

évoquées en Sous-partie est que le temps R n’est en général pas le temps de premier retour en

A. La flexibilité qui s’ensuit permet d’obtenir les estimées de dilatation et de distorsion pour S = T,

Cette construction s’applique aux transformations unimodales vérifiant les conditions de Collet-
Eckmann.

Théoréme 2.21. (235, Theorem 7]

Soit (I,T) une transformation unimodale vérifiant les conditions de Collet-Eckmann. Alors on
peut construire une tour de Young vérifiant les conditions ci-dessus, et telle que (R > n) < e Pn
pour un certain > 0, ou pu est 'unique mesure de probabilité S-invariante et absolument continue
par rapport & la mesure de Lebesque sur A.

Afin de démontrer une propriété des transformations unimodales vérifiant les conditions de Collet-
Eckmann, une stratégie courante consiste a démontrer cette propriété pour les transformations Gibbs-
Markov, puis & montrer que cette propriété est héritée a travers la construction de Young. La borne
exponentielle sur les queues de R fait que le systéme (I, Leb,T) a le comportement d’une transfor-
mation uniformément hyperbolique, 1a ot les queues polynomiales dans le cas des transformations
non-uniformément hyperboliques (Equation (2.9)) donnaient naissance & des phénoménes propres.

C’est ainsi que 'on peut démontrer I'existence d’une mesure de probabilité pu absolument continue
par rapport & la mesure de Lebesgue, mais aussi que les observables f : I — R holdériennes vont
satisfaire un théoréme central limite ou un principe des grandes déviations par rapport a u. Nous
renvoyons le lecteur a la Sous-partie pour plus de détails.

Remarquons que les tours de Young ne sont pas le seul moyen de démontrer, disons, une décrois-
sance exponentielle des corrélations, un théoréme central limite ou des principes de grandes déviations
pour de telles transformations unimodales. Citons par exemple les travaux antérieurs de G. Keller et
T. Nowicki [143|. Cependant, cette construction a deux avantages. Le premier est de s’appliquer a
plusieurs familles de transformations : si cette approche fonctionne, on démontre la propriété voulue
d’un seul coup pour ces transformations unimodales, mais aussi par exemple pour les applications
collisions de billards de Sinai, que nous verrons en détail en Sous-sous-section Le second est
que les seules démonstrations connues de certaines propriétés utilisent fortement la structure de tour
au-dessus d’une transformation Gibbs-Markov. Citons par exemple I'estimée d’erreur optimale dans
le principe d’invariance presque sire [145], ou les travaux de l'auteur sur les théorémes limites de
fonctions d’intégrales nulles en mesure infinie [221]222].

2.4.5 Billards de Sinal

Les billards de Sinai sont des modéles classiques de dynamique hyperbolique, mais dont certaines
propriétés — en particulier le manque de régularité — posent de sérieux problémes techniques. Dans
leur version la plus commune, ils modélisent le rebond élastique d’une particule sur des obstacles

strictement convexes. La présentation qui suit est succincte ; nous renvoyons si nécessaire au livre de
N. Chernov et R. Markarian [53].

Soit (O;)ier un ensemble fini de compacts du tore T?, deux a deux disjoints, convexes, et dont
le bord est de courbure strictement positive. Une particule a 'extérieur de ces obstacles se déplace
a vitesse unitaire. Si cette particule touche le bord, sa trajectoire est réfléchie suivant les lois de

17. Que l'on ne détaillera pas.
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réflexion de Descartes ; on peut donc supposer que son vecteur vitesse est alors sortant. L’espace des
phases du flot de cette particule, c’est-a-dire 1’ensemble des couples (position, vitesse) possibles, est

donc :
0= {11‘2\U01}><S1 :

i€l
/~

ou (z,7) ~ (z,w) si x € 00; pour un certain i € I et ¥, W sont symétriques I'un a 'autre par rapport
a la droite tangente & 0O; en x. La trajectoire de la particule définit alors un flot continu (¢;)er
sur 2. Enfin, ce flot, comme tout flot géodésique, est un flot de contact, et préserve la mesure de

Liouville 1
L' = 1 2 d d .
O o VOl (T2) — 3, Vol (0)] T+ \Wier & ¢

Une telle table de billard est dite a horizon fini si toute trajectoire intercepte un obstacle en
temps fini; par compacité, le temps entre deux rebonds est alors borné.

FIGURE 10 — Une trajectoire sur un billard de Sinai & horizon fini, avec le vecteur unitaire tangent
a la trajectoire sortante dessiné a chaque collision. Ce billard sur un tore de coté 1 a deux obstacles
circulaires de rayons respectifs 0,4 et 0, 2.

Le flot (¢¢)ter est malheureusement seulement 1/2-héldérien, sa dérivée étant singuliére au niveau
des trajectoires tangentes. On dispose de plus d’une section de Poincaré naturelle, constituée des
collisions de la particule avec un obstacle, c’est-a-dire des couples (s, %) ot s € |J,c; 90;. On peut
paramétrer le vecteur ¢ par son angle 6 & la normale; I'espace d’état de 1'application collision est
alors

A= U@Oi X [—m/2,7/2],
iel
et 'application collision 7" préserve la mesure

1

= ————cos(f) df ds.
25, 901

La transformation 7T n’est cependant pas continue aux points dont les trajectoires sortantes sont
tangentes a un obstacle, et sa différentielle tend vers I'infini prés de ces singularitésﬂ

L’ergodicité du systéme (A, u, T), et par extension du flot (€2, Liouv, (¢;)ier), a été démontrée
par Y. Sinai [211]. On dispose de plus d'un théoréme central limite pour le systéme (A, u,T) et des

18. Comme T préserve u, le cocycle dérivé est conjugué a un cocycle a valeurs dans SLy(R). Cette explosion de la
différentielle est donc une explosion dans SLa(R).
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observables héldériennes [41], en horizon fini comme infini. Le théoréme central limite pour le flot est
plus délicat. En horizon fini, il se déduit aisément du théoréme pour 'application collision. En horizon
infini, le flot peut passer un temps trés long — et, crucialement, qui n’est pas de carré intégrable —
entre deux collisions. Cela donne lieu & un théoréme central limite avec une renormalisation non
standard (en /tIn(t) au lieu de /1) [31,1215].

Comme pour les transformations unimodales, les billards de Sinai & horizon fini se prétent & une
approche par les tours de Young.

Théoréme 2.22. (234, Theorem 6/

Soit (A, u, T) Uapplication collision d’un billard de Sinai d’horizon fini. Alors on peut construire
une tour de Young vérifiant les conditions exposées en Sous-partie et telle que u(R > n|A) <
e~ P pour un certain 3 > 0.

Tout comme pour les transformations unimodales, on peut en déduire un théoréme central li-
mite, des estimées de grandes déviations, mais aussi des résultats utilisant de facon plus profonde la
structure des tours au-dessus de transformation Gibbs-Markov.

2.4.6 Variations autour des billards de Sinal

Le théoréme central limite non standard pour le flot billard en horizon infini est dii a de longues
attentes entre deux collisions avec une paroi courbée. Le méme phénoméne apparait avec le billard
stade, introduit par L. Bunimovich.

N
\\/ \\ // \

FIGURE 11 — Une table de billard stade, constituée d’un rectangle et de deux demi-disques. Une
particule ponctuelle rebondit a l'intérieur de la table. Les trajectoires rouge et verte représentent
chacune un morceau d’orbite d’une telle particule.

Le billard stade est intimement lié aux billards de Sinai a horizon infini : ce billard reste ergo-
dique [42], mais les corrélations décroissent plus lentement [20,[54] et le systéme satisfait un théoréme
central limite critique avec renormalisation en y/nIn(n) [19).

Théoréme 2.23. 19, Theorem 1.1]
Soit (A, u, T) Uapplication collision d’un billard stade, ot p € P(A) est la mesure de Liouville
normalisée. Soit f : A — R une fonction héldérienne d’intégrale nulle.

Notons I la moyenne de f sur l’ensemble des points (x,0) € A tels que x appartient & l'un des
deuz bords rectilignes du billard[™}, ¢ la longueur d’un des bords rectilignes, et r le rayon d’un des

19. L’orbite d’un tel point (x,0) sous le flot billard consistera donc a faire des allers-retours entre les deux bords
rectilignes opposés du billard, avec des collisions perpendiculaires au bord. L’orbite verte de la Figure en est un
exemple.
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demi-cercles.

Alors la suite de variables aléatoires (%) converge en lot vers une variable aléatoire
n in(n
>2

gaussienne centrée de variance
, 4+3In(3) (*I?
0° = .
4 —31n(3) 4r(mr + £)

Revenons aux billards en horizon infini. Si les obstacles sont strictement convexes mais la cour-
bure de leur bord s’annule en certains points, on peut obtenir une décroissance polynomiale des
corrélations [236] ; de méme avec des billards ayant des pointes [17}54},237].

Si 'on relache les hypotheéses sur la forme des obstacles, on peut considérer par exemples des
obstacles rectangulaires aux bords horizontaux ou verticaux. Ce modéle, ou du moins sa Z?-extension,
est dit modele du vent dans les arbres, et appelle des outils complétement différents : comme il s’agit
alors de flots de translation sur des surfaces plates, le flot de renormalisation — qui est un flot sur
I’espace de Teichmiiller de la surface de translation — va jouer un role primordial, et on peut démontrer
par exemple des diffusions sur- ou sous-critiques dans le plan [71,72].

Les billards de Sinai en dimension supérieure ou égale & 3 sont mal compris : la combinatoire des
singularités devient plus riche, ce qui fait échouer certains arguments qui jouent un roéle central en
dimension 2 [21].

3 L’opérateur de transfert

L’ensemble des travaux évoqués ici utilise 1'opérateur de transfert, et trés souvent une approche
spectrale. Nous introduisons dans un premier temps 'opérateur de composition, aussi appelé opéra-
teur de Koopman. Dans ce qui suit, et sauf mention du contraire, (A, i, T') est un systéme dynamique
préservant une mesure o-finie.

3.1 Opérateur de Koopman

Afin de pouvoir déployer ’arsenal conséquent de 1’algébre linéaire et, plus généralement, de ’ana-
lyse fonctionnelle, on associe a la dynamique des opérateurs. Le plus simple est I'opérateur de Koop-
man.

Définition 3.1 (Opérateur de Koopman).
Soit (A, pu, T) un systéme dynamique préservant une mesure o-finie, et p € [1,00|. L’opérateur
de Koopman est ["isométrie

(A ) — LP(A p)
/c.{f o Fer (3.1)

Remarque 3.2.

Les espaces ILP ne sont pas les seuls espaces sur lesquels on peut définir ['opérateur de Koopman.
Par exemple, si A est un espace topologique et T est continue, alors IC est une contraction faible sur
C(A,C). Si A est une variété différenticelle de classe C* compacte et T est de classe C*, alors K agit
contindment sur C*(A,C).

De nombreuses propriétés de la transformation (A, i, T') se lisent dans les propriétés de 'opérateur
de Koopman. Par exemple, (A, i1, T) est ergodique si et seulement si 1 est une valeur propre simple
de K ~ IL*°(A, u). Nous référons le lecteur par exemple & [88] pour de plus amples informations.
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Malheureusement, les propriétés spectrales de I’action de K sur des espaces de fonctions le rendent
en général difficile & manipuler. Par exemple, dés que u est ergodique et non atomique, le spectre
Sp(K ~ 1L2(A, 11)) de I'action de K sur L2(A, i) contient le cercle unité [137, Proposition 3.5].

Dans le cadre élémentaire des transformations uniformément dilatantes du cercle, si 'on se res-
treint & des sous-espaces de fonctions usuels, la situation est encore pire. Par exemple, si T" est une
telle transformation dilatante du cercle de facteur d’expansion A > 1, alors I'action de 'opérateur de
Koopman multiplie la dérivée par un facteur d’au moins A (et donc la dérivée k-iéme par un facteur
A ou la semi-norme a-héldérienne par un facteur A%).
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FIGURE 12 — De gauche a droite : graphes de foT" pour 0 < k < 3, 00 T = T 3415 est la
transformation dilatante du cercle définie & 'Exemple [1.3[et f(z) =1 + 605(2”)

Plus généralement, dans le cadre de transformations hyperboliques, 'action de K sur des es-
paces de fonctions holdériennes, lipschitziennes ou de classe C* avec k& > 1 aura un rayon spectral
strictement plus grand que 1.

De plus, si f est une fonction propre pour K associée a la valeur propre A, alors

||f||]L°°(A,M) = HfOTH]LOO(A,M) = ||’C(f)||moo(,4,u) = ||)‘f||]L°0(A,M) = [Al ||f||]]_,°°(A7u)a

donc toute valeur propre de K est de norme 1. Par conséquent, le spectre de ’action de K sur de tels
espaces contient (beaucoup) de spectre essentiel.

3.2 Définition de 'opérateur de transfert

Une solution consiste a utiliser non pas 'opérateur de Koopman mais son dual, I’opérateur de
transfert.

Définition 3.3 (Opérateur de transfert).

Soit (A, p, T) un systeme dynamique, ot p est une mesure o-finie non singuliére, c’est-a-dire telle
que Ty < .

Soit f € LY A, pn). Alors fu est une mesure finie sur A, donc T,(fu) est aussi une mesure finie
sur A. De plus, T.(fn) < p. On pose

d7.(fr)

L(f) = du
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On appelle L ’opérateur de transfert relativement a pu sur LY(A, p). Par construction, £ ~ LY (A, p)
linéarrement, est de norme au plus 1, et

[ = [ fgoTdn e, vy eL (A, (3.2
A A

Supposons que l'opérateur de Koopman agisse contintiment sur L'(A, u) ; c’est en particulier le
cas si p est T-invariante. Soient p € (1,+00] et q := ;ﬁ l’exposant conjugué a p. L’opérateur de
transfert £ relativement a p est défini sur LP(A, u) par pré-dualité :

/ﬁ(f)-ngZ/f-gonu V€ LP(A, p), Vg € LI(A, ). (3.3)
A A

En effet, Uapplication g — fA f-goT du est une forme linéaire continue sur L9(A, ), et est donc
bien représentée par un unique L(f) € LP(A, u).

De nombreuses propriétés du systéme (A, p, T') peuvent se traduire en propriétés de 'opérateur

de transfert. Par exemple :
JRGEE / f

e Si feLY(A,p), alors

e La mesure u est T-invariante si et seulement si £(1) = 1. Alors £ est une contraction faible
sur tous les espaces LP(A, ), avec p € [1, 00].

e Si T préserve p, alors (A, u, T') est ergodique si et seulement si 1 est une valeur propre simple

de L ~ LA, p).

Exemple 3.4 (Transformations de l'intervalle).

Si (A, T) est une transformation C' par morceaux de l'intervalle ayant un nombre dénombrable
de branches et si T" # 0 presque partout pour la mesure de Lebesgue, alors 'opérateur de transfert
par rapport a la mesure de Lebesque admet une formule explicite :

L@ = Y i)

yeT ' ({=})

L’opérateur de transfert peut se définir sur d’autres espaces que les espaces LP(A, 1). On peut
procéder par exemple :
e Par dualité : si T est une transformation de classe C*, alors K agit sur C*(A, C), donc on peut
définir un opérateur dual £ agissant sur C*(4, C)*.
e Par densité : si £ est définie et bornée sur un sous-espace dense d’un espace de Banach, on
peut 1’étendre par continuité a tout cet espace.

3.3 Quasi-compacité

Une étude numérique élémentaire permet d’observer que 'opérateur de transfert d’une dynamique
dilatante lisse du cercle a de bien meilleures propriétés de convergence. On peut en particulier espérer
que, pour toute fonction f € C!(S;, C), la suite de fonctions (L"(f))n>0 converge, ot L est opérateur
de transfert relativement a la mesure de Lebesgue.
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FIGURE 13 — De gauche a droite : graphes de L£*(f) pour 0 < k < 3, ou T = T 3015 est la
transformation dilatante du cercle définie a 'Exemple [I.3], £ est I'opérateur de transfert relativement

cos(ldrz)

a la mesure de Lebesgue, et f(z) =1+ =5

3.3.1 Rayon spectral essentiel

Le phénomeéne observé est une conséquence de la quasi-compacité de L.

Définition 3.5 (Rayon spectral essentiel).

Soient B un espace de Banach et M : B — B un opérateur. Le rayon spectral essentiel pess(M
B) est Uinfimum des r > 0 tels que Sp(M ~ B) N B(0,7)¢ consiste en un nombre fini de valeurs
propres de multiplicité finie.

De fagon équivalente, pess(M ~ B) est Uinfimum des r > 0 tels que l’on puisse écrire M = N+ K,
ou N est un opérateur de rayon spectral au plus r et K est compact.

Toujours de fagon équivalente, poss(M ~ B) est le rayon spectral de la projection de M dans
Ualgébre de Banach L(B,B)/K (B, B), ot K(B,B) est l'idéal bilatére des opérateurs compacts.

Un opérateur M est dit quasi-compact si pess(M ™~ B) < p(M ~ B).

En particulier, un opérateur M € L(3, B) est compact si et seulement si pess(M ~ B) = 0.
Dans le cas des opérateurs de transfert, on peut définir des résonances de Ruelle a I'aide de la
quasi-compacité.

Définition 3.6 (Résonances de Ruelle).
Soient B un espace de Banach sur lequel agit un opérateur de transfert L, éventuellement a poids.

Les résonances de Ruelle de L sont les valeurs propres de L de module strictement supérieur a
Pess(L ™~ B).

Les résonances de Ruelle sont en général robustes, au sens o1, sous des conditions trés générales,
elles ne dépendent pas de 'espace de Banach B choisi [16, Lemme A.1] et sont stables sous une large
classe de perturbations |141].

3.3.2 Spectre périphérique, I : Ergodicité et mélange

Nous allons maintenant aborder le spectre périphérique de 'opérateur de transfert. Cette notion
est 'occasion de revenir sur les propriétés d’ergodicité et de mélange, d’aborder des décompositions
propres de 'opérateur de transfert, et d’introduire une décomposition périodique de transformations
ergodiques. Cette notion sera approfondie dans la Sous-section [5.3]
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Soit (A, p, T) un systéme dynamique non singulier et £ Uopérateur de transfert associé agissant
sur un espace de Banach B C LL'(A, ;). Supposons de plus que B est dense dans L'(A4, i) et que
Pess(L ™~ B) < 1.

Soit A une valeur propre de £ et f une fonction propre associée. Alors

Al ”f“]Ll(A,u) = ||‘C(f)||]Ll(A,u) < ||f||]L1(A,M) ’
donc |A| < 1. De plus, £*(1) =107 =1, donc 1 € Sp(L ~ B). Par conséquent, p(L ~ B) = 1.

Définition 3.7 (Spectre périphérique).
Dans le cadre ci-dessus, le spectre périphérique de £ ~ B est l’ensemble des valeurs propres de
L de module 1.

Le spectre périphérique est intéressant car il permet de transcrire et d’affiner les propriétés er-
godiques ¢élémentaires de la Sous-section 2.1 La valeur propre 1 permet déja de lire les propriétés
d’ergodicité et de mélange :

Proposition 3.8.

Soit (A, p, T) un systéeme dynamique préservant la mesure de probabilité et L 'opérateur de trans-
fert associé agissant sur un espace de Banach B. Supposons de plus que B C IL?(A, i) contindiment,
que B est dense dans L2(A, i) et que pess(L ~ B) < 1. Alors :

e Les blocs de Jordan des valeurs propres périphériques sont triviauz.

o (A, u,T) est ergodique si et seulement si 1 € Sp(L ~ B) est de multiplicité 1.

o (A, 1, T) est mélangeant si et seulement si le spectre périphérique de L ~ B est réduit a {1}
de multiplicité 1.

La démonstration de cette proposition fait apparaitre des raisonnements dont nous aurons besoin
par la suite; nous la détaillons donc.

Démonstration.

Premier point : Si une valeur propre périphérique avait un bloc de Jordan non trivial, alors
on pourrait trouver une fonction f telle que (L"(f))n>o croisse polynémialement dans B, ce qui
contredirait la contractivité faible de £ dans L?(A, p).

Deuxiéme point : Pour tout A dans le spectre périphérique, notons 7, le projecteur spectral de
L sur le sous-espace propre associé, et () la restriction de £ au spectre non périphérique. Alors, par
le premier point,

L= E AT AT Q
AESP(LAB)
A périphérique
o= S mQr
AESP(LAB)
A périphérique

n—1
1 1 1—A"
SR Le=ma s ) Mm@
k=0 AESP(LAB)
A périphérique
A#1

De plus, [|Q"]|z_,z = O(r") avec r € (0,1). Par conséquent, pour tout f € B,

n—-+oo N,

m 37 25() = m().
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En dualisant, pour tous f € B et g € L?(A, p),

i 1
lim / f-=Sngdp= / m(f) - g dp.
n—+oo [ 4 n A

Si (A, u, T) est ergodique, par le théoréme ergodique de von Neumann, cette limite est aussi égale
a [, fdp- [, g du. Ceci étant vrai pour tout g € L*(A, i), on conclut que m(f) = (fAf du) -1,
c’est-a-dire que 1 € Sp(L ~ B) est de multiplicité 1. Réciproquement, si 1 € Sp(L ~ B) est de

multiplicité 1, alors
1
im [ 2 Swgdn= [ fdn [gan
n—-+oo A n A A

Cette propriété s’étend par densité a tout f € L%(A, u). Par le théoréme ergodique de von Neumann,
cette limite est aussi égale a [, f - E(g|Z) du, ou T est la tribu des boréliens T-invariants. Par
conséquent, E(g|Z) dpu = [, g dp, donc (A, p1,T') est ergodique.

Troisiéme point : Supposons le spectre périphérique réduit a {1} de multiplicité 1. Alors on
dispose d'une décomposition propre £ =1® p+Q, ot ||Q"| 5,5 = O(r") avec r € (0, 1). Mais alors,
pour tout f € Bet g € L2(A, p),

/Af-goTn dﬂ:/Aﬁn(f)gd,U:/Afd,U/Ag d,u—{'O(Tn) ”fHBHgHILQ(A,,u)'

En particulier, pour tous f € B et g € L?(A, ),

lim /f-goT"du:/fdu-/gdu.
n—-+o0o A A A

Cette propriété s’étend elle aussi par continuité a toute fonction f € L?(A, u). Le systéme (A, i, T)
est donc mélangeant. Réciproquement, si le spectre périphérique n’est pas réduit a {1}, soit A une
valeur propre périphérique différente de 1, et f # 1 une fonction propre associée. Soit g € L?(A, p)
telle que [, f- g du # 0. Alors, pour tout n > 0,

/Af-goT"duzfAMf)-gduzA”/Af-gdu,

ce qui contredit le mélange. ]

Le point le plus important pour la suite de ce mémoire est que, si le spectre périphérique de
L ~ B est réduit & {1} de multiplicité 1, alors £ a un trou spectral : il existe r € (0,1) tel que
L=12p+Q et |Q"z.5 = O@"). On peut ainsi démontrer la décroissance exponentielle des
corrélations telle qu’au Théoréme [2.§]

Corollaire 3.9 (Décroissance exponentielle des corrélations).

Soit (A, u, T) un systéeme dynamique préservant la mesure de probabilité et mélangeant. Soit L
Uopérateur de transfert associé agissant sur un espace de Banach B C 1L*(A, u). Supposons de plus
que B est dense dans L2(A, p) et que pess(L ~ B) < 1. Alors il existe C > 0 et p € [0,1) tels que,
pour tout n > 0, tout f € B et tout g € L*(A, u),

/Af-goT" du—/Aqu-/Ag du' < Cp £ ls gl - (3.4)
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La référence la plus compléte sur le sujet est 'ouvrage de V. Baladi [10].

Ceci reste valable sous conditions méme si T ne préserve pas la mesure de référence. Par exemple,
dans le cas de la Figure lopérateur £ agissant sur C! est somme d’un opérateur () de rayon
spectral strictement inférieur & 1 et d’un opérateur de rang 1 de la forme h ® v, ot h est de classe
C!. Alors, quelque soit f € C(S;,C), la suite L"(f) converge a vitesse exponentielle vers un multiple
de h, et h(z)dx est une mesure T-invariante.

Exemple 3.10 (Transformation dyadique).

Pour la transformation dyadique T : x — 2z [1] sur R/Z et la mesure de Lebesgue, on utilise
B =C'(R/Z,C), muni de la semi-norme | flevw/zc) = || f'|lo et de la norme || fllerg/z.c) = £l +
|flerw/z,c)- On montre a Uaide de la formule de I’Exemple (3.4)) que

1
IL(f)lerr/z,c) < 5’]”\@(11&/2,@)-

De plus, ||g]l. < $l9lerw/zc) pour toute fonction g € C* (R/Z,C) d’intégrale nulle. Donc, pour tout
n >0,

En particulier, L est somme d’un opérateur de rang 1 et d’un opérateur de rayon spectral au plus
1/2, donc pess (L ~ CH (R/Z,C)) < 1/2; on a en fait égalité, comme peut se voir en construisant des
fonctions de Weierstrass C' et propres pour L.

L) — [ flx)da

5
< 27| £l :
. C1(R/Z,C)

Cl(R/Z,C)

Quand on ne suppose pas que (A, u,T') est mélangeante, son spectre périphérique n’est pas né-
cessairement trivial. Allons plus loin dans Uinterprétation dynamique de ce spectre périphérique.

Proposition 3.11.

Soit (A, u, T') un systeme dynamique ergodique préservant la mesure de probabilité et L ’opérateur
de transfert associé agissant sur un espace de Banach B C L2(A, ). Supposons de plus que B est
dense dans 1L?(A, ), stable par multiplication et conjugaison complexe, et que pess(L ~ B) < 1.
Alors :

e Le spectre périphérique est un sous-groupe fini de Si, et chacune de ses valeurs propres est de
multiplicité 1.

e Soit N l'ordre de ce sous-groupe. Alors il existe une partition (Ax)rez/nz de A telle que
T(Ar) = Agy1 pour tout k, et que (Ay, u(-|Ax), T™) soit mélangeante pour tout k.

Démonstration.
Soit A une valeur propre périphérique, et f un vecteur propre associé. Remarquons tout d’abord
que
o |f| =|L(f)| < L(|f|), donc par contractivité faible |f| = L(|f|). Le systéme dynamique étant
ergodique, | f| est constante. Sans perte de généralité, on pourra supposer f = ¢ de module
1.
e f est une fonction propre de £ pour la valeur propre .
Par conséquent,

1F ol =3F|fain = /A (foT =X))(FoT = AF) duw=2|fllzam — 21 fIE2a, = O

Autrement dit, f est un vecteur propre de Popérateur de Koopman pour la valeur propre \.
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Soient A1, Ay deux valeurs propres périphériques, et fi, fo deux fonctions propres associées. Alors

ﬁ(f1f2) = £O‘lfl ol - )\2f2 © T) - )\1)\2f1f2-

Comme f; et fy sont de module constant, elles ne s’annulent pas, donc f; fo est fonction propre de
Ay € Sp(L ~ B). Le spectre périphérique est clos par multiplication et conjugaison complexe, donc
c’est un sous-groupe de S ; comme il est discret, c’est un sous-groupe fini. Soit N son ordre.

Soit f un vecteur propre d'une valeur propre périphérique . Alors fV est fonction propre pour
la valeur propre 1, donc constante. Quitte & multiplier f par une constante, on peut supposer que
f=¢€"avec§ € {2rL : ke Z/NL}.

Si le spectre périphérique est réduit a {1}, la Propositionpermet de conclure. Sinon, choisissons
A =%, Légalité foT = \f devient 0o T = 0 — 21 Les ensembles Ay = {§ = —27£} forment
alors une partition de A telle que T'(A;) = Ak4+1 pour tout k.

Soient fi, fo deux fonctions propres d’'une méme valeur propre périphérique \'. Soit & > 0 tel que
Nk = 1. Alors f*f, et f*f, sont deux fonctions propres de la valeur propre 1, donc sont colinéaires.
Donc fietf, sont colinéaires : A est une valeur propre simple.

Enfin, on peut écrire explicitement une décomposition spectrale de L :

L= Nfreld+e,
kEZ/NZ
ot |Q|l5_5 < 1. De la,
=3 frefd+QN.
kEZ/NZ
Le mélange de chaque (Ayg, u(-|Ag), TV) suit des mémes arguments que dans le troisiéme point de la

démonstration de la Proposition [3.8] O

On dira alors que N est la période de (A, p,T) et (Ax)rez/nz la décomposition en composantes
périodiques du systéme. La Proposition affirme que le spectre de 'opérateur de transfert d’une
dynamique ergodique a la forme donnée par la Figure [I4]

FIGURE 14 — Spectre d’un opérateur de transfert £ ~ B avec une période de 5. Il y a potentiellement
une infinité de résonances de Ruelle s’accumulant sur le spectre essentiel.

Remarque 3.12 (Régularité des composantes périodiques).
Dans les conditions de la Proposition une fonction propre associée a TN est

_iom kL
fk: § e Z2ﬂ—N1Ag‘

¢€7/NTZ.
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Par combinaison linéaire de ces fonctions propres, les indicatrices 14, appartiennent a B, ce qui
contraint la régularité des ensembles Ay.

Remarque 3.13 (Théorie de Perron-Frobenius).
Les arguments esquissés ici sont des version fonctionnelles de la théorie de Perron-Frobenius (10,
Chapter 1], appliquée par exemple a une chaine de Markov de matrice de transition P :
e 1 = p(P) est valeur propre de P.
e P est irréductible st et seulement si 1 est valeur propre simple de P.
o P est apériodique si et seulement si le spectre périphérique de P est réduit a {1} de multiplicité
1.
e Si le spectre périphérique de P est non trivial, on peut déduire une décomposition de [’espace
d’états en composantes périodiques.
Ce lien est d’autant plus profond que l’on peut coder une chaine de Markov par un systeme dynamique,
puis faire correspondre les propriétés spectrales la matrice de transition et celles de 'opérateur de
transfert du systéme dynamique associé.

3.3.3 Montrer la quasi-compacité

Hors quelques méthodes ad-hoc telles que dans I’Exemple [3.10] il existe deux grandes approches
pour montrer la quasi-compacité d’un opérateur.

La premiére consiste a démontrer directement l’existence d’'un trou spectral, par exemple par
des méthodes de Couplagem ou de contraction de cones dans B, utilisant notamment la métrique de
Hilbert (voir [30] et [10, Chapter 2|, [201] dans un cadre complexe). Cela peut donner des estimées
explicites sur le trou spectral, qui sont en général beaucoup plus proches de 1 que du rayon spectral
essentiel.

Une deuxiéme méthode, qui donne parfois des estimées optimales sur le rayon spectral essen-

tiel [4647,59,139|, passe par des inégalités de Déiblin—Fortet |78| (aussi appelées inégalités de Tonescu-
Tulcea—Marinescu |125] ou Lasota—Yorke [150]) et des théorémes tels que [120,|178] :

Théoréme 3.14 (Hennion, 1993 ; d’aprés Nussbaum, 1970).
Soit (B, ||-||,) un espace de Banach et ||-||,, une norme sur B. Soit L ~ B contindment. Supposons
que :
o £:(B,,) = (BIFll,) est compact.
o [l existe des suites (Ry)n>0, (Tn)n>0 positives telles que, pour tout f € B etn >0,

£ (Pl < [ Flls + B Al FL - (3:5)

1
Alors pess(L ~ B) < liminf,, 4o 77 .

On parlera de norme forte pour ||-||, et de norme faible pour |||,

Par exemple, si T" est une transformation C? dilatante du cercle qui ne préserve pas nécessairement
la mesure de Lebesgue, on peut montrer qu’il existe des constantes C, C” telles que, pour tout
f €CYSy,C) et tout n > 0,

C

1" (F)ller < i [(T®)|

£ ller + C 1 o -

20. Qui ont l'avantage d’étre encore efficaces en ’absence de trou spectral et de décroissance exponentielle des
corrélations : voir [227] dans le cadre de chaines de Markov, et |235] dans le cadre de systémes dynamiques. Ces
méthodes ont été utilisées intensivement par D. Dolgopyat conjointement avec la notion de paires standards [162].
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Une telle estimée dépend crucialement de la propriété de distorsion lipschitzienne vue en Sous-
section [2.2] En appliquant le Théoréme avec les espaces de Banach C° et C!, on obtient

1 1

pess(‘c ~ Cl (R/Zv C)) < 1 — 3
lim,, | o, min ‘(T")" » — min [17|
la compacité de l'injection C! < C° découlant du théoréme d’Arzela-Ascoli. Dans le cas de la trans-

formation dyadique, min |T"| = 2; les inégalités larges ci-dessus sont toutes des égalités et on retrouve
I'estimée de I’Exemple [3.10]

3.4 Exemples d’espaces de Banach adaptés

Le choix de paires de normes adaptées ||-||,, ||-||,, est crucial pour pouvoir appliquer, par exemple,
le Théoréme [3.14] et ainsi débuter une analyse spectrale du systéme dynamique. Ces espaces doivent
parfois étres taillés sur mesure pour la dynamique, ce qui peut s’avérer particulierement difficile.
Ainsi, la conception d’espaces de Banach adaptés au flot du billard de Sinai a demandé une quinzaine
d’années pour se conclure [14].

3.4.1 Transformations dilatantes, dilatantes par morceaux

La présence de directions contractantes apporte des difficultés conceptuelles que nous aborderons
dans la suite de ce mémoire. Commengons par des dynamiques dilatantes, en nous restreignant a
décrire les normes fortes; les normes faibles seront en générales des espaces semblables, mais de
régularité plus faible (fonctions continues, IL7...).

Pour les sous-décalages de type fini, le choix le plus classique consiste a travailler avec 1'espace
des fonctions holdériennes |10} 38].

Pour des transformations dilatantes de classe C* du cercle, avec k& > 2, on pourra travailler
par exemple avec l'espace C*~1(S;, C). On peut de méme étudier des transformations Ck+e avec
k + o > 1, quitte & introduire encore une fois des espaces de fonctions holdériennes.

La notion de régularité admet de nombreuses variations; on peut aussi travailler aussi avec des
espaces de Sobolev, la compacité étant alors assurée par le théoréme de Rellich—-Kondrachov. Dans
le cadre des transformations dilatantes de classe C? du cercle, il est possible de démontrer particulié-
rement simplement la quasi-compacité de £ ~ WH(S;, C) [102].

En dimension 1, la classe des systémes C'* par morceaux introduit une difficulté supplémentaire.
La dynamique n’étant en général pas markovienne, 'opérateur de transfert associé ne préserve pas
en général les fonctions continues. Il faut donc se restreindre a des espaces de fonctions de basse
régularité, qui admettent en particulier des fonctions non continues. L’exemple le plus classique est
'espace des fonctions a variation bornée [150], mais il en existe des variantes : fonctions a oscillations
bornées [140|, espaces de Sobolev [15] [220]...

En dimension supérieure, les systémes C!T¢ dilatants par morceaux présentent un nouvel obstacle
important : la dilatatation et le découpage en morceaux peuvent interagir de telle sorte que le systéme
dynamique ne posséde pas, ou bien posséde un nombre infini, de mesures de probabilités absolument
continues [49,228|. Cet effet se controle a 'aide d’estimées sur les angles entre discontinuités, ou sur
le nombre de discontinuités, des itérées de la transformation, ce qui a donné lieu a une littérature
importante et encore active [13,|15,63}/108,204] [220].

21. Une régularité C! ne suffit pas : on perd alors la propriété si importante de distorsion holdérienne. La dynamique
C! est beaucoup moins rigide.
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3.4.2 Transformations Gibbs-Markov : Espaces de fonctions lipschitziennes

Un cas particulier, mais particuliérement important pour ce mémoire, est celui des transforma-
tions Gibbs-Markov, dont la lectrice pourra trouver une présentation dans |1, Chapter 4] et [112, Cha-
pitrel]. Nous allons maintenant détailler le choix d’espaces de Banach et les inégalités de Doblin—
Fortet pour ces transformations. Plusieurs bons espaces de Banach sont disponibles; en voici deux
particulierement intéressants pour la suite.

Définition 3.15 (Espaces Lip' et Lip™).
Soit (A, a, d, pu, T') une transformation Gibbs-Markov, et f: A — C. Pour tout a € «, définissons
la semi-norme lipschitzienne de f sur a par

[f(z) — f(y)]
flLip(e) := €ss sup ——————=—. 3.6
|/ ILip(a) S ) (3.6)
Y
De cette famille de semi-normes locales on déduit deux semi-normes globales :
gt = D 1@ i) et |Flisa = 5D |fluino (3.7

acx

Enfin, on en tire deux normes :

||f||Lip1(A,p) = ||f||]L1(A,u) + |f|Lip1(A,u) et ||f||Lip°°(A,p) = ||f||]L°°(A,u) + [ f|Lip= (a)- (3.8)

On note Lip' (A, ) Uespace des fonctions IL'(A, ) de norme Lip'(A, i) finie, et de méme pour
Lip™ (A, ).

L’espace Lip™ (A, i) joue le role de 'espace des fonction lipschitziennes pour une transformation
dilatante du cercle, ou pour un sous-décalage de type fini :

Théoréme 3.16. (112, Corollaire 1.1.14]
Soit (A, a,d, 1, T) une transformation Gibbs-Markov de facteur de dilatation A. Alors pess(L
Lip™(A, u)) < A1, En particulier, laction de £ sur Lip™ (A, u) est quasi-compacte.

Remarque 3.17 (Composantes périodiques des transformations Gibbs-Markov).

Soit (A, o, d, 1, T) une transformation Gibbs-Markov ergodique. Soit (Ay)rez/nz sa décomposi-
tion en composantes périodiques. D’apres la Remarque les indicatrices 14, appartiennent a
Lip™(A, ). Autrement dit, chaque Ay est une union de cylindres de longueur bornée. Mais, comme
Ay = TN (AL) pour tout £, les Ay sont en fait o(a*)-mesurables.

Exemple 3.18 (Transformation de Gauss).

La partition image de la transformation de Gauss est triviale, donc la seule composante périodique
possible est (0,1] tout entier. Par conséquent sa période N wvaut 1, et la transformation de Gauss
((0,1], t, T') est mélangeante.

L’espace Lip'(A, u1), beaucoup plus gros que Lip™(A, i), joue un role particulier grace a la pro-
priété clef suivante :

Théoréme 3.19. (112, Corollaire 1.1.14]
Soit (A, a,d, u, T) une transformation Gibbs-Markov. L’opérateur L envoie continiment l’espace
Lip*(A, i) dans Lip™(A, p).
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Cette propriété, tres forte, fait tout le sel des transformations Gibbs-Markov. On en déduit par
exemple :

Corollaire 3.20.
Soit (A, a,d, u, T) une transformation Gibbs-Markov. Il existe une constante C' telle que, pour
tout a € a et f € Lip™(A, ),

||‘C(1af)||Lip°°(A7u) < Cu(a) ||f||Lip°°(A,u) : (3.9)

Démonstration.

L’opérateur f — L(1,f) sur Lip™ (A, p) est la composition de 'opérateur f +— 1,f de Lip™(A, )
dans Lip' (A4, 1), et de 'opérateur £ de Lip'(A, 1) dans Lip™ (A, ). Le premier a pour norme u(a),
et le second est borné par le Théoréme (3.19] O

3.4.3 Transformations Gibbs-Markov : Temps d’arrét

Le Corollaire est déja remarquable. Nous allons le généraliser ici pour en obtenir une version
qui s’avérera cruciale pour nos applications. Au passage, nous ferons le lien avec un objet central
de la théorie des processus stochastique : les temps d’arréts. Pour plus de détails, le lecteur pourra
consulter 'annexe de [226].

Définition 3.21 (Temps d’arrét pour des processus stochastiques).
Soit (Fpn)n>o0 une filtration sur un espace probabilisé (2, ). Une fonction ¢ : Q@ — NU {400} est
un temps d’arrét si {¢ < n} est F,-mesurable pour tout n > 0.

Une transformation Gibbs-Markov (A, o, d, i, T') est équipée d’une filtration naturelle :

n—1
Fni=0 (\/ T_koz> )
k=0

Avec cette définition, Fy est triviale, et Fo :=\/, o Fn est la tribu borélienne de A. Une fonction est
F,-mesurable si et seulement si elle est essentiellement constante sur les cylindres de longueur n. Nous
en tirons une définition de temps d’arrét adaptée aux transformations Gibbs-Markov, en éliminant de
plus des cas dégénérés (fonctions constantes nulles, ou fonctions valant 400 avec probabilité positive).

Définition 3.22 (Temps d’arrét pour des transformations Gibbs-Markov).
Soit (A, a,d, p, T) une transformation Gibbs-Markov. Une fonction ¢ : A — N U {400} est un
temps d’arrét si {p < n} est F,-mesurable pour tout n >0, et si 1 < p < 400 presque sdrement.

Nous allons résumer quelques opérations que permettent ces temps d’arréts. D’une part, nous
disposons d’'une partition adaptée : en notant a,, ’ensemble des cylindres de longueur n, il s’agit de

Qy = |_|{E €a,: p@ >0etacC {p=n}} (3.10)

On y associe aussi une transformation définie presque partout sur A :

T, : v+ T (), (3.11)

qui ne préserve en général pas la mesure p. L’opérateur de transfert associé a T, est :

‘Ctﬂ(f) = Z‘Cn (1{50=n}f) . (3.12)

Ces temps d’arréts vont avoir deux propriétés trés intéressantes. D’une part, on a une inégalité
de Doblin—Fortet :
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Proposition 3.23. (226, Corollaire A.6/
Soit (A, a,d, i, T) une transformation Gibbs-Markov. 1l existe une constante C' telle que, pour
tout temps d’arrét o, tout n > 1, et toute f € Lip™ (A, u),

122 i < € (A 1 iy + 1l

En particulier, pess(L, ™ Lip™ (A, p)) < AL

Si de plus T, préserve p, alors 'opérateur L, est quasi-compact. En fait, (A, ay,,d,p,T,) est
alors Gibbs-Markov ; cependant, la Proposition [3.23] a ’avantage de ne faire intervenir que l’espace
Lip™ (A, u) associé a la transformation initiale (A, o, d, u, T'), et non l'espace beaucoup plus gros de
fonctions localement lipschitziennes pour la distance d et la partition o,.

D’autre part, comme annoncé, on peut généraliser le Corollaire [3.20| :

Proposition 3.24. /220, Corollaire A.7]
Soit (A, a,d, u, T) une transformation Gibbs-Markov. Il existe une constante C' telle que, pour
tout temps d’arrét ¢, tout @ € «, et toute f € Lip™ (A, p),

1L (L)oo ey < Cl@) 1L ipee ag - (3.13)

On peut méme supposer que ¢ est un temps d’arrét seulement sur @, et prend par exemple la
valeur 400 ailleurs ; cela s’avérera utile pour démontrer la Proposition (6.2

3.4.4 Espaces de distributions anisotropes : Motivation

Jusqu’a présent, nous n’avons appliqué la méthode spectrale qu’a des systémes dynamiques dila-
tants, tels que des transformations dilatantes de l'intervalle ou des transformations Gibbs-Markov.
Dans les quelques exemples que nous avons mentionnés de systémes non dilatants (transformations
unimodales, flots géodésiques, billards), nous évoquions la possibilité de se ramener & 'aide d’un
codage a des transformations dilatantes. Une autre stratégie consiste a trouver de bons espaces de
Banach adaptés a des transformations hyperboliques ayant a la fois des directions stables et des
directions instables, et ce sans avoir a encoder la dynamique. Pour cela, des espaces de distributions
anisotropes se sont révélés extrémement puissants.

Au vu de 'importance du sujet et de sa technicité, il en existe de nombreux textes introductifs
ou de revue. Nous conseillons notamment les introductions de M. Demers [73], C. Liverani [163| et
M. Jézéquel |128], ainsi que l'article de revue de V. Baladi [12].

Soit T une transformation contractante. Si nous faisons agir son opérateur de transfert sur ’espace
C!, nous recontrons alors le méme probléme qu’avec l'opérateur de Koopman de transformations
dilatantes, présenté en Sous-section Par exemple, si I’on considére la transformation

I = x/2 ’
alors 'opérateur de transfert par rapport a la mesure de Lebesgue est

L { Ll([_lal]vLeb) - Ll([_Ll]aLeb)
L = [ 2f20) 1 209(2)]
En particulier, cet opérateur double la semi-norme C' de f, et p (L ~ C* ([~1,1],C)) = 2. D’autre

part, I'action de I'opérateur de Koopman de T sur les fonctions C! est beaucoup plus sympathique,
étant donné que

|foT"cvern,0) < 27" flere1,1),0)s
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et donc, de méme que dans ’Exemple [3.10, 'action de T sur C! ([—1, 1],C) est quasi-compacte.

Pour résumer :

e Si T est dilatante, action de I'opérateur de Koopman 7' sur C! (ou un espace similaire) n’a
pas de bonnes propriétés, mais I'action de I'opérateur de transfert £ sur C' a des chances
d’étre quasi-compacte.

e Si T est contractante, 'action de l'opérateur de Koopman T sur C' a des chances d’étre
quasi-compacte, mais I’action de £ sur C! n’a pas de bonnes propriétés.

Changeons de point de vue. L’opérateur de transfert £ est le dual de I'opérateur de Koopman T'; le
spectre de laction de £ sur C! est donc le méme que le spectre de I'action de T sur (C1)*, définie comme
'extension de Paction de T sur C° a (C')* par densité. Autrement dit, on peut récupérer la quasi-
compacité quitte a travailler avec des distributions plutot qu’avec des fonctions. Par conséquent :

e Si T est dilatante, 'action de opérateur de Koopman 7T sur (C')* (ou un espace similaire) et
celle de 'opérateur de transfert £ sur C' ont des chances d’étre quasi-compactes.

e Si T est contractante, I'action de I'opérateur de Koopman 7" sur C! (ou un espace similaire)
et celle de I'opérateur de transfert £ sur (C')* ont des chances d’étre quasi-compactes.

La difficulté consiste alors a réunir les deux points de vue quand une transformation a simultanément
des directions dilatantes et des directions contractantes. Cela peut se faire a l'aide d’espaces de
distributions anisotropes, dont les objets sont des distributions lisses dans les directions instables
et duales de lisses dans les directions stables; I’action de 'opérateur de transfert a alors de bonnes
chances d’agir d’étre quasi-compacte.

3.4.5 Espaces de distributions anisotropes : Exemples

On peut définir & peu de frais et trés explicitement des espaces de distributions anisotropes sur
le tore grace aux séries de Fourier.

Définition 3.25 (Espaces de Sobolev).
Soient n > 1 et t € R. L’espace de Sobolev sur T" de parameétre t est

H'(T",C) = {f s (r,0): Y (+leP) |Fe)l < +oo} ,

cezn
~ 2
flo)
Soit f € HY(T™,C). Plus le paramétre ¢ est élevé, plus les coefficients de Fourier de f décroissent
vite, donc plus f est réguliére. Ainsi :
e Sit>0,alors f € L?(T", C) et peut donc étre représentée par une fonction.
e D’aprés le théoréme de plongement de Sobolev, f a une version C"™** dés que r + o <t — 3.

e HY(T",C)* = H'(T",C), donc les paramétres ¢ négatifs sont des espaces de distributions
duales de fonctions réguliéres.

. 2 2
muni de la norme ||f||Ht(Tn7(c) = dezn(l +11€11%)*

T

On peut définir des espaces de Sobolev anisotropes sur T" en replagant le poids & — (14 [|€ ||2) 2

par une fonction qui croit dans certaines directions et décroit dans d’autres. Nous en donnons main-
tenant ’exemple dans le cadre des automorphismes hyperboliques du tore.

Soit A € SL,,(Z) un automorphisme du tore T" n’ayant aucune valeur propre de module 1. Alors
A est une transformation Anosov du tore. En effet, posons



ou F), est l'espace caractéristique de la valeur propre A, en adaptant la construction si certaines
valeurs propres sont complexes@ Définissons de méme E* a 'aide des valeurs propres de module
strictement plus grand que 1. Alors les trois conditions de la Définition [2.14] sont bien satisfaites.

Soit f € C*(T",C). La transformation A préserve la mesure de Lebesgue, donc l'opérateur de
transfert par rapport a celle-ci n’est autre que £(f) = f o A~!. Dans le domaine fréquentiel, pour
tout & € Z", - -

Lf)(&) = [foATHE) = fIA™).
La matrice A* ayant le méme spectre que A, on dispose de sous-espaces stables et instables (E*)*
t (£°)* dans l'espace cotangent (R™)* de T™. Gréace aux propriétés de contraction de A* (en temps
positif pour (E®)*, en temps négatif pour (E*)*), la dynamique de A* sur I’espace projectif est une
dynamique Nord-Sud généralisée : si [{] € P((R")* \ (E*)*), alors 'ensemble w-limite de la suite
((A™)*[€]))n>0 est contenu dans P((E*)*); et de méme en temps négatif en inversant (E")* et (E®)*.
On peut trouver des cénes invariants, c¢’est-a-dire :
e Un voisinage ouvert (C*)* de P((E“)*) C P((R™)*) tel que[F] A*(C*)* C (C*)*;
e Un voisinage ouvert (C*)* de P((E*)*) tel que (A~1)*(C*)* C (C%)*;
e Ces voisinages pouvant étre choisis tels que (C*)* et (C*)* soient disjoints.
On peut alors trouver une fonction de poids adaptée a I'action de A* sur P((R")*) et & ces cones.
Pour simphﬁer@, on supposera que l'on a trouvé une fonction a : P((R™)*) — [—1, 1] telle que :
e a=1sur (C*)*;
e a=—1sur (CS)*;
o & (1+ ¢ )“(5 soit une fonction de Lyapunov pour laction de A* sur (R™)*, c’est-a-dire
que (1+ [[A€[2)2AED > (14 [ P)e D,
Pour tout ¢ > 0, on définit alors un espace de Sobolev anisotrope

H(T",C) :={f€S*(T”,C)r S ey |Fel <+oo},

gezn

la norme associée étant donc égale a la norme H® pour les fonctions dont les fréquences sont supportées
dans (C")*, et égale a la norme H ' pour les fonctions dont les fréquences sont supportées dans (C*)*.
Les distributions anisotropes appartenant & ces espaces sont donc bien en ce sens réguliéres dans la
direction instable et duales de réguliéres dans la direction stable. Un bref calcul montre que, pour
f e H (T C) telle que f(0) =0 (c’est-a-dire de moyenne nulle),

1" Dlligrney = Do 1+ 161 [Fane)

¢ezn

2

< ||f||§{3(1rn,<c) Z (1+ J1€I1%) teled (14 [/(A")"¢| ) [(am)ymel

gezn
n 2\ ta([(A*)™€]) .
Posons F,(§) := (1 + 1€l ) (1 + H( )l ) .Si & #0, alors ]| > 1, et donc
A1 D (A yg 2D < () < 4 P (A e,

Quitte a perdre une constante, on pourra donc remplacer F,(§) par ||£”2ta [3)) H(A*>n€H2ta( (a%ye))

£#0.
Pour 0 < k < n, quand on applique (A*)* & une fréquence & # 0 :

22. On remplacera par exemple E) par I'intersection avec R"™ de E) @® 5 C C".

23. Par exemple, en prenant un petit voisinage V' de P((E")*), et en choisissant (C*)* :=J,,~(A™)* (V).

24. Voir & propos de ces conditions un théoréme de K.R. Meyer [175], ainsi que la condition de décroissance |93}
Definition 5.4].
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e Tant que (A*)*¢ reste dans le cone (C®)*, I'action de A* est contractante d’un facteur au
moins (en moyenne, sur des temps suffisamment longs) A et @« = —1. Par conséquent, F(§)
est divisé par un facteur environ A?* & chaque fois que 'on incrémente k.

e Tant que (A*)*¢ reste dans le cone (C*)*, 'action de A* est dilatante d’un facteur au moins
(en moyenne, sur des temps suffisamment longs) A, et a = 1. Par conséquent, Fy (&) est divisé
par un facteur environ A% & chaque fois que I'on incrémente k.

e La trajectoire ((A*)*¢)x>0 passe un temps borné hors de (C*)* U (C*)*, car la dynamique sur
Pespace projectif est de type Nord-Sud. Comme la fonction & — (1 + ||€]|*)**(€D) est supposée
de Lyapunov, la quantité Fj(§) n’augmente pas pendant ce temps.

Par conséquent, pour tout € > 0, il existe une constante C' telle que

I£™ (P, 00,0) < Cmin{ AL AT + €)™ 1 Fll g oy -

Finalement pes(£ ~ HL(T", C)) < min{A;!, A7}, et £ a pour seule résonance de Ruelle la valeur
propre 1 associée aux fonctions constantes.

Remarquons que, comme dans le cas de 'application dyadique, 'opérateur de transfert n’a pas
de résonance de Ruelle non triviale : on obtient non seulement une estimation de son rayon spectral
essentiel, mais aussi sa contractivité sur I’espace des distributions de moyenne nulle. Cette spécificité
n’est pas générique parmi les difféomorphismes Anosov, au moins en dimension deux [5], et vient du
fait que A est linéaire.

L’exemple ci-dessus a pour vocation de présenter dans un cadre idéalisé une définition simple
d’espace de Banach anisotrope ainsi que le mécanisme assurant la contractivité de 'opérateur de
transfert ou, plus généralement, sa quasi-compacité. V. Baladi distingue trois types d’espaces de
distributions anisotropes [12] :

e FEspaces de Triebel, utilisés par exemple par V.Baladi et S. Gouézel [15].

e FEspaces géométriques, utilisés par exemple pour la transformation billard [74] ou le flot
billard |14]. Dans ce cadre, les définitions font typiquement intervenir des espaces de fonc-
tions holdériennes ou C* ainsi que des objets géométriques tels que des courbes stables ou
instables.

e FEspaces microlocauz, utilisés par exemple par F. Faure et M. Tsujii [86,91-93|. La présentation
ci-dessus rentre dans ce cadre.

3.5 Perturbations

La quasi-compacité d’un opérateur de transfert autorise une méthode trés puissante, qui consiste
a analyser le comportement des résonances de Ruelle sous des perturbations bien choisies de cet
opérateur. Cette méthode permet notamment d’émuler en dynamique hyperbolique des arguments
probabilistes reposant sur le comportement en 0 de la fonction caractéristique d’une variable aléatoire.
Nous en verrons quelques applications par la suite : théoréme central limite (Sous-sous-section @ ,
théoréme central limite local (Sous-section , et calcul d’opérateurs potentiel (Sous-section @ .

3.5.1 Reégularité des résonances de Ruelle

Soit M une matrice et A une valeur propre simple de M. Alors la valeur propre A dépend conti-
ntiment de M. Plus précisément :
o Il existe € > 0 et 7 > 0 tels que, pour toute matrice N € B(M,¢), il existe un unique
Ay € B(A,r) qui soit valeur propre de N.
e La fonction A\ — Ay ainsi définie sur B(M, ¢) est continue.
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Cela se démontre par exemple grace a la continuité des racines simples d’une polynéme en fonction
de ses coefficients, associée a la dépendance continue du polyndéme caractéristique en la matrice. Il y a
cependant d’autres arguments qui se généralisent a la dimension infinie, et permettent de démontrer
de plus la continuité des projecteurs spectraux.

Soit A une valeur propre simple d’un opérateur £ ~ B isolée dans le spectre de L. Soit 7 le

projecteur spectral associé. On peut alors écrire 7 & ’aide d’une intégrale de chemin de la résolvante

de L : .

=—— [(L—-¢)d
ou 7 est un chemin autour de A dans le complémentaire de Sp(£ ~ B) (voir [136, Chapter VIII.1.4]).
Une telle intégrale dépend de facon lisse de L, et donc de facon réguliére du parameétre pour des

familles paramétrées d’opérateurs.

Soit donc (L¢)ees une famille C* d’opérateurs agissant sur B, telle que Lo = L. Alors il €, § > 0
tels que, si [§] < 6, alors Sp(Le ~ B) N B(A, ) = {\¢} soit un singleton. De plus, les valeurs propres
& — )¢ et les projecteurs spectraux € — ¢ dépendent de fagon C* du parametre £.

Enfin, comme les projecteurs spectraux m¢ sont de rang 1, on peut les écrire sous la forme ¢ =
he & pie, ot pe(he) = 1. Il reste un degré de liberté, que l'on fixe dans ce texte par la convention
(he) = 1. Sous cette convention, & — pe et € — he sont elles aussi C* si € est suffisamment petit.

Remarque 3.26 (Réponse linéaire).

Les résultats de perturbations esquissés ci-dessus supposent que l’on travaille avec la topologie forte
pour les opérateurs sur B. C’est suffisant pour les besoins de ce texte, mais dans certains contextes
dynamiques, on ne peut garantir la continuité des familles d’opérateurs de transfert que sous une
norme plus faible. C’est typiquement le cas dans la question de la réponse linéaire, ¢’est-a-dire la
dépendance de la mesure invariante absolument continue p en la transformation T'.

Dans ce contexte, un théoréeme de C. Liverani et G. Keller [141] garantit la continuité du spectre
et des projecteurs spectrauxr sous des conditions plus faibles. Nous renvoyons au texte de revue de
V. Baladi pour plus de détails sur la réponse linéaire [11].

Signalons pour terminer une autre approche des perturbations d’opérateurs wvia le théoréme
des fonctions implicites dans des espaces de Banach, développée par P. Giulietti, B. Kloeckner,
A. O. Lopes et D. Marcon Farias [106].

3.5.2 Opérateurs tordus et perturbations

[lustrons ces perturbations dans le cadre des transformations Gibbs-Markov, tout en sachant que
la méthode exposée ici fonctionne dés que 'on a une bonne action de I'opérateur de transfert, et est
donc beaucoup plus générale. Les objets centraux seront les opérateurs de transfert tordus.

Définition 3.27 (Opérateur de transfert tordu).
Soit (A, o, d, p, T) une transformation Gibbs-Markov ergodique et F € Lip' (A, i) & valeurs réelles.
La famille a 1 paramétre réel d’opérateurs définis sur LY(A, p) par

Le(h) == L(e*Fh)

sont| des opérateurs de transfert tordus.

25. Un cas particulier, qui sera le plus important dans ce texte.
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Placons-nous dans le cadre de la Définition [3.27, Comme F € Lipl(A, (), on peut vérifier que
la famille £ — L¢ est C'. En particulier, il existe ¢ > 0 et » > 0 tels que, pour tout & € (—¢,¢),
I'opérateur L¢ a une seule valeur propre A\¢ € B(1,7); et celle-ci est de multiplicité 1.

Nous allons montrer ici comment calculer effectivement un développement limité de cette fonction
A. Notons hg la fonction propre de L associée a la valeur propre simple ¢, telle que [ 4 hedp =1

On dérive en 0 l'identité Le(he) = Ache :

Le(he) + Le(Oche) = Aeche 4 Ae(Oche)
iL(F) + L((Oche)je=0) = A1 + (Oche)je=0 (3.14)

En intégrant contre i, on obtient
2/ qu+/(3£h£)£—o dp = >\6+/(3ﬁha)|£—0 du,
A A A

d’ou Ny =1 [, F dp.
Supposons de plus que F' € L%(A, ) et que fAF du = 0. Alors £ — )¢ est de classe C?, et sa
dérivée en 0 est nulle. Cherchons le terme suivant dans son développement limité.

/;Z(hg) + 25’5(8@5) + Eg(agghg) = )\ghg + 2)\’5(85h5) + )\g(agghg)
—L(F?) 4 2iL(F (D¢he ) je=0) + L((Fehe)je=0) = A1 + (Izehe)je=o

Une fois de plus, en intégrant contre i, on obtient
—/ F2 d,u —|— 22/ F(aghg)‘gzo d,u = )\g
A A

De plus, (O¢he)je=o = i(Id —L) " L(F) se calcule grace & 'Equation (3.14)). On obtient au final

+o0
/F2du+QZ/F-FoT”du
A /A

ot la somme du membre de droite converge absolument si (A, u, T') est mélangeantem, et au sens de
Cesaro si (A, u, T) est seulement ergodique@.

Ao = —/ F?dp — 2/ F-(Id=L£)7'L(F) du = — , (3.15)
A A

La formule
+o0
ol (A, 1, T; F) ::/F2 du+2Z/F-FoT” du (3.16)
A /A

s’appelle formule de Green—Kubo. Elle a joué un role central dans les recherches que nous présentons
dans ce mémoire. Nous la retrouverons par la suite, en particulier en Sous-section [0.2] Pour l'instant,
nous nous restreignons a deux remarques élémentaires.

D’une part, pour tout &, 'opérateur L¢ est une contraction faible sur L' (A, ). Par conséquent,
toute valeur propre de £ ~ Lip'(A, ) est de module au plus 1. On en déduit que A < 0, et donc
ot (A, u, T; F) > 0.

D’autre part, le cas dégénéré A\ = 0 se caractérise aisément. Par [112, Théoréme 4.1.4|, pour tout
F € Lip" (A, p) NIL2(A, p), il y a équivalence entre :

26. Remarquons au passage que, comme (A, u, T) est ergodique, la restriction de (Id —£) aux fonctions Lip™ (A, p)
d’intégrale nulle est inversible, et L(F') appartient bien a ce sous-espace !

27. Gréace a la décroissance exponentielle des corrélations évoquée en Corollaire

28. Convergence obtenue en combinant la décroissance exponentielle des corrélations avec la description du spectre
périphérique de la Sous-sous-section W
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o ot (A,p,T;F)=0.
e La fonction F est un cobord : il existe h mesurable telle que F' = hoT — h.
e Il existe h € Lip™(A, i) telle que F =hoT — h.

Remarque 3.28 (Familles a plusieurs paramétres).

Dans cette parties, nous sommes restés dans le cadre le plus simple d’une perturbation a un seul
parametre. De nombreuz travauz utilisent des familles a plusieurs paramétres d’opérateurs de trans-
fert. Ce type de famille a plusieurs parametres apparait naturellement lorsque l’on souhaite contréler
plusieurs quantités dynamiques en interaction, par exemple une donnée spatiale et une donnée tem-
porelle, ou bien une donnée spatiale et la croissance des sommes de Birkhoff d’une observable.

Sans prétention a ['exhaustivité, mentionnons les travauxr de A. Katsuda, T. Sunada, M. Polli-
cott et R. Sharp sur le comptage d’orbites périodiques sur des variétés de courbures négatives Z°-
périodiques (138,194, dans la lignée duquel se place un article plus récent de l'auteur sur le temps
local de semi-flots Z3-périodiques [225]. Enfin, V. Petkov et L. Stoyanov ont utilisé ces techniques
pour démontrer des grandes déviations pour des flots avec cibles décroissantes [189)].

Remarque 3.29 (Convergence de la formule de Green-Kubo).

La formule de Green—Kubo apparait dans le théoreme central limite dans un cadre beaucoup
plus général que celui des transformations Gibbs-Markov. On peut se demander, plus généralement,
quand cette formule converge.

Cette comme converge dés que les auto-corrélations de f sont sommables. C’est le cas, par
exemple, si le systeme dynamique (A, p,T) est Anosov mélangeant, | une mesure d’équilibre pour
un potentiel holdérien, et f est holdérienne d’intégrale nulle, ce qui garantit par que les intégrales
(fA f-foT™du)nso décroissent exponentiellement en n. Plus généralement, une condition de trou
spectral sur 'opérateur de transfert et de mélange du systéme suffit.

La somme converge aussi dans des contextes non-uniformément hyperboliques, tels que des ob-
servables holdériennes d’intégrale nulle de transformations de Pomeau-Manneville de parametre o €
(0,1/2) par [235] ainsi que d’automorphismes ergodiques du tore [62,/152)].

Si le systeme dynamique (A, u, T) est non mélangeant, une convergence au sens de Cesaro peut
donner un sens a I’Equation . Ainsi, quand l’on dispose d’une action quasi-compacte de l’opé-
rateur de transfert, la convergence au sens de Cesaro permet d’éliminer les oscillations périodiques
des intégrales (fA f-foT™du)n>o causées par les résonances périphériques.

3.6 Application : Le théoréme central limite

Pour finir cette Section, nous présentons la méthode de Nagaev—Guivarc’h [118,/176,|177], qui
consiste a utiliser ces perturbations d’opérateurs afin de démontrer un théoréme central limite. Cette
démonstration est un cas simple d'une stratégie générale, qui sera aussi employée pour estimer le
temps local de Z?-extension en Sous-partie , et représente une partie significative de [226] (voir
la Sous-section . Pour cette raison, nous détaillons cet argument.

3.6.1 Opérateurs perturbés et théoréme central limite

Soit (X, )nen une suite de variables aléatoires réelles indépendantes, identiquement distribuées,
de carré intégrable et d’espérance nulle. Notons @ leur fonction caractéristique et S,, := Z;é Xk
Rappelons que le théoréme central limite se démontre aisément a l'aide du critére de Lévy. En effet,
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pour tout £ € R,

Or &(n) =1-— w + o(n?), d’ou

1 E(X3)¢?
lim E(elgﬁs"):e_ s

n—-4o00

D’aprés le critére de Lévy, la suite de variables aléatoires (\/LHS”> converge donc en loi vers une
n>1

variable aléatoire gaussienne centrée de variance E(X?).

Les perturbations d’opérateurs permettent de démontrer un théoréme central limite en émulant le
raisonnement ci-dessus. Soit (A, p, T') un systéme dynamique préservant une mesure de probabilité.
Soit F': A — R mesurable. On cherche & approcher la loi de S,,F' quand n tend vers I'infini.

Comme en Sous-sous-section notons L = L (erF ) pour tout £ € R. Alors, pour tout n > 0
et h € LY(A, u), .
L3(h) = £ (557 ),
et en particulier
E (el%S"F) - / cr <e ﬁS"F1> dp = / £ (1) dp. (3.17)
A A Vn
Supposons maintenant que (A, u,T) est une transformation Gibbs-Markov mélangeante et que
F € Lip*(A, p)NL2(A, 1) est d’intégrale nulle. On dispose alors pour tout 1 suffisamment petit d’une
décomposition propre
L, = Mh, @ T, + R,,.
De plus, comme (A, u1, T) est mélangeante, p(Ry ~ Lip™ (A4, 1)) < 1. On peut alors trouver C' > 0 et

p € [0,1) tels que HRZHLip‘”(A,u)—)LipOo(A,,u) < Cp™ pour tout 1 suffisamment petit. De plus, 7, (h,) = 1,

et on peut supposer que p(h,) = 1 pour tout n suffisamment petit. De la,

if%SnF _\n n
E(e v >_>\;ﬁu<h;ﬁ>ﬁfﬁ(1)+/AR;ﬁ(1)d“
_ xz%u +0(1)) + O(p").

2 . 2
Or A\, =1- w + o(n?) d’apreés la Sous-sous-section [3.5.2, Par le méme raisonnement que

pour le théoréme central limite classique, la suite de variables aléatoires <\/iﬁSnF ) converge vers
n>1

une variable aléatoire gaussienne de variance o3y (A, u, T; F).

Finissons par deux raffinements. D’une part, il suffit que (A, p, T') soit ergodique. Comme vu en
Sous—sous—sectionm Iopérateur £ peut alors avoir des valeurs propres périphériques (ei%%)keZ/Nz.
Soient hy ® 7, les projecteurs propres associés, de telle sorte que, pour tout 7 suffisamment petit,

‘677 = Z )\kﬂ?hkﬂ? X Tk, + RT)'
k€Z/NZ
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Alors p(hg) = 0 pour tout k # 0. Par passage a la limite, les contributions des valeurs propres )‘ka%

avec k # 0 a ’'Equation (3.17) tendent vers 0 quand n tend vers 4+oo. On se retrouve avec la méme
limite que dans le cas mélangeant.

D’autre part, si z est choisi non pas selon p, mais selon une mesure de probabilité v = hdu avec
v € Lip™(A, 1), 'Equation (3.17)) devient

E (eiﬁﬁsﬂ“’) _ / £ (h) dp
Rt

La suite du calcul est identique, donc on obtient le méme théoréme central limite. Par densité de
Lip™(A, p) dans L'(A, p1), on a finalement démontré

Théoréme 3.30 (Théoréme central limite).
Soit (A, u, T) une transformation Gibbs-Markov ergodique. Soit v < p une mesure de probabilité.
Soit F € Lip'(A, p) telle que [, F* du < 400 et [, F du = 0. Alors la suite de variables aléatoires

<\/iﬁSnF> dans (A,v) converge en loi vers une variable aléatoire gaussienne centrée de variance
n>1

O-éK(Av 1y T; F)

Par conséquent, dans ce contexte, ou bien les sommes de Birkhoff sont typiquement de I'ordre de
/i, ou bien F est un cobord et elles sont bornées presque stirement ; il n’y a pas de comportement
intermédiaire.

Pour conclure, en suivant la technique de Nagaev—Guivarc’h, on peut plus généralement transposer
a des systémes dynamiques des calculs de théorie des probabilités utilisant des fonctions caractéris-
tiques de variables aléatoires, et en particulier leur développement limité en des points précis. Elle
nécessite deux ingrédients :

e Une traduction exacte en termes d’opérateurs de transfert d’'une équation faisant intervenir
une fonction caractéristique. Il s’agit ici de I'Equation (3.17).

e Un développement limité de la valeur propre principale de l'opérateur de transfert, et un
controle des termes d’erreurs, permettant d’exploiter cette équation exacte dans un régime
limite.

Nous verrons plus tard d’autres applications de cette stratégie : théoréme central limite local, et
théorie du potentiel. Ce ne sont pas les seules; citons par exemple des principes de grandes dévia-
tions [233].

Remarque 3.31 (Décomposition martingale—cobord).

La méthode présentée dans ce mémoire n’est qu’une stratégie parmi d’autres pour démontrer un
théoreme central limite pour des observables de systémes dynamiques. Par exemple, il est aussi parfois
possible d’utiliser une décomposition martingale—cobord du processus (SpF')n>0, puis d’utiliser un
La lectrice intéressée pourra consulter les présentations de cette méthode par C. Liverani [160] d’une
part et J.-R. Chazottes, C. Cuny, J. Dedecker, X. Fan et S. Lemler [50] d’autre part.

Cette derniere approche a l'avantage de fonctionner dans des situations ot l'on ne dispose pas
de décroissance exponentielle des corrélations, par exemple quand le systeme (A, pu,T) n’est pas uni-
formément hyperbolique, ou quand [’observable F est de trop basse régularité. De plus, elle permet
d’employer de nombreux outils fins de théorie des martingales, tels que l'inégalité de Burkholder [44]
donnant un contréle fin des moments des variables aléatoires (supy,, |F o T*|),>0.

29. Ou, plus précisément, pour des tableaux de martingales inverses.
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3.6.2 Autres lois remarquables

L’analyse précédente portait sur des sommes de Birkhoff de fonctions réelles de carré intégrable.
La méthode de Nagaev-Guivarc’h permet de traiter de nombreux autres situations intéressantes.
Décrivons-les briévement.

Dimension supérieure

Soit E un espace euclidien de dimension finie. Soit F' € Lip'(A, u) NIL%(A, 1) & valeurs dans E et
centrée. Le calcul de la Sous-sous-section fonctionne tout aussi bien, a de légéres adaptations
prés. Le parameétre € appartient maintenant a E*, et la loi limite est une variable aléatoire gaussienne
d’opérateur de covariance

Cov(A, u, T F)(u,v) = /

A(u,F>-<v,F) du+2A<u,F>~<v,F>oT” dp

T ;/A(u, F)oT" (v, F) du. (3.18)

L’opérateur Cov est dégénéré si et seulement s'il existe un vecteur non nul u tel que (u, F') soit un
cobord, auquel cas il existe h € Lip™(A, p) telle que (u, F') = hoT — h. En particulier, les sommes
de Birkhoff de F' sont presque stirement bornées dans la direction de wu.

Lois stables de Lévy : Cas général

Revenons au cas réel. Cette fois-ci, nous autorisons la fonction F' & prendre des valeurs suffisam-
ment grandes pour que ses sommes de Birkhoff varient sur une échelle supérieure & y/n. Afin de
controler son comportement, nous aurons besoin de la notion de variation réguliére.

Définition 3.32 (Variations réguliére et lente).

Soient a € R et L une fonction définie sur un intervalle de la forme [xq, +00), a valeurs réelles,
mesurable et strictement positive. On dit que L est a variation réguliére d’ordre « en l'infini si, pour
tout A > 0,

L(Ax)
T——+00 L(l’) -

«

Un telle fonction L, définie cette fois-ci sur un intervalle de la forme (0, x|, est a variation réguliére
d’ordre av en 0 si x — L(1/x) est a variation réguliére d’ordre —a en linfini.

Une fonction a variation réguliere d’ordre 0 est dite & variation lente.

L’archétype des fonctions réguliéres d’ordre o en l'infini est une fonction équivalente a = —
2% 1n” () en l'infini. La référence la plus compléte sur le sujet est le livre [28].

Si une variable aléatoire réelle a des queues a variation réguliére, alors elle est dans le bassin
d’attraction d’une loi stable de Lévy, ce qui signifie que I'on dispose d’un analogue du théoréme
central limite :

Théoréme 3.33. (94, Chapter XVIL.5, Theorem 2/

Soient a € (1,2) et c—, ¢; > 0 non tous deuzr nuls. Soit L une fonction & variation réguliére
d’ordre a en +00. Soit (X,,)n>0 une suite de variables aléatoires réelles indépendantes, identiquement
distribuées, centrées, et telles que



Posons

V= (c_ +c)I'(1 — ) cos <%> :
L Cy — C—
¢ = cr+e’

n

et soit (an)n>o telle que L(ay,) ~p_io0o n. Alors la suite de variables aléatoires (%Sn> converge
=z n>1

en loi vers une variable aléatoire dite de Lévy ou stable de paramétre o, de fonction caractéristique

(&) = e~ V(1—iCtan(ra/2) sgn(€)) (€]

Par exemple, si P (Xo > 2) ~p 400 P(Xo < =) ~psq00 7 avec ¢ > 0, alors ¢ = 0 et (

3
Y=

9) o1

converge en loi vers une variable aléatoire symétrique de fonction caractéristique
_ _ ma\|¢la
(I)(g) —e 2cI'(1 a)cos( 5 )\§| ]

Si ¢y # c_, la loi limite est asymétrique. Le paramétre 1 est un paramétre d’échelle, tandis que le
paramétre ¢ décrit 'asymétrie de la loi limite.

Sous une condition identique de décroissance des queues de F', la méthode de Nagaev—Guivarc’h
permet de généraliser le théoréme précédent a certaines observables de systémes dynamiques.

Théoréme 3.34. (5, Theorem 6.1/

Soit (A, u, T) une transformation Gibbs-Markov ergodique. Soit v < i une mesure de probabilité.
Soit F' € Lip'(A, 1) centrée. Le Théoréme reste valide si [’'on remplace le processus (X,)n>0 par
le processus (F o T™),>o défini sur (A,v).

Remarque 3.35.

Pour que le Théoréeme|3.34) ne soit pas vide, il faut que ['on puisse trouver des observables F qui
soient a la fois a queues lourdes et localement lipschitziennes (voire localement constantes). C’est
impossible si la partition associée au systeme Gibbs-Markov est finie, et en particulier pour les sous-
décalages de type fini. Cependant, il est aisé de construire de tels exemples si 'on s’autorise des
partitions infinies.

Lois stables de Lévy : Cas particuliers

Le Théoréme [3.33] et par extension le Théoréme [3.34] ne s’appliquent qu’a des paramétres a €
(1,2). Plus « est petit, plus les queues des variables aléatoires sont lourdes. Les bornes de cet intervalle
a=2et =1 sont a traiter a part.

Si a = 2, alors le paramétre ¢ est nul, et la loi limite est normale centrée. Dans ce cas, la suite
(@n)n>o est définie par une formule un peu plus compliquée. On obtient ainsi un théoréme central
limite non standard, exprimant la convergence en loi des sommes de Birkhoff renormalisées vers une
variable aléatoire gaussienne centrée, mais pour des variables aléatoires qui ne sont pas de carré
intégrable et avec une renormalisation qui n’est pas exactement en /n.

Par exemple, si P (X > 2) ~pi00 P(Xo < —2) ~psioo 2z avec ¢ > 0, alors ( 1 ( )S”>
nin(n n>1

converge en loi vers une variable aléatoire gaussienne centrée.

Ce cas particulier est trés pertinent d’un point de vue dynamique : dans le modéle du gaz de
Lorentz en horizon infini (voir la Remarque [4.2)), les queues de la fonction de saut sont justement en
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¢/x?. La position d’une particule satisfait donc ce type de théoréme central limite non standard |31}
215|. Une analyse similaire s’applique au billard stade [19].

Le cas a = 1, qui contient le bassin d’attraction des lois de Cauchy, est plus délicat. Les variables
aléatoires considérées ne sont plus nécessairement intégrables, auquel cas on ne peut pas dire qu’elles
sont centrées. Les conditions portant sur les queues des variables aléatoires sont plus subtiles. Ce cas
particulier est néanmoins lui aussi pertinent d’un point de vue dynamique [2| : dans le modéle du
flot géodésique sur C\ Z, muni de sa structure hyperboliqueﬂ, les queues de la fonction de saut sont
justement en c/z.

30. C’est-a-dire vu comme Z-revétement d’une sphére a 3 trous, munie d’une métrique de courbure constante égale
a —1 et de volume fini.
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Deuxiéme partie
7.9_extensions

Il est temps d’introduire 1'objet d’étude central de ce mémoire : les Z%extensions de systémes
dynamiques. Ces structures sont présentées en Section @ . Définition des Z*-extensions, en partant
de 'exemple historique du gaz de Lorentz.

Nous poursuivons avec la Section [f|: Fonctions propres de lopérateur de transfert. Cette section a
deux objectifs. D’une part, nous interpréterons le spectre périphérique d’opérateurs de transfert tor-
dus, ce qui sera utile par la suite, par exemple en Sous-section D’autre part, nous en profiterons
pour présenter les résultats de [224].

Enfin, la Section [6] : Théoréme central limite local contient une autre application des méthodes
de perturbation d’opérateur : la limite en loi du temps local par les méthode des moments. Nous
discuterons enfin la premiére partie de [184], ou cette méthode des moments est utilisée pour aborder
un probléme plus délicat : la limite en loi des sommes de Birkhoff d’observables d’intégrale nulle.

4 Définition des Z%-extensions

Le modéle au coeur de ce mémoire est celui des Z4-extensions de transformations Gibbs-Markov,
qui sont un cas particulier de Z%extension d’un systéme dynamique. Nous introduisons cette no-
tion en partant d’'un modeéle particulier, celui du gaz de Lorentz, avant d’en discuter les propriétés
spectrales et la conservativité.

4.1 Le gaz de Lorentz

Nous avons introduit le modéle du billard de Sinai en Sous-sous-section [2.4.5] Il s’agit d’un billard
sur le tore avec des obstacles strictement convexes. Le gaz de Lorentz en est la version périodique
sur R2. Une trajectoire dans un gaz de Lorentz est donc de la forme suivante.

1 N0/0/0/0'0/0/0/0/0/0/0/0/0}
oop 00600010160
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6

FIGURE 15 — Trajectoire dans un gaz de Lorentz & horizon fini, d'une longueur de 1000 collisions.
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Ce systéme est censé modéliser la diffusion d'un électron dans un métal (de structure cristalline)
par le rebond d’une particule ponctuelle dans un réseau périodique [167|. Bien entendu, d’un point
de vue physique, un analogue tridimensionnel de ce modéle serait nettement plus réaliste ; mais, d'un
point de vue mathématique, cet analogue est malheureusement beaucoup moins bien compris [18].

Sur une table de billard de Sinai sur le tore (), un vecteur & un temps de collision est repéré par
trois données : I'indice ¢ € I de l'obstacle qu’il touche, 'abscisse curviligne s du point de collision,
et I’angle # a la normale en ce point. Soit @) la table de billard d'un gaz de Lorentz. Chaque type
d’obstacle a une infinité de copies indicées par une coordonnée p € Z2. Un vecteur a un temps de
collision sur () est alors repéré par quatre données : les trois précédentes, et la coordonnée p de
I'obstacle.

Un gaz de Lorentz () est un revétement 7 vers un billard de Sinal sur un tore ). Ce revétement
se retrouve au niveau de ’espace des phases de I'application collision, que ’on notera aussi 7 :

7(i,s,0,p) = (i,s,0).
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FIGURE 16 — Un Z2-revétement (Q de Q, et un repérage possible sur Q).

Ce revétement est une semi-conjugaison. Notons T I'application collision du gaz de Lorentz, et T
'application collision du billard de Sinai sur le tore associé¢. Alors moT' =T o w. Par conséquent, si

T (ig, S0, 00, po) = (i1, 51,01, p1),

(i1, 51,61) = (T (io, 50, 60, po)) = T(w(io, 80, b0, p0)) = T (io, 50, 60),

donc T(z, s,0,p) = (T(1,s,0), ﬁ(z, s,0,p)) pour une certaine fonction F.

Enfin, la dynamique du gaz de Lorentz est équivariante sous 'action des translations de vecteur
qeZ?: B _

T(i,s,0.p+q) =T(is,0,p) +q
Notons F(i,s, ) := ﬁ(i,s,@, 0). Alors ﬁ(i,s,@,q) = q + F(i,s,0). La transformation T est donc
finalement de la forme B
T(i,s,0,p) = (T(i,s,0),p+ F(i,s,0)). (4.1)

La notion de Z%-extensions généralise cette structure.

On peut itérer I'équation (4.1)) : pour tout n € Z,

f”(i, s,0,p) = (T”(i, 5,0),p+STF(i,s, 9)) . (4.2)
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Par conséquent, la position de la particule dans le gaz de Lorentz est donnée, a erreur bornée prés, par
les sommes de Birkhoff STF de F. On peut ainsi illustrer de nombreuses propriétés des sommes de
Birkhoff. Si le point de départ d’une trajectoire est choisi aléatoirement pour un mesure absolument
continue sur I’ensemble {p = 0}, le théoréme central limite donne une information sur la loi de la
position de la particule en temps grand. Le principe d’invariance presque sir donne un couplage
avec erreur controlée entre les trajectoires de particules et un mouvement brownien : en un sens précis,
les trajectoires des particules ressemblent & des trajectoires browniennes.

=15

=10 0

FIGURE 17 — Trajectoire dans un gaz de Lorentz a horizon fini, d’une longueur de 10000 collisions.
Les obstacles sont les mémes qu’a la Figure , mais ne sont pas affichés.

Remarque 4.1 (Choix de repérage).

Le choiz de systeme de coordonnées sur 72 n’est a priori pas neutre : si l'on translate lorigine,
et en particulier si l'on décale l'origine d’un type d’obstacle i € I de q € 72, la fonction F peut
étre modifiee. Cependant, dans ce cas, F' sera toujours modifiée par ajout d’un cobord : la nouvelle
fonction F,, est

F,=F+hoT—h,

ot h(j,s,0) = —q si j = i et 0 sinon. L’ajout d’un cobord a F n’affecte heureusement pas les
propriétés statistiques du systéme, telles que la conservativité, l’ergodicité, mais aussi bon nombre de
théoréemes limites.

Remarque 4.2 (Horizon fini ou infini).

La notion d’horizon fini ou infini prend tout son sens dans le cadre des gaz de Lorentz. Une
table de billard de Sinai est d’horizon infini s’il existe des canaux de diffusion dans le gaz de Lorentz
associ€, c’est-a-dire des bandes sans obstacles :

Dans ce cas, les particules peuvent faire des sauts arbitrairement grands entre deux collisions, et
donc voyager vite entre des points €loignés. Cela donne lieu a un phénoméne de diffusion surcritique,
c’est-a-dire que le déplacement d’une particule pendant une durée T est typiquement plus grand que
VT. Nous renvoyons a ce sujet le lecteur vers la Sous-sous-sectian en particulier sur le cas des
lois de Lévy de parametre 2.
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FIGURE 18 — Un gaz de Lorentz a horizon infini et des canaux de diffusion (en bleu). Si les obstacles
étaient plus petits, il y aurait aussi des canaux de diffusion diagonaux.

4.2 Deéfinition

Nous définissons les extensions de systémes dynamiques dans un cadre mesuré.

Définition 4.3 (G-extension).
Soit G un groupe abélz’enEl localement compact. Soit (A, u, T) un systéme dynamique mesuré et
F: A— G. La G-extension de fonction de saut F' est le systéme dynamique (,ZL 1L, T), ot
e A=AxG;
® U=pURUV;
e T(r,p) = (T(x),p+ F(x)),
ou v est (& constante multiplicative prés) la mesure de Haar sur G. Si de plus (A, u, T') est un systéme
dynamique Gibbs-Markov, on dit que ’extension est markovienne si F' est constante sur les éléments
de la partition markovienne o de A, ou, en d’autres termes, si F' ne dépend que de la premiére lettre
dans le codage associé a .
Finalement, pour tout & C G, on notera [S] := A x © C A, et plus simplement [g] := [{g}] pour
tout g € G.

__Dans la suite de ce texte, nous serons autant que possible cohérent au niveau des notations :
(A, 11, T) désignera implicitement une extension d’un systéme dynamique (A, p, T).

Si (A, u, T) préserve la mesure, alors toute G-extension (Z, I, T) préserve aussi la mesure.

Exemple 4.4 (Gaz de Lorentz).
L’application collision d’un gaz de Lorentz, discutée en Sous-section est la Z* extension de
lapplication collision d’un billard de Sinai.

Une famille de Z-extensions d’applications collisions d’un billard de Sinai est donnée par les gaz
de Lorentz sur des cylindres.

FIGURE 19 — La table de billard d'un gaz de Lorentz sur un cylindre.

31. On aurait aussi pu considérer des extensions par des groupes non commutatifs. Cela demande de faire attention
a l'ordre des opérations, et nous n’en aurons pas besoin dans ce texte.
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Exemple 4.5 (Marches aléatoires).

Soit (X)) n>0 une suite de variables aléatoires indépendantes et identiquement distribuées a valeurs
dans Z¢. On peut encoder cette suite dans un systéme dynamique. Soit v € P(Z?) la loi de X,.
Posons :

o A:=(ZHYN;

o T (zp)n>0 = (Tnt1)n>o le décalage sur A ;

o 1 :=v®N une mesure produit sur A.
Alors la loi de (X,,)n>0 est celle de ((T"x)o)n>0- De plus, (A, p,T) est une transformation Gibbs-
Markov.

Soit F(x) := xq définie sur A. Alors la Z-extension de (A, u,T) de saut F' est markovienne, et
le processus (SLF),>0 a la méme loi que la marche aléatoire associée a (X,)n>0-

En ce sens, la notion de Z%-extension d’un systéme dynamique généralise la notion de marche
aléatoire sur Z%, en autorisant des sauts qui ne sont plus indépendants.

Nous ne traiterons pas formellement le cas des flots. La notion de Z%extension d’un flot repose
non pas sur une formule aussi explicite, mais plutot sur I'existence d’un Z%revétement galoisien au
niveau de ’espace des phases tel que le flot soit équivariant par les isomorphismes du revétement —
précisément les propriétés que nous avons utilisées dans le cadre du gaz de Lorentz. Ce cadre inclut :

e Le flot billard du gaz de Lorentz, extension du flot billard de Sinai;

o Le flot géodésique sur C\ Z, extension du flot géodésique sur une sphére munie de trois pointes,
étudié par J. Aaronson et M. Denker |2| et mentionné en Sous-sous-section |3.6.2);

e Le flot géodésique sur des Z?-revétements galoisiens de variétés compactes de courbure sec-
tionnelle négative [138,194] ;

e Le flot horocyclique sur des Zdrevétements galoisiens de variétés compactes de courbure
sectionnelle négative constante, étudié en particulier par M. Babillot, F. Ledrappier et O. Sa-
rig [9,153-155] ;

e Le flot de translation sur un Z%revétement d’un tore, dans le travail de A. Avila, D. Dolgopyat,
E. Duriev et O. Sarig [§]...

5 Fonctions propres de 'opérateur de transfert

Soit (A, 7i,T) une G-extension d'un systeme (A, y, T) de saut F. Le spectre de Popérateur de
transfert £ de (ﬁ, 1L, T ) est lié & ceux d’opérateurs de transfert tordus L, d'une facon que nous
allons maintenant présenter. Cela nous donnera en particulier une interprétation des valeurs propres
d’opérateurs tordus comme valeurs propres d’un opérateur de transfert classique pour un plus grand
systéme.

En application, nous présentons en Sous-section la construction par l'auteur de billards de
Sinal dont l'application collision a des résonances de Ruelle non triviales [224].

5.1 Fonctions propres et extensions abéliennes

La discussion qui suit est tirée de [224]. Nous nous plagons dans le cadre d’une G-extension
(A, 11, T) d'une transformation préservant la mesure (A, u, T').

Remarquons dans un premier temps que la dynamique sur A= A x 72 est invariante par trans-
lation. Notons 7, : (x,p) — (z,p + ¢) la translation de ¢ sur A; alors T o7, =71,07T.
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Cette invariance par translation se retrouve au niveau de l'opérateur de transfert : pour toute
fonction f € L>°(A, 1) et tout ¢ € G,

L(for)=L(f) o,

Par conséquent, I'action de L se décompose sur chaque espace propre pour I’ensemble des opérateurs
f — for,. Mais ces espaces propres sont exactement les espaces de fonctions de la forme f@x(z, q) :=

f(z)x(q), ou f € L>®(A,u) et x € G. De plus, pour des observables ayant cette forme, pour toute
fonction g € IL'(A, 1), en posant ¢’ := q + F(z),

/gf(f®x) g dji = / F@)x(a) - 9(T(2),q + F(x)) dii(z,q)
_ /G (@) / F@(~F(@)) - o(T(x), ¢) d(z) dvl(q)
_ / () / £ ((—F(2) () - g(a.q') dpu(a) duAd))
G A
- /A,c (= F(2)) (@) xX(d) - gl ) iz, ).

En bref, E(f ®@x) =Ly (f)®x, ou L, = L(x(—F)-). En particulier, si fy est une fonction propre de
L, ~L*(A, ) de valeur propre A, alors fy ® x est une fonction propre de £ ~ L>*(A, i) de valeur
propre .

Dans le cas ot G = R? ou G = Z¢, on retrouve les opérateurs de transfert tordus £¢ introduits en
Sous-sous-section [3.5.2] Dans le cas ou G est fini, on peut aller plus loin et écrire une décomposition
L-invariante

LY(A, 1) = DL (A m) @ x,
xeG
Paction de £ sur chaque sous-espace L'(A, 1) ® y étant conjuguée a l'action de £, sur L'(A4, u).
Etant donné des espaces de Banach (de fonctions ou de distributions) raisonnables B et B sur A et
A respectivement, on peut espérer une décomposition identique, qui conduit alors a l'identité

Sp(L ~ B) = | ] Sp(Ly ~ B), (5.1)

xea

cette décomposition conservant la nature des points du spectre. Par conséquent, la multiplicité d'une
valeur propre pour L est la somme de ses multiplicités pour les opérateurs L, .

5.2 Spectre périphérique, II : Ergodicité des extensions

En Sous-sous-section [3.3.2] nous faisions le lien entre les propriétés d’ergodicité et de mélange du
systéme (A, p, T') d’une part, et le spectre périphérique de l'opérateur de transfert £ ~ B d’autre
part. Dans cette Sous-section et la suivante, nous étendons cette analyse au spectre périphérique des
opérateurs de transfert tordus £ ~ B. Le type d’analyse menée ici est classique, et peut se trouver
en partie dans [61].

Soit (A, i, T) une Z%extension markovienne d'une transformation Gibbs-Markov (A, u, T') de
saut F. Pour tout A < Z%, pas nécessairement de rang d, on dispose d'une extension intermédiaire

(Ap, pea, T), ot :

32. Par exemple, tels que pess(Ly ™ B) < po < 1 pour une constante pg indépendante de x.
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o Ay :=AXx(Z4/N);
e ip = it ® Leb, ot Leb est la mesure de comptage sur Z?/A ;
o Ta(z,p [A]) = (T(2),p+ F(x) [A]).

De l'analyse de la Sous-section 5.1}, on déduit :

Corollaire 5.1.
Soit (A, i1, T) une Z%-extension markovienne d’une transformation Gibbs-Markov (A, u, T') de saut
F. Si (g, 1, f) est ergodique, alors :
o Pour tout A < Z2, lextension intermédiaire (Ap, pn, Tn) est ergodique.
o L’opérateur L ~ B a 1 comme valeur propre simple, et 1 ¢ Sp(Le = L(e®F-) ~ B) pour tout
¢ € T\ {0}.
o L’équation F = hoT — h [A], d'inconnues A < Z% et h: A — RY/A mesurable, a pour seules
solutions les solutions triviales A = Z% et h constante.

Démonstration.
L’ergodicité d’un systéme implique 'ergodicité de ses facteurs, ce qui montre le premier point.
Par la construction de la Sous-section [5.1], toute fonction L-invariante non constante se reléverait
en une fonction L-invariante non constante, ce qui contredirait I'ergodicité de (A, i, T).

Le troisiéme point suit du second (pour £ rationnel) par des arguments semblables a ceux de la
démonstration de la Proposition O

La réciproque a ce Corollaire est nettement plus délicate. La notion de valeur essentielle |1}205|
est centrale ; elle formalise notamment des obstructions potentielles a I’ergodicité autres que celles du
Corollaire [5.1} Ces obstructions apparaissent par exemple dans le cadre de Z-extensions de billards
polygonaux (modéle du vent dans les arbres) [97]. L’auteur n’a cependant pas pu localiser d’analyse
exhaustive de ’ergodicité dans le cadre d’extensions markoviennes de transformations Gibbs-Markov.

Question 5.2.

Soit (A, i1, T) une Z4-extension markovienne d’un systéme dynamique Gibbs-Markov. Supposons
que léquation ' = hoT —h [A], d’inconnues A < Z¢ et h : A — R?/A mesurable, a pour seules solu-
tions les solutions triviales A = Z et h constante. Le systeme dynamique (Av, 1L, T) est-il ergodique ¢

5.3 Spectre périphérique, III : Apériodicité

En Sous-sous-section [3.3.2] nous avions analysé le spectre périphérique de 'opérateur de transfert
L. Pour la suite, il sera utile de controler le spectre périphérique des opérateurs de transfert tordus,
et d’introduire au passage une notion d’apériodicité d’une extension abélienne. Par simplicité, nous
nous placons dans le cadre des Z%extensions de transformations Gibbs-Markov plutét que dans un
cadre plus général d’actions quasi-compactes d’opérateurs de transfert de systémes dynamiques.

La proposition-clef est la suivante :

Proposition 5.3. (220, Lemma 5.7]

Soit ([Z%, 1, T) une Z%-extension markovienne d’une transformation Gibbs-Markov (A, u,T) de
saut F. Supposons que ([Z9),1i, T) est ergodique. Pour tout & € T¢, notons L¢ 1= L(e?™&F).).

Soit M le cardinal du spectre périphérique de L ~ Lip™ (A, p). Alors il existe n > 1 et un élément
& € T d’ordre n tels que

H:={(&)N) €T xS : \eSp(Le ~B)} = {(kgo,e%%) ke Z/an} .
De plus, chacune de ces valeurs propres est simple.
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La démonstration est trés proche de celle de la Proposition [3.11] et est laissée en exercice.

Définition 5.4 (Apériodicité).
Soit ([Z%, 11, T) une Z%-extension markovienne d’une transformation Gibbs-Markov (A, u,T) de
saut F'. Cette extension est dite apériodique si p(Le ~ B) < 1 pour tout £ # 0, ou autrement dit si

H C {0} xSy, et si de plus 1 est valeur propre simple de L.
Cette notion a une description plus combinatoire, parfois prise comme définition de I’apériodicité :

Proposition 5.5.

Soit ([Z%), 11, T) une Z-extension markovienne d’une transformation Gibbs-Markov (A, u,T) et
de saut F'. Supposons que (A, u,T) est ergodique. Alors (|24, 1, T) est apériodique si et seulement si
[’équation de cobord

F=k+4+00oT -0 modA, (5.2)
ot A C Z2 est un réseau, k € Z2/\ et 0 : A — 74/ N est mesurable, n’a pas de solution pour A # Z4.

Si I'Equation (5.2) a une solution non triviale (A, k, ), alors [Z9] a une partition non triviale
en ensembles (Ag)peza/n, oo A, = {(z,p) € [Z%] : 6(z) +p = (}. De plus, si (z,p) € Ay, alors
T(Ay) = Ay Par analogie avec la Proposition , une telle solution est donc une obstruction au

mélange de ([Z%), i1, T). Remarquons au passage que, si ([Z%], i1, T) est ergodique, alors nécessairement
Z3 /A est cyclique et k est un de ses générateurs.

Voyons comment ces notions s’appliquent & des marches aléatoires.

Exemple 5.6 (Marche aléatoire simple sur Z).

Soit (X,)n>0 une suite de variables aléatoires i.i.d. a valeurs dans Z¢, et (S,)n>0 la marche
aléatoire associée. Suivant I’Evemple[{.5, on encode cette marche aléatoire a Uaide d’une Z-extension
d’une transformation Gibbs-Markov (A, p, T). Rappelons que A = (Z)Y, que T est le décalage sur A
et p=v®, ou v estlaloi de Xo. L'espace A est muni de la partition o == (ay)peza 00 a, = {9 = p},
et la partition image o* est triviale car chaque a, est envoyé surjectivement sur A.

Soit & € T¢ et X\ une valeur propre périphérique de L¢. Soit fe une fonction propre associée. Par
une généralisation de la Remarque fe est mesurable pour la partition image, qui est triviale,
donc fe est constante. Sans perte de généralité, fe =1, et alors

A= / Le(1) dp = / L("1) dp = B(e"4%)) = w(¢),

ou ¥ est la fonction caractéristique de Xy. Par conséquent :
o Si (Sp)n>0 est ergodique, alors V(E) # 1 pour tout £ # 0.
o (Sy)n>0 est apériodique si et seulement si |W(€)| < 1 pour tout £ # 0.

Par exemple, pour la marche aléatoire simple sur Z, a valeurs dans {£1}, on a ¥(§) = cos(§),
et en particulier W(mw) = —1. Cette marche aléatoire n’est donc pas apériodique. L’ensemble H de la
Proposition est {(0,1), (r, —1)}. L’Equation (5.2) a pour solution non triviale A = 27, k =1 et
0 = 0. La partition de [Z] associée est {[2Z], [2Z + 1]}.

5.4 Application : Résonances dans les billards de Sinail

L’objectif initial de larticle [224] de 'auteur était de construire des billards de Sinai dont

I’application collision a des résonances de Ruelle non triviales, répondant ainsi a une question posée
par V. Baladi.
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Si les outils permettant de démontrer la quasi-compacité d’un opérateur de transfert, ou bien un
trou spectral, sont bien établis, exhiber des résonances de Ruelle explicites est beaucoup plus délicat.
Cela peut se faire numériquement . Pensons par exemple aux travaux récents d’O. Bandtlow,
W. Just et J. Slipantschuk sur les liens entre spectre d’opérateurs et décomposition en modes dy-
namiques ,, ou le travail encore en cours d’A. Blumenthal, I. Nisoli et T. Taylor—Crush
sur les méthodes de disques de Gershgorin. Cependant, & I'heure actuelle, ces méthodes numériques
n’existent que dans des cadres relativement simples : il faut pouvoir décrire numériquement des élé-
ments de I'espace de Banach B. Les espaces de M. Demers and H.-K. Zhang , sont encore de

loin trop complexes pour pouvoir étre utilisés dans des démonstrations assistées par ordinateur.

S’il y a des classes de transformations dont on connait exactement les résonances , les
billards de Sinai n’en font pas partie.

La méthode qui suit repose sur la Sous-section 5.1} Elle a permis de construire des flots géodésiques
ainsi que des billards de Sinal ayant des résonances de Ruelle non triviales, par D. Jakobson, F. Naud
et L. Soares dans le cas des flots géodésiques [127], et par 'auteur dans le cas des billards de Sinai
[224].

Fixons une table de billard de Sinai d’horizon fini @ telle que définie en Sous-sous-section [2.4.5
Cette table est un sous-ensemble du tore T?. Elle admet donc un Z2-revétement (), sur lequel la
dynamique est celle du gaz de Lorentz, mais aussi des revétements intermédiaires : tout sous-groupe
A de Z? fournit un revétement de T?, et donc une table de billard intermédiaire Q4.

e 0. 0.0 ;Q:Q‘
oooo—»’

{ ran
99,
.00 00
000 e

FIGURE 20 — Le Z%revétement Cj de @ (table de billard du gaz de Lorentz), et le revétement
intermédiaire Q5 avec A = 27 @ 37Z.

Ces tables de billard fournissent autant d’applications collision, que nous noterons respectivement
(A, u, T) pour la table @, puis (A, iz, T') pour la table @ et (Aa, pa, Tx) pour la table Q4. Le systéme
(Ap, pia, Tr) est une Z?/A-extension de (A, u, T). Par la suite, nous supposerons que A est un réseau
de Z2, et donc que Z%/A est fini; dans ce cas, (Ax, ua, Tx) est encore un billard de Sinai, mais sur
un tore plus gros.

Les espaces de distributions anisotropes construits par M. Demers and H.-K. Zhang ,, que
nous noterons ici B (ou By ), sont particuliérement adaptés a ce probléme. D’une part, 'opérateur de
transfert £ (respectivement, £,) agit quasi-compactement sur B (respectivement, B,). D’autre part,
les bornes sur le rayon spectral essentiel de £, ™ Bj ne dépendent que de la courbure des obstacles
et de leur distance, et sont donc une constante py < 1 indépendante de A.

En-dehors de B(0, pg), le spectre des opérateurs £, ~ By est constitué¢ de valeurs propres de

67



multiplicité finie. Par la discussion de la Sous-section , en-dehors de B(0, po),

Sp(La ~ Ba) = | Sp(Le ~ B).

¢ez?/A

La valeur propre 1 de L5 ~ By correspond & la valeur propre 1 de Ly ~ B dans cette décomposition.
Il s’ensuit que, pour que £, ~ By ait des résonances de Ruelle non triviales, il suffit qu’il existe un

€ € Z%/A non nul tel que L ~ B ait une résonance de Ruelle.

Or, grace aux perturbations d’opérateurs de transfert, on sait que, pour tout & dans un voisinage
U de 0, 'opérateur L »~ B a une résonance \¢ proche de 1. Il suffit donc de prendre une table assez

grande ; alors Z2/A N U contiendra un élément £ # 0, et donc Uopérateur £, aura une résonance de
Ruelle non triviale égale a A¢.

Dans le cas du billard de Sinai, on peut étre plus précis.

e L’opérateur L, est réel. Son spectre est donc symétrique par rapport a I’axe réel. De plus,
Sp(Le ~ B) = Sp(L_¢ ~ B). En particulier, \¢ = A_¢ pour tout ¢ suffisamment petit.

e De fagon générale, Sp(L¢ ~ B) = Sp(L; ~ BY).

e Le flot billard (€2, Liouv, (¢¢)ier) admet une symétrie : l'inversion de temps ¢. Le flot satisfait
I’équation @y ot = 1 o p_,;. Cette inversion temporelle passe a 'application collision, ol elle
devient le renversement d’angle ; Papplication collision satisfait les équations Tor = 10T~ ! et
FoioT = —F. On peut vériﬁerﬁ que cela implique l'identité Sp(Lf ~ B*) = Sp(L_¢ ~ B)
pres de 1. En particulier, \¢ = A_¢ pour tout ¢ suffisamment petit.

En mettant ces remarques bout-a-bout, on voit que A\ = )\_5, c’est-a-dire que les résonances de Ruelle
ainsi obtenues sont réelles. Au passage, ces résonances sont (au moins) doubles : le sous-espace propre
de A\¢ € Sp(L¢ ~ B) est apparié au sous-espace propre de A\¢ = A_¢ € Sp(L_¢ ~ B).

De plus, on peut exclure I'existence de toute autre résonance de Ruelle de module proche de 1.
En effet, 'analyse faite en Sous-section [5.3| se transpose aux billards de Sinai. Soit H le sous-groupe
introduit en Proposition [5.3] Alors, via notre construction, tout élément de H non trivial est un
élément non trivial du spectre périphérique d’un opérateur £, associé a un revétement fini. Or un tel
revétement fini est encore un billard de Sinal, donc est mélangeant [211] ; le sous-groupe H est donc
trivial. De plus, les résonances de Ruelles dépendant continiiment du parameétre . Par compacité, il
existe 7 > 0 tel que, si A est une résonance de Ruelle de module au moins 1 — 7 d’un opérateur L,
alors & est proche de 0 et A = A¢ est la valeur propre principale de L¢. On obtient finalement :

Théoréme 5.7. |22/, Theorem 1.1/
Il existe e > 0 tel que Sp(La ~ By) C B(0,1—¢e)U[1l —¢, 1] pour tout réseau A. De plus, il eziste
une constante 1 < C' telle que :

1
ol Card(Z*/A) < Card{résonances de Ruelle dans [1 — ¢,1] avec multiplicité} < C Card(Z*/A).

En particulier, dés que A est suffisamment peu dense, Ly ™~ By admet des résonances de Ruelle non
triviales.

De plus, grace au développement limité de ¢ obtenu en Sous-sous-section [3.5.2 on peut estimer
le nombre de valeurs propres dans un petit intervalle [1 — €, 1] prés de 1, ou ¢ est donné par le

33. Cela demande un peu d’effort, car les espaces BB ne se comportent pas trés bien vis-a-vis de 'inversion temporelle,
au sens ou B* # 1, 5. Cela est dii au fait que les cones stables et instables ne sont pas traités de fagon symétrique dans
la définition de B.
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FIGURE 21 — Spectre de 'opérateur £, agissant sur B, pour un réseau A suffisamment peu dense. Ce
spectre est symétrique par rapport a la droite réelle. Les résonances sur le segment [1 — ¢, 1] existent ;
les autres sont conjecturales.

Théoréme Notons v, la mesure de comptage des résonances de Ruelle (avec multiplicité) dans
I'intervalle [1 — &, 1], renormalisée par la taille de la table de billard :

1
Uy = 0.
Card(Zz/A) A résong(;% de Lp
[A|>1—¢
On peut approcher les mesures vy, quand A devient de moins en moins dense par des mesures
continues de densité spectmlelﬂ. Nous en donnons ci-dessous deux cas particuliers : les familles de
réseaux (NZ) x Z et (NZ)* avec N > 1. Commengons par la dimension 1 (tables “trés longues”) :

Proposition 5.8. [22/, Proposition 1.5]
Posons Ay := (NZ) x Z. 1l existe g > 0 et une mesure finie vV sur [1 — gy, 1] telle que :

Nl—lg-l VAn|1—e0,1] = (1)?

0w la convergence est faible-x. De plus, vV est absolument continue par rapport a la mesure de
Lebesgue, et sa densité admet une version continue sur [1 — gg,1) telle que

dp® 1 1
de 7" 7v2Covii V1 —2’

(5.3)

ot Covyy > 0 est le terme (1,1) dans la matrice de covariance asymptotique Cov du gaz de Lorentz
associé.

FIGURE 22 — La table )5, de la Proposition ﬁ

Et finissons par la dimension 2 (tables “carrées de grande taille”) :

34. Cet aspect de ’étude est directement inspiré des travaux de D. Jakobson, F. Naud et L. Soares m
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Proposition 5.9. ,. Proposition 1.4/
Posons Ay := (NZ)?. Il existe ¢ > 0 et une mesure finie V2 sur [1 — gg, 1] telle que :

Nljil Vayi-zo] = V7,

ot la convergence est faible-x. De plus, v® est absolument continue par rapport a la mesure de
Lebesgue, et sa densité admet une version continue sur [1 — gg, 1] telle que

dv® (1) 1
dz  2my/det(Cov)’

ot Cov est la matrice de covariance asymptotique du gaz de Lorentz associé.

(5.4)

"'
C

FIGURE 23 — La table 5, de la Proposition

5.5 Pour aller plus loin : Résonances pour le flot billard

La construction de résonances de Ruelle pour les billards de Sinai que nous avons présentée en
Sous-section [5.4] laisse plusieurs questions ouvertes.

D’une part, remarquons que les tables de billard étudiées sont trés particuliéres : ce sont de grands
revétements d’une table donnée. De plus, les résonances obtenues sont elles aussi trés particuliéres :
proches de 1, réelles, et de multiplicité paire.

Question 5.10.
FExiste-t-il des billards de Sinai avec des résonances de Ruelle non réelles, ou non triviales et de
multiplicité 1 2

L’argument théorique présenté dans ce mémoire ne peut pas répondre a cette question. Une piste
possible consiste & perturber nos tables de billards tres particuliéres pour essayer de séparer les
résonances de multiplicité paire.

Une autre question naturelle concerne 'existence de résonances de Ruelle pour le flot billard.
Dans ce cadre, le générateur du flot X, est un opérateur non borné sur un espace de Banach bien
choisi B. De plus, Sp(X ~ B) € R_ x R, on sait que 0 € Sp(X ~ B) correspond aux fonctions
constantes, et que Sp(X ~ B) N [—po, 0] est constitué de valeurs propres isolées de multiplicité finie
pour un certains py > 0. On aimerait savoir s’il existe des tables de billard pour lesquelles il existe
des résonances autres que 0.

Question 5.11.
Euxiste-t-il des billards de Sinai dont le flot a des résonances de Ruelle non triviales ¢
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Le candidat naturel pour B, et le seul au moment ol ces lignes sont écrites, est ’espace construit
par V. Baladi, M. Demers et C. Liverani |14]. Cependant, cet espace est délicat a manipuler. Il
n’est pas évident qu’il soit séparable, et par conséquent, il est difficile d’implémenter des arguments
d’approximation et d’extension par densité d’opérateurs. De la, méme les calculs de perturbations
de valeurs propres échouent.

Le défi est cette fois-ci technique : il faut modifier la construction de Baladi — Demers — Liverani

pour obtenir des espaces de Banach ayant de meilleurs propriétés analytiques. Un probléme d’autant
plus épineux que cette construction est complexe : 1'article original [14] avoisine les 140 pages.

6 Théoréme central limite local

Dans le cadre des Z%extensions conservatives, nous allons maintenant présenter les travaux de
F. Péne et de auteur sur les déviations des sommes de Birkhoff [184|186}222|. Ces résultats fins
portent sur les différences de temps locaux. Avant de les aborder, il est nécessaire de comprendre le
comportement des temps locaux de telles extensions. Ce sera aussi I’occasion de présenter dans un
cadre simplifié la méthode des moments, qui joue un réle crucial dans deux de ces articles [184./186].

Pour simplifier, nous nous placons dans le cadre de Z?-extensions markoviennes conservatives de
transformations Gibbs-Markov, bien que le travail [186| s’applique & des systémes plus généraux, y
compris des gaz de Lorentz & horizon fini.

6.1 Conservativité des Z%extensions

Dans cette Sous-section, la notion de conservativité sera cruciale. Nous allons présenter des critéres
simples la garantissant. Une premiére condition suffisante trés générale est :

Théoréme 6.1. (205, Theorem 11.4]
Soit (A, u, T) un systéeme dynamique probabilisé, préservant la mesure et ergodique. Soit (A, 1, T)
une Z-extension ou R-extension de (A, u,T) de saut F. Supposons que F' € L*(A, ).

Alors (;L 1L, TV) est conservatif si et seulement si [, F du = 0.

Le théoréme de Birkhoff implique que [ 4 F dp = 0 est une condition nécessaire pour la conser-
vativité dés que F' est intégrable ; la difficulté consiste & montrer que cette condition est suffisante.

L’aspect le plus remarquable de ce théoréme est la faiblesse de ses hypotheéses; il s’applique
aussi a des extensions de rotations, ou bien de flots verticaux sur des surfaces plates. Dans le cadre
d’extensions de transformations Gibbs-Markov, il permet déja de caractériser la conservativité dés
que F est dans le bassin d’attraction de lois stable de paramétre o > 1.

Cependant, ce théoréme ne donne pas d’information si F' n’est pas intégrable, ou bien en dimension
supérieure. On utilisera alors plutot le critére suivant :

Proposition 6.2.
Soit (A, i, T) une extension markovienne ergodique d’une transformation Gibbs-Markov (A, p,T)

de saut F. Le systéme (A, 1, T) est conservatif si et seulement si

iﬂ(SgF:O) = +o0. (6.1)

Démonstration.
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Le systeme (A, i, T) est conservatif si et seulement si [0] est un ensemble récurrent. Choisissons
(7,0) dans la cellule [0] selon la loi . Remarquons que 7" (z,0) € [0] si et seulement si S! F(x) = 0.

Posons donc
—+oo

Leo(x) := Card{k > 0 : TF(z,0) =0} = > Lysrp_gy(z)

k=0

le nombre total de fois que I'orbite (77(z,0))n=0 passe en [0]. Par le théoréme de Fubini,
+o0
E(Ls) =Y n(SIF=0).
n=0

Si cette derniére somme est finie, alors L., < +0o presque stirement, donc (ﬁ, 1L, T ) est transient.
Supposons maintenant que ce systéme est transient. On sait que L., < 400 presque stirement, et on
veut montrer que E (L) < 400.

Soit € > 0. Soit N tel que (Lo > N) < e.

Pour tout n > 0, soit ™ (x) le plus petit entier tel que
Loz (7) = Card{0 < k < M (x) : STF(z) =0} > n.

Cet entier est bien défini sur { L, > n}, et est un temps d’arrét sur cet ensemble. On a ensuite, pour
tout £k > 0 :

(Lo > (k+1)N) = (Loo > kN et Lo, o T?™ > N)

)

B / 1posiy - 1posn o 79 du
A

= / Ew(kN) (1Loosz) : 1LooZN dp
A

< Cu(Le 2 kN)p(Loo = N)
< Cep(Los > kN),

ou 'on a utilisé la Proposition pour obtenir I’avant-derniére ligne, et la constante C' ne dépend
que du systéme (A, u, T). Par récurrence, j(Lo, > kN) < (Ce)*. En choisissant e < C~!, on a montré
que Lo, a des queues exponentielles, et donc est intégrable. O

Une version plus sophistiquée de cette démonstration permettra de démontrer les Proposition
et [[3.5 en Sous-section [13.1]

La convergence, ou divergence, de la série Z:i% W (Sg F= 0) peut étre abordée par des tech-
niques de perturbation d’opérateur. On peut ainsi montrer la conservativité de (ﬁ, I, T) pour cer-
taines fonctions de saut F' non intégrables mais dans le bassin d’attraction d’une loi de Cauchy ;
par conséquent, le flot géodésique sur C \ Z est conservatif |2]. En dimension 2, si F' € L?(A, p)
est centrée, alors (E, 1L, f) est conservatif. On peut méme affaiblir hypothése F' € L2(A, ) par
1(||[F|| > @) =4100 O(z72), ce qui permet de montrer la conservativité d’une version simplifiéef”|
du gaz de Lorentz a horizon infini.

Cette étude de Sy (STF =0) par des méthodes spectrales est 'objet de la Sous-section
sulvante.

35. Le vrai gaz de Lorentz est une Z2-extension d’un billard de Sinai & horizon infini, et non d’une transformation
Gibbs-Markov, ce qui complique les choses; le travail de D. Szész et T. Varju [215] est & ce point de vue remarquable.
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6.2 Probabilité d’étre en [0

L’estimation de la probabilité i (S}; F= 0) de revenir au site de départ repose sur la méthode déja
utilisée en Sous-section [3.6] pour démontrer le théoréme central limite. L’argument est plus simple
dans le cadre des Z?-extensions apériodiques.

6.2.1 Extensions apériodiques

Pour simplifier, nous considérerons le cas le plus élémentaire : celui d’une Z-extension ([Z], i1, T)
d’une transformation Gibbs-Markov (A, i, T') de saut F, telle que F soit de carré intégrable et centrée.
Supposons de plus cette extension ergodique et apériodique.

Nous allons maintenant calculer les probabilités (T (x,0) € [0]). Ce sera Uoccasion de présenter
une autre application de la méthode de Nagaev-Guivarc’h de la Sous-sous-section |3.6.1] mais aussi
d’appliquer la notion d’apériodicité et de présenter dans un cadre simplifié certaines stratégies de la

Partie [Vl
Par transformée de Fourier, pour tout a € Z,

1o(a) = L /7r e® de.

2 J_,

Par conséquent,
1 o
1 (SF =0) = / 1o (STF) dp = —/ /eZES"FdM de.
A 21 J1i Ja

L’utilisation d’opérateurs de transfert tordus s’avére encore une fois trés productive : comme dans la
démonstration spectrale du théoréeme central limite, on peut écrire ces intégrales sous la forme

p(SIF =0) = % /T /Ac’gu) dp dé. (6.2)

La différence avec le théoréme central limite est qu’il ne suffit pas de controler I'opérateur L
pour £ proche de 0 : & cause de l'intégrale sur le tore, il faut le controler partout. Par apériodicité,
le sous-groupe H de la Proposition [5.3] est trivial. Soit € > 0. Alors

%/_E/AEZ(U dp d§ = %/_a)\g de(1+6(2)) + O(r),

our € (0,1) et limygéd = 0. Les valeurs de £ ¢ (—¢,¢) ont une contribution en O(r(¢)") pour un
r(e) € (0,1), tandis que, comme nous allons le voir, la contribution des valeurs de £ € (—¢,¢) est de
Pordre de n~2. On peut donc négliger les valeurs de £ hors de (—¢,¢).

Par développement limité de la valeur propre principale )¢, avec des fonctions J qui peuvent
changer d’une ligne a l'autre,

1 [ ne?antiF)e?
= — - 2 dé(1+46
K £(1+5(2)
1

_ A (ApTiF)E?
%ﬁ/Re de(1+ ()
B 1+ 46(¢e)

(A, T; F)\2mn
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On obtient finalement, a ’aide d’un argument diagonal portant sur e,

1
o(A,u, T; F)V2mn

Théoréme 6.3 (Théoréme central limite local).

=

w(STF =0) = +o(n?)
Soit ([Z), 1, TV) une extension markovienne ergodique et apériodique d’une transformation Gibbs-

Markov (A, 1, T) de saut F. Supposons que [, F* du < 400 et [, F du=0. Alors

1
o(A, pu, T; F)\/2mn

1 (SEF =0) ~psio (6.3)

Plus généralement, pour une Z%extension ergodique et apériodique, si F' est de carré intégrable
et d’intégrale nulle, le méme calcul donne

1
det(Cov)(27n)2

ot Cov est 'opérateur de covariance dans le théoréme central limite associé a F', défini par 'Equa-
tion (3.18)).

Pour des lois plus diverses (par exemple dans le bassin d’attraction d’une loi de Lévy), la lectrice
pourra consulter [3], ou mener elle-méme le calcul & partir des données de la Sous-sous-section [3.6.2]
Le théoréme central limite local est aussi valable pour d’autres systémes dynamiques, y compris des
gaz de Lorentz a horizon fini [214] ou infini [215] et les flots associés [82].

6.2.2 Extensions non apériodiques

Si 'extension est n’est pas apériodique, la situation est plus complexe. Plagons-nous dans le
cadre d'une marche aléatoire de saut X, avec ® la fonction caractéristique de X. Dans ce cadre, la
fonction 0 de I'Equation ((5.2)) est triviale, de méme que les projecteurs spectraux de tout élément de

H={(&®() : £€€T || =1}. L’Equation donne alors
1
1 (SFD =0) :E/Tl/f?(l) dp dé

=400 (% / a (&)™ de + 0(7"(5)")) ( > oo

€ ENEH

Soient N := Card(H) et A une racine N-iéme de I'unité. On obtient finalement

1w (STF =0) =m0 (m +o (n—é>) Ni b (6.5)

Or iv:_ol M vaut N si N divise n et 0 sinon. Les retours en 0 se font avec une période spécifique,
et ont une probabilité accrue d’advenir lors de ces périodes. Ce phénoméne de périodicité est parti-
culiérement clair pour la marche aléatoire simple issue de O : elle ne peut revenir en 0 qu’aux temps
pairs, et sa probabilité de retour en 0 peut s’évaluer a l’aide du calcul précédent ou, par exemple, de
la formule de Stirling.
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6.3 Loi du temps passé en [0]

On se replace dans le cadre d'une Z-extension markovienne ergodique et apériodique ([Z], i, T')
d’une transformation Gibbs-Markov (A, y1, T') de saut F, telle que [, F? du < +oc et [, F du = 0.

Soit f € LY([Z], 11). Que peut-on dire des sommes de Birkhoff (S;f f) ?

n>0
Par le théoréme ergodique de Hopf, pi-presque partout,

_ ST
Sl

ST ~notoo [ f A SE ).
1z)

Si f[Z} f di # 0, il suffit donc de comprendre le cas f = 1j. Une telle extension étant ergodique et

conservative, les sommes de Birkhoff (Sf 1[0]> tendent p-presque partout vers —+oo.
n>0

La Sous-section offre une réponse partielle. D’aprés le théoréme central limite local (Théo-
réme [6.3)), si I'extension est apériodique,

n—1

E(ST10) = %u (STF =0)
n—1 1
e ; o(A,u, T; F)V2rk
1 2
" o (A, p, T; F) e

Ce résultat se généralise aux extensions périodiques : les oscillations de la fonction qui & n associe
1 (Sg F= O), apparaissant dans 'Equation (6.5]), se compensent quand on les somme.

Cet argument nous indique la vitesse de croissance du temps passé en [0], et donc la bonne
renormalisation. Il ne décrit que trés partiellement le comportement de ce temps local. En effet,
contrairement a ce qu'’il se passe dans des systémes dynamiques probabilisés, le comportement limite
de telles sommes sera aléatoire. Fixons une mesure de probabilité de référence, par exemple v := u®dy.

Le but est de trouver une suite (a,),>0 telle que la suite (a; 155 1[0]> converge en loi vers une
= n>0

variable aléatoire & identifier. Pour cela, suivant D.A. Darling et M. Kac [68], nous pouvons utiliser
la méthode des moments : pour tout m > 0, nous allons identifier le comportement asymptotique des
moments

M) = [ (ST10(@.0))" duto)
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Le développement de cette somme donne

M,,(n) = Z / 0] o T" (z,0) - . 1 o T*(z,0) du(z)

0<k1,....km<n—1

- Z / 10 T4 (2,0) - ... - 1y o TH+n (2,0) du(z) + O(Mp_y(n))
0<ks,...
>k <n
_ Z / B (L L. £ (1) . .)) du() + O(My_i(n))
0<ky,....k
ik <n
Y / sy £ L5 (g, pey) ) du(z) + O(Mysy (1)),
0<k1, ,km
2o ki<n

En utilisant des opérateurs de transfert tordus, on montre que [184, Equation (2.14)] :

1®p
o(A,u, T; F)V2rk

Cet énoncé est une forme de mélange en mesure infinie, comme évoqué en Sous-section 2.1 Le terme
dominant est alors

M) sl 3 [ @00 QU dn)

0<k17 km

LF (s r—0}) =

+o0 (k_%) =: Q](CO) + Ql(cl).

Do ki<n
m! 1
= > 1Ix”
m J
(2mo?(A, pu, T; F))> 0<kr . kirm j=1
Zj k]‘<n
n El 1
Nnﬁwom!( 5 : ) A@ . ij2da:1...d:cm
27‘(0’ (A ILL, T, F) _Z]Lm],gfn ]:1
( n >7§ m!
C\20%(A,p, T;F)) T(1+12)
Par conséquent, pour tout m > 0,
1 m)!

i [ (GosT100)) dute) -

On reconnaitra immédiatement, bien str, E(|JAV|™), oi N est une variable aléatoire normale centrée
de variance 1/0%(A, u, T; F). De plus, le critére de Carleman [94, Chapter VIL.3, Equation (3.14)]
est vérifié pour ces moments, donc la convergence des moments implique la convergence en loi des
variables aléatoires.

(20%(A,p, T3 F)) 2T (1+3)

Un soin additionnel apporté & la décomposition spectrale de 'opérateur de transfert £ permet de
se dispenser de 'hypothése d’apériodicité. Un argument de couplage trés général di a R. Zweimiil-
ler |238, Theorem 1| permet d’étendre la convergence a toute mesure de probabilité absolument
continue par rapport a i (et non seulement a v); on parle de convergence en loi forte. On montre
ainsi :
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Proposition 6.4.

Soit ([Z], 11, T) une extension markovienne ergodique d’une transformation Gibbs-Markov (A, p, T)
de saut F, telle que [, F* du < 400 et [, F du = 0. Soit f € L'([Z], fi). Alors, pour toute mesure
de probabilité v < [,

1
i —ST ——/ dji - [NV, 6.6

ot la convergence est en loi dans ([Z],v) et N est une variable aléatoire gaussienne centrée réduite.

La présence d’une valeur absolue d’une variable aléatoire de loi normale n’est pas surprenante.
D’apreés un théoréeme de P. Lévy , si (Bt)i>0 est un mouvement brownien, (M;)¢>o son maximum
courant et (L;);>0 son temps local en 0, alors (M — B, M) = (|B|,2L) en loi; de plus, M; = 2|B,| en
loi pour tout ¢; donc L; = |By| en loi pour tout ¢. Par conséquent, le temps local en 0 au temps t a
la loi de la Valeur absolue d’une variable aléatoire de loi normale.

Ce théoréme n’est pas spécifique aux extensions de systémes dynamiques Gibbs-Markov. D’une
part, du point de vue dynamique, 'argument développé ici nécessite seulement une bonne action
spectrale de l'opérateur de transfert, et s’applique donc par exemple au gaz de Lorentzm On le
vérifie numériquement a la Figure [24]
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FIGURE 24 — Histogramme du temps passé en [0] par un gaz de Lorentz a horizon fini, aprés 1 000
itérations. Histogramme obtenu a I'aide de 100 000 trajectoires indépendantes partant de [0] selon
la mesure de Liouville. On retrouve la courbe en demi-cloche prédite par la Proposition

D’autre part, ce théoréme a des analogues dans le cadre de chaines de Markov récurrentes nulles
dont les temps de retour a un état donné ont des queues a variation réguliere , Theorem 1] ; pour un
énoncé dans le cadre de systémes dynamiques, on pourra consulter par exemple , Theorem 3.6.4].
De ce point de vue, la valeur absolue d’une variable aléatoire de loi normale centrée est un cas
particulier de loi de Mittag—Leffler :

Définition 6.5 (Loi de Mittag—Leffler).
Soient v € [0,1] et X une variable aléatoire réelle positive. On dit que la loi de X est une loi de
Mittag—Leffler de paramétre ~y si, pour tout z € C (ou z € B(0,1) siy=10),

Z F1+n7 '

36. La construction des tours de Young permet aussi de passer des transformations Gibbs-Markov au gaz de Lorentz.
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On retrouve des lois usuelles pour trois paramétres :

e X =1 presque stirement pour v = 1;

e X = |N]| avec N de loi normale centrée de variance 7/2 pour v = 1/2;

e X = & avec £ exponentielle de paramétre 1 pour v = 0.
La Proposition correspond au paramétre v = 1/2. Le paramétre v = 0 apparait pour des Z*-
extensions ergodiques dont les sauts sont centrés et de variance finie, ou bien pour des Z-extensions
ergodiques et conservatives dont les sauts sont dans le bassin d’attraction d’une loi de Cauchy. Les
paramétres entre 0 et 1/2 apparaissent pour des Z-extensions dont les sauts sont centrés et dans le
bassin d’attraction d’une loi stable de Lévy, déja évoquées en Sous-sous-section [3.6.2]

La gamme entiére de parameétres peut s’obtenir en travaillant non pas avec des extensions mais
avec les transformations de Pomeau-Manneville de la Sous-sous-section [2.4.3] Plus précisément, le
paramétre v de la loi de Mittag-Leffler vaut 1/a;, ott « est le paramétre de la transformation de
Pomeau-Manneville |1, Chapter 4.8|.

6.4 Observables d’intégrale nulle, I : Méthode des moments

La limite dans la Proposition est dégénérée dés que f[Z] f di = 0. Quelle est la limite dans ce

cas? Cette question a été explorée dés 1955 par R.L. Dobrushin |77, Théoréme 2| dans le cadre de
la marche aléatoire simple :

Théoréme 6.6. |77, Théoréme 2/
Soit S,, une marche aléatoire simple sur Z et f : Z — R a support fini et de somme nulle. Posons :

o?(f) =4 fG) +8 ) i) k) =Y f2(5) = 0.

JEZ 1,kEZ JEZ
i<k
Alors )
1
Jm =) f(S0) = o(DX,

ot la convergence est en loi et X est une variable aléatoire dont la loi est de densité

9 [t® 2 g
g(x) = —/ e 2277 dt.
0

™

Ce théoréme a ensuite été généralisé, notamment par H. Kesten et Y. Kasahara [132}/133,/135,|144]
dans le cadre de chaines de Markov. On dispose de plus de formes plus fortes de sa conclusion : non
seulement la loi limite, mais aussi des principes d’invariance par Y. Kasahara et A.N. Borodin |35,
36,(134], et des lois du logarithme itéré grace a un trés joli argument de couplage di a E. Csaki et

A. Foldes [64,65].

L’objectif du travail de thése de 'auteur consistait a étendre ce type de résultat a des systémes
dynamiques, au-dela du cadre des processus de Markov. Nous reviendrons en Sous-section sur
celui-ci. Suite & ce travail de thése, nous avons avec F. Péne appliqué la méthode des moments a
ce probléeme. La stratégie est donc la méme que dans la Sous-section [6.3] mais la combinatoire qui
en résulte est nettement plus compliquée. Pour simplifier notre exposition, nous donnons ici un cas
particulier de [184] Theorem 1.11].

Théoréme 6.7. Corollaire de (184, Theorem 1.11]

Soit ([Z], 1, T') une extension markovienne ergodique d’une transformation Gibbs-Markov (A, pu, T)
de saut F, telle que [, F* dp < +oo et [, F dp=0. Soit f : [Z] — R telle que :
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® SUDpcy ’f('ap)|Lip°°(A7u) < +00.
o [l existee >0 et g > 2 tels que Y (1 + p|)2te 1fCoP)aga,y < oo

3 f[Z]fdﬁ:O.

Alors il existe une constante o*(f) > 0 telle que, pour toute mesure de probabilité v < Ji,
lim —ST f=

n—+o0 i Vo (A TF -

0w la convergence est en loi dans ([Z],v), et N, N sont deuz variables aléatoires indépendantes de
lois normale centrée réduite.

Remarque 6.8 (Variance asymptotique, I).
La constante o*(f) dans le Théoreme est simplement donnée par la formule de Green—Kubo,

déja rencontrée o I’Equation (3.16) :
*(f) =2 nT: )= | frdp+2) [ f-foT™dp
2] n=1" 2
Ceci est démontré dans [18/)] quand f est constante sur chaque site, et dans [186] dans le cas
général.

Esquisse de démonstration du Théoréme [6.7

On utilise la méthode des moments, présentée en démonstration du Théoréme [6.3] Cependant,
la démonstration devient beaucoup plus technique. Nous nous cantonnerons a évoquer les principales
complications.

Pour commencer, il faut voir ce type de résultat comme un analogue en mesure infinie du théoréme
central limite, 1a ou le Théorémel[6.3|serait un analogue du théoréme ergodique de Birkhoff. Or, déja en
mesure finie, le théoréme central limite est valable pour des observables f réguliéres et suffisamment
intégrables : nous renvoyons la lectrice au Théoréme [3.30] Cela explique qu’il y ait de nouvelles
contraintes portant sur la régularité et I'intégrabilité de 'observable f.

Ensuite, le théoréme de Hopf n’est plus d’aucune utilité. On ne peut donc pas se ramener a I’étude
de la seule fonction 1jg), ce qui aurait simplifié¢ la combinatoire. Supposons pour simplifier que f soit
constante sur chaque site [p]. En posant

M= [ (Tr@0)" auta),

on a donc, pour des constantes cn = ¢y, N, explicites,

> Y a Y Y

q=1 N;>1 1<ni<...<ng<n ag(z4)¢
N1+...+Nq:m

ﬁ( )V sr e a})]

J=1

Dans la démonstration du Théoréme , seules des indicatrices 1;gr p_) apparaissaient, desquelles
n
0

on tirait une famille & un paramétre d’opérateurs ;. Dans notre nouveau cadre, on introduit une

famille & deux parameétres d’opérateurs
0 1
Qra = Qi+ Qila = L5 Lisr—ay ),

avec Q,(f()l la restriction au sous-espace propre de valeur propre 1 de L, et Q,(:()l un terme d’erreur dont
il faut maintenant controler la dépendance en a.
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Enfin, dans la démonstration du Théoréme [6.7], le terme principal correspondait & ¢ = m et
(Nj)i<j<m = (1,...,1), les autres termes étant négligeables par rapport a celui-ci. Dans notre cadre,
se terme s’annule car f est d’intégrale nulle. Il faut donc aller chercher les termes suivants. La
combinatoire est intéressante : la croissance de M,,(n) est en n2 si m est pair (et plus lente si m est
impair), et les termes ayant cette croissance sont des concaténations de blocs :

° Q,(COC)L avec poids V; = 2;

° QECO()I et Q,(gll avec poids V; = N1 = 1.
Le premier type de bloc correspond au teere f[Z] f? dji dans la formule de Green—Kubo, et le second
type de bloc au terme 231 f[Z} f-foTrdpu. O

Remarque 6.9 (Autres Z?-extensions).
Comme pour le théoréme central limit et le théoréme central limite local, le Théoréme s’étend

a des Z-extensions ergodiques et conservatives dont le saut F est dans le bassin d’attraction d’une
loi stable de Lévy[|

Dans ce cadre, la renormalisation change ; elle est toujours la racine carrée de la renormalisation
du théoréme central limite local. La loi limite devient un mélange gaussien par une loi de Mittag-
Leffler. Ces lois, appelées Mittag-Leffler Gaussian mixtures (MLGM) dans [184)], ou lois de Mittag-
Leffler symétriques dans [132], admettent plusieurs caractérisations :

o Ce sont les produits VY - N, ou Y suit une loi de Mittag-Leffler, N est normale centrée et
ces deux variables aléatoires sont indépendantes.
e Leur fonction caractéristique est donnée par

+00 Cn£2n
() = ; EED

ouy € [0,1] et ¢ > 0.
Leur densité a enfin une représentation intégrale ; pour v = 1/2, elle est donnée dans le Théoreme .
L’équivalence de ces différentes caractérisations est un exercice intéressant sur le conditionnement.

Remarque 6.10 (Loi de 'arcsinus).

Le Théoreme répond a la question des lois limites des sommes de Birkhoff d’observables
d’intégrale nulle qui décroissent suffisamment vite a linfini. On peut la contraster avec la loi de
Varcsinus. Si (By)i>o est un mouvement brownien,

[ (T
T/ (Ig, —1g_)(Bs) ds = roioe X,
0

1

ot la convergence est en loi, et la loi de X est supportée sur [—1,1] et de densité —iE sur cet

intervalle.

Ce théoréme, démontré par P. Lévy [158], se transpose aux Z-extensions markoviennes, ergo-
diques, conservatives, et dont les sauts sont dans LI(A, u) pour un q > 2 : c’est une conséquence
du principe d’invariance faible. Il se généralise aussi a des systémes non-uniformément hyperbo-
liques [200,/219].

La transition entre le régime du Théoreme[6.7 et celui de Uarcsinus, qui comprend des observables
d’intégrale nulle ne décroissant pas trop vite a l’infini, est nettement moins bien comprise.

37. Avec, encore une fois, des complications pour la loi de Cauchy.
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La méthode des moments a ensuite été adaptée aux gaz de Lorentz [186|, par les deux mémes
auteurs. En voyant f(-, p) comme un multiplicateur continu sur un espace de Banach adapté, on peut
mener ces calculs sans avoir & supposer que f est constante sur chaque site. Une autre innovation
de [186] est de considérer le processus joint (ST f,STg) avec f d’intégrale nulle et g d’intégrale non
nulle, et de montrer leur indépendance asymptotique.

Mentionnons pour finir les travaux de M. Phalempin [190], qui exploite la méthode des moments
pour montrer un principe d’invariance optimal pour ces processus, et méme une version plus ﬁne@
pour des équations différentielles bruitées par une Z-extension [190, Théoréme 1.1].

38. Et encore plus difficile & démontrer !

81



82



Troisiéme partie
Transformations induites et théorie du
potentiel

Nous faisons maintenant un pas de coté, pour revenir a la théorie ergodique générale. Nous allons
discuter plus en détail la notion de systéme induit, et présenter le role-clef joué par un résultat de
théorie probabiliste du potentiel : 'identité de balayage, qui a été utilisée extensivement dans [2206].
Cette théorie est introduite dans le cadre de chaines de Markov en Section [7| (Cadre probabiliste), et
de systémes dynamiques en Section [§] ( Transformations induites). Enfin, la Section [9] (Invariants par
induction) revient sur la formule de Green—Kubo et la replace dans le cadre plus général d’invariants
par induction.

Cette partie, et en particulier les Sections 8| et |§], portent essentiellement sur le contenu de [185].
La Sous-section [9.3] est a part : elle revient sur les sommes de Birkhoft d’observables d’intégrale nulle,
suivant cette fois-ci I'approche de [221222].

7 Cadre probabiliste : Chaines de Markov induites

Avant de revenir vers les systémes dynamiques, nous allons introduire des éléments de théorie
du potentiel dans un cadre probabiliste plus simple, celui des chaines de Markov stationnaires. Nous
adoptons cependant un cadre trés large pour étudier ces chaines de Markov. L’essentiel de cette
Section est classique, et peut se trouver par exemple dans [32].

7.1 Chaines de Markov

De méme que la présentation précédente se focalisait sur des systémes dynamiques a temps discret,
nous nous concentrons ici sur des processus markoviens a temps discret, c’est-a-dire des chaines de
Markov. Les espaces d’états considérés restent généraux.

Définition 7.1 (Chaine de Markov stationnaire).

Soit A un espace polonais muni d’une mesure o-finie u. Une fonction P : A — P(A) définie u-
presque partout est un noyau de transition si, pour tout ensemble mesurable B, la fonction x — P,(B)
est mesurable. La mesure i est dite stationnaire si, pour tout B C A mesurable,

/A Po(B) dy = u(B). (7.1)

Etant donnée une mesure de probabilité v < p, par le théoréme d’extension de Kolmogorov, il
existe une chaine de Markov (M,,),en sur §2 telle que :

e My soit de loi v ;

e Pour toutn >0 et BC A,

P (M, € B | My, ..., M,) = Py, (B).
On notera enfin (Fy,)n>o la filtration \/}_, o(M,,).

Le noyau de transition P peut aussi étre vu comme un opérateur agissant sur divers espaces de
fonctions, en particulier les espaces ILP(A, ) avec p € [1, 00], par

P(f)(x) = E(f(Mng1) | My = ).
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Pour tout p € [1, 0¢], la stationnarité de la mesure u est équivalente au fait que

/A P(f) dji = / Fdu YfeLP(Ap). (7.2)

Si A est fini de cardinal a, la donnée d’un tel opérateur P est équivalente a la donnée d’une
matrice a X a stochastique, c’est-a-dire a coefficients dans [0, 1] et dont la somme de chaque ligne est
égale a 1. Dans une telle représentation, que 1’on notera abusivement encore P, pour tous i, j € A,

Pj=PM, =j|M=1) ;

autrement dit, la matrice associée est la représentation matricielle de 'opérateur P dans la base
(1;)ica. Si cette matrice est irréductible, le théoréme de Perron-Frobenius assure alors que la chaine
de Markov associée admet une unique mesure de probabilité invariante.

Il est possible de définir, dans ce cadre général, des notions d’ergodicité et de récurrence compa-
tibles avec les applications aux systémes dynamiques qui suivrontﬂ.

Définition 7.2 (Chaines de Markov ergodiques et récurrentes).
Soit (A, u, P) une chaine de Markov stationnaire. On dit que cette chaine est :
e crgodique si tout ensemble B C A tel que P,(B) = 1 pour p-presque tout x € B est ou bien
de mesure pleine, ou bien de mesure nulle.
e récurrente si, pour tout ensemble B C A de mesure strictement positive et u-presque tout
x € B, le temps de premier retour en B partant de x est presque sirement fini :

P(Gn>1:M,€ B | My=x) <400 p-p.p..

Exemple 7.3.
Soit (A, 1, T) un systéme dynamique préservant la mesure. Posons :

Alors, pour tout B C A mesurable, la fonction v +— P,(B) est égale a 1p-1(p). Ansi, P est un noyau
de transition car T est mesurable. De plus, pour tout B C A mesurable,

[ PeB) = [ 101y dp = (B = ()
A A

ainst, la mesure j est bien stationnaire.

De méme, cette chaine de Markov est récurrente si et seulement si (A, u,T) Uest. L’ergodicité
est plus délicate : cette chaine de Markov est ergodique si et seulement si (A, u,T) n’a pas de sous-
ensemble stable non trivial, ce qui est une condition plus forte que Uergodicité du systéme (A, u,T),
et équivalente si (A, u, T) est consemat@'f@ (et en particulier si p est finie).

Enfin, la notion de chaine de Markov duale nous permettra de faire le lien avec les opérateurs de
transfert.

39. Il y a des précautions & prendre. Le pendant pour les chaines de Markov de la notion de conservativité est la
récurrence. La notion d’ergodicité est plus épineuse, car elle dépend des références : ce que de nombreuses références
sur les chaines de Markov appellent ergodicité correspond plutot aux notions d’apériodicité ou de mélange.

40. Le systéme (A, u, T) n’a pas de sous-ensemble stable non trivial si tout ensemble mesurable B tel que B C T—1(B)
est ou bien de mesure nulle, ou bien de mesure pleine. En revanche, (A, u, T') est ergodique si tout ensemble mesurable
B tel que B = T~}(B) est ou bien de mesure nulle, ou bien de mesure pleine. La seconde condition est plus faible.
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Définition 7.4 (Chaine de Markov duale).
Soit (A, u, P) une chaine de Markov stationnaire. Sa chaine de Markov duale est la chaine de
Markov dont l’opérateur associé P* est le dual de P :

/AP*(f) -ngZ/Af-P(g) d,u Vf €L1<A7ﬂ)> vQ ELOO(AMM)' (73)

La dualité correspond a un renversement de temps. Ainsi, une chaine de Markov est réversible si
et seulement si elle est son propre dual.

Remarque 7.5 (De opérateur au noyau de transition).
Un opérateur P : LY(A, u) — LY (A, ) est associé au noyau de transition d’une chaine de Markov
stationnaire pour une mesure p St et seulement st

o P préserve p (Equation 72);

o P est positif : P(f) >0 si f>0.
En particulier, si (A, u, P) une chaine de Markov stationnaire, alors P* est bien l’opérateur associé
au noyau de transition d’une chaine de Markov, et (A, p, P*) est stationnaire.

7.2 Probabilités d’atteinte, I : Fonctions harmoniques

L’un des thémes principaux de ce mémoire est 1’étude de probabilités d’atteinte. Commencons par
un exemple élémentaire. Soit (M,,),>o une chaine de Markov irréductible sur un espace d’état fini
A. Notons p sa mesure de probabilité stationnaire et P sa matrice de transition. Soient x, y, z trois
points deux a deux distincts de A. Quelle est la probabilité, partant de x, d’atteindre y avant z ?

Par la suite, nous noterons P, (respectivement E,) la probabilité (respectivement 1’espérance)
pour la chaine de Markov partant de x € A.

Définition 7.6 (Temps de premiére atteinte).
Soit B une partie mesurable de A. Le temps de premiére atteinte de B de A est la variable
aléatoire
pp:=inf{n>0: M, € B}, (7.4)

qui est un temps d’arrét.

On fera attention au fait que I'infimum dans la Définition est pris sur tout les n positifs, et
non seulement strictement positifs comme a I'Equation (7.7). En particulier, g5 = 0 sur B.

La question posée revient alors a calculer la probabilité P, <M¢{y’z} = y). On la généralise en
calculant la fonction

pour tout x € A. Si x ¢ {y, 2}, alors ¢g, .1 > 1 et
f(z) =P, (Mg =y)
= Z P, <M1 =a'et My, , = y>

€A

=D P (M =2)P (M@{y,z} = y)
€A

= Z P;m’f(x/)
€A

= P(f)(=).
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Ainsi, la fonction f est solution de I’équation

{(Id—P)f(v):O pour v € A\ {y, z} .

f(z)=0, [fly)=1 (7.5)

Une telle fonction f est harmonique sur A\ {y, 2} pour I'opérateur (Id —P). Autrement dit, 'Equa-
tion est une équation de Poisson sur A\ {y, z} avec conditions au bord de Dirichlet. La chaine
de Markov étant irréductible, par le principe du maximum, toute fonction harmonique sur A\ {y, z}
atteint son maximum (ainsi que son minimum et le maximum de son module) sur {y, z}. Par consé-
quent, la différence de deux solutions de I'équation (7.5 est nulle : cette équation admet bien une
unique solution.

Introduisons 'opérateur L ~ C# suivant :

{<Aﬂm (Id=P)f(v) pourwv e A\{y,z}
Lf(v) = f(v) pourv e {y, 2} '

Par I'argument justifiant 1'unicité des solutions de 'Equation (7.5)), 'opérateur L est injectif, donc
bijectif. La solution de I'Equation (7.5]) est L='(1,).

Remarque 7.7 (Mouvement brownien et fonctions harmoniques).

Ce qui précede dépasse de loin les chaines de Markov a espace d’état fini, et s’applique notamment
a des processus stochastiques. Soit U un ouvert bornée du plan a bord régulier (55, Chapter 4.4/, et P,
la loi du mouvement brownien (By)i>o partant d’un point x € U et arrété au bord de U. Soit pay le
temps d’atteinte de OU. Soit g : OU — C bornée. Alors la fonction f(x) :=E, (g (Bg,,)) est solution
de l’équation de Poisson avec conditions au bord de Dirichlet usuelle :

{Asz dans U

fow =9 (7.6)

Dans le cas des chaines de Markov, l'opérateur (Id —P) joue le réle de l’opémteur@ —A.

Exemple 7.8 (Lancers de piéce, I).

On lance de facon répétée une piece non biaisée. Quelle est la probabilité d’observer trois lancers
Pile d’affilée avant d’observer une alternance Pile-Face-Pile ¢

Choisissons A= {FF,PF,FFP,FPP,PFP,PPP}. Un état correspond auxr deux ou trois
derniers lancers observés, et la matrice de transition est

/2 0 1/2 0 0 0

/2 0 0 0 1/2 0

p_| 0 12 0 12 0 o0
| o 12 0 0o 0 1,2

0 1/2 0 1/2 0 0

0 12 0 0 0 1/2

On peut supposer@ qu’au début de l’expérience aléatoire, on part de x = F'F', et on cherche a calculer
la probabilité d’atteindre PP P avant PF P.

41. Avec les conventions issues de la physique : Af =", 92 f.
42. Car, si 'on veut obtenir PPP ou PF P, il est équivalent de dire que ’on n’a encore rien tiré ou que ’on vient
de tirer deux fois Face.
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Par ce qui préceéde, on cherche donc l'unique solution f : A — R de ’équation

(Id—P)f(v) =0 pourv € {FF,PF,FFP, FPP}
{ f(PFP)=0, f(PPP)=1 '

La méthode de résolution ci-dessus donne f = (2/5,1/5,2/5,3/5,0,1). La probabilité recherchée est
donc f(FF)=2/5.

Exercice 7.9.
Le temps d’atteinte n’est pas la seule variable aléatoire d’intérét a satisfaire une équation de
Poisson. Plagons-nous dans le cadre de I’Exemple[7.8.
o Ecrivez une équation satisfaite par f(z) = E, (pprp). Déduisez-en le temps moyen pour voir
apparaitre la suite de lancers Pile-Face-Pile.
o Ecrivez une équation satisfaite par f(z,z) := B, (eZSZ’PFP). Que peut-on en déduire sur la lot
du temps d’atteinte de la suite de lancers Pile-Face-Pile ¢

7.3 Probabilités d’atteinte, II : Premier retour

Les techniques présentées en Partie doivent étre modifiées quand 'on cherche a calculer non
pas un temps de premiére atteinte ¢, mais un temps de premier retour

pp:=mnf{n>1: M, € B}, (7.7)

ou B C A, déja mentionné dans un cadre dynamique en Sous-sous-section Remarquons que la
seule différence avec le temps de premiére atteinte est que I’on ne considére que les temps strictement
positifs, c¢’est-a-dire que la chaine de Markov doit avoir fait au moins un pas. En particulier, pg et
pp coincident hors de B.

Une premiére approche consiste simplement a faire un premier pas, puis a appliquer la théorie
développée pour les temps de premiére atteinte.

Exemple 7.10 (Lancers de piece, II).

Continuons avec I’Exemple[7.8. Supposons que l’on vient juste de lancer trois Pile d’affilée. Quelle
est la probabilité d’observer de nouveau trois lancers Pile d’affilée[S] avant d’observer une alternance
Pile-Face-Pile ¢

Dans [’espace décrit dans I’Exemple et partant de ’état PP P, le vecteur probabilité des états
possibles aprés un lancer est pppp := (0,1/2,0,0,0,1/2). On reprend la fonction f calculée dans
UEzemple[7.8. La probabilité recherchée est alors

1 1 1 3
puppp(f)==x-+=-x1=-.

2 5 2 5
Nous allons maintenant décrire une autre technique proche. Avant toutes choses, il nous faut
introduire la notion chaine de Markov induite, ce que nous faisons dans un cadre général.

Définition 7.11 (Chaine de Markov induite).

Soit (A, u, P) une chaine de Markov stationnaire et récurrente. Soit B C A de mesure strictement
positive. Remarquons que, par la définition de la récurrence, P,(pp < +00) = 1 pour u-presque tout
x € B. Le noyau de transition induit sur B est

PE(C) =P, (M,, € C),

pour tout C' C B mesurable.

43. Attention : si le prochain lancer est un Pile, cette condition sera satisfaite!
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Le calcul des probabilités recherchées est alors équivalent au calcul de PZ. Comme nous le verrons
plus tard, sous I'hypothése de récurrence, la mesure jp est stationnaire pour P8 (Proposition
ou, dans un cadre dynamique, un lemme de S. Kakutani [131, Lemme 2|). Remarquons que, si P est
ergodique pour pu, alors P est ergodique pour B

On peut définir plus généralement le temps de n-iéme retour gpgf) en B. Le processus (M,),>0

partant d’'un point z € B générique pour u reviendra une infinité de fois en B. Par la loi de Markov
forte, le processus
MnB = M (n)
¥B

est une chaine de Markov sur B, dont le noyau de transition est P5.

Exemple 7.12 (Lancers de piéce, I11).
Illustrons ces idées dans le cadre de I’Exemple [T.10. La chaine de Markov induite sur B =
{PFP,PPP} a pour noyau de transition

p{PFP,PPP} _ 3/5 2/5
2/5 3/5 )"

Remarquons que p(PFP) = u(PPP) : il s’agit d’une manifestation du fait que ces deux suites ont
la méme fréquence théorique dans une suite de lancers de pile ou face. Par conséquent, jyg(PFP) =
wp(PPP). Cela, ajouté au fait que la matrice PIPFP.PPP} oot stochastique, contraint la matrice
PIPFP.PPP} 4 otre symétrique, ce que l'on observe.

Dans cet exemple, a une suite de lancers PPPP correspond une transition de PP P vers PP P
dans le systeme induit, alors qu’une suite PPPFFPPFP induit une transition de PPP vers
PFP.

Revenons au calcul de PE. Soit g : B — C; nous notons glp l'extension de g a A telle que g = 0
sur A\ B. Soit f la solution de I’équation de Poisson avec condition au bord de Dirichlet :

{(Id—P)f(v)zO pour v € A\ B
f(v)=g(v) pourwve B '

Alors
PP(g) = PP(f)ip = P(f)ip = (f — Id=P)(f)z = g — Id=P)(f)5,

ou la seconde égalité peut se justifier a ’aide d’un argument de martingale que I'on retrouvera dans
la démonstration de la Proposition [7.13| En d’autres termes,

(Id —=P7)(fi5) = (Id =P)(f)5-

Cette identité, classique en théorie probabiliste du potentiel, s’appelle 1'identité de balayage. Une
version peut étre trouvée dans [199, Corollaire 1.11]|. Nous citons ici une version plus générale |[185]
Proposition 2.4].

Proposition 7.13 (Identité de balayage).
Soit (A, u, P) une chaine de Markov munie d’une mesure stationnaire récurrente o-finie. Soit
B C A mesurable tel que 0 < u(B) < +00. Soient f € L>*(A, ) et g € L>*(B, wp). Si :

(Id =P)(f) = g1,

alors :
(Id=P®)(fis) = g-
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Démonstration.

Soit & € B générique pour la mesure pp, et (M,),>o la chaine de Markov issue de x. Notons
(MB), >0 la chaine de Markov induite sur B par (M, ),>o. Alors ¢p est un temps d’arrét presque
stirement fini. De plus, le processus (f (Mnrpp)), >, €st une martingale car f = P(f) sur A\ B, est
bornée, et converge presque strement vers f(M,,) = f(MP). Par le théoréme de convergence des

martingales,

f(@) = g(x) = P(f)(2) = Eo(f(M)) = Eo(f(M{)) = PP (fi5)(x) = PP (g)(x). =

Revenons au cas d’espaces d’états finis, et supposons de plus que p est ergodique. Alors la dé-
composition

C* = Vect(1) @ Ker(Id — P)

est P-invariante. De plus, pp est alors stationnaire et ergodique pour la chaine de Markov induite, de
telle sorte que I'on dispose aussi d’une décomposition PB-invariante C? = Vect(1) @ Ker(Id — P5).

Si (Id—=P)(f) = glp, alors

/(913) dp = /(Id —P)(f)dp=0.
A

A

L’équation (Id —P)(f) = g1p ne peut donc avoir de solution que si g est d’intégrale nulle.
—1

| Ker ()
qui est elle-méme d’intégrale nulle. Par 'équation de balayage, (Id —P*®)(fiz) = g. Cependant, fz

n’est en général pas d’intégrale nulle pour pp; il faut projeter cette fonction parallélement@ aux

constantes pour obtenir (Id —P? )féer(mB)(g).

On peut ainsi calculer (Id —PB)féer(MB). Il suffit d’inverser l'opérateur obtenu pour retrouver
(Id —PB)|Ker( , puis de la PB,

Fixons une fonction g : B — C d’intégrale nulle. Notons f = (Id —P) (91p) I'unique solution

M\B)

Exemple 7.14 (Lancers de piece, IV).

Revenons une derniére fois a I’Exemple [7.10. La mesure de probabilité invariante p associée a
P est telle que W(PFP) = pu(PPP). En particulier, l’espace des fonctions d’intégrale nulle sur
B ={PFP,PPP} est engendré par g = 1lppp — lprp.

Une fonction f solution de l’équation (Id —P)(f) = glp est

1.3 5
f: (1,5,1,5,0,5) .
Par conséquent, en projetant f sur Ker(up) parallélement aux constantes, (Id —PB)‘_éer(MB)(g) =
(—5/4,5/4) = 2g, et donc Plier(ms)
’Exemple [7.13
Remarque 7.15 (Intégration contre des fonctions d’intégrale nulle).

Une solution pour éviter les problemes de projection parallelement auzx constantes consiste a inté-
grer contre des fonctions d’intégrale nulle. Plus précisément, si g, h : B — C sont d’intégrale nulle,

= %IdlKer(mB)- On retrouve ensuite la matrice calculée dans

alors

[ aa=P) (g1e) - (h1m) du= [ 14-P")N(g) - an
A B

44. Un autre point de vue est que les solutions f de I'équation (Id —P)(f) = g1p sont définies a constante prés, et
que le choix de la solution d’intégrale nulle correspond a un choix de jauge. Cependant, la jauge change quand 1’on
passe du systéme initial au systéme induit. Cette subtilité a valu plusieurs fois & ’auteur de ces lignes de perdre des
heures & la recherche d’erreurs de calcul.
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aucune de ces intégrales ne dépendant du choix d’une constante dans la définition des opérateurs
(Id—P)~! et (Id—PP)~L. Cette formulation aura par la suite I’avantage supplémentaire, dans des
cas ou pi est infinie, de contourner des problémes de convergence dans le calcul de (Id —P)~(g1p).

8 Transformations induites

Nous revenons maintenant sur la notion de transformation induite. Suivant [185], nous cherche-
rons & explorer les conséquences de 'identité de balayage (Proposition [7.13)).

8.1 Définition

Soit (A, p, T') un systéme dynamique préservant la mesure et conservatif, ot u est o-finie.

Définition 8.1 (Transformation induite).
Soit B C A tel que u(B) > 0. De fagon analogue aux chaines de Markov, on peut définir le temps
de premier retour en B par
ep(z) :=inf{n >1 : T"(z) € B}.

Le systéme dynamique (A, pu,T) étant supposé conservatif, pp < +oo presque partout dans B. La
transformation induite sur B est

B — B
TB:{ZE — T@B(m)(aj) ) (81)

qui est bien définie pour u-presque tout point de B.

On notera de plus Lg Uopérateur de transfert associé au systéme dynamique (B, jup, Tp).

Dans le cadre de ce mémoire, les transformations induites ont deux grandes utilisations, mention-
nées en Partie[2.4l La premiére est, dans le cas des flots[F] de passer d’une action d’un flot & 'action
d’une transformation, et au passage de diminuer la dimension de 1. On parle alors de section de
Poincaré, suite aux travaux de celui-ci [192,[193]. La direction du flot est toujours neutre ; une section
de Poincaré peut permettre de retrouver un systéme uniformément hyperbolique. Par exemple :

e Pour un flot d’Anosov ou Axiome A (par exemple, le flot géodésique sur des variétés compactes
en courbure sectionnelle négative), les codages de R. Bowen [37] et M. Ratner [197] mentionnés
en Partie permettent de se ramener a des sous-décalages de type fini.

e Pour un billard de Sinai, mentionné en Partie [2.4.5] Uapplication collision permet de se ra-
mener a une transformation (discontinue) d’un espace de dimension 2, munie de champs de
cones stables et instables [53]. Un tel systéme est représenté a la Figure 28]

La seconde grande application est 1’étude de systémes dynamiques non-uniformément hyperbo-
liques, mentionnés en Sous-sous-section [2.4.3] Dans ce cadre, le systéme initial mélange lentement
(typiquement, polynomialement). L’induction permet de retrouver un systéme uniformément hyper-
bolique, et de 1a utiliser par exemple des outils spectraux. Le méme raisonnement justifie I'utilisation
de systémes induits dans le cadre de Z%extensions : les trajectoires passant beaucoup de temps loin
de l'origine sont analogues aux trajectoire passant prés des points fixes neutres dans le cadre de sys-
témes non-uniformément hyperboliques, en ce qu’elle ralentissent la dynamique. L’induction permet
de retrouver des systémes uniformément hyperboliques.

Profitons-en pour définir le temps local en une partie B C A, rencontré dans un cadre restreint

en Sous-section [6.1].

45. Donc un cadre différent de la Section |7} Les résultats présentés s’adaptent a ce cadre.
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FIGURE 25 — Espace des phases de 'application collision du billard de Sinai de la Figure Ce
billard sur le tore de coté unité a deux obstacles de rayons respectifs 0,4 (rectangle de gauche) et
0,2 (rectangle de droite). L’abscisse s est la coordonnée curviligne le long du bord du disque, et
I’ordonnée ¢ est I’angle du vecteur post-collision & la normale. En bleu : les domaines de continuité
correspondant & un saut vers le grand obstacle. En vert : les domaines de continuité correspondant
a un saut vers le petit obstacle. En rouge : un cone instable dans I’espace tangent, suivant [53].

Définition 8.2.
Soit (A, T) un systéeme dynamique et B C A. Le temps local en B est le processus

Lp,(x):= ”Z_i 1p(7) = Card{0 <k <n—1:T"x) € B}. (8.2)

8.2 Identité de balayage pour 'opérateur de Koopman

Comme mentionné dans ’'Exemple [7.3] tout systéme déterministe est un systéme aléatoire d’'un
type particulier. A une transformation A — A on associe un noyau markovien

T —r 6T(z)-

L’opérateur markovien associé n’est autre que 1’opérateur de Koopman que nous avons introduit
en Sous-section . En effet, pour toute fonction f € L>(A, u),

T(f)(x) =E(f(M) | Mo =) =E(f(T(Mo)) | My = x) = f(T(x)).
Dans ce cas particulier, l'identité de balayage devient :

Proposition 8.3 (Identité de balayage pour 'opérateur de Koopman).
Soit (A, u, T) un systéme dynamique préservant la mesure et conservatif. Supposons que . est
o-finie. Soit B C A mesurable tel que 0 < pu(B) < 4o00. Soient f € L>(A, u) et g € L®(B, ). Si :

f—foT:ng,

alors :
fis—fipo TP =g
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Cette proposition est en fait trés simple & démontrer sans utiliser le vocabulaire des chaines de
Markov et sans hypothéses d’intégrabilité sur les fonctions g et f. Si f — f o T = glp, alors par
récurrence, pour tout x € B et tout n < ¢g(x),

foT™(x) = f(z) —g(x),

d’ou I’égalité souhaitée en choisissant n = pp(x).
Cette identité est de plus passablement inutile. Le raisonnement utilisé en Partie demande de
fixer une fonction g d’intégrale nulle sur B, et de résoudre I'équation

f—foT =glp.

Par définition, cette équation n’a de solution@ que si g est un cobord. Cependant, dans des systémes
hyperboliques, peu de fonctions réguliéres sont des cobords. Ainsi, d’apreés le théoréme de Livsic [165,
166], une fonction holdérienne g : A — C définie sur I'espace d’états d’une transformation Anosov,
ou bien sur un sous-décalage de type fini, est un cobord si et seulement si sa moyenne sur chaque
orbite périodique est nulle. L’équation de cobord a alors un nombre dénombrable d’obstructions; si
la fonction g est choisie arbitrairement, il y a peu de chances pour que cette équation de cobord
puisse étre résolue.

8.3 Identité de balayage pour 'opérateur de transfert

Si l'opérateur de Koopman ne permet pas d’exploiter utilement la version de I'identité de balayage
proposée, I'opérateur de transfert se réveéle plus fertile. Partons de ’observation suivante :

Remarque 8.4 (Opérateur de transfert).

L’opérateur de transfert associé a un systeme dynamique préservant la mesure (A, u, T) est ['opé-
rateur dual de 'opérateur de Koopman au sens des chaines de Markov. On peut s’en convaincre
en comparant la définition de 'opérateur de transfert et celle de l'opérateur markovien dual (Dé-
finitions et respectivement). Si T a un nombre dénombrable de branches, on peut écrire
explicitement son noyau de transition

‘Cx = Z g(y>5ya

yeT 1 ({=})
ot g est l'inverse du jacobien de T" par rapport a la mesure L.

Nous pouvons alors appliquer 'identité de balayage & 'opérateur de transfert. La version suivante
est issue de [185] Proposition 0.1].

Proposition 8.5 (Identité de balayage pour l'opérateur de transfert).

Soit (A, u, T) un systéme dynamique préservant la mesure et conservatif. Supposons que pu est
o-finie. Soit B C A mesurable tel que 0 < u(B) < +oo. Soient p € [1,00], f € LP(A,pu) et
gc LP(B,MB) .S

(Id=£L)(f) = 915, (8.3)
alors :
(1 ~L£5)(fis) = g. (8.4)

46. Ou, en tous cas, une solution qui est une fonction. I1 peut étre utile de considérer des équations de cobord dans
des espaces de distributions. A ce sujet, nous renvoyons en particulier au travail initié par G. Forni [90,95L(96].
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Par conséquent, si I'on sait inverser (Id —L£) “globalement” (c¢’est-a-dire sur un espace de Banach
bien choisi de fonctions sur A), on sait inverser les opérateurs (Id —Lp) définis “localement”.

Nous fournissons une démonstration condensée de la Proposition dans le cas ol p = oo et
pu(B) < +oo.

Démonstration.
Soient f € L*(A, pn) et g € L>®(B, up) telles que (Id —=£)(f) = g1p. On pose, pour tout n > 1,
o A, :={pp=n};
e B, =A,NB;
e C,:=A,NB = A, \ B,.
Soit h € IL'(A, i). Alors, grace a ’Equation (8-3), on montre par récurrence que, pour tout n > 1,

/f-hdu:/g-hdquZ f-hoT’fdqu/ fohoT™du (8.5)
B B k—1 Y Bk Ch
:/g-hdu—f—/1{¢B<n}f-hoTBdu—|—/ f-hoT"dpu.
B B Chn

Remarquons que f = 14, g = Op vérifient I'Equation (8.3). En choisissant » = 15 dans 'Equa-
tion (8.5)), on trouve :

w(B) =Y u(By) + u(Ch),

et donc u(C,) = pu(B N {pp > n}). Par récurrence, pp < 400 presque partout sur B, et donc
limy, 4 00 p(Cr) = 0.

Revenons au cas général. Comme g est T-invariante, la famille de fonctions (|h| o T™),>¢ est
uniformément intégrable, et donc

lim / f-hoT"du=0.
Cn

n——+o0o

En prenant la limite dans I'Equation (8.5]), on obtient alors

/f~hdu:/g~hd,u+ lim Liop<nyf-hoTpdu. (8.6)
B B B

n—-+00

En reprenant f = 14, g = Op et h positive, le théoréme de convergence monotone assure que f-hoTp
est intégrable sur B. Par le théoréme de convergence dominée, on obtient enfin

/f-hdu:/g-hdﬂ+/f-hOTBdM-
B B B

Ceci étant vrai pour toute fonction h intégrable, on retrouve I’'Equation (8.4). O

La Proposition généralise le lemme classique, vraisemblablement da a S. Kakutani [131}
Lemme 2|, qui affirme que, si (A, u,T) est un systéme dynamique préservant la mesure et conser-
vatif et 0 < p(B) < 400, alors Tp préserve . En effet, si 'on choisit f = 14 et g = 0p, alors
(Id—L)(f) = g; c’est une traduction du fait que £(14) = 14, synonyme du fait que 7" préserve pu.
La proposition fournie permet alors de conclure que Lz(1p5) = 1p, donc que Tz préserve fi .

D’autres généralisations, non triviales, ont consisté a étendre cette proposition au cas ou u(B) =
+00, ainsi qu’a des équations de Poisson tordues (du type (Id —zL)(f) = g).
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La Proposition peut sembler, au premier abord, étre une application directe de l'identité de
balayage introduite précédemment. Cependant, pour pouvoir appliquer la Proposition [7.13] il faut
que la chaine de Markov stationnaire en jeu soit récurrente! Il faut donc montrer que, si T est
récurrente, alors £ l'est aussi. On peut montrer, plus généralement [185, Lemme 2.1] :

Lemme 8.6.
Soit (A, i, P) une chaine de Markov stationnaire. Si p est récurrente pour P, alors p est récurrente
pour P*.

De fagon intéressante, la démonstration du Lemme est trés similaire a celle du lemme de
S. Kakutani évoqué ci-dessus. Le cceur de la démonstration du lemme de Kakutani consiste donc a
montrer que la chaine de Markov de noyau de transition £ est récurrente.

8.4 Pour aller plus loin : Induction probabiliste

Le processus d’induction d’un systéme dynamique présenté dans cette Section est trés puissant :
il permet de passer d’un flot & une transformation en diminuant la dimension de I’espace des phases,
d’une dynamique non-uniformément hyperbolique a une dynamique uniformément hyperbolique, ou
encore d'un systéme préservant une mesure infinie & un systéme préservant une mesure de probabilité.

Ce processus est cependant trés brutal. Si ’on induit sur une partie B de ’espace des phases, on
peut en général trouver des paires de trajectoires proches telles que 1'une passe la premiére fois dans
B a un temps donné, tandis que l'autre passer juste en-dehors de B au méme instant. Cela a pour
conséquence qu’en général, le temps de premier retour g et la transformation T sont non continues.
Cette perte de régularité fait qu’on utilisera plutot une structure métrique pour la transformation
induite (par exemple associée a un codage markovien), 1a ou le systéme initial a souvent une structure
lisse.

Il est possible de ruser pour que ces discontinuités soient dans le bord de B; c¢’est le cas pour les
transformations de Pomeau-Manneville (induites sur (1/2,1]) ou les sections construites par Bowen
et Ratner pour les flots d’Anosov et Axiome A [37,[197]. Cependant, ces constructions sont rigides,
et dépendent de facon peu évidente de la transformation.

Un projet prometteur est de travailler avec une forme d’induction probabiliste, plus flexible et qui
conserve une éventuelle structure lisse sur ’espace des phases. L’idée est de se donner une fonction
de poids w : A — [0,1], et d’arréter la trajectoire (T%(z))r>0 au temps n avec probabilité w(T*(z))
(conditionnellement au passé). Si la dynamique initiale préserve p, alors la dynamique aléatoire ainsi
obtenue préserve w dyu.

En choisissant w := 15, on retrouve le processus d’induction habituel. En choisissant w de classe
C¥, on peut espérer que l'action de I'opérateur de transfert sur un bon espace de Banach soit
quasi-compacte. On peut alors travailler a la fois avec des transformations induites et des espaces de
fonctions lisses, tout en évitant la rigidité des constructions habituelles.

Dans le cas des transformations non-uniformément dilatantes du cercle, ceci est ’'objet d'un projet
commun avec D. Coates et A. Korepanov. Les promesses semblent tenues ; les cotits a payer étant la
manipulation de chaines de Markov, une complexité accrue des opérateurs de transfert, et surtout
une perte partielle de la propriété de distorsion holdérienne de la Sous-section [2.2]

A plus long terme, il serait intéressant d’explorer la viabilité de cette outil pour des transfor-
mations inversibles, et en particulier d’y incorporer des espaces de Banach anisotropes comme en
Sous-sous-section [3.4.5]

47. Associé, par exemple, & w d Leb.
48. Par exemple, celui des fonctions C*~1 sur Supp(w).
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sin(27x)

FIGURE 26 — En rouge : la transformation z <2x —

> [1] du cercle, lisse, ayant 0 comme

point fixe neutre. En bleu : un choix possible de poids w.

9 Invariants par induction

Pour finir le Chapitre [[TI] revenons sur l'article [185]. Celui-ci avait deux objectifs. Le premier
était d’'introduire les énoncés nécessaires a 1'utilisation de la théorie probabiliste du potentiel dans
le cadre de systémes dynamiques hyperboliques. Cela inclut identité de balayage (Proposition ,
mais aussi des variantes sur celle-ci qui seront utilisées par la suite, telles qu'une identité de balayage
pour des équations de Poisson tordues ( [185] Lemme 1.7], que 1'on reverra en Sous-section ,
ainsi que d’autres énoncés généraux : principe du maximum et extension de solutions de 1’équation
de Poisson.

Le second objectif était d’étudier certains invariants par induction, ¢’est-a-dire de quantités qui
restent invariantes lors du processus d’induction d’un systéme dynamique. La premiére de ces quan-
tités est l'intégrale, et I’énoncé correspondant est une généralisation bien connue de la formule de
Kac.

9.1 Lemme de Kac

Soit (A, 1, T') un systéme dynamique préservant la mesure et conservatif. Soit B C A de mesure
finie non nullelﬂ. Pour toute fonction f: A — C, on définit la somme de f le long d’une excursion

par :
ep(x)—1

Sp(f)a):= Y. F(I"(x)) Vae B (9.1)

n=0

Alors l'intégrale de Xp(f) est la méme que celle de f :

Lemme 9.1 (Lemme de Kac).
Soit (A, i, T) un systéme dynamique préservant la mesure, ergodique et conservatif. Soit B C A
tel que 0 < u(B) < +oo. Alors, pour toute fonction f: A — C positive ou intégrable :

/Afdu:/BzB<f> .

Le lemme de Kac stricto sensu est le cas particulier f = 1 de ce lemme :

49. L’extension du Lemme de Kac au cas pu(B) = 400 est vraisemblable, mais demanderait des manipulations plus
sophistiquées, comme dans la démonstration de [185, Proposition 0.1]. Nous la laissons a I’état de conjecture.
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Lemme 9.2. (129, Theorem 2]
Soit (A, p, T) un systéme dynamique préservant la mesure, ergodique et conservatif. Soit B C A
tel que 0 < p(B) < 4o00. Alors,

n(A) = /B ¢p dp.

Le Lemme [0.1] admet plusieurs démonstrations. Une premiére repose sur des manipulations de
nature algébrique.

Premiere démonstration du Lemme [,

Supposons dans un premier temps f intégrable. On reprend les notations de la démonstration de
la Proposition Pour tout n > 1, rappelons que 'on a défini B, = {pp =n}NBet C, = {pp =
n} N B En particulier, T-(C,,) = B, +1 U C, 11 pour tout n > 1. La mesure u étant T-invariante,

/ fd,u:/ fonu—i—/ foT dpu.
Ch Bny1 Chnt1

Comme pour obtenir ’'Equation (8.5), on itére cette relation. Ensuite, par passage a la limite (valide
car (f o T™),>0 est uniformément intégrable et lim,,_, ., u(C,) = 0),

+oo
/ fdu:Z/ foTF dpu.
Cn k=1 B7L+k

En sommant sur n, on obtient
+oo 400 “+o00
[ sw=3 [ sertau=3"[ sirdu= [ (alh-p du
L1 Cn n=1 k=1 ¥ Bntk n=1" Bn B

La seconde égalité demande une interversion de sommes infinies. On peut dominer 'intégrande par
|f] o T* et effectuer le méme raisonnement pour |f], ce qui conduit a la majoration

400 +00 o0 +00
S sertan <3 [ reran= [ 1<l
n=1 k=1 |’ Bn+k n=1 k=1 " Bn+k n>1Cn

et justife I'interversion.

L’ensemble BUJ,,5; Cn = U, An est T-invariant et contient B, donc est A tout entier (modulo
@) par ergodiciteé.

Si f est positive, on peut I'écrire comme limite croissante de fonctions positives intégrables, et
utiliser le lemme de Fatou. [

Une deuxiéme démonstration, de nature plus probabiliste, permet de voir le lemme de Kac
comme une manifestation du théoréme de Birkhoff, ou plus généralement du théoréme ergodique
de Hopf [124, §14, Individueller Ergodensatz fiir Abbildungen| (cf. Théoréme .

Seconde démonstration du Lemme [91].

Comme dans la premiére démonstration, on peut supposer f intégrable ; sans perte de généralité,
on peut aussi supposer que f est strictement positive. Par le théoréme ergodique de Hopf, u-presque
partout,

lim Suf = fA f du .
no+oo ST(Xp(f)1s)  [pEB(f) du
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De plus, si # € B et k = ¢\ (z), alors STf(z) = ST(Sp(f)1s) : on a sommé f le long des n

premiéres excursions. Le long de la sous-suite (9053”) (2))n>0, la quantité % est donc constante
et égale a 1. En passant a la limite,
Jaldw
JeEs(f)du
d’ou I'égalité voulue. [

Pour finir, nous donnons une justification formelle du Lemme de Kac. Etant donnée f : A — C,
posons
size B

0
C(f)(x) = { Ziiéx)_l f(Tk(x)) sinon

Alors f =Yg(f)+C(f) — C(f)oT. La conclusion du Lemme de Kac arrive immédiatement sous la
condition plus restrictive que C'(f) soit intégrable.

9.2)

9.2 Formule de Green—Kubo

Rappelons que la variance asymptotique dans le théoréme central limite (Théoréme [3.30]) est
donnée par la formule de Green-Kubo (3.16)) :

+o00
2 A . = 2 N '
O-GK( 7M’Taf) /Af dﬂ+2;/‘4f f T d,u

Plus généralement, on dispose d’une forme bilinéaire :

+00 +oo
2 (A 1, T: = d - food™d - fiod™d 9.3
ok (A1, T f1, f2) /Af1f2 M+;/Af1 f2 M+;/Af2 f1 s (9.3)

qui converge par exemple si (A, u,T) est une transformation Anosov mélangeante, p une mesure
d’équilibre pour un potentiel héldérien, fi, fo sont holdériennes, et f; ou fy est d’intégrale nulle.

La formule de Green-Kubo satisfait une propriété similaire au Lemme de Kac :
Proposition 9.3 ( [185] Proposition 5.1]).

Soit (A, u, T) un systéme dynamique ergodique et préservant la mesure de probabilité. Soit B C A
de mesure strictement positive. Soit f € L2(A, ). Supposons que :

o Les séries définissant oty (A, 1, T f) et 0t (B, s, Ts; Sp(f)) (Equation (3.16))) convergent
au sens de Cesaro ;

e Quand n tend vers 400, la suite de processus

(T ST =0 0

converge en loi (pour la mesure u(- | B) et la topologiem J1) vers un mouvement brownien

de variance j((B) " odk (B, s, Tp; 2p(f)) = 0t (B, u(-|B), Tp; Zp(f)) ;
e Quand n tend vers 400, la suite de variables aléatoires

(%), .

converge en loi vers une gaussienne centrée de variance ogy (A, u, T; f).

n>0

50. Pour la définition et les propriétés de la topologie [J; de Skorokhod, nous renvoyons le lecteur a [27}212].
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Alors O—éK<A7ﬂ'>T7 f) = UéK(Bv KB, TB; EB(f))

Ces hypothéses sont assez restrictives, mais satisfaites par exemple si (A, pu, T') est un transfor-
mation de Pomeau-Manneville de paramétre o € (0, 1/2) munie de son unique mesure de probabilité
invariante absolument continue, I’observable f est holdérienne centrée, et B = (1/2,1], d’aprés les
travaux de L.-S. Young et S. Gouézel [111}235].

Comme suggéré par 1’énoncé de la Proposition [9.3] celle-ci est démontrée par un argument dis-
tributionel similaire au deuxiéme argument de la Partie 9.1 En bref, sous ces hypothéses, on dis-
pose d'un théoréme central limite pour les sommes (S! f),>0, avec variance asymptotique égale &
02 (A, i1, T; f). On peut aussi récupérer ce théoréme central limite en voyant le processus (SL f),>0
comme étant & peu prés égal au processus (STEXg(f))ns>o ralenti d’un facteur p(B)~!. Plus précisé-
ment, le principe d’invariance faible (seconde hypothése de la Proposition permet de transférerlﬂ
le théoréme central limite du processus (SI2X5(f)),>0 au processus (SI f),>o, et donc de montrer
que (ST f)n>o satisfait un théoréme central limite avec variance asymptotique o (B, s, Ts; Sp(f)).

Dans [185], nous donnions une justification plus algébrique de cette identité. Une premiére
remarque est que, sous des conditions de décroissance de la suite de fonctions (L"(f))n>0, la formule
de Green—Kubo est invariante par ajout de cobord :

En choisissant pour A la fonction C(f) définie par I'Equation (9.2)), on trouve donc

U(2}K(A7 s T7 EB(f)]-B) = O-(Z}K(Aa 1, T; f)

Ensuite, par I'identité de balayage (Proposition , et a condition que celle-ci puisse étre appliquée,

3 / (Ss(H)1s) - (So()1s) 0T dj= 3 / £ (S5()1p) - (Sp(f)Lp) du

n>0 n>0

_ / (1d—£) " (Sp(f)1s) - (Sp(f)1s) du
_ /B(Id —Lp) N (Zp(f)) - Sa(f) duip

= YXp(f) - Xp(f) o Tk duysp.

n>0 VB

L’égalité voulue en découle immédiatement.

Le raisonnement esquissé ci-dessus a de nombreuses lacunes : il faut savoir pour quelle classe de
cobords l'invariance de la formule de Green—-Kubo par ajout de cobord est valable, vérifier que C'(f)
appartient bien a cette classe, justifier I'utilisation de I'identité de balayage ainsi que les interversions
somme-intégrale... Une version complétée de ce raisonnement permet d’obtenir [185, Théoreme 3.2,
dont nous donnons une version légérement moins générale :

Théoréme 9.4 (Corollaire de [185] Théoréme 3.2]).
Soit (A, pu, T) un systéeme dynamique préservant la mesure de probabilité et mélangeant. Soit
B C A de mesure strictement positive. Soit f € L2(A, u) d’intégrale nulle, telle que oy (A, 1, T; f)

51. En l’absence d’une hypothése additionnelle, telle que la limite en loi d’un processus stochastique dans la Propo-
sition il ne parait pas évident quun théoréme central limite pour (SL f),>o implique un théoréme central limite

pour (SpEEXE(f))n>0-
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converge classiquement, C(f) € L*(A, u),

+00 +oo
DL (Ea(N1B) ey < +00, D ILEER(N) iz p, < +oo-
n=0 n=0

Alors :
UéK(AJ%T; f) = UéK(BaM\B,TB; Xa(f)).

Question 9.5.
Les hypothéses de la Proposition[9.3 et du Théoréme[9.4) sont assez lourdes a vérifier. Y a-t-il des
criteres plus simples et plus généraux qui garantissent linvariance de la formule de Green—Kubo ¢

A Uinverse, y a-t-il des systémes dynamiques (A, 1, T), des ensembles B C A et des observables f :
A — C pour lesquelles o (A, 1, T f) et o0& (B, s, Te; Xp(f)) convergent en un sens raisonnable,
mais vers des limites différentes ?

9.3 Observables d’intégrale nulle, II : Induction

Avant de continuer vers les invariants d’ordre supérieur introduits dans [185|, revenons bri¢vement
vers les théorémes limites pour des observables d’intégrale nulle, déja abordés en Sous-section [6.4]
L’approche que nous avions présentée reposait sur la méthode des moments. Une stratégie antérieure,
développée par l'auteur pendant sa thése, utilise plutdt des systémes induits [221}[222]. Si cette
seconde approche fonctionne dans un cadre général de tours au-dessus d’une transformation Gibbs-
Markov, et donc par exemple pour les transformations de Liverani—Saussol-Vaienti introduites en
Sous-sous-section [2.4.3] nous allons la présenter pour des Z-extensions conservatives dont les sauts
sont de carré intégrable.

Soit ([Z],,T) une extension markovienne et ergodique d'une transformation Gibbs-Markov
(A, 1, T) de saut F, telle que [, F? du < 400 et [, F'du=0. Soient f: [Z] = R et n > 0.

Pour p-presque tout x € A, lorbite de (z,0) passe une infinité de fois en [0] ~ A. On peut
découper l'orbite de (x,0) en excursions partant de 0, et de méme pour les sommes de Birkhoff de f.

On notera RL f la somme de f le long de I'excursion en cours au temps n, qui, sous des hypothéses
raisonnables, sera négligeable. Enfin, rappelons que Ly, défini a ’'Equation (8.2)), est le temps passé

en [0] au cours des n premiéres itérations de 7". Alors :

511(.0) = fo TV o Thy(x) + R f(x)
k=0 =0
Tio
~ Sy @ Co() (@)
Lign() 1 7

1
. - L Culh) @), (9.4)
Vi /Lga(e) e ()
Par la Proposition m, dans (A, ), le processus (n_i Lig)n(x))n>1 converge en loi vers une

variable aléatoire o(A, u, T: F)~2+/|N, ou A suit une loi normale centrée réduite.

Le systéme (A, u, T’[O]) est expansif, et son opérateur de transfert agit quasi-compactement sur
B. Si f est intégrable et d’intégrale nulle pour f, par le Lemme de Kac (Lemme , Yio)(f) est

52. On peut méme le munir d’une structure de transformation Gibbs-Markov naturelle. Cela est parfois trés utile,
par exemple dans le cadre de cette Sous-section. Remarquons cependant que ce n’est pas toujours le meilleur choix &
faire ; les espaces de fonctions lipschitziennes associés sont particuliérement gros, ce qui est parfois un handicap.
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encore intégrable et d’intégrale nulle. Si Xy (f) est de carré intégrable et suffisamment réguliere, le

processus (N ’%S]T,[O]Z[O]( f))n>1 satisfait donc un théoréme central limite (Théoréme [3.30)).

Il y a & ce point une double difficulté. D’une part, dans ’'Equation (9.4)), le processus stochastique

(N —%S]:\F,[O]Z[o]( [))n>1 est évalué le long de temps aléatoires (L) n)n>1. Il n'est pas évident a priori
que 'on dispose encore d'un théoréme central limite, en particulier s’il y a une dépendance entre ces
deux processus — ce qui est a priori le cas. D’autre part, dans I'Equation (9.4)), on fait le produit
de deux processus, dont 1’on ne controle asymptotiquement que les marginales; une fois encore, s’il
y avait une dépendance non-triviale entre ces processus, on ne disposerait pas d’assez d’information
pour en identifier la limite.

Heureusement, grace & un argument de couplage di a E. Cséki et A. Foldes [64,/65], généralisé
aux observables de systémes Gibbs-Markov dans la thése de lauteur [221} Théoreme 1.7] [222], les

processus (N_%SﬁO]Z[O](f))Nzl et (Ljo)n)n>1 sont asymptotiquement indépendants

L’argument motivant ce couplage est, grossiérement, le suivant. Supposons que la fonction X ( f)
est de carré intégrable (et méme un peu plus : dans LY(A, ;1) pour un ¢ > 2), tandis que @y a des

queues lourdes. Alors le processus (Sjj\;[o]E[o]( f))n>o0 croit par accumulation de petits effets, tandis

que le processus (S]:C,[O]go[o]) ~>0 dépend essentiellement de quelques valeurs particulierement élevées.
On peut donc diviser les entiers en deux parties :
e L’ensemble F;(x) des temps &k auxquels gy (T[’g] (x)) est “grand”, qui est un ensemble dont la
densité tend assez vite vers 0
e Le complémentaire Fy(x) de Ei(x).
Alors

T
S0 = > e o Tk ;

k<N
keFE;

7 =k
SN S (f) = > B (f) o Ty
k<N
ke FEo
Les ensembles F; et Fj étant disjoints, en utilisant les propriétés de décorrélation de la transformation
Tjg), on peut vérifier enfin que les variables aléatoires

> e oThet Y Sp(f)oTf

k<N k<N
keEq keEs

sont approximativement indépendantes, et en déduire la méme propriété pour Sf,[o]go[o] et ﬁO]E[O]( f).

Cette propriété d’indépendance asymptotique permet de contourner les deux difficultés évoquées.
On en déduit une autre version du Théoréme (lui-méme un corollaire de [184) Theorem 1.11]) :

Théoréme 9.6. /222, Corollary 6.9/
Soit ([Z], 11, T) une extension markovienne ergodique d’une transformation Gibbs-Markov (A, p,T)
de saut F, telle que [, F? dp < +oo et [, F du=0. Soit f: [Z] = R telle que :

® SUP,ez ’f('ap)|Lip°°(A,u) < +00.
o [l existe q > 2 tel que Xy (| f|) € LI(A, ).

53. Nous renvoyons a |[221, Théoréme 1.7| pour le sens précis de cette indépendance asymptotique. Elle implique
que la loi du processus joint converge vers une loi produit, mais apporte en plus un controle quantitatif sur ’erreur.
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¢ Jyfdi=0
Alors il existe une constante o®(f) > 0 telle que, pour toute mesure de probabilité v < |i,
lim —ST f=

n—>+oon4 / (A T F N

0w la convergence est en loi dans ([Z],v), et N, N sont deuz variables aléatoires indépendantes de
lois normale centrée réduite.

Remarque 9.7 (Variance asymptotique, II).
La constante o*(f) dans le Théoréme est simplement donnée par la formule de Green—Kubo,

déja rencontrée a I’Equation (3.16)) :

o*(f) = o ([O]M,f{m;z[m(f)) / Yo (f du+22/ So(f) - S (f) o Ty dps,

ot la convergence est au sens de Cesaro.

Tout comme le Théoréme [6.7], le Théoréme admet des variantes pour des [Z]-extensions dans
le bassin d’attraction de lois stables, ainsi que pour des [Z?]-extensions.

Le Théoréme 0.0 a été démontré avant le Théoréme[6.7] I1 a un inconvénient notable, par rapport
au Théoréme : 'hypothese Xy (| f]) € LY(A, ) pour un ¢ > 2 n’est en général pas évidente a
vérifier. Il faut que les excursions partant de [0] ne passent pas trop de temps la ol f est grande. Il y
a cependant un cas particulier dans lequel ce critére est facilement Vériﬁé@ : quand f est a support
borné, c’est-a-dire qu'il existe ¥ C Z fini tel que {f # 0} C [X].

Dans ce cas, on peut observer une conséquence intéressante des Théorémes [6.7] et [9.6] et plus
particulierement des formules pour la variance asymptotique données en Remarques et 9.7 : on
dispose en effet de deux formules différentes pour cette variance!

Corollaire 9.8. Généralisation de [184, Equation (2.5)]
Soit ([Z], i, T') une extension markovienne ergodique d’une transformation Gibbs-Markov (A, p, T)
de saut F, telle que [, F* dp < +oo et [, F du=0. Soit f : [Z] — R telle que :

® SUPpez ’f('ap)|Lip°°(A7u) < +00.
e f est a support borné.

o Jifdii=0
Alors oy ([Z],ﬁ, T; f) = 0dk ([O],MT[O]; Z[O}(f))-

On retrouve encore une fois l'invariance de la formule de Green-Kubo a l'aide d’un argument
distributionnel similaire & celui de la Proposition [0.3] mais en mesure infinie.

9.4 Invariant de degré 3

Revenons a la démonstration de 'invariance de la formule de Green—Kubo wvia I'identité de ba-
layage, a lorigine du Théoréme [9.4] L’auteur de ce texte ne connait pas de systéme vérifiant les
hypothéses du Théoréme [0.4 mais pas de la Proposition [9.3] L’argument n’est donc pas a priori plus
général. Cependant, il offre un point de vue plus conceptuel sur ce phénoméne d’invariance, consé-
quence d’une invariance par ajout de cobord et de I'identité de balayage. Ce point de vue permet de
fabriquer des invariants de degré supérieur. Nous présentons ici un invariant de degré 3, issu de [185].

54. En fait, cette condition est satisfaite dés qu’il existe € > 0 et ¢ > 2 tels que > (1 + [p[)2 2t || f(p PllLaca, <
+00, ce qui est une des conditions du Théoréme [6.7] Cependant, montrer cela demande une analyse supplémentaire
non triviale, menée dans le cadre du gaz de Lorentz dans [186|.
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Définition 9.9 (Invariant de degré 3).
Soit (A, u, T) un systéeme dynamique préservant la mesure. A condition que les sommes en jeu
sotent absolument convergentes, on pose :

AT o fy) = 3 lé | it 53 [ ot 9.5

Alt n>1

+%Z/Af10T"'f2f3dM+ Z /AfloT"er'szTm'féd/i )

n>1 n,m>1

ou YAy est une somme sur toutes les permutations de { fi, f2, f3}.

Comme pour la formule de Green—Kubo, on notera
(AT f) = (AT f, f, f)

:/Af?’dquBZ/AonT"-fdu

n>1
+32/foT”-f2du+ > /foT"*m-fon-fdu.
n>174 nm>174

La quantité 73(A, u, T; f1, fa, f3) est bien définie si, par exemple, (A, p, T') est Anosov mélangeant,
i est une mesure d’équilibre pour un potentiel holdérien, et fi, fo, f3 sont toutes trois holdériennes
et d’intégrale nulle. Plus généralement, des décorrélations en O(n~(3*%)) pour un ¢ > 0 suffisent &
faire converger les sommes intervenant dans I'Equation .

Cette formule est invariante par induction, de fagon similaire au Lemme de Kac (Lemme [9.1)) et
a I'invariance de la formule de Green-Kubo (Théoréme :

Théoréme 9.10. [Corollaire de [185, Theorem 4.6]]

Soit (A, pu, T) un systéeme dynamique préservant la mesure de probabilité et mélangeant. Soit
B C A de mesure strictement positive. Soit B C ]L3(B,,u‘3) un espace de Banach de fonctions
d’intégrale nulle. Supposons que

1L s5 e £ (L)l 58 (A

sont sommables.

Soient fi, fo, f3 € LY(A, u) d’intégrale nulle telles que

e Y5(fi) € B pour tout i € {1,2,3}.

o 73(A, 11, T; g1, g0, 93) est bien défini pour tous choizx de g; € {fi, Xp(fi)1s}.

o ol (A, 1, T; fi, o81B) et oy (B,,u|B,TB; Y5(fi), ch) sont absolument convergentes.
Alors T(B, s, Ts; S5(f1), B5(f2), Xp(f3)) est bien défini, et

(A, 1, T; fi, fo, f3) = (B, s, T Sp(f1), Sp(f2), Sa(f3)) (9.6)
+ % > [0k (Bows, T 2p(f1), Bp(f2))
Alt

(08 (A, 11, T; f3,081B) — 0tk (B, i, Tp; Xp(f3), v5))] -

Dans l'énoncé du Théoréme [9.10, les instances de ¢p peuvent étre remplacées par une méme
fonction H € LY(B, pyp) d’intégrale 1.
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Exemple 9.11 (Décalage de Bernoulli).

Nous illustrons cet invariant avec un décalage de Bernoulli. Le but de cet exemple double. Pre-
mierement, il permet de vérifier la validité de I’Equation , ce qui est important au vu des erreurs
de calcul parfois subtilesﬁ qui peuvent se glisser dans la manipulation de linvariant 3. Deuxiéme-
ment, il permet d’illustrer une fagon d’obtenir des informations sur les moments de Xg(f) a partir
d’informations sur les moments de f.

Nous n’essaierons pas de vérifier les hypothéses techniques du Théoréme[9.10 Nous conjecturons
que certains espaces de fonctions non bornées, définis par exemple a l'aide du module de continuité
L? [181, Ezxercise 8.4], pourraient convenir.

Posons A := {0, 1}, muni de la mesure p, := (pdy + (1 — p)61)*N avec p € (0,1) et du décalage

unilatére T'. Choisissons

f(w) == =(1 = p)Lo(wo) + pli(wo),
de telle sorte que f soit d’intégrale nulle pour i, et que les variables aléatoires (f o T™),>¢ soient
mdépendantes et identiquement distribuées.

On induit ce systeme dynamique sur B = {0} x {0, 1}, de mesure u(B) = p. Alors Sp(f) =
—(1=p)+pG, ot pp = 1+G suit une loi géométrique de paramétre p sous u(- | B). Par la propriété de
Markov forte, les variables aléatoires (X p(f)oTh)n>0 sont indépendantes et identiquement distribuées.

Le Lemme de Kac (Lemmel[9.1) se traduit par :

0= / fdu= / Sa(f) di = u(B) [PE(G) — (1 = p)]

et donc E(G) = %. Linvariance de la formule de Green—Kubo, satisfaite par exemple grice a la

Proposition [9.5, donne

p(1—p) = /A 12 dpt = 0%y (A, . T f)

= 0&x (B, mip, Te: Sp(f)) = n(B)E[(pG — (1 - p))7],

d’ot l'on déduit correctement Var(G) = %. Enfin, si les conséquences du Théoreme (9.10) sont
satisfaites,

p(1—-p)2p—1)= /Af3 dp=7(A, 1, T; f, f, f)

= 7B, 1z, Tp; Z6(f))
- 30?}1{(3’ ws, 1B; Ys(f)) - UéK(Ba 1B, 1B; Y5(f),1+G)
= w(B)E[(pG — (1 —p))?]
— 3u(B)’E[(pG — (1 —p))*IE[(pG — (1 —p))(1 + G)]
= pE[(pG — (1 —p))*] = 3p(1 — p)E[(pG — (1 — p))’]
= pE[(pG — (1 —p))*] = 3p(1 — p)?,

ce qui donne l'identité (correcte)

1—p)(2—
B¢ - B(@)] = L7P22D)
p
55. Par exemple un probléme de jauge. Méme si l'on peut inverser (Id —£) sur un espace de fonctions d’intégrale
nulle sur A, et inverser (Id —Lp) sur un espace de fonctions d’intégrale nulle sur B, la restriction & B d’un fonction
d’intégrale nulle sur A n’est pas toujours d’intérale nulle; il faut donc parfois ajouter des termes compensatoires.
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9.5 Pour aller plus loin : Invariants de degré supérieur

La construction d'un invariant de degré 3 de la Sous-section [9.4] souffre de diverses limitations.

Une premiére est qu’elle repose sur le fait que les trois fonctions fi, fo, f3 auxquelles elle est
appliquée sont d’intégrale nulle, afin d’assurer la convergence de 73(A, u, T’ f1, f2, f3). Une approche
plus générale, mais menant a des calculs plus complexes, serait d’ajouter des termes de compensation
bien choisis afin que la somme ({9.5)) converge sans cette condition. Cela aurait deux avantages :

e A l'aide de telles compensations, il serait possible de généraliser cette construction en degré
supérieur. En I’état, une obstruction est que le candidat naturel en degré 4 comporte des
sommes divergentes du type

/ 2ot dp.
n>1

e La présence d'un terme additionnel dans 'Equation est potentiellement une manifesta-
tion de I’absence de telles compensations. Ainsi, ’ajout du terme

1
) ZUéK (A, 11, T; fu, fo) - 08 (A, 11, T f3,14)

Alt

dans la définition de 72 ne changerait pas sa valeur quand on 'applique & des fonctions d’inté-

grales nulles (le terme o2y (A, u, T; f3,14) est alors nul), mais simplifierait I'Equation (9.6)).

Une seconde limitation est la technicité ainsi que la longueur des calculs impliqués dans la dé-

monstration du Théoréme [9.10] difficulté qui augmenterait significativement en degré supérieur si

I’on continue d’adopter un telle approche directe. Ces différentes raisons suggérent une approche plus
systématique de ces invariants.

Une piste prometteuse consiste a utiliser les fonctions d’Ursell, introduites par H.D. Ursell [229].

Définition 9.12 (Fonctions d’Ursell).
Soient n > 1 et (Xy,...,X,) une suite de n variables aléatoires complexes. La fonction d’Ursell
d’ordre n est définie par :

Un(X1,. s X)) =0y, ... 0, In [E (eZZ:Nka)] 0,...,0).

En particulier, U, (X, ..., X) n’est autre que le n-iéme cumulant de X. Par exemple,

Ui(X1) = E(Xh),
Us(X1, Xo) = E(X1Xp) — E(X1)E(X>),
(

I
&=

Us(X1, X2, X3) = B(X1X5X3) + 2E(X1)E(X2)E(X3) — %ZE(Xl)]E(XQXg).

Soit B un espace de Banach de fonctions intégrables sur (A, u) contenant 14. Supposons que
I'action de £ sur B soit quasi-compacte et que (A, u,T') soit ergodique, de telle sorte que 1 soit une

valeur propre simple isolée de L. Soient (fi, ..., f,) dans B, et supposons de plus que la fonction
R — L(B,B)
t = (tl, c ,tn) — ﬁt =L (627‘;:1 tkfk.)

soit analytique. Alors il existe un voisinage V' de 0 dans R™ et une fonction \ analytique sur V telle
que A(0) = 1 et A(t) soit une valeur propre simple de £ pour tout t € V. Des candidats naturels
pour des fonctions d’Ursell dynamique sont de la forme :

Un(A, 1, T fry ooy fn) 7= 04 ... 0, In (A(t)) (0,...,0). (9.7)
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On observe que :

0
Ui(A, i, T fr) = g;(f) (O)Z/Aﬁ du,

U2(A7,U’7T; fla f?) = UéK(A7/“L7T7 f17f2)7

le premier calcul étant direct, et le second (nécessitant ’hypothése additionnelle que fi, fo soient
d’intégrale nulle) étant fait par exemple dans [106]. Un calcul particuliérement douloureux et qui ne
sera pas reproduit ici permet de montrer que, si fi, fo, f3 sont d’intégrale nulle,

Us(A, 11, T f1, fa, f3) = 73(A,Iu,T; Jis fa, f3).

Question 9.13.

Les fonctions d’Ursell dynamiques que l'on a définies par ’Equation satisfont-elles une
propriété d’invariance par induction similaire & celle satisfaite par Uintégrale (Lemme de Kac), la
formule de Green—Kubo et linvariant 73 ¢

De plus, les fonctions d’Ursell interviennent dans des modéles probabilistes communs, en parti-
culier comme dérivées de fonctions de corrélation dans des modeéles d’Ising [18§|, ce qui motive la
question suivante.

Question 9.14.
Les fonctions d’Ursell dynamiques définies par ’Equation (9.7) apparaissent-elles dans des mo-
deéles dynamiques, par exemple comme (dérivées de) fonctions de corrélation ?
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Quatriéme partie
Théorie du potentiel et 7%-extensions

Ce dernier chapitre est dédié a I’article [226]. Sa question centrale est la suivante. On se donne une
Z-extension markovienne, ergodique et conservative ([Z9), i, T) d’une transformation Gibbs-Markov
(A, i, T). Soit ¥ C Z2.

Soient p € ¥ et x € A. Par conservativité, presque stirement, 'orbite de (x, p) reviendra dans [X].
En quel point de ¥ 7 D’un point de vue probabiliste, pour ¢ € ¥, que peut-on dire de la probabilité
1(Tisy(x,p) € [q]) que Porbite partant de (x,p) revienne pour la premiére fois dans [X] en [q] 7

La question analogue pour des marches aléatoires peut étre attaquée grace a la théorie probabiliste
du potentiel, et plus spécifiquement I'identité de balayage. Un tel calcul se déroule en trois étapes :

e Résolution d’une équation de Poisson sur Z% a ’aide de la transformée de Fourier. La solution

fait intervenir la fonction caractéristique de la marche aléatoire.

e Utilisation de I'identité de balayage pour transférer cette solution en une solution d’une équa-

tion de Poisson sur {p, ¢}.

e On obtient ainsi un opérateur associé a une chaine de Markov sur {p, ¢}, qu’il suffit d’inverser.
Cette stratégie est présentée en détail en Section : Cadre probabiliste : Marches aléatoires. Le
cadre dynamique sera explicité en Section : Cadre dynamique et stratégie. Nous avons d’ores et
déja les moyens d’adapter le premier point (grace aux opérateurs de transfert tordus) et le second
point ('identité de balayage pour les opérateurs de transfert).

Le troisiéme point, qui est un simple calcul pour les marches aléatoires, demande de nouvelles
idées dans notre cadre dynamique. La clef sera la notion d’état métastable, que nous introduirons
en Section . Systemes a transitions rares. La Section (Calcul asymptotique des probabilités
d’atteinte) conclut ce mémoire en fusionnant ces différentes techniques et en en donnant quelques
applications, ce qui termine la présentation de |226|. Nous terminons par un bref retour sur la formule
de Green—Kubo et son usage dans [184], ainsi que quelques pistes de recherche.

Remarque 9.15 (Quelques travaux antérieurs).

S’ existe de tres nombreux travaux sur la théorie probabiliste du potentiel en probabilité et en
géométrie (via des marches aléatoires ou des mouvements browniens), celle-ci a été tres peu appliquée
dans des cadres dynamiques. Mentionnons toutefois quelques travaur antérieurs.

Dans les années 1980, A. Krdmli, N. Simdnyi et D. Szdsz ont pu appliquer cette théorie aux
marches aléatoires a degrés de liberté interne [140-148], ¢’est-a-dire a des extensions de chaines de
Markov a espaces d’états fini. Si ces travauzr se placent dans un cadre probabiliste classique, une
des motivations des auteurs venait des systémes dynamiques : de telles extensions sont un modeéle
simplifié des gaz de Lorentz, et ces derniers sont trop complexes pour pouvoir étre abordés directement.
A ce propos, nous renvoyons la lectrice & la Sous-sous-section .

Plus récemment, D. Dolgopyat et P. Ndndori on montré [’existence de profils limites pour des
gaz de Lorentz sur des cylindres thermostatés@ /81]. Ce type de théoréme se rapproche beaucoup des
sujets d’étude de la théorie du potentiel, bien que leur méthode repose plutét sur 'approximation par
des processus continus (en particulier ’excursion brownienne).

Enfin, le travail trés récent de 1. Grama, J.-F. Quint et H. Xiao [117] porte sur les R-extensions
de sous-décalages conditionnées par ne pas revenir dans R_ avant un temps long. Les théoréemes

56. Grossiérement : on prend un long trongon de gaz de Lorentz cylindrique, on fait rentrer des particules d’un coté,
on les fait sortir de 'autre, et on étudie le flux de particules et la densité moyenne de particules en chaque point du
cylindre.
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distributionnels qu’ils démontrent pour ces processus sont profonds. Leur stratégie repose sur la théo-
rie probabiliste du potentiel, bien qu’il s’agisse plutét de 'appliquer a des chaines de Markov puis
d’approcher le systeme dynamique par de telles chaines de Markov.

10 Cadre probabiliste : Marches aléatoires

Dans un premier temps, nous revenons au cadre bien compris des marches aléatoires. L’enjeu sera
ensuite de généraliser aux Z%extensions les arguments que nous aurons présentés.

10.1 Probabilités d’atteinte de marches aléatoires

Soient d > 1, (S,)n>0 une marche aléatoire sur Z¢ que I’on supposera ergodique et conservative, et
¥ C Z% un ensemble fini. On cherche & calculer les probabilités de transition de la chaine de Markov
induite sur Y. Nous donnerons en exemple de ce probléme général une marche aléatoire simple sur
Z? induite sur le sous-ensemble ¥ = {«, 3,7}, ot a = (0,0), 8 = (—1,0) et v = (1, 1), comme illustré
par la Figure [27]

FIGURE 27 — Une transition dans {«, 3,7} induite par un chemin de la marche aléatoire simple dans
Z2.

Remarquons tout d’abord que la mesure de comptage sur Z? est stationnaire ; I'unique mesure de
probabilité invariante sur ¥ est donc proportionnelle a la mesure de comptage.

La méthode décrite en Partie [7.3] se transpose dans ce cadre. Cependant, 1'espace d’état de la
chaine de Markov étant infini, nous n’inverserons pas explicitement 'opérateur (Id —P); a la place,
nous utiliserons la transformée de Fourier pour résoudre I’équation de Poisson avec second membre

(Id=P)(f) = g1s. (10.1)

Soit X une variable aléatoire ayant la loi d'un saut de S,, et ® = E(e’"*X")) sa fonction caracté-
ristique. Si f est une fonction sommable, alors pour tout ¢ € T¢,

P()(&) = Y e P(f)(p)

pEZA

=Y Y P(X =g -p)f(g)
pEZd q€Z4

— Z e—i(émf(q) Z P(X = T)e<fﬁ’)
qEZd rezd

= (&) f(§)-
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Autrement dit, en domaine fréquentiel, P agit par multiplication par la fonction caractéristique d’un
saut. Formellement, I’Equation (10.1]) devient

~ o —

(1= (&) f(&) = (1) (&) = > _ g(p)e "»
S >oes g(p)e=Hen

Ce calcul formel se heurte cependant & des problémes de convergence. Ainsi, le potentiel f n’est
en général pas intégrable; méme dans des cas simples, il est seulement borné. Sa transformée de
Fourier est donc définie seulement au sens des distributions. De fagon liée, dans le cas de Ear\ches
aléatoires dont les sauts sont de carré intégrable, la fonction (1—®) est en O(|£[?), alors que (g1x)(€)
est génériquement de l'ordre de |£], ce qui force fa diverger en [£|7! en 0.

Une solution consiste a travailler non pas directement avec f mais, comme suggéré par la Re-
marque [7.15] de travailler en intégrant contre des fonctions supportées par ¥ et de somme nulle.
En effet, on peut espérer, par analogie avec la formule de Plancherel, que pour toutes fonctions g,
h : 3 — C de somme nulle,

> 1d-P*)"(g)(p) - h(p) = > _(1d—P) " (g1x)(p) - (h1x)(p)

! 3(6) - h(—€)
_(27r)d /Td 1—‘19(5) d¢. (10.2)

L’intégrale ci-dessus converge s’il existe ¢ > 0 tel que |1 — ®(£)| > ¢[£]?, condition satisfaite deés que
la loi de X n’est pas dg.

L'Egalité peut se démontrer a ’aide d’une version régularisée de I’équation de Poisson.
Etant donné un paramétre p € [0, 1), les manipulations formelles ci-dessus deviennent rigoureuses si
I'on travaille avec I’équation

(Id—pP)f => p"P" = gls.
n>0
Une version de l'identité de balayage pour des équations de ce type a été proposée dans [185]
Lemme 1.7|. Pour une certaine famille d’opérateurs (sz )pefo,1), on obtient

I B A GRS
3 (4=PE @) ) = | g

On retrouve I'Equation (10.2) en prenant la limite quand p — 17, avec un peu de travail pour
montrer que (Id —P))~" converge effectivement vers (Id —P>)~'. Ce raisonnement a été mené dans
le cadre des Z%-extensions dans [226, Partie 5.1|.

Exemple 10.1.

Dans le cadre d’une marche aléatoire simple et de ¥ = {a, 8,7} comme décrit précédemment,
on retrouve des intégrales trigonométriques qui peuvent étre évaluées explicitement. Par exemple, en
choisissant g = h = 1g — 1,, on obtient

514 0) ) at0) = gy [ IR e

< 1—®(¢)
1 1 — cos(&)
T2 Jpe 2 — cos(€;) — cos(&)
= 2.
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En appliquant les techniques exposées, on trouve finalement, dans la base (14,13,1,),

. —irt4dr—4  —ir?43n m
plabat gy — —sm?+3r  —m? +6m—4 sl —m
T em = T sl — —3n2 +8m—4

Notons C§ I'ensemble des fonctions sur ¥ a valeurs complexes et de somme nulle. En résumé, la
stratégie utilisée pour calculer P* est la suivante :
o Gréce a la transformée de Fourier, pour tous f, g € C§, on peut calculer - . (Id —P)~*(f)(p)-
9(p).
e Grace a l'identité de balayage, on en déduit les quantités > - (Id —PE)Y(F)(p) - g(p).
e En appliquant ce qui précéde a une base de C¥, on en déduit (Id —P*)~! ~ C§, puis
(Id —P¥) ~ C¥. Comme (Id —P¥) est nul sur la droite des fonctions constantes, on a en-
fin toute 'information pour reconstruire P> ~ C*.
La nouveauté par rapport a la stratégie esquissée en Sous-section est 'utilisation de la transformée
de Fourier pour résoudre I’équation de Poisson sur Z<.

10.2 Interprétation électrocinétique

Les objets probabilistes probabilistes introduits en Partie [10.1| ont une interprétation électroci-
nétique. Nous ne développerons pas en toute généralité les liens entre marches aléatoires et élec-
trocinétique, mais seulement dans le cadre de I’'Exemple [10.1]; nous renvoyons le lecteur intéressé a
I'ouvrage [85].

Considérons un réseau périodique de résistances, de méme résistance R. On applique un potentiel
V aux nceuds a, 3, 7, et I'on cherche a calculer le courant entrant le CircuitE].

Pour cela, on va dans un premier temps inverser le probléme : si I’on connait le courant entrant ¢
en «, 3 et v, comment calculer un potentiel électrostatique en ces mémes points ? Plus généralement,
peut-on retrouver le potentiel V' en tous les nceuds du circuit ?

FIGURE 28 — Un réseau bipériodique de résistances avec courant entrant en {«, 3,v}. Les grandeurs
i(a), i(B), i(7) sont les courants entrant en «, 3, 7y respectivement, et peuvent étre négatives.

En dimension 2, le courant ne peut pas s’échapper a l’inﬁni[g_g]. Le courant entrant doit donc étre
égal au courant sortant, et donc ) i = 0.

57. Sil’on étudie le méme probléme avec seulement deux nceuds, par exemple en choisissant ¥ = {3, v}, le probléme
posé revient & calculer la résistance équivalente entre ces deux points.
58. C’est une reformulation de la récurrence de la marche aléatoire simple en dimension 2.
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V(v)=V(v')

= . Par la

Par la loi d’Ohm, le courant circulant d’un nceud v vers un nceud voisin v’ est
loi des nceuds, pour tout v € Z2,

Z M = (ils)(v),

ce que 'on peut réécrire :

(1d—P)(V) = %(nz).

Par transformée de Fourier, on peut calculer le potentiel V' aux points de X, encore une fois grace
a I'identité de balayage. Ce potentiel électrostatique est bien défini & constante prés. On peut aussi
utiliser la méthode présentée précédemment, qui consiste a calculer les quantités

TS A-P) @) p) - 50,

ou 7 et j sont deux courants entrants en ¥ (et donc tous deux de somme nulle).

Cette interprétation électrocinétique de I’équation de Poisson éclaire certaines caractéristiques de
I'identité de balayage. Quand 1'on cherche des solutions de I’équation

(Id=P)f = g1s,

la fonction g, de somme nulle, peut étre interprétée comme une intensité entrante dans le systéme.
La fonction f est un potentiel associé, et est donc défini modulo constante. Le choix de prendre f de
moyenne nulle sur ¥ est un choix de jauge pour ce potentiel.

Exercice 10.2.
Montrez que la quantité

%Z(Id —P)"'(i)(p) - i(p)

est la puissance consommeée par le circuit de résistances quand le courant entrant est v, et en particulier
est toujours positive.

11 Cadre dynamique et stratégie

11.1 Probabilités de transition dans les Z%extensions

Soit (A, p, T') une transformation Gibbs-Markov. On fixe une Z?-extension markovienne ergodique
et conservative ([Z9], 1, T) de (A, u, T) de sauf F.

Soit ¥ C Z? fini. Par conservativité, le systéme induit ([X], us, Tx) est bien défini et préserve la
mesure Uy, que ’on supposera de probabilité :

1
“Z:EZ“@)(SP'

peEY

Notation 11.1.
Dans la mesure du possible, nous utiliserons les notations suivantes :

o Les objets sans marque spécifique tels que A, u, T, L etc. sont associés a la transformation
Gibbs-Markov initiale (A, u, T).
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e Les objets avec un tilde tels que ji, i L etc. sont associés & une Z%-extension du systéme
précédent.

o Les objets avec un indice tels que uy, Tx, Ly etc. sont associés au systeme induit par |’exten-
sion précédente sur [¥] = A x 2.

On cherche a calculer les probabilités de transitions entre les différents sites de X, c’est-a-dire les
probabilités

P = i (T2 (@, p) € [q]) = i (T (2, p) € [g]).

Comme en Section [I0] le calcul de ces probabilités d’atteinte se résume au calcul de la matrice de
transition P> = (ps pg)p.ges-

Etant donnée une Z%extension d’un systéme dynamique préservant une mesure de probabilité
(A, i, T) et ¥ C Z%, comment estimer la matrice des probabilités de transition P*?

On peut déja observer que la matrice Px, est une matrice stochastique. Elle préserve la forme
lingaire |71 37 0, : c’est une conséquence du fait que ([X], s, Tx) préserve la mesure.

De plus, Py est irréductible : c’est une conséquence du fait que ([X], us, Tx) est ergodique. Le
sous-espace propre associé a la valeur propre 1 est donc exactement ’espace des fonctions constantes.

11.2 Identité de balayage et opérateur de transfert

Dans le cadre des marches aléatoires, Iidentité de balayage reliait directement I'opérateur P> et
le noyau de transition P de la marche aléatoire. Ce n’est plus le cas maintenant. L’opérateur P> est
néanmoins relié aux opérateurs de Koopman et de transfert via des opérateurs de moyennisation.

Définition 11.2 (Opérateurs Iy , et II3;).
Pour ¥ C Z¢, on définit deux opérateurs :

[ LY([X],pg) — C¥
“E*'{f o ([ fCp)du) oy (11.1)

x CE — Ll([z]nuz)
HE'{f = I f o (2,p) = f(p) (11.2)

Il suit de ces définitions que Ily , o II5; = Id, alors que II5; o Iy, ., moyennise les fonctions f €
L'([X], ps2) sur chaque [p] C [X]. Le lien entre probabilités de transition et opérateurs de transfert
est alors :

P*=1s,0Ksolly et P> =Tly,o0Lyoll}. (11.3)

L’opérateur 115 o P> o Il , ~ L} ([X], ux) est une approximation de rang fini de Ls.

De 1a, on peut appliquer la stratégie esquissée en Sous-section a 'opérateur K ou £ afin
de calculer Ky, ou Ly respectivement, et récupérer la matrice P*. Pour les raisons développées en
Sous-section [8.2] 'opérateur de Koopman n’est pas adapté ; nous allons donc organiser notre stratégie
autour de l'opérateur de transfert.

La Proposition fournit le deuxiéme point de notre stratégie. Nous allons maintenant aborder
le premier : la résolution de 1’équation de Poisson sur [Z4] a I’aide de la transformée de Fourier.
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11.3 Potentiel et transformée de Fourier

Dans le cas des marches aléatoires, nous partions d’une intensité entrante g € CJ, c’est-a-dire
une fonction définie sur X et de moyenne nulle. Dans un contexte dynamique, nous allons remplacer
Cy par un espace de Banach de fonctions de moyenne nulle.

Notation 11.3.
Rappelons que B est l’espace des fonctions essentiellement lipschitziennes sur A. On notera :
e Pour tout ensemble I fini, By 'espace des fonctions lipschitziennes sur A X 1.
e By l'espace des fonctions lipschitziennes sur A de moyenne nulle, et By l'espace des fonctions
lipschitziennes sur A x I de moyenne nulle.

Fixons ¥ C Z fini. Par ergodicité, lopérateur (Id —Ly) est inversible sur Bs . Afin de manipuler
effectivement des matrices, nous allons discrétiser cet opérateur.

Définition 11.4 (Opérateur potentiel discrétise).
Nous appelerons opérateur potentiel discrétisé@ l'opérateur

QZ = HZL* @) (Id —Eg)_l @) HE (114)
défini sur C.
Pour tous f, g € C§,

> F(s)-Qxlg =15 f H*? (Id— L)~ (IT5(g)) dpss.

SEX

De plus, afin de contourner des problémes de convergence, nous allons plutot travailler avec des
équations de Poisson tordues. Autrement dit, nous nous donnons un paramétre p € (0,1), puis
introduisons 'opérateur @)y, , défini par :

> F(0)- Qsy()p) = Card(®) | T(7) - (14 =p) " ([T3(9)) s
peEX (%]

Pour p = 1, formellement, (Id —p£)~! = (Id —£)~! = (Id —Lsx,)~! par lidentité de balayage. La Pro-

position suivante rendra rigoureuse ce lien sans avoir & donner un sens a l'opérateur (Id —£)~!

En passant en domaine fréquentiel, la fonction (Id — pZ)’l(Hg(g)) s’exprime a l'aide d’opérateurs
de transfert tordus. Notons
=> flp)e

peEX

Alors, par des manipulations semblables a celles de la Sous-section et un travail additionnel pour
vérifier les passages a la limite quand p tend vers 17, on obtient la :

Proposition 11.5. [ /220, Proposition 5.3/, Partie 1]
Soit ([Z%), 1, T) une Z%-extension markovienne, ergodique et conservative d’une transformation
Gibbs-Markov (A, u, T) de saut F. Soit ¥ C Z¢ une partie finie. Pour toutes f, g € Cg,

S T0)- Qs = i oL [ A ([1aspo @an) a1

peEY

oti Le = L(e!&F).) est Uopérateur de transfert tordu par F.

59. Le nom d’opérateur potentiel provient de 'interprétation électrocinétique de la Sous-section dans laquelle
— & constante multiplicative prés — I'opérateur (Id —P)~! associe & un profil d’intensités un potentiel électrique.
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11.4 Formes limites

S’il était possible de calculer explicitement les probabilités de transition pour la marche aléatoire
simple en Sous-section [10.1] un tel calcul explicite semble hors de portée pour des systémes dyna-
miques plus complexes. De méme, I’Equation fournit une formule intégrale pour 'opérateur
Qs qui fait intervenir toute la famille d’opérateurs (L¢)ccrd, et est donc délicate a évaluer en pratique.
Dans l'esprit du théoréme central limite ou du théoréme central limite local, nous allons explorer des
théorémes limites.

Dans notre cadre, cela consiste a estimer P> quand les sites de ¥ sont trés éloignés les uns des
autres. Pour formaliser cela, nous remplagons ¥ par une famille d’ensembles ;. Plus précisément,
nous fixons une famille d’injections oy : I < Z% o I est fini. On remplace naturellement o;(/) par
I dans les définitions des différents opérateurs; par exemple, au lieu de travailler avec la matrice
Pot) indexée par oy(I), on utilisera plutot la matrice P, indexée par I qui lui est naturellement
semblable. Ce formalisme permet ainsi de manipuler différents opérateurs en conservant un systéme
d’indexation cohérent : par exemple, les opérateurs Il,, ) . et H[";t( 1) sont naturellement conjugués a
des opérateurs I, et IT* indépendants de t. On définit de méme Q;, F;, etc.

Ce cadre reste trop flexible : nous n’avons imposé aucune condition sur o; autre que l'injectivité.
Bien que la théorie qui suit soit plus générale, nous imposerons que les ensembles oy(1) soient de plus
en plus grand et aient une “forme limite”.

Hypothése 11.6.
Il existe o : I — R telle que, pour tout i € I,

0(1) =110 to(i) + o(t).

o L R

FIGURE 29 — Les éléments d'une famille (04(1));~o de parties de Z¢ qui s’éloignent en gardant la
méme forme.

Les excursions a partir d’'un site ont une probabilité petite d’étre treés grande. Par conséquent,
si deux sites sont trés éloignés, il y a peu de chance qu’une excursion du premier site soit suffisam-
ment longue pour atteindre le second : les transitions sont rares quand les sites sont éloignés. Sous
I’'Hypotheése la famille de matrices (P,);~o converge donc vers 'identité quand ¢ tend vers 0.

Revisitons la question posée en Sous-section [11.1l Donnons-nous une Z?-extension d’un systéme
dynamique préservant une mesure de probabilité (A, u, T), ainsi qu'une famille de fonctions o, véri-
fiant 'Hypothese [11.6] Peut-on trouver un équivalent de (Id —FP;) ?

11.5 Limite de 'opérateur potentiel discrétisé

Revenons & la Proposition [11.5, Quand ¢ tend vers +oo, la contribution principale a 'Equa-
tion ((11.5)) vient de la valeur propre principale de £ ~ B. En effet, par le Corollaire , toutes les
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autres valeurs propres des opérateurs (L¢)¢cra sont distinctes de 1, et donc apportent une contribution
bornée a 'intégrale.

Proposition 11.7. [ /220, Proposition 5.3/, Partie 2|
Dans le cadre de la Proposition sous [’Hypothése il existe une fonction & — (&)

continue sur un voisinage de 0 € T? telle que 5(0) = 0 et, pour tout voisinage suffisamment petit U
de 0,

E:f )(j) = 1+&@

jeI

FNFOT— d£+0 WA gl (11.6)

ou le terme d’erreur Oy (1) est uniforme en p et t, mais dépend de U.

Le membre de droite de 'Equation (I1.6)) s’évalue ensuite dans des cas concrets, méme si les
calculs peuvent étre un peu laborieux [226| Section 6].

Exemple 11.8 (Z-extension, variance finie).
Soit ([Z), 11, T) une Z-extension markovienne, ergodique et conservative d’une transformation
Gibbs-Markov (A, u, T) de saut F. Supposons que F' est centrée et de variance finie.

Soient 01 < ... < oy, des réels, et ¥y = {toy + o(t),...,to, + o(t)} C Z. Alors, pour tous f,
geCl :

D T0) Qo) =0~y 2 H) 90+ o(0) =~ 7)) + oft).

jerl

Exemple 11.9 (Z?-extension, variance finie).

Soit (2%, 1, f) une Z2-extension markovienne, ergodique et conservative d’une transformation
Gibbs-Markov (A, u, T) de saut F. Supposons que F' est centrée et de variance finie.

Soient I fini et o : I — R? injective. Soit 3y = to(I) + o(t) C Z*. Dans ce cadre, la principale
contribution & ’Equation est celle des fréquences identiques de F,(f) et Fi(g). Par conséquent,
pour tous f, g€ Ch :

=/ N In(
;f(]) - Qu(9)(J) =to4o0 o /det COV A T F) Jze;f ) + o(In(t)),
ou, autrement dit, Q; = In(f) Id +o(In(t)).

ﬂ\/det Cov(A,u,T;F)

On peut, a partir des expansions asymptotiques des opérateurs (Q¢)¢>o des Exemples et ,
retrouver des expansions asymptotiques des matrices de transition (P;);>o. Ce sera fait en Sous-
section [13.3] Le passage de (Q¢)i>0 & (Py)i=o nest trivial ni en théorie — ce sera 'objet du Théo-
réme —ni en pratique — les calculs matriciels impliqués n’étant en général pas si simples.

12 Systémes a transitions rares

Le raisonnement de la Section [11] permet, dans un régime asymptotique, d’estimer ;. Via I'iden-
tité de balayage, on peut alors — au moins pour des fonctions f, g constantes sur chaque site — estimer
les intégrales

m? (Id—Le)"(g) dpr.
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Le dernier probléme consiste & déduire de ces intégrales une approximation de P;. Dans la Sous-
section [10.1], le probléme était de dimension finie, et notre méthode reposait sur un calcul matriciel
explicite ; ce n’est plus le cas ici.

La derniére brique de ce travail repose sur une autre théorie : celle des temps d’atteinte d’éveéne-
ments rares en dynamique hyperbolique, ainsi que de la métastabilité.

12.1 Evénements rares

Dans un premier temps, nous allons présenter quelques résultats sur les occurrences d’événements
rares dans des systémes dynamiques hyperboliques. Soient (A, 1, T') un systéme dynamique préservant
une mesure de probabilité ergodique et A, C A de mesure p(A.) < 1. Que peut-on dire du premier
temps @4, > 1 d’occurrence de ’événement A, ?

Par le lemme de Kac (Lemme [0.1)), si z est choisi selon la mesure u(- | A.), alors E(pa_(z)) =
u(A:)~t. D’autre part, le systéme dynamique (A, u, T') préservant la mesure, pour tout n > 1,

(s, <n)=p <U T"“Aa> <Y u(T7FA) = np(A.).

Ces deux remarques suggérent que pa. est typiquement de Pordre de pu(A.)~!. Nous sommes donc
amenés a étudier p(A:)pa.. Que peut-on dire de la loi de u(A:)pa. quand p(A:) — 07

12.1.1 Deux contraintes

La réponse a cette question va dépendre en premier lieu du systéme dynamique étudié.

Exemple 12.1 (Rotation d’angle irrationnelle).

Soit Ty : x — x + 0 [1] une rotation d’angle 0 < 1/2 irrationnel sur le cercle R/Z. Choisissons
A, :=10,¢). Pour des raisons topologiques que nous laissons en exercice, la transformation induite en
0, ) est un échange de 2 ou 3 intervalles, et @y ) est constant sur chacun de ces intervalles. Plagons-
nous dans le cas ot la transformation induite en [0, ) est un échange de 3 intervalles (B;)1<i<3. Alors
©l0,e) prend trois valeurs ny < ny < ng =ny +ny sur [0,¢). La loi de epjo.y sous Leb(- | [0,¢)) a au
plus trois atomes, propriété qui se transfére a toute limite faible.

Quitte a ré-indexer les intervalles B;, on peut supposer que B; = {ppe = ni} N[0,e). Comme
ns = ni + ng, Uintervalle By est entre By et By. Le systéeme dynamique (R/7Z,Ty) est isomorphe a
une tour au-dessus d’un échange d’intervalles, et plus précisément de la transformation qui échange
B1 et BQ.

L’espace des phases de cette tour est |_|f:1 B; x {0,...,n; — 1}, Uensemble [0,¢) est identifié a
(B1 U By U B3) x {0}, et la transformation associée a Ty incrémente la seconde coordonnée jusqu’a
atteindre le plafond n; — 1.

Pour tout x € B; et 0 < k < ng, on a gy (r,k) = n; — k. Ainsi, la loi de @) sous Leb est
uniforme discréte sur chacun des intervalles [1,n1], [n1 + 1,no] et [ng + 1,10y + na).
Pour des travaux plus poussés sur les temps d’atteinte pour de tels systemes, nous renvoyons aux

travauz de L.A. Bunimovich et C.P. Dettman sur le billard dans le disque [453], ainsi qu’a ceuz de
J. Marklof et A. Strombergsson sur les systémes intégrables [170].

Ce cas de figure est tres différent de celui que nous allons bientot découvrir. Il faut donc étre
attentif au type de systéme dynamique étudié; dans ce texte, nous nous intéressons plutot a des
systémes hyperboliques. Mais ce n’est pas le seul obstacle. Par le lemme de Rokhlin [200], tout
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F1GURE 30 — Une portion d’orbite sous la rotation Ty d’angle #, représentée sous forme de tour.

systéme probabilisé ergodique est, & un ensemble de mesure aussi petite que voulue pres, isomorphe
a une tour de hauteur constante, c’est-a-dire similaire a la Figure mais avec une seule colonne.
Mais alors la loi du temps de retour a la base de cette tour est trés proche d’une loi uniforme.

Il faut donc aussi étre attentif aux événements A, étudiés! Si 'on peut choisir des ensembles A,
aussi compliqués que voulu, alors p(A.)gj ) peut étre trés proche d'une loi uniforme. Pour mieux
contraindre le probléme, on va se limiter a des ensembles simples. Par cela, on entend :

e Dans un cadre symbolique (sous-décalage de type fini, transformation Gibbs-Markov...) : A,
sera typiquement un cylindre de petite mesure.

e Dans un cadre géométrique (transformation Anosov...) : A. sera typiquement une boule de
petit rayon.

12.1.2 Systémes hyperboliques

On suppose donc que (A, u, T') est hyperbolique et que les événements (A.).~o sont suffisamment
réguliers. Supposons que p(Ae) < 1. La perte de mémoire da a 'hyperbolicité du systéme fait que,
heuristiquement, le fait qu'une orbite (77 (x)),>¢ n’ait pas rencontré A, jusqu’a un temps N apporte
peu d’information sur sa position 7% () au temps N. Le point TV (z), sous ce conditionnement, sera
donc a peu prés équidistribué.

Si X est une limite en loi des variables aléatoires (u(A:)pa.)es0, alors X aura une propriété
de perte de mémoire caractéristique des lois exponentielles. Heuristiquement, par le lemme de Kac
(Lemme , X sera d’espérance 1, donc une loi exponentielle de parameétre 1.

Une obstruction est l'existence d’'un point périodique x de petite période p dans A, : dans ce
cas, ces petits voisinage de x vont tous s’intersecter substantiellement avec leur image sous 7?. Mais,
par préservation de la mesure, cela réduit d’autant la probabilité de venir dans A. en venant de
Iextérieur. Tout se passe comme si, vu de I'extérieur, A, avait une mesure effective plus petite.

De tels théorémes remontent a B. Pitskel et M. Hirata [121,[191]. Nous les exprimerons dans le
cadre des sous-décalages. Soit (A, T") un sous-décalage de type fini. Pour tout = € A et n > 0, notons
an(x) = [xg,...,T,_1] le cylindre de longueur n contenant z. Alors :

Théoréme 12.2 (Hirata, 1993 [121]).
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Soit (A, i, T) un sous-décalage de type fini irréductible, ot p est une mesure d’équilibre pour un
potentiel héldérien. Pour p-presque tout v € A, la suite de variables aléatoires (u(an(:v))goan(x))wo
converge en lot vers une variable aléatoire exponentielle de parametre 1. -

On peut aussi chercher les limites en loi des temps de premier retour, c’est-a-dire des variables
aléatoires pu(A:)pa. sous les loi pu(- | A.). La dichotomie entre points périodiques et points non
périodiques apparait aussi plus clairement dans ce second énoncé.

Théoréme 12.3 (Hirata, 1993 [121]).

Soit (A, T) un sous-décalage de type fini irréductible et p une mesure d’équilibre pour un potentiel
holdérien ¢ de pression topologique nulle. Soit x € A. Pour tout n > 0, soit X,, la variable aléatoire
valant ((an(x))Pa,(z), définie sur Uespace A muni de la mesure de probabilité pu(- | an(x)). Alors
la suite de variables aléatoires (X,)n>0 converge en loi vers une variable aléatoire exponentielle de
parametre 6, ot

o 0 =1—¢e%%) iz est périodique de période primitive p ;
e 0 =1 sinon.

Nous renvoyons la lectrice a 'ouvrage de référence [168, Chapter 5| pour plus de détails.

Ces théorémes sur les temps d’atteinte ou les temps de premier retour ont des versions fonction-
nelles. On s’attend a ce qu’a la limite, les retours successifs soient indépendants et suivent chacun
une loi exponentielle. Autrement dit,

Théoréme 12.4. [121,127]
Soit (A, T) un sous-décalage de type fini irréductible et ;i une mesure d’équilibre pour un potentiel
héldérien. Pour p-presque tout x € A, sous u, la suite de processus

X" = Card {k < p(an ()1 : TH() € ay(z)}
converge en loi vers un processus de Poisson d’intensité 1.

Les points périodiques apportent une difficulté supplémentaire dans la formulation d’un tel théo-
réme. Si z est un point périodique, alors les retours dans a, (x) vont étre groupés. Le processus limite
sera alors un processus de Poisson “regroupé”.

Si M. Hirata a démontré ces théorémes pour des sous-décalages de type fini et des transforma-
tions Axiome A [121], ils sont robustes. On les retrouve pour des transformations non-uniformément
hyperboliques telles que les applications de Liverani-Saussol-Vaienti de parameétre ov < 1 [98}/123],
le billard stade [183], ou les applications unimodales [57]. Certains systémes munis d’une mesure
invariante infinie, comme des transformations non-uniformément dilatantes [39,[103] ou le gaz de Lo-
rentz [182], ont aussi été étudiés; les lois limites dans les analogues du Théoréme ne sont alors
plus exponentielles.

Remarque 12.5 (Récurrence quantitative et processus maximaux).

La question de la récurrence quantitative, que nous avons brievement abordée ici, est étroitement
liée a 'étude des processus mazimauz. Soient (A, u, T) un systéme dynamique mesuré et f : A — R.
Posons

M, = max foT"

0<k<n—1

Alors, pour tousn >0 et t € R,

{M,, <t} ={p> > n},

et, sit est proche de max f et ce mazimum est non dégénéré, les événements {f > t} vont étre petits.

118



Le processus (My,)n>o est croissant et magjoré par max f. Afin de quantifier sa croissance, on peut
par ezemple se donner une suite (tg)r>0 croissant vers max f, et étudier le temps nécessaire pour que
le processus (My,)n>0 dépasse le seuil 1, puis to, etc. Cela revient a étudier les retours successifs en
des ensembles de plus en plus petits {f > t1} D {f > t2} D ...; la encore, nous renvoyons a [108].

Remarque 12.6 (Mouvement brownien brownien).

Plus généralement, les temps d’occurrence d’évenements rares dans des systemes dynamiques
hyperboliques vont avoir tendance a suivre une loi de Poisson. On trouve une application de cette
idée dans le remarquable travail Brownian Brownian motion — I de N. Chernov et D. Dolgopyat [52].
Dans ce livre, les auteurs s’intéressent au mouvement de deux particules dans un billard de Sinai a
horizon fini :

e Une particule ponctuelle de vitesse initiale 1 et de masse 1 ;

e Une particule massive de masse M > 1, de rayon r > 0 et de vitesse initiale nulle.
Ils montrent que, dans la limite M — 400, la trajectoire de la particule massive suit un processus de
Langevin (c’est-a-dire que sa vitesse, somme des petites impulsions quasi-aléatoires fournies par la
particule ponctuelle, est un mouvement brownien) dont le coefficient de diffusion est donné par une
formule de Green—Kubo [52, Theorem 2/. De plus, et c’est ce qui nous intéresse ici, dans la limite
M — +o0 et r — 0, on trouve un régime dans lequel le coefficient de diffusion est facile a calculer :
les chocs entre les particules deviennent rares et décorrélés, ce qui simplifie grandement la formule
de Green—-Kubo [52, Theorem 3.

Le mouvement brownien tel que conceptualisé par le botaniste R. Brown en 1827 décrit la trajec-
toire d’une particule massive (particule de pollen) dans un bain de particules beaucoup plus légéres.
Bien qu’il ne comporte qu’une seule particule légere, le modéle de N. Chernov et D. Dolgopyat se
rapproche du mouvement brownien au sens de Brown, ce qui explique le titre de leur ouvrage.

12.1.3 Cas des systémes Gibbs-Markov

Nous revenons maintenant aux systémes Gibbs-Markov. Ceux-ci nous permettent de démontrer
assez simplement quelques énoncés sur les temps d’atteinte de petites cibles. Nous en profiterons
pour introduire divers outils utilisés pour estimer les probabilités d’atteinte dans des Z?-extensions.
Nous proposons de montrer :

Proposition 12.7.
Soit (A, a,d, 1, T) un systeme dynamique Gibbs-Markov ergodique. Alors on a :
e Tension eavponentielle@ o 1l existe des constantes C', k > 0 telles que, pour tout a € «, pour
tout t > 0,
p(p(a)pa > t) < Ce™™.

e Convergence en loi : Pour toute mesure de probabilité v < u, pour toute suite (a,)nen d'élé-
ments de « telle que lim,,_, o, p(a,) = 0, la suite de variables aléatoires p(ay)pa,, converge en
loi (sous v) vers une variable aléatoire exponentielle de parametre 1.

Pour cela, nous introduisons des familles de cones.

Définition 12.8 (Cones de fonctions lipschitziennes, I).

60. C’est-a-dire que la famille de variables aléatoires (f4(a)@q)aca €st tendue, avec une borne quantitative exponen-
tielle sur les queues de ces variables aléatoires.
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Soit (A, p, T) une transformation Gibbs-Markov. Pour tout K, € > 0, on définit un cone de
fonctions lipschitziennes sur A par@ :

Ck(e) == {f €B : f20, [flup=@u < Ke Hf”]Ll(A,,u)} : (12.1)

Exercice 12.9.
Montrez que, dans un cone Ck(g), les normes LY(A, u), L>(A, u) et B sont équivalentes.

Si (A, pu, T) est mélangeante, alors £ ~ B se rapproche exponentiellement vite du projecteur
1 ® p. Par conséquent, il existe o € (0, 1) tel que, pour tout n suffisamment grand, pour tous K et
57

LM'(Ck(e)) C Cokle) ; (12.2)
c’est une propriété de contraction de cone.

Esquisse de démonstration de la Proposition |12.7.
Supposons dans un premier temps que (A, p, T') est mélangeante. Soit a € «. Considérons 'opé-
rateur £, := L£(14-). Alors

w(pe >n) = / loeNlgeoTN...N1lgeoT"  du = / L2(1) du. (12.3)
A A

De plus, £, = £ — L(1,-). Par la Proposition 3.24] ||£(1,-)|5_5 < Cp(a). L'itération de £, a
donc deux effets opposés :
e Par 'Equation , I'application de £ a un effet contractant (régularisant) multiplicatif;
e A cela, on ajoute une perturbation —£(1,-) additive d’ordre u(a).
L’interaction de ces deux effets implique :
e Une forme de stabilité : Pour tout K > 0, il existe K’ > 0 tel que, pour tous n > 0 et a € «,

L, (Cx(p(a))) € Cro(p(a)). (12.4)

e Une forme de contraction de cone : Il existe o € (0,1) tel que, pour tout K suffisamment
grand, pour tout n suffisamment grand, pour tout a € «,

L5(C(p(a))) € Cox(u(a)).

On en déduit aisément la tension exponentielle. Posons K = 0, et soit K’ tel que donné par
I’Equation ((12.4)). Alors, pour tout n > 0, dans B,

EﬂD=iA£ﬁDduwl+OWWDL

ey an= [ 22 du- [1- uta) + 0 (e
A A

ar recurrence, s1 p(a) est sutlisamment petit, alors a=N) < — ula < e_Ta ot 'on
Par 1¢ ,si pi(a) est suff t petit, alors p(p, > n) < (1 - p(a)/2)" < e 5™, don |

déduit la tension exponentielle.

61. Le lecteur a I'oeil aguerri remarquera que ces cones ne dépendent que d’un seul paramétre, ici Ke. En pratique,
on fixera K assez vite, tandis que l'on gardera e variable; on aura donc affaire a des énoncés du type “Il existe K tel
que, pour tout £ > 0 suffisamment petit, Ckx(¢) a les propriétés suivantes...” La notation Ck(¢) n’est alors pas plus
lourde, et sépare mieux les roles de K et £, qu’une notation qui n’utiliserait qu’un seul parameétre.
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La convergence en loi découle d'une propriété de perte de mémoire. Soient 0 < ¢ < ¢'. Alorsm

_ Les )
fA Eé“(a)_ tJ(1> du

p(p(a) s >t | p(a)p, > 1) ~ /A L@ E=01(f ) dp,

ol
ﬁgu(a)fltj (1)

S8y du

Or f,. appartient & Cx/(11(a)) et est d’'intégrale 1, donc est proche de 1. Par conséquent, p(u(a)pq >
t' | pla)p, > t) est proche de p(p(a)p, >t —t).

Soit (an)n>o une suite d’éléments de o dont la mesure converge vers 0. Les lois des variables
aléatoires u(ay)p,, ¢tant tendues, il existe des lois limites. Ces lois limites héritent de la propriété
de perte de mémoire, caractéristique de la loi exponentielle. Enfin, les variables aléatoires p(ay,)@a,
étant toutes d’espérances 1 et leurs lois ayant des queues exponentielles uniformes, la loi limite est
aussi d’espérance 1, et est donc une loi exponentielle de paramétre 1.

fa,t

Donnons-nous une loi initiale v < p. Par la propriété de mélange, T7'(v) converge vers p, et
I'orbite d’un point a peu de chances de rencontrer un événement a petit avant que 77*(v) ne soit trés
proche de . La loi de pu(a)g, sous v sera donc proche de la loi de u(a)p, sous p; on rencontre le
méme phénomeéne que dans les énoncés du théoréme central limite (Théoréme ou du théoréeme
central limite local (Proposition, dont les énoncés sont valables pour toute loi initiale absolument
continue par rapport a pu.

Finalement, si (A, p,T') est seulement ergodique, la décomposition en composantes périodiques
(Proposition [3.11)) et la propriété de grande image permettent de conclure. O

Exemple 12.10 (Transformation de Gauss).
Soit T : (0,1] — [0,1) la transformation de Gauss. Comme nous l’avons vu, cette transformation

est Gibbs-Markov, la partition associée étant o = {a,, : n > 1} avec a,, = [n%l, 1), et la mesure de
probabilité invariante étant p = ﬁlﬁ dx. Remarquons en particulier que
1 (n+1)2 11
p(an) In(2) " <n(n +2) 7 n(2) n?
Soient x un réel tiré uniformément dans [0,1] et [0 : by, bs,...] son développement en fraction
continue. Soit T,,(x) := inf{k > 1 : by(x) = n} Uindice de la premiére apparition de n dans le

développement en fraction continue de x. D’apres la Remarque Tn = @a, + 1 sur {T,, > 2}.
Ce dernier événement est de mesure presque totale quand n est grand. Comme Leb < u, d’apres le
second point de la Proposition n=2T, converge en loi vers une variable aléatoire exponentielle
de paramétre ﬁ

Les deux points de la Proposition [12.7| permettent aussi d’obtenir la convergence des moments de
©a, - S0it ¥ < 1 une mesure de probabilité telle que g—z est bornée. D’aprés le premier point, pour
tout p € R, laloi de (u(ay)@a, )P sous v est dominée par une loi intégrable. D’aprés le second point,
cette méme suite de variables aléatoires converge vers X? ou X est exponentielle de parameétre 1.

Par conséquent, on obtient

62. Une petite erreur, facile a controler, est due au fait que [pu(a) ™ (t' —t)| # |pu(a) | — [u(a)~'t] en général;
c’est pourquoi nous avons utilisons le signe ~ a la ligne suivante.
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Corollaire 12.11.

Soit (A, a,d, pu, T) un systéme dynamique Gibbs-Markov ergodique. Soit v < p une mesure de
probabilité telle que S—Z € L>®(A, u). Soit (a,)n>0 une suite d’éléments de a telle que lim,, o0 pi(an) =
0. Alors, pour tout p € Ry,

I'(1+p)
Py oy gy D)
/A(pan V ~p—stoso ,U((ln)p

12.2 Systémes a transitions rares

La théorie des temps d’atteinte d’événements rares a une application importante : le controle
de la décroissance des décorrélations dans des systémes admettant une partition en parties presque
invariantes, c’est-a-dire I’étude d’états dynamiques métastables.

12.2.1 Transitions entre deux ou plusieurs sous-systémes

Soit (A, u, T) un systéme dynamique préservant la mesure de probabilité et suffisamment chao-
tique. Supposons que ’on puisse partitionner A en deux parties A = B LI C telles que :
e D’une part, B et C ne sont pas trop petits : u(B), u(C) ~ 1;
e D’autre part, les transitions de B vers C' ou de C vers B sont rares :

wW(BNTO)=pu(CNT'B) < 1.

B C

FIGURE 31 — En bleu : le graphe d’une transformation uniformément dilatante de l'intervalle telle
que 'espace des phases ait une partition en deux ensembles B, C' communiquant peu entre eux. Cet
exemple s’adapte afin d’obtenir une famille (7%).~ de telles transformations.

Posons ¢ := u(BNT~'C). Si l'on tire un point au hasard dans B selon (- | B), alors la probabilité
que son orbite passe de B 4 C' & un instant n est d’au plus eu(B)™! < 1. Le temps d’atteinte de C
est donc de l'ordre de e 'u(B) > 1, et suit une loi approximativement exponentielle. On dit que les
états B et C' sont métastables.

Dans le cadre de temps d’atteinte d’ensembles de petite mesure, on se donnait une famille (A; ).~
d’événements. Dans la limite ¢ — 0, aprés une renormalisation adéquate, les temps de retours
successifs en A, avaient pour processus limite un processus de Poisson.
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Dans cette Sous-section, nous allons remplacer une seule transformation 7" par une famille de
transformations (7% ).~o vérifiant les hypothéses précédentesﬁ. On va s’intéresser a la partie de I'es-
pace des phases dans laquelle est la trajectoire d’'un point, et renormaliser en temps. Plus précisément,

soit g : A — {B, C'} définie par
B si zeB
g(x) =

C si zel

Posons enfin Xt(e) = goTELE_HJ a valeurs dans { B, C'}. Alors, asymptotiquement, le processus (Xt(e))tzo

est sans mémoire, donc est un processus de Markov a deux états et & temps continu. Les transitions
de B vers C se font a taux p(B) ! et les transitions de C' vers B a taux u(C)~*. Ce processus limite
passe bien une proportion du temps p(B) en B et une proportion du temps p(C') en C, ce qui est
cohérent avec le théoreme ergodique@.

De telles familles de systémes (7%).so sur 'intervalle ont été étudiées par C. Gonzalez Tokman,
B.R. Hunt et P. Wright |107] d’une part, et D. Dolgopyat, P. Wright [84] d’autre part. Les premiers
auteurs s’intéressent aux mesures invariantes des systémes (7.).s¢, qui a la limite sont combinaison
convexes de mesures invariantes sur B et C' séparément, et utilisent des méthodes de cones réminis-
centes de la Sous-sous-section . Les seconds montrent la convergence du processus (X;);>o défini
précédemment vers un processus de Markov. Mentionnons aussi ’approche spectrale de G. Keller et
C. Liverani [142].

Les résultats précédents s’adaptent a une partition A = A; U...U A, de A de n ensembles de
mesures comparables et communiquant peu entre eux. Dans ce cas, on peut définir une famille de
matrices stochastiques par

_ MANT A
P, = f1(A;)

= (Id —ER)Z']‘.

Le processus limite, sous une hypothése d’irréductibilité, est un processus de Markov sur {Ay, ..., A,}
engendré par —R. Heuristiquement, on s’attend a ce que les n valeurs propres de plus grand module
de I'opérateur de transfert £, de T, soient approximativement données par le spectre de P = Id —cR.

Remarque 12.12 (Décomposition en modes dynamiques).

Dans le sens inverse, si l’on trouve n valeurs propres proches de 1 de ’opérateur de transfert d’un
systéme dynamique mesuré, on peul supposer que ce systeme a une décomposition en n composantes
de mesures comparables et communiquant peu entre elles. Ces n composantes peuvent étre retrouvées
a laide des fonctions propres associées : ce sont les régions sur lesquelles ces fonctions sont a peu
pres constantes, ou au moins de signe constant.

Cette heuristique justifie la stratégie numérique de décomposition en modes dynamiques. Nous
renvoyons le lecteur a Uarticle de revue [56] pour une présentation générale de ces méthodes, a (100,
101,,\230] pour une application a la détection de structures cohérentes dans les courants océaniques,
et a [24,|25] pour une comparaison entre les valeurs propres déterminées numériquement par ces
méthodes et les résonances de Ruelle.

12.2.2 Inégalités de Cheeger

Le lien entre trou spectral et décomposition de l’espace des phases en composantes communi-
quant peu est un phénomeéne plus général que celui des systémes dynamiques hyperboliques. C’est
notamment le sujet des inégalités de Cheeger, qui admettent de nombreuses variantes.

63. En particulier, la partition A = BLIC et la mesure invariante p ne dépendent pas de . C’est une hypothése trés
forte, mais qui sera satisfaite en Section @
64. Heureusement !

123



Par exemple, soit (M,,),>0 une chaine de Markov irréductible réversible sur un espace d’états fini
A de cardinal d. Soit p son unique mesure de probabilité stationnaire, et supposons que M est choisi

selon p. Pour B C A, soient
]P)(Mo € Bet M, € BC)

k*(B) := 12.5
et
k"= min k(B). (12.6)
0<P(B)<1/2

Le coefficient k*(B) est petit si B est de mesure proche de 1/2, et si la probabilité de passer de
B a B¢ est faible. Par conséquent, £* est petit si I'on peut décomposer A en deux grandes parties
communiquant peu entre elles. De plus, k* > 0 car la chaine de Markov est irréductible.

Soit P le noyau de transition de la chaine de Markov. Comme la chaine de Markov est réversible,
l'action P ~ IL2(A, ) est auto-adjointe. Soient A\y_; < ... < \g = 1 ses valeurs propres. Alors :

Théoréme 12.13. (151, Theorem 3.5/
Pour une chaine de Markov réversible,

*\2
1—2k* <A\ <1-— @ (12.7)

Remarquons que le Théoréme [12.13| ne controle pas exactement le trou spectral ; il faudrait pour
cela controler aussi A\g_1, qui peut étre trés proche de —1. La borne inférieure sur A\; repose sur des
heuristiques proches de celles exposées dans la Sous-sous-section [12.2.1]; la possibilité de travailler
avec un opérateur auto-adjoint simplifie grandement les arguments. La borne supérieure sur \; est
plus difficile & obtenir.

Ce théoréme a des versions sur les graphes. Ceci dit, les premiers énoncés, que nous allons brie-
vement présenter, portaient sur le spectre du laplacien sur des variétés riemanniennes. Soit M une
variété riemannienne compacte connexe de dimension n. Pour toute partie B C M dont le bord 0B
est une sous-variété de dimension n — 1, on pose

08|

k*(B) := 12.
(B) Vol(B) (12.8)
et
k= E}g/[ k(B). (12.9)
0<Vol(B)<Vol(M)/2

Notons A; la plus grande valeur propre non nulle de A ~ C*(M).

Théoréme 12.14. [/5,51]
Soit M une variété riemannienne compacte connexe de dimensionn. Soit a > 0 tel que la courbure
de Ricci de M soit d’au moins —(n — 1)a®. Alors :

k*)2

—2[a(n — E* +5(k*)*) < A\ < ! 5

(12.10)

Pour le probléme du laplacien sur un graphe pondéré, des généralisations de ces inégalités per-
mettent de controler les valeurs propres suivantes a l’aide de coefficients de Cheeger généralisés
(d'une fagon intuitive : on découpe ’ensemble A des sommets du graphe en k parties pas trop pe-
tites, et ayant une frontiére petite) [156]. L’analogue de la décomposition en modes dynamiques de
la Remarque est donné par des algorithmes de partitionnement spectral [231].
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Ceci étant, le but de cette partie n’est pas seulement d’établir une analogie entre les opérateurs
de transfert et le laplacien. Dans le cas du flot géodésique en courbure négative constante, le lien
entre ces objets est beaucoup plus étroit.

Soit M une surface riemannienne compacte connexe de courbure négative constante. On dispose
alors :
e De l'action de A ~ LL?(M,Vol). Le spectre de cet opérateur auto-adjoint non borné est
O:_)\OZ_)\I Z
e Si X est le générateur du flot sur 7'M, de laction de X sur des espaces de Sobolev anisotropes
de régularité suffisamment élevée.
Pour tout £ > 0, soit 7, tel que \p = i + r2. Alors, pour tout m > 0, on sait que —% +iry —m
est une résonance de Ruelle de X, et que toutes les résonances de Ruelle sont de cette formeﬁ. On
se référera a ce propos, par exemple, aux articles de F. Faure et M. Tsujii [91,92,/114], ainsi qu’a la
présentation et aux travaux référencés dans [86].

En particulier, si A\, < 1, alors 1_—”2_4“ ~ )\ est une résonance de Ruelle, et toutes les résonances
de Ruelle de partie réelle supérieure & —1/2 sont de cette forme. Tout controle sur A, apporté par des
inégalités de Cheeger se traduit alors en controle sur le trou spectral de X, et donc en décroissance
des corrélations pour le flot géodésique sur T M.

13 Calcul asymptotique des probabilités d’atteinte

Il est temps d’énoncer les principaux théorémes de [226] et d’en décrire la stratégie de démons-
tration.

13.1 Argument principal, cas mélangeant

Revenons au calcul des probabilités d’atteinte dans des Z?-extensions de systémes Gibbs-Markov.
Soit I un ensemble fini et (0)i>¢ une famille d’injections de I dans Z¢ telle que lim; o |os(i) —
o(j)| = +o0 pour tous i # j. Sous cette condition, lim;,, ., P = Id.

Dans la Sous-section , nous avions supposé que la famille (0¢)t>0 avait une forme limite
(Hypothese . Cependant, pour appliquer les stratégies attenantes aux systémes a transitions
rares de la Sous-section [I2.2] il est beaucoup plus aisé de supposer connu le comportement des
probabilités de transitions... Précisément les quantités que nous souhaitons calculer !

Nous allons supposer dans un premier temps que de telles probabilités de transitions existent, en
déduire 'opérateur potentiel discrétisé, puis utiliser un argument de compacité pour inverser cette
relation.

Hypothése 13.1.
Il eziste une matrice R irréductiblef] et une fonction a tendant vers 0 en +oo telles que

P =i Id—a(t)R+ o (a(t)) .

Pour tout t, les sommes de chaque ligne et de chaque colonne de P, sont égales & 1. Soit R une
matrice satisfaisant les conditions de ’'Hypothése Alors les sommes de chaque ligne et de chaque

65. Sauf éventuellement sur —1 — %I\L ce qui n’a pas d’importance pour la suite.
66. C’est-a-dire qu’elle satisfait une définition de l'irréductibilité semblable & celle des matrices stochastiques, ou

encore que Id —eR est une matrice stochastique irréductible pour tout € > 0 suffisamment petit.
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colonne de R sont nulles, donc R ~ C1 est nulle et R préserve CL. De plus, I'irréductibilité implique
qu’il existe un trou spectral, au sens ot

r:= min R(\) > 0.
AeSp(RACY)

Remarquons que la transformation 7; : [I] — [I] est une perturbation de la transformation
@D ,c; Tlo) qui agit comme Tjg sur chaque [j]. Les transitions d’une partie [i] & une partie [j] # [i] sont
des événements rares. Nous pouvons adapter les outils introduits en Sous-sous-section [12.1.3] Nous
aurons cependant a faire face a deux difficultés supplémentaires :

e D’une part, il y a Card(I) ensembles deux a deux disjoints et presque invariants dans [[].
Si l'on fixe un de ces ensembles, disons [i], il y a Card(/) — 1 événements rares possibles,
correspondant aux transitions vers un des [j] # [i].

e D’une part, nous sommes dans le cadre de systémes a transitions rares, comme en Sous-
section [12.2] 11 ne suffit pas savoir quand 'un de ces événements rares advient — c¢’est-a~dire
quand une orbite sous T; passe d’un site & un autre — mais il faut aussi controler ce qu’il se
passe aprés ces transitions.

Notre raisonnement fera intervenir quelques ingrédients supplémentaires. Tout d’abord, nous de-
vons adapter la Définition des cones de fonctions lipschitziennes a notre probléme.

Définition 13.2 (Cones de fonctions lipschitziennes, II).
Soit (A, u, T) une transformation Gibbs-Markov et I un ensemble fini. Pour tous K, ¢ > 0, on
définit un cone de fonctions lipschitziennes sur A x I par :

Cr(e)i={f €Br & f20, |(14=TITL)flly, < K&l luay b

Autrement dit, une fonction f : [I] — Ry appartient & Ck(e) si, sur chaque [j], elle est proche (en
norme lipschitzienne) de sa moyenne sur [j].

Ces cones définissent une norme sur By :

P liee =, inf e {1l 1=}

f=f+—r-
Si f € II*(C!) est constante sur chaque [j], alors sa norme || f|| ;. ne dépend ni de K ni de .

Remarque 13.3 (Systémes lents-rapides).

De telles familles paramétrées de cones apparaissent dans certains travaux sur les systémes a
transitions rares [107], mais aussi dans d’autres domaines proches. La famille d’opérateurs (L})n>0
a deux échelles de temps caractéristiques. A léchelle ©(1), le fait que (A, u, Tio)) est supposée mélan-
geante fait que L} homogénéise chaque [i], mais il y a peu de communication entre différents sites.
Les transitions entre différents sites se font a Uéchelle de temps ©(a(t)™'). Ces deuzx échelles sont
découplées a la limite t — +o0.

Les systemes lents-rapides exhibent le méme découplage entre deux échelles de temps. Par exemple,
soit (Fy)i>o une famille de transformations de Q0 x Sy telle que

Ft(mae) = (ft(ajae)ae + &(t)g(x,e)),

oux — f.(x,0) est une famille uniformément hyperbolique de transformations de ). Alors la premiére
variable x évolue a ’échelle de temps O(1), tandis que la deuxieme variable 0 évolue a l’échelle de
temps O(a(t)™Y). A la limite, ces deux échelles de temps sont découplées, et I'évolution de 6 est
moyennée en .
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Dans le contexte des systemes lents-rapides, de telles familles de cones (ou de paires standards)
ont été utilisées. L’article [69] présente ces techniques dans un cadre simplifié (o f; ™~ Q sont une
famille de transformations dilatantes du cercle), tandis que les travaux [52,/70,80] étudient divers
systemes partiellement hyperboliques ou billards de Sinai. Ce sont ces travauzr qui ont en premier
wspiré Uauteur a utiliser la famille de cones introduite a la Définition dans le contexte de ce
meémoire.

On dispose alors d'un analogue de la convergence en loi dans la Proposition [12.

Proposition 13.4. (220, Corollaire 2.1/]

Soit ([Z%], 1, T) une Z-extension markovienne, ergodique et conservative d’une transformation
Gibbs-Markov (A, i, T). Supposons que (A, i1, Tig)) est mélangeante, ainsi que I’Hypothese |15.1]

Soient K, Tiax > 0. Soit (fi)i>0 une famille de fonctions dans By. Supposons que

C = limsup || fill g o) < +o0.
t—4o00

Alors
lim  sup HH*C(LS/“(W]% — e_SRTH*ft =0,

t—+oo se [OaTmax]

(1)
et la convergence est uniforme a K et C' fixés.

L’analogue de la tension exponentielle dans la Proposition est :
Proposition 13.5. (226, Proposition 2.15]

Soit ([Z%), 11, T) une Z%-extension markovienne, ergodique et conservative d’une transformation
Gibbs-Markov (A, u, T). Supposons que (A, i, Tig)) est mélangeante, ainsi que I’Hypothese m

Soient p € (0, pr) et K > 0. Il existe une constante C' telle que, pour tout t suffisamment grand,
pour tout n > 0,

ezl ) < Cemralm,

Br,o:llll st

La démonstration de la Proposition [I3.5 repose sur la Proposition[13.4] ainsi que sur la transposi-
tion d’un argument de couplage classique pour montrer la décroissance exponentielle des corrélations
pour des chaines de Markov [227]. Les cones de fonctions sont utilisés d'une fagon similaire a ce que
nous avons présenté dans la démonstration de la Proposition [12.7]

Ces deux propositions permettent de calculer le comportement asymptotique de 'opérateur po-

tentiel discrétisé. Soit (f;)i>0 une famille de fonctions dans Br g telle que imsup, _, , o || fell g o) < +00-
Alors

—+00 “+00
St = [ s
n=0 0

_ / T Ll g g
a(t) Jo
1

+o0
~ x —sRT
~ /O e ™ IL(f,) ds

_ %H*RT’*H*(M o (ﬁ) .

Par conséquent, pour tout f € C,
_ L * T, — * L o L T,— L
A= GBI o () = )+ ().
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Ce type de développement asymptotique se retrouve aussi dans . Bien que les résultats que nous
présentons ici soient plus faibles, I'image spectrale est, au moins heuristiquement, donnée par la

Figure [32

Sp(R ~ CT)

FIGURE 32 — Image conjecturale du lien entre les spectres de Ljg, R et £, quand |I| = 5. Le spectre de
L, est une perturbation de magnitude a(t) de 5 copies de Sp(Ljg ~ B), et le spectre de R se retrouve
— & symétrie centrale prés — en zoomant dans une fenétre de taille ~ a(t) autour de 1 € Sp(L; ~ By).

Ces arguments nous ménent au théoréme principal de I'article [226], ou du moins a une version
légérement moins générale d’icelui, car nous supposons ici que (A, i, Tjg)) est mélangeante.

Théoréme 13.6. Theorem 1.15]

Soit (|29, 11, T) une Z%-extension markovienne, ergodique et conservative d’une transformation
Gibbs-Markov (A, i, T'). Supposons que (A, i, To)) est mélangeante.

Soit I un ensemble fini et (01)i>0 une famille d’injection de I dans Z. Notons P, la matrice
des probabilités de transition du systeme induit sur (%] = [oy(I)], et Q; = M, (Id —L;)~T* ~ C}
["opérateur potentiel discrétisé. Il y a équivalence entre :

o [l existe une matrice R irréductible et une fonction a tendant vers 0 en 400 telles que P, = 1 o
Id —a(t)R + o(a(t)).
e [l existe un opérateur S ~ C} irréductiblem et une fonction a tendant vers 0 en +oo telles
que Qi =1+ o0 alt) 1S + ofa(t) 1),
Sous l'une de ces conditions, on peut choisir les fonctions a égales et S ~ CL = RT:=1 ~ C}.

FEsquisse de démonstration du Théoréme [15.6,
Le cas direct découle des calculs précédent. La seule chose & vérifier est 'irréductibilité de S =
RT~!, qui ne pose pas de probléme particulier.

67. En un sens que nous ne détaillerons pas ici. Nous renvoyons a \ Definition 1.13|. Le critére précis peut
paraitre étrange, mais est trés pratique a la fois dans les démonstrations et dans les applications.
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Cependant, le sens réciproque nous intéresse plus : c’est celui-ci qui nous permet d’estimer les
probabilités de transition. Supposons donc que @Q; = a(t)™'S + o(a(t)~™!) pour un certain opérateur
irréductible S.

On utilise un argument de compacité. Il suffit de montrer que a(t)~'(Id —P) reste dans un
compact de matrices irréductibles. Une fois que l'on a montré cela, on considére une sous-suite
(tn)n>o telle que a(t,) '(Id —P,,) converge vers une matrice irréductible R. Alors, d’aprés le sens
direct, S ~ C) = RT"! ~ Cl, ce qui caractérise R. La famille a(t)"*(Id —P,) a donc une unique
matrice limite, donc converge.

Il reste & montrer cette condition de compacité. Dans un premier temps, nous montrons le théo-
réme pour |I| = 2, c’est-a-dire quand I = {i,7}. En effet, dans ce cas, P, est une matrice 2 x 2,
stochastique, et qui préserve la mesure de comptage : elle n’a qu'un seul paramétre libre. Sans perte
de généralité, a(t) est la probabilité qu'une excursion de [oy(i)] dans [Z9] atteigne [04(j)] avant de
revenir en [o,(7)], de telle sorte que

=" 1 %)

Le sens direct du théoréme suffit alors.

Dans le cas général, on peut induire le systéme ([I], i, T3) sur chaque sous-ensemble [{i,;}] de
cardinal 2 de I. L’irréductibilité de S implique alors que Qy; 3+ = a(t) 'Sy ;3 + o(a(t)™!) pour une
matrice Sy, ;3 irréductible 2 x 2. Le cas |I| = 2 permet alors de conclure que les orbites partant de
[i] dans [I] ont une probabilité de l'ordre de a(t) de passer par [j] avant de revenir en [i]. La matrice
a(t)71(Id —P,) reste donc dans un compact, ce qui termine la démonstration. O

13.2 Périodicité et structure des extensions ergodiques

La différence entre le Théoréme et [226 Theorem 1.15] est 'hypothése additionnelle que le
systéme (A, i1, Tjg) est mélangeant. Dans l'article [226], cette hypothése est retirée grace a une jolie
curiosité. Si (A, u, Tjg)) n’est pas mélangeante, par la Proposition elle a une décomposition en
composantes périodiques. L’objectif suivant est de comprendre ce qu'une telle décomposition nous
dit sur I'extension ([Z4], 1, T).

Deux cas de figure peuvent survenir, que nous appellerons respectivement monochromatique et
bichromatique, le premier étant a priori le plus fréquent. La connexité de R?\ {0} intervient dans
cette analyse, ce qui explique les comportements différents qui peuvent advenir en dimension 1 et 2.
Proposition 13.7. [220, Proposition 3.3/

Soit ([2%), i, f) une Z%-extension markovienne, ergodique et conservative d’une transformation
Gibbs-Markov (A, p,T). Soit M la période de (A, p,Tio), et A = UkeZ/MZ Ay sa décomposition en
composantes périodiques.

Alors il existe R > 0 ayant les propriétés suivantes. Soit ¥ C 7 non vide. Supposons que
min,qex [|[p — ¢|| > R. Ou bien :

e d € {1,2}, et lextension est monochromatique. Alors il existe £ € Z/MZ tel que, presque
sarement, les transitions entre différents sites de [X] se font uniquement de Ay X ¥ wvers
Ay x Y. Autrement dit, toutes les transitions se font sur la méme période.

o d =1, et l'extension est bz’chromatz’que. Ecrivons alors ¥ = {...,0_1,00,01,...} = {0y, :
n € I}. Il existe 0, U, € Z/MZ telle que, presque strement, les transitions entre différents
sites de [YX] se font uniquement de Ay 1 x {0,} vers Ay X {on41}, ou de Ay 1 x {0,}

68. Nous renvoyons a [226 Sub-section 3.1| pour une définition.
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vers Ay, x {on_1}. Autrement dit, les transitions montantes ou descendantes se font sur des
périodes différentes.

Exemple 13.8 (Une extension monochromatique).
Soit (A, 1, T) la transformation Gibbs-Markov donnée par :
o A=T!'xZ/5Z,
e 1 est proportionnelle a la mesure de Lebesque sur A,
o T(x, k)= (3z,k+1).
Soit
-1 size0,1/3) et k=0
F(z,k)=<¢ +1 size[2/3,1) etk=0

0 stnon

Cette extension est monochromatique, avec M =5, A =T' x {k} et £ = 1.

FIGURE 33 — A gauche : la décomposition en composantes périodiques {Ag, Ai, ..., A4} de la transfor-
mation (A, pt, Tioy) de ’Exemple ainsi que les transitions autorisées par 1" entre ces composantes.
A droite : la Z-extension de T par F' et ses transitions autorisées. Les cinq nuances de bleu sont asso-
ciées aux cing éléments de la partition {Ag X Z, A1 X Z, ..., Ay x Z} de [Z]. Les transitions autorisées
ménent toutes ou bien a une nuance un degré plus foncée, ou bien de la nuance la plus foncée a la
nuance la plus claire.

Exemple 13.9 (Une extension bichromatique).
Soit (A, 1, T) la transformation Gibbs-Markov donnée par :
o A=T!'xZ/5Z,

e 1 est proportionnelle a la mesure de Lebesque sur A,

[ ]
(2z,3) si x€[0,1/2) et k=0
T(x,k) =< (2z,1) si xel0,1/2) etk=2 .
(2x,k+1) sinon
Soit
-1 sizel0,1/2) etk=0
F(z,k)=4¢ +1 sixze[l/2,1) etk =2

0 s1non

Cette extension est bichromatique, avec M =5, A = T' x {k}, {y =1 et {_ = 3.

Question 13.10 (Structure des extensions bichromatiques).

Les Z*-extensions sont toutes monochromatiques. Nous avons de plus montré dans [226, Propo-
sition 3.2/ que, si F': A — Z est non essentiellement bornée, alors la Z-extension associée est aussi
monochromatique. Un résultat plus fort semble plausible : st une Z-extension est bichromatique, alors
il existe un cobord borné woT — u tel que F +wuoT — u est a valeurs dans {—1,0,1}. L’intuition
derriere cette question est que, si cette derniére condition n’est pas vérifiée, alors une trajectoire de
On_1 vers o, > o,_1 peut sauter au-dessus de o, avant d’y revenir, ce qui brise la distinction entre
trajectoires montantes et trajectoires descendantes.
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FIGURE 34 — A gauche : la décomposition en composantes périodiques { Ag, Ay, ..., A4} de la transfor-
Ipation (A, i1, Tig) de 'Exemple ainsi que les transitions autorisées par 1" entre ces composantes.
A droite : la Z-extension de T par F' et ses transitions autorisées. Les cinq nuances de bleu sont as-
sociées aux cing éléments de la partition {| |, , Ax_on X {n}: k € Z/5Z} de [Z]. Les transitions
autorisées ménent toutes ou bien a une nuance un degré plus foncée, ou bien de la nuance la plus
foncée a la nuance la plus claire.

Grace a la Proposition [13.7, méme si (A, p1, Tio)) n’est pas mélangeante, nous disposons d’une
description précise des composantes périodiques des systémes induits ([I], 7, T3). Cela permet de
retrouver le théoréme dans ce cadre, d’ou :

Proposition 13.11.
Dans le Théoréme on peut enlever I'hypothése que (A, i, Tio)) est mélangeante.

13.3 Quelques exemples

Tout est en place. La méthode de Nagaev—Guivarc’h, a travers la Proposition permet de cal-
culer la limite de l'opérateur potentiel discrétisé. Ensuite, le Théoréme [13.6] éventuellement renforcé
par la Proposition permet d’en déduire un développement asymptotique des probabilités d’at-
teinte. Il ne reste qu’a en récolter les fruits. Nous résumons ici quelques exemples, sans les démontrer ;
si leur preuve peut étre laborieuse, elle ne fait pas intervenir de nouvelle idée importante.

Ci-suivent des énoncés généraux dans le cadre d’extensions de variance finie en dimension 1 et 2,
et deux cas particuliers d’extensions de dimension 1 & queues lourdes.

Proposition 13.12. 226, Proposition 6.1/

Soit (2], i, f) une Z-extension markovienne, ergodique et conservative d’une transformation
Gibbs-Markov (A, u,T) de saut F. Supposons que F est centrée et de carré intégrable. On pose
Var := o2 (A, 1, T; F).

Soient I = {1,...,Card(I)} et o : I — R une application injective croissante. Pour tout t > 0,
donnons-nous oy : I — 7 telle que o4(i) = to(i) + o(t) pour tout i € I. Soit P; la matrice des
probabilités de transition du systéme induit sur [3;] := [o¢(1)]. Alors :

V.
Pt —t—+o0 Id _%R + O(til)a

ot R est la matrice tridiagonale, symétrique et irréductible définie par :

Ri,i+1 = —m v 1 S Z < Card([),

Ri,i—l = T ol =o(=1)) Vi< < C&I'd([), (13 1)

Ry =0 sili — j| > 2, :
j#i

Sous les hypothéses de la Proposition [13.12] et si 'on pose A? := |o(j) — o(i)|, alors les matrices
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de transition (P;);>o sont donc données par :

Var Var
1 — o 0 o 0 0
Var 1— Var _ Var Var 0 0
2tA2 2tA?  2tA3 2tA3 T
0 ar 1 — Var _ Var 0 0
2tA3 2tA3 2tAY L
. +o(t™)
0 0 0 T 2t§aﬁ‘1 - ZtX‘aIT ZtX‘aﬁ
m{/z |I]—1 \1{71
ar ar
0 0 0 2 2l N
[T]—1 [7]—1

Cet énoncé se démontre facilement dans le cadre de la marche aléatoire simple sur Z, a ’aide d'un
argument de martingale. Cela permet d’ailleurs de conjecturer la matrice R et de vérifier directement
que RS =1d sur C}, ot S a été calculée a ’'Exemple plutét que d’inverser une matrice.

Passons maintenant aux Z2-extensions.

Proposition 13.13. 226, Proposition 0.2/
Soit ([Z?], 11, T) une Z*-extension markovienne, ergodique et conservative d’une transformation
Gibbs-Markov (A, i, T) de saut F. Supposons que F est centrée et de carré intégrable. Soit Cov

Vopérateur de covariance asymptotique de F, défini par I’Equation (3.18)).

Soient I un ensemble fini et o : I — R? une application injective. Pour tout t > 0, donnons-nous
or 2 I — Z telle que o4(i) = to(i) + o(t) pour tout i € 1. Soit P, la matrice des probabilités de

transition du systéeme induit sur [;] := [o(I)]. Alors :
my/det(Cov
B =ti00 1d —ﬁf? +o(In(t)™),

ot R est la matrice symétrique et irréductible définie par :

Ry = —ﬁ sii#j€El,

Ce deuxieme exemple a une particularité intéressante : tous les termes hors diagonale de la matrice
R sont égaux. Donnons-nous une partie finie ¥ = {0y, ..., 0,} C Z* dont les distances entre éléments
distincts sont toutes élevées et du méme ordre de grandeur. Alors, partant de [oy] C [X], la probabilité
de revenir en [¥] en [0;] est & peu prés la méme pour tous les i # 0 : la géométrie de 3 n’intervient
pas.

Nous terminons par deux calculs explicites pour des Z-extensions dont les sauts sont dans le bassin
d’attraction d’une loi de Lévy. Dans ce cas, nous disposons d’une formule explicite pour 'opérateur
potentiel discrétisé, mais 'auteur n’a pas trouvé de telle formule pour les probabilités de transition.
Cela n’empéche pas de calculer ces matrices dans des cas précis : il suffit d’inverser une matrice
explicite.

Les deux exemples qui suivent sont [226, Example 6.5 et [226, Example 6.6].

Exemple 13.14 (Lois de Lévy asymétriques).
Soit ([Z), 11, T) une Z-extension markovienne, ergodique et conservative d’une transformation

Gibbs-Markov (A, i, T) de saut F. Supposons que F est dans le bassin d’attraction d’une loi de
Lévy stable de paramétre o € (1,2) mazimalement asymétrique : c_ = 0 et, sans perte de généralité,
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¢y = 1. Prenons I = {A,B,C} et (6(A),0(B),o(C))
la base (14,15,1¢),

(—=1,0,1). Soit oy = to + o(t). Alors, dans

1 -2 l—1) —(2-207Y)
T | 1 ger ety |, (13.2)
| sin(ar)]| 0 q 1

™

R

et Pt =t 100 Id —ﬁR + O(tL(t_l))

Le terme en bas a gauche de la matrice R est 0, ce qui signifie que les transitions de [o,(C)] ~t
a [o4(A)] =~ —t qui évitent [0] sont rares (de probabilité o(tL(t)™1)). Les transitions de [o4(A)] ~ —t
a [oy(C)] = t qui évitent [0] sont beaucoup plus fréquentes : le processus peut faire un grand saut
au-dessus de [o4(B)] et [04(C)], puis redescendre par de petits sauts jusqu’a [o.(C)].

On remarque de plus que, si o est proche de 2, la matrice R est proche de celle donnée par la
Proposition [13.13 Les transitions se font alors essentiellement entre plus proches voisins. Si « est
proche de 1, les transitions se font circulairement : de [0:(A)] a [0:(C)] (un grand saut positif), puis
de [0¢(C)] a [o¢(B)] (a laide de petits sauts négatifs), puis de [o+(B)] a [0¢+(A)] (encore & l'aide de
petits sauts négatifs).

Exemple 13.15 (Lois de Lévy symétriques).

Soit (2], i, T) une Z-extension markovienne, ergodique et conservative d’une transformation
Gibbs-Markov (A, u,T) de saut F. Supposons que F' est dans le bassin d’attraction d’une loi de
Lévy stable de paramétre o € (1,2) symétrique. Sans perte de généralité, c. = c, = 1. Prenons
I ={A,B,C} et(o(A),o(B),0(C)) =(—1,0,1). Soit oy = to+o(t). Alors, dans la base (14,15, 1¢),

22—047T 2 _2a—1 _(2 _ 204—1)
R= — _ —20-1 20 —20-1 : (13.3)
(4 -2 )‘ tan (7) ‘ _(2 _ 20471) —9a-1 2

et P =100 Id =g R+ o(tL(1) 7).

13.4 Observables d’intégrale nulle, III : Formule de Green—Kubo

Terminons cette présentation par un retour sur 'article [184]. Dans ce travail, nous avions obtenu

certains des résultats précédents, notamment les Propositions|13.12|et [13.13] dans le cas de deux sites
(c’est-a-dire |I| = 2) : ce sont [184, Corollaire 1.9] et [184, Proposition 1.6]. La stratégie utilisée
était tres différente de celle présentée en Section [11]

Pour simplifier, on se place dans le cadre d’une Z-extension markovienne, ergodique et conservative

([Z], @, T) d’une transformation Gibbs-Markov (A, u, T') de saut F telle que F' est de carré intégrable
et de moyenne nulle.

Le point de départ est le Corollaire 0.8] qui affirme que, pour une observable réguliére, d’intégrale
nulle et a support borné f,

ot (121175 £) = otuc (100,10, T D) (134)

Soit p € Z. Appliquons cette I'Equation (13.4) a f, := 1y — 1.
D’une part, le membre de gauche de 'Equation (13.4]) est

—+00

2(9(p) —1) on  g(p) =) [2n(ShF =0)—p(SiF =p) —pu(SyF=-p)].

n=0
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La fonction g est le noyau de Green symétrisé de la Z-extension. Par des calculs analogues & ceux
de la Sous-section [11.5]

2|p|
O—g}K<A7 K, T; F)

4p|
UéK<A7 K, T; F)

9(p) ~prioe et o (1217, T5 £y) ~poioe

D’autre part, les fonctions X (f,) sont toutes d’intégrale nulle. De plus, la famille de fonctions
(L10)(X0)(fp)))pez est bornée dans Lip™(A, ). Par conséquent, il existe une constante C' telle que,
pour tout p,

Sca

+00
Z /A 01 (fp) - Xy (fp) o Tigy dpe

~ 2 :
et donc o3k ([0],/L,T[o]; E[O}(f)> = HZ[O]<fp)HL?(A,y) + O(1). Finalement,

4lp|
) 2 dp ~psioo : 13.
/A 0 ()" dpt e oty (A, 1, T; F) (135)

Il reste a mieux comprendre la loi de X(f,). Soit P, la probabilité d’atteinte de [p] partant de
[0]. Quand p est grand, le processus induit sur [{0, p}] se comporte essentiellement comme une chaine
de Markov a deux états.

1_PPC[O] [p]QI_P—p

FIGURE 35 — Graphe associé a une chaine de Markov & deux états.

P*p

By

Cette chaine préservant la mesure de comptage, P, = P_,,.

Ainsi, X (fp)(z) = —1 si la trajectoire partant de x revient en [0] avant d’atteindre [p], soit avec
une probabilité 1 — P, proche de 1. Conditionnée par étre positive, c’est-a-dire si la trajectoire passe
par [p] avant de revenir en [0], la fonction Xjg(f,) + 1 est le temps d’atteinte d’un événement de
probabilité P,.

On se rameéne ainsi au temps d’atteinte d’événements de petite mesure. Une version légérement
renforcée du Corollaire donne le comportement asymptotique du moment d’ordre 2 de Xy (f,) :

2
/ 2[0]<fp)2 dp ~psioo N
A P

Avec 'Equation (13.5), on retombe finalement sur la Proposition [13.12]:

O-éK(A’ 122 T; F)
2|p|

Pp ~p—too
13.5 Pour aller plus loin : Autour de la théorie du potentiel

Pour terminer, nous proposons quatre pistes de recherche liées a larticle [226] dont nous venons
de présenter le contenu.
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13.5.1 Gaz de Lorentz

Un premier probléme naturel est de s’affranchir du cadre des transformations Gibbs-Markov. En
particulier :

Question 13.16.
Les Propositions |15.19 et|15.15 restent-elles valables pour 'application collision d’un gaz de Lo-
rentz, respectivement sur un cylindre ou dans le plan ¢

Deux stratégies semblent raisonnables. La premiére consiste a utiliser les tours de Young : on sait
répondre & ces questions dans le cadre des transformations Gibbs-Markov, et un billard de Sinal est,
a une projection prés, une tour au-dessus d’une transformation Gibbs-Markov.

Cependant, les Propositions [13.12] et [13.13| ne permettent de controler que les temps markoviens,
c’est-a-dire les temps d’atteinte d’un obstacle qui sont aussi les temps auxquels le processus revient
a la base de la tour de Young.

Une seconde stratégie consisterait a refaire ’ensemble du raisonnement. Cette approche est plus
ambitieuse. La partie reposant sur la méthode de Nagaev—Guivarc’h se transpose aisément en utilisant
les espaces de distributions anisotropes de Demers—Zhang [74]. De 14, on serait tenté rester dans le
cadre de tels espaces. I faudrait donc généraliser I'identité de balayage (Proposition a des
espaces de distributions ; la méthode d’induction probabiliste suggérée en Sous-section pourrait y
jouer un role. Ceci dit, la principale difficulté semble étre de controler les propriétés de 'application
T de premier retour en [0], qui joue un role central dans notre raisonnement.

13.5.2 Espérance du temps d’atteinte

Soit (S,)n>0 une marche aléatoire sur le groupe abélien fini G = (Z/r1Z) x ... x (Z/r4Z), de
noyau de transition P. Soit ¢y le premier temps d’atteinte (positif ou nul) de 0. Alors Eqo(pg) = 0,
et, pour p # 0,

»(Po) =1+ Z PyE,
p'eG
Autrement dit, si 'on pose F(p) := E,(¢o), alors F(0) = 0 et (Id—P)(F) = 1 hors de 0. On peut
ainsi calculer F'.

Le mouvement Brownien satisfait une propriété similaire. Soit (B;);>0 le mouvement brownien
partant de p € (a,b). Alors :

E(inf{t >0: B, € {a,b}}) = (b—p)(p—a),

qui est bien solution de '¢quation =*(F) = 1 sur (a, b).
Cette technique se généralise. Sil'on pose F(p, 2) := E,(e*%0), alors F(0,2) = 1 et (Id —e*P)(F) =
0 hors de 0. En dérivant cette relation en z = 0, on retrouve I’équation satisfaite par ’espérance du

temps d’atteinte.

Question 13.17. B

On se donne une extension markovienne ergodique ([Z%), i1, T) d’une transformation Gibbs-Markov
(A, 1, T). Soit A < Z* un réseau peu dense. Que peut-on dire du temps d’atteinte @pz) de [A] dans
(24, 1, T) ou, de fagon équivalente, du temps d’atteinte de [0] dans la Z/ A-extension quotient ? En

particulier, la fonction
{ 7N — R,
F: _ ~ 3
p = [, P (ps @) du(z)

135



a-t-elle un profil limite quand A < Z% devient trés peu dense?

L’un des intéréts de cette question est que la théorie des temps d’atteinte de petits ensembles,
en-dehors de la mesure de I’ensemble que ’on cherche & atteindre, fait en général intervenir des objets
définis globalement, tels que des valeurs propres principales d’opérateurs de transfert perturbés [142],
ou les queues du temps d’atteinte. La Question porte sur le comportement local (I’espérance
sur chaque [p]) d’un temps d’atteinte["}

13.5.3 Systémes transients

La quasi-totalité de ce mémoire a porté sur des systémes ergodiques conservatifs. Pour les Z-
extensions de systémes Gibbs-Markov, cela limite I’étude aux dimensions 1 et 2. Que peut-on dire
en dimension supérieure ?

Comme en Sous-sous-section |13.5.2) revenons aux marches aléatoires. Soit (.S,,),>0 une marche
aléatoire dans Z? partant de 0. Posons, pour p € Z,

G(p) =Y P(S.=p).

Le temps total passé en 0 suit une loi géométrique d’espérance G(0). Conditionné par étre strictement
positif, par la propriété de Markov forte, le temps total passé en p suit aussi une loi géométrique
d’espérance G(0), tandis que la loi non conditionnée est d’espérance G(p). Il s’ensuit que

P(3n>0: Sn:p):%. (13.6)

Sous des hypothéses raisonnables sur le noyau de transition de la marche aléatoire, le noyau de
Green G(p) peut étre approché dans le régime p — 0o, ce qui permet de calculer asymptotiquement
la probabilité que la marche aléatoire passe en p.

Soit ([Z%), i, T) une extension markovienne ergodique d’un systéme Gibbs-Markov (A, i, T). Le
noyau de Green se calcule de la méme facon que pour les marches aléatoires. De plus, les transfor-
mations Gibbs-Markov satisfont une forme faible de la propriété de Markov forte (Proposition .
On montre donc facilement que, dans ce cadre, il existe une constante C' > 0 telle que, pour tout
p ez,

p(Fn>0: STF =p) 20%. (13.7)

Question 13.18.

Soit ([29], 1, T) une extension ergodique transiente d’un systéeme Gibbs-Markov (A, p, T) de saut
F raisonnable (par exemple, centré et de carré intégrable). Existe-t-il une constante C > 0 telle que

P(In>0: S'F =p) ~pseo CG(p) 7 (13.8)

69. Nous renvoyons la lectrice a la Sous-section pour de tels exemples d’énoncés asymptotiques.

70. A titre personnel, ce type de question est I'une des raisons pour lesquelles j’apprécie les structures de Z9-
extensions. D’une part, leur étude fait intervenir des techniques diverses : adaptation de raisonnements probabilistes,
métodes de perturbation d’opérateurs, méthodes de cones... D’autre part, la possibilité d’opérer des renormalisations
spatiales réintroduit de la géométrie dans des questions dynamiques.
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Une telle propriété, plus forte que 1'Inégalité ((13.7)), reposerait sur une forme de perte de mémoire.
Plus précisément, soit A, := {Eln >0: STF = p} et Tj, 'application de premiére atteinte en [p],
qui est bien définie sur A,. Alors

“+o0
G(p) = M(Ap)/ Z Vst p—op dTqp (- | Ap).

P n=0

Si la suite de mesures Tj, .u(- | Ap) converge en un sens assez fort vers une mesure limite p., quand
p tend vers l'infini, alors la question serait résolue avec C~1 = Z:i% oo (Sg; F = 0). Mais cette
convergence signifie que la Z¢ extension partant de [0], conditionnée pour arriver en un [p] éloigné
de [0], ne se souvient plus de la direction dont elle vient.

Remarquons a ce sujet que 'Equation s’adapte a des marches aléatoires sur des groupes
quelconques, et notamment sur le groupe libre F5. En revanche, I'analogue de la Question
pour des extensions de systémes Gibbs-Markov par le groupe libre F5 est certainement fausse. Il faut
donc bien utiliser des propriétés spécifiques aux marches aléatoires sur Z¢ pour espérer répondre a

la Question [13.18]

Un tel énoncé serait un exemple rare de résultat de théorie ergodique portant sur des systémes
transients.

La Question se pose aussi pour le gaz de Lorentz tridimensionnel, qui est physiquement plus
réaliste que le modéle bidimensionnel. Il faut cependant faire attention & ce que le gaz de Lorentz
tridimensionnel est une Z3-extension d'un billard de Sinai tridimensionnel, et les billards de Sinai
tridimensionnels sont mal compris (voir a ce propos la discussion en Sous-sous-section . Si
I'on s’attend a ce que le billard de Sinal tridimensionnel ait un comportement proche d’une marche
aléatoire sur Z3, méme sa transience n’est pas démontrée.

Un autre systéme transient lié & ces sujets est celui de la marche aléatoire sur Z? conditionnée
par ne pas passer en 0, qui a vu des développements récents [60,/196]. La définition d’un tel objet
pour des Z2-extensions, et la démonstration de ses propriétés, est aussi un enjeu de recherche.

13.5.4 Théorie du potentiel et distributions

Un projet plus vaste, mais moins précis, consiste a explorer dans le cadre de systémes dynamiques
hyperboliques I'articulation entre la théorie du potentiel (voir par exemple la Sous-section 8.3 et les
espaces de distributions anisotropes (voir par exemple la Sous-sous-section [3.4.5)).

Un lieu pour ce faire serait celui des compactifications d’espaces hyperboliques. Par exemple, soit
H? le plan hyperbolique. On dispose de plusieurs notions de bord pour cet espace, qui sont autant
de facons de le compactifier. Par exemple :

o Le bord visuel est l'espace des rayons (ou demi-droites) géodésiques, ot deux rayons sont
équivalents s’ils sont a distance bornée [87]. Cette construction est topologique et repose sur
les géodésiques de I'espaces. Le bord visuel de H? est ainsi S;.

e Considérons le mouvement brownien (B;);>o sur H2. Son générateur est le laplacien, et I'espace
des fonctions harmoniques bornées sur H? est naturellement isomorphe a L°°(S;, Leb) via
intégration contre des noyaux de Poisson. Le bord de Poisson du mouvement brownien sur H?
est donc I'espace mesuré (S, Leb) sous-jacent, hélas dépouillé de sa structure topologique [130].

e Le bord de Martin du mouvement brownien s’appuie aussi sur un processus stochastique,
mais a ’avantage de fournir comme bord un honnéte espace topologique, et non un espace
mesuré |7,|130L[171].

Question 13.19.
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Peut-on définir une notion de bord, par exemple sur ’espace hyperbolique H™, qui satisfait les
conditions suivantes :
e La construction est de nature analytique, et fait intervenir par exemple les fonction harmo-
niques pour un noyau donne ;
e La construction repose sur le flot géodésique, et non sur une marche aléatoire ou un mouvement
brownien ;
e La construction fournit une compactification topologique de H™ ?

Soit X le générateur du flot topologique. L’espace des fonctions harmoniques pour ce générateur
est I'espace des fonctions f : THH™ — C telles que X(f) = 0, c’est-a-dire constantes le long des
géodésiques. Or l'espace des géodésiques est paramétré par les extrémités a 'infini, nécessairement
distinctes, des géodeésiques, et est donc (S,_1 X S,,_1) \ Diag. Cet espace est trop gros.

L’analogue de laction de A ~ C°(H",C) sera donc plutot 'action de X sur un espace de
distributions anisotropes. L utilisation de tels espaces de distributions permettrait d*“effacer le passé”,
ce qui manquait dans ’argument précédent. L’enjeu serait alors de définir I’analogue de la frontiére de
Martin dans des espaces de distributions anisotropes, et d’avoir une définition suffisamment maniable
pour pouvoir étre appliquée au moins dans le cadre des espaces hyperboliques H".

138



Conclusion

Comme je l'avais annoncé en introduction, ce mémoire est une synthése de quatre travaux
[1841/185/222}226|. Mais cette synthése est une reconstruction a posteriori de ce projet de recherche,
dont la logique est étrangere a ’acte de recherche lui-méme. Pour terminer, j'aimerais revenir chrono-
logiquement sur ce projet ; en bref, au lieu d’exposer cliniquement les résultats de ce projet, raconter
un cheminement intellectuel.

Le point de départ : un théoréme limite distributionnel [222]

Le point de départ est un de mes travaux de thése [222], qui portait sur les limites en loi des
sommes de Birkhoff d’observables d’intégrale nulle. Le Théoréme s’applique & des observables
qui répondent a trois critéres : étre d’intégrale nulle, étre réguliére, et étre suffisamment intégrable.
Les deux premiers critéres sont naturels et faciles a vérifier, mais le critére d’intégrabilité est plus
obscur : il demande que Xy (| f|) € LI(A, ) pour un réel ¢ > 2.

Un argument qualitatif permet de vérifier que c’est le cas si f € L([Z], ) et est & support borné,
mais on préférerait une condition suffisante plus générale portant sur la vitesse de décroissance de f
en l'infini.

Dans le cas des marches aléatoires, ce point est résolu dans les travaux de E. Csaki et A. Foldes |64,
65], sur lesquels je me suis fortement appuyé pendant ma thése. Des outils de théorie probabiliste
du potentiel permettent de calculer la probabilité qu'une excursion partant de 0 passe par p avant
de revenir en 0. On en déduit la loi du temps NV, passé en p avant de revenir en 0, ce qui apporte un
controle suffisant sur HZ[O](|f|)HLq ;

120 (D] = 1D FEIN| <D 1IN -

peZd La peZd

On retrouve 1a des idées rencontrées en Sous-section [13.4]

Redémontrer le théoréme précédent, a une nuance prés : [184]

L’étape suivante est la premiére partie de [184]. La problématique reste proche de mes travaux
de thése : trouver des limites en loi de sommes de Birkhoff. En suivant une idée de Francoise Péne,
nous avons appliqué la méthode des moments a ce probléme. Si cela conduit a des calculs trés lourds
— mais pas dénués d’élégance combinatoire — nous avons pu aboutir au Théoréme[6.7] La limite en loi
est la méme que celle donnée par le Théoréme mais la variance asymptotique a une expression
plus facile a analyser. Le critére d’intégrabilité est donc plus explicite : on a bien une condition de
décroissance sur f, avec un exposant pratiquement optimal.

L’histoire aurait pu s’arréter la : le probléme consistant & obtenir un bon critére d’intégrabilité
pour les observables est essentiellement résolu[’} Mais 1'idée d’obtenir des résultats de théorie du
potentiel a creusé son chemin. L’argument de E. Cséki et A. Foldes présenté ci-dessus consiste a
partir d’informations sur la probabilité qu'une excursion partant de 0 atteigne p € Z¢, en déduire
des informations sur N, puis sur || S (| f])]|, (o1p)- On peut le parcourir en sens inverse. Les deux
théorémes distributionnels ont pour conséquencé le Corollaire : la formule de Green—Kubo est
invariante par ce procédé d’induction. Le raisonnement de la Sous-section s’ensuit. On peut
estimer || Sy (1, — 1o) HLQ (oL €t de 1a la probabilité d’atteindre [p] avant de revenir en [0].

Remarquons au passage que deux nouvelles briques ont fait leur apparition : les perturbations
d’opérateurs, et la théorie des temps d’atteinte d’événements de petite mesure.

71. Bien que l'on puisse toujours se demander si ce critére peut étre affaibli.

139



Aprés |[184]
L’article [184] a joué un role pivot dans ce projet. Certains résultats que nous sommes parvenus

a démontrer étaient aussi fascinants qu’insatisfaisants. Du point de vue du calcul des probabilités
d’atteinte, la stratégie employée est astucieuse, mais hautement inefficace.

D’une part, elle repose sur des constructions lourdes. Il faut d’abord démonstrer des théorémes
limites distributionnnels de deux facons différentes, la premiére reposant sur un argument de couplage
particuliérement fort et technique et de longues réductions ( [221,222|, technique présentée en Sous-
section , la seconde sur la méthode des moments, particuliérement calculatoire ( [184], technique
présentée en Sous-section . C’est bien la conjonction de ces deux théorémes limites qui permet
d’obtenir 1'égalité des formules de Green—Kubo (Corollaire . Cette longueur et cette technicité
sont autant d’obstacles a de potentielles généralisations.

D’autre part, cette stratégie apporte des résultats relativement faibles. Si 'on peut calculer les
probabilités de transition entre deux sites, elle échoue a partir de trois sites. En effet, le raisonnement
passe par la formule de Green-Kubo, qui est une forme quadratique. Elle ne contient donc que
I'information du symétrisé de I'opérateur potentiel discrétisé, et donc du symétrisé de la matrice
des probabilités de transition. On a perdu une partie de U'information. Ainsi, I'Exemple [13.14] ou
apparaissent des matrices non symétriques, ne peut pas étre obtenu par cette méthode.

Un autre point qui a soulevé notre intérét est la propriété d’invariance par induction de la formule
de Green—Kubo. Cette propriété était plus ou moins connue dans certains cas en mesure finie, mais le
fait de retomber dessus par surprisem et de pouvoir I'exploiter comme nous 'avons fait pour estimer
des probabilités d’atteinte lui a donné un nouveau relief.

Le Corollaire est une égalité entre deux versions de la formule de Green-Kubo, donc entre
deux expressions algébriques relativement simples. S’il est possible de le démontrer griace a des
théorémes probabilistes, il elit été esthétiquement plus satisfaisant de disposer d’un argument plus
élémentaire, reposant par exemple sur des découpages et recombinaisons d’intégrales. Nous nous
apercevons cependant assez vite que les arguments formels ont leurs limites, et que les questions de
sommabilité sont cruciales : I’Exemple a tot fait de punir le mathématicien trop téméraire@.

Vers la théorie du potentiel : [185]

Si je souhaite alors une approche plus propre de ’estimation des probabilités d’atteintes dans des
Z4-extensions, la solution évidente consiste & adapter directement les arguments de théorie probabi-
liste du potentiel. Afin de montrer I'avantage de cette méthode, il est important de travailler avec au
moins 3 sites différents. C’est & ce moment que je méne les calculs explicites de la Sous-section [10.]]
sur les marches aléatoires, qui me permettent de distinguer les trois étapes de ce calcul et de repérer
I'importance de I'identité de balayage.

L’adaptation aux systémes dynamiques rencontrera un obstacle supplémentaire. Si I’on peut en-
coder une marche aléatoire par un systéme dynamique, la marche aléatoire a une donnée supplémen-
taire : une filtration. En 'absence de celle-ci, une traduction directe de I'identité de balayage conduit
a la version pour 'opérateur de Koopman, et a I'obstruction découlant du théoréme de Livsic (Sous-
section . Il me faudra plusieurs mois pour penser a introduire 'opérateur de transfert et 'identité
de balayage associée, alors que ce type de traduction est pourtant classique en théorie ergodique.

L'opérateur (Id —£)~! apparait aussi dans la formule de Green-Kubo, et les propriétés de la

72. Nous nous en sommes apergu lors d’une soirée de conférence & I’aber Wrac’h en 2016. L’expression initiale de la
variance asymptotique dans le Théoréme [6.7] était assez différente, donc cette propriété de la formule de Green—-Kubo
n’était pas apparente de prime abord.

73. Le chatiment consistant en des journées & chercher une erreur subtile — typiquement, un mauvais choix de jauge
— dans un lourd calcul. Voir & ce sujet la note correspondante dans ’'Exemple
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formule de Green—Kubo sont étroitement liées a la théorie du potentiel@. Il n’est donc pas tres
surprenant, mais tout de méme heureux, que l'identité de balayage se soit avérée utile pour rendre
rigoureux les arguments formels justifiant 'invariance par induction de la formule de Green—-Kubo.

A ce point, tout est en place pour Uarticle |185]. Celui-ci se concentrera sur I'identité de balayage,
et aura deux objectifs : justifier 'invariance par induction de la formule de Green-Kubo, et préparer
le terrain pour un travail ultérieur sur les probabilités de transition dans les Z%extensions. Nous
I’enrichissons de quelques trouvailles rencontrées au passagem.

Conclure, enfin : [226]

La suite et fin de ce projet est article [226]. Celui-ci a eu une longue genése. J’ai commencé a
y réfléchir & partir de 2017, puis les différentes idées se sont lentement cristallisées : j’en esquisse la
stratégie au cours de 'année 2018, mais sa rédaction a principalement eu lieu en 2020 et 2021. Entre
temps, afin de varier les plaisirs, je travaille sur des projets plus courts ( [224}225| notamment@.

Méme avec une stratégie claire, on peut recontrer des problémes techniques plus ou moins génants.
Par exemple, le fait de travailler avec plusieurs sites introduit des matrices de transition, et donc des
problémes de commutativité ; la gestion de cette non-commutativité a été un point d’achoppement,
et reste un des passages les plus techniquesm de [226].

Le temps que je me suis donné pour réfléchir a cet article m’a cependant permis d’aplanir les plus
sérieux de ces problémes. La structure des extensions ergodiques (Sous-section , qui trivialise
la réduction au cas ot le systéme (A, i, Tjg)) mélangeant, en est un exemple. Mais le cas le plus
marquant pour moi est celui de la compacité pour la famille a(t) ™' (Id —F;), un des points clef de la
Sous-section Mon idée initiale reposait initialement sur un argument de décomposition multi-
échelles des composantes métastables [99]. Un tel argument était affreusement technique, méme dans
ses versions préliminaires. J’ai pu cependant le simplifier au fur et & mesure, jusqu’a arriver & une
série de 5 (in)égalités simples, que 'on retrouve a la fin de la démonstration de [226, Lemma 4.4].

Ce dernier exemple est & I'image du chemin suivi par ces recherches. Ce projet a été semé de
questions et d’écueils, dont les plus importants ont parfois disparu dans la synthése qui en est offerte
aux lecteurs.

74. Comme 'a montré [184], on peut utiliser les deux pour retrouver des probabilités d’atteinte.

75. En vrac : le cas des équations de Poisson tordues (méme s’il n’est alors pas dit qu’elles seront utiles), le lien avec
la récurrence des chaines de Markov duales, la possibilité d’induire sur un ensemble de mesure infinie, ou encore les
invariants de degré supérieur.

76. L’article [224] doit beaucoup & ma familiarité avec les Z?-extensions, et donc au projet de recherche que je
présente dans ce mémoire.

77. Ce que je résumerai en trois mots : Baker—Campbell-Hausdorff.
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