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Résumé : Ce mémoire présente des travaux
à  l’intersection  de  deux  traditions
mathématiques :  d’une  part  l’analyse
spectrale  des  opérateurs  de  transfert  en
théorie  ergodique,  et  d’autre  par  la  théorie
probabiliste  du  potentiel,  qui  porte  sur  les
chaînes de Markov.

Les  extensions  abéliennes  sont  une
généralisation,  dans  le  cadre  des  systèmes
dynamiques,  des  marches  aléatoires.  Les
techniques  développées  pour  les  marches
aléatoires  se  transposent  parfois  à  ces
extensions : le théorème central  limite et le
théorème  central  limite  local  en  sont  des
exemples.

Nous présentons ici une transposition de la
théorie  probabiliste  du  potentiel,  et  plus
précisément  le  calcul  de  probabilités
d’atteintes entre parties éloignées d’un tel
système dynamique.

Ce  sujet  est  en  outre  l’occasion  de
découvrir  diverses  facettes  de  la  théorie
des  systèmes  dynamiques :  théorèmes
limites en loi pour des sommes de Birkhoff ;
résonances de Ruelle pour des billards de
Sinaï ;  identité  de  balayage,  invariants
d’induction et formule de Green-Kubo ; ou
encore temps d’atteinte de petites cibles et
états  métastables  pour  n’en  citer  que
quelques-uns.

Title : Ergodic theory, potential theory : A study of Abelian extensions

Keywords : Ergodic theory, Potential theory, Random walk, Metastability

Abstract : The works included in this memoir
are at the intersection of two mathematical
traditions :  spectral  analysis  of  transfer
operators in ergodic theory on the one hand,
and  probabilistic  potential  theory  –  which
applies to Markov processes – on the other
hand.

Abelian  extensions  are  a  generalization,  in
the setting of dynamical systems, of random
walks.  Tools  developped  for  random  walks
may  sometimes  be  transposed  to  these
extensions. This is the case, for instance, of
the  Central  Limit  Theorem  and  the  Local
Central Limit Theorem.

We present  therein  a  transposition  of  the
probabilistic  potential  theory,  more
precisely  the  computation  of  hitting
probabilities  between  parts  of  such  a
system which are far enough one from the
other.

This  subject  is  also  an  opportunity  to
discover  other  aspects  of  dynamical
systems :  limits  in  distribution  for  Birkhoff
sums ; Ruelle resonances for Sinaï billiards ;
balayage identity,  induction invariants and
the Green-Kubo formula ; or hitting time of
small targets and metastability.
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Introduction
Au cours des dix années passées, un projet de recherche m’a particulièrement tenu à cœur. Il

porte sur les applications de la théorie probabiliste du potentiel à une classe de systèmes dynamiques,
les Zd-extensions, et a donné lieu à quatre publications [184,185,222,226].

L’objet final de ce projet a été l’étude des probabilités de transitions dans des Zd-extensions récur-
rentes. Ces systèmes dynamiques généralisent les marches aléatoires sur Zd. Le calcul de probabilités
de transition de marches aléatoires est établi depuis longtemps, et fait appel à la théorie probabiliste
du potentiel [213]. On s’attend à pouvoir développer une théorie similaire pour des Zd-extensions
dont les transitions sont engendrées par un système dynamique chaotique.

Adapter la théorie du potentiel à de tels systèmes dynamiques ne se fait pas sans mal. Cela
demande une assez large variété de techniques et des idées de nature dynamique : opérateur de
transfert, perturbations de valeurs propres, méthode de Nagaev–Guivarc’h, temps d’atteinte de petits
évènements, théorèmes limites distributionnels... La seule formulation du cadre de recherche et des
énoncés n’est pas évidente.

Ce mémoire, au-delà d’une présentation des principaux résultats de ce projet, se veut une intro-
duction à ce domaine de recherche. J’y présenterai les principales idées et techniques en jeu, avec
pour objectif de remettre dans leur contexte les problématiques et la stratégie de [226]. J’y ai inclus
certaines démonstrations, souvent simplifiées, quand il m’a semblé que les techniques utilisées étaient
suffisamment générales.

Les quatre travaux au centre de ce mémoire, par ordre chronologique d’écriture, sont les suivants :

Travaux portant sur la théorie probabiliste du potentiel
• [222] Variations on a central limit theorem in infinite ergodic theory. Ergodic Theory

and Dynamical Systems, 35 (2015), no. 5, 1610–1657.
• [185] Probabilistic potential theory and induction of dynamical systems. Avec Fran-

çoise Pène. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 57
(2021), no. 3, 1736–1767.
• [184] Potential kernel, hitting probabilities and distributional asymptotics. Avec

Françoise Pène. Ergodic Theory and Dynamical Systems, 40 (2020), no. 7, 1894–
1967.
• [226] Potential theory and Zd-extensions. arXiv :2112.08339v1. Déposé le 15 dé-

cembre 2021. À paraître aux Mémoires de la Société Mathématique de France. 83
pp.

J’ai cependant pour objectif de présenter diverses techniques de théorie ergodique. J’en profiterai
pour aborder, à l’occasion, mes autres travaux de recherche, qui ne sont pas si éloignés.
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Autres travaux de l’auteur
• [220] A spectral gap for transfer operators of piecewise expanding maps. Discrete

and Continuous Dynamical Systems, 30 (2011), no. 3, 917–944.
• [221] A generalized central limit theorem in infinite ergodic theory. Probability

Theory and Related Fields, 158 (2014), no. 3-4, 597–636.
• [223] Local time and first return time for periodic semi-flows. Israel Journal of

Mathematics, 215 (2016), no. 1, 53–98.
• [224] Sinaï billiard maps with Ruelle resonances. Nonlinearity, 33 (2020), no. 12,

6971.
• [225] Keplerian shear in ergodic theory. Annales Henri Lebesgue, 3 (2020), 649–676.
• [186] Central limit theorems for the Z2-periodic Lorentz gas. Avec Françoise Pène.

Israel Journal of Mathematics, 241 (2021), 539–582.

Afin de les distinguer des autres travaux, à partir de maintenant, les articles de recherche auxquels
j’ai contribué seront cités en rouge.

Ce texte est structuré comme suit. La première partie, Théorie spectrale de l’opérateur de transfert,
est une introduction générale aux systèmes dynamiques chaotiques, y compris du point de vue mesuré.
J’y introduit ensuite les outils principaux de ces travaux : l’opérateur de transfert, ses propriétés
spectrales et ses perturbations. Cette partie se termine par une démonstration, classique, du théorème
central limite pour des systèmes dynamiques par la méthode de Nagaev–Guivarc’h.

Dans la seconde partie, Zd-extensions, nous introduirons lesdites extensions, qui généralisent les
marches aléatoires. Les méthodes spectrales de la première partie, poussées dans leurs retranchements,
donneront les premiers théorèmes de [185]. J’en profiterai aussi pour parler de résonances de Ruelle
dans les billards [224].

La troisième partie, Transformations induites et théorie du potentiel, part dans une autre direction.
Les objets centraux sont la notion de système induit et ses liens avec la théorie du potentiel via
l’identité de balayage. Si cette partie est essentiellement extraite de [184], je reviendrai brièvement
sur certains de mes travaux de thèse [221,222].

Tous les éléments sont alors en place pour la quatrième partie, Théorie du potentiel et Zd-
extensions, qui se concentre sur [226].

Enfin, j’ai choisi d’achever ce mémoire sur une conclusion qui présente un autre point de vue sur
ces recherches : non pas une synthèse, mais un récit du déroulement de ce projet.

Les buts d’un tel mémoire sont multiples : introduction à un domaine de recherche, revue –
partielle et partiale – de la littérature, présentation d’un projet de recherche achevé, offre de nouvelles
pistes de recherches... J’espère avant tout que tout lecteur ou lectrice y trouvera quelque chose qui
l’intéressera.

12



Première partie

Théorie spectrale de l’opérateur de transfert
Dans un premier temps, nous allons présenter divers exemples de systèmes dynamiques chaotiques,

du point de vue topologique (Section 1 : Dynamiques expansives) et mesuré (Section 2 : Un point de
vue mesuré).

Nous nous attarderons, dans la Section 2, sur deux points plus spécialisés. D’une part, la théorie
ergodique sera abordée dans le cadre de mesures potentiellement infinies, afin de pouvoir s’appliquer
par la suite aux Zd-extensions. D’autre part, nous introduirons les transformations Gibbs-Markov,
dont les propriétés sont utilisées extensivement dans [226], et jouent donc un rôle particulier dans
le projet de recherche associé.

Enfin, la Section 3 : L’opérateur de transfert est dédiée aux opérateurs de transfert et aux proprié-
tés spectrales de leur action sur des espaces de Banach bien choisis. Nous y aborderons notamment
les espaces de distributions anisotropes, très utiles dans l’étude des transformations Anosov et des
billards de Sinaï, ainsi que les perturbations d’opérateurs et leur application à la démonstration d’un
théorème central limite.

1 Dynamiques expansives

1.1 Transformations expansives

Nous nous concentrerons dans cette partie du mémoire sur des dynamiques uniformément hy-
perboliques, et plus précisément des dynamiques expansives. Un cas particulier en est donné par les
transformations uniformément dilatantes du cercle.

Définition 1.1 (Transformations expansives et uniformément expansives).
Soit (A, d) un espace métrique et T : A → A mesurable. Le système dynamique (A, d, T ) est

expansif s’il existe δ > 0 tel que, pour tout x 6= y, il existe n ≥ 0 tel que d(T n(x), T n(y)) ≥ δ.
Autrement dit, la dynamique va séparer d’au moins δ toute paire de points distincts.

Le système dynamique (A, d, T ) est uniformément expansif s’il existe Λ > 1 et δ > 0 tels que,
pour tous x, y tels que d(x, y) ≤ δ,

d(T (x), T (y)) ≥ Λd(x, y).

L’expansivité uniforme implique l’expansivité avec la même constante δ. L’expansivité garantit
une forme d’instabilité de la dynamique. Une erreur, aussi petite qu’elle soit, sur la condition initiale
conduit à des trajectoires qualitativement différentes, à distance au moins δ l’une de l’autre à un
instant donné. Donnons quelques exemples de telles dynamiques.

1.2 Transformations du cercle et de l’intervalle

Un exemple simple de dynamique expansive est donné par les transformations uniformément
dilatantes du cercle ou de l’intervalle.

Définition 1.2 (Transformation C1+θ uniformément dilatante du cercle).
Soit θ ∈ (0, 1). Une transformation T : S1 → S1 est C1+θ uniformément dilatante 1 si :

1. Pour simplifier notre présentation, nous demandons ici que la transformation T elle-même soit uniformé-
ment dilatante. En général, il suffit d’exiger que T ait une itérée dilatante, c’est-à-dire qu’il existe N ≥ 1 tel que
minS1 |(TN )′| > 1.

13



• T ∈ C1(S1, S1) et T ′ est θ-höldérienne,
• Λ := minS1 |T ′| > 1.

Une transformation C1+θ uniformément dilatante du cercle est uniformément expansive avec la
même constante Λ. La condition de régularité de la dérivée T ′ n’a pas encore d’influence, mais sera
primordiale quand nous étudierons les aspects mesurés de telles transformations.

Exemple 1.3.
Soient n un entier tel que |n| ≥ 2 et t un réel tel que |t| <

√
Φe1−Φ

2π
(|n| − 1) ' 0.109(|n| − 1), où Φ

est le nombre d’or. Alors la transformation

Tn,t :

{
S1 → S1

x 7→ nx+ tesin(2πx)

est une transformation analytique uniformément dilatante du cercle.

Figure 1 – Graphe de la transformation T−3, 0,15.

Donnons deux autres exemples de transformations expansive de l’intervalle, elles aussi ayant un
caractère uniformément hyperbolique. Commençons par la famille des β-transformations. qui ne sont
pas globalement C1+θ mais seulement lisses par morceaux.

Définition 1.4 (β-transformation de l’intervalle).
Soit β > 1. La β-transformation est définie par :

Tβ :

{
[0, 1) → [0, 1)
x 7→ βx [1]

Soient β > 1 et x 6= y ∈ [0, 1]. La β-transformation Tβ a une nombre fini de discontinuités, dont la
taille est donc minorée par un δ0 > 0. Tant que T n(x) et T n(y) sont dans le même domaine de conti-
nuité de T n, leur distance est multipliée par un facteur β à chaque itération. Comme d(T n(x), T n(y))
est borné par 1, les points T n(x) et T n(y) vont finir par tomber dans des domaines de continuité
différents de T , disons à un instant N ≥ 1. Si TN(x) et TN(y) sont trop proches, ils vont être très

14



Figure 2 – Graphe de la β-transformation Tπ.

proches et de part et d’autre d’une même discontinuité, et donc TN+1(x) et TN+1(y) vont être séparés
d’au moins δ0/2. On peut donc s’assurer que max{d(TN(x), TN(y)), d(TN+1(x), TN+1(y))} est borné
inférieurement par une constante strictement positive, et donc que Tβ est expansive.

Enfin, donnons un exemple ayant une infinité de branches, la transformation de Gauss.

Définition 1.5 (Transformation de Gauss).
La transformation de Gauss est donnée par

T :

{
(0, 1] → [0, 1]
x 7→ 1

x
[1]

Figure 3 – Graphe de la transformation de Gauss.
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Cette transformation n’est pas expansive au sens de la Définition 1.1, mais va néanmoins exhiber
le même type d’instabilité. De plus, elle constituera un exemple simple dans la suite de ce texte.

Remarquons que l’ensemble de définition de la transformation de Gauss n’est pas stable par T ; un
sous-ensemble stable serait, par exemple, [0, 1]\Q. De plus, la dérivée de la transformation de Gauss
en 1 est de −1, ce qui est a priori un autre obstacle à l’expansivité uniforme. On peut cependant
modifier la métrique pour faire de T une transformation uniformément expansive sur chaque intervalle(

1
n+1

, 1
n

]
avec constante d’expansivité uniforme, par exemple en choisissant

d(x, y) :=

∣∣∣∣∫ y

x

1

1 + t
dt

∣∣∣∣ =

∣∣∣∣ln(1 + x

1 + y

)∣∣∣∣ . (1.1)

Remarque 1.6 (Développement en fraction continue).
La transformation de Gauss T est intimement liée aux développements en fractions continues des

réels. Soit x ∈ (0, 1) irrationnel. Alors T n(x) est bien défini pour tout n, et x admet un développement
en fractions continues :

x = [0 : b1, b2, . . .] = 0 +
1

b1 + 1
b2+···

.

De plus, 1
b1+1

< x < 1
b1

et T (x) = [0 : b2, b3, . . .]. Par récurrence, pour tout k ≥ 1, l’entier bk est

l’unique entier tel que T k−1(x) ∈
(

1
bk+1

, 1
bk

)
.

1.3 Transformations markoviennes

Une seconde classe d’exemples est constituées de systèmes symboliques, dont les plus simples sont
les sous-décalages de type fini.

Définition 1.7 (Sous-décalage de type fini).
Soit I un ensemble fini et M une matrice |I| × |I| à coefficients dans {0, 1}. Le sous-décalage de

type fini défini par M est la donnée de l’espace Σ+
M := {x ∈ IN : Mxnxn+1 = 1 ∀n ≥ 0}, et de la

transformation

σ :

{
Σ+
M → Σ+

M

(xn)n≥0 7→ (xn+1)n≥0
,

l’espace Σ+
M ⊂ IN étant bien un compact σ-invariant.

Un élément x ∈ IN peut être vu comme un chemin infini sur le graphe (orienté, à boucles)
complet dont les sommets sont les éléments de I. Une matrice de transition M équivaut à la donnée
de transitions autorisées pour de tels chemins, et Σ+

M à l’espace des chemins autorisés.
Rien ne dit a priori que Σ+

M est non vide. Pour cela, on peut faire une hypothèse plus forte :
l’irréductibilité du système (Σ+

M , σ), exprimée ici comme propriété combinatoire de la matrice M .

Définition 1.8 (Irréductibilité).
Soit I un ensemble fini. Une matrice de transition M sur I est dite irréductible si, pour tous i,

j ∈ I, il existe n ≥ 1 tel que (Mn)ij ≥ 1.

Sous cette condition, l’espace topologique Σ+
M est un compact non vide. Il peut être muni d’une

métrique générant sa topologie. Le choix le plus fréquent consiste à définir le temps de séparation

s(x, y) := inf{n ≥ 0 : xn 6= yn}, (1.2)

puis, pour un θ ∈ (0, 1) quelconque, de poser

dθ(x, y) := θ−s(x,y). (1.3)
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La transformation σ est alors θ-lipschitzienne, et le système (Σ+
M , T ) est expansif. Le système (Σ+

M , T )
est de plus markovien : il existe une partition α = {{x ∈ Σ+

M : x0 = i}, i ∈ I} de Σ+
M telle que l’image

T (a) de tout élément a ∈ α est une union d’éléments de α (ou, autrement dit, est σ(α)-mesurable).
Une telle partition permet de définir des cylindres : ce sont les sous-ensembles de Σ+

M de la forme

a = [a0, . . . , an−1] := {x ∈ σ+
M : xk = ak ∀k < n} ∈

n−1∨
k=0

T−kα,

où n ≥ 0 et (a0, . . . , an−1) ∈ αn.
Certaines transformations de la Sous-section 1.2 peuvent se coder symboliquement. Pour cela, on

construit une partition α de l’espace A, et à un point x ∈ A on associe la suite des éléments de la
partition auxquels appartient T n(x). Cela donne un une application h : A→ αN. Les transformations
de la Sous-section 1.2 étant expansives, si les éléments de la partition sont assez petits (de diamètre
plus petit que la constante δ intervenant dans la définition de la propriété d’expansivité), h est
injective. De plus, h vérifie la relation de commutation

h ◦ T = σ ◦ h. (1.4)

La dynamique des sous-décalages de type fini est facile à étudier ; on peut espérer, en choisissant
une partition bien choisie, que l’image h(A) est un tel sous-décalage. C’est le cas pour une transfor-
mation uniformément dilatante du cercle. Soient n le degré de la transformation T et x0 un point fixe
de T . Écrivons x0 < x2 < . . . < xn−1 les préimages de x0. Choisissons α := {[xi, xi+1) : i ∈ Z/nZ}.
Alors T (a) = S1 pour tout a ∈ α, ce qui assure que h(S1) = αN.

Un des défauts de cette stratégie est que, dans cet exemple, h n’est pas continue : en effet, l’espace
A est connexe non trivial, et l’espace d’arrivé αN a une topologie totalement discontinue. Les points
qui posent problème sont ceux dont l’orbite passe par un des xi. Heureusement, ces points sont
dénombrables, donc comparativement rares. Quand nous introduirons des mesures, ces ensembles de
points problématiques seront typiquement négligeables du point de vue de la mesure.

La situation est plus complexe pour les β-transformations. Ces transformations ne sont pas me-
surablement conjuguées les unes aux autres, ne serait-ce que pour des questions d’entropie. Pour des
raisons de cardinalité, seul un nombre dénombrable de β-transformations peuvent être conjuguées
à un sous-décalage de type fini. C’est le cas si β est un nombre de Pisot, c’est-à-dire un entier al-
gébrique supérieur à 1 dont tous les conjugués sont inférieur à 1 strictement. Par exemple, pour le
nombre d’or β = φ, le choix de partition α = {[0, φ−1), [φ−1, 1)} permet de conjuguer mesurablement
la φ-transformation au sous-décalage sur deux symboles de matrice de transition

M =

(
1 1
1 0

)
.

L’application de Gauss met en évidence une autre limite de la conjugaison avec des sous-décalages
de type fini. On dispose d’un partition évidente de l’intervalle (0, 1] :

α =

{(
1

n+ 1
,

1

n

]
: n ≥ 1

}
,

telle que T (a) = [0, 1) pour tout a ∈ α. Cependant, cette partition n’est pas finie. L’extension de la
notion de sous-décalage à des alphabets infinis est délicate : un nombre infini de symboles permet une
diversité de comportements telle qu’il est plus difficile de formuler des énoncés généraux, ce qui incite
à ajouter des hypothèses supplémentaires. Par exemple, dans le but d’étudier les mesures de Gibbs
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d’un sous-décalage sur un alphabet dénombrable, R.D. Mauldin, M. Urbański [172] et O. Sarig [203]
utilisent la propriété de grandes images et préimages : il existe une partie finie J ⊂ I telle que, pour
tout i ∈ I, il existe jin, jout ∈ J tels que

Mjini = 1 et Mijout = 1.

Cette condition garantit une forme de récurrence rapide et est nécessaire pour définir des mesures
de Gibbs au sens de Bowen [203, Theorem 1]. Elle est satisfaite par une version symbolique de la
transformation de Gauss (pour laquelle on peut prendre J = {(1/2, 1]}).

Pour plus d’informations sur le codage de transformations hyperboliques, en en particulier des
constructions détaillées en dimension 2, nous renvoyons le lecteur à [6].

2 Un point de vue mesuré
Un système dynamique expansif est sensible aux conditions initiales : une différence aussi petite

soit-elle des conditions initiales aboutira tôt ou tard à une divergence macroscopique des trajectoires
(d’au moins δ, où δ est le paramètre introduit dans la Définition 1.1).

Dans le cas des transformations C1+α uniformément dilatantes du cercle, cette divergence a lieu à
vitesse exponentielle. En effet, soit T : S1 → S1 une telle transformation, et λ := min |T ′|. Il existe δ tel
que, si d(x, y) < δ, alors d(T (x), T (y)) ≥ λd(x, y). En itérant, si d(T k(x), T k(y)) < δ pour tout k < n,
alors d(T n(x), T n(y)) ≥ λnd(x, y). Par conséquent, le temps de séparation de x et y (c’est-à-dire, ici,
le temps nécessaire pour que leurs orbites soient distances d’au moins δ est d’au plus | ln(d(x,y)/δ)|

ln(λ)
,

c’est-à-dire de l’ordre de | ln(d(x, y))|. Remarquons au passage que la fonction n 7→ min |T (n)| est
sur-multiplicative, donc min |T (n)| 1n converge vers un réel Λmin ≥ λ > 1. Asymptotiquement, la
divergence des trajectoires proches se fait à vitesse Λ

(1−o(1))n
min ≥ λn.

Face à cette imprévisibilité fondamentale, le point de vue de la théorie ergodique consiste à munir
le système dynamique de mesures, et d’étudier le comportement d’orbites génériques. Pour de nom-
breux systèmes chaotiques et des mesures bien choisies, on observe numériquement un comportement
proche d’objets probabilistes tels que des suites de variables aléatoires indépendantes ou des chaînes
de Markov.

2.1 Mesures invariantes

Rappelons un peu de vocabulaire de théorie ergodique.

Définition 2.1 (Invariance, ergodicité, mélange).
Soit (A, T ) un système dynamique mesurable sur un espace polonais et µ ∈ P(A). On dit que :
• La mesure µ est invariante si T∗µ = µ, i.e. si µ(T−1B) = µ(B) pour tout borélien B.
• Le système dynamique (A, µ, T ) est ergodique si µ est invariante et si tout ensemble mesurable
T -invariant est de mesure 0 ou 1.
• Le système dynamique (A, µ, T ) est mélangeant si limn→∞ µ(T−nB ∩ C) = µ(B)µ(C) pour
tous boréliens B, C.

Avec ces définitions, le mélange implique l’ergodicité, qui implique l’invariance. Il est possible de
définir une notion intéressante de mélange pour des systèmes dynamiques non ergodiques [225], mais
cela n’est pas l’objet de ce mémoire.
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Exemple 2.2 (Transformation de Gauss).
Revenons à la transformation de Gauss T sur [0, 1]. Celle-ci préserve la mesure de probabilité

µ = 1
ln(2)

1
1+x

dx. Comme nous le verrons dans l’Exemple 3.18, le système dynamique ([0, 1], µ, T ) est
mélangeant.

Nous parlerons beaucoup de systèmes dynamiques préservant une mesure infinie. La définition de
l’invariance d’une telle mesure ne change pas, mais les notions d’ergodicité et de mélange sont plus
subtiles.

Définition 2.3 (Invariance, ergodicité, mélange).
Soit (A, T ) un système dynamique mesurable sur un espace polonais et µ une mesure σ-finie 2

invariante sur A. On dit que :
• Le système dynamique (A, µ, T ) est ergodique si tout borélien B tel que T−1B = B est ou
bien de mesure nulle, ou bien de complémentaire de mensure nulle.
• Un ensemble mesure B ⊂ A est dit récurrent si, pour µ-presque tout x ∈ B, il existe n ≥ 1
tel que T n(x) ∈ B. Le système dynamique (A, µ, T ) est conservatif si tout B mesurable est
récurrent.
• Si de plus µ est une mesure de probabilité, le système dynamique (A, µ, T ) est mélangeant si

limn→+∞ µ(A ∩ T−nB) = µ(A)µ(B) pour tous boréliens A et B.

Avant de continuer, nous introduisons une notation commune et bien utile.

Notation 2.4 (Somme de Birkhoff).
Étant donné un système dynamique (A, T ) et f : A→ R (ou n’importe quel monoïde...), on note

pour tout n ∈ N

STn f :=
n−1∑
k=0

f ◦ T k

ses sommes de Birkhoff. Si la transformation T n’est pas ambigüe, nous noterons simplement Snf .

2.1.1 Ergodicité et conservativité

En mesure finie, la conservativité se déduit de l’ergodicité par le lemme de récurrence de Poin-
caré. De plus, l’ergodicité est caractérisée par les théorèmes ergodiques de Birkhoff [29] et de von
Neumann [232] :

Théorème 2.5 (Birkhoff, 1931 ; von Neumann, 1932 [29,232]).
Soit (A, µ, T ) un système dynamique préservant une mesure de probabilité. Il y a équivalence

entre :
• (A, µ, T ) est ergodique.
• Pour tout f ∈ L1(A, µ) et µ-presque sûrement,

lim
n→+∞

Snf

n
=

∫
A

f dµ.

• Pour tout f ∈ L2(A, µ) et dans L2(A, µ),

lim
n→+∞

Snf

n
=

∫
A

f dµ.

2. Dans ce mémoire, les mesures finies seront a fortiori σ-finies.
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En mesure infinie, la conservativité ne découle plus de l’ergodicité : par exemple, la fonction
T : x 7→ x + 1 définit une transformation ergodique non conservative de (Z,Leb). Pour éviter ce
cas de figure, nous parlerons en mesure infinie de systèmes ergodiques conservatifs, qui ont plusieurs
caractérisations confortables.

Lemme 2.6.
Soit (A, T ) un système dynamique mesurable sur un espace polonais et µ une mesure σ-finie

invariante sur A. Il y a équivalence entre :
• (A, µ, T ) est ergodique et conservatif.
• Pour tout B de mesure strictement positive, pour presque tout x ∈ A, il existe n ≥ 1 tel que
T n(x) ∈ B.
• Pour tout B de mesure strictement positive, pour presque tout x ∈ A, il existe une suite
strictement croissante d’entiers (nk)k∈N telle que T nk(x) ∈ B pour tout k.
• Pour toute fonction mesurable positive f : A→ R, si µ(f > 0) > 0, alors limn→+∞ Snf = +∞
presque partout.

De plus, les théorèmes ergodiques de Birkhoff et de von Neumann sont peu utiles en mesure
infinie [1] [1, Exercice 2.2.1] : dans ce cadre, Snf

n
converge presque sûrement vers 0 pour toute

fonction intégrable f . Nous utiliserons à la place le théorème ergodique de Hopf [124, §14, Individueller
Ergodensatz für Abbildungen], qui généralise le théorème ergodique de Birkhoff :

Théorème 2.7 (Théorème ergodique de Hopf).
Soit (A, µ, T ) un système dynamique qui préserve une mesure σ-finie. Le système (A, µ, T ) est

ergodique et conservatif si et seulement si, pour toutes fonctions f , g ∈ L1(A, µ) telles que
∫
A
g dµ 6= 0

et µ-presque partout,

lim
n→+∞

Snf

Sng
=

∫
A
f dµ∫

A
g dµ

. (2.1)

Si µ est une mesure de probabilité, on retrouve le théorème de Birkhoff en choisissant g := 1A.

2.1.2 Mélange

En mesure finie, la notion de mélange peut souvent se quantifier. Il faut pour cela exprimer
le mélange sous forme fonctionnelle et non à l’aide de boréliens 3. En général, pour des systèmes
dynamiques uniformément hyperboliques, on s’attend alors à une décroissance exponentielle des cor-
rélations, c’est-à-dire à une perte rapide de la “mémoire” du système, comme dans l’exemple suivant :

Théorème 2.8.
Soit T ∈ C2(S1,S1) une transformation uniformément dilatante du cercle. Alors il existe une

unique mesure de probabilité invariante µ = h(x)dx absolument continue par rapport à la mesure
de Lebesgue. De plus, il existe C ≥ 1 et λ > 0 tels que pour toutes fonctions f ∈ L1(S1,Leb) et
g ∈ C1(S1,C), pour tout n ≥ 0,∣∣∣∣∫

S1

f ◦ T n · g dµ−
∫
S1

f dµ

∫
S1

g dµ

∣∣∣∣ ≤ Ce−λn ‖f‖L1(A,µ) ‖g‖C1(S1,C) . (2.2)

Ce type de théorème reste valide dans un cadre beaucoup plus large 4 [10, 38, 74, 75], y compris
pour des flots [14, 79, 161] et pour des observables seulement höldériennes. Nous y reviendrons en
Sous-sous-section 3.3.2.

3. La décroissance quantitative dépendant alors de la régularité des fonctions considérées, les indicatrices de boré-
liens pouvant être très peu régulières.

4. Il serait vain d’énumérer tous les systèmes ayant cette propriété, et plus encore tous les travaux portant dessus.
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La notion de mélange, ainsi ses conséquences quantitatives dans certaines systèmes telles que
la décroissance exponentielle des corrélations, nous sera souvent utile : convergence de la formule
de Green-Kubo (Équation (3.16)), propriété de trou spectral (Sous-sous-section 3.3.2), ou encore
contraction de cône (démonstration de la Proposition 12.7).

L’extension de la notion de mélange à la mesure infinie est délicate. Soit (A, µ, T ) un système
dynamique ergodique et conservatif préservant une mesure µ infinie. Une notion naturelle de mé-
lange implique que limn→∞ µ(T−nB ∩ C) = 0 pour tous boréliens B, C de mesure finie [149]. Il
existe néanmoins des variantes intéressantes de la notion de mélange. La plus fréquente consiste à
renormaliser la quantité µ(T−nB ∩ C). Il est aussi possible d’adopter une approche fonctionnelle,
c’est-à-dire d’étudier plus généralement 5 des quantités du type

∫
A
f · g ◦ T n dµ ; divers choix de

classes de fonctions pour f et g mettent alors en évidence autant de phénomènes dynamiques.
Pour la première approche, nous renvoyons le lecteur aux travaux, par exemple 6, de M. Tha-

ler [218], S. Gouëzel [113], H. Bruin, I. Melbourne et D. Terhesiu [40,173,174] pour des transformations
avec un point fixe neutre indifférent ; et F. Pène, D. Terhesiu [179,180, 187] ou encore D. Dolgopyat
et P. Nándori [82] pour les billards de Sinaï. Pour la seconde approche, le lecteur pourra par exemple
consulter les travaux de C. Bonanno, P. Giulietti et M. Lenci [34, 157] ou encore D. Dolgopyat et
P. Nándori [83].

2.2 Distorsion höldérienne et propriété de Gibbs

Soient θ ∈ (0, 1] et T une transformation uniformément dilatante C1+θ du cercle R/Z. Notons
g := 1

|T ′| . Trivialement, T a la propriété de distorsion höldérienne : il existe C ≥ 1 telle que, pour
tous x, y ∈ S1 suffisamment proches,

1

C
d(T (x), T (y))θ ≤ g(x)

g(y)
≤ Cd(T (x), T (y))θ. (2.3)

Cette propriété se transmet aux itérées de T . Notons g(n) := 1
|T (n)′ | et d le degré topologique de T .

Étant donné un intervalle ouvert I du cercle, l’ensemble T−n(I) est l’union de dn intervalles ouverts.
Alors :

Lemme 2.9.
Soient θ ∈ (0, 1] et T une transformation uniformément dilatante C1+θ du cercle. Il existe C ≥ 1

telle que, pour tout intervalle ouvert I, pour tout n ≥ 0, pour tous x, y dans la même composante
connexe de T−n(I),

1

C
d(x, y)θ ≤ g(n)(x)

g(n)(y)
≤ Cd(x, y)θ. (2.4)

Démonstration.
On se place sous les hypothèses du lemme, en supposant pour simplifier que |I| ≤ 1/2. Il suffit de

montrer que ln(g(n)) est θ-höldérienne avec une semi-norme höldérienne uniformément bornée. Par
la formule de dérivation en chaîne,

ln(g(n)) = Sn ln(g).

Soit C telle que |ln(g)(x′)− ln(g)(y′)| ≤ Cd(T (x′), T (y′)) pour tous x′, y′ suffisamment proches.
Soit λ := min |T ′|. Les points T k(x), T k(y) appartiennent à la même composante connexe de
T−(n−k)(I) pour tout k ≤ n, et comme |I| ≤ 1/2, les distances se mesurent dans les intervalles

5. On retrouve la définition classique du mélange en choisissant f = 1C et g = 1B .
6. La liste est loin d’être exhaustive !

21



T−(n−k)(I) (en particulier, la fonction k 7→ d(T k(x), T k(y)) est bien croissante). On observe alors que
d(T k(x), T k(y)) ≤ λ−(n−k)d(T n(x), T n(y)), d’où

∣∣ln(g(n))(x)− ln(g(n))(y)
∣∣ ≤ n∑

k=1

Cd(T k(x), T k(y))θ

≤ C

(
n∑
k=1

λ−(n−k)θ

)
d(T n(x), T n(y))θ

≤ C

1− λ−θ
d(T n(x), T n(y))θ

La propriété de distorsion höldérienne est centrale dans l’étude des systèmes dynamiques hyper-
boliques en régularité C1+θ. Par exemple, plaçons-nous sous les conditions du Lemme 2.9, en utilisant
la même constante C. Soit x ∈ T−n(I) et J la composante connexe de I contenant x. Alors

|J | =
∫
J

1(x) dx =

∫
I

1(z) · g(n) ◦ (T n|T−n(I))
−1(z) dz,

donc
C−1|I|g(n)(x) = C−1

∫
I

g(n)(x) dz ≤ |J | ≤ C

∫
I

g(n)(x) dz = C|I|g(n)(x).

Autrement dit, |J ||I| et g
(n)(x) sont du même ordre de grandeur, uniformément en x ∈ J et en n ≥ 0 :

il s’agit d’un cas particulier de la propriété de Gibbs [38, Théorème 1.2] [10, Definition 1.18].
La propriété de distorsion höldérienne apparaît dans la démonstration d’inégalité de Lasota-Yorke,

qui sera présentée en Sous-sous-section 3.3.3 et qui permet de montrer la quasi-compacité d’opérateurs
de transfert, et de là l’existence de mesures invariantes absolument continues par rapport à la mesure
de Lebesgue. Elle est aussi un problème-clef dans le procédé d’induction probabiliste suggéré en
Sous-section 8.4.

2.3 Transformations Gibbs-Markov

Les transformations Gibbs-Markov forment une classe de systèmes dynamiques symboliques dila-
tants mesurés, avec potentiellement une infinité de symboles. Comme mentionné en Sous-section 1.3,
les comportements de transformations markoviennes sur une infinité de symboles peut être extrê-
mement divers. Afin de garantir une récurrence rapide, on y ajoute une propriété de grande image,
qui peut être vue comme une version mesurée de la propriété de grande image topologique utilisée
par R.D. Mauldin, M. Urbański et O. Sarig déjà évoquée. De plus, on impose une forme de distor-
sion lipschitzienne, pendant mesuré de la distorsion höldérienne 7 de la sous-section 2.2. Cette classe
de transformations comprend à la fois des transformations de nature géométrique (transformations
de l’intervalle) et symbolique. Nous renvoyons le lecteur à [1, 4, 112] pour des introductions plus
complètes à ces transformations.

Définition 2.10 (Transformations Gibbs-Markov).
Soient (A, d) un espace métrique polonais borné, A sa tribu borélienne et µ une mesure de probabi-

lité sur (A,A). Soit T : A→ A mesurable. Soit α une partition modulo µ de A en sous-ensembles de
mesure strictement positive. Supposons que T est une transformation markovienne pour la partition
α, que α engendre A, et que µ est T -invariante.

7. Dans ce cadre symbolique, les distances utilisées peuvent être aisément modifiées, de telle sorte que la distinction
entre fonctions lipschitziennes et höldériennes est sans importance.
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On dit que (A,α, d, µ, T ) est une transformation Gibbs-Markov si elle a de plus les propriétés
suivantes :
• Grande image : infa∈α µ(Ta) > 0 ;
• Dilatation : il existe Λ > 1 tel que d(Tx, Ty) ≥ Λd(x, y) pour tous a ∈ α et (x, y) ∈ a× a ;
• Distorsion lipschitzienne : il existe C > 0 tel que, pour tout a ∈ α et presque tous (x, y) ∈ a×a,∣∣∣∣ dµ

dµ ◦ T|a
(x)− dµ

dµ ◦ T|a
(y)

∣∣∣∣ ≤ Cd(Tx, Ty)
dµ

dµ ◦ T|a
(x). (2.5)

La partition image jouera un rôle important. Celle-ci est moins fine que α ; remarquons cependant
que, si les images des éléments de α ont une mesure minorée, ce n’est pas nécessairement les cas des
éléments de α∗.

Définition 2.11 (Partition image).
Soit (A,α, d, µ, T ) une transformation Gibbs-Markov. Chaque élément de la partition α est envoyé,

modulo µ, sur une union T (a) d’éléments de α. On note α∗ =
∨
a∈α T (a) la partition image.

Remarque 2.12 (Invariance de la mesure).
Nous avons ajouté pour simplifier l’hypothèse que la mesure µ est T -invariante ; ce n’est pas

le cas dans les références citées [1, 4, 112]. Si µ est seulement supposée non singulière, on peut
trouver une mesure invariante équivalente pour lequel le système est encore Gibbs-Markov dès que la
transformation est irréductible et Card(α∗) < +∞ ; voir par exemple [4, Théorème 3.1].

2.4 Exemples de transformations Gibbs-Markov

Nous présentons maintenant un certain nombre de systèmes dynamiques Gibbs-Markov, ou dont
l’étude fait intervenir des transformations Gibbs-Markov. Plus qu’un simple inventaire ou une justi-
fication de l’étude de cette classe de transformations, il faut y voir une introduction aux objets qui
apparaissent dans la plupart des travaux de l’auteur.

Revenons pour commencer sur un exemple explicite : la transformation de Gauss.

Exemple 2.13 (Transformation de Gauss).
Soit T : x 7→ {1/x} la transformation de Gauss sur A = [0, 1]. Nous avons vu que :
• T préserve la mesure de probabilité µ = 1

ln(2)
1

1+x
dx, par l’Exemple 2.2.

• Il lui est associé une partition naturelle α = (an)n≥1, où an =
(

1
n+1

, 1
n

]
, comme évoqué en

Remarque 1.6.
• Comme mentionné en Équation (1.1), il lui est associée la distance

d(x, y) =

∣∣∣∣∫ y

x

1

1 + t
dt

∣∣∣∣ =

∣∣∣∣ln(1 + x

1 + y

)∣∣∣∣ .
Comme T|an est surjective pour tout n, on a µ(T (an)) = µ(A) = 1 pour tout n, donc la propriété de
la grande image est satisfaite. La transformation T est dilatante grâce à ce choix de distance, avec
constante Λ = 2. Finalement, le lecteur pourra vérifier la propriété de distorsion lipschitzienne ; ici,
la famille de fonctions dµ

dµ◦T|an
est uniformément lipschitzienne, et le fait que d(x, y) = ln(2)µ([x, y])

aide à conclure.
Pour cette transformation, α∗ = {A} est triviale.
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2.4.1 Modèles probabilistes

Les sous-décalages de type fini munis de la mesure d’équilibre associée à un potentiel höldérien
sont des transformations Gibbs-Markov. En particulier, les chaînes de Markov sur des espaces d’états
finis sont Gibbs-Markov.

La possibilité d’avoir des espaces d’états infinis autorise des exemples plus variés. Par exemple,
le décalage complet sur Z, muni d’une mesure de probabilité produit, est une transformation Gibbs-
Markov. En d’autres termes, on peut traiter dans ce cadre toutes les suites de variables aléatoires
indépendantes identiquement distribuées sur Z, ou sur n’importe quel ensemble dénombrable.

2.4.2 Flots d’Anosov

Les systèmes pouvant s’encoder par des sous-décalages de type fini rentrent aussi dans ce cadre.
Le cas le plus connu est celui des difféomorphismes Anosov :

Définition 2.14 (Difféomorphisme Anosov).
Soit M une variété riemannienne compacte, et T : M → M un difféomorphisme. Le système

(M,T ) est dit Anosov s’il existe une décomposition continue de l’espace tangent à M en deux sous-
fibrés Es (le sous-espace stable) et Eu (le sous-espace instable) :

TxM = Es(x)⊕ Eu(x)

telle que, pour trois constantes C ≥ 0 et Λs, Λu > 1, on ait :
• Invariance de la décomposition : (DT )Es = Es et (DT )Eu = Eu,
• Contraction dans la direction stable :

∥∥∥DT n|Es∥∥∥ ≤ CΛ−ns pour tout n ≥ 0,

• Dilatation dans la direction instable :
∥∥∥DT−n|Eu∥∥∥ ≤ CΛ−nu pour tout n ≥ 0.

Grâce au travaux de R. Bowen [37] et M. Ratner [197], on sait que les transformations Anosov
peuvent être encodées par des sous-décalages de type fini. Le travail de Bowen s’applique aussi
aux transformations Axiome A, c’est-à-dire ayant un attracteur compact vérifiant des conditions
semblables à celles des transformations Anosov.

La stratégie consistant à encoder les trajectoires de la dynamique s’adapte aussi aux flots Anosov,
c’est-à-dire à des flots (ϕt)t∈R de classe C1 sur des variétés riemanniennes M tels que l’on ait une
décomposition continue

TxM = Es(x)⊕ E0(x)⊕ Eu(x),

où E0 est la direction du flot et les fibrés Es et Eu vérifient des conditions similaires à celles de la
Définition 2.14, ainsi qu’à des flots Axiome A. Dans ce cas, on peut trouver une section de Poincaré
pour le flot telle que la transformation de premier retour admette un codage par un sous-décalage de
type fini.

L’exemple le plus connu de flot Anosov est le flot géodésique sur une surface riemannienne com-
pacte de courbure sectionnelle strictement négative. Quand M est une surface de courbure négative
constante, des codages géométriquement explicites ont été développés ; ces techniques remontent dans
un cadre Axiome A 8 aux travaux de J. Hadamard [119] en 1898, et ont été perfectionnées notamment
par C. Series [207].

8. Bien entendu, les travaux de J. Hadamard précèdent de beaucoup la notion de flot Axiome A. Il a néanmoins
étudié le flot géodésique sur une surface hyperbolique géométriquement finie et de volume infini qui, quand on le
restreint à son ensemble topologiquement récurrent, est Axiome A. Ce contexte précis (géométriquement fini, volume
infini) rend le codage particulièrement naturel : l’ensemble des orbites récurrentes est homéomorphe à (un flot de
suspension au-dessus d’) un sous-décalage de type fini. Curieusement, les billards dispersifs planaires, qui en sont les
analogues dans le cadre des billards de Sinaï, ont été étudiés beaucoup plus tard [104].
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Figure 4 – Une surface hyperbolique sur laquelle J. Hadamard a étudié le flot géodésique [119,
Figure 2].

Les transformations Gibbs-Markov permettent de coder des dynamiques plus diverses, en particu-
lier non compactes. Par exemple, la surface modulaire PSL2(Z)\PSL2(R) est un orbifold de courbure
constante égale à −1 et ayant une pointe (non bornée, mais de volume fini).

Figure 5 – Une représentation de la surface modulaire PSL2(Z)\PSL2(R) par F. Dal’Bo [66, Cha-
pitre II, Figure 9] ; [67, Chapitre II, Figure 9]. 2007, EDP Sciences ; 2011, Springer. Copyright 2007,
Françoise Dal’Bo. Reproduit avec la permission de l’auteure.

Étant donnée une section de Poincaré bornée, les excursions depuis cette section ont, qualitative-
ment, un nombre dénombrable de comportement possibles, correspondant au nombre de tours autour
de la pointe avant de revenir. Le codage de la transformation de premier retour va donc se faire avec
un alphabet infini dénombrable [209], mais vérifiant les axiomes des transformations Gibbs-Markov
pour la mesure volume 9. Ce codage a été utilisé notamment par J. Aaronson et M. Denker [2] pour
étudier la récurrence du flot géodésique sur C \ Z muni de sa structure hyperbolique de volume fini
invariante par z 7→ z + 1.

Remarque 2.15 (Réduction à un système markovien unilatère).
Un flot d’Anosov est un système dynamique inversible. Après avoir construit une section de

Poincaré inversible, il sera codé par une transformation markovienne inversible, par exemple un
sous-décalage de type fini bilatère 10 :

ΣM := {x ∈ IZ : Mxnxn+1 = 1 ∀n ∈ Z},
T (x) := (xn+1)n∈Z ∀x ∈ ΣM ,

9. On peut même obtenir ainsi la transformation de Gauss, dont la dynamique est intimement liée aux développe-
ments en fractions continues [66,208].
10. Merci à M. Demers d’avoir souligné ce point.
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pour une certaine matrice de transition M . L’espace ΣM peut être métrisé, par exemple, par la
distance d(x, y) := 2− inf{|n|: xn 6=yn}.

Ce cadre est différent de celui des décalages unilatères introduits en Sous-section 1.3 ; par exemple,
le système (ΣM , T ) n’est pas expansif. On peut cependant se ramener à des décalages unilatères, grâce
à un argument de R. Bowen. Pour toute fonction f : ΣM → C qui est θ-höldérienne, il existe une
fonction θ/2-höldérienne u telle que f+ := f + u ◦ T − u ne dépende que des coordonnées dans le
futur (xn)n≥0. Quitte à remplacer f par f+, on se ramène donc au système markovien unilatère Σ+

M .

Cette technique est très efficace pour analyser le comportement des sommes de Birkhoff de f . En
effet,

Sn(f) = Sn(f+) + u− u ◦ T n,

et le terme (u− u ◦ T n) est en général négligeable devant Sn(f+).
Cependant, pour d’autres propriétés, telles que le mélange quantitatif (décroissance exponentielle

des corrélations), la réduction à un sous-décalage unilatère a des limites. Par exemple, étant donnée
µ ∈ P(ΣM), ∫

ΣM

f ◦ T n · g dµ =

∫
ΣM

f+ ◦ T n · g dµ+

∫
ΣM

(u ◦ T n − u ◦ T n−1) · g dµ,

et le dernier terme
∫

ΣM
(u ◦ T n − u ◦ T n−1) · g dµ n’est a priori pas négligeable. Les limites de

cette stratégie ont incité à développer de nouvelles méthodes s’appliquant directement à des systèmes
inversibles, contournant même le codage. Nous renvoyons le lecteur à la Sous-sous-section 3.4.4, in-
troduisant des espaces de Banach de distributions anisotropes,pour l’un des princpaux développements
dans cette direction.

2.4.3 Transformations non-uniformément hyperboliques

Les transformations Gibbs-Markov se sont avérées utiles pour étudier des transformations non-
uniformément hyperboliques. Nous nous restreignons aux transformations non-uniformément hyper-
boliques en dimension 1, ou du moins dont la direction instable est de dimension 1. Ces transforma-
tions sont de loin les transformations non-uniformément hyperboliques les plus étudiées, bien que de
rares études ont été menées en dimension supérieure [89].

SoitA le cercle ou un intervalle compact. Une transformation T : A→ A est dite non-uniformément
hyperbolique s’il existe un ensemble fini de points I, fixés par T et tels que T ′ ≡ 1 sur I, et si de plus
T est dilatante hors de I, c’est-à-dire que T ′(x) > 1 pour tout x ∈ A \ I.

Si l’orbite d’un point arrive près de I, alors, la dérivée de T étant proche de 1, il lui faudra
beaucoup de temps pour s’extraire d’un petit voisinage de I. Par conséquent, les orbites typiques
pour la mesure de Lebesgue passent beaucoup de temps près de I. On observe un phénomène de
chaos intermittent : les orbites typiques alternent de longues périodes de stabilité apparente (quand
elles sont proches de I) et de courtes périodes de comportement chaotique.

De telles transformations ont été initialement étudiées par Y. Pomeau et P. Manneville [195],
avec des motivations issues de l’hydrodynamique et de phénomènes convectifs chaotiques de façon
intermittente 11. Des transformations non-uniformément hyperboliques apparaissent en effet lors de

11. Les cellules de convection de Rayleigh–Bénard en particulier.
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bifurcations dans le modèle de Lorenz 12 [195]. Des études numériques de telles transformations ont
été menées notamment par P. Gaspard et X.J. Wang [105], ainsi que des études théoriques par
M. Thaler [216,217].

La famille de transformations non-uniformément hyperboliques la plus couramment étudiée a été
introduite plus tardivement par C. Liverani, B. Saussol et S. Vaienti [164].

Définition 2.16 (Transformations de Liverani–Saussol–Vaienti).
Soit η ≥ 0. La transformation de Liverani–Saussol–Vaienti (ou transformation LSV) Tη : [0, 1]→

[0, 1] de paramètre η est définie par :

Tη(x) =

{
x(1 + (2x)η) ∀x ∈ (0, 1/2]
2x− 1 ∀x ∈ (1/2, 1]

. (2.6)

Figure 6 – Graphe de la transformation de Liverani – Saussol – Vaienti de paramètre η = 1.5.

Cette famille de transformations a l’avantage d’avoir une combinatoire très simple, mais d’ex-
hiber une grande variété de comportements quand η varie. De nombreuses transformations non-
uniformément hyperboliques en dimension 1 vont se comporter comme une transformation LSV pour
un paramètre bien choisi. Par exemple, l’application

T :

{
(−π/2, π/2) → (−π/2, π/2)
x 7→ tan(x) [π]

,

qui permet de comprendre le comportement du système dynamique x 7→ tan(x) sur R, a un point fixe
neutre en 0. Comme tan(x) = x(1+ x2

3
)+O(x5), la transformation T va se comporter qualitativement

12. Celui-ci est défini par les trois équations différentielles ẋ = σ(y − z) ;
ẏ = −xz + rx− y ;
ż = xy − bz.

,

dépendant de trois paramètres σ, b et r. Ce système est chaotique pour σ = 10, b = 8/3 et r assez grand. Le phénomène
de chaos intermittent apparaît pour r ' 166, 06.
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comme la transformation LSV de paramètre η = 2. Pour prendre un autre exemple, l’application

T :

{
[0, 1) → [0, 1)
x 7→ 1

1−x [1]
,

introduite par A. Rényi [198] en 1957 en tant que variante de la transformation de Gauss 13, va se
comporter qualitativement comme la transformation LSV de paramètre η = 1.

Figure 7 – Graphes des transformations x 7→ tan(x) [π] et x 7→ 1
1−x [1] respectivement.

Pour toute valeur de η, le système dynamique ([0, 1],Leb, Tη) est ergodique, mais ne préserve pas
la mesure pour η > 0. Il admet, à constante multiplicative près, une unique mesure invariante absolu-
ment continue µη = hη(x) dx. La fonction hη a un pôle d’ordre η en 0 [216]. Ainsi, la transformation
de Rényi définie ci-dessus préserve la mesure 1

x
dx sur [0, 1].

En particulier, pour η ≥ 1, la mesure µη est infinie. Ce résultat quantifie au passage l’argument
heuristique avancé précédemment : plus η est élevé, plus les orbites typiques pour la mesure de
Lebesgue vont passer de temps près du point fixe neutre 0.

Les systèmes dynamiques ([0, 1], µη, Tη) diffèrent en de nombreux points des systèmes hyperbo-
liques. Mentionnons notamment :
• pour η ∈ (0, 1), une décroissance polynomiale 14 des corrélations [235, Theorem 5] : il existe

une constante C ≥ 0 telle que pour f , g : [0, 1]→ C lipschitziennes,∣∣∣∣∫
[0,1]

f · g ◦ T nη dµη −
∫

[0,1]

f dµη

∫
[0,1]

g dµη

∣∣∣∣ ≤ C ‖f‖Lip ‖g‖Lip n
−( 1

η
−1), (2.7)

et l’exposant est optimal [110,202].
• le théorème central limite standard (avec renormalisation en 1√

n
) pour des observables höldé-

riennes n’est valable que quand les corrélations de l’Équation (2.7) sont sommables, c’est-à-dire
pour η ∈ [0, 1/2) [235, Theorem 5].

13. Variante à laquelle est associée son propre type de développement en fractions continues.
14. Et non exponentielle, comme dans le cadre des transformations uniformément dilatantes du cercle – comparer

avec le Théorème 2.8.
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Nous ne détaillerons pas toutes les propriétés des transformations non-uniformément hyperboliques.
La méthode la plus fréquente pour étudier les transformations non-uniformément hyperboliques

consiste à induire sur un sous-ensemble bien choisi. Pour les transformations LSV, on choisit d’induire
sur B = (1/2, 1]. On définit le temps de premier retour en B par :

ϕη,B(x) := inf{n ≥ 1 : T nη (x) ∈ B}. (2.8)

Posons Tη,B(x) := T
ϕη,B(x)
η (x) pour x ∈ B. Alors (B, µη(·|B), Tη,B) est un système dynamique ergo-

dique et préservant la mesure. De plus, en choisissant pour d′ la distance usuelle et pour α la partition
engendrée par les ensembles ({ϕη,B = n})n≥1, le système (B,α, d′, µη(·|B), Tη,B) est Gibbs-Markov.
On peut donc voir le comportement de ([0, 1], µη, Tη) comme celui de la transformation hyperbolique
(B, µη(·|B), Tη,B), entrecoupé de périodes d’attente de longueur ϕη,B. Ce procédé d’induction sera
présenté plus en détail en Partie III.

Figure 8 – Transformation induite par la transformation de Liverani – Saussol – Vaienti de para-
mètre η = 1.5 sur l’intervalle (1/2, 1].

Le temps de premier retour a des queues lourdes : pour tout η > 0, il existe une constante C > 0
telle que

µη(ϕη,B ≥ n|B) 'n→+∞ Cn−
1
η . (2.9)

Les temps d’attentes peuvent être donc très longs (d’espérance infinie si η ≥ 1), ce qui rend le lien
entre le système induit (B, µη(·|B), Tη,B) et le système initial ([0, 1], µη, Tη) parfois subtil.

Remarque 2.17 (Transformation de Boole).
De façon similaire, la transformation de Gauss est la transformation induite sur [0, 1] par la

transformation de Boole T : R+ → R+ définie par

T (x) =

{
1/x ∀x ∈ (0, 1]
x− 1 ∀x ∈ (1,+∞)

. (2.10)
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Cette transformation se comporte comme une transformation non-uniformément hyperbolique dont
le point fixe neutre serait en +∞, et plus précisément comme la transformation LSV de paramètre
η = 1.

En effet, soit µ = 1
ln(2)

1
1+x

dx la mesure sur [0, 1] invariante pour la transformation de Gauss,
introduite à l’Exemple 2.2. Alors, pour tout n ≥ 1,

µ(ϕ[0,1] ≥ n) = µ(T (x) > n) = µ(x < 1/n) =
ln
(
1 + 1

n

)
ln(2)

∼n→+∞
1

ln(2)
n−1.

Le temps de premier retour en [0, 1] a donc une queue en Cn−1, ce qui correspond bien au paramètre
η = 1 dans l’Équation (2.9).

2.4.4 Transformations unimodales

Les transformations Gibbs-Markov sont intervenues dans l’étude de certaines transformations uni-
modales via la construction dite des tours de Young. Commençons par présenter ces transformations
unimodales.

Définition 2.18 (Transformation unimodale).
Soit A = [a, b] un segment et T ∈ C(A,A). La transformation T est dite unimodale s’il existe un

point c ∈ (a, b) tel que T soit strictement croissante (respectivement, strictement décroissante) sur
[a, c] et strictement décroissante (respectivement, strictement croissante) sur [c, b].

Dans la suite de ce texte, on supposera de plus que les transformations unimodales considérées
sont de classe C2, et que T ′′(c) 6= 0.

La dynamique d’une transformation unimodale est soumise à la compétition de deux effets, la
contraction près du point critique c et l’éventuelle expansion loin de c :
• Si c est périodique, disons de période p ≥ 1, alors la dérivée de T p vaut 0 pour tout point de

l’orbite de c, qui est donc super-attractive. Les orbites périodiques attractives sont stables ;
toute transformation C1-proche de T aura donc encore une orbite de période p attractive.
Dans ce cas, l’unique mesure de probabilité T -invariante supportée par un voisinage de cette
orbite est la mesure uniforme sur celle-ci.
• À l’inverse, la dérivée de T peut être supérieure à 1 loin de c. Tant que la plupart des orbites

ne passent pas trop souvent trop près de c, leur exposant de Lyapunov peut être strictement
positif, ce qui entraîne de l’instabilité.

Le second cas peut être formalisé et quantifié par les conditions de Collet-Eckmann [58]. Nous en
donnons ici la version utilisée par L.S. Young [235].

Définition 2.19 (Conditions de Collet-Eckmann).
Une transformation unimodale vérifie les conditions de Collet-Eckmann s’il existe des paramètres

M ≥ 1, α, δ > 0 et λ > 1 tels que :
• pour tout x tel que x, . . ., TM−1(x) /∈ B(c, δ), on a |(TM)′(x)| ≥ λM .
• pour tout n ≥ 0 et tout x tel que x, . . ., T n−1(x) /∈ B(c, δ) et T n(x) ∈ B(c, δ), on a |(T n)′(x)| ≥
λn.
• |(T n)′(T (c))| ≥ λn pour tout n ≥ 0.
• |T n(c)− c| ≥ e−αn pour tout n ≥ 1.

Ces conditions impliquent l’existence d’une mesure de probabilité µ absolument continue par
rapport à la mesure de Lebesgue [26,58].
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Exemple 2.20 (Famille quadratique).
Pour tout k ∈ [0, 4], définissons :

Tk :

{
[0, 1] → [0, 1]
x 7→ kx(1− x)

. (2.11)

Figure 9 – Graphe de T3,87.

D’après les travaux de M. Lyubich [169, Density theorem] d’une part, et J. Graczyk et G. Światek
d’autre part [115,116], Tk possède une orbite périodique attractive pour tout k dans un ouvert dense de
[0, 4]. Dans ce cas, le complémentaire du bassin d’attraction de cette orbite est de mesure de Lebesgue
nulle, donc Tk n’admet pas de mesure de probabilité invariante absolument continue par rapport à la
mesure de Lebesgue. Sur ce sujet, nous renvoyons à l’article de revue [210].

Cependant, Tk satisfait les conditions de Collet-Eckmann pour k dans un ensemble de mesure de
Lebesgue positive, et en particulier de densité 1 en 4. Par conséquent, pour la plupart des paramètres
k proches de 4, la transformation Tk admet une mesure de probabilité invariante absolument continue
d’exposant de Lyapunov strictement positif [26,58,126].

Dans les cadre des transformations unimodales, la construction des tours de Young consiste à
trouver une partie Λ ⊂ A = [a, b], une partition α (potentiellement infinie) de Λ et une fonction 15

R : Λ→ N∗ tels que :
• S(x) := TR(x)(x) ∈ Λ pour µ-presque tout x ∈ Λ ;
• R est constante sur les éléments de α ;
• {R ≤ n} est l’union d’un nombre fini d’éléments de α ;
• (Λ, α, d′,Leb, S) est une transformation Gibbs-Markov 16, où d′ est la distance usuelle sur A ;
• pour tous x, y tels que R(x) = R(y), les points x, y sont dans le même ensemble a ∈ α, si

et seulement si T k(x) et T k(y) sont dans la même composante connexe de A \ {c} pour tout
0 ≤ k < R(x) = R(y). Autrement dit, les éléments de α sont des ensembles de points qui
restent ensemble jusqu’au temps markovien R ;

15. Parfois appelée temps markovien, car elle sera supposée constante sur les éléments de la partition de Markov α.
16. L.S. Young suppose de plus que les branches sont surjectives, ce qui découle naturellement de sa construction

pour les transformations unimodales mais n’est en général pas nécessaire.

31



• la transformation T satisfait de bonnes estimées de dilatation et de distorsion 17 entre les
temps de retour markoviens.

La principale différence avec le procédé d’induction utilisé pour étudier les transformations non-
uniformément hyperboliques en Sous-sous-section 2.4.3, ou avec l’utilisation de sections de Poincaré
évoquées en Sous-partie 2.4.2 est que le temps R n’est en général pas le temps de premier retour en
Λ. La flexibilité qui s’ensuit permet d’obtenir les estimées de dilatation et de distorsion pour S = TR.

Cette construction s’applique aux transformations unimodales vérifiant les conditions de Collet-
Eckmann.

Théorème 2.21. [235, Theorem 7]
Soit (I, T ) une transformation unimodale vérifiant les conditions de Collet-Eckmann. Alors on

peut construire une tour de Young vérifiant les conditions ci-dessus, et telle que µ(R ≥ n) ≤ e−βn

pour un certain β > 0, où µ est l’unique mesure de probabilité S-invariante et absolument continue
par rapport à la mesure de Lebesgue sur Λ.

Afin de démontrer une propriété des transformations unimodales vérifiant les conditions de Collet-
Eckmann, une stratégie courante consiste à démontrer cette propriété pour les transformations Gibbs-
Markov, puis à montrer que cette propriété est héritée à travers la construction de Young. La borne
exponentielle sur les queues de R fait que le système (I,Leb, T ) a le comportement d’une transfor-
mation uniformément hyperbolique, là où les queues polynomiales dans le cas des transformations
non-uniformément hyperboliques (Équation (2.9)) donnaient naissance à des phénomènes propres.

C’est ainsi que l’on peut démontrer l’existence d’une mesure de probabilité µ absolument continue
par rapport à la mesure de Lebesgue, mais aussi que les observables f : I → R höldériennes vont
satisfaire un théorème central limite ou un principe des grandes déviations par rapport à µ. Nous
renvoyons le lecteur à la Sous-partie 3.6 pour plus de détails.

Remarquons que les tours de Young ne sont pas le seul moyen de démontrer, disons, une décrois-
sance exponentielle des corrélations, un théorème central limite ou des principes de grandes déviations
pour de telles transformations unimodales. Citons par exemple les travaux antérieurs de G. Keller et
T. Nowicki [143]. Cependant, cette construction a deux avantages. Le premier est de s’appliquer à
plusieurs familles de transformations : si cette approche fonctionne, on démontre la propriété voulue
d’un seul coup pour ces transformations unimodales, mais aussi par exemple pour les applications
collisions de billards de Sinaï, que nous verrons en détail en Sous-sous-section 2.4.5. Le second est
que les seules démonstrations connues de certaines propriétés utilisent fortement la structure de tour
au-dessus d’une transformation Gibbs-Markov. Citons par exemple l’estimée d’erreur optimale dans
le principe d’invariance presque sûre [145], ou les travaux de l’auteur sur les théorèmes limites de
fonctions d’intégrales nulles en mesure infinie [221,222].

2.4.5 Billards de Sinaï

Les billards de Sinaï sont des modèles classiques de dynamique hyperbolique, mais dont certaines
propriétés – en particulier le manque de régularité – posent de sérieux problèmes techniques. Dans
leur version la plus commune, ils modélisent le rebond élastique d’une particule sur des obstacles
strictement convexes. La présentation qui suit est succincte ; nous renvoyons si nécessaire au livre de
N. Chernov et R. Markarian [53].

Soit (Oi)i∈I un ensemble fini de compacts du tore T2, deux à deux disjoints, convexes, et dont
le bord est de courbure strictement positive. Une particule à l’extérieur de ces obstacles se déplace
à vitesse unitaire. Si cette particule touche le bord, sa trajectoire est réfléchie suivant les lois de

17. Que l’on ne détaillera pas.
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réflexion de Descartes ; on peut donc supposer que son vecteur vitesse est alors sortant. L’espace des
phases du flot de cette particule, c’est-à-dire l’ensemble des couples (position, vitesse) possibles, est
donc :

Ω :=

{T2 \
⋃
i∈I

Oi

}
× S1


/∼

,

où (x,~v) ∼ (x, ~w) si x ∈ ∂Oi pour un certain i ∈ I et ~v, ~w sont symétriques l’un à l’autre par rapport
à la droite tangente à ∂Oi en x. La trajectoire de la particule définit alors un flot continu (ϕt)t∈R
sur Ω. Enfin, ce flot, comme tout flot géodésique, est un flot de contact, et préserve la mesure de
Liouville

Liouv =
1

2π
[
Vol (T2)−

∑
i∈I Vol (Oi)

]1T2\
⋃
i∈I Oi

dx dφ.

Une telle table de billard est dite à horizon fini si toute trajectoire intercepte un obstacle en
temps fini ; par compacité, le temps entre deux rebonds est alors borné.

Figure 10 – Une trajectoire sur un billard de Sinaï à horizon fini, avec le vecteur unitaire tangent
à la trajectoire sortante dessiné à chaque collision. Ce billard sur un tore de côté 1 a deux obstacles
circulaires de rayons respectifs 0, 4 et 0, 2.

Le flot (ϕt)t∈R est malheureusement seulement 1/2-höldérien, sa dérivée étant singulière au niveau
des trajectoires tangentes. On dispose de plus d’une section de Poincaré naturelle, constituée des
collisions de la particule avec un obstacle, c’est-à-dire des couples (s,~v) où s ∈

⋃
i∈I ∂Oi. On peut

paramétrer le vecteur ~v par son angle θ à la normale ; l’espace d’état de l’application collision est
alors

A :=
⋃
i∈I

∂Oi × [−π/2, π/2],

et l’application collision T préserve la mesure

µ =
1

2
∑

i∈I |∂Oi|
cos(θ) dθ ds.

La transformation T n’est cependant pas continue aux points dont les trajectoires sortantes sont
tangentes à un obstacle, et sa différentielle tend vers l’infini près de ces singularités 18.

L’ergodicité du système (A, µ, T ), et par extension du flot (Ω,Liouv, (ϕt)t∈R), a été démontrée
par Y. Sinaï [211]. On dispose de plus d’un théorème central limite pour le système (A, µ, T ) et des

18. Comme T préserve µ, le cocycle dérivé est conjugué à un cocycle à valeurs dans SL2(R). Cette explosion de la
différentielle est donc une explosion dans SL2(R).
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observables höldériennes [41], en horizon fini comme infini. Le théorème central limite pour le flot est
plus délicat. En horizon fini, il se déduit aisément du théorème pour l’application collision. En horizon
infini, le flot peut passer un temps très long – et, crucialement, qui n’est pas de carré intégrable –
entre deux collisions. Cela donne lieu à un théorème central limite avec une renormalisation non
standard (en

√
t ln(t) au lieu de

√
t) [31, 215].

Comme pour les transformations unimodales, les billards de Sinaï à horizon fini se prêtent à une
approche par les tours de Young.

Théorème 2.22. [234, Theorem 6]
Soit (A, µ, T ) l’application collision d’un billard de Sinaï d’horizon fini. Alors on peut construire

une tour de Young vérifiant les conditions exposées en Sous-partie 2.4.4, et telle que µ(R ≥ n|Λ) ≤
e−βn pour un certain β > 0.

Tout comme pour les transformations unimodales, on peut en déduire un théorème central li-
mite, des estimées de grandes déviations, mais aussi des résultats utilisant de façon plus profonde la
structure des tours au-dessus de transformation Gibbs-Markov.

2.4.6 Variations autour des billards de Sinaï

Le théorème central limite non standard pour le flot billard en horizon infini est dû à de longues
attentes entre deux collisions avec une paroi courbée. Le même phénomène apparaît avec le billard
stade, introduit par L. Bunimovich.

Figure 11 – Une table de billard stade, constituée d’un rectangle et de deux demi-disques. Une
particule ponctuelle rebondit à l’intérieur de la table. Les trajectoires rouge et verte représentent
chacune un morceau d’orbite d’une telle particule.

Le billard stade est intimement lié aux billards de Sinaï à horizon infini : ce billard reste ergo-
dique [42], mais les corrélations décroissent plus lentement [20,54] et le système satisfait un théorème
central limite critique avec renormalisation en

√
n ln(n) [19].

Théorème 2.23. [19, Theorem 1.1]
Soit (A, µ, T ) l’application collision d’un billard stade, où µ ∈ P(A) est la mesure de Liouville

normalisée. Soit f : A→ R une fonction höldérienne d’intégrale nulle.
Notons I la moyenne de f sur l’ensemble des points (x, 0) ∈ A tels que x appartient à l’un des

deux bords rectilignes du billard 19, ` la longueur d’un des bords rectilignes, et r le rayon d’un des

19. L’orbite d’un tel point (x, 0) sous le flot billard consistera donc à faire des allers-retours entre les deux bords
rectilignes opposés du billard, avec des collisions perpendiculaires au bord. L’orbite verte de la Figure 11 en est un
exemple.
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demi-cercles.

Alors la suite de variables aléatoires
(

Snf√
n ln(n)

)
n≥2

converge en loi vers une variable aléatoire

gaussienne centrée de variance

σ2 =
4 + 3 ln(3)

4− 3 ln(3)

`2I2

4r(πr + `)
.

Revenons aux billards en horizon infini. Si les obstacles sont strictement convexes mais la cour-
bure de leur bord s’annule en certains points, on peut obtenir une décroissance polynomiale des
corrélations [236] ; de même avec des billards ayant des pointes [17,54,237].

Si l’on relâche les hypothèses sur la forme des obstacles, on peut considérer par exemples des
obstacles rectangulaires aux bords horizontaux ou verticaux. Ce modèle, ou du moins sa Z2-extension,
est dit modèle du vent dans les arbres, et appelle des outils complètement différents : comme il s’agit
alors de flots de translation sur des surfaces plates, le flot de renormalisation – qui est un flot sur
l’espace de Teichmüller de la surface de translation – va jouer un rôle primordial, et on peut démontrer
par exemple des diffusions sur- ou sous-critiques dans le plan [71,72].

Les billards de Sinaï en dimension supérieure ou égale à 3 sont mal compris : la combinatoire des
singularités devient plus riche, ce qui fait échouer certains arguments qui jouent un rôle central en
dimension 2 [21].

3 L’opérateur de transfert
L’ensemble des travaux évoqués ici utilise l’opérateur de transfert, et très souvent une approche

spectrale. Nous introduisons dans un premier temps l’opérateur de composition, aussi appelé opéra-
teur de Koopman. Dans ce qui suit, et sauf mention du contraire, (A, µ, T ) est un système dynamique
préservant une mesure σ-finie.

3.1 Opérateur de Koopman

Afin de pouvoir déployer l’arsenal conséquent de l’algèbre linéaire et, plus généralement, de l’ana-
lyse fonctionnelle, on associe à la dynamique des opérateurs. Le plus simple est l’opérateur de Koop-
man.

Définition 3.1 (Opérateur de Koopman).
Soit (A, µ, T ) un système dynamique préservant une mesure σ-finie, et p ∈ [1,∞]. L’opérateur

de Koopman est l’isométrie

K :

{
Lp(A, µ) → Lp(A, µ)
f 7→ f ◦ T . (3.1)

Remarque 3.2.
Les espaces Lp ne sont pas les seuls espaces sur lesquels on peut définir l’opérateur de Koopman.

Par exemple, si A est un espace topologique et T est continue, alors K est une contraction faible sur
C(A,C). Si A est une variété différentielle de classe Ck compacte et T est de classe Ck, alors K agit
continûment sur Ck(A,C).

De nombreuses propriétés de la transformation (A, µ, T ) se lisent dans les propriétés de l’opérateur
de Koopman. Par exemple, (A, µ, T ) est ergodique si et seulement si 1 est une valeur propre simple
de Ky L∞(A, µ). Nous référons le lecteur par exemple à [88] pour de plus amples informations.
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Malheureusement, les propriétés spectrales de l’action de K sur des espaces de fonctions le rendent
en général difficile à manipuler. Par exemple, dès que µ est ergodique et non atomique, le spectre
Sp(Ky L2(A, µ)) de l’action de K sur L2(A, µ) contient le cercle unité [137, Proposition 3.5].

Dans le cadre élémentaire des transformations uniformément dilatantes du cercle, si l’on se res-
treint à des sous-espaces de fonctions usuels, la situation est encore pire. Par exemple, si T est une
telle transformation dilatante du cercle de facteur d’expansion λ > 1, alors l’action de l’opérateur de
Koopman multiplie la dérivée par un facteur d’au moins λ (et donc la dérivée k-ième par un facteur
λk, ou la semi-norme α-höldérienne par un facteur λα).

Figure 12 – De gauche à droite : graphes de f ◦ T k pour 0 ≤ k ≤ 3, où T = T−3, 0,15 est la
transformation dilatante du cercle définie à l’Exemple 1.3 et f(x) = 1 + cos(2πx)

2
.

Plus généralement, dans le cadre de transformations hyperboliques, l’action de K sur des es-
paces de fonctions höldériennes, lipschitziennes ou de classe Ck avec k ≥ 1 aura un rayon spectral
strictement plus grand que 1.

De plus, si f est une fonction propre pour K associée à la valeur propre λ, alors

‖f‖L∞(A,µ) = ‖f ◦ T‖L∞(A,µ) = ‖K(f)‖L∞(A,µ) = ‖λf‖L∞(A,µ) = |λ| ‖f‖L∞(A,µ) ,

donc toute valeur propre de K est de norme 1. Par conséquent, le spectre de l’action de K sur de tels
espaces contient (beaucoup) de spectre essentiel.

3.2 Définition de l’opérateur de transfert

Une solution consiste à utiliser non pas l’opérateur de Koopman mais son dual, l’opérateur de
transfert.

Définition 3.3 (Opérateur de transfert).
Soit (A, µ, T ) un système dynamique, où µ est une mesure σ-finie non singulière, c’est-à-dire telle

que T∗µ� µ.
Soit f ∈ L1(A, µ). Alors fµ est une mesure finie sur A, donc T∗(fµ) est aussi une mesure finie

sur A. De plus, T∗(fµ)� µ. On pose

L(f) :=
dT∗(fµ)

dµ
.
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On appelle L l’opérateur de transfert relativement à µ sur L1(A, µ). Par construction, Ly L1(A, µ)
linéairement, est de norme au plus 1, et∫

A

L(f) · g dµ =

∫
A

f · g ◦ T dµ ∀f ∈ L1(A, µ), ∀g ∈ L∞(A, µ). (3.2)

Supposons que l’opérateur de Koopman agisse continûment sur L1(A, µ) ; c’est en particulier le
cas si µ est T -invariante. Soient p ∈ (1,+∞] et q := p

p−1
l’exposant conjugué à p. L’opérateur de

transfert L relativement à µ est défini sur Lp(A, µ) par pré-dualité :∫
A

L(f) · g dµ =

∫
A

f · g ◦ T dµ ∀f ∈ Lp(A, µ), ∀g ∈ Lq(A, µ). (3.3)

En effet, l’application g 7→
∫
A
f · g ◦ T dµ est une forme linéaire continue sur Lq(A, µ), et est donc

bien représentée par un unique L(f) ∈ Lp(A, µ).

De nombreuses propriétés du système (A, µ, T ) peuvent se traduire en propriétés de l’opérateur
de transfert. Par exemple :
• Si f ∈ L1(A, µ), alors ∫

A

L(f) dµ =

∫
A

f dµ.

• La mesure µ est T -invariante si et seulement si L(1) = 1. Alors L est une contraction faible
sur tous les espaces Lp(A, µ), avec p ∈ [1,∞].
• Si T préserve µ, alors (A, µ, T ) est ergodique si et seulement si 1 est une valeur propre simple

de Ly L1(A, µ).

Exemple 3.4 (Transformations de l’intervalle).
Si (A, T ) est une transformation C1 par morceaux de l’intervalle ayant un nombre dénombrable

de branches et si T ′ 6= 0 presque partout pour la mesure de Lebesgue, alors l’opérateur de transfert
par rapport à la mesure de Lebesgue admet une formule explicite :

L(f)(x) =
∑

y∈T−1({x})

1

|T ′(y)|
f(y).

L’opérateur de transfert peut se définir sur d’autres espaces que les espaces Lp(A, µ). On peut
procéder par exemple :
• Par dualité : si T est une transformation de classe Ck, alors K agit sur Ck(A,C), donc on peut

définir un opérateur dual L agissant sur Ck(A,C)∗.
• Par densité : si L est définie et bornée sur un sous-espace dense d’un espace de Banach, on

peut l’étendre par continuité à tout cet espace.

3.3 Quasi-compacité

Une étude numérique élémentaire permet d’observer que l’opérateur de transfert d’une dynamique
dilatante lisse du cercle a de bien meilleures propriétés de convergence. On peut en particulier espérer
que, pour toute fonction f ∈ C1(S1,C), la suite de fonctions (Ln(f))n≥0 converge, où L est l’opérateur
de transfert relativement à la mesure de Lebesgue.
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Figure 13 – De gauche à droite : graphes de Lk(f) pour 0 ≤ k ≤ 3, où T = T−3, 0,15 est la
transformation dilatante du cercle définie à l’Exemple 1.3, L est l’opérateur de transfert relativement
à la mesure de Lebesgue, et f(x) = 1 + cos(14πx)

2
.

3.3.1 Rayon spectral essentiel

Le phénomène observé est une conséquence de la quasi-compacité de L.

Définition 3.5 (Rayon spectral essentiel).
Soient B un espace de Banach et M : B → B un opérateur. Le rayon spectral essentiel ρess(M y

B) est l’infimum des r > 0 tels que Sp(M y B) ∩ B(0, r)c consiste en un nombre fini de valeurs
propres de multiplicité finie.

De façon équivalente, ρess(M y B) est l’infimum des r > 0 tels que l’on puisse écrireM = N+K,
où N est un opérateur de rayon spectral au plus r et K est compact.

Toujours de façon équivalente, ρess(M y B) est le rayon spectral de la projection de M dans
l’algèbre de Banach L(B,B)/K(B,B), où K(B,B) est l’idéal bilatère des opérateurs compacts.

Un opérateur M est dit quasi-compact si ρess(M y B) < ρ(M y B).

En particulier, un opérateur M ∈ L(B,B) est compact si et seulement si ρess(M y B) = 0.
Dans le cas des opérateurs de transfert, on peut définir des résonances de Ruelle à l’aide de la

quasi-compacité.

Définition 3.6 (Résonances de Ruelle).
Soient B un espace de Banach sur lequel agit un opérateur de transfert L, éventuellement à poids.

Les résonances de Ruelle de L sont les valeurs propres de L de module strictement supérieur à
ρess(Ly B).

Les résonances de Ruelle sont en général robustes, au sens où, sous des conditions très générales,
elles ne dépendent pas de l’espace de Banach B choisi [16, Lemme A.1] et sont stables sous une large
classe de perturbations [141].

3.3.2 Spectre périphérique, I : Ergodicité et mélange

Nous allons maintenant aborder le spectre périphérique de l’opérateur de transfert. Cette notion
est l’occasion de revenir sur les propriétés d’ergodicité et de mélange, d’aborder des décompositions
propres de l’opérateur de transfert, et d’introduire une décomposition périodique de transformations
ergodiques. Cette notion sera approfondie dans la Sous-section 5.3.
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Soit (A, µ, T ) un système dynamique non singulier et L l’opérateur de transfert associé agissant
sur un espace de Banach B ⊂ L1(A, µ). Supposons de plus que B est dense dans L1(A, µ) et que
ρess(Ly B) < 1.

Soit λ une valeur propre de L et f une fonction propre associée. Alors

|λ| ‖f‖L1(A,µ) = ‖L(f)‖L1(A,µ) ≤ ‖f‖L1(A,µ) ,

donc |λ| ≤ 1. De plus, L∗(1) = 1 ◦ T = 1, donc 1 ∈ Sp(Ly B). Par conséquent, ρ(Ly B) = 1.

Définition 3.7 (Spectre périphérique).
Dans le cadre ci-dessus, le spectre périphérique de L y B est l’ensemble des valeurs propres de

L de module 1.

Le spectre périphérique est intéressant car il permet de transcrire et d’affiner les propriétés er-
godiques élémentaires de la Sous-section 2.1. La valeur propre 1 permet déjà de lire les propriétés
d’ergodicité et de mélange :

Proposition 3.8.
Soit (A, µ, T ) un système dynamique préservant la mesure de probabilité et L l’opérateur de trans-

fert associé agissant sur un espace de Banach B. Supposons de plus que B ⊂ L2(A, µ) continûment,
que B est dense dans L2(A, µ) et que ρess(Ly B) < 1. Alors :
• Les blocs de Jordan des valeurs propres périphériques sont triviaux.
• (A, µ, T ) est ergodique si et seulement si 1 ∈ Sp(Ly B) est de multiplicité 1.
• (A, µ, T ) est mélangeant si et seulement si le spectre périphérique de L y B est réduit à {1}
de multiplicité 1.

La démonstration de cette proposition fait apparaître des raisonnements dont nous aurons besoin
par la suite ; nous la détaillons donc.

Démonstration.
Premier point : Si une valeur propre périphérique avait un bloc de Jordan non trivial, alors

on pourrait trouver une fonction f telle que (Ln(f))n≥0 croisse polynômialement dans B, ce qui
contredirait la contractivité faible de L dans L2(A, µ).

Deuxième point : Pour tout λ dans le spectre périphérique, notons πλ le projecteur spectral de
L sur le sous-espace propre associé, et Q la restriction de L au spectre non périphérique. Alors, par
le premier point,

L =
∑

λ∈Sp(LyB)
λ périphérique

λπλ +Q

Ln =
∑

λ∈Sp(LyB)
λ périphérique

λnπλ +Qn

1

n

n−1∑
k=0

Lk = π1 +
1

n

∑
λ∈Sp(LyB)
λ périphérique

λ 6=1

1− λn

1− λ
πλ +Qn.

De plus, ‖Qn‖B→B = O(rn) avec r ∈ (0, 1). Par conséquent, pour tout f ∈ B,

lim
n→+∞

1

n

n−1∑
k=0

Lk(f) = π1(f).
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En dualisant, pour tous f ∈ B et g ∈ L2(A, µ),

lim
n→+∞

∫
A

f · 1

n
Sng dµ =

∫
A

π1(f) · g dµ.

Si (A, µ, T ) est ergodique, par le théorème ergodique de von Neumann, cette limite est aussi égale
à
∫
A
f dµ ·

∫
A
g dµ. Ceci étant vrai pour tout g ∈ L2(A, µ), on conclut que π1(f) =

(∫
A
f dµ

)
· 1,

c’est-à-dire que 1 ∈ Sp(L y B) est de multiplicité 1. Réciproquement, si 1 ∈ Sp(L y B) est de
multiplicité 1, alors

lim
n→+∞

∫
A

f · 1

n
Sng dµ =

∫
A

f dµ ·
∫
A

g dµ.

Cette propriété s’étend par densité à tout f ∈ L2(A, µ). Par le théorème ergodique de von Neumann,
cette limite est aussi égale à

∫
A
f · E(g|I) dµ, où I est la tribu des boréliens T -invariants. Par

conséquent, E(g|I) dµ =
∫
A
g dµ, donc (A, µ, T ) est ergodique.

Troisième point : Supposons le spectre périphérique réduit à {1} de multiplicité 1. Alors on
dispose d’une décomposition propre L = 1⊗µ+Q, où ‖Qn‖B→B = O(rn) avec r ∈ (0, 1). Mais alors,
pour tout f ∈ B et g ∈ L2(A, µ),∫

A

f · g ◦ T n dµ =

∫
A

Ln(f) · g dµ =

∫
A

f dµ ·
∫
A

g dµ+O(rn) ‖f‖B ‖g‖L2(A,µ) .

En particulier, pour tous f ∈ B et g ∈ L2(A, µ),

lim
n→+∞

∫
A

f · g ◦ T n dµ =

∫
A

f dµ ·
∫
A

g dµ.

Cette propriété s’étend elle aussi par continuité à toute fonction f ∈ L2(A, µ). Le système (A, µ, T )
est donc mélangeant. Réciproquement, si le spectre périphérique n’est pas réduit à {1}, soit λ une
valeur propre périphérique différente de 1, et f 6= 1 une fonction propre associée. Soit g ∈ L2(A, µ)
telle que

∫
A
f · g dµ 6= 0. Alors, pour tout n ≥ 0,∫

A

f · g ◦ T n dµ =

∫
A

Ln(f) · g dµ = λn
∫
A

f · g dµ,

ce qui contredit le mélange.

Le point le plus important pour la suite de ce mémoire est que, si le spectre périphérique de
L y B est réduit à {1} de multiplicité 1, alors L a un trou spectral : il existe r ∈ (0, 1) tel que
L = 1 ⊗ µ + Q et ‖Qn‖B→B = O(rn). On peut ainsi démontrer la décroissance exponentielle des
corrélations telle qu’au Théorème 2.8 :

Corollaire 3.9 (Décroissance exponentielle des corrélations).
Soit (A, µ, T ) un système dynamique préservant la mesure de probabilité et mélangeant. Soit L

l’opérateur de transfert associé agissant sur un espace de Banach B ⊂ L2(A, µ). Supposons de plus
que B est dense dans L2(A, µ) et que ρess(L y B) < 1. Alors il existe C ≥ 0 et ρ ∈ [0, 1) tels que,
pour tout n ≥ 0, tout f ∈ B et tout g ∈ L2(A, µ),∣∣∣∣∫

A

f · g ◦ T n dµ−
∫
A

F dµ ·
∫
A

g dµ

∣∣∣∣ ≤ Cρn ‖f‖B ‖g‖L2(A,µ) . (3.4)
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La référence la plus complète sur le sujet est l’ouvrage de V. Baladi [10].
Ceci reste valable sous conditions même si T ne préserve pas la mesure de référence. Par exemple,

dans le cas de la Figure 13, l’opérateur L agissant sur C1 est somme d’un opérateur Q de rayon
spectral strictement inférieur à 1 et d’un opérateur de rang 1 de la forme h ⊗ ν, où h est de classe
C1. Alors, quelque soit f ∈ C1(S1,C), la suite Ln(f) converge à vitesse exponentielle vers un multiple
de h, et h(x)dx est une mesure T -invariante.

Exemple 3.10 (Transformation dyadique).
Pour la transformation dyadique T : x → 2x [1] sur R/Z et la mesure de Lebesgue, on utilise

B = C1 (R/Z,C), muni de la semi-norme |f |C1(R/Z,C) := ‖f ′‖∞ et de la norme ‖f‖C1(R/Z,C) := ‖f‖∞+
|f |C1(R/Z,C). On montre à l’aide de la formule de l’Exemple (3.4) que

|L(f)|C1(R/Z,C) ≤
1

2
|f |C1(R/Z,C).

De plus, ‖g‖∞ ≤
1
4
|g|C1(R/Z,C) pour toute fonction g ∈ C1 (R/Z,C) d’intégrale nulle. Donc, pour tout

n ≥ 0, ∥∥∥∥Ln(f)−
∫
R/Z

f(x) dx

∥∥∥∥
C1(R/Z,C)

≤ 5

4
2−n ‖f‖C1(R/Z,C) .

En particulier, L est somme d’un opérateur de rang 1 et d’un opérateur de rayon spectral au plus
1/2, donc ρess (Ly C1 (R/Z,C)) ≤ 1/2 ; on a en fait égalité, comme peut se voir en construisant des
fonctions de Weierstrass C1 et propres pour L.

Quand on ne suppose pas que (A, µ, T ) est mélangeante, son spectre périphérique n’est pas né-
cessairement trivial. Allons plus loin dans l’interprétation dynamique de ce spectre périphérique.

Proposition 3.11.
Soit (A, µ, T ) un système dynamique ergodique préservant la mesure de probabilité et L l’opérateur

de transfert associé agissant sur un espace de Banach B ⊂ L2(A, µ). Supposons de plus que B est
dense dans L2(A, µ), stable par multiplication et conjugaison complexe, et que ρess(L y B) < 1.
Alors :
• Le spectre périphérique est un sous-groupe fini de S1, et chacune de ses valeurs propres est de
multiplicité 1.
• Soit N l’ordre de ce sous-groupe. Alors il existe une partition (Ak)k∈Z/NZ de A telle que
T (Ak) = Ak+1 pour tout k, et que (Ak, µ(·|Ak), TN) soit mélangeante pour tout k.

Démonstration.
Soit λ une valeur propre périphérique, et f un vecteur propre associé. Remarquons tout d’abord

que
• |f | = |L(f)| ≤ L(|f |), donc par contractivité faible |f | = L(|f |). Le système dynamique étant

ergodique, |f | est constante. Sans perte de généralité, on pourra supposer f = eiθ de module
1.
• f est une fonction propre de L pour la valeur propre λ.

Par conséquent,∥∥f ◦ T − λf∥∥2

L2(A,µ)
=

∫
A

(f ◦ T − λf)(f ◦ T − λf) dµ = 2 ‖f‖2
L2(A,µ) − 2 ‖f‖2

L2(A,µ) = 0.

Autrement dit, f est un vecteur propre de l’opérateur de Koopman pour la valeur propre λ.
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Soient λ1, λ2 deux valeurs propres périphériques, et f1, f2 deux fonctions propres associées. Alors

L(f1f2) = L(λ1f1 ◦ T · λ2f2 ◦ T ) = λ1λ2f1f2.

Comme f1 et f2 sont de module constant, elles ne s’annulent pas, donc f1f2 est fonction propre de
λ1λ2 ∈ Sp(Ly B). Le spectre périphérique est clos par multiplication et conjugaison complexe, donc
c’est un sous-groupe de S1 ; comme il est discret, c’est un sous-groupe fini. Soit N son ordre.

Soit f un vecteur propre d’une valeur propre périphérique λ. Alors fN est fonction propre pour
la valeur propre 1, donc constante. Quitte à multiplier f par une constante, on peut supposer que
f = eiθ avec θ ∈

{
2π k

N
: k ∈ Z/NZ

}
.

Si le spectre périphérique est réduit à {1}, la Proposition 3.8 permet de conclure. Sinon, choisissons
λ = ei

2π
N . L’égalité f ◦ T = λf devient θ ◦ T = θ − 2π

N
. Les ensembles Ak = {θ = −2π k

N
} forment

alors une partition de A telle que T (Ak) = Ak+1 pour tout k.
Soient f1, f2 deux fonctions propres d’une même valeur propre périphérique λ′. Soit k ≥ 0 tel que

λ′λk = 1. Alors fkf1 et fkf2 sont deux fonctions propres de la valeur propre 1, donc sont colinéaires.
Donc f1etf2 sont colinéaires : λ′ est une valeur propre simple.

Enfin, on peut écrire explicitement une décomposition spectrale de L :

L =
∑

k∈Z/NZ

λkfk ⊗ fkdµ+Q,

où ‖Q‖B→B < 1. De là,
LN =

∑
k∈Z/NZ

fk ⊗ fkdµ+QN .

Le mélange de chaque (Ak, µ(·|Ak), TN) suit des mêmes arguments que dans le troisième point de la
démonstration de la Proposition 3.8.

On dira alors que N est la période de (A, µ, T ) et (Ak)k∈Z/NZ la décomposition en composantes
périodiques du système. La Proposition 3.11 affirme que le spectre de l’opérateur de transfert d’une
dynamique ergodique a la forme donnée par la Figure 14.

10

Figure 14 – Spectre d’un opérateur de transfert Ly B avec une période de 5. Il y a potentiellement
une infinité de résonances de Ruelle s’accumulant sur le spectre essentiel.

Remarque 3.12 (Régularité des composantes périodiques).
Dans les conditions de la Proposition 3.11, une fonction propre associée à ei2π

k
N est

fk =
∑

`∈Z/NZ

e−i2π
k`
N 1A` .
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Par combinaison linéaire de ces fonctions propres, les indicatrices 1A` appartiennent à B, ce qui
contraint la régularité des ensembles A`.

Remarque 3.13 (Théorie de Perron-Frobenius).
Les arguments esquissés ici sont des version fonctionnelles de la théorie de Perron-Frobenius [10,

Chapter 1], appliquée par exemple à une chaîne de Markov de matrice de transition P :
• 1 = ρ(P ) est valeur propre de P .
• P est irréductible si et seulement si 1 est valeur propre simple de P .
• P est apériodique si et seulement si le spectre périphérique de P est réduit à {1} de multiplicité

1.
• Si le spectre périphérique de P est non trivial, on peut déduire une décomposition de l’espace
d’états en composantes périodiques.

Ce lien est d’autant plus profond que l’on peut coder une chaîne de Markov par un système dynamique,
puis faire correspondre les propriétés spectrales la matrice de transition et celles de l’opérateur de
transfert du système dynamique associé.

3.3.3 Montrer la quasi-compacité

Hors quelques méthodes ad-hoc telles que dans l’Exemple 3.10, il existe deux grandes approches
pour montrer la quasi-compacité d’un opérateur.

La première consiste à démontrer directement l’existence d’un trou spectral, par exemple par
des méthodes de couplage 20 ou de contraction de cônes dans B, utilisant notamment la métrique de
Hilbert (voir [30] et [10, Chapter 2], [201] dans un cadre complexe). Cela peut donner des estimées
explicites sur le trou spectral, qui sont en général beaucoup plus proches de 1 que du rayon spectral
essentiel.

Une deuxième méthode, qui donne parfois des estimées optimales sur le rayon spectral essen-
tiel [46,47,59,139], passe par des inégalités de Döblin–Fortet [78] (aussi appelées inégalités de Ionescu-
Tulcea–Marinescu [125] ou Lasota–Yorke [150]) et des théorèmes tels que [120,178] :

Théorème 3.14 (Hennion, 1993 ; d’après Nussbaum, 1970).
Soit (B, ‖·‖s) un espace de Banach et ‖·‖w une norme sur B. Soit Ly B continûment. Supposons

que :
• L : (B, ‖·‖s)→ (B, ‖·‖w) est compact.
• Il existe des suites (Rn)n≥0, (rn)n≥0 positives telles que, pour tout f ∈ B et n ≥ 0,

‖Ln(f)‖s ≤ rn ‖f‖s +Rn ‖f‖w . (3.5)

Alors ρess(Ly B) ≤ lim infn→+∞ r
1
n
n .

On parlera de norme forte pour ‖·‖s et de norme faible pour ‖·‖w.
Par exemple, si T est une transformation C2 dilatante du cercle qui ne préserve pas nécessairement

la mesure de Lebesgue, on peut montrer qu’il existe des constantes C, C ′ telles que, pour tout
f ∈ C1(S1,C) et tout n ≥ 0,

‖Ln(f)‖C1 ≤
C

min |(T (n))′|
‖f‖C1 + C ′ ‖f‖C0 .

20. Qui ont l’avantage d’être encore efficaces en l’absence de trou spectral et de décroissance exponentielle des
corrélations : voir [227] dans le cadre de chaînes de Markov, et [235] dans le cadre de systèmes dynamiques. Ces
méthodes ont été utilisées intensivement par D. Dolgopyat conjointement avec la notion de paires standards [162].
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Une telle estimée dépend crucialement de la propriété de distorsion lipschitzienne vue en Sous-
section 2.2. En appliquant le Théorème 3.14 avec les espaces de Banach C0 et C1, on obtient

ρess(Ly C1 (R/Z,C)) ≤ 1

limn→+∞min
∣∣(T n)′

∣∣ 1
n

≤ 1

min |T ′|
< 1 ;

la compacité de l’injection C1 ↪→ C0 découlant du théorème d’Arzelà-Ascoli. Dans le cas de la trans-
formation dyadique, min |T ′| = 2 ; les inégalités larges ci-dessus sont toutes des égalités et on retrouve
l’estimée de l’Exemple 3.10.

3.4 Exemples d’espaces de Banach adaptés

Le choix de paires de normes adaptées ‖·‖s, ‖·‖w est crucial pour pouvoir appliquer, par exemple,
le Théorème 3.14, et ainsi débuter une analyse spectrale du système dynamique. Ces espaces doivent
parfois êtres taillés sur mesure pour la dynamique, ce qui peut s’avérer particulièrement difficile.
Ainsi, la conception d’espaces de Banach adaptés au flot du billard de Sinaï a demandé une quinzaine
d’années pour se conclure [14].

3.4.1 Transformations dilatantes, dilatantes par morceaux

La présence de directions contractantes apporte des difficultés conceptuelles que nous aborderons
dans la suite de ce mémoire. Commençons par des dynamiques dilatantes, en nous restreignant à
décrire les normes fortes ; les normes faibles seront en générales des espaces semblables, mais de
régularité plus faible (fonctions continues, Lp...).

Pour les sous-décalages de type fini, le choix le plus classique consiste à travailler avec l’espace
des fonctions höldériennes [10,38].

Pour des transformations dilatantes de classe Ck du cercle, avec k ≥ 2, on pourra travailler
par exemple avec l’espace Ck−1(S1,C). On peut de même étudier des transformations Ck+α avec 21

k + α > 1, quitte à introduire encore une fois des espaces de fonctions höldériennes.
La notion de régularité admet de nombreuses variations ; on peut aussi travailler aussi avec des

espaces de Sobolev, la compacité étant alors assurée par le théorème de Rellich–Kondrachov. Dans
le cadre des transformations dilatantes de classe C2 du cercle, il est possible de démontrer particuliè-
rement simplement la quasi-compacité de Ly W 1,1(S1,C) [102].

En dimension 1, la classe des systèmes C1+α par morceaux introduit une difficulté supplémentaire.
La dynamique n’étant en général pas markovienne, l’opérateur de transfert associé ne préserve pas
en général les fonctions continues. Il faut donc se restreindre à des espaces de fonctions de basse
régularité, qui admettent en particulier des fonctions non continues. L’exemple le plus classique est
l’espace des fonctions à variation bornée [150], mais il en existe des variantes : fonctions à oscillations
bornées [140], espaces de Sobolev [15] [220]...

En dimension supérieure, les systèmes C1+α dilatants par morceaux présentent un nouvel obstacle
important : la dilatatation et le découpage en morceaux peuvent interagir de telle sorte que le système
dynamique ne possède pas, ou bien possède un nombre infini, de mesures de probabilités absolument
continues [49,228]. Cet effet se contrôle à l’aide d’estimées sur les angles entre discontinuités, ou sur
le nombre de discontinuités, des itérées de la transformation, ce qui a donné lieu à une littérature
importante et encore active [13,15,63,108,204] [220].

21. Une régularité C1 ne suffit pas : on perd alors la propriété si importante de distorsion höldérienne. La dynamique
C1 est beaucoup moins rigide.
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3.4.2 Transformations Gibbs-Markov : Espaces de fonctions lipschitziennes

Un cas particulier, mais particulièrement important pour ce mémoire, est celui des transforma-
tions Gibbs-Markov, dont la lectrice pourra trouver une présentation dans [1, Chapter 4] et [112, Cha-
pitre1]. Nous allons maintenant détailler le choix d’espaces de Banach et les inégalités de Döblin–
Fortet pour ces transformations. Plusieurs bons espaces de Banach sont disponibles ; en voici deux
particulièrement intéressants pour la suite.

Définition 3.15 (Espaces Lip1 et Lip∞).
Soit (A,α, d, µ, T ) une transformation Gibbs-Markov, et f : A→ C. Pour tout a ∈ α, définissons

la semi-norme lipschitzienne de f sur a par

|f |Lip(a) := ess sup
x,y∈a
x 6=y

|f(x)− f(y)|
d(x, y)

. (3.6)

De cette famille de semi-normes locales on déduit deux semi-normes globales :

|f |Lip1(A,µ) :=
∑
a∈α

µ(a)|f |Lip(a) et |f |Lip∞(A,µ) := sup
a∈α∗
|f |Lip(a). (3.7)

Enfin, on en tire deux normes :

‖f‖Lip1(A,µ) := ‖f‖L1(A,µ) + |f |Lip1(A,µ) et ‖f‖Lip∞(A,µ) := ‖f‖L∞(A,µ) + |f |Lip∞(A,µ). (3.8)

On note Lip1(A, µ) l’espace des fonctions L1(A, µ) de norme Lip1(A, µ) finie, et de même pour
Lip∞(A, µ).

L’espace Lip∞(A, µ) joue le rôle de l’espace des fonction lipschitziennes pour une transformation
dilatante du cercle, ou pour un sous-décalage de type fini :

Théorème 3.16. [112, Corollaire 1.1.14]
Soit (A,α, d, µ, T ) une transformation Gibbs-Markov de facteur de dilatation Λ. Alors ρess(L y

Lip∞(A, µ)) ≤ Λ−1. En particulier, l’action de L sur Lip∞(A, µ) est quasi-compacte.

Remarque 3.17 (Composantes périodiques des transformations Gibbs-Markov).
Soit (A,α, d, µ, T ) une transformation Gibbs-Markov ergodique. Soit (Ak)k∈Z/NZ sa décomposi-

tion en composantes périodiques. D’après la Remarque 3.12, les indicatrices 1Ak appartiennent à
Lip∞(A, µ). Autrement dit, chaque Ak est une union de cylindres de longueur bornée. Mais, comme
Ak = T `N(Ak) pour tout `, les Ak sont en fait σ(α∗)-mesurables.

Exemple 3.18 (Transformation de Gauss).
La partition image de la transformation de Gauss est triviale, donc la seule composante périodique

possible est (0, 1] tout entier. Par conséquent sa période N vaut 1, et la transformation de Gauss
((0, 1], µ, T ) est mélangeante.

L’espace Lip1(A, µ), beaucoup plus gros que Lip∞(A, µ), joue un rôle particulier grâce à la pro-
priété clef suivante :

Théorème 3.19. [112, Corollaire 1.1.14]
Soit (A,α, d, µ, T ) une transformation Gibbs-Markov. L’opérateur L envoie continûment l’espace

Lip1(A, µ) dans Lip∞(A, µ).
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Cette propriété, très forte, fait tout le sel des transformations Gibbs-Markov. On en déduit par
exemple :

Corollaire 3.20.
Soit (A,α, d, µ, T ) une transformation Gibbs-Markov. Il existe une constante C telle que, pour

tout a ∈ α et f ∈ Lip∞(A, µ),

‖L(1af)‖Lip∞(A,µ) ≤ Cµ(a) ‖f‖Lip∞(A,µ) . (3.9)

Démonstration.
L’opérateur f 7→ L(1af) sur Lip∞(A, µ) est la composition de l’opérateur f 7→ 1af de Lip∞(A, µ)

dans Lip1(A, µ), et de l’opérateur L de Lip1(A, µ) dans Lip∞(A, µ). Le premier a pour norme µ(a),
et le second est borné par le Théorème 3.19.

3.4.3 Transformations Gibbs-Markov : Temps d’arrêt

Le Corollaire 3.20 est déjà remarquable. Nous allons le généraliser ici pour en obtenir une version
qui s’avèrera cruciale pour nos applications. Au passage, nous ferons le lien avec un objet central
de la théorie des processus stochastique : les temps d’arrêts. Pour plus de détails, le lecteur pourra
consulter l’annexe de [226].

Définition 3.21 (Temps d’arrêt pour des processus stochastiques).
Soit (Fn)n≥0 une filtration sur un espace probabilisé (Ω, µ). Une fonction ϕ : Ω→ N ∪ {+∞} est

un temps d’arrêt si {ϕ ≤ n} est Fn-mesurable pour tout n ≥ 0.

Une transformation Gibbs-Markov (A,α, d, µ, T ) est équipée d’une filtration naturelle :

Fn := σ

(
n−1∨
k=0

T−kα

)
.

Avec cette définition, F0 est triviale, et F∞ :=
∨
n≥0Fn est la tribu borélienne de A. Une fonction est

Fn-mesurable si et seulement si elle est essentiellement constante sur les cylindres de longueur n. Nous
en tirons une définition de temps d’arrêt adaptée aux transformations Gibbs-Markov, en éliminant de
plus des cas dégénérés (fonctions constantes nulles, ou fonctions valant +∞ avec probabilité positive).

Définition 3.22 (Temps d’arrêt pour des transformations Gibbs-Markov).
Soit (A,α, d, µ, T ) une transformation Gibbs-Markov. Une fonction ϕ : A → N ∪ {+∞} est un

temps d’arrêt si {ϕ ≤ n} est Fn-mesurable pour tout n ≥ 0, et si 1 ≤ ϕ < +∞ presque sûrement.

Nous allons résumer quelques opérations que permettent ces temps d’arrêts. D’une part, nous
disposons d’une partition adaptée : en notant αn l’ensemble des cylindres de longueur n, il s’agit de

αϕ :=
⊔
n≥1

{a ∈ αn : µ(a) > 0 et a ⊂ {ϕ = n}}. (3.10)

On y associe aussi une transformation définie presque partout sur A :

Tϕ : x 7→ Tϕ(x)(x), (3.11)

qui ne préserve en général pas la mesure µ. L’opérateur de transfert associé à Tϕ est :

Lϕ(f) =
+∞∑
n=1

Ln
(
1{ϕ=n}f

)
. (3.12)

Ces temps d’arrêts vont avoir deux propriétés très intéressantes. D’une part, on a une inégalité
de Döblin–Fortet :
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Proposition 3.23. [226, Corollaire A.6]
Soit (A,α, d, µ, T ) une transformation Gibbs-Markov. Il existe une constante C telle que, pour

tout temps d’arrêt ϕ, tout n ≥ 1, et toute f ∈ Lip∞(A, µ),∥∥Lnϕ(f)
∥∥

Lip∞(A,µ)
≤ C

[
Λ−n ‖f‖Lip∞(A,µ) + ‖f‖L1(A,µ)

]
.

En particulier, ρess(Lϕ y Lip∞(A, µ)) ≤ Λ−1.

Si de plus Tϕ préserve µ, alors l’opérateur Lϕ est quasi-compact. En fait, (A,αϕ, d, µ, Tϕ) est
alors Gibbs-Markov ; cependant, la Proposition 3.23 a l’avantage de ne faire intervenir que l’espace
Lip∞(A, µ) associé à la transformation initiale (A,α, d, µ, T ), et non l’espace beaucoup plus gros de
fonctions localement lipschitziennes pour la distance d et la partition αϕ.

D’autre part, comme annoncé, on peut généraliser le Corollaire 3.20 :

Proposition 3.24. [226, Corollaire A.7]
Soit (A,α, d, µ, T ) une transformation Gibbs-Markov. Il existe une constante C telle que, pour

tout temps d’arrêt ϕ, tout a ∈ αϕ et toute f ∈ Lip∞(A, µ),

‖Lϕ(1af)‖
Lip∞(A,µ)

≤ Cµ(a) ‖f‖Lip∞(A,µ) . (3.13)

On peut même supposer que ϕ est un temps d’arrêt seulement sur a, et prend par exemple la
valeur +∞ ailleurs ; cela s’avèrera utile pour démontrer la Proposition 6.2.

3.4.4 Espaces de distributions anisotropes : Motivation

Jusqu’à présent, nous n’avons appliqué la méthode spectrale qu’à des systèmes dynamiques dila-
tants, tels que des transformations dilatantes de l’intervalle ou des transformations Gibbs-Markov.
Dans les quelques exemples que nous avons mentionnés de systèmes non dilatants (transformations
unimodales, flots géodésiques, billards), nous évoquions la possibilité de se ramener à l’aide d’un
codage à des transformations dilatantes. Une autre stratégie consiste à trouver de bons espaces de
Banach adaptés à des transformations hyperboliques ayant à la fois des directions stables et des
directions instables, et ce sans avoir à encoder la dynamique. Pour cela, des espaces de distributions
anisotropes se sont révélés extrêmement puissants.

Au vu de l’importance du sujet et de sa technicité, il en existe de nombreux textes introductifs
ou de revue. Nous conseillons notamment les introductions de M. Demers [73], C. Liverani [163] et
M. Jézéquel [128], ainsi que l’article de revue de V. Baladi [12].

Soit T une transformation contractante. Si nous faisons agir son opérateur de transfert sur l’espace
C1, nous recontrons alors le même problème qu’avec l’opérateur de Koopman de transformations
dilatantes, présenté en Sous-section 3.1. Par exemple, si l’on considère la transformation

T :

{
[−1, 1] → [−1, 1]
x 7→ x/2

,

alors l’opérateur de transfert par rapport à la mesure de Lebesgue est

L :

{
L1([−1, 1],Leb) → L1([−1, 1],Leb)
f 7→

[
x 7→ 2f(2x)1[−1/2,1/2](x)

] .

En particulier, cet opérateur double la semi-norme C1 de f , et ρ (Ly C1 ([−1, 1],C)) = 2. D’autre
part, l’action de l’opérateur de Koopman de T sur les fonctions C1 est beaucoup plus sympathique,
étant donné que

|f ◦ T n|C1([−1,1],C) ≤ 2−n|f |C1([−1,1],C),
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et donc, de même que dans l’Exemple 3.10, l’action de T sur C1 ([−1, 1],C) est quasi-compacte.
Pour résumer :
• Si T est dilatante, l’action de l’opérateur de Koopman T sur C1 (ou un espace similaire) n’a

pas de bonnes propriétés, mais l’action de l’opérateur de transfert L sur C1 a des chances
d’être quasi-compacte.
• Si T est contractante, l’action de l’opérateur de Koopman T sur C1 a des chances d’être

quasi-compacte, mais l’action de L sur C1 n’a pas de bonnes propriétés.
Changeons de point de vue. L’opérateur de transfert L est le dual de l’opérateur de Koopman T ; le

spectre de l’action de L sur C1 est donc le même que le spectre de l’action de T sur (C1)∗, définie comme
l’extension de l’action de T sur C0 à (C1)∗ par densité. Autrement dit, on peut récupérer la quasi-
compacité quitte à travailler avec des distributions plutôt qu’avec des fonctions. Par conséquent :
• Si T est dilatante, l’action de l’opérateur de Koopman T sur (C1)∗ (ou un espace similaire) et

celle de l’opérateur de transfert L sur C1 ont des chances d’être quasi-compactes.
• Si T est contractante, l’action de l’opérateur de Koopman T sur C1 (ou un espace similaire)

et celle de l’opérateur de transfert L sur (C1)∗ ont des chances d’être quasi-compactes.
La difficulté consiste alors à réunir les deux points de vue quand une transformation a simultanément
des directions dilatantes et des directions contractantes. Cela peut se faire à l’aide d’espaces de
distributions anisotropes, dont les objets sont des distributions lisses dans les directions instables
et duales de lisses dans les directions stables ; l’action de l’opérateur de transfert a alors de bonnes
chances d’agir d’être quasi-compacte.

3.4.5 Espaces de distributions anisotropes : Exemples

On peut définir à peu de frais et très explicitement des espaces de distributions anisotropes sur
le tore grâce aux séries de Fourier.

Définition 3.25 (Espaces de Sobolev).
Soient n ≥ 1 et t ∈ R. L’espace de Sobolev sur Tn de paramètre t est

H t(Tn,C) :=

{
f ∈ S∗(Tn,C) :

∑
ξ∈Zn

(
1 + ‖ξ‖2)t ∣∣∣f̂(ξ)

∣∣∣2 < +∞

}
,

muni de la norme ‖f‖2
Ht(Tn,C) :=

∑
ξ∈Zn(1 + ‖ξ‖2)t

∣∣∣f̂(ξ)
∣∣∣2.

Soit f ∈ H t(Tn,C). Plus le paramètre t est élevé, plus les coefficients de Fourier de f décroîssent
vite, donc plus f est régulière. Ainsi :
• Si t ≥ 0, alors f ∈ L2(Tn,C) et peut donc être représentée par une fonction.
• D’après le théorème de plongement de Sobolev, f a une version Cr+α dès que r + α ≤ t− n

2
.

• H t(Tn,C)∗ = H−t(Tn,C), donc les paramètres t négatifs sont des espaces de distributions
duales de fonctions régulières.

On peut définir des espaces de Sobolev anisotropes sur Tn en replaçant le poids ξ 7→
(
1 + ‖ξ‖2) t2

par une fonction qui croît dans certaines directions et décroît dans d’autres. Nous en donnons main-
tenant l’exemple dans le cadre des automorphismes hyperboliques du tore.

Soit A ∈ SLn(Z) un automorphisme du tore Tn n’ayant aucune valeur propre de module 1. Alors
A est une transformation Anosov du tore. En effet, posons

Es :=
⊕

λ∈Sp(A)
|λ|<1

Eλ,
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où Eλ est l’espace caractéristique de la valeur propre λ, en adaptant la construction si certaines
valeurs propres sont complexes 22. Définissons de même Eu à l’aide des valeurs propres de module
strictement plus grand que 1. Alors les trois conditions de la Définition 2.14 sont bien satisfaites.

Soit f ∈ C∞(Tn,C). La transformation A préserve la mesure de Lebesgue, donc l’opérateur de
transfert par rapport à celle-ci n’est autre que L(f) = f ◦ A−1. Dans le domaine fréquentiel, pour
tout ξ ∈ Zn,

L̂(f)(ξ) = ̂f ◦ A−1(ξ) = f̂(A∗ξ).

La matrice A∗ ayant le même spectre que A, on dispose de sous-espaces stables et instables (Eu)∗

et (Es)∗ dans l’espace cotangent (Rn)∗ de Tn. Grâce aux propriétés de contraction de A∗ (en temps
positif pour (Es)∗, en temps négatif pour (Eu)∗), la dynamique de A∗ sur l’espace projectif est une
dynamique Nord-Sud généralisée : si [ξ] ∈ P((Rn)∗ \ (Es)∗), alors l’ensemble ω-limite de la suite
((An)∗[ξ]))n≥0 est contenu dans P((Eu)∗) ; et de même en temps négatif en inversant (Eu)∗ et (Es)∗.
On peut trouver des cônes invariants, c’est-à-dire :
• Un voisinage ouvert (Cu)∗ de P((Eu)∗) ⊂ P((Rn)∗) tel que 23 A∗(Cu)∗ ⊂ (Cu)∗ ;
• Un voisinage ouvert (Cs)∗ de P((Es)∗) tel que (A−1)∗(Cs)∗ ⊂ (Cs)∗ ;
• Ces voisinages pouvant être choisis tels que (Cu)∗ et (Cs)∗ soient disjoints.

On peut alors trouver une fonction de poids adaptée à l’action de A∗ sur P((Rn)∗) et à ces cônes.
Pour simplifier 24, on supposera que l’on a trouvé une fonction α : P((Rn)∗)→ [−1, 1] telle que :
• α ≡ 1 sur (Cu)∗ ;
• α ≡ −1 sur (Cs)∗ ;
• ξ 7→ (1 + ‖ξ‖2)α([ξ]) soit une fonction de Lyapunov pour l’action de A∗ sur (Rn)∗, c’est-à-dire

que (1 + ‖A∗ξ‖2)α(A∗[ξ]) ≥ (1 + ‖ξ‖2)α([ξ]).
Pour tout t ≥ 0, on définit alors un espace de Sobolev anisotrope

H t
α(Tn,C) :=

{
f ∈ S∗(Tn,C) :

∑
ξ∈Zn

(
1 + ‖ξ‖2)tα([ξ])

∣∣∣f̂(ξ)
∣∣∣2 < +∞

}
,

la norme associée étant donc égale à la normeH t pour les fonctions dont les fréquences sont supportées
dans (Cu)∗, et égale à la norme H−t pour les fonctions dont les fréquences sont supportées dans (Cs)∗.
Les distributions anisotropes appartenant à ces espaces sont donc bien en ce sens régulières dans la
direction instable et duales de régulières dans la direction stable. Un bref calcul montre que, pour
f ∈ H t

α(Tn,C) telle que f̂(0) = 0 (c’est-à-dire de moyenne nulle),

‖Ln(f)‖2
Ht
α(Tn,C) =

∑
ξ∈Zn

(
1 + ‖ξ‖2)tα([ξ])

∣∣∣f̂((A∗)nξ)
∣∣∣2

≤ ‖f‖2
Ht
α(Tn,C)

∑
ξ∈Zn

(
1 + ‖ξ‖2)tα([ξ]) (

1 + ‖(A∗)nξ‖2)tα([(A∗)nξ])
.

Posons Fn(ξ) :=
(
1 + ‖ξ‖2)tα([ξ]) (

1 + ‖(A∗)nξ‖2)tα([(A∗)nξ])
. Si ξ 6= 0, alors ‖ξ‖ ≥ 1, et donc

4−t ‖ξ‖2tα([ξ]) ‖(A∗)nξ‖2tα([(A∗)nξ]) ≤ Fn(ξ) ≤ 4t ‖ξ‖2tα([ξ]) ‖(A∗)nξ‖2tα([(A∗)nξ]) .

Quitte à perdre une constante, on pourra donc remplacer Fn(ξ) par ‖ξ‖2tα([ξ]) ‖(A∗)nξ‖2tα([(A∗)nξ]) si
ξ 6= 0.

Pour 0 ≤ k < n, quand on applique (A∗)k à une fréquence ξ 6= 0 :

22. On remplacera par exemple Eλ par l’intersection avec Rn de Eλ ⊕ Eλ ⊂ Cn.
23. Par exemple, en prenant un petit voisinage V de P((Eu)∗), et en choisissant (Cu)∗ :=

⋃
n≥0(An)∗(V ).

24. Voir à propos de ces conditions un théorème de K.R. Meyer [175], ainsi que la condition de décroissance [93,
Definition 5.4].
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• Tant que (A∗)kξ reste dans le cône (Cs)∗, l’action de A∗ est contractante d’un facteur au
moins (en moyenne, sur des temps suffisamment longs) Λs et α = −1. Par conséquent, Fk(ξ)
est divisé par un facteur environ Λ2t

s à chaque fois que l’on incrémente k.
• Tant que (A∗)kξ reste dans le cône (Cu)∗, l’action de A∗ est dilatante d’un facteur au moins

(en moyenne, sur des temps suffisamment longs) Λu et α = 1. Par conséquent, Fk(ξ) est divisé
par un facteur environ Λ2t

u à chaque fois que l’on incrémente k.
• La trajectoire ((A∗)kξ)k≥0 passe un temps borné hors de (Cs)∗ ∪ (Cu)∗, car la dynamique sur

l’espace projectif est de type Nord-Sud. Comme la fonction ξ 7→ (1 + ‖ξ‖2)tα([ξ]) est supposée
de Lyapunov, la quantité Fk(ξ) n’augmente pas pendant ce temps.

Par conséquent, pour tout ε > 0, il existe une constante C telle que

‖Ln(f)‖Ht
α(Tn,C) ≤ C(min{Λ−1

u ,Λ−1
s }t + ε)n ‖f‖Ht

α(Tn,C) .

Finalement ρess(Ly H t
α(Tn,C)) ≤ min{Λ−1

u ,Λ−1
s }t, et L a pour seule résonance de Ruelle la valeur

propre 1 associée aux fonctions constantes.
Remarquons que, comme dans le cas de l’application dyadique, l’opérateur de transfert n’a pas

de résonance de Ruelle non triviale : on obtient non seulement une estimation de son rayon spectral
essentiel, mais aussi sa contractivité sur l’espace des distributions de moyenne nulle. Cette spécificité
n’est pas générique parmi les difféomorphismes Anosov, au moins en dimension deux [5], et vient du
fait que A est linéaire.

L’exemple ci-dessus a pour vocation de présenter dans un cadre idéalisé une définition simple
d’espace de Banach anisotrope ainsi que le mécanisme assurant la contractivité de l’opérateur de
transfert ou, plus généralement, sa quasi-compacité. V. Baladi distingue trois types d’espaces de
distributions anisotropes [12] :
• Espaces de Triebel, utilisés par exemple par V.Baladi et S. Gouëzel [15].
• Espaces géométriques, utilisés par exemple pour la transformation billard [74] ou le flot

billard [14]. Dans ce cadre, les définitions font typiquement intervenir des espaces de fonc-
tions höldériennes ou Ck ainsi que des objets géométriques tels que des courbes stables ou
instables.
• Espaces microlocaux, utilisés par exemple par F. Faure et M. Tsujii [86,91–93]. La présentation

ci-dessus rentre dans ce cadre.

3.5 Perturbations

La quasi-compacité d’un opérateur de transfert autorise une méthode très puissante, qui consiste
à analyser le comportement des résonances de Ruelle sous des perturbations bien choisies de cet
opérateur. Cette méthode permet notamment d’émuler en dynamique hyperbolique des arguments
probabilistes reposant sur le comportement en 0 de la fonction caractéristique d’une variable aléatoire.
Nous en verrons quelques applications par la suite : théorème central limite (Sous-sous-section 3.6.1),
théorème central limite local (Sous-section 6.3), et calcul d’opérateurs potentiel (Sous-section 11.5).

3.5.1 Régularité des résonances de Ruelle

Soit M une matrice et λ une valeur propre simple de M . Alors la valeur propre λ dépend conti-
nûment de M . Plus précisément :
• Il existe ε > 0 et r > 0 tels que, pour toute matrice N ∈ B(M, ε), il existe un unique
λN ∈ B(λ, r) qui soit valeur propre de N .
• La fonction λ 7→ λN ainsi définie sur B(M, ε) est continue.
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Cela se démontre par exemple grâce à la continuité des racines simples d’une polynôme en fonction
de ses coefficients, associée à la dépendance continue du polynôme caractéristique en la matrice. Il y a
cependant d’autres arguments qui se généralisent à la dimension infinie, et permettent de démontrer
de plus la continuité des projecteurs spectraux.

Soit λ une valeur propre simple d’un opérateur L y B isolée dans le spectre de L. Soit π le
projecteur spectral associé. On peut alors écrire π à l’aide d’une intégrale de chemin de la résolvante
de L :

π = − 1

2πi

∫
γ

(L − ζI)−1 dζ,

où γ est un chemin autour de λ dans le complémentaire de Sp(Ly B) (voir [136, Chapter VIII.1.4]).
Une telle intégrale dépend de façon lisse de L, et donc de façon régulière du paramètre pour des
familles paramétrées d’opérateurs.

Soit donc (Lξ)ξ∈I une famille Ck d’opérateurs agissant sur B, telle que L0 = L. Alors il ε, δ > 0
tels que, si |ξ| < δ, alors Sp(Lξ y B)∩B(λ, ε) = {λξ} soit un singleton. De plus, les valeurs propres
ξ 7→ λξ et les projecteurs spectraux ξ 7→ πξ dépendent de façon Ck du paramètre ξ.

Enfin, comme les projecteurs spectraux πξ sont de rang 1, on peut les écrire sous la forme πξ =
hξ ⊗ µξ, où µξ(hξ) = 1. Il reste un degré de liberté, que l’on fixe dans ce texte par la convention
µ(hξ) = 1. Sous cette convention, ξ 7→ µξ et ξ 7→ hξ sont elles aussi Ck si ξ est suffisamment petit.

Remarque 3.26 (Réponse linéaire).
Les résultats de perturbations esquissés ci-dessus supposent que l’on travaille avec la topologie forte

pour les opérateurs sur B. C’est suffisant pour les besoins de ce texte, mais dans certains contextes
dynamiques, on ne peut garantir la continuité des familles d’opérateurs de transfert que sous une
norme plus faible. C’est typiquement le cas dans la question de la réponse linéaire, c’est-à-dire la
dépendance de la mesure invariante absolument continue µ en la transformation T .

Dans ce contexte, un théorème de C. Liverani et G. Keller [141] garantit la continuité du spectre
et des projecteurs spectraux sous des conditions plus faibles. Nous renvoyons au texte de revue de
V. Baladi pour plus de détails sur la réponse linéaire [11].

Signalons pour terminer une autre approche des perturbations d’opérateurs via le théorème
des fonctions implicites dans des espaces de Banach, développée par P. Giulietti, B. Kloeckner,
A. O. Lopes et D. Marcon Farias [106].

3.5.2 Opérateurs tordus et perturbations

Illustrons ces perturbations dans le cadre des transformations Gibbs-Markov, tout en sachant que
la méthode exposée ici fonctionne dès que l’on a une bonne action de l’opérateur de transfert, et est
donc beaucoup plus générale. Les objets centraux seront les opérateurs de transfert tordus.

Définition 3.27 (Opérateur de transfert tordu).
Soit (A,α, d, µ, T ) une transformation Gibbs-Markov ergodique et F ∈ Lip1(A, µ) à valeurs réelles.

La famille à 1 paramètre réel d’opérateurs définis sur L1(A, µ) par

Lξ(h) := L(eiξFh)

sont 25 des opérateurs de transfert tordus.

25. Un cas particulier, qui sera le plus important dans ce texte.
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Plaçons-nous dans le cadre de la Définition 3.27. Comme F ∈ Lip1(A, µ), on peut vérifier que
la famille ξ 7→ Lξ est C1. En particulier, il existe ε > 0 et r > 0 tels que, pour tout ξ ∈ (−ε, ε),
l’opérateur Lξ a une seule valeur propre λξ ∈ B(1, r) ; et celle-ci est de multiplicité 1.

Nous allons montrer ici comment calculer effectivement un développement limité de cette fonction
λ. Notons hξ la fonction propre de Lξ associée à la valeur propre simple λξ, telle que

∫
A
hξ dµ = 1.

On dérive en 0 l’identité Lξ(hξ) = λξhξ :

L′ξ(hξ) + Lξ(∂ξhξ) = λ′ξhξ + λξ(∂ξhξ)

iL(F ) + L((∂ξhξ)|ξ=0) = λ′01 + (∂ξhξ)|ξ=0 (3.14)

En intégrant contre µ, on obtient

i

∫
A

F dµ+

∫
A

(∂ξhξ)|ξ=0 dµ = λ′0 +

∫
A

(∂ξhξ)|ξ=0 dµ,

d’où λ′0 = i
∫
A
F dµ.

Supposons de plus que F ∈ L2(A, µ) et que
∫
A
F dµ = 0. Alors ξ 7→ λξ est de classe C2, et sa

dérivée en 0 est nulle. Cherchons le terme suivant dans son développement limité.

L′′ξ (hξ) + 2L′ξ(∂ξhξ) + Lξ(∂2
ξξhξ) = λ′′ξhξ + 2λ′ξ(∂ξhξ) + λξ(∂

2
ξξhξ)

−L(F 2) + 2iL(F (∂ξhξ)|ξ=0) + L((∂2
ξξhξ)|ξ=0) = λ′′01 + (∂2

ξξhξ)|ξ=0

Une fois de plus, en intégrant contre µ, on obtient

−
∫
A

F 2 dµ+ 2i

∫
A

F (∂ξhξ)|ξ=0 dµ = λ′′0.

De plus, (∂ξhξ)|ξ=0 = i(Id−L)−1L(F ) se calcule 26 grâce à l’Équation (3.14). On obtient au final

λ′′0 = −
∫
A

F 2 dµ− 2

∫
A

F · (Id−L)−1L(F ) dµ = −

[∫
A

F 2 dµ+ 2
+∞∑
n=1

∫
A

F · F ◦ T n dµ

]
, (3.15)

où la somme du membre de droite converge absolument si (A, µ, T ) est mélangeante 27, et au sens de
Cesàro si (A, µ, T ) est seulement ergodique 28.

La formule

σ2
GK(A, µ, T ;F ) :=

∫
A

F 2 dµ+ 2
+∞∑
n=1

∫
A

F · F ◦ T n dµ (3.16)

s’appelle formule de Green–Kubo. Elle a joué un rôle central dans les recherches que nous présentons
dans ce mémoire. Nous la retrouverons par la suite, en particulier en Sous-section 9.2. Pour l’instant,
nous nous restreignons à deux remarques élémentaires.

D’une part, pour tout ξ, l’opérateur Lξ est une contraction faible sur L1(A, µ). Par conséquent,
toute valeur propre de L y Lip1(A, µ) est de module au plus 1. On en déduit que λ′′0 ≤ 0, et donc
σ2

GK(A, µ, T ;F ) ≥ 0.
D’autre part, le cas dégénéré λ′′0 = 0 se caractérise aisément. Par [112, Théorème 4.1.4], pour tout

F ∈ Lip1(A, µ) ∩ L2(A, µ), il y a équivalence entre :

26. Remarquons au passage que, comme (A,µ, T ) est ergodique, la restriction de (Id−L) aux fonctions Lip∞(A,µ)
d’intégrale nulle est inversible, et L(F ) appartient bien à ce sous-espace !
27. Grâce à la décroissance exponentielle des corrélations évoquée en Corollaire 3.9.
28. Convergence obtenue en combinant la décroissance exponentielle des corrélations avec la description du spectre

périphérique de la Sous-sous-section 3.3.2.
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• σ2
GK(A, µ, T ;F ) = 0.

• La fonction F est un cobord : il existe h mesurable telle que F = h ◦ T − h.
• Il existe h ∈ Lip∞(A, µ) telle que F = h ◦ T − h.

Remarque 3.28 (Familles à plusieurs paramètres).
Dans cette parties, nous sommes restés dans le cadre le plus simple d’une perturbation à un seul

paramètre. De nombreux travaux utilisent des familles à plusieurs paramètres d’opérateurs de trans-
fert. Ce type de famille à plusieurs paramètres apparaît naturellement lorsque l’on souhaite contrôler
plusieurs quantités dynamiques en interaction, par exemple une donnée spatiale et une donnée tem-
porelle, ou bien une donnée spatiale et la croissance des sommes de Birkhoff d’une observable.

Sans prétention à l’exhaustivité, mentionnons les travaux de A. Katsuda, T. Sunada, M. Polli-
cott et R. Sharp sur le comptage d’orbites périodiques sur des variétés de courbures négatives Zd-
périodiques [138, 194], dans la lignée duquel se place un article plus récent de l’auteur sur le temps
local de semi-flots Zd-périodiques [223]. Enfin, V. Petkov et L. Stoyanov ont utilisé ces techniques
pour démontrer des grandes déviations pour des flots avec cibles décroissantes [189].

Remarque 3.29 (Convergence de la formule de Green–Kubo).
La formule de Green–Kubo (3.16) apparaît dans le théorème central limite dans un cadre beaucoup

plus général que celui des transformations Gibbs-Markov. On peut se demander, plus généralement,
quand cette formule converge.

Cette comme converge dès que les auto-corrélations de f sont sommables. C’est le cas, par
exemple, si le système dynamique (A, µ, T ) est Anosov mélangeant, µ une mesure d’équilibre pour
un potentiel höldérien, et f est höldérienne d’intégrale nulle, ce qui garantit par que les intégrales
(
∫
A
f · f ◦ T n dµ)n≥0 décroissent exponentiellement en n. Plus généralement, une condition de trou

spectral sur l’opérateur de transfert et de mélange du système suffit.
La somme converge aussi dans des contextes non-uniformément hyperboliques, tels que des ob-

servables höldériennes d’intégrale nulle de transformations de Pomeau-Manneville de paramètre α ∈
(0, 1/2) par [235] ainsi que d’automorphismes ergodiques du tore [62,152].

Si le système dynamique (A, µ, T ) est non mélangeant, une convergence au sens de Cesàro peut
donner un sens à l’Équation (3.16). Ainsi, quand l’on dispose d’une action quasi-compacte de l’opé-
rateur de transfert, la convergence au sens de Cesàro permet d’éliminer les oscillations périodiques
des intégrales (

∫
A
f · f ◦ T n dµ)n≥0 causées par les résonances périphériques.

3.6 Application : Le théorème central limite

Pour finir cette Section, nous présentons la méthode de Nagaev–Guivarc’h [118, 176, 177], qui
consiste à utiliser ces perturbations d’opérateurs afin de démontrer un théorème central limite. Cette
démonstration est un cas simple d’une stratégie générale, qui sera aussi employée pour estimer le
temps local de Zd-extension en Sous-partie 6.2, et représente une partie significative de [226] (voir
la Sous-section 11.5). Pour cette raison, nous détaillons cet argument.

3.6.1 Opérateurs perturbés et théorème central limite

Soit (Xn)n∈N une suite de variables aléatoires réelles indépendantes, identiquement distribuées,
de carré intégrable et d’espérance nulle. Notons Φ leur fonction caractéristique et Sn :=

∑n−1
k=0 Xk.

Rappelons que le théorème central limite se démontre aisément à l’aide du critère de Lévy. En effet,
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pour tout ξ ∈ R,

E
(
e
iξ 1√

n
Sn
)

= E

(
n−1∏
k=0

e
i ξ√

n
Xk

)
=

n−1∏
k=0

E
(
e
i ξ√

n
Xk
)

= E
(
e
i ξ√

n
X0

)n
= Φ

(
ξ√
n

)n
.

Or Φ(η) = 1− E(X2
0 )η2

2
+ o(η2), d’où

lim
n→+∞

E
(
e
iξ 1√

n
Sn
)

= e−
E(X2

0)ξ2

2 .

D’après le critère de Lévy, la suite de variables aléatoires
(

1√
n
Sn

)
n≥1

converge donc en loi vers une

variable aléatoire gaussienne centrée de variance E(X2
0 ).

Les perturbations d’opérateurs permettent de démontrer un théorème central limite en émulant le
raisonnement ci-dessus. Soit (A, µ, T ) un système dynamique préservant une mesure de probabilité.
Soit F : A→ R mesurable. On cherche à approcher la loi de SnF quand n tend vers l’infini.

Comme en Sous-sous-section 3.5.2, notons Lξ = L
(
eiξF ·

)
pour tout ξ ∈ R. Alors, pour tout n ≥ 0

et h ∈ L1(A, µ),
Lnξ (h) := Ln

(
eiξSnFh

)
,

et en particulier

E
(
e
iξ 1√

n
SnF
)

=

∫
A

Ln
(
e
i ξ√

n
SnF1

)
dµ =

∫
A

Lnξ√
n

(1) dµ. (3.17)

Supposons maintenant que (A, µ, T ) est une transformation Gibbs-Markov mélangeante et que
F ∈ Lip1(A, µ)∩L2(A, µ) est d’intégrale nulle. On dispose alors pour tout η suffisamment petit d’une
décomposition propre

Lη = ληhη ⊗ πη +Rη.

De plus, comme (A, µ, T ) est mélangeante, ρ(R0 y Lip∞(A, µ)) < 1. On peut alors trouver C > 0 et
ρ ∈ [0, 1) tels que

∥∥Rn
η

∥∥
Lip∞(A,µ)→Lip∞(A,µ)

≤ Cρn pour tout η suffisamment petit. De plus, πη(hη) = 1,
et on peut supposer que µ(hη) = 1 pour tout η suffisamment petit. De là,

E
(
e
iξ 1√

n
SnF
)

= λnξ√
n

µ
(
h ξ√

n

)
π ξ√

n
(1) +

∫
A

Rn
ξ√
n

(1) dµ

= λnξ√
n

(1 + o(1)) +O(ρn).

Or λη = 1− σ2
GK(A,µ,T ;F )η2

2
+ o(η2) d’après la Sous-sous-section 3.5.2. Par le même raisonnement que

pour le théorème central limite classique, la suite de variables aléatoires
(

1√
n
SnF

)
n≥1

converge vers

une variable aléatoire gaussienne de variance σ2
GK(A, µ, T ;F ).

Finissons par deux raffinements. D’une part, il suffit que (A, µ, T ) soit ergodique. Comme vu en
Sous-sous-section 3.3.2, l’opérateur L peut alors avoir des valeurs propres périphériques (ei2π

k
N )k∈Z/NZ.

Soient hk ⊗ πk les projecteurs propres associés, de telle sorte que, pour tout η suffisamment petit,

Lη =
∑

k∈Z/NZ

λk,ηhk,η ⊗ πk,η +Rη.
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Alors µ(hk) = 0 pour tout k 6= 0. Par passage à la limite, les contributions des valeurs propres λk, 1√
n

avec k 6= 0 à l’Équation (3.17) tendent vers 0 quand n tend vers +∞. On se retrouve avec la même
limite que dans le cas mélangeant.

D’autre part, si x est choisi non pas selon µ, mais selon une mesure de probabilité ν = hdµ avec
ν ∈ Lip∞(A, µ), l’Équation (3.17) devient

E
(
e
iξ 1√

n
SnF
)

=

∫
A

Lnξ√
n

(h) dµ.

La suite du calcul est identique, donc on obtient le même théorème central limite. Par densité de
Lip∞(A, µ) dans L1(A, µ), on a finalement démontré

Théorème 3.30 (Théorème central limite).
Soit (A, µ, T ) une transformation Gibbs-Markov ergodique. Soit ν � µ une mesure de probabilité.

Soit F ∈ Lip1(A, µ) telle que
∫
A
F 2 dµ < +∞ et

∫
A
F dµ = 0. Alors la suite de variables aléatoires(

1√
n
SnF

)
n≥1

dans (A, ν) converge en loi vers une variable aléatoire gaussienne centrée de variance

σ2
GK(A, µ, T ;F ).

Par conséquent, dans ce contexte, ou bien les sommes de Birkhoff sont typiquement de l’ordre de√
n, ou bien F est un cobord et elles sont bornées presque sûrement ; il n’y a pas de comportement

intermédiaire.
Pour conclure, en suivant la technique de Nagaev–Guivarc’h, on peut plus généralement transposer

à des systèmes dynamiques des calculs de théorie des probabilités utilisant des fonctions caractéris-
tiques de variables aléatoires, et en particulier leur développement limité en des points précis. Elle
nécessite deux ingrédients :
• Une traduction exacte en termes d’opérateurs de transfert d’une équation faisant intervenir

une fonction caractéristique. Il s’agit ici de l’Équation (3.17).
• Un développement limité de la valeur propre principale de l’opérateur de transfert, et un

contrôle des termes d’erreurs, permettant d’exploiter cette équation exacte dans un régime
limite.

Nous verrons plus tard d’autres applications de cette stratégie : théorème central limite local, et
théorie du potentiel. Ce ne sont pas les seules ; citons par exemple des principes de grandes dévia-
tions [233].

Remarque 3.31 (Décomposition martingale–cobord).
La méthode présentée dans ce mémoire n’est qu’une stratégie parmi d’autres pour démontrer un

théorème central limite pour des observables de systèmes dynamiques. Par exemple, il est aussi parfois
possible d’utiliser une décomposition martingale–cobord du processus (SnF )n≥0, puis d’utiliser un
théorème central limite pour des martingales 29. Cette approche a été initiée par M.I. Gordin [109].
La lectrice intéressée pourra consulter les présentations de cette méthode par C. Liverani [160] d’une
part et J.-R. Chazottes, C. Cuny, J. Dedecker, X. Fan et S. Lemler [50] d’autre part.

Cette dernière approche a l’avantage de fonctionner dans des situations où l’on ne dispose pas
de décroissance exponentielle des corrélations, par exemple quand le système (A, µ, T ) n’est pas uni-
formément hyperbolique, ou quand l’observable F est de trop basse régularité. De plus, elle permet
d’employer de nombreux outils fins de théorie des martingales, tels que l’inégalité de Burkholder [44]
donnant un contrôle fin des moments des variables aléatoires (supk<n |F ◦ T k|)n≥0.

29. Ou, plus précisément, pour des tableaux de martingales inverses.
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3.6.2 Autres lois remarquables

L’analyse précédente portait sur des sommes de Birkhoff de fonctions réelles de carré intégrable.
La méthode de Nagaev–Guivarc’h permet de traiter de nombreux autres situations intéressantes.
Décrivons-les brièvement.

Dimension supérieure
Soit E un espace euclidien de dimension finie. Soit F ∈ Lip1(A, µ)∩L2(A, µ) à valeurs dans E et

centrée. Le calcul de la Sous-sous-section 3.6.1 fonctionne tout aussi bien, à de légères adaptations
près. Le paramètre ξ appartient maintenant à E∗, et la loi limite est une variable aléatoire gaussienne
d’opérateur de covariance

Cov(A, µ, T ;F )(u, v) =

∫
A

〈u, F 〉 · 〈v, F 〉 dµ+
+∞∑
n=1

∫
A

〈u, F 〉 · 〈v, F 〉 ◦ T n dµ

+
+∞∑
n=1

∫
A

〈u, F 〉 ◦ T n · 〈v, F 〉 dµ. (3.18)

L’opérateur Cov est dégénéré si et seulement s’il existe un vecteur non nul u tel que 〈u, F 〉 soit un
cobord, auquel cas il existe h ∈ Lip∞(A, µ) telle que 〈u, F 〉 = h ◦ T − h. En particulier, les sommes
de Birkhoff de F sont presque sûrement bornées dans la direction de u.

Lois stables de Lévy : Cas général
Revenons au cas réel. Cette fois-ci, nous autorisons la fonction F à prendre des valeurs suffisam-

ment grandes pour que ses sommes de Birkhoff varient sur une échelle supérieure à
√
n. Afin de

contrôler son comportement, nous aurons besoin de la notion de variation régulière.

Définition 3.32 (Variations régulière et lente).
Soient α ∈ R et L une fonction définie sur un intervalle de la forme [x0,+∞), à valeurs réelles,

mesurable et strictement positive. On dit que L est à variation régulière d’ordre α en l’infini si, pour
tout λ > 0,

lim
x→+∞

L(λx)

L(x)
= λα.

Un telle fonction L, définie cette fois-ci sur un intervalle de la forme (0, x0], est à variation régulière
d’ordre α en 0 si x 7→ L(1/x) est à variation régulière d’ordre −α en l’infini.

Une fonction à variation régulière d’ordre 0 est dite à variation lente.

L’archétype des fonctions régulières d’ordre α en l’infini est une fonction équivalente à x 7→
xα lnβ(x) en l’infini. La référence la plus complète sur le sujet est le livre [28].

Si une variable aléatoire réelle a des queues à variation régulière, alors elle est dans le bassin
d’attraction d’une loi stable de Lévy, ce qui signifie que l’on dispose d’un analogue du théorème
central limite :

Théorème 3.33. [94, Chapter XVII.5, Theorem 2]
Soient α ∈ (1, 2) et c−, c+ ≥ 0 non tous deux nuls. Soit L une fonction à variation régulière

d’ordre α en +∞. Soit (Xn)n≥0 une suite de variables aléatoires réelles indépendantes, identiquement
distribuées, centrées, et telles que

P (X0 ≥ x) ∼x→+∞
c+

L(x)
,

P (X0 ≤ −x) ∼x→+∞
c−
L(x)

.
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Posons

ϑ := (c− + c+)Γ(1− α) cos
(πα

2

)
,

ζ :=
c+ − c−
c+ + c−

,

et soit (an)n≥0 telle que L(an) ∼n→+∞ n. Alors la suite de variables aléatoires
(

1
an
Sn

)
n≥1

converge

en loi vers une variable aléatoire dite de Lévy ou stable de paramètre α, de fonction caractéristique

Φ(ξ) = e−ϑ(1−iζ tan(πα/2) sgn(ξ))|ξ|α .

Par exemple, si P (X0 ≥ x) ∼x→+∞ P (X0 ≤ −x) ∼x→+∞
c
xα

avec c > 0, alors ζ = 0 et
(

1

n
1
α
Sn

)
n≥1

converge en loi vers une variable aléatoire symétrique de fonction caractéristique

Φ(ξ) = e−2cΓ(1−α) cos(πα2 )|ξ|α .

Si c+ 6= c−, la loi limite est asymétrique. Le paramètre ϑ est un paramètre d’échelle, tandis que le
paramètre ζ décrit l’asymétrie de la loi limite.

Sous une condition identique de décroissance des queues de F , la méthode de Nagaev–Guivarc’h
permet de généraliser le théorème précédent à certaines observables de systèmes dynamiques.

Théorème 3.34. [3, Theorem 6.1]
Soit (A, µ, T ) une transformation Gibbs-Markov ergodique. Soit ν � µ une mesure de probabilité.

Soit F ∈ Lip1(A, µ) centrée. Le Théorème 3.33 reste valide si l’on remplace le processus (Xn)n≥0 par
le processus (F ◦ T n)n≥0 défini sur (A, ν).

Remarque 3.35.
Pour que le Théorème 3.34 ne soit pas vide, il faut que l’on puisse trouver des observables F qui

soient à la fois à queues lourdes et localement lipschitziennes (voire localement constantes). C’est
impossible si la partition associée au système Gibbs-Markov est finie, et en particulier pour les sous-
décalages de type fini. Cependant, il est aisé de construire de tels exemples si l’on s’autorise des
partitions infinies.

Lois stables de Lévy : Cas particuliers
Le Théorème 3.33, et par extension le Théorème 3.34, ne s’appliquent qu’à des paramètres α ∈

(1, 2). Plus α est petit, plus les queues des variables aléatoires sont lourdes. Les bornes de cet intervalle
α = 2 et α = 1 sont à traiter à part.

Si α = 2, alors le paramètre ζ est nul, et la loi limite est normale centrée. Dans ce cas, la suite
(an)n≥0 est définie par une formule un peu plus compliquée. On obtient ainsi un théorème central
limite non standard, exprimant la convergence en loi des sommes de Birkhoff renormalisées vers une
variable aléatoire gaussienne centrée, mais pour des variables aléatoires qui ne sont pas de carré
intégrable et avec une renormalisation qui n’est pas exactement en

√
n.

Par exemple, si P (X0 ≥ x) ∼x→+∞ P (X0 ≤ −x) ∼x→+∞
c
x2 avec c > 0, alors

(
1√

n ln(n)
Sn

)
n≥1

converge en loi vers une variable aléatoire gaussienne centrée.
Ce cas particulier est très pertinent d’un point de vue dynamique : dans le modèle du gaz de

Lorentz en horizon infini (voir la Remarque 4.2), les queues de la fonction de saut sont justement en
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c/x2. La position d’une particule satisfait donc ce type de théorème central limite non standard [31,
215]. Une analyse similaire s’applique au billard stade [19].

Le cas α = 1, qui contient le bassin d’attraction des lois de Cauchy, est plus délicat. Les variables
aléatoires considérées ne sont plus nécessairement intégrables, auquel cas on ne peut pas dire qu’elles
sont centrées. Les conditions portant sur les queues des variables aléatoires sont plus subtiles. Ce cas
particulier est néanmoins lui aussi pertinent d’un point de vue dynamique [2] : dans le modèle du
flot géodésique sur C\Z, muni de sa structure hyperbolique 30, les queues de la fonction de saut sont
justement en c/x.

30. C’est-à-dire vu comme Z-revêtement d’une sphère à 3 trous, munie d’une métrique de courbure constante égale
à −1 et de volume fini.
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Deuxième partie

Zd-extensions
Il est temps d’introduire l’objet d’étude central de ce mémoire : les Zd-extensions de systèmes

dynamiques. Ces structures sont présentées en Section 4 : Définition des Zd-extensions, en partant
de l’exemple historique du gaz de Lorentz.

Nous poursuivons avec la Section 5 : Fonctions propres de l’opérateur de transfert. Cette section a
deux objectifs. D’une part, nous interpréterons le spectre périphérique d’opérateurs de transfert tor-
dus, ce qui sera utile par la suite, par exemple en Sous-section 11.5. D’autre part, nous en profiterons
pour présenter les résultats de [224].

Enfin, la Section 6 : Théorème central limite local contient une autre application des méthodes
de perturbation d’opérateur : la limite en loi du temps local par les méthode des moments. Nous
discuterons enfin la première partie de [184], où cette méthode des moments est utilisée pour aborder
un problème plus délicat : la limite en loi des sommes de Birkhoff d’observables d’intégrale nulle.

4 Définition des Zd-extensions
Le modèle au cœur de ce mémoire est celui des Zd-extensions de transformations Gibbs-Markov,

qui sont un cas particulier de Zd-extension d’un système dynamique. Nous introduisons cette no-
tion en partant d’un modèle particulier, celui du gaz de Lorentz, avant d’en discuter les propriétés
spectrales et la conservativité.

4.1 Le gaz de Lorentz

Nous avons introduit le modèle du billard de Sinaï en Sous-sous-section 2.4.5. Il s’agit d’un billard
sur le tore avec des obstacles strictement convexes. Le gaz de Lorentz en est la version périodique
sur R2. Une trajectoire dans un gaz de Lorentz est donc de la forme suivante.

Figure 15 – Trajectoire dans un gaz de Lorentz à horizon fini, d’une longueur de 1 000 collisions.
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Ce système est censé modéliser la diffusion d’un électron dans un métal (de structure cristalline)
par le rebond d’une particule ponctuelle dans un réseau périodique [167]. Bien entendu, d’un point
de vue physique, un analogue tridimensionnel de ce modèle serait nettement plus réaliste ; mais, d’un
point de vue mathématique, cet analogue est malheureusement beaucoup moins bien compris [18].

Sur une table de billard de Sinaï sur le tore Q, un vecteur à un temps de collision est repéré par
trois données : l’indice i ∈ I de l’obstacle qu’il touche, l’abscisse curviligne s du point de collision,
et l’angle θ à la normale en ce point. Soit Q̃ la table de billard d’un gaz de Lorentz. Chaque type
d’obstacle a une infinité de copies indicées par une coordonnée p ∈ Z2. Un vecteur à un temps de
collision sur Q̃ est alors repéré par quatre données : les trois précédentes, et la coordonnée p de
l’obstacle.

Un gaz de Lorentz Q̃ est un revêtement π vers un billard de Sinaï sur un tore Q. Ce revêtement
se retrouve au niveau de l’espace des phases de l’application collision, que l’on notera aussi π :

π(i, s, θ, p) = (i, s, θ).

(−1,−1)

(−1,0)

(−1,1)

(−1,2)

(0,−1)

(0,0)

(0,1)

(0,2)

(1,−1)

(1,0)

(1,1)

(1,2)

(−1,−2)

(−1,−1)

(−1,0)

(−1,1)

(−1,2)

(0,−2)

(0,−1)

(0,0)

(0,1)

(0,2)

(1,−2)

(1,−1)

(1,0)

(1,1)

(1,2)

(2,−2)

(2,−1)

(2,0)

(2,1)

(2,2)

Figure 16 – Un Z2-revêtement Q̃ de Q, et un repérage possible sur Q̃.

Ce revêtement est une semi-conjugaison. Notons T̃ l’application collision du gaz de Lorentz, et T
l’application collision du billard de Sinaï sur le tore associé. Alors π ◦ T̃ = T ◦ π. Par conséquent, si
T̃ (i0, s0, θ0, p0) = (i1, s1, θ1, p1),

(i1, s1, θ1) = π(T̃ (i0, s0, θ0, p0)) = T (π(i0, s0, θ0, p0)) = T (i0, s0, θ0),

donc T̃ (i, s, θ, p) = (T (i, s, θ), F̃ (i, s, θ, p)) pour une certaine fonction F̃ .
Enfin, la dynamique du gaz de Lorentz est équivariante sous l’action des translations de vecteur

q ∈ Z2 :
T̃ (i, s, θ, p+ q) = T̃ (i, s, θ, p) + q.

Notons F (i, s, θ) := F̃ (i, s, θ, 0). Alors F̃ (i, s, θ, q) = q + F (i, s, θ). La transformation T̃ est donc
finalement de la forme

T̃ (i, s, θ, p) = (T (i, s, θ), p+ F (i, s, θ)). (4.1)

La notion de Zd-extensions généralise cette structure.
On peut itérer l’équation (4.1) : pour tout n ∈ Z,

T̃ n(i, s, θ, p) =
(
T n(i, s, θ), p+ STnF (i, s, θ)

)
. (4.2)
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Par conséquent, la position de la particule dans le gaz de Lorentz est donnée, à erreur bornée près, par
les sommes de Birkhoff STnF de F . On peut ainsi illustrer de nombreuses propriétés des sommes de
Birkhoff. Si le point de départ d’une trajectoire est choisi aléatoirement pour un mesure absolument
continue sur l’ensemble {p = 0}, le théorème central limite donne une information sur la loi de la
position de la particule en temps grand. Le principe d’invariance presque sûr [145] donne un couplage
avec erreur contrôlée entre les trajectoires de particules et un mouvement brownien : en un sens précis,
les trajectoires des particules ressemblent à des trajectoires browniennes.

Figure 17 – Trajectoire dans un gaz de Lorentz à horizon fini, d’une longueur de 10 000 collisions.
Les obstacles sont les mêmes qu’à la Figure 15, mais ne sont pas affichés.

Remarque 4.1 (Choix de repérage).
Le choix de système de coordonnées sur Z2 n’est a priori pas neutre : si l’on translate l’origine,

et en particulier si l’on décale l’origine d’un type d’obstacle i ∈ I de q ∈ Z2, la fonction F peut
être modifiée. Cependant, dans ce cas, F sera toujours modifiée par ajout d’un cobord : la nouvelle
fonction Fn est

Fn = F + h ◦ T − h,

où h(j, s, θ) = −q si j = i et 0 sinon. L’ajout d’un cobord à F n’affecte heureusement pas les
propriétés statistiques du système, telles que la conservativité, l’ergodicité, mais aussi bon nombre de
théorèmes limites.

Remarque 4.2 (Horizon fini ou infini).
La notion d’horizon fini ou infini prend tout son sens dans le cadre des gaz de Lorentz. Une

table de billard de Sinaï est d’horizon infini s’il existe des canaux de diffusion dans le gaz de Lorentz
associé, c’est-à-dire des bandes sans obstacles :

Dans ce cas, les particules peuvent faire des sauts arbitrairement grands entre deux collisions, et
donc voyager vite entre des points éloignés. Cela donne lieu à un phénomène de diffusion surcritique,
c’est-à-dire que le déplacement d’une particule pendant une durée T est typiquement plus grand que√
T . Nous renvoyons à ce sujet le lecteur vers la Sous-sous-section 3.6.2, en particulier sur le cas des

lois de Lévy de paramètre 2.
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Figure 18 – Un gaz de Lorentz à horizon infini et des canaux de diffusion (en bleu). Si les obstacles
étaient plus petits, il y aurait aussi des canaux de diffusion diagonaux.

4.2 Définition

Nous définissons les extensions de systèmes dynamiques dans un cadre mesuré.

Définition 4.3 (G-extension).
Soit G un groupe abélien 31 localement compact. Soit (A, µ, T ) un système dynamique mesuré et

F : A→ G. La G-extension de fonction de saut F est le système dynamique (Ã, µ̃, T̃ ), où
• Ã = A×G ;
• µ̃ = µ⊗ ν ;
• T̃ (x, p) = (T (x), p+ F (x)),

où ν est (à constante multiplicative près) la mesure de Haar sur G. Si de plus (A, µ, T ) est un système
dynamique Gibbs-Markov, on dit que l’extension est markovienne si F est constante sur les éléments
de la partition markovienne α de A, ou, en d’autres termes, si F ne dépend que de la première lettre
dans le codage associé à α.

Finalement, pour tout Σ ⊂ G, on notera [Σ] := A× Σ ⊂ Ã, et plus simplement [g] := [{g}] pour
tout g ∈ G.

Dans la suite de ce texte, nous serons autant que possible cohérent au niveau des notations :
(Ã, µ̃, T̃ ) désignera implicitement une extension d’un système dynamique (A, µ, T ).

Si (A, µ, T ) préserve la mesure, alors toute G-extension (Ã, µ̃, T̃ ) préserve aussi la mesure.

Exemple 4.4 (Gaz de Lorentz).
L’application collision d’un gaz de Lorentz, discutée en Sous-section 4.1, est la Z2 extension de

l’application collision d’un billard de Sinaï.
Une famille de Z-extensions d’applications collisions d’un billard de Sinaï est donnée par les gaz

de Lorentz sur des cylindres.

Figure 19 – La table de billard d’un gaz de Lorentz sur un cylindre.

31. On aurait aussi pu considérer des extensions par des groupes non commutatifs. Cela demande de faire attention
à l’ordre des opérations, et nous n’en aurons pas besoin dans ce texte.
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Exemple 4.5 (Marches aléatoires).
Soit (Xn)n≥0 une suite de variables aléatoires indépendantes et identiquement distribuées à valeurs

dans Zd. On peut encoder cette suite dans un système dynamique. Soit ν ∈ P(Zd) la loi de X0.
Posons :
• A := (Zd)N ;
• T : (xn)n≥0 7→ (xn+1)n≥0 le décalage sur A ;
• µ := ν⊗N une mesure produit sur A.

Alors la loi de (Xn)n≥0 est celle de ((T nx)0)n≥0. De plus, (A, µ, T ) est une transformation Gibbs-
Markov.

Soit F (x) := x0 définie sur A. Alors la Zd-extension de (A, µ, T ) de saut F est markovienne, et
le processus (STnF )n≥0 a la même loi que la marche aléatoire associée à (Xn)n≥0.

En ce sens, la notion de Zd-extension d’un système dynamique généralise la notion de marche
aléatoire sur Zd, en autorisant des sauts qui ne sont plus indépendants.

Nous ne traiterons pas formellement le cas des flots. La notion de Zd-extension d’un flot repose
non pas sur une formule aussi explicite, mais plutôt sur l’existence d’un Zd-revêtement galoisien au
niveau de l’espace des phases tel que le flot soit équivariant par les isomorphismes du revêtement –
précisément les propriétés que nous avons utilisées dans le cadre du gaz de Lorentz. Ce cadre inclut :
• Le flot billard du gaz de Lorentz, extension du flot billard de Sinaï ;
• Le flot géodésique sur C\Z, extension du flot géodésique sur une sphère munie de trois pointes,

étudié par J. Aaronson et M. Denker [2] et mentionné en Sous-sous-section 3.6.2 ;
• Le flot géodésique sur des Zd-revêtements galoisiens de variétés compactes de courbure sec-

tionnelle négative [138,194] ;
• Le flot horocyclique sur des Zd-revêtements galoisiens de variétés compactes de courbure

sectionnelle négative constante, étudié en particulier par M. Babillot, F. Ledrappier et O. Sa-
rig [9, 153–155] ;
• Le flot de translation sur un Zd-revêtement d’un tore, dans le travail de A. Avila, D. Dolgopyat,

E. Duriev et O. Sarig [8]...

5 Fonctions propres de l’opérateur de transfert

Soit (Ã, µ̃, T̃ ) une G-extension d’un système (A, µ, T ) de saut F . Le spectre de l’opérateur de
transfert L̃ de (Ã, µ̃, T̃ ) est lié à ceux d’opérateurs de transfert tordus Lξ, d’une façon que nous
allons maintenant présenter. Cela nous donnera en particulier une interprétation des valeurs propres
d’opérateurs tordus comme valeurs propres d’un opérateur de transfert classique pour un plus grand
système.

En application, nous présentons en Sous-section 5.4 la construction par l’auteur de billards de
Sinaï dont l’application collision a des résonances de Ruelle non triviales [224].

5.1 Fonctions propres et extensions abéliennes

La discussion qui suit est tirée de [224]. Nous nous plaçons dans le cadre d’une G-extension
(Ã, µ̃, T̃ ) d’une transformation préservant la mesure (A, µ, T ).

Remarquons dans un premier temps que la dynamique sur Ã = A× Z2 est invariante par trans-
lation. Notons τq : (x, p) 7→ (x, p+ q) la translation de q sur Ã ; alors T̃ ◦ τq = τq ◦ T̃ .
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Cette invariance par translation se retrouve au niveau de l’opérateur de transfert : pour toute
fonction f ∈ L∞(Ã, µ̃) et tout q ∈ G,

L̃(f ◦ τq) = L̃(f) ◦ τq.

Par conséquent, l’action de L̃ se décompose sur chaque espace propre pour l’ensemble des opérateurs
f 7→ f◦τq. Mais ces espaces propres sont exactement les espaces de fonctions de la forme f⊗χ(x, q) :=

f(x)χ(q), où f ∈ L∞(A, µ) et χ ∈ Ĝ. De plus, pour des observables ayant cette forme, pour toute
fonction g ∈ L1(Ã, µ̃), en posant q′ := q + F (x),∫

Ã

L̃(f ⊗ χ) · g dµ̃ =

∫
Ã

f(x)χ(q) · g(T (x), q + F (x)) dµ̃(x, q)

=

∫
G

χ(q′)

∫
A

f(x)χ(−F (x)) · g(T (x), q′) dµ(x) dν(q′)

=

∫
G

χ(q′)

∫
A

L (χ(−F (x))f(x)) · g(x, q′) dµ(x) dν(q′)

=

∫
Ã

L (χ(−F (x))f(x))χ(q′) · g(x, q′) dµ̃(x, q′).

En bref, L̃(f ⊗ χ) = Lχ(f)⊗ χ, où Lχ = L(χ(−F )·). En particulier, si fλ est une fonction propre de
Lχ y L∞(A, µ) de valeur propre λ, alors fλ ⊗ χ est une fonction propre de L̃y L∞(Ã, µ̃) de valeur
propre λ.

Dans le cas où G = Rd ou G = Zd, on retrouve les opérateurs de transfert tordus Lξ introduits en
Sous-sous-section 3.5.2. Dans le cas où G est fini, on peut aller plus loin et écrire une décomposition
L̃-invariante

L1(Ã, µ̃) =
⊕
χ∈Ĝ

L1(A, µ)⊗ χ,

l’action de L̃ sur chaque sous-espace L1(A, µ) ⊗ χ étant conjuguée à l’action de Lχ sur L1(A, µ).
Étant donné des espaces de Banach (de fonctions ou de distributions) raisonnables B et B̃ sur A et
Ã respectivement 32, on peut espérer une décomposition identique, qui conduit alors à l’identité

Sp(L̃y B̃) =
⋃
χ∈Ĝ

Sp(Lχ y B), (5.1)

cette décomposition conservant la nature des points du spectre. Par conséquent, la multiplicité d’une
valeur propre pour L̃ est la somme de ses multiplicités pour les opérateurs Lχ.

5.2 Spectre périphérique, II : Ergodicité des extensions

En Sous-sous-section 3.3.2, nous faisions le lien entre les propriétés d’ergodicité et de mélange du
système (A, µ, T ) d’une part, et le spectre périphérique de l’opérateur de transfert L y B d’autre
part. Dans cette Sous-section et la suivante, nous étendons cette analyse au spectre périphérique des
opérateurs de transfert tordus Lξ y B. Le type d’analyse menée ici est classique, et peut se trouver
en partie dans [61].

Soit (Ã, µ̃, T̃ ) une Zd-extension markovienne d’une transformation Gibbs-Markov (A, µ, T ) de
saut F . Pour tout Λ ≤ Zd, pas nécessairement de rang d, on dispose d’une extension intermédiaire
(AΛ, µΛ, TΛ), où :

32. Par exemple, tels que ρess(Lχ y B) ≤ ρ0 < 1 pour une constante ρ0 indépendante de χ.

64



• AΛ := A× (Zd/Λ) ;
• µΛ := µ⊗ Leb, où Leb est la mesure de comptage sur Zd/Λ ;
• TΛ(x, p [Λ]) = (T (x), p+ F (x) [Λ]).
De l’analyse de la Sous-section 5.1, on déduit :

Corollaire 5.1.
Soit (Ã, µ̃, T̃ ) une Zd-extension markovienne d’une transformation Gibbs-Markov (A, µ, T ) de saut

F . Si (Ã, µ̃, T̃ ) est ergodique, alors :
• Pour tout Λ ≤ Zd, l’extension intermédiaire (AΛ, µΛ, TΛ) est ergodique.
• L’opérateur Ly B a 1 comme valeur propre simple, et 1 /∈ Sp(Lξ = L(eiξF ·) y B) pour tout
ξ ∈ Td \ {0}.
• L’équation F = h ◦ T − h [Λ], d’inconnues Λ ≤ Zd et h : A→ Rd/Λ mesurable, a pour seules
solutions les solutions triviales Λ = Zd et h constante.

Démonstration.
L’ergodicité d’un système implique l’ergodicité de ses facteurs, ce qui montre le premier point.
Par la construction de la Sous-section 5.1, toute fonction Lξ-invariante non constante se relèverait

en une fonction L̃-invariante non constante, ce qui contredirait l’ergodicité de (Ã, µ̃, T̃ ).
Le troisième point suit du second (pour ξ rationnel) par des arguments semblables à ceux de la

démonstration de la Proposition 3.11.

La réciproque à ce Corollaire est nettement plus délicate. La notion de valeur essentielle [1, 205]
est centrale ; elle formalise notamment des obstructions potentielles à l’ergodicité autres que celles du
Corollaire 5.1. Ces obstructions apparaissent par exemple dans le cadre de Z-extensions de billards
polygonaux (modèle du vent dans les arbres) [97]. L’auteur n’a cependant pas pu localiser d’analyse
exhaustive de l’ergodicité dans le cadre d’extensions markoviennes de transformations Gibbs-Markov.

Question 5.2.
Soit (Ã, µ̃, T̃ ) une Zd-extension markovienne d’un système dynamique Gibbs-Markov. Supposons

que l’équation F = h◦T −h [Λ], d’inconnues Λ ≤ Zd et h : A→ Rd/Λ mesurable, a pour seules solu-
tions les solutions triviales Λ = Zd et h constante. Le système dynamique (Ã, µ̃, T̃ ) est-il ergodique ?

5.3 Spectre périphérique, III : Apériodicité

En Sous-sous-section 3.3.2, nous avions analysé le spectre périphérique de l’opérateur de transfert
L. Pour la suite, il sera utile de contrôler le spectre périphérique des opérateurs de transfert tordus,
et d’introduire au passage une notion d’apériodicité d’une extension abélienne. Par simplicité, nous
nous plaçons dans le cadre des Zd-extensions de transformations Gibbs-Markov plutôt que dans un
cadre plus général d’actions quasi-compactes d’opérateurs de transfert de systèmes dynamiques.

La proposition-clef est la suivante :

Proposition 5.3. [226, Lemma 5.7]
Soit ([Zd], µ̃, T̃ ) une Zd-extension markovienne d’une transformation Gibbs-Markov (A, µ, T ) de

saut F . Supposons que ([Zd], µ̃, T̃ ) est ergodique. Pour tout ξ ∈ Td, notons Lξ := L(ei2π〈ξ,F 〉·).
Soit M le cardinal du spectre périphérique de Ly Lip∞(A, µ). Alors il existe n ≥ 1 et un élément

ξ0 ∈ Td d’ordre n tels que

H := {(ξ, λ) ∈ Td × S1 : λ ∈ Sp(Lξ y B)} =
{(
kξ0, e

2πi k
Mn

)
: k ∈ Z/MnZ

}
.

De plus, chacune de ces valeurs propres est simple.
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La démonstration est très proche de celle de la Proposition 3.11, et est laissée en exercice.

Définition 5.4 (Apériodicité).
Soit ([Zd], µ̃, T̃ ) une Zd-extension markovienne d’une transformation Gibbs-Markov (A, µ, T ) de

saut F . Cette extension est dite apériodique si ρ(Lξ y B) < 1 pour tout ξ 6= 0, ou autrement dit si
H ⊂ {0} × S1, et si de plus 1 est valeur propre simple de L.

Cette notion a une description plus combinatoire, parfois prise comme définition de l’apériodicité :

Proposition 5.5.
Soit ([Zd], µ̃, T̃ ) une Zd-extension markovienne d’une transformation Gibbs-Markov (A, µ, T ) et

de saut F . Supposons que (A, µ, T ) est ergodique. Alors ([Zd], µ̃, T̃ ) est apériodique si et seulement si
l’équation de cobord

F = k + θ ◦ T − θ mod Λ, (5.2)

où Λ ⊂ Zd est un réseau, k ∈ Zd/Λ et θ : A→ Zd/Λ est mesurable, n’a pas de solution pour Λ 6= Zd.

Si l’Équation (5.2) a une solution non triviale (Λ, k, θ), alors [Zd] a une partition non triviale
en ensembles (Ã`)`∈Zd/Λ, où Ã` = {(x, p) ∈ [Zd] : θ(x) + p = `}. De plus, si (x, p) ∈ Ã`, alors
T̃ (Ã`) = Ã`−k. Par analogie avec la Proposition 5.3, une telle solution est donc une obstruction au
mélange de ([Zd], µ̃, T̃ ). Remarquons au passage que, si ([Zd], µ̃, T̃ ) est ergodique, alors nécessairement
Zd/Λ est cyclique et k est un de ses générateurs.

Voyons comment ces notions s’appliquent à des marches aléatoires.

Exemple 5.6 (Marche aléatoire simple sur Z).
Soit (Xn)n≥0 une suite de variables aléatoires i.i.d. à valeurs dans Zd, et (Sn)n≥0 la marche

aléatoire associée. Suivant l’Exemple 4.5, on encode cette marche aléatoire à l’aide d’une Zd-extension
d’une transformation Gibbs-Markov (A, µ, T ). Rappelons que A = (Zd)N, que T est le décalage sur A
et µ = ν⊗N, où ν est la loi de X0. L’espace A est muni de la partition α := (ap)p∈Zd où ap = {x0 = p},
et la partition image α∗ est triviale car chaque ap est envoyé surjectivement sur A.

Soit ξ ∈ Td et λ une valeur propre périphérique de Lξ. Soit fξ une fonction propre associée. Par
une généralisation de la Remarque 3.17, fξ est mesurable pour la partition image, qui est triviale,
donc fξ est constante. Sans perte de généralité, fξ = 1, et alors

λ =

∫
Lξ(1) dµ =

∫
L(ei〈ξ,F 〉1) dµ = E(ei〈ξ,X0〉) =: Ψ(ξ),

où Ψ est la fonction caractéristique de X0. Par conséquent :
• Si (Sn)n≥0 est ergodique, alors Ψ(ξ) 6= 1 pour tout ξ 6= 0.
• (Sn)n≥0 est apériodique si et seulement si |Ψ(ξ)| < 1 pour tout ξ 6= 0.
Par exemple, pour la marche aléatoire simple sur Z, à valeurs dans {±1}, on a Ψ(ξ) = cos(ξ),

et en particulier Ψ(π) = −1. Cette marche aléatoire n’est donc pas apériodique. L’ensemble H de la
Proposition 5.3 est {(0, 1), (π,−1)}. L’Équation (5.2) a pour solution non triviale Λ = 2Z, k = 1 et
θ ≡ 0. La partition de [Z] associée est {[2Z], [2Z + 1]}.

5.4 Application : Résonances dans les billards de Sinaï

L’objectif initial de l’article [224] de l’auteur était de construire des billards de Sinaï dont
l’application collision a des résonances de Ruelle non triviales, répondant ainsi à une question posée
par V. Baladi.

66



Si les outils permettant de démontrer la quasi-compacité d’un opérateur de transfert, ou bien un
trou spectral, sont bien établis, exhiber des résonances de Ruelle explicites est beaucoup plus délicat.
Cela peut se faire numériquement [48]. Pensons par exemple aux travaux récents d’O. Bandtlow,
W. Just et J. Slipantschuk sur les liens entre spectre d’opérateurs et décomposition en modes dy-
namiques [24, 25], ou le travail encore en cours d’A. Blumenthal, I. Nisoli et T. Taylor–Crush [33]
sur les méthodes de disques de Gershgorin. Cependant, à l’heure actuelle, ces méthodes numériques
n’existent que dans des cadres relativement simples : il faut pouvoir décrire numériquement des élé-
ments de l’espace de Banach B. Les espaces de M. Demers and H.-K. Zhang [74, 75] sont encore de
loin trop complexes pour pouvoir être utilisés dans des démonstrations assistées par ordinateur.

S’il y a des classes de transformations dont on connaît exactement les résonances [22, 23], les
billards de Sinaï n’en font pas partie.

La méthode qui suit repose sur la Sous-section 5.1. Elle a permis de construire des flots géodésiques
ainsi que des billards de Sinaï ayant des résonances de Ruelle non triviales, par D. Jakobson, F. Naud
et L. Soares dans le cas des flots géodésiques [127], et par l’auteur dans le cas des billards de Sinaï
[224].

Fixons une table de billard de Sinaï d’horizon fini Q telle que définie en Sous-sous-section 2.4.5.
Cette table est un sous-ensemble du tore T2. Elle admet donc un Z2-revêtement Q̃, sur lequel la
dynamique est celle du gaz de Lorentz, mais aussi des revêtements intermédiaires : tout sous-groupe
Λ de Z2 fournit un revêtement de T2, et donc une table de billard intermédiaire QΛ.

Figure 20 – Le Z2-revêtement Q̃ de Q (table de billard du gaz de Lorentz), et le revêtement
intermédiaire QΛ avec Λ = 2Z⊕ 3Z.

Ces tables de billard fournissent autant d’applications collision, que nous noterons respectivement
(A, µ, T ) pour la table Q, puis (Ã, µ̃, T̃ ) pour la table Q̃ et (AΛ, µΛ, TΛ) pour la table QΛ. Le système
(AΛ, µΛ, TΛ) est une Z2/Λ-extension de (A, µ, T ). Par la suite, nous supposerons que Λ est un réseau
de Z2, et donc que Z2/Λ est fini ; dans ce cas, (AΛ, µΛ, TΛ) est encore un billard de Sinaï, mais sur
un tore plus gros.

Les espaces de distributions anisotropes construits par M. Demers and H.-K. Zhang [74,75], que
nous noterons ici B (ou BΛ), sont particulièrement adaptés à ce problème. D’une part, l’opérateur de
transfert L (respectivement, LΛ) agit quasi-compactement sur B (respectivement, BΛ). D’autre part,
les bornes sur le rayon spectral essentiel de LΛ y BΛ ne dépendent que de la courbure des obstacles
et de leur distance, et sont donc une constante ρ0 < 1 indépendante de Λ.

En-dehors de B(0, ρ0), le spectre des opérateurs LΛ y BΛ est constitué de valeurs propres de
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multiplicité finie. Par la discussion de la Sous-section 5.1, en-dehors de B(0, ρ0),

Sp(LΛ y BΛ) =
⋃

ξ∈Ẑ2/Λ

Sp(Lξ y B).

La valeur propre 1 de LΛ y BΛ correspond à la valeur propre 1 de L0 y B dans cette décomposition.
Il s’ensuit que, pour que LΛ y BΛ ait des résonances de Ruelle non triviales, il suffit qu’il existe un
ξ ∈ Ẑ2/Λ non nul tel que Lξ y B ait une résonance de Ruelle.

Or, grâce aux perturbations d’opérateurs de transfert, on sait que, pour tout ξ dans un voisinage
U de 0, l’opérateur Lξ y B a une résonance λξ proche de 1. Il suffit donc de prendre une table assez
grande ; alors Ẑ2/Λ ∩ U contiendra un élément ξ 6= 0, et donc l’opérateur LΛ aura une résonance de
Ruelle non triviale égale à λξ.

Dans le cas du billard de Sinaï, on peut être plus précis.
• L’opérateur LΛ est réel. Son spectre est donc symétrique par rapport à l’axe réel. De plus,

Sp(Lξ y B) = Sp(L−ξ y B). En particulier, λξ = λ−ξ pour tout ξ suffisamment petit.
• De façon générale, Sp(Lξ y B) = Sp(L∗ξ y B∗).
• Le flot billard (Ω,Liouv, (ϕt)t∈R) admet une symétrie : l’inversion de temps ι. Le flot satisfait

l’équation ϕt ◦ ι = ι ◦ ϕ−t. Cette inversion temporelle passe à l’application collision, où elle
devient le renversement d’angle ; l’application collision satisfait les équations T ◦ ι = ι◦T−1 et
F ◦ ι ◦ T = −F . On peut vérifier 33 que cela implique l’identité Sp(L∗ξ y B∗) = Sp(L−ξ y B)
près de 1. En particulier, λξ = λ−ξ pour tout ξ suffisamment petit.

En mettant ces remarques bout-à-bout, on voit que λξ = λξ, c’est-à-dire que les résonances de Ruelle
ainsi obtenues sont réelles. Au passage, ces résonances sont (au moins) doubles : le sous-espace propre
de λξ ∈ Sp(Lξ y B) est apparié au sous-espace propre de λξ = λ−ξ ∈ Sp(L−ξ y B).

De plus, on peut exclure l’existence de toute autre résonance de Ruelle de module proche de 1.
En effet, l’analyse faite en Sous-section 5.3 se transpose aux billards de Sinaï. Soit H le sous-groupe
introduit en Proposition 5.3. Alors, via notre construction, tout élément de H non trivial est un
élément non trivial du spectre périphérique d’un opérateur LΛ associé à un revêtement fini. Or un tel
revêtement fini est encore un billard de Sinaï, donc est mélangeant [211] ; le sous-groupe H est donc
trivial. De plus, les résonances de Ruelles dépendant continûment du paramètre ξ. Par compacité, il
existe r > 0 tel que, si λ est une résonance de Ruelle de module au moins 1− r d’un opérateur Lξ,
alors ξ est proche de 0 et λ = λξ est la valeur propre principale de Lξ. On obtient finalement :

Théorème 5.7. [224, Theorem 1.1]
Il existe ε > 0 tel que Sp(LΛ y BΛ) ⊂ B(0, 1− ε)∪ [1− ε, 1] pour tout réseau Λ. De plus, il existe

une constante 1 ≤ C telle que :

1

C
Card(Z2/Λ) ≤ Card{résonances de Ruelle dans [1− ε, 1] avec multiplicité} ≤ C Card(Z2/Λ).

En particulier, dès que Λ est suffisamment peu dense, LΛ y BΛ admet des résonances de Ruelle non
triviales.

De plus, grâce au développement limité de λξ obtenu en Sous-sous-section 3.5.2, on peut estimer
le nombre de valeurs propres dans un petit intervalle [1 − ε, 1] près de 1, où ε est donné par le

33. Cela demande un peu d’effort, car les espaces B ne se comportent pas très bien vis-à-vis de l’inversion temporelle,
au sens où B∗ 6= ι∗B. Cela est dû au fait que les cônes stables et instables ne sont pas traités de façon symétrique dans
la définition de B.
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Figure 21 – Spectre de l’opérateur LΛ agissant sur BΛ pour un réseau Λ suffisamment peu dense. Ce
spectre est symétrique par rapport à la droite réelle. Les résonances sur le segment [1−ε, 1] existent ;
les autres sont conjecturales.

Théorème 5.7. Notons νΛ la mesure de comptage des résonances de Ruelle (avec multiplicité) dans
l’intervalle [1− ε, 1], renormalisée par la taille de la table de billard :

νΛ :=
1

Card(Z2/Λ)

∑
λ résonance de LΛ

|λ|>1−ε

δλ.

On peut approcher les mesures νΛ quand Λ devient de moins en moins dense par des mesures
continues de densité spectrale 34. Nous en donnons ci-dessous deux cas particuliers : les familles de
réseaux (NZ)× Z et (NZ)2 avec N � 1. Commençons par la dimension 1 (tables “très longues”) :

Proposition 5.8. [224, Proposition 1.3]
Posons ΛN := (NZ)× Z. Il existe ε0 > 0 et une mesure finie ν(1) sur [1− ε0, 1] telle que :

lim
N→+∞

νΛN |[1−ε0,1] = ν(1),

où la convergence est faible-∗. De plus, ν(1) est absolument continue par rapport à la mesure de
Lebesgue, et sa densité admet une version continue sur [1− ε0, 1) telle que

dν(1)

dx
∼x→1−

1

π
√

2 Cov11

1√
1− x

, (5.3)

où Cov11 > 0 est le terme (1, 1) dans la matrice de covariance asymptotique Cov du gaz de Lorentz
associé.

Figure 22 – La table QΛ9 de la Proposition 5.8.

Et finissons par la dimension 2 (tables “carrées de grande taille”) :

34. Cet aspect de l’étude est directement inspiré des travaux de D. Jakobson, F. Naud et L. Soares [127].
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Proposition 5.9. [224, Proposition 1.4]
Posons ΛN := (NZ)2. Il existe ε0 > 0 et une mesure finie ν(2) sur [1− ε0, 1] telle que :

lim
N→+∞

νΛN |[1−ε0,1] = ν(2),

où la convergence est faible-∗. De plus, ν(2) est absolument continue par rapport à la mesure de
Lebesgue, et sa densité admet une version continue sur [1− ε0, 1] telle que

dν(2)

dx
(1) =

1

2π
√

det(Cov)
, (5.4)

où Cov est la matrice de covariance asymptotique du gaz de Lorentz associé.

Figure 23 – La table QΛ3 de la Proposition 5.8.

5.5 Pour aller plus loin : Résonances pour le flot billard

La construction de résonances de Ruelle pour les billards de Sinaï que nous avons présentée en
Sous-section 5.4 laisse plusieurs questions ouvertes.

D’une part, remarquons que les tables de billard étudiées sont très particulières : ce sont de grands
revêtements d’une table donnée. De plus, les résonances obtenues sont elles aussi très particulières :
proches de 1, réelles, et de multiplicité paire.

Question 5.10.
Existe-t-il des billards de Sinaï avec des résonances de Ruelle non réelles, ou non triviales et de

multiplicité 1 ?

L’argument théorique présenté dans ce mémoire ne peut pas répondre à cette question. Une piste
possible consiste à perturber nos tables de billards très particulières pour essayer de séparer les
résonances de multiplicité paire.

Une autre question naturelle concerne l’existence de résonances de Ruelle pour le flot billard.
Dans ce cadre, le générateur du flot X, est un opérateur non borné sur un espace de Banach bien
choisi B. De plus, Sp(X y B) ⊂ R− × R, on sait que 0 ∈ Sp(X y B) correspond aux fonctions
constantes, et que Sp(X y B) ∩ [−ρ0, 0] est constitué de valeurs propres isolées de multiplicité finie
pour un certains ρ0 > 0. On aimerait savoir s’il existe des tables de billard pour lesquelles il existe
des résonances autres que 0.

Question 5.11.
Existe-t-il des billards de Sinaï dont le flot a des résonances de Ruelle non triviales ?
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Le candidat naturel pour B, et le seul au moment où ces lignes sont écrites, est l’espace construit
par V. Baladi, M. Demers et C. Liverani [14]. Cependant, cet espace est délicat à manipuler. Il
n’est pas évident qu’il soit séparable, et par conséquent, il est difficile d’implémenter des arguments
d’approximation et d’extension par densité d’opérateurs. De là, même les calculs de perturbations
de valeurs propres échouent.

Le défi est cette fois-ci technique : il faut modifier la construction de Baladi – Demers – Liverani
pour obtenir des espaces de Banach ayant de meilleurs propriétés analytiques. Un problème d’autant
plus épineux que cette construction est complexe : l’article original [14] avoisine les 140 pages.

6 Théorème central limite local
Dans le cadre des Zd-extensions conservatives, nous allons maintenant présenter les travaux de

F. Pène et de l’auteur sur les déviations des sommes de Birkhoff [184, 186, 222]. Ces résultats fins
portent sur les différences de temps locaux. Avant de les aborder, il est nécessaire de comprendre le
comportement des temps locaux de telles extensions. Ce sera aussi l’occasion de présenter dans un
cadre simplifié la méthode des moments, qui joue un rôle crucial dans deux de ces articles [184,186].

Pour simplifier, nous nous plaçons dans le cadre de Zd-extensions markoviennes conservatives de
transformations Gibbs-Markov, bien que le travail [186] s’applique à des systèmes plus généraux, y
compris des gaz de Lorentz à horizon fini.

6.1 Conservativité des Zd-extensions
Dans cette Sous-section, la notion de conservativité sera cruciale. Nous allons présenter des critères

simples la garantissant. Une première condition suffisante très générale est :

Théorème 6.1. [205, Theorem 11.4]
Soit (A, µ, T ) un système dynamique probabilisé, préservant la mesure et ergodique. Soit (Ã, µ̃, T̃ )

une Z-extension ou R-extension de (A, µ, T ) de saut F . Supposons que F ∈ L1(A, µ).
Alors (Ã, µ̃, T̃ ) est conservatif si et seulement si

∫
A
F dµ = 0.

Le théorème de Birkhoff implique que
∫
A
F dµ = 0 est une condition nécessaire pour la conser-

vativité dès que F est intégrable ; la difficulté consiste à montrer que cette condition est suffisante.
L’aspect le plus remarquable de ce théorème est la faiblesse de ses hypothèses ; il s’applique

aussi à des extensions de rotations, ou bien de flots verticaux sur des surfaces plates. Dans le cadre
d’extensions de transformations Gibbs-Markov, il permet déjà de caractériser la conservativité dès
que F est dans le bassin d’attraction de lois stable de paramètre α > 1.

Cependant, ce théorème ne donne pas d’information si F n’est pas intégrable, ou bien en dimension
supérieure. On utilisera alors plutôt le critère suivant :

Proposition 6.2.
Soit (Ã, µ̃, T̃ ) une extension markovienne ergodique d’une transformation Gibbs-Markov (A, µ, T )

de saut F . Le système (Ã, µ̃, T̃ ) est conservatif si et seulement si

+∞∑
n=0

µ
(
STnF = 0

)
= +∞. (6.1)

Démonstration.
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Le système (Ã, µ̃, T̃ ) est conservatif si et seulement si [0] est un ensemble récurrent. Choisissons
(x, 0) dans la cellule [0] selon la loi µ. Remarquons que T̃ n(x, 0) ∈ [0] si et seulement si STnF (x) = 0.
Posons donc

L∞(x) := Card{k ≥ 0 : T̃ k(x, 0) = 0} =
+∞∑
k=0

1{STk F=0}(x)

le nombre total de fois que l’orbite (T̃ n(x, 0))n≥0 passe en [0]. Par le théorème de Fubini,

E (L∞) =
+∞∑
n=0

µ
(
STnF = 0

)
.

Si cette dernière somme est finie, alors L∞ < +∞ presque sûrement, donc (Ã, µ̃, T̃ ) est transient.
Supposons maintenant que ce système est transient. On sait que L∞ < +∞ presque sûrement, et on
veut montrer que E (L∞) < +∞.

Soit ε > 0. Soit N tel que µ (L∞ ≥ N) ≤ ε.
Pour tout n ≥ 0, soit ϕ(n)(x) le plus petit entier tel que

Lϕ(n)(x)(x) := Card{0 ≤ k ≤ ϕ(n)(x) : STk F (x) = 0} ≥ n.

Cet entier est bien défini sur {L∞ ≥ n}, et est un temps d’arrêt sur cet ensemble. On a ensuite, pour
tout k ≥ 0 :

µ (L∞ ≥ (k + 1)N) = µ
(
L∞ ≥ kN et L∞ ◦ Tϕ

(kN) ≥ N
)

=

∫
A

1L∞≥kN · 1L∞≥N ◦ Tϕ
(kN)

dµ

=

∫
A

Lϕ(kN) (1L∞≥kN) · 1L∞≥N dµ

≤ Cµ(L∞ ≥ kN)µ(L∞ ≥ N)

≤ Cεµ(L∞ ≥ kN),

où l’on a utilisé la Proposition 3.24 pour obtenir l’avant-dernière ligne, et la constante C ne dépend
que du système (A, µ, T ). Par récurrence, µ(L∞ ≥ kN) ≤ (Cε)k. En choisissant ε < C−1, on a montré
que L∞ a des queues exponentielles, et donc est intégrable.

Une version plus sophistiquée de cette démonstration permettra de démontrer les Proposition 13.4
et 13.5 en Sous-section 13.1.

La convergence, ou divergence, de la série
∑+∞

n=0 µ
(
STnF = 0

)
peut être abordée par des tech-

niques de perturbation d’opérateur. On peut ainsi montrer la conservativité de (Ã, µ̃, T̃ ) pour cer-
taines fonctions de saut F non intégrables mais dans le bassin d’attraction d’une loi de Cauchy ;
par conséquent, le flot géodésique sur C \ Z est conservatif [2]. En dimension 2, si F ∈ L2(A, µ)

est centrée, alors (Ã, µ̃, T̃ ) est conservatif. On peut même affaiblir l’hypothèse F ∈ L2(A, µ) par
µ(‖F‖ ≥ x) =x→+∞ O(x−2), ce qui permet de montrer la conservativité d’une version simplifiée 35

du gaz de Lorentz à horizon infini.
Cette étude de

∑+∞
n=0 µ

(
STnF = 0

)
par des méthodes spectrales est l’objet de la Sous-section

suivante.

35. Le vrai gaz de Lorentz est une Z2-extension d’un billard de Sinaï à horizon infini, et non d’une transformation
Gibbs-Markov, ce qui complique les choses ; le travail de D. Szász et T. Varjú [215] est à ce point de vue remarquable.
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6.2 Probabilité d’être en [0]

L’estimation de la probabilité µ
(
STnF = 0

)
de revenir au site de départ repose sur la méthode déjà

utilisée en Sous-section 3.6 pour démontrer le théorème central limite. L’argument est plus simple
dans le cadre des Zd-extensions apériodiques.

6.2.1 Extensions apériodiques

Pour simplifier, nous considèrerons le cas le plus élémentaire : celui d’une Z-extension ([Z], µ̃, T̃ )
d’une transformation Gibbs-Markov (A, µ, T ) de saut F , telle que F soit de carré intégrable et centrée.
Supposons de plus cette extension ergodique et apériodique.

Nous allons maintenant calculer les probabilités µ(T̃ n(x, 0) ∈ [0]). Ce sera l’occasion de présenter
une autre application de la méthode de Nagaev–Guivarc’h de la Sous-sous-section 3.6.1, mais aussi
d’appliquer la notion d’apériodicité et de présenter dans un cadre simplifié certaines stratégies de la
Partie IV.

Par transformée de Fourier, pour tout a ∈ Z,

10(a) =
1

2π

∫ π

−π
eiξa dξ.

Par conséquent,

µ
(
STnF = 0

)
=

∫
A

10

(
STnF

)
dµ =

1

2π

∫
T1

∫
A

eiξS
T
n F dµ dξ.

L’utilisation d’opérateurs de transfert tordus s’avère encore une fois très productive : comme dans la
démonstration spectrale du théorème central limite, on peut écrire ces intégrales sous la forme

µ
(
STnF = 0

)
=

1

2π

∫
T1

∫
A

Lnξ (1) dµ dξ. (6.2)

La différence avec le théorème central limite est qu’il ne suffit pas de contrôler l’opérateur Lξ
pour ξ proche de 0 : à cause de l’intégrale sur le tore, il faut le contrôler partout. Par apériodicité,
le sous-groupe H de la Proposition 5.3 est trivial. Soit ε > 0. Alors

1

2π

∫ ε

−ε

∫
A

Lnξ (1) dµ dξ =
1

2π

∫ ε

−ε
λnξ dξ(1 + δ(ε)) +O(rn),

où r ∈ (0, 1) et lim0 δ = 0. Les valeurs de ξ /∈ (−ε, ε) ont une contribution en O(r(ε)n) pour un
r(ε) ∈ (0, 1), tandis que, comme nous allons le voir, la contribution des valeurs de ξ ∈ (−ε, ε) est de
l’ordre de n−

1
2 . On peut donc négliger les valeurs de ξ hors de (−ε, ε).

Par développement limité de la valeur propre principale λξ, avec des fonctions δ qui peuvent
changer d’une ligne à l’autre,

1

2π

∫ ε

−ε
λnξ dξ =

1

2π

∫ ε

−ε

(
1− σ2(A, µ, T ;F )ξ2

2
+ o(ξ2)

)n
dξ

=
1

2π

∫ ε

−ε
e−

nσ2(A,µ,T ;F )ξ2

2 dξ(1 + δ(ε))

=
1

2π
√
n

∫
R
e−

σ2(A,µ,T ;F )ξ2

2 dξ(1 + δ(ε))

=
1 + δ(ε)

σ(A, µ, T ;F )
√

2πn
.
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On obtient finalement, à l’aide d’un argument diagonal portant sur ε,

µ
(
STnF = 0

)
=

1

σ(A, µ, T ;F )
√

2πn
+ o

(
n−

1
2

)
Théorème 6.3 (Théorème central limite local).

Soit ([Z], µ̃, T̃ ) une extension markovienne ergodique et apériodique d’une transformation Gibbs-
Markov (A, µ, T ) de saut F . Supposons que

∫
A
F 2 dµ < +∞ et

∫
A
F dµ = 0. Alors

µ
(
STnF = 0

)
∼n→+∞

1

σ(A, µ, T ;F )
√

2πn
. (6.3)

Plus généralement, pour une Zd-extension ergodique et apériodique, si F est de carré intégrable
et d’intégrale nulle, le même calcul donne

µ
(
STnF = 0

)
∼n→+∞

1√
det(Cov)(2πn)

d
2

, (6.4)

où Cov est l’opérateur de covariance dans le théorème central limite associé à F , défini par l’Équa-
tion (3.18).

Pour des lois plus diverses (par exemple dans le bassin d’attraction d’une loi de Lévy), la lectrice
pourra consulter [3], ou mener elle-même le calcul à partir des données de la Sous-sous-section 3.6.2.
Le théorème central limite local est aussi valable pour d’autres systèmes dynamiques, y compris des
gaz de Lorentz à horizon fini [214] ou infini [215] et les flots associés [82].

6.2.2 Extensions non apériodiques

Si l’extension est n’est pas apériodique, la situation est plus complexe. Plaçons-nous dans le
cadre d’une marche aléatoire de saut X, avec Φ la fonction caractéristique de X. Dans ce cadre, la
fonction θ de l’Équation (5.2) est triviale, de même que les projecteurs spectraux de tout élément de
H = {(ξ,Φ(ξ)) : ξ ∈ T1, |Φ(ξ)| = 1}. L’Équation (6.2) donne alors

µ
(
STnD = 0

)
=

1

2π

∫
T1

∫
A

Lnξ (1) dµ dξ

=n→+∞

(
1

2π

∫ ε

−ε
Φ(ξ)n dξ + o(r(ε)n)

) ∑
(ξ,λ)∈H

λn.

Soient N := Card(H) et λ une racine N -ième de l’unité. On obtient finalement

µ
(
STnF = 0

)
=n→+∞

(
1

σ(X)
√

2πn
+ o

(
n−

1
2

))N−1∑
k=0

λkn. (6.5)

Or
∑N−1

k=0 λ
kn vaut N si N divise n et 0 sinon. Les retours en 0 se font avec une période spécifique,

et ont une probabilité accrue d’advenir lors de ces périodes. Ce phénomène de périodicité est parti-
culièrement clair pour la marche aléatoire simple issue de 0 : elle ne peut revenir en 0 qu’aux temps
pairs, et sa probabilité de retour en 0 peut s’évaluer à l’aide du calcul précédent ou, par exemple, de
la formule de Stirling.
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6.3 Loi du temps passé en [0]

On se replace dans le cadre d’une Z-extension markovienne ergodique et apériodique ([Z], µ̃, T̃ )
d’une transformation Gibbs-Markov (A, µ, T ) de saut F , telle que

∫
A
F 2 dµ < +∞ et

∫
A
F dµ = 0.

Soit f ∈ L1([Z], µ̃). Que peut-on dire des sommes de Birkhoff
(
ST̃n f

)
n≥0

?

Par le théorème ergodique de Hopf, µ̃-presque partout,

ST̃n f =
ST̃n f

ST̃n 1[0]

ST̃n 1[0] ∼n→+∞

∫
[Z]

f dµ̃ · ST̃n 1[0].

Si
∫

[Z]
f dµ̃ 6= 0, il suffit donc de comprendre le cas f = 1[0]. Une telle extension étant ergodique et

conservative, les sommes de Birkhoff
(
ST̃n 1[0]

)
n≥0

tendent µ̃-presque partout vers +∞.

La Sous-section 6.2 offre une réponse partielle. D’après le théorème central limite local (Théo-
rème 6.3), si l’extension est apériodique,

E
(
ST̃n 1[0]

)
=

n−1∑
k=0

µ
(
STnF = 0

)
∼n→+∞

n−1∑
k=1

1

σ(A, µ, T ;F )
√

2πk

∼n→+∞
1

σ(A, µ, T ;F )

√
2

π

√
n.

Ce résultat se généralise aux extensions périodiques : les oscillations de la fonction qui à n associe
µ
(
STnF = 0

)
, apparaissant dans l’Équation (6.5), se compensent quand on les somme.

Cet argument nous indique la vitesse de croissance du temps passé en [0], et donc la bonne
renormalisation. Il ne décrit que très partiellement le comportement de ce temps local. En effet,
contrairement à ce qu’il se passe dans des systèmes dynamiques probabilisés, le comportement limite
de telles sommes sera aléatoire. Fixons une mesure de probabilité de référence, par exemple ν := µ⊗δ0.
Le but est de trouver une suite (an)n≥0 telle que la suite

(
a−1
n ST̃n 1[0]

)
n≥0

converge en loi vers une

variable aléatoire à identifier. Pour cela, suivant D.A. Darling et M. Kac [68], nous pouvons utiliser
la méthode des moments : pour tout m ≥ 0, nous allons identifier le comportement asymptotique des
moments

Mm(n) :=

∫
A

(
ST̃n 1[0](x, 0)

)m
dµ(x).
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Le développement de cette somme donne

Mm(n) =
∑

0≤k1,...,km≤n−1

∫
A

1[0] ◦ T̃ k1(x, 0) · . . . · 1[0] ◦ T̃ km(x, 0) dµ(x)

= m!
∑

0<k1,...,km∑
j kj<n

∫
A

1[0] ◦ T̃ k1(x, 0) · . . . · 1[0] ◦ T̃ k1+...+km(x, 0) dµ(x) +O(Mm−1(n))

= m!
∑

0<k1,...,km∑
j kj<n

∫
A

L̃k1(1[0]L̃k2(. . . L̃km(1[0]) . . .)) dµ(x) +O(Mm−1(n))

= m!
∑

0<k1,...,km∑
j kj<n

∫
A

Lk1(1{Sk1
F=0}Lk2(. . .Lkm(1{SkmF=0}) . . .)) dµ(x) +O(Mm−1(n)).

En utilisant des opérateurs de transfert tordus, on montre que [184, Équation (2.14)] :

Lk(1{SkF=0}·) =
1⊗ µ

σ(A, µ, T ;F )
√

2πk
+ o

(
k−

1
2

)
=: Q

(0)
k +Q

(1)
k .

Cet énoncé est une forme de mélange en mesure infinie, comme évoqué en Sous-section 2.1. Le terme
dominant est alors

Mm(n) ∼n→+∞ m!
∑

0<k1,...,km∑
j kj<n

∫
A

Q
(0)
k1
◦ . . . ◦Q(0)

km
(1) dµ(x)

=
m!

(2πσ2(A, µ, T ;F ))
m
2

∑
0<k1,...,km∑

j kj<n

m∏
j=1

k
− 1

2
j

∼n→+∞ m!

(
n

2πσ2(A, µ, T ;F )

)m
2
∫

0≤x1,...,xm∑
j xj≤1

m∏
j=1

x
− 1

2
j dx1 . . . dxm

=

(
n

2σ2(A, µ, T ;F )

)m
2 m!

Γ
(
1 + m

2

) .
Par conséquent, pour tout m ≥ 0,

lim
n→+∞

∫
A

(
1√
n
ST̃n 1[0](x, 0)

)m
dµ(x) =

1

(2σ2(A, µ, T ;F ))
m
2

m!

Γ
(
1 + m

2

)
On reconnaîtra immédiatement, bien sûr, E(|N |m), où N est une variable aléatoire normale centrée
de variance 1/σ2(A, µ, T ;F ). De plus, le critère de Carleman [94, Chapter VII.3, Equation (3.14)]
est vérifié pour ces moments, donc la convergence des moments implique la convergence en loi des
variables aléatoires.

Un soin additionnel apporté à la décomposition spectrale de l’opérateur de transfert L permet de
se dispenser de l’hypothèse d’apériodicité. Un argument de couplage très général dû à R. Zweimül-
ler [238, Theorem 1] permet d’étendre la convergence à toute mesure de probabilité absolument
continue par rapport à µ̃ (et non seulement à ν) ; on parle de convergence en loi forte. On montre
ainsi :
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Proposition 6.4.
Soit ([Z], µ̃, T̃ ) une extension markovienne ergodique d’une transformation Gibbs-Markov (A, µ, T )

de saut F , telle que
∫
A
F 2 dµ < +∞ et

∫
A
F dµ = 0. Soit f ∈ L1([Z], µ̃). Alors, pour toute mesure

de probabilité ν � µ̃,

lim
n→+∞

1√
n
ST̃n f =

1

σ(A, µ, T ;F )

∫
[Z]

f dµ̃ · |N |, (6.6)

où la convergence est en loi dans ([Z], ν) et N est une variable aléatoire gaussienne centrée réduite.

La présence d’une valeur absolue d’une variable aléatoire de loi normale n’est pas surprenante.
D’après un théorème de P. Lévy [159], si (Bt)t≥0 est un mouvement brownien, (Mt)t≥0 son maximum
courant et (Lt)t≥0 son temps local en 0, alors (M −B,M) = (|B|, 2L) en loi ; de plus, Mt = 2|Bt| en
loi pour tout t ; donc Lt = |Bt| en loi pour tout t. Par conséquent, le temps local en 0 au temps t a
la loi de la valeur absolue d’une variable aléatoire de loi normale.

Ce théorème n’est pas spécifique aux extensions de systèmes dynamiques Gibbs-Markov. D’une
part, du point de vue dynamique, l’argument développé ici nécessite seulement une bonne action
spectrale de l’opérateur de transfert, et s’applique donc par exemple au gaz de Lorentz 36. On le
vérifie numériquement à la Figure 24.

Figure 24 – Histogramme du temps passé en [0] par un gaz de Lorentz à horizon fini, après 1 000
itérations. Histogramme obtenu à l’aide de 100 000 trajectoires indépendantes partant de [0] selon
la mesure de Liouville. On retrouve la courbe en demi-cloche prédite par la Proposition 6.4.

D’autre part, ce théorème a des analogues dans le cadre de chaînes de Markov récurrentes nulles
dont les temps de retour à un état donné ont des queues à variation régulière [68, Theorem 1] ; pour un
énoncé dans le cadre de systèmes dynamiques, on pourra consulter par exemple [1, Theorem 3.6.4].
De ce point de vue, la valeur absolue d’une variable aléatoire de loi normale centrée est un cas
particulier de loi de Mittag–Leffler :

Définition 6.5 (Loi de Mittag–Leffler).
Soient γ ∈ [0, 1] et X une variable aléatoire réelle positive. On dit que la loi de X est une loi de

Mittag–Leffler de paramètre γ si, pour tout z ∈ C (ou z ∈ B(0, 1) si γ = 0),

E[ezX ] =
+∞∑
n=0

Γ(1 + γ)nzn

Γ(1 + nγ)
.

36. La construction des tours de Young permet aussi de passer des transformations Gibbs-Markov au gaz de Lorentz.
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On retrouve des lois usuelles pour trois paramètres :
• X ≡ 1 presque sûrement pour γ = 1 ;
• X = |N | avec N de loi normale centrée de variance π/2 pour γ = 1/2 ;
• X = E avec E exponentielle de paramètre 1 pour γ = 0.

La Proposition 6.4 correspond au paramètre γ = 1/2. Le paramètre γ = 0 apparaît pour des Z2-
extensions ergodiques dont les sauts sont centrés et de variance finie, ou bien pour des Z-extensions
ergodiques et conservatives dont les sauts sont dans le bassin d’attraction d’une loi de Cauchy. Les
paramètres entre 0 et 1/2 apparaissent pour des Z-extensions dont les sauts sont centrés et dans le
bassin d’attraction d’une loi stable de Lévy, déjà évoquées en Sous-sous-section 3.6.2.

La gamme entière de paramètres peut s’obtenir en travaillant non pas avec des extensions mais
avec les transformations de Pomeau-Manneville de la Sous-sous-section 2.4.3. Plus précisément, le
paramètre γ de la loi de Mittag-Leffler vaut 1/α, où α est le paramètre de la transformation de
Pomeau-Manneville [1, Chapter 4.8].

6.4 Observables d’intégrale nulle, I : Méthode des moments

La limite dans la Proposition 6.4 est dégénérée dès que
∫

[Z]
f dµ̃ = 0. Quelle est la limite dans ce

cas ? Cette question a été explorée dès 1955 par R.L. Dobrushin [77, Théorème 2] dans le cadre de
la marche aléatoire simple :

Théorème 6.6. [77, Théorème 2]
Soit Sn une marche aléatoire simple sur Z et f : Z→ R à support fini et de somme nulle. Posons :

σ2(f) := 4
∑
j∈Z

jf 2(j) + 8
∑
j,k∈Z
j<k

jf(j)f(k)−
∑
j∈Z

f 2(j) ≥ 0.

Alors

lim
n→+∞

1

n
1
4

n−1∑
k=0

f(Sk) = σ(f)X,

où la convergence est en loi et X est une variable aléatoire dont la loi est de densité

g(x) =
2

π

∫ +∞

0

e−
x2

2t2
− t

4

2 dt.

Ce théorème a ensuite été généralisé, notamment par H. Kesten et Y. Kasahara [132,133,135,144]
dans le cadre de chaînes de Markov. On dispose de plus de formes plus fortes de sa conclusion : non
seulement la loi limite, mais aussi des principes d’invariance par Y. Kasahara et A.N. Borodin [35,
36, 134], et des lois du logarithme itéré grâce à un très joli argument de couplage dû à E. Csáki et
A. Földes [64,65].

L’objectif du travail de thèse de l’auteur consistait à étendre ce type de résultat à des systèmes
dynamiques, au-delà du cadre des processus de Markov. Nous reviendrons en Sous-section 9.3 sur
celui-ci. Suite à ce travail de thèse, nous avons avec F. Pène appliqué la méthode des moments à
ce problème. La stratégie est donc la même que dans la Sous-section 6.3, mais la combinatoire qui
en résulte est nettement plus compliquée. Pour simplifier notre exposition, nous donnons ici un cas
particulier de [184, Theorem 1.11].

Théorème 6.7. Corollaire de [184, Theorem 1.11]
Soit ([Z], µ̃, T̃ ) une extension markovienne ergodique d’une transformation Gibbs-Markov (A, µ, T )

de saut F , telle que
∫
A
F 2 dµ < +∞ et

∫
A
F dµ = 0. Soit f : [Z]→ R telle que :
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• supp∈Z |f(·, p)|Lip∞(A,µ) < +∞.
• Il existe ε > 0 et q > 2 tels que

∑
p∈Z(1 + |p|) 1

2
+ε ‖f(·, p)‖Lq(A,µ) < +∞.

•
∫

[Z]
f dµ̃ = 0.

Alors il existe une constante σ2(f) ≥ 0 telle que, pour toute mesure de probabilité ν � µ̃,

lim
n→+∞

1

n
1
4

ST̃n f =
σ(f)√

σ(A, µ, T ;F )

√
|N | · N ′,

où la convergence est en loi dans ([Z], ν), et N , N ′ sont deux variables aléatoires indépendantes de
lois normale centrée réduite.

Remarque 6.8 (Variance asymptotique, I).
La constante σ2(f) dans le Théorème 6.7 est simplement donnée par la formule de Green–Kubo,

déjà rencontrée à l’Équation (3.16) :

σ2(f) = σ2([Z], µ̃, T̃ ; f) =

∫
[Z]

f 2 dµ̃+ 2
+∞∑
n=1

∫
[Z]

f · f ◦ T̃ n dµ̃.

Ceci est démontré dans [184] quand f est constante sur chaque site, et dans [186] dans le cas
général.

Esquisse de démonstration du Théorème 6.7.
On utilise la méthode des moments, présentée en démonstration du Théorème 6.3. Cependant,

la démonstration devient beaucoup plus technique. Nous nous cantonnerons à évoquer les principales
complications.

Pour commencer, il faut voir ce type de résultat comme un analogue en mesure infinie du théorème
central limite, là où le Théorème 6.3 serait un analogue du théorème ergodique de Birkhoff. Or, déjà en
mesure finie, le théorème central limite est valable pour des observables f régulières et suffisamment
intégrables : nous renvoyons la lectrice au Théorème 3.30. Cela explique qu’il y ait de nouvelles
contraintes portant sur la régularité et l’intégrabilité de l’observable f .

Ensuite, le théorème de Hopf n’est plus d’aucune utilité. On ne peut donc pas se ramener à l’étude
de la seule fonction 1[0], ce qui aurait simplifié la combinatoire. Supposons pour simplifier que f soit
constante sur chaque site [p]. En posant

Mm(n) :=

∫
A

(
ST̃n f(x, 0)

)m
dµ(x),

on a donc, pour des constantes cN = cN1,...,Nq explicites,

Mm(n) =
m∑
q=1

∑
Nj≥1

N1+...+Nq=m

cN
∑

1≤n1<...<nq≤n

∑
a∈(Zd)q

Eµ

[
q∏
j=1

(
f(aj)

Nj1{STnjF=aj}

)]
.

Dans la démonstration du Théorème 6.7, seules des indicatrices 1{STnjF=0} apparaissaient, desquelles
on tirait une famille à un paramètre d’opérateurs Qk. Dans notre nouveau cadre, on introduit une
famille à deux paramètres d’opérateurs

Qk,a = Q
(0)
k,a +Q

(1)
k,a := Lk(1{SkF=a}·),

avec Q(0)
k,a la restriction au sous-espace propre de valeur propre 1 de L, et Q(1)

k,a un terme d’erreur dont
il faut maintenant contrôler la dépendance en a.
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Enfin, dans la démonstration du Théorème 6.7, le terme principal correspondait à q = m et
(Nj)1≤j≤m = (1, . . . , 1), les autres termes étant négligeables par rapport à celui-ci. Dans notre cadre,
se terme s’annule car f est d’intégrale nulle. Il faut donc aller chercher les termes suivants. La
combinatoire est intéressante : la croissance de Mm(n) est en n

m
2 si m est pair (et plus lente si m est

impair), et les termes ayant cette croissance sont des concaténations de blocs :
• Q(0)

k,a avec poids Nj = 2 ;
• Q(0)

k,a et Q(1)
k,a avec poids Nj = Nj+1 = 1.

Le premier type de bloc correspond au terme
∫

[Z]
f 2 dµ̃ dans la formule de Green–Kubo, et le second

type de bloc au terme 2
∑+∞

n=1

∫
[Z]
f · f ◦ T̃ n dµ̃.

Remarque 6.9 (Autres Zd-extensions).
Comme pour le théorème central limit et le théorème central limite local, le Théorème 6.7 s’étend

à des Zd-extensions ergodiques et conservatives dont le saut F est dans le bassin d’attraction d’une
loi stable de Lévy 37.

Dans ce cadre, la renormalisation change ; elle est toujours la racine carrée de la renormalisation
du théorème central limite local. La loi limite devient un mélange gaussien par une loi de Mittag-
Leffler. Ces lois, appelées Mittag-Leffler Gaussian mixtures (MLGM) dans [184], ou lois de Mittag-
Leffler symétriques dans [132], admettent plusieurs caractérisations :
• Ce sont les produits

√
Y · N , où Y suit une loi de Mittag-Leffler, N est normale centrée et

ces deux variables aléatoires sont indépendantes.
• Leur fonction caractéristique est donnée par

Ψ(ξ) =
+∞∑
n=0

cnξ2n

Γ(1 + γn)
,

où γ ∈ [0, 1] et c > 0.
Leur densité a enfin une représentation intégrale ; pour γ = 1/2, elle est donnée dans le Théorème 6.6.
L’équivalence de ces différentes caractérisations est un exercice intéressant sur le conditionnement.

Remarque 6.10 (Loi de l’arcsinus).
Le Théorème 6.7 répond à la question des lois limites des sommes de Birkhoff d’observables

d’intégrale nulle qui décroissent suffisamment vite à l’infini. On peut la contraster avec la loi de
l’arcsinus. Si (Bt)t≥0 est un mouvement brownien,

1

T

∫ T

0

(1R+ − 1R−)(Bs) ds→T→+∞ X,

où la convergence est en loi, et la loi de X est supportée sur [−1, 1] et de densité 1
π
√

1−t2 sur cet
intervalle.

Ce théorème, démontré par P. Lévy [158], se transpose aux Z-extensions markoviennes, ergo-
diques, conservatives, et dont les sauts sont dans Lq(A, µ) pour un q > 2 : c’est une conséquence
du principe d’invariance faible. Il se généralise aussi à des systèmes non-uniformément hyperbo-
liques [206,219].

La transition entre le régime du Théorème 6.7 et celui de l’arcsinus, qui comprend des observables
d’intégrale nulle ne décroissant pas trop vite à l’infini, est nettement moins bien comprise.

37. Avec, encore une fois, des complications pour la loi de Cauchy.
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La méthode des moments a ensuite été adaptée aux gaz de Lorentz [186], par les deux mêmes
auteurs. En voyant f(·, p) comme un multiplicateur continu sur un espace de Banach adapté, on peut
mener ces calculs sans avoir à supposer que f est constante sur chaque site. Une autre innovation
de [186] est de considérer le processus joint (ST̃n f, S

T̃
n g) avec f d’intégrale nulle et g d’intégrale non

nulle, et de montrer leur indépendance asymptotique.
Mentionnons pour finir les travaux de M. Phalempin [190], qui exploite la méthode des moments

pour montrer un principe d’invariance optimal pour ces processus, et même une version plus fine 38

pour des équations différentielles bruitées par une Z-extension [190, Théorème 1.1].

38. Et encore plus difficile à démontrer !
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Troisième partie

Transformations induites et théorie du
potentiel

Nous faisons maintenant un pas de côté, pour revenir à la théorie ergodique générale. Nous allons
discuter plus en détail la notion de système induit, et présenter le rôle-clef joué par un résultat de
théorie probabiliste du potentiel : l’identité de balayage, qui a été utilisée extensivement dans [226].
Cette théorie est introduite dans le cadre de chaînes de Markov en Section 7 (Cadre probabiliste), et
de systèmes dynamiques en Section 8 (Transformations induites). Enfin, la Section 9 (Invariants par
induction) revient sur la formule de Green–Kubo et la replace dans le cadre plus général d’invariants
par induction.

Cette partie, et en particulier les Sections 8 et 9, portent essentiellement sur le contenu de [185].
La Sous-section 9.3 est à part : elle revient sur les sommes de Birkhoff d’observables d’intégrale nulle,
suivant cette fois-ci l’approche de [221,222].

7 Cadre probabiliste : Chaînes de Markov induites
Avant de revenir vers les systèmes dynamiques, nous allons introduire des éléments de théorie

du potentiel dans un cadre probabiliste plus simple, celui des chaînes de Markov stationnaires. Nous
adoptons cependant un cadre très large pour étudier ces chaînes de Markov. L’essentiel de cette
Section est classique, et peut se trouver par exemple dans [32].

7.1 Chaînes de Markov

De même que la présentation précédente se focalisait sur des systèmes dynamiques à temps discret,
nous nous concentrons ici sur des processus markoviens à temps discret, c’est-à-dire des chaînes de
Markov. Les espaces d’états considérés restent généraux.

Définition 7.1 (Chaîne de Markov stationnaire).
Soit A un espace polonais muni d’une mesure σ-finie µ. Une fonction P : A → P(A) définie µ-

presque partout est un noyau de transition si, pour tout ensemble mesurable B, la fonction x 7→ Px(B)
est mesurable. La mesure µ est dite stationnaire si, pour tout B ⊂ A mesurable,∫

A

Px(B) dµ = µ(B). (7.1)

Étant donnée une mesure de probabilité ν � µ, par le théorème d’extension de Kolmogorov, il
existe une chaîne de Markov (Mn)n∈N sur Ω telle que :
• M0 soit de loi ν ;
• Pour tout n ≥ 0 et B ⊂ A,

P (Mn+1 ∈ B | M0, . . . ,Mn) = PMn(B).

On notera enfin (Fn)n≥0 la filtration
∨n
k=0 σ(Mn).

Le noyau de transition P peut aussi être vu comme un opérateur agissant sur divers espaces de
fonctions, en particulier les espaces Lp(A, µ) avec p ∈ [1,∞], par

P (f)(x) = E (f(Mn+1) | Mn = x) .
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Pour tout p ∈ [1,∞], la stationnarité de la mesure µ est équivalente au fait que∫
A

P (f) dµ =

∫
A

f dµ ∀f ∈ Lp(A, µ). (7.2)

Si A est fini de cardinal a, la donnée d’un tel opérateur P est équivalente à la donnée d’une
matrice a× a stochastique, c’est-à-dire à coefficients dans [0, 1] et dont la somme de chaque ligne est
égale à 1. Dans une telle représentation, que l’on notera abusivement encore P , pour tous i, j ∈ A,

Pij = P (M1 = j | M0 = i) ;

autrement dit, la matrice associée est la représentation matricielle de l’opérateur P dans la base
(1i)i∈A. Si cette matrice est irréductible, le théorème de Perron-Frobenius assure alors que la chaîne
de Markov associée admet une unique mesure de probabilité invariante.

Il est possible de définir, dans ce cadre général, des notions d’ergodicité et de récurrence compa-
tibles avec les applications aux systèmes dynamiques qui suivront 39.

Définition 7.2 (Chaînes de Markov ergodiques et récurrentes).
Soit (A, µ, P ) une chaîne de Markov stationnaire. On dit que cette chaîne est :
• ergodique si tout ensemble B ⊂ A tel que Px(B) = 1 pour µ-presque tout x ∈ B est ou bien
de mesure pleine, ou bien de mesure nulle.
• récurrente si, pour tout ensemble B ⊂ A de mesure strictement positive et µ-presque tout
x ∈ B, le temps de premier retour en B partant de x est presque sûrement fini :

P (∃n ≥ 1 : Mn ∈ B | M0 = x) < +∞ µ-p.p..

Exemple 7.3.
Soit (A, µ, T ) un système dynamique préservant la mesure. Posons :

Px := δT (x).

Alors, pour tout B ⊂ A mesurable, la fonction x 7→ Px(B) est égale à 1T−1(B). Ansi, P est un noyau
de transition car T est mesurable. De plus, pour tout B ⊂ A mesurable,∫

A

Px(B) dµ =

∫
A

1T−1(B) dµ = µ(T−1(B)) = µ(B) ;

ainsi, la mesure µ est bien stationnaire.
De même, cette chaîne de Markov est récurrente si et seulement si (A, µ, T ) l’est. L’ergodicité

est plus délicate : cette chaîne de Markov est ergodique si et seulement si (A, µ, T ) n’a pas de sous-
ensemble stable non trivial, ce qui est une condition plus forte que l’ergodicité du système (A, µ, T ),
et équivalente si (A, µ, T ) est conservatif 40 (et en particulier si µ est finie).

Enfin, la notion de chaîne de Markov duale nous permettra de faire le lien avec les opérateurs de
transfert.

39. Il y a des précautions à prendre. Le pendant pour les chaînes de Markov de la notion de conservativité est la
récurrence. La notion d’ergodicité est plus épineuse, car elle dépend des références : ce que de nombreuses références
sur les chaînes de Markov appellent ergodicité correspond plutôt aux notions d’apériodicité ou de mélange.
40. Le système (A,µ, T ) n’a pas de sous-ensemble stable non trivial si tout ensemble mesurable B tel que B ⊂ T−1(B)

est ou bien de mesure nulle, ou bien de mesure pleine. En revanche, (A,µ, T ) est ergodique si tout ensemble mesurable
B tel que B = T−1(B) est ou bien de mesure nulle, ou bien de mesure pleine. La seconde condition est plus faible.
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Définition 7.4 (Chaîne de Markov duale).
Soit (A, µ, P ) une chaîne de Markov stationnaire. Sa chaîne de Markov duale est la chaîne de

Markov dont l’opérateur associé P ∗ est le dual de P :∫
A

P ∗(f) · g dµ =

∫
A

f · P (g) dµ ∀f ∈ L1(A, µ), ∀g ∈ L∞(A, µ). (7.3)

La dualité correspond à un renversement de temps. Ainsi, une chaîne de Markov est réversible si
et seulement si elle est son propre dual.

Remarque 7.5 (De l’opérateur au noyau de transition).
Un opérateur P : L1(A, µ)→ L1(A, µ) est associé au noyau de transition d’une chaîne de Markov

stationnaire pour une mesure µ si et seulement si
• P préserve µ (Équation (7.2)) ;
• P est positif : P (f) ≥ 0 si f ≥ 0.

En particulier, si (A, µ, P ) une chaîne de Markov stationnaire, alors P ∗ est bien l’opérateur associé
au noyau de transition d’une chaîne de Markov, et (A, µ, P ∗) est stationnaire.

7.2 Probabilités d’atteinte, I : Fonctions harmoniques

L’un des thèmes principaux de ce mémoire est l’étude de probabilités d’atteinte. Commençons par
un exemple élémentaire. Soit (Mn)n≥0 une chaîne de Markov irréductible sur un espace d’état fini
A. Notons µ sa mesure de probabilité stationnaire et P sa matrice de transition. Soient x, y, z trois
points deux à deux distincts de A. Quelle est la probabilité, partant de x, d’atteindre y avant z ?

Par la suite, nous noterons Px (respectivement Ex) la probabilité (respectivement l’espérance)
pour la chaîne de Markov partant de x ∈ A.

Définition 7.6 (Temps de première atteinte).
Soit B une partie mesurable de A. Le temps de première atteinte de B de A est la variable

aléatoire
ϕ̃B := inf {n ≥ 0 : Mn ∈ B} , (7.4)

qui est un temps d’arrêt.

On fera attention au fait que l’infimum dans la Définition 7.6 est pris sur tout les n positifs, et
non seulement strictement positifs comme à l’Équation (7.7). En particulier, ϕ̃B ≡ 0 sur B.

La question posée revient alors à calculer la probabilité Px
(
Mϕ̃{y,z} = y

)
. On la généralise en

calculant la fonction
f(x) := Px

(
Mϕ̃{y,z} = y

)
,

pour tout x ∈ A. Si x /∈ {y, z}, alors ϕ̃{y,z} ≥ 1 et

f(x) = Px (Mϕ̃ = y)

=
∑
x′∈A

Px
(
M1 = x′ et Mϕ̃{y,z} = y

)
=
∑
x′∈A

Px (M1 = x′)Px′
(
Mϕ̃{y,z} = y

)
=
∑
x′∈A

Pxx′f(x′)

= P (f)(x).
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Ainsi, la fonction f est solution de l’équation{
(Id−P )f(v) = 0 pour v ∈ A \ {y, z}
f(z) = 0, f(y) = 1

. (7.5)

Une telle fonction f est harmonique sur A \ {y, z} pour l’opérateur (Id−P ). Autrement dit, l’Équa-
tion (7.5) est une équation de Poisson sur A \ {y, z} avec conditions au bord de Dirichlet. La chaîne
de Markov étant irréductible, par le principe du maximum, toute fonction harmonique sur A \ {y, z}
atteint son maximum (ainsi que son minimum et le maximum de son module) sur {y, z}. Par consé-
quent, la différence de deux solutions de l’équation (7.5) est nulle : cette équation admet bien une
unique solution.

Introduisons l’opérateur Ly CA suivant :{
Lf(v) = (Id−P )f(v) pour v ∈ A \ {y, z}
Lf(v) = f(v) pour v ∈ {y, z} .

Par l’argument justifiant l’unicité des solutions de l’Équation (7.5), l’opérateur L est injectif, donc
bijectif. La solution de l’Équation (7.5) est L−1(1y).

Remarque 7.7 (Mouvement brownien et fonctions harmoniques).
Ce qui précède dépasse de loin les chaînes de Markov à espace d’état fini, et s’applique notamment

à des processus stochastiques. Soit U un ouvert bornée du plan à bord régulier [55, Chapter 4.4], et Px
la loi du mouvement brownien (Bt)t≥0 partant d’un point x ∈ U et arrêté au bord de U . Soit ϕ̃∂U le
temps d’atteinte de ∂U . Soit g : ∂U → C bornée. Alors la fonction f(x) := Ex (g (Bϕ̃∂U )) est solution
de l’équation de Poisson avec conditions au bord de Dirichlet usuelle :{

∆f = 0 dans U
f|∂U = g

. (7.6)

Dans le cas des chaînes de Markov, l’opérateur (Id−P ) joue le rôle de l’opérateur 41 −∆.

Exemple 7.8 (Lancers de pièce, I).
On lance de façon répétée une pièce non biaisée. Quelle est la probabilité d’observer trois lancers

Pile d’affilée avant d’observer une alternance Pile-Face-Pile ?
Choisissons A = {FF ,PF ,FFP ,FPP ,PFP ,PPP }. Un état correspond aux deux ou trois

derniers lancers observés, et la matrice de transition est

P =


1/2 0 1/2 0 0 0
1/2 0 0 0 1/2 0
0 1/2 0 1/2 0 0
0 1/2 0 0 0 1/2
0 1/2 0 1/2 0 0
0 1/2 0 0 0 1/2

 .

On peut supposer 42 qu’au début de l’expérience aléatoire, on part de x = FF , et on cherche à calculer
la probabilité d’atteindre PPP avant PFP .

41. Avec les conventions issues de la physique : ∆f =
∑
i ∂

2
iif .

42. Car, si l’on veut obtenir PPP ou PFP , il est équivalent de dire que l’on n’a encore rien tiré ou que l’on vient
de tirer deux fois Face.
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Par ce qui précède, on cherche donc l’unique solution f : A→ R de l’équation{
(Id−P )f(v) = 0 pour v ∈ {FF ,PF ,FFP ,FPP }
f(PFP ) = 0, f(PPP ) = 1

.

La méthode de résolution ci-dessus donne f = (2/5, 1/5, 2/5, 3/5, 0, 1). La probabilité recherchée est
donc f(FF ) = 2/5.

Exercice 7.9.
Le temps d’atteinte n’est pas la seule variable aléatoire d’intérêt à satisfaire une équation de

Poisson. Plaçons-nous dans le cadre de l’Exemple 7.8.
• Écrivez une équation satisfaite par f(x) := Ex (ϕ̃PFP ). Déduisez-en le temps moyen pour voir
apparaître la suite de lancers Pile-Face-Pile.
• Écrivez une équation satisfaite par f(x, z) := Ex

(
ezϕ̃PFP

)
. Que peut-on en déduire sur la loi

du temps d’atteinte de la suite de lancers Pile-Face-Pile ?

7.3 Probabilités d’atteinte, II : Premier retour

Les techniques présentées en Partie 7.3 doivent être modifiées quand l’on cherche à calculer non
pas un temps de première atteinte ϕ̃, mais un temps de premier retour

ϕB := inf {n ≥ 1 : Mn ∈ B} , (7.7)

où B ⊂ A, déjà mentionné dans un cadre dynamique en Sous-sous-section 2.4.3. Remarquons que la
seule différence avec le temps de première atteinte est que l’on ne considère que les temps strictement
positifs, c’est-à-dire que la chaîne de Markov doit avoir fait au moins un pas. En particulier, ϕ̃B et
ϕB coïncident hors de B.

Une première approche consiste simplement à faire un premier pas, puis à appliquer la théorie
développée pour les temps de première atteinte.

Exemple 7.10 (Lancers de pièce, II).
Continuons avec l’Exemple 7.8. Supposons que l’on vient juste de lancer trois Pile d’affilée. Quelle

est la probabilité d’observer de nouveau trois lancers Pile d’affilée 43 avant d’observer une alternance
Pile-Face-Pile ?

Dans l’espace décrit dans l’Exemple 7.8 et partant de l’état PPP , le vecteur probabilité des états
possibles après un lancer est µPPP := (0, 1/2, 0, 0, 0, 1/2). On reprend la fonction f calculée dans
l’Exemple 7.8. La probabilité recherchée est alors

µPPP (f) =
1

2
× 1

5
+

1

2
× 1 =

3

5
.

Nous allons maintenant décrire une autre technique proche. Avant toutes choses, il nous faut
introduire la notion chaîne de Markov induite, ce que nous faisons dans un cadre général.

Définition 7.11 (Chaîne de Markov induite).
Soit (A, µ, P ) une chaîne de Markov stationnaire et récurrente. Soit B ⊂ A de mesure strictement

positive. Remarquons que, par la définition de la récurrence, Px(ϕB < +∞) = 1 pour µ-presque tout
x ∈ B. Le noyau de transition induit sur B est

PB
x (C) := Px (MϕB ∈ C) ,

pour tout C ⊂ B mesurable.

43. Attention : si le prochain lancer est un Pile, cette condition sera satisfaite !
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Le calcul des probabilités recherchées est alors équivalent au calcul de PB. Comme nous le verrons
plus tard, sous l’hypothèse de récurrence, la mesure µ|B est stationnaire pour PB (Proposition 8.5
ou, dans un cadre dynamique, un lemme de S. Kakutani [131, Lemme 2]). Remarquons que, si P est
ergodique pour µ, alors PB est ergodique pour µ|B.

On peut définir plus généralement le temps de n-ième retour ϕ(n)
B en B. Le processus (Mn)n≥0

partant d’un point x ∈ B générique pour µ reviendra une infinité de fois en B. Par la loi de Markov
forte, le processus

MB
n := M

ϕ
(n)
B

est une chaîne de Markov sur B, dont le noyau de transition est PB.

Exemple 7.12 (Lancers de pièce, III).
Illustrons ces idées dans le cadre de l’Exemple 7.10. La chaîne de Markov induite sur B =

{PFP ,PPP } a pour noyau de transition

P {PFP ,PPP } =

(
3/5 2/5
2/5 3/5

)
.

Remarquons que µ(PFP ) = µ(PPP ) : il s’agit d’une manifestation du fait que ces deux suites ont
la même fréquence théorique dans une suite de lancers de pile ou face. Par conséquent, µ|B(PFP ) =
µ|B(PPP ). Cela, ajouté au fait que la matrice P {PFP ,PPP } est stochastique, contraint la matrice
P {PFP ,PPP } à être symétrique, ce que l’on observe.

Dans cet exemple, à une suite de lancers PPPP correspond une transition de PPP vers PPP
dans le système induit, alors qu’une suite PPPFFPPFP induit une transition de PPP vers
PFP .

Revenons au calcul de PB. Soit g : B → C ; nous notons g1B l’extension de g à A telle que g ≡ 0
sur A \B. Soit f la solution de l’équation de Poisson avec condition au bord de Dirichlet :{

(Id−P )f(v) = 0 pour v ∈ A \B
f(v) = g(v) pour v ∈ B .

Alors
PB(g) = PB(f)|B = P (f)|B = (f − (Id−P )(f))|B = g − (Id−P )(f)|B,

où la seconde égalité peut se justifier à l’aide d’un argument de martingale que l’on retrouvera dans
la démonstration de la Proposition 7.13. En d’autres termes,

(Id−PB)(f|B) = (Id−P )(f)|B.

Cette identité, classique en théorie probabiliste du potentiel, s’appelle l’identité de balayage. Une
version peut être trouvée dans [199, Corollaire 1.11]. Nous citons ici une version plus générale [185,
Proposition 2.4].

Proposition 7.13 (Identité de balayage).
Soit (A, µ, P ) une chaîne de Markov munie d’une mesure stationnaire récurrente σ-finie. Soit

B ⊂ A mesurable tel que 0 < µ(B) ≤ +∞. Soient f ∈ L∞(A, µ) et g ∈ L∞(B, µ|B). Si :

(Id−P )(f) = g1B,

alors :
(Id−PB)(f|B) = g.
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Démonstration.
Soit x ∈ B générique pour la mesure µ|B, et (Mn)n≥0 la chaîne de Markov issue de x. Notons

(MB
n )n≥0 la chaîne de Markov induite sur B par (Mn)n≥0. Alors ϕB est un temps d’arrêt presque

sûrement fini. De plus, le processus (f (Mn∧ϕB))n≥1 est une martingale car f = P (f) sur A \ B, est
bornée, et converge presque sûrement vers f(MϕB) = f(MB

1 ). Par le théorème de convergence des
martingales,

f(x)− g(x) = P (f)(x) = Ex(f(M1)) = Ex(f(MB
1 )) = PB(f|B)(x) = PB(g)(x).

Revenons au cas d’espaces d’états finis, et supposons de plus que µ est ergodique. Alors la dé-
composition

CA = Vect(1)⊕Ker(Id−P )

est P -invariante. De plus, µ|B est alors stationnaire et ergodique pour la chaîne de Markov induite, de
telle sorte que l’on dispose aussi d’une décomposition PB-invariante CB = Vect(1)⊕Ker(Id−PB).

Si (Id−P )(f) = g1B, alors ∫
A

(g1B) dµ =

∫
A

(Id−P )(f) dµ = 0.

L’équation (Id−P )(f) = g1B ne peut donc avoir de solution que si g est d’intégrale nulle.
Fixons une fonction g : B → C d’intégrale nulle. Notons f = (Id−P )−1

|Ker(µ)(g1B) l’unique solution
qui est elle-même d’intégrale nulle. Par l’équation de balayage, (Id−PB)(f|B) = g. Cependant, f|B
n’est en général pas d’intégrale nulle pour µ|B ; il faut projeter cette fonction parallèlement 44 aux
constantes pour obtenir (Id−PB)−1

|Ker(µ|B)(g).

On peut ainsi calculer (Id−PB)−1
|Ker(µ|B). Il suffit d’inverser l’opérateur obtenu pour retrouver

(Id−PB)|Ker(µ|B), puis de là PB.

Exemple 7.14 (Lancers de pièce, IV).
Revenons une dernière fois à l’Exemple 7.10. La mesure de probabilité invariante µ associée à

P est telle que µ(PFP ) = µ(PPP ). En particulier, l’espace des fonctions d’intégrale nulle sur
B = {PFP ,PPP } est engendré par g = 1PPP − 1PFP .

Une fonction f solution de l’équation (Id−P )(f) = g1B est

f =

(
1,

1

2
, 1,

3

2
, 0,

5

2

)
.

Par conséquent, en projetant f sur Ker(µ|B) parallèlement aux constantes, (Id−PB)−1
|Ker(µ|B)(g) =

(−5/4, 5/4) = 5
4
g, et donc PB

|Ker(µ|B) = 1
5

Id|Ker(µ|B). On retrouve ensuite la matrice calculée dans
l’Exemple 7.12.

Remarque 7.15 (Intégration contre des fonctions d’intégrale nulle).
Une solution pour éviter les problèmes de projection parallèlement aux constantes consiste à inté-

grer contre des fonctions d’intégrale nulle. Plus précisément, si g, h : B → C sont d’intégrale nulle,
alors ∫

A

(Id−P )−1(g1B) · (h1B) dµ =

∫
B

(Id−PB)−1(g) · h dµ,

44. Un autre point de vue est que les solutions f de l’équation (Id−P )(f) = g1B sont définies à constante près, et
que le choix de la solution d’intégrale nulle correspond à un choix de jauge. Cependant, la jauge change quand l’on
passe du système initial au système induit. Cette subtilité a valu plusieurs fois à l’auteur de ces lignes de perdre des
heures à la recherche d’erreurs de calcul.
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aucune de ces intégrales ne dépendant du choix d’une constante dans la définition des opérateurs
(Id−P )−1 et (Id−PB)−1. Cette formulation aura par la suite l’avantage supplémentaire, dans des
cas où µ est infinie, de contourner des problèmes de convergence dans le calcul de (Id−P )−1(g1B).

8 Transformations induites
Nous revenons maintenant sur la notion de transformation induite. Suivant [185], nous cherche-

rons à explorer les conséquences de l’identité de balayage (Proposition 7.13).

8.1 Définition

Soit (A, µ, T ) un système dynamique préservant la mesure et conservatif, où µ est σ-finie.

Définition 8.1 (Transformation induite).
Soit B ⊂ A tel que µ(B) > 0. De façon analogue aux chaînes de Markov, on peut définir le temps

de premier retour en B par
ϕB(x) := inf{n ≥ 1 : T n(x) ∈ B}.

Le système dynamique (A, µ, T ) étant supposé conservatif, ϕB < +∞ presque partout dans B. La
transformation induite sur B est

TB :

{
B → B
x 7→ TϕB(x)(x)

, (8.1)

qui est bien définie pour µ-presque tout point de B.
On notera de plus LB l’opérateur de transfert associé au système dynamique (B, µ|B, TB).

Dans le cadre de ce mémoire, les transformations induites ont deux grandes utilisations, mention-
nées en Partie 2.4. La première est, dans le cas des flots 45, de passer d’une action d’un flot à l’action
d’une transformation, et au passage de diminuer la dimension de 1. On parle alors de section de
Poincaré, suite aux travaux de celui-ci [192,193]. La direction du flot est toujours neutre ; une section
de Poincaré peut permettre de retrouver un système uniformément hyperbolique. Par exemple :
• Pour un flot d’Anosov ou Axiome A (par exemple, le flot géodésique sur des variétés compactes

en courbure sectionnelle négative), les codages de R. Bowen [37] et M. Ratner [197] mentionnés
en Partie 2.4.2 permettent de se ramener à des sous-décalages de type fini.
• Pour un billard de Sinaï, mentionné en Partie 2.4.5, l’application collision permet de se ra-

mener à une transformation (discontinue) d’un espace de dimension 2, munie de champs de
cônes stables et instables [53]. Un tel système est représenté à la Figure 25.

La seconde grande application est l’étude de systèmes dynamiques non-uniformément hyperbo-
liques, mentionnés en Sous-sous-section 2.4.3. Dans ce cadre, le système initial mélange lentement
(typiquement, polynomialement). L’induction permet de retrouver un système uniformément hyper-
bolique, et de là utiliser par exemple des outils spectraux. Le même raisonnement justifie l’utilisation
de systèmes induits dans le cadre de Zd-extensions : les trajectoires passant beaucoup de temps loin
de l’origine sont analogues aux trajectoire passant près des points fixes neutres dans le cadre de sys-
tèmes non-uniformément hyperboliques, en ce qu’elle ralentissent la dynamique. L’induction permet
de retrouver des systèmes uniformément hyperboliques.

Profitons-en pour définir le temps local en une partie B ⊂ A, rencontré dans un cadre restreint
en Sous-section 6.1.

45. Donc un cadre différent de la Section 7. Les résultats présentés s’adaptent à ce cadre.

90



Figure 25 – Espace des phases de l’application collision du billard de Sinaï de la Figure 10. Ce
billard sur le tore de côté unité a deux obstacles de rayons respectifs 0, 4 (rectangle de gauche) et
0, 2 (rectangle de droite). L’abscisse s est la coordonnée curviligne le long du bord du disque, et
l’ordonnée ϕ est l’angle du vecteur post-collision à la normale. En bleu : les domaines de continuité
correspondant à un saut vers le grand obstacle. En vert : les domaines de continuité correspondant
à un saut vers le petit obstacle. En rouge : un cône instable dans l’espace tangent, suivant [53].

Définition 8.2.
Soit (A, T ) un système dynamique et B ⊂ A. Le temps local en B est le processus

LB,n(x) :=
n−1∑
k=0

1B(x) = Card{0 ≤ k ≤ n− 1 : T k(x) ∈ B}. (8.2)

8.2 Identité de balayage pour l’opérateur de Koopman

Comme mentionné dans l’Exemple 7.3, tout système déterministe est un système aléatoire d’un
type particulier. À une transformation A→ A on associe un noyau markovien

x 7→ δT (x).

L’opérateur markovien associé n’est autre que l’opérateur de Koopman que nous avons introduit
en Sous-section 3.1. En effet, pour toute fonction f ∈ L∞(A, µ),

T (f)(x) = E (f(M1) | M0 = x) = E (f(T (M0)) | M0 = x) = f(T (x)).

Dans ce cas particulier, l’identité de balayage devient :

Proposition 8.3 (Identité de balayage pour l’opérateur de Koopman).
Soit (A, µ, T ) un système dynamique préservant la mesure et conservatif. Supposons que µ est

σ-finie. Soit B ⊂ A mesurable tel que 0 < µ(B) ≤ +∞. Soient f ∈ L∞(A, µ) et g ∈ L∞(B, µ|B). Si :

f − f ◦ T = g1B,

alors :
f|B − f|B ◦ TB = g.

91



Cette proposition est en fait très simple à démontrer sans utiliser le vocabulaire des chaînes de
Markov et sans hypothèses d’intégrabilité sur les fonctions g et f . Si f − f ◦ T = g1B, alors par
récurrence, pour tout x ∈ B et tout n ≤ ϕB(x),

f ◦ T n(x) = f(x)− g(x),

d’où l’égalité souhaitée en choisissant n = ϕB(x).
Cette identité est de plus passablement inutile. Le raisonnement utilisé en Partie 7.3 demande de

fixer une fonction g d’intégrale nulle sur B, et de résoudre l’équation

f − f ◦ T = g1B.

Par définition, cette équation n’a de solution 46 que si g est un cobord. Cependant, dans des systèmes
hyperboliques, peu de fonctions régulières sont des cobords. Ainsi, d’après le théorème de Livšic [165,
166], une fonction höldérienne g : A → C définie sur l’espace d’états d’une transformation Anosov,
ou bien sur un sous-décalage de type fini, est un cobord si et seulement si sa moyenne sur chaque
orbite périodique est nulle. L’équation de cobord a alors un nombre dénombrable d’obstructions ; si
la fonction g est choisie arbitrairement, il y a peu de chances pour que cette équation de cobord
puisse être résolue.

8.3 Identité de balayage pour l’opérateur de transfert

Si l’opérateur de Koopman ne permet pas d’exploiter utilement la version de l’identité de balayage
proposée, l’opérateur de transfert se révèle plus fertile. Partons de l’observation suivante :

Remarque 8.4 (Opérateur de transfert).
L’opérateur de transfert associé à un système dynamique préservant la mesure (A, µ, T ) est l’opé-

rateur dual de l’opérateur de Koopman au sens des chaînes de Markov. On peut s’en convaincre
en comparant la définition de l’opérateur de transfert et celle de l’opérateur markovien dual (Dé-
finitions 3.3 et 7.4 respectivement). Si T a un nombre dénombrable de branches, on peut écrire
explicitement son noyau de transition

Lx =
∑

y∈T−1({x})

g(y)δy,

où g est l’inverse du jacobien de T par rapport à la mesure µ.

Nous pouvons alors appliquer l’identité de balayage à l’opérateur de transfert. La version suivante
est issue de [185, Proposition 0.1].

Proposition 8.5 (Identité de balayage pour l’opérateur de transfert).
Soit (A, µ, T ) un système dynamique préservant la mesure et conservatif. Supposons que µ est

σ-finie. Soit B ⊂ A mesurable tel que 0 < µ(B) ≤ +∞. Soient p ∈ [1,∞], f ∈ Lp(A, µ) et
g ∈ Lp(B, µ|B) . Si :

(Id−L)(f) = g1B, (8.3)

alors :
(Id−LB)(f|B) = g. (8.4)

46. Ou, en tous cas, une solution qui est une fonction. Il peut être utile de considérer des équations de cobord dans
des espaces de distributions. À ce sujet, nous renvoyons en particulier au travail initié par G. Forni [90,95,96].
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Par conséquent, si l’on sait inverser (Id−L) “globalement” (c’est-à-dire sur un espace de Banach
bien choisi de fonctions sur A), on sait inverser les opérateurs (Id−LB) définis “localement”.

Nous fournissons une démonstration condensée de la Proposition 8.5 dans le cas où p = ∞ et
µ(B) < +∞.

Démonstration.
Soient f ∈ L∞(A, µ) et g ∈ L∞(B, µ|B) telles que (Id−L)(f) = g1B. On pose, pour tout n ≥ 1,
• An := {ϕB = n} ;
• Bn := An ∩B ;
• Cn := An ∩Bc = An \Bn.
Soit h ∈ L1(A, µ). Alors, grâce à l’Équation (8.3), on montre par récurrence que, pour tout n ≥ 1,∫

B

f · h dµ =

∫
B

g · h dµ+
n∑
k=1

∫
Bk

f · h ◦ T k dµ+

∫
Cn

f · h ◦ T n dµ (8.5)

=

∫
B

g · h dµ+

∫
B

1{ϕB≤n}f · h ◦ TB dµ+

∫
Cn

f · h ◦ T n dµ.

Remarquons que f = 1A, g = 0B vérifient l’Équation (8.3). En choisissant h = 1B dans l’Équa-
tion (8.5), on trouve :

µ(B) =
n∑
k=1

µ(Bk) + µ(Cn),

et donc µ(Cn) = µ(B ∩ {ϕB > n}). Par récurrence, ϕB < +∞ presque partout sur B, et donc
limn→+∞ µ(Cn) = 0.

Revenons au cas général. Comme µ est T -invariante, la famille de fonctions (|h| ◦ T n)n≥0 est
uniformément intégrable, et donc

lim
n→+∞

∫
Cn

f · h ◦ T n dµ = 0.

En prenant la limite dans l’Équation (8.5), on obtient alors∫
B

f · h dµ =

∫
B

g · h dµ+ lim
n→+∞

∫
B

1{ϕB≤n}f · h ◦ TB dµ. (8.6)

En reprenant f = 1A, g = 0B et h positive, le théorème de convergence monotone assure que f ·h◦TB
est intégrable sur B. Par le théorème de convergence dominée, on obtient enfin∫

B

f · h dµ =

∫
B

g · h dµ+

∫
B

f · h ◦ TB dµ.

Ceci étant vrai pour toute fonction h intégrable, on retrouve l’Équation (8.4).

La Proposition 8.5 généralise le lemme classique, vraisemblablement dû à S. Kakutani [131,
Lemme 2], qui affirme que, si (A, µ, T ) est un système dynamique préservant la mesure et conser-
vatif et 0 < µ(B) < +∞, alors TB préserve µ|B. En effet, si l’on choisit f = 1A et g = 0B, alors
(Id−L)(f) = g ; c’est une traduction du fait que L(1A) = 1A, synonyme du fait que T préserve µ.
La proposition fournie permet alors de conclure que LB(1B) = 1B, donc que TB préserve µ|B.

D’autres généralisations, non triviales, ont consisté à étendre cette proposition au cas où µ(B) =
+∞, ainsi qu’à des équations de Poisson tordues (du type (Id−zL)(f) = g).
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La Proposition 8.5 peut sembler, au premier abord, être une application directe de l’identité de
balayage introduite précédemment. Cependant, pour pouvoir appliquer la Proposition 7.13, il faut
que la chaîne de Markov stationnaire en jeu soit récurrente ! Il faut donc montrer que, si T est
récurrente, alors L l’est aussi. On peut montrer, plus généralement [185, Lemme 2.1] :

Lemme 8.6.
Soit (A, µ, P ) une chaîne de Markov stationnaire. Si µ est récurrente pour P , alors µ est récurrente

pour P ∗.

De façon intéressante, la démonstration du Lemme 8.6 est très similaire à celle du lemme de
S. Kakutani évoqué ci-dessus. Le cœur de la démonstration du lemme de Kakutani consiste donc à
montrer que la chaîne de Markov de noyau de transition L est récurrente.

8.4 Pour aller plus loin : Induction probabiliste

Le processus d’induction d’un système dynamique présenté dans cette Section est très puissant :
il permet de passer d’un flot à une transformation en diminuant la dimension de l’espace des phases,
d’une dynamique non-uniformément hyperbolique à une dynamique uniformément hyperbolique, ou
encore d’un système préservant une mesure infinie à un système préservant une mesure de probabilité.

Ce processus est cependant très brutal. Si l’on induit sur une partie B de l’espace des phases, on
peut en général trouver des paires de trajectoires proches telles que l’une passe la première fois dans
B à un temps donné, tandis que l’autre passer juste en-dehors de B au même instant. Cela a pour
conséquence qu’en général, le temps de premier retour ϕB et la transformation TB sont non continues.
Cette perte de régularité fait qu’on utilisera plutôt une structure métrique pour la transformation
induite (par exemple associée à un codage markovien), là où le système initial a souvent une structure
lisse.

Il est possible de ruser pour que ces discontinuités soient dans le bord de B ; c’est le cas pour les
transformations de Pomeau-Manneville (induites sur (1/2, 1]) ou les sections construites par Bowen
et Ratner pour les flots d’Anosov et Axiome A [37, 197]. Cependant, ces constructions sont rigides,
et dépendent de façon peu évidente de la transformation.

Un projet prometteur est de travailler avec une forme d’induction probabiliste, plus flexible et qui
conserve une éventuelle structure lisse sur l’espace des phases. L’idée est de se donner une fonction
de poids w : A → [0, 1], et d’arrêter la trajectoire (T k(x))k≥0 au temps n avec probabilité w(T k(x))
(conditionnellement au passé). Si la dynamique initiale préserve µ, alors la dynamique aléatoire ainsi
obtenue préserve w dµ.

En choisissant w := 1B, on retrouve le processus d’induction habituel. En choisissant w de classe
Ck, on peut espérer que l’action de l’opérateur de transfert 47 sur un bon espace de Banach 48 soit
quasi-compacte. On peut alors travailler à la fois avec des transformations induites et des espaces de
fonctions lisses, tout en évitant la rigidité des constructions habituelles.

Dans le cas des transformations non-uniformément dilatantes du cercle, ceci est l’objet d’un projet
commun avec D. Coates et A. Korepanov. Les promesses semblent tenues ; les coûts à payer étant la
manipulation de chaînes de Markov, une complexité accrue des opérateurs de transfert, et surtout
une perte partielle de la propriété de distorsion höldérienne de la Sous-section 2.2.

À plus long terme, il serait intéressant d’explorer la viabilité de cette outil pour des transfor-
mations inversibles, et en particulier d’y incorporer des espaces de Banach anisotropes comme en
Sous-sous-section 3.4.5.

47. Associé, par exemple, à w d Leb.
48. Par exemple, celui des fonctions Ck−1 sur Supp(w).
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1

0

Figure 26 – En rouge : la transformation x 7→
(

2x− sin(2πx)
2π

)
[1] du cercle, lisse, ayant 0 comme

point fixe neutre. En bleu : un choix possible de poids w.

9 Invariants par induction
Pour finir le Chapitre III, revenons sur l’article [185]. Celui-ci avait deux objectifs. Le premier

était d’introduire les énoncés nécessaires à l’utilisation de la théorie probabiliste du potentiel dans
le cadre de systèmes dynamiques hyperboliques. Cela inclut l’identité de balayage (Proposition 8.5),
mais aussi des variantes sur celle-ci qui seront utilisées par la suite, telles qu’une identité de balayage
pour des équations de Poisson tordues ( [185, Lemme 1.7], que l’on reverra en Sous-section 11.3),
ainsi que d’autres énoncés généraux : principe du maximum et extension de solutions de l’équation
de Poisson.

Le second objectif était d’étudier certains invariants par induction, c’est-à-dire de quantités qui
restent invariantes lors du processus d’induction d’un système dynamique. La première de ces quan-
tités est l’intégrale, et l’énoncé correspondant est une généralisation bien connue de la formule de
Kac.

9.1 Lemme de Kac

Soit (A, µ, T ) un système dynamique préservant la mesure et conservatif. Soit B ⊂ A de mesure
finie non nulle 49. Pour toute fonction f : A → C, on définit la somme de f le long d’une excursion
par :

ΣB(f)(x) :=

ϕB(x)−1∑
n=0

f(T n(x)) ∀x ∈ B. (9.1)

Alors l’intégrale de ΣB(f) est la même que celle de f :

Lemme 9.1 (Lemme de Kac).
Soit (A, µ, T ) un système dynamique préservant la mesure, ergodique et conservatif. Soit B ⊂ A

tel que 0 < µ(B) < +∞. Alors, pour toute fonction f : A→ C positive ou intégrable :∫
A

f dµ =

∫
B

ΣB(f) dµ.

Le lemme de Kac stricto sensu est le cas particulier f ≡ 1 de ce lemme :

49. L’extension du Lemme de Kac au cas µ(B) = +∞ est vraisemblable, mais demanderait des manipulations plus
sophistiquées, comme dans la démonstration de [185, Proposition 0.1]. Nous la laissons à l’état de conjecture.
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Lemme 9.2. [129, Theorem 2’]
Soit (A, µ, T ) un système dynamique préservant la mesure, ergodique et conservatif. Soit B ⊂ A

tel que 0 < µ(B) < +∞. Alors,

µ(A) =

∫
B

ϕB dµ.

Le Lemme 9.1 admet plusieurs démonstrations. Une première repose sur des manipulations de
nature algébrique.

Première démonstration du Lemme 9.1.
Supposons dans un premier temps f intégrable. On reprend les notations de la démonstration de

la Proposition 8.5. Pour tout n ≥ 1, rappelons que l’on a défini Bn = {ϕB = n} ∩B et Cn = {ϕB =
n} ∩Bc. En particulier, T−1(Cn) = Bn+1 t Cn+1 pour tout n ≥ 1. La mesure µ étant T -invariante,∫

Cn

f dµ =

∫
Bn+1

f ◦ T dµ+

∫
Cn+1

f ◦ T dµ.

Comme pour obtenir l’Équation (8.5), on itère cette relation. Ensuite, par passage à la limite (valide
car (f ◦ T n)n≥0 est uniformément intégrable et limn→+∞ µ(Cn) = 0),∫

Cn

f dµ =
+∞∑
k=1

∫
Bn+k

f ◦ T k dµ.

En sommant sur n, on obtient∫
⊔
n≥1 Cn

f dµ =
+∞∑
n=1

+∞∑
k=1

∫
Bn+k

f ◦ T k dµ =
+∞∑
n=1

∫
Bn

STn f dµ =

∫
B

(ΣB(f)− f) dµ.

La seconde égalité demande une interversion de sommes infinies. On peut dominer l’intégrande par
|f | ◦ T k et effectuer le même raisonnement pour |f |, ce qui conduit à la majoration

+∞∑
n=1

+∞∑
k=1

∣∣∣∣∣
∫
Bn+k

f ◦ T k dµ

∣∣∣∣∣ ≤
+∞∑
n=1

+∞∑
k=1

∫
Bn+k

∣∣f ◦ T k∣∣ dµ =

∫
⊔
n≥1 Cn

|f | dµ ≤ ‖f‖L1(A,µ) ,

et justife l’interversion.
L’ensemble B∪

⋃
n≥1Cn =

⋃
n≥1An est T -invariant et contient B, donc est A tout entier (modulo

µ) par ergodicité.
Si f est positive, on peut l’écrire comme limite croissante de fonctions positives intégrables, et

utiliser le lemme de Fatou.

Une deuxième démonstration, de nature plus probabiliste, permet de voir le lemme de Kac
comme une manifestation du théorème de Birkhoff, ou plus généralement du théorème ergodique
de Hopf [124, §14, Individueller Ergodensatz für Abbildungen] (cf. Théorème 2.7).

Seconde démonstration du Lemme 9.1.
Comme dans la première démonstration, on peut supposer f intégrable ; sans perte de généralité,

on peut aussi supposer que f est strictement positive. Par le théorème ergodique de Hopf, µ-presque
partout,

lim
n→+∞

STn f

STn (ΣB(f)1B)
=

∫
A
f dµ∫

B
ΣB(f) dµ

.
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De plus, si x ∈ B et k = ϕ
(n)
B (x), alors STk f(x) = STk (ΣB(f)1B) : on a sommé f le long des n

premières excursions. Le long de la sous-suite (ϕ
(n)
B (x))n≥0, la quantité STk f

STk (ΣB(f)1B)
est donc constante

et égale à 1. En passant à la limite, ∫
A
f dµ∫

B
ΣB(f) dµ

= 1,

d’où l’égalité voulue.

Pour finir, nous donnons une justification formelle du Lemme de Kac. Étant donnée f : A→ C,
posons

C(f)(x) :=

{
0 si x ∈ B∑ϕB(x)−1

n=0 f(T k(x)) sinon
. (9.2)

Alors f = ΣB(f) +C(f)−C(f) ◦ T . La conclusion du Lemme de Kac arrive immédiatement sous la
condition plus restrictive que C(f) soit intégrable.

9.2 Formule de Green–Kubo

Rappelons que la variance asymptotique dans le théorème central limite (Théorème 3.30) est
donnée par la formule de Green–Kubo (3.16) :

σ2
GK(A, µ, T ; f) :=

∫
A

f 2 dµ+ 2
+∞∑
n=1

∫
A

f · f ◦ T n dµ.

Plus généralement, on dispose d’une forme bilinéaire :

σ2
GK(A, µ, T ; f1, f2) :=

∫
A

f1f2 dµ+
+∞∑
n=1

∫
A

f1 · f2 ◦ T n dµ+
+∞∑
n=1

∫
A

f2 · f1 ◦ T n dµ, (9.3)

qui converge par exemple si (A, µ, T ) est une transformation Anosov mélangeante, µ une mesure
d’équilibre pour un potentiel höldérien, f1, f2 sont höldériennes, et f1 ou f2 est d’intégrale nulle.

La formule de Green–Kubo satisfait une propriété similaire au Lemme de Kac :

Proposition 9.3 ( [185, Proposition 5.1]).
Soit (A, µ, T ) un système dynamique ergodique et préservant la mesure de probabilité. Soit B ⊂ A

de mesure strictement positive. Soit f ∈ L2(A, µ). Supposons que :
• Les séries définissant σ2

GK(A, µ, T ; f) et σ2
GK(B, µ|B, TB; ΣB(f)) (Équation (3.16)) convergent

au sens de Cesàro ;
• Quand n tend vers +∞, la suite de processus(

1√
n

(STBbntcΣ(f))t≥0

)
n≥0

converge en loi (pour la mesure µ(· | B) et la topologie 50 J1) vers un mouvement brownien
de variance µ(B)−1σ2

GK(B, µ|B, TB; ΣB(f)) = σ2
GK(B, µ(·|B), TB; ΣB(f)) ;

• Quand n tend vers +∞, la suite de variables aléatoires(
1√
n
STn

)
n≥0

converge en loi vers une gaussienne centrée de variance σ2
GK(A, µ, T ; f).

50. Pour la définition et les propriétés de la topologie J1 de Skorokhod, nous renvoyons le lecteur à [27,212].
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Alors σ2
GK(A, µ, T ; f) = σ2

GK(B, µ|B, TB; ΣB(f)).

Ces hypothèses sont assez restrictives, mais satisfaites par exemple si (A, µ, T ) est un transfor-
mation de Pomeau-Manneville de paramètre α ∈ (0, 1/2) munie de son unique mesure de probabilité
invariante absolument continue, l’observable f est höldérienne centrée, et B = (1/2, 1], d’après les
travaux de L.-S. Young et S. Gouëzel [111,235].

Comme suggéré par l’énoncé de la Proposition 9.3, celle-ci est démontrée par un argument dis-
tributionel similaire au deuxième argument de la Partie 9.1. En bref, sous ces hypothèses, on dis-
pose d’un théorème central limite pour les sommes (STn f)n≥0, avec variance asymptotique égale à
σ2

GK(A, µ, T ; f). On peut aussi récupérer ce théorème central limite en voyant le processus (STn f)n≥0

comme étant à peu près égal au processus (STBn ΣB(f))n≥0 ralenti d’un facteur µ(B)−1. Plus précisé-
ment, le principe d’invariance faible (seconde hypothèse de la Proposition 9.3) permet de transférer 51

le théorème central limite du processus (STBn ΣB(f))n≥0 au processus (STn f)n≥0, et donc de montrer
que (STn f)n≥0 satisfait un théorème central limite avec variance asymptotique σ2

GK(B, µ|B, TB; ΣB(f)).
Dans [185], nous donnions une justification plus algébrique de cette identité. Une première

remarque est que, sous des conditions de décroissance de la suite de fonctions (Ln(f))n≥0, la formule
de Green–Kubo est invariante par ajout de cobord :

σ2
GK(A, µ, T ; f + h ◦ T − h) = σ2

GK(A, µ, T ; f).

En choisissant pour h la fonction C(f) définie par l’Équation (9.2), on trouve donc

σ2
GK(A, µ, T ; ΣB(f)1B) = σ2

GK(A, µ, T ; f).

Ensuite, par l’identité de balayage (Proposition 8.5), et à condition que celle-ci puisse être appliquée,∑
n≥0

∫
A

(ΣB(f)1B) · (ΣB(f)1B) ◦ T n dµ =
∑
n≥0

∫
A

Ln(ΣB(f)1B) · (ΣB(f)1B) dµ

=

∫
A

(Id−L)−1(ΣB(f)1B) · (ΣB(f)1B) dµ

=

∫
B

(Id−LB)−1(ΣB(f)) · ΣB(f) dµ|B

=
∑
n≥0

∫
B

ΣB(f) · ΣB(f) ◦ T nB dµ|B.

L’égalité voulue en découle immédiatement.
Le raisonnement esquissé ci-dessus a de nombreuses lacunes : il faut savoir pour quelle classe de

cobords l’invariance de la formule de Green–Kubo par ajout de cobord est valable, vérifier que C(f)
appartient bien à cette classe, justifier l’utilisation de l’identité de balayage ainsi que les interversions
somme-intégrale... Une version complétée de ce raisonnement permet d’obtenir [185, Théorème 3.2],
dont nous donnons une version légèrement moins générale :

Théorème 9.4 (Corollaire de [185, Théorème 3.2]).
Soit (A, µ, T ) un système dynamique préservant la mesure de probabilité et mélangeant. Soit

B ⊂ A de mesure strictement positive. Soit f ∈ L2(A, µ) d’intégrale nulle, telle que σ2
GK(A, µ, T ; f)

51. En l’absence d’une hypothèse additionnelle, telle que la limite en loi d’un processus stochastique dans la Propo-
sition 9.3, il ne paraît pas évident qu’un théorème central limite pour (STn f)n≥0 implique un théorème central limite
pour (STB

n ΣB(f))n≥0.
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converge classiquement, C(f) ∈ L2(A, µ),

+∞∑
n=0

‖Ln (ΣB(f)1B)‖L2(A,µ) < +∞,
+∞∑
n=0

‖LnB(ΣB(f))‖L2(B,µ|B) < +∞.

Alors :
σ2

GK(A, µ, T ; f) = σ2
GK(B, µ|B, TB; ΣB(f)).

Question 9.5.
Les hypothèses de la Proposition 9.3 et du Théorème 9.4 sont assez lourdes à vérifier. Y a-t-il des

critères plus simples et plus généraux qui garantissent l’invariance de la formule de Green–Kubo ?
À l’inverse, y a-t-il des systèmes dynamiques (A, µ, T ), des ensembles B ⊂ A et des observables f :

A→ C pour lesquelles σ2
GK(A, µ, T ; f) et σ2

GK(B, µ|B, TB; ΣB(f)) convergent en un sens raisonnable,
mais vers des limites différentes ?

9.3 Observables d’intégrale nulle, II : Induction

Avant de continuer vers les invariants d’ordre supérieur introduits dans [185], revenons brièvement
vers les théorèmes limites pour des observables d’intégrale nulle, déjà abordés en Sous-section 6.4.
L’approche que nous avions présentée reposait sur la méthode des moments. Une stratégie antérieure,
développée par l’auteur pendant sa thèse, utilise plutôt des systèmes induits [221, 222]. Si cette
seconde approche fonctionne dans un cadre général de tours au-dessus d’une transformation Gibbs-
Markov, et donc par exemple pour les transformations de Liverani–Saussol–Vaienti introduites en
Sous-sous-section 2.4.3, nous allons la présenter pour des Z-extensions conservatives dont les sauts
sont de carré intégrable.

Soit ([Z], µ̃, T̃ ) une extension markovienne et ergodique d’une transformation Gibbs-Markov
(A, µ, T ) de saut F , telle que

∫
A
F 2 dµ < +∞ et

∫
A
F dµ = 0. Soient f : [Z]→ R et n ≥ 0.

Pour µ-presque tout x ∈ A, l’orbite de (x, 0) passe une infinité de fois en [0] ' A. On peut
découper l’orbite de (x, 0) en excursions partant de 0, et de même pour les sommes de Birkhoff de f .
On notera RT̃

nf la somme de f le long de l’excursion en cours au temps n, qui, sous des hypothèses
raisonnables, sera négligeable. Enfin, rappelons que L[0],n, défini à l’Équation (8.2), est le temps passé
en [0] au cours des n premières itérations de T̃ . Alors :

ST̃n f(x, 0) =

L[0],n(x)−1∑
k=0

ϕ[0](Tk[0]
(x))−1∑

j=0

f ◦ T j ◦ T̃ k[0](x) +RT̃
nf(x)

' S
T̃[0]

L[0],n(x)

(
Σ[0](f)

)
(x)

= n
1
4 ·

√
L[0],n(x)√

n
· 1√

L[0],n(x)
S
T̃[0]

L[0],n(x)

(
Σ[0](f)

)
(x). (9.4)

Par la Proposition 6.4, dans (A, µ), le processus (n−
1
4

√
L[0],n(x))n≥1 converge en loi vers une

variable aléatoire σ(A, µ, T ;F )−
1
2

√
|N |, où N suit une loi normale centrée réduite.

Le système (A, µ, T̃[0]) est expansif 52, et son opérateur de transfert agit quasi-compactement sur
B. Si f est intégrable et d’intégrale nulle pour µ̃, par le Lemme de Kac (Lemme 9.1), Σ[0](f) est

52. On peut même le munir d’une structure de transformation Gibbs-Markov naturelle. Cela est parfois très utile,
par exemple dans le cadre de cette Sous-section. Remarquons cependant que ce n’est pas toujours le meilleur choix à
faire ; les espaces de fonctions lipschitziennes associés sont particulièrement gros, ce qui est parfois un handicap.
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encore intégrable et d’intégrale nulle. Si Σ[0](f) est de carré intégrable et suffisamment régulière, le

processus (N−
1
2S

T̃[0]

N Σ[0](f))N≥1 satisfait donc un théorème central limite (Théorème 3.30).
Il y a à ce point une double difficulté. D’une part, dans l’Équation (9.4), le processus stochastique

(N−
1
2S

T̃[0]

N Σ[0](f))N≥1 est évalué le long de temps aléatoires (L[0],n)n≥1. Il n’est pas évident a priori
que l’on dispose encore d’un théorème central limite, en particulier s’il y a une dépendance entre ces
deux processus – ce qui est a priori le cas. D’autre part, dans l’Équation (9.4), on fait le produit
de deux processus, dont l’on ne contrôle asymptotiquement que les marginales ; une fois encore, s’il
y avait une dépendance non-triviale entre ces processus, on ne disposerait pas d’assez d’information
pour en identifier la limite.

Heureusement, grâce à un argument de couplage dû à E. Csáki et A. Földes [64, 65], généralisé
aux observables de systèmes Gibbs-Markov dans la thèse de l’auteur [221, Théorème 1.7] [222], les

processus (N−
1
2S

T̃[0]

N Σ[0](f))N≥1 et (L[0],n)n≥1 sont asymptotiquement indépendants 53.
L’argument motivant ce couplage est, grossièrement, le suivant. Supposons que la fonction Σ[0](f)

est de carré intégrable (et même un peu plus : dans Lq(A, µ) pour un q > 2), tandis que ϕ[0] a des

queues lourdes. Alors le processus (S
T̃[0]

N Σ[0](f))N≥0 croît par accumulation de petits effets, tandis

que le processus (S
T̃[0]

N ϕ[0])N≥0 dépend essentiellement de quelques valeurs particulièrement élevées.
On peut donc diviser les entiers en deux parties :
• L’ensemble E1(x) des temps k auxquels ϕ[0](T̃

k
[0](x)) est “grand”, qui est un ensemble dont la

densité tend assez vite vers 0 ;
• Le complémentaire E2(x) de E1(x).

Alors

S
T̃[0]

N ϕ[0] '
∑
k<N
k∈E1

ϕ[0] ◦ T̃ k[0] ;

S
T̃[0]

N Σ[0](f) '
∑
k<N
k∈E2

Σ[0](f) ◦ T̃ k[0].

Les ensembles E1 et E2 étant disjoints, en utilisant les propriétés de décorrélation de la transformation
T̃[0], on peut vérifier enfin que les variables aléatoires∑

k<N
k∈E1

ϕ[0] ◦ T̃ k[0] et
∑
k<N
k∈E2

Σ[0](f) ◦ T̃ k[0]

sont approximativement indépendantes, et en déduire la même propriété pour ST̃[0]

N ϕ[0] et
T̃[0]

N Σ[0](f).
Cette propriété d’indépendance asymptotique permet de contourner les deux difficultés évoquées.

On en déduit une autre version du Théorème 6.7 (lui-même un corollaire de [184, Theorem 1.11]) :

Théorème 9.6. [222, Corollary 6.9]
Soit ([Z], µ̃, T̃ ) une extension markovienne ergodique d’une transformation Gibbs-Markov (A, µ, T )

de saut F , telle que
∫
A
F 2 dµ < +∞ et

∫
A
F dµ = 0. Soit f : [Z]→ R telle que :

• supp∈Z |f(·, p)|Lip∞(A,µ) < +∞.
• Il existe q > 2 tel que Σ[0](|f |) ∈ Lq(A, µ).

53. Nous renvoyons à [221, Théorème 1.7] pour le sens précis de cette indépendance asymptotique. Elle implique
que la loi du processus joint converge vers une loi produit, mais apporte en plus un contrôle quantitatif sur l’erreur.
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•
∫

[Z]
f dµ̃ = 0.

Alors il existe une constante σ2(f) ≥ 0 telle que, pour toute mesure de probabilité ν � µ̃,

lim
n→+∞

1

n
1
4

ST̃n f =
σ(f)√

σ(A, µ, T ;F )

√
|N | · N ′,

où la convergence est en loi dans ([Z], ν), et N , N ′ sont deux variables aléatoires indépendantes de
lois normale centrée réduite.

Remarque 9.7 (Variance asymptotique, II).
La constante σ2(f) dans le Théorème 9.6 est simplement donnée par la formule de Green–Kubo,

déjà rencontrée à l’Équation (3.16) :

σ2(f) = σ2
(

[0], µ, T̃[0]; Σ[0](f)
)

=

∫
[0]

Σ[0](f)2 dµ+ 2
+∞∑
n=1

∫
[0]

Σ[0](f) · Σ[0](f) ◦ T̃ n[0] dµ,

où la convergence est au sens de Cesàro.

Tout comme le Théorème 6.7, le Théorème 9.6 admet des variantes pour des [Z]-extensions dans
le bassin d’attraction de lois stables, ainsi que pour des [Z2]-extensions.

Le Théorème 9.6 a été démontré avant le Théorème 6.7. Il a un inconvénient notable, par rapport
au Théorème 6.7 : l’hypothèse Σ[0](|f |) ∈ Lq(A, µ) pour un q > 2 n’est en général pas évidente à
vérifier. Il faut que les excursions partant de [0] ne passent pas trop de temps là où f est grande. Il y
a cependant un cas particulier dans lequel ce critère est facilement vérifié 54 : quand f est à support
borné, c’est-à-dire qu’il existe Σ ⊂ Z fini tel que {f 6= 0} ⊂ [Σ].

Dans ce cas, on peut observer une conséquence intéressante des Théorèmes 6.7 et 9.6, et plus
particulièrement des formules pour la variance asymptotique données en Remarques 6.8 et 9.7 : on
dispose en effet de deux formules différentes pour cette variance !

Corollaire 9.8. Généralisation de [184, Équation (2.5)]
Soit ([Z], µ̃, T̃ ) une extension markovienne ergodique d’une transformation Gibbs-Markov (A, µ, T )

de saut F , telle que
∫
A
F 2 dµ < +∞ et

∫
A
F dµ = 0. Soit f : [Z]→ R telle que :

• supp∈Z |f(·, p)|Lip∞(A,µ) < +∞.
• f est à support borné.
•
∫

[Z]
f dµ̃ = 0.

Alors σ2
GK

(
[Z], µ̃, T̃ ; f

)
= σ2

GK

(
[0], µ, T̃[0]; Σ[0](f)

)
.

On retrouve encore une fois l’invariance de la formule de Green-Kubo à l’aide d’un argument
distributionnel similaire à celui de la Proposition 9.3, mais en mesure infinie.

9.4 Invariant de degré 3

Revenons à la démonstration de l’invariance de la formule de Green–Kubo via l’identité de ba-
layage, à l’origine du Théorème 9.4. L’auteur de ce texte ne connaît pas de système vérifiant les
hypothèses du Théorème 9.4 mais pas de la Proposition 9.3. L’argument n’est donc pas a priori plus
général. Cependant, il offre un point de vue plus conceptuel sur ce phénomène d’invariance, consé-
quence d’une invariance par ajout de cobord et de l’identité de balayage. Ce point de vue permet de
fabriquer des invariants de degré supérieur. Nous présentons ici un invariant de degré 3, issu de [185].

54. En fait, cette condition est satisfaite dès qu’il existe ε > 0 et q > 2 tels que
∑
p∈Z(1 + |p|) 1

2+ε ‖f(·, p)‖Lq(A,µ) <
+∞, ce qui est une des conditions du Théorème 6.7. Cependant, montrer cela demande une analyse supplémentaire
non triviale, menée dans le cadre du gaz de Lorentz dans [186].
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Définition 9.9 (Invariant de degré 3).
Soit (A, µ, T ) un système dynamique préservant la mesure. À condition que les sommes en jeu

soient absolument convergentes, on pose :

τ 3(A, µ, T ; f1, f2, f3) :=
∑
Alt

[
1

6

∫
A

f1f2f3 dµ+
1

2

∑
n≥1

∫
A

(f1f2) ◦ T n · f3 dµ (9.5)

+
1

2

∑
n≥1

∫
A

f1 ◦ T n · f2f3 dµ+
∑
n,m≥1

∫
A

f1 ◦ T n+m · f2 ◦ Tm · f3 dµ

]
,

où
∑

Alt est une somme sur toutes les permutations de {f1, f2, f3}.
Comme pour la formule de Green–Kubo, on notera

τ 3(A, µ, T ; f) := τ 3(A, µ, T ; f, f, f)

=

∫
A

f 3 dµ+ 3
∑
n≥1

∫
A

f 2 ◦ T n · f dµ

+ 3
∑
n≥1

∫
A

f ◦ T n · f 2 dµ+
∑
n,m≥1

∫
A

f ◦ T n+m · f ◦ Tm · f dµ.

La quantité τ 3(A, µ, T ; f1, f2, f3) est bien définie si, par exemple, (A, µ, T ) est Anosov mélangeant,
µ est une mesure d’équilibre pour un potentiel höldérien, et f1, f2, f3 sont toutes trois höldériennes
et d’intégrale nulle. Plus généralement, des décorrélations en O(n−(2+ε)) pour un ε > 0 suffisent à
faire converger les sommes intervenant dans l’Équation (9.5).

Cette formule est invariante par induction, de façon similaire au Lemme de Kac (Lemme 9.1) et
à l’invariance de la formule de Green–Kubo (Théorème 9.4) :

Théorème 9.10. [Corollaire de [185, Theorem 4.6]]
Soit (A, µ, T ) un système dynamique préservant la mesure de probabilité et mélangeant. Soit

B ⊂ A de mesure strictement positive. Soit B ⊂ L3(B, µ|B) un espace de Banach de fonctions
d’intégrale nulle. Supposons que

‖LnB‖B→B et ‖Ln(1B·)‖B→L3(A,µ)

sont sommables.
Soient f1, f2, f3 ∈ L1(A, µ) d’intégrale nulle telles que
• ΣB(fi) ∈ B pour tout i ∈ {1, 2, 3}.
• τ 3(A, µ, T ; g1, g2, g3) est bien défini pour tous choix de gi ∈ {fi,ΣB(fi)1B}.
• σ2

GK (A, µ, T ; fi, ϕB1B) et σ2
GK

(
B, µ|B, TB; ΣB(fi), ϕB

)
sont absolument convergentes.

Alors τ 3(B, µ|B, TB; ΣB(f1),ΣB(f2),ΣB(f3)) est bien défini, et

τ 3(A, µ, T ; f1, f2, f3) = τ 3(B, µ|B, TB; ΣB(f1),ΣB(f2),ΣB(f3)) (9.6)

+
1

2

∑
Alt

[
σ2

GK

(
B, µ|B, TB; ΣB(f1),ΣB(f2)

)
·
(
σ2

GK (A, µ, T ; f3, ϕB1B)− σ2
GK (B, µB, TB; ΣB(f3), ϕB)

)]
.

Dans l’énoncé du Théorème 9.10, les instances de ϕB peuvent être remplacées par une même
fonction H ∈ L1(B, µ|B) d’intégrale 1.
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Exemple 9.11 (Décalage de Bernoulli).
Nous illustrons cet invariant avec un décalage de Bernoulli. Le but de cet exemple double. Pre-

mièrement, il permet de vérifier la validité de l’Équation (9.6), ce qui est important au vu des erreurs
de calcul parfois subtiles 55 qui peuvent se glisser dans la manipulation de l’invariant τ 3. Deuxième-
ment, il permet d’illustrer une façon d’obtenir des informations sur les moments de ΣB(f) à partir
d’informations sur les moments de f .

Nous n’essaierons pas de vérifier les hypothèses techniques du Théorème 9.10. Nous conjecturons
que certains espaces de fonctions non bornées, définis par exemple à l’aide du module de continuité
Lp [181, Exercise 8.4], pourraient convenir.

Posons A := {0, 1}N, muni de la mesure µp := (pδ0 + (1− p)δ1)⊗N avec p ∈ (0, 1) et du décalage
unilatère T . Choisissons

f(ω) := −(1− p)10(ω0) + p11(ω0),

de telle sorte que f soit d’intégrale nulle pour µp et que les variables aléatoires (f ◦ T n)n≥0 soient
indépendantes et identiquement distribuées.

On induit ce système dynamique sur B = {0} × {0, 1}N+, de mesure µ(B) = p. Alors ΣB(f) =
−(1−p)+pG, où ϕB = 1+G suit une loi géométrique de paramètre p sous µ(· | B). Par la propriété de
Markov forte, les variables aléatoires (ΣB(f)◦T nB)n≥0 sont indépendantes et identiquement distribuées.

Le Lemme de Kac (Lemme 9.1) se traduit par :

0 =

∫
A

f dµ =

∫
B

ΣB(f) dµ = µ(B) [pE(G)− (1− p)] ,

et donc E(G) = 1−p
p
. L’invariance de la formule de Green–Kubo, satisfaite par exemple grâce à la

Proposition 9.3, donne

p(1− p) =

∫
A

f 2 dµ = σ2
GK(A, µ, T ; f)

= σ2
GK(B, µ|B, TB; ΣB(f)) = µ(B)E[(pG− (1− p))2],

d’où l’on déduit correctement Var(G) = 1−p
p2 . Enfin, si les conséquences du Théorème 9.10 sont

satisfaites,

p(1− p)(2p− 1) =

∫
A

f 3 dµ = τ 3(A, µ, T ; f, f, f)

= τ 3(B, µ|B, TB; ΣB(f))

− 3σ2
GK(B, µ|B, TB; ΣB(f)) · σ2

GK(B, µ|B, TB; ΣB(f), 1 +G)

= µ(B)E[(pG− (1− p))3]

− 3µ(B)2E[(pG− (1− p))2]E[(pG− (1− p))(1 +G)]

= pE[(pG− (1− p))3]− 3p(1− p)E[(pG− (1− p))2]

= pE[(pG− (1− p))3]− 3p(1− p)2,

ce qui donne l’identité (correcte)

E[(G− E(G))3] =
(1− p)(2− p)

p3
.

55. Par exemple un problème de jauge. Même si l’on peut inverser (Id−L) sur un espace de fonctions d’intégrale
nulle sur A, et inverser (Id−LB) sur un espace de fonctions d’intégrale nulle sur B, la restriction à B d’un fonction
d’intégrale nulle sur A n’est pas toujours d’intérale nulle ; il faut donc parfois ajouter des termes compensatoires.
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9.5 Pour aller plus loin : Invariants de degré supérieur

La construction d’un invariant de degré 3 de la Sous-section 9.4 souffre de diverses limitations.
Une première est qu’elle repose sur le fait que les trois fonctions f1, f2, f3 auxquelles elle est

appliquée sont d’intégrale nulle, afin d’assurer la convergence de τ 3(A, µ, T ; f1, f2, f3). Une approche
plus générale, mais menant à des calculs plus complexes, serait d’ajouter des termes de compensation
bien choisis afin que la somme (9.5) converge sans cette condition. Cela aurait deux avantages :
• À l’aide de telles compensations, il serait possible de généraliser cette construction en degré

supérieur. En l’état, une obstruction est que le candidat naturel en degré 4 comporte des
sommes divergentes du type ∑

n≥1

∫
A

f 2 · f 2 ◦ T n dµ.

• La présence d’un terme additionnel dans l’Équation (9.6) est potentiellement une manifesta-
tion de l’absence de telles compensations. Ainsi, l’ajout du terme

−1

2

∑
Alt

σ2
GK (A, µ, T ; f1, f2) · σ2

GK (A, µ, T ; f3,1A)

dans la définition de τ 3 ne changerait pas sa valeur quand on l’applique à des fonctions d’inté-
grales nulles (le terme σ2

GK (A, µ, T ; f3,1A) est alors nul), mais simplifierait l’Équation (9.6).
Une seconde limitation est la technicité ainsi que la longueur des calculs impliqués dans la dé-

monstration du Théorème 9.10, difficulté qui augmenterait significativement en degré supérieur si
l’on continue d’adopter un telle approche directe. Ces différentes raisons suggèrent une approche plus
systématique de ces invariants.

Une piste prometteuse consiste à utiliser les fonctions d’Ursell, introduites par H.D. Ursell [229].

Définition 9.12 (Fonctions d’Ursell).
Soient n ≥ 1 et (X1, . . . , Xn) une suite de n variables aléatoires complexes. La fonction d’Ursell

d’ordre n est définie par :

Un(X1, . . . , Xn) := ∂t1 . . . ∂tn ln
[
E
(
e
∑n
k=1 tkXk

)]
(0, . . . , 0).

En particulier, Un(X, . . . , X) n’est autre que le n-ième cumulant de X. Par exemple,

U1(X1) = E(X1),

U2(X1, X2) = E(X1X2)− E(X1)E(X2),

U3(X1, X2, X3) = E(X1X2X3) + 2E(X1)E(X2)E(X3)− 1

2

∑
Alt

E(X1)E(X2X3).

Soit B un espace de Banach de fonctions intégrables sur (A, µ) contenant 1A. Supposons que
l’action de L sur B soit quasi-compacte et que (A, µ, T ) soit ergodique, de telle sorte que 1 soit une
valeur propre simple isolée de L. Soient (f1, . . . , fn) dans B, et supposons de plus que la fonction{

Rn → L(B,B)
t = (t1, . . . , tn) 7→ Lt := L

(
e
∑n
k=1 tkfk ·

)
soit analytique. Alors il existe un voisinage V de 0 dans Rn et une fonction λ analytique sur V telle
que λ(0) = 1 et λ(t) soit une valeur propre simple de Lt pour tout t ∈ V . Des candidats naturels
pour des fonctions d’Ursell dynamique sont de la forme :

Un(A, µ, T ; f1, . . . , fn) := ∂t1 . . . ∂tn ln (λ(t)) (0, . . . , 0). (9.7)
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On observe que :

U1(A, µ, T ; f1) =
∂ ln(λ)

∂t1
(0) =

∫
A

f1 dµ,

U2(A, µ, T ; f1, f2) = σ2
GK(A, µ, T ; f1, f2),

le premier calcul étant direct, et le second (nécessitant l’hypothèse additionnelle que f1, f2 soient
d’intégrale nulle) étant fait par exemple dans [106]. Un calcul particulièrement douloureux et qui ne
sera pas reproduit ici permet de montrer que, si f1, f2, f3 sont d’intégrale nulle,

U3(A, µ, T ; f1, f2, f3) = τ 3(A, µ, T ; f1, f2, f3).

Question 9.13.
Les fonctions d’Ursell dynamiques que l’on a définies par l’Équation (9.7) satisfont-elles une

propriété d’invariance par induction similaire à celle satisfaite par l’intégrale (Lemme de Kac), la
formule de Green–Kubo et l’invariant τ 3 ?

De plus, les fonctions d’Ursell interviennent dans des modèles probabilistes communs, en parti-
culier comme dérivées de fonctions de corrélation dans des modèles d’Ising [188], ce qui motive la
question suivante.

Question 9.14.
Les fonctions d’Ursell dynamiques définies par l’Équation (9.7) apparaissent-elles dans des mo-

dèles dynamiques, par exemple comme (dérivées de) fonctions de corrélation ?
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Quatrième partie

Théorie du potentiel et Zd-extensions
Ce dernier chapitre est dédié à l’article [226]. Sa question centrale est la suivante. On se donne une

Zd-extension markovienne, ergodique et conservative ([Zd], µ̃, T̃ ) d’une transformation Gibbs-Markov
(A, µ, T ). Soit Σ ⊂ Zd.

Soient p ∈ Σ et x ∈ A. Par conservativité, presque sûrement, l’orbite de (x, p) reviendra dans [Σ].
En quel point de Σ ? D’un point de vue probabiliste, pour q ∈ Σ, que peut-on dire de la probabilité
µ(T[Σ](x, p) ∈ [q]) que l’orbite partant de (x, p) revienne pour la première fois dans [Σ] en [q] ?

La question analogue pour des marches aléatoires peut être attaquée grâce à la théorie probabiliste
du potentiel, et plus spécifiquement l’identité de balayage. Un tel calcul se déroule en trois étapes :
• Résolution d’une équation de Poisson sur Zd à l’aide de la transformée de Fourier. La solution

fait intervenir la fonction caractéristique de la marche aléatoire.
• Utilisation de l’identité de balayage pour transférer cette solution en une solution d’une équa-

tion de Poisson sur {p, q}.
• On obtient ainsi un opérateur associé à une chaîne de Markov sur {p, q}, qu’il suffit d’inverser.

Cette stratégie est présentée en détail en Section 10 : Cadre probabiliste : Marches aléatoires. Le
cadre dynamique sera explicité en Section 11 : Cadre dynamique et stratégie. Nous avons d’ores et
déjà les moyens d’adapter le premier point (grâce aux opérateurs de transfert tordus) et le second
point (l’identité de balayage pour les opérateurs de transfert).

Le troisième point, qui est un simple calcul pour les marches aléatoires, demande de nouvelles
idées dans notre cadre dynamique. La clef sera la notion d’état métastable, que nous introduirons
en Section 12 : Systèmes à transitions rares. La Section 13 (Calcul asymptotique des probabilités
d’atteinte) conclut ce mémoire en fusionnant ces différentes techniques et en en donnant quelques
applications, ce qui termine la présentation de [226]. Nous terminons par un bref retour sur la formule
de Green–Kubo et son usage dans [184], ainsi que quelques pistes de recherche.

Remarque 9.15 (Quelques travaux antérieurs).
S’il existe de très nombreux travaux sur la théorie probabiliste du potentiel en probabilité et en

géométrie (via des marches aléatoires ou des mouvements browniens), celle-ci a été très peu appliquée
dans des cadres dynamiques. Mentionnons toutefois quelques travaux antérieurs.

Dans les années 1980, A. Krámli, N. Simányi et D. Szász ont pu appliquer cette théorie aux
marches aléatoires à degrés de liberté interne [146–148], c’est-à-dire à des extensions de chaînes de
Markov à espaces d’états fini. Si ces travaux se placent dans un cadre probabiliste classique, une
des motivations des auteurs venait des systèmes dynamiques : de telles extensions sont un modèle
simplifié des gaz de Lorentz, et ces derniers sont trop complexes pour pouvoir être abordés directement.
À ce propos, nous renvoyons la lectrice à la Sous-sous-section 13.5.1.

Plus récemment, D. Dolgopyat et P. Nándori on montré l’existence de profils limites pour des
gaz de Lorentz sur des cylindres thermostatés 56 [81]. Ce type de théorème se rapproche beaucoup des
sujets d’étude de la théorie du potentiel, bien que leur méthode repose plutôt sur l’approximation par
des processus continus (en particulier l’excursion brownienne).

Enfin, le travail très récent de I. Grama, J.-F. Quint et H. Xiao [117] porte sur les R-extensions
de sous-décalages conditionnées par ne pas revenir dans R− avant un temps long. Les théorèmes

56. Grossièrement : on prend un long tronçon de gaz de Lorentz cylindrique, on fait rentrer des particules d’un côté,
on les fait sortir de l’autre, et on étudie le flux de particules et la densité moyenne de particules en chaque point du
cylindre.
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distributionnels qu’ils démontrent pour ces processus sont profonds. Leur stratégie repose sur la théo-
rie probabiliste du potentiel, bien qu’il s’agisse plutôt de l’appliquer à des chaînes de Markov puis
d’approcher le système dynamique par de telles chaînes de Markov.

10 Cadre probabiliste : Marches aléatoires
Dans un premier temps, nous revenons au cadre bien compris des marches aléatoires. L’enjeu sera

ensuite de généraliser aux Zd-extensions les arguments que nous aurons présentés.

10.1 Probabilités d’atteinte de marches aléatoires

Soient d ≥ 1, (Sn)n≥0 une marche aléatoire sur Zd que l’on supposera ergodique et conservative, et
Σ ⊂ Zd un ensemble fini. On cherche à calculer les probabilités de transition de la chaîne de Markov
induite sur Σ. Nous donnerons en exemple de ce problème général une marche aléatoire simple sur
Z2 induite sur le sous-ensemble Σ = {α, β, γ}, où α = (0, 0), β = (−1, 0) et γ = (1, 1), comme illustré
par la Figure 27.

αβ

γ

αβ

γ

Figure 27 – Une transition dans {α, β, γ} induite par un chemin de la marche aléatoire simple dans
Z2.

Remarquons tout d’abord que la mesure de comptage sur Zd est stationnaire ; l’unique mesure de
probabilité invariante sur Σ est donc proportionnelle à la mesure de comptage.

La méthode décrite en Partie 7.3 se transpose dans ce cadre. Cependant, l’espace d’état de la
chaîne de Markov étant infini, nous n’inverserons pas explicitement l’opérateur (Id−P ) ; à la place,
nous utiliserons la transformée de Fourier pour résoudre l’équation de Poisson avec second membre

(Id−P )(f) = g1Σ. (10.1)

Soit X une variable aléatoire ayant la loi d’un saut de Sn, et Φ = E(ei〈·,X·〉) sa fonction caracté-
ristique. Si f est une fonction sommable, alors pour tout ξ ∈ Td,

P̂ (f)(ξ) =
∑
p∈Zd

e−i〈ξ,p〉P (f)(p)

=
∑
p∈Zd

e−i〈ξ,p〉
∑
q∈Zd

P(X = q − p)f(q)

=
∑
q∈Zd

e−i〈ξ,q〉f(q)
∑
r∈Zd

P(X = r)e〈ξ,r〉

= Φ(ξ)f̂(ξ).
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Autrement dit, en domaine fréquentiel, P agit par multiplication par la fonction caractéristique d’un
saut. Formellement, l’Équation (10.1) devient

(1− Φ(ξ))f̂(ξ) = (̂g1Σ)(ξ) =
∑
p∈Σ

g(p)e−i〈ξ,p〉

f̂(ξ) =

∑
p∈Σ g(p)e−i〈ξ,p〉

1− Φ(ξ)
.

Ce calcul formel se heurte cependant à des problèmes de convergence. Ainsi, le potentiel f n’est
en général pas intégrable ; même dans des cas simples, il est seulement borné. Sa transformée de
Fourier est donc définie seulement au sens des distributions. De façon liée, dans le cas de marches
aléatoires dont les sauts sont de carré intégrable, la fonction (1−Φ) est en Θ(|ξ|2), alors que (̂g1Σ)(ξ)

est génériquement de l’ordre de |ξ|, ce qui force f̂ à diverger en |ξ|−1 en 0.
Une solution consiste à travailler non pas directement avec f mais, comme suggéré par la Re-

marque 7.15, de travailler en intégrant contre des fonctions supportées par Σ et de somme nulle.
En effet, on peut espérer, par analogie avec la formule de Plancherel, que pour toutes fonctions g,
h : Σ→ C de somme nulle,∑

p∈Σ

(Id−PΣ)−1(g)(p) · h(p) =
∑
p∈Zd

(Id−P )−1(g1Σ)(p) · (h1Σ)(p)

=
1

(2π)d

∫
Td

ĝ(ξ) · ĥ(−ξ)
1− Φ(ξ)

dξ. (10.2)

L’intégrale ci-dessus converge s’il existe c > 0 tel que |1− Φ(ξ)| ≥ c|ξ|2, condition satisfaite dès que
la loi de X n’est pas δ0.

L’Égalité (10.2) peut se démontrer à l’aide d’une version régularisée de l’équation de Poisson.
Étant donné un paramètre ρ ∈ [0, 1), les manipulations formelles ci-dessus deviennent rigoureuses si
l’on travaille avec l’équation

(Id−ρP )f =
∑
n≥0

ρnP n = g1Σ.

Une version de l’identité de balayage pour des équations de ce type a été proposée dans [185,
Lemme 1.7]. Pour une certaine famille d’opérateurs (PΣ

ρ )ρ∈[0,1), on obtient∑
p∈Σ

(Id−PΣ
ρ )−1(g)(p) · h(p) =

1

(2π)d

∫
T2

ĝ(ξ) · ĥ(−ξ)
1− ρΦ(ξ)

dξ.

On retrouve l’Équation (10.2) en prenant la limite quand ρ → 1−, avec un peu de travail pour
montrer que (Id−PΣ

ρ )−1 converge effectivement vers (Id−PΣ)−1. Ce raisonnement a été mené dans
le cadre des Zd-extensions dans [226, Partie 5.1].

Exemple 10.1.
Dans le cadre d’une marche aléatoire simple et de Σ = {α, β, γ} comme décrit précédemment,

on retrouve des intégrales trigonométriques qui peuvent être évaluées explicitement. Par exemple, en
choisissant g = h = 1β − 1α, on obtient∑

p∈Σ

(Id−PΣ)−1(g)(p) · g(p) =
1

(2π)2

∫
T2

ĝ(ξ) · ĝ(−ξ)
1− Φ(ξ)

dξ

=
1

π2

∫
T2

1− cos(ξ1)

2− cos(ξ1)− cos(ξ2)
dξ

= 2.
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En appliquant les techniques exposées, on trouve finalement, dans la base (1α,1β,1γ),

P {α,β,γ} =
1

−π2 + 8π − 4

 −1
2
π2 + 4π − 4 −1

2
π2 + 3π π

−1
2
π2 + 3π −π2 + 6π − 4 1

2
π2 − π

π 1
2
π2 − π −3

2
π2 + 8π − 4

 .

Notons CΣ
0 l’ensemble des fonctions sur Σ à valeurs complexes et de somme nulle. En résumé, la

stratégie utilisée pour calculer PΣ est la suivante :
• Grâce à la transformée de Fourier, pour tous f , g ∈ CΣ

0 , on peut calculer
∑

p∈Σ(Id−P )−1(f)(p)·
g(p).
• Grâce à l’identité de balayage, on en déduit les quantités

∑
p∈Σ(Id−PΣ)−1(f)(p) · g(p).

• En appliquant ce qui précède à une base de CΣ
0 , on en déduit (Id−PΣ)−1 y CΣ

0 , puis
(Id−PΣ) y CΣ

0 . Comme (Id−PΣ) est nul sur la droite des fonctions constantes, on a en-
fin toute l’information pour reconstruire PΣ y CΣ.

La nouveauté par rapport à la stratégie esquissée en Sous-section 7.3 est l’utilisation de la transformée
de Fourier pour résoudre l’équation de Poisson sur Zd.

10.2 Interprétation électrocinétique

Les objets probabilistes probabilistes introduits en Partie 10.1 ont une interprétation électroci-
nétique. Nous ne développerons pas en toute généralité les liens entre marches aléatoires et élec-
trocinétique, mais seulement dans le cadre de l’Exemple 10.1 ; nous renvoyons le lecteur intéressé à
l’ouvrage [85].

Considérons un réseau périodique de résistances, de même résistance R. On applique un potentiel
V aux nœuds α, β, γ, et l’on cherche à calculer le courant entrant le circuit 57.

Pour cela, on va dans un premier temps inverser le problème : si l’on connaît le courant entrant i
en α, β et γ, comment calculer un potentiel électrostatique en ces mêmes points ? Plus généralement,
peut-on retrouver le potentiel V en tous les nœuds du circuit ?

αβ

γi(α)i(β)

i(γ)

Figure 28 – Un réseau bipériodique de résistances avec courant entrant en {α, β, γ}. Les grandeurs
i(α), i(β), i(γ) sont les courants entrant en α, β, γ respectivement, et peuvent être négatives.

En dimension 2, le courant ne peut pas s’échapper à l’infini 58. Le courant entrant doit donc être
égal au courant sortant, et donc

∑
Σ i = 0.

57. Si l’on étudie le même problème avec seulement deux nœuds, par exemple en choisissant Σ = {β, γ}, le problème
posé revient à calculer la résistance équivalente entre ces deux points.
58. C’est une reformulation de la récurrence de la marche aléatoire simple en dimension 2.
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Par la loi d’Ohm, le courant circulant d’un nœud v vers un nœud voisin v′ est V (v)−V (v′)
R

. Par la
loi des nœuds, pour tout v ∈ Z2, ∑

v′∼v

V (v)− V (v′)

R
= (i1Σ)(v),

ce que l’on peut réécrire :

(Id−P )(V ) =
R

4
(i1Σ).

Par transformée de Fourier, on peut calculer le potentiel V aux points de Σ, encore une fois grâce
à l’identité de balayage. Ce potentiel électrostatique est bien défini à constante près. On peut aussi
utiliser la méthode présentée précédemment, qui consiste à calculer les quantités

R

4

∑
p∈Σ

(Id−P )−1(i)(p) · j(p),

où i et j sont deux courants entrants en Σ (et donc tous deux de somme nulle).
Cette interprétation électrocinétique de l’équation de Poisson éclaire certaines caractéristiques de

l’identité de balayage. Quand l’on cherche des solutions de l’équation

(Id−P )f = g1Σ,

la fonction g, de somme nulle, peut être interprétée comme une intensité entrante dans le système.
La fonction f est un potentiel associé, et est donc défini modulo constante. Le choix de prendre f de
moyenne nulle sur Σ est un choix de jauge pour ce potentiel.

Exercice 10.2.
Montrez que la quantité

R

4

∑
p∈Σ

(Id−P )−1(i)(p) · i(p)

est la puissance consommée par le circuit de résistances quand le courant entrant est i, et en particulier
est toujours positive.

11 Cadre dynamique et stratégie

11.1 Probabilités de transition dans les Zd-extensions
Soit (A, µ, T ) une transformation Gibbs-Markov. On fixe une Zd-extension markovienne ergodique

et conservative ([Zd], µ̃, T̃ ) de (A, µ, T ) de sauf F .
Soit Σ ⊂ Zd fini. Par conservativité, le système induit ([Σ], µΣ, TΣ) est bien défini et préserve la

mesure µΣ, que l’on supposera de probabilité :

µΣ =
1

|Σ|
∑
p∈Σ

µ⊗ δp.

Notation 11.1.
Dans la mesure du possible, nous utiliserons les notations suivantes :
• Les objets sans marque spécifique tels que A, µ, T , L etc. sont associés à la transformation
Gibbs-Markov initiale (A, µ, T ).
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• Les objets avec un tilde tels que µ̃, T̃ , L̃ etc. sont associés à une Zd-extension du système
précédent.
• Les objets avec un indice tels que µΣ, TΣ, LΣ etc. sont associés au système induit par l’exten-
sion précédente sur [Σ] = A× Σ.

On cherche à calculer les probabilités de transitions entre les différents sites de Σ, c’est-à-dire les
probabilités

PΣ
pq = µ

(
T̃ϕ[Σ](x,p)(x, p) ∈ [q]

)
= µ (TΣ(x, p) ∈ [q]) .

Comme en Section 10, le calcul de ces probabilités d’atteinte se résume au calcul de la matrice de
transition PΣ = (pΣ,pq)p,q∈Σ.

Étant donnée une Zd-extension d’un système dynamique préservant une mesure de probabilité
(A, µ, T ) et Σ ⊂ Zd, comment estimer la matrice des probabilités de transition PΣ ?

On peut déjà observer que la matrice PΣ est une matrice stochastique. Elle préserve la forme
linéaire |Σ|−1

∑
p∈Σ δp : c’est une conséquence du fait que ([Σ], µΣ, TΣ) préserve la mesure.

De plus, PΣ est irréductible : c’est une conséquence du fait que ([Σ], µΣ, TΣ) est ergodique. Le
sous-espace propre associé à la valeur propre 1 est donc exactement l’espace des fonctions constantes.

11.2 Identité de balayage et opérateur de transfert

Dans le cadre des marches aléatoires, l’identité de balayage reliait directement l’opérateur PΣ et
le noyau de transition P de la marche aléatoire. Ce n’est plus le cas maintenant. L’opérateur PΣ est
néanmoins relié aux opérateurs de Koopman et de transfert via des opérateurs de moyennisation.

Définition 11.2 (Opérateurs ΠΣ,∗ et Π∗Σ).
Pour Σ ⊂ Zd, on définit deux opérateurs :

ΠΣ,∗ :

{
L1([Σ], µΣ) → CΣ

f 7→
(∫

A
f(·, p) dµ

)
p∈Σ

, (11.1)

Π∗Σ :

{
CΣ → L1([Σ], µΣ)
f 7→ Π∗Σf : (x, p) 7→ f(p)

. (11.2)

Il suit de ces définitions que ΠΣ,∗ ◦ Π∗Σ = Id, alors que Π∗Σ ◦ ΠΣ,∗ moyennise les fonctions f ∈
L1([Σ], µΣ) sur chaque [p] ⊂ [Σ]. Le lien entre probabilités de transition et opérateurs de transfert
est alors :

PΣ = ΠΣ,∗ ◦ KΣ ◦ Π∗Σ et PΣ,T = ΠΣ,∗ ◦ LΣ ◦ Π∗Σ. (11.3)

L’opérateur Π∗Σ ◦ PΣ,T ◦ ΠΣ,∗ y L1([Σ], µΣ) est une approximation de rang fini de LΣ.

De là, on peut appliquer la stratégie esquissée en Sous-section 10.1 à l’opérateur K̃ ou L̃ afin
de calculer KΣ ou LΣ respectivement, et récupérer la matrice PΣ. Pour les raisons développées en
Sous-section 8.2, l’opérateur de Koopman n’est pas adapté ; nous allons donc organiser notre stratégie
autour de l’opérateur de transfert.

La Proposition 8.5 fournit le deuxième point de notre stratégie. Nous allons maintenant aborder
le premier : la résolution de l’équation de Poisson sur [Zd] à l’aide de la transformée de Fourier.
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11.3 Potentiel et transformée de Fourier

Dans le cas des marches aléatoires, nous partions d’une intensité entrante g ∈ CΣ
0 , c’est-à-dire

une fonction définie sur Σ et de moyenne nulle. Dans un contexte dynamique, nous allons remplacer
CΣ

0 par un espace de Banach de fonctions de moyenne nulle.

Notation 11.3.
Rappelons que B est l’espace des fonctions essentiellement lipschitziennes sur A. On notera :
• Pour tout ensemble I fini, BI l’espace des fonctions lipschitziennes sur A× I.
• B0 l’espace des fonctions lipschitziennes sur A de moyenne nulle, et BI,0 l’espace des fonctions
lipschitziennes sur A× I de moyenne nulle.

Fixons Σ ⊂ Zd fini. Par ergodicité, l’opérateur (Id−LΣ) est inversible sur BΣ,0. Afin de manipuler
effectivement des matrices, nous allons discrétiser cet opérateur.

Définition 11.4 (Opérateur potentiel discrétisé).
Nous appelerons opérateur potentiel discrétisé 59 l’opérateur

QΣ := ΠΣ,∗ ◦ (Id−LΣ)−1 ◦ Π∗Σ (11.4)

défini sur CΣ
0 .

Pour tous f , g ∈ CΣ
0 ,∑

s∈Σ

f(s) ·QΣ(g)(s) = |Σ|
∫

[Σ]

Π∗Σ(f) · (Id−LΣ)−1(Π∗Σ(g)) dµΣ.

De plus, afin de contourner des problèmes de convergence, nous allons plutôt travailler avec des
équations de Poisson tordues. Autrement dit, nous nous donnons un paramètre ρ ∈ (0, 1), puis
introduisons l’opérateur QΣ,ρ défini par :∑

p∈Σ

f(p) ·QΣ,ρ(g)(p) = Card(Σ)

∫
[Σ]

Π∗Σ(f) · (Id−ρL̃)−1(Π∗Σ(g)) dµΣ.

Pour ρ = 1, formellement, (Id−ρL̃)−1 = (Id−L̃)−1 = (Id−LΣ)−1 par l’identité de balayage. La Pro-
position 11.5 suivante rendra rigoureuse ce lien sans avoir à donner un sens à l’opérateur (Id−L̃)−1.

En passant en domaine fréquentiel, la fonction (Id−ρL̃)−1(Π∗Σ(g)) s’exprime à l’aide d’opérateurs
de transfert tordus. Notons

FΣ(f)(ξ) :=
∑
p∈Σ

f(p)e−i〈ξ,p〉.

Alors, par des manipulations semblables à celles de la Sous-section 6.2, et un travail additionnel pour
vérifier les passages à la limite quand ρ tend vers 1−, on obtient la :

Proposition 11.5. [ [226, Proposition 5.3], Partie 1]
Soit ([Zd], µ̃, T̃ ) une Zd-extension markovienne, ergodique et conservative d’une transformation

Gibbs-Markov (A, µ, T ) de saut F . Soit Σ ⊂ Zd une partie finie. Pour toutes f , g ∈ CΣ
0 ,∑

p∈Σ

f(p) ·QΣ(g)(p) = lim
ρ→1−

1

(2π)d

∫
Td
FΣ(f)FΣ(g)

(∫
A

(Id−ρLξ)−1(1) dµ

)
dξ, (11.5)

où Lξ = L(ei〈ξ,F 〉·) est l’opérateur de transfert tordu par F .
59. Le nom d’opérateur potentiel provient de l’interprétation électrocinétique de la Sous-section 10.2, dans laquelle

– à constante multiplicative près – l’opérateur (Id−P )−1 associe à un profil d’intensités un potentiel électrique.
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11.4 Formes limites

S’il était possible de calculer explicitement les probabilités de transition pour la marche aléatoire
simple en Sous-section 10.1, un tel calcul explicite semble hors de portée pour des systèmes dyna-
miques plus complexes. De même, l’Équation (11.5) fournit une formule intégrale pour l’opérateur
QΣ qui fait intervenir toute la famille d’opérateurs (Lξ)ξ∈Td , et est donc délicate à évaluer en pratique.
Dans l’esprit du théorème central limite ou du théorème central limite local, nous allons explorer des
théorèmes limites.

Dans notre cadre, cela consiste à estimer PΣ quand les sites de Σ sont très éloignés les uns des
autres. Pour formaliser cela, nous remplaçons Σ par une famille d’ensembles Σt. Plus précisément,
nous fixons une famille d’injections σt : I ↪→ Zd où I est fini. On remplace naturellement σt(I) par
I dans les définitions des différents opérateurs ; par exemple, au lieu de travailler avec la matrice
P σt(I) indexée par σt(I), on utilisera plutôt la matrice Pt indexée par I qui lui est naturellement
semblable. Ce formalisme permet ainsi de manipuler différents opérateurs en conservant un système
d’indexation cohérent : par exemple, les opérateurs Πσt(I),∗ et Π∗σt(I) sont naturellement conjugués à
des opérateurs Π∗ et Π∗ indépendants de t. On définit de même Qt, Ft, etc.

Ce cadre reste trop flexible : nous n’avons imposé aucune condition sur σt autre que l’injectivité.
Bien que la théorie qui suit soit plus générale, nous imposerons que les ensembles σt(I) soient de plus
en plus grand et aient une “forme limite”.

Hypothèse 11.6.
Il existe σ : I ↪→ Rd telle que, pour tout i ∈ I,

σt(i) =t→+∞ tσ(i) + o(t).

Figure 29 – Les éléments d’une famille (σt(I))t>0 de parties de Zd qui s’éloignent en gardant la
même forme.

Les excursions à partir d’un site ont une probabilité petite d’être très grande. Par conséquent,
si deux sites sont très éloignés, il y a peu de chance qu’une excursion du premier site soit suffisam-
ment longue pour atteindre le second : les transitions sont rares quand les sites sont éloignés. Sous
l’Hypothèse 11.6, la famille de matrices (Pt)t>0 converge donc vers l’identité quand t tend vers 0.

Revisitons la question posée en Sous-section 11.1. Donnons-nous une Zd-extension d’un système
dynamique préservant une mesure de probabilité (A, µ, T ), ainsi qu’une famille de fonctions σt véri-
fiant l’Hypothèse 11.6. Peut-on trouver un équivalent de (Id−Pt) ?

11.5 Limite de l’opérateur potentiel discrétisé

Revenons à la Proposition 11.5. Quand t tend vers +∞, la contribution principale à l’Équa-
tion (11.5) vient de la valeur propre principale de L y B. En effet, par le Corollaire 5.1, toutes les
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autres valeurs propres des opérateurs (Lξ)ξ∈Td sont distinctes de 1, et donc apportent une contribution
bornée à l’intégrale.

Proposition 11.7. [ [226, Proposition 5.3], Partie 2]
Dans le cadre de la Proposition 11.5, sous l’Hypothèse 11.6, il existe une fonction ξ 7→ δ(ξ)

continue sur un voisinage de 0 ∈ Td telle que δ(0) = 0 et, pour tout voisinage suffisamment petit U
de 0, ∑

j∈I

f(j) ·Qt(g)(j) = lim
ρ→1−

1

(2π)d

∫
U

Ft(f)Ft(g)
1 + δ(ξ)

1− ρλξ
dξ +OU(1) ‖f‖ · ‖g‖ , (11.6)

où le terme d’erreur OU(1) est uniforme en ρ et t, mais dépend de U .

Le membre de droite de l’Équation (11.6) s’évalue ensuite dans des cas concrets, même si les
calculs peuvent être un peu laborieux [226, Section 6].

Exemple 11.8 (Z-extension, variance finie).
Soit ([Z], µ̃, T̃ ) une Z-extension markovienne, ergodique et conservative d’une transformation

Gibbs-Markov (A, µ, T ) de saut F . Supposons que F est centrée et de variance finie.
Soient σ1 < . . . < σn des réels, et Σt = {tσ1 + o(t), . . . , tσn + o(t)} ⊂ Z. Alors, pour tous f ,

g ∈ CI
0 : ∑

j∈I

f(j) ·Qt(g)(j) =t→+∞ −
t

σ2
GK(A, µ, T ;F )

∑
i,j∈I

f(i) · g(j) · |σ(i)− σ(j)|+ o(t).

Exemple 11.9 (Z2-extension, variance finie).
Soit ([Z2], µ̃, T̃ ) une Z2-extension markovienne, ergodique et conservative d’une transformation

Gibbs-Markov (A, µ, T ) de saut F . Supposons que F est centrée et de variance finie.
Soient I fini et σ : I → R2 injective. Soit Σt = tσ(I) + o(t) ⊂ Z2. Dans ce cadre, la principale

contribution à l’Équation (11.6) est celle des fréquences identiques de Ft(f) et Ft(g). Par conséquent,
pour tous f , g ∈ CI

0 :∑
j∈I

f(j) ·Qt(g)(j) =t→+∞
ln(t)

π
√

det Cov(A, µ, T ;F )

∑
j∈I

f(j) · g(j) + o(ln(t)),

ou, autrement dit, Qt = ln(t)

π
√

det Cov(A,µ,T ;F )
Id +o(ln(t)).

On peut, à partir des expansions asymptotiques des opérateurs (Qt)t≥0 des Exemples 11.8 et 11.9,
retrouver des expansions asymptotiques des matrices de transition (Pt)t≥0. Ce sera fait en Sous-
section 13.3. Le passage de (Qt)t≥0 à (Pt)t≥0 n’est trivial ni en théorie – ce sera l’objet du Théo-
rème 13.6 – ni en pratique – les calculs matriciels impliqués n’étant en général pas si simples.

12 Systèmes à transitions rares
Le raisonnement de la Section 11 permet, dans un régime asymptotique, d’estimer Qt. Via l’iden-

tité de balayage, on peut alors – au moins pour des fonctions f , g constantes sur chaque site – estimer
les intégrales ∫

[I]

f · (Id−Lt)−1(g) dµI .
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Le dernier problème consiste à déduire de ces intégrales une approximation de Pt. Dans la Sous-
section 10.1, le problème était de dimension finie, et notre méthode reposait sur un calcul matriciel
explicite ; ce n’est plus le cas ici.

La dernière brique de ce travail repose sur une autre théorie : celle des temps d’atteinte d’évène-
ments rares en dynamique hyperbolique, ainsi que de la métastabilité.

12.1 Évènements rares

Dans un premier temps, nous allons présenter quelques résultats sur les occurrences d’évènements
rares dans des systèmes dynamiques hyperboliques. Soient (A, µ, T ) un système dynamique préservant
une mesure de probabilité ergodique et Aε ⊂ A de mesure µ(Aε)� 1. Que peut-on dire du premier
temps ϕAε ≥ 1 d’occurrence de l’évènement Aε ?

Par le lemme de Kac (Lemme 9.1), si x est choisi selon la mesure µ(· | Aε), alors E(ϕAε(x)) =
µ(Aε)

−1. D’autre part, le système dynamique (A, µ, T ) préservant la mesure, pour tout n ≥ 1,

µ (ϕAε ≤ n) = µ

(
n⋃
k=1

T−kAε

)
≤

n∑
k=1

µ
(
T−kAε

)
= nµ(Aε).

Ces deux remarques suggèrent que ϕAε est typiquement de l’ordre de µ(Aε)
−1. Nous sommes donc

amenés à étudier µ(Aε)ϕAε . Que peut-on dire de la loi de µ(Aε)ϕAε quand µ(Aε)→ 0 ?

12.1.1 Deux contraintes

La réponse à cette question va dépendre en premier lieu du système dynamique étudié.

Exemple 12.1 (Rotation d’angle irrationnelle).
Soit Tθ : x 7→ x + θ [1] une rotation d’angle θ < 1/2 irrationnel sur le cercle R/Z. Choisissons

Aε := [0, ε). Pour des raisons topologiques que nous laissons en exercice, la transformation induite en
[0, ε) est un échange de 2 ou 3 intervalles, et ϕ[0,ε) est constant sur chacun de ces intervalles. Plaçons-
nous dans le cas où la transformation induite en [0, ε) est un échange de 3 intervalles (Bi)1≤i≤3. Alors
ϕ[0,ε) prend trois valeurs n1 < n2 < n3 = n1 + n2 sur [0, ε). La loi de εϕ[0,ε) sous Leb(· | [0, ε)) a au
plus trois atomes, propriété qui se transfère à toute limite faible.

Quitte à ré-indexer les intervalles Bi, on peut supposer que Bi = {ϕ[0,ε) = ni} ∩ [0, ε). Comme
n3 = n1 + n2, l’intervalle B3 est entre B1 et B2. Le système dynamique (R/Z, Tθ) est isomorphe à
une tour au-dessus d’un échange d’intervalles, et plus précisément de la transformation qui échange
B1 et B2.

L’espace des phases de cette tour est
⊔3
i=1Bi × {0, . . . , ni − 1}, l’ensemble [0, ε) est identifié à

(B1 t B2 t B3) × {0}, et la transformation associée à Tθ incrémente la seconde coordonnée jusqu’à
atteindre le plafond ni − 1.

Pour tout x ∈ Bi et 0 ≤ k < ni, on a ϕ[0,ε)(x, k) = ni − k. Ainsi, la loi de ϕ[0,ε) sous Leb est
uniforme discrète sur chacun des intervalles [1, n1], [n1 + 1, n2] et [n2 + 1, n1 + n2].

Pour des travaux plus poussés sur les temps d’atteinte pour de tels systèmes, nous renvoyons aux
travaux de L.A. Bunimovich et C.P. Dettman sur le billard dans le disque [43], ainsi qu’à ceux de
J. Marklof et A. Strömbergsson sur les systèmes intégrables [170].

Ce cas de figure est très différent de celui que nous allons bientôt découvrir. Il faut donc être
attentif au type de système dynamique étudié ; dans ce texte, nous nous intéressons plutôt à des
systèmes hyperboliques. Mais ce n’est pas le seul obstacle. Par le lemme de Rokhlin [200], tout
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Figure 30 – Une portion d’orbite sous la rotation Tθ d’angle θ, représentée sous forme de tour.

système probabilisé ergodique est, à un ensemble de mesure aussi petite que voulue près, isomorphe
à une tour de hauteur constante, c’est-à-dire similaire à la Figure 30 mais avec une seule colonne.
Mais alors la loi du temps de retour à la base de cette tour est très proche d’une loi uniforme.

Il faut donc aussi être attentif aux évènements Aε étudiés ! Si l’on peut choisir des ensembles Aε
aussi compliqués que voulu, alors µ(Aε)ϕ[0,ε) peut être très proche d’une loi uniforme. Pour mieux
contraindre le problème, on va se limiter à des ensembles simples. Par cela, on entend :
• Dans un cadre symbolique (sous-décalage de type fini, transformation Gibbs-Markov...) : Aε

sera typiquement un cylindre de petite mesure.
• Dans un cadre géométrique (transformation Anosov...) : Aε sera typiquement une boule de

petit rayon.

12.1.2 Systèmes hyperboliques

On suppose donc que (A, µ, T ) est hyperbolique et que les évènements (Aε)ε>0 sont suffisamment
réguliers. Supposons que µ(Aε)� 1. La perte de mémoire dû à l’hyperbolicité du système fait que,
heuristiquement, le fait qu’une orbite (T n(x))n≥0 n’ait pas rencontré Aε jusqu’à un temps N apporte
peu d’information sur sa position TN(x) au temps N . Le point TN(x), sous ce conditionnement, sera
donc à peu près équidistribué.

Si X est une limite en loi des variables aléatoires (µ(Aε)ϕAε)ε>0, alors X aura une propriété
de perte de mémoire caractéristique des lois exponentielles. Heuristiquement, par le lemme de Kac
(Lemme 9.1), X sera d’espérance 1, donc une loi exponentielle de paramètre 1.

Une obstruction est l’existence d’un point périodique x de petite période p dans Aε : dans ce
cas, ces petits voisinage de x vont tous s’intersecter substantiellement avec leur image sous T p. Mais,
par préservation de la mesure, cela réduit d’autant la probabilité de venir dans Aε en venant de
l’extérieur. Tout se passe comme si, vu de l’extérieur, Aε avait une mesure effective plus petite.

De tels théorèmes remontent à B. Pitskel et M. Hirata [121, 191]. Nous les exprimerons dans le
cadre des sous-décalages. Soit (A, T ) un sous-décalage de type fini. Pour tout x ∈ A et n ≥ 0, notons
an(x) = [x0, . . . , xn−1] le cylindre de longueur n contenant x. Alors :

Théorème 12.2 (Hirata, 1993 [121]).

117



Soit (A, µ, T ) un sous-décalage de type fini irréductible, où µ est une mesure d’équilibre pour un
potentiel höldérien. Pour µ-presque tout x ∈ A, la suite de variables aléatoires

(
µ(an(x))ϕan(x)

)
n≥0

converge en loi vers une variable aléatoire exponentielle de paramètre 1.

On peut aussi chercher les limites en loi des temps de premier retour, c’est-à-dire des variables
aléatoires µ(Aε)ϕAε sous les loi µ(· | Aε). La dichotomie entre points périodiques et points non
périodiques apparaît aussi plus clairement dans ce second énoncé.

Théorème 12.3 (Hirata, 1993 [121]).
Soit (A, T ) un sous-décalage de type fini irréductible et µ une mesure d’équilibre pour un potentiel

höldérien φ de pression topologique nulle. Soit x ∈ A. Pour tout n ≥ 0, soit Xn la variable aléatoire
valant µ(an(x))ϕan(x), définie sur l’espace A muni de la mesure de probabilité µ(· | an(x)). Alors
la suite de variables aléatoires (Xn)n≥0 converge en loi vers une variable aléatoire exponentielle de
paramètre θ, où
• θ = 1− eSTp φ(x) si x est périodique de période primitive p ;
• θ = 1 sinon.

Nous renvoyons la lectrice à l’ouvrage de référence [168, Chapter 5] pour plus de détails.
Ces théorèmes sur les temps d’atteinte ou les temps de premier retour ont des versions fonction-

nelles. On s’attend à ce qu’à la limite, les retours successifs soient indépendants et suivent chacun
une loi exponentielle. Autrement dit,

Théorème 12.4. [121,122]
Soit (A, T ) un sous-décalage de type fini irréductible et µ une mesure d’équilibre pour un potentiel

höldérien. Pour µ-presque tout x ∈ A, sous µ, la suite de processus

X
(n)
t := Card

{
k ≤ µ(an(x))−1t : T k(·) ∈ an(x)

}
converge en loi vers un processus de Poisson d’intensité 1.

Les points périodiques apportent une difficulté supplémentaire dans la formulation d’un tel théo-
rème. Si x est un point périodique, alors les retours dans an(x) vont être groupés. Le processus limite
sera alors un processus de Poisson “regroupé”.

Si M. Hirata a démontré ces théorèmes pour des sous-décalages de type fini et des transforma-
tions Axiome A [121], ils sont robustes. On les retrouve pour des transformations non-uniformément
hyperboliques telles que les applications de Liverani–Saussol–Vaienti de paramètre α < 1 [98, 123],
le billard stade [183], ou les applications unimodales [57]. Certains systèmes munis d’une mesure
invariante infinie, comme des transformations non-uniformément dilatantes [39,103] ou le gaz de Lo-
rentz [182], ont aussi été étudiés ; les lois limites dans les analogues du Théorème 12.3 ne sont alors
plus exponentielles.

Remarque 12.5 (Récurrence quantitative et processus maximaux).
La question de la récurrence quantitative, que nous avons brièvement abordée ici, est étroitement

liée à l’étude des processus maximaux. Soient (A, µ, T ) un système dynamique mesuré et f : A→ R.
Posons

Mn := max
0≤k≤n−1

f ◦ T k.

Alors, pour tous n ≥ 0 et t ∈ R,

{Mn ≤ t} = {ϕ{f>t} ≥ n},

et, si t est proche de max f et ce maximum est non dégénéré, les évènements {f > t} vont être petits.
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Le processus (Mn)n≥0 est croissant et majoré par max f . Afin de quantifier sa croissance, on peut
par exemple se donner une suite (tk)k≥0 croissant vers max f , et étudier le temps nécessaire pour que
le processus (Mn)n≥0 dépasse le seuil t1, puis t2, etc. Cela revient à étudier les retours successifs en
des ensembles de plus en plus petits {f > t1} ⊃ {f > t2} ⊃ . . . ; là encore, nous renvoyons à [168].

Remarque 12.6 (Mouvement brownien brownien).
Plus généralement, les temps d’occurrence d’évènements rares dans des systèmes dynamiques

hyperboliques vont avoir tendance à suivre une loi de Poisson. On trouve une application de cette
idée dans le remarquable travail Brownian Brownian motion – I de N. Chernov et D. Dolgopyat [52].
Dans ce livre, les auteurs s’intéressent au mouvement de deux particules dans un billard de Sinaï à
horizon fini :
• Une particule ponctuelle de vitesse initiale 1 et de masse 1 ;
• Une particule massive de masse M � 1, de rayon r > 0 et de vitesse initiale nulle.

Ils montrent que, dans la limite M → +∞, la trajectoire de la particule massive suit un processus de
Langevin (c’est-à-dire que sa vitesse, somme des petites impulsions quasi-aléatoires fournies par la
particule ponctuelle, est un mouvement brownien) dont le coefficient de diffusion est donné par une
formule de Green–Kubo [52, Theorem 2]. De plus, et c’est ce qui nous intéresse ici, dans la limite
M → +∞ et r → 0, on trouve un régime dans lequel le coefficient de diffusion est facile à calculer :
les chocs entre les particules deviennent rares et décorrélés, ce qui simplifie grandement la formule
de Green–Kubo [52, Theorem 3].

Le mouvement brownien tel que conceptualisé par le botaniste R. Brown en 1827 décrit la trajec-
toire d’une particule massive (particule de pollen) dans un bain de particules beaucoup plus légères.
Bien qu’il ne comporte qu’une seule particule légère, le modèle de N. Chernov et D. Dolgopyat se
rapproche du mouvement brownien au sens de Brown, ce qui explique le titre de leur ouvrage.

12.1.3 Cas des systèmes Gibbs-Markov

Nous revenons maintenant aux systèmes Gibbs-Markov. Ceux-ci nous permettent de démontrer
assez simplement quelques énoncés sur les temps d’atteinte de petites cibles. Nous en profiterons
pour introduire divers outils utilisés pour estimer les probabilités d’atteinte dans des Zd-extensions.
Nous proposons de montrer :

Proposition 12.7.
Soit (A,α, d, µ, T ) un système dynamique Gibbs-Markov ergodique. Alors on a :
• Tension exponentielle 60 : Il existe des constantes C, κ > 0 telles que, pour tout a ∈ α, pour
tout t ≥ 0,

µ (µ(a)ϕa ≥ t) ≤ Ce−κt.

• Convergence en loi : Pour toute mesure de probabilité ν � µ, pour toute suite (an)n∈N d’élé-
ments de α telle que limn→+∞ µ(an) = 0, la suite de variables aléatoires µ(an)ϕan converge en
loi (sous ν) vers une variable aléatoire exponentielle de paramètre 1.

Pour cela, nous introduisons des familles de cônes.

Définition 12.8 (Cônes de fonctions lipschitziennes, I).

60. C’est-à-dire que la famille de variables aléatoires (µ(a)ϕa)a∈α est tendue, avec une borne quantitative exponen-
tielle sur les queues de ces variables aléatoires.
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Soit (A, µ, T ) une transformation Gibbs-Markov. Pour tout K, ε ≥ 0, on définit un cône de
fonctions lipschitziennes sur A par 61 :

CK(ε) :=
{
f ∈ B : f ≥ 0, |f |Lip∞(A,µ) ≤ Kε ‖f‖L1(A,µ)

}
. (12.1)

Exercice 12.9.
Montrez que, dans un cône CK(ε), les normes L1(A, µ), L∞(A, µ) et B sont équivalentes.

Si (A, µ, T ) est mélangeante, alors Ln y B se rapproche exponentiellement vite du projecteur
1 ⊗ µ. Par conséquent, il existe σ ∈ (0, 1) tel que, pour tout n suffisamment grand, pour tous K et
ε,

Ln(CK(ε)) ⊂ CσK(ε) ; (12.2)

c’est une propriété de contraction de cône.

Esquisse de démonstration de la Proposition 12.7.
Supposons dans un premier temps que (A, µ, T ) est mélangeante. Soit a ∈ α. Considérons l’opé-

rateur La := L(1ac ·). Alors

µ(ϕa ≥ n) =

∫
A

1ac ∩ 1ac ◦ T ∩ . . . ∩ 1ac ◦ T n−1 dµ =

∫
A

Lna(1) dµ. (12.3)

De plus, La = L − L(1a·). Par la Proposition 3.24, ‖L(1a·)‖B→B ≤ Cµ(a). L’itération de La a
donc deux effets opposés :
• Par l’Équation (12.2), l’application de L a un effet contractant (régularisant) multiplicatif ;
• À cela, on ajoute une perturbation −L(1a·) additive d’ordre µ(a).
L’interaction de ces deux effets implique :
• Une forme de stabilité : Pour tout K ≥ 0, il existe K ′ ≥ 0 tel que, pour tous n ≥ 0 et a ∈ α,

Lna(CK(µ(a))) ⊂ CK′(µ(a)). (12.4)

• Une forme de contraction de cône : Il existe σ ∈ (0, 1) tel que, pour tout K suffisamment
grand, pour tout n suffisamment grand, pour tout a ∈ α,

Lna(CK(µ(a))) ⊂ CσK(µ(a)).

On en déduit aisément la tension exponentielle. Posons K = 0, et soit K ′ tel que donné par
l’Équation (12.4). Alors, pour tout n ≥ 0, dans B,

Lna(1) =

∫
A

Lna(1) dµ · [1 +O(µ(a))],

d’où ∫
A

Ln+1
a (1) dµ =

∫
A

Lna(1) dµ ·
[
1− µ(a) +O

(
µ(a)2

)]
.

Par récurrence, si µ(a) est suffisamment petit, alors µ(ϕa ≥ n) ≤ (1− µ(a)/2)n ≤ e−
µ(a)

2
n, d’où l’on

déduit la tension exponentielle.

61. Le lecteur à l’oeil aguerri remarquera que ces cônes ne dépendent que d’un seul paramètre, ici Kε. En pratique,
on fixera K assez vite, tandis que l’on gardera ε variable ; on aura donc affaire à des énoncés du type “Il existe K tel
que, pour tout ε > 0 suffisamment petit, CK(ε) a les propriétés suivantes...” La notation CK(ε) n’est alors pas plus
lourde, et sépare mieux les rôles de K et ε, qu’une notation qui n’utiliserait qu’un seul paramètre.
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La convergence en loi découle d’une propriété de perte de mémoire. Soient 0 ≤ t < t′. Alors 62

µ(µ(a)ϕa ≥ t′ | µ(a)ϕa ≥ t) =

∫
A
Lbµ(a)−1t′c
a (1) dµ∫

A
Lbµ(a)−1tc
a (1) dµ

'
∫
A

Lbµ(a)−1(t′−t)c
a (fa,t) dµ,

où

fa,t =
Lbµ(a)−1tc
a (1)∫

A
Lbµ(a)−1tc
a (1) dµ

.

Or fa,t appartient à CK′(µ(a)) et est d’intégrale 1, donc est proche de 1. Par conséquent, µ(µ(a)ϕa ≥
t′ | µ(a)ϕa ≥ t) est proche de µ(µ(a)ϕa ≥ t′ − t).

Soit (an)n≥0 une suite d’éléments de α dont la mesure converge vers 0. Les lois des variables
aléatoires µ(an)ϕan étant tendues, il existe des lois limites. Ces lois limites héritent de la propriété
de perte de mémoire, caractéristique de la loi exponentielle. Enfin, les variables aléatoires µ(an)ϕan
étant toutes d’espérances 1 et leurs lois ayant des queues exponentielles uniformes, la loi limite est
aussi d’espérance 1, et est donc une loi exponentielle de paramètre 1.

Donnons-nous une loi initiale ν � µ. Par la propriété de mélange, T n∗ (ν) converge vers µ, et
l’orbite d’un point a peu de chances de rencontrer un évènement a petit avant que T n∗ (ν) ne soit très
proche de µ. La loi de µ(a)ϕa sous ν sera donc proche de la loi de µ(a)ϕa sous µ ; on rencontre le
même phénomène que dans les énoncés du théorème central limite (Théorème 3.30) ou du théorème
central limite local (Proposition 6.4), dont les énoncés sont valables pour toute loi initiale absolument
continue par rapport à µ.

Finalement, si (A, µ, T ) est seulement ergodique, la décomposition en composantes périodiques
(Proposition 3.11) et la propriété de grande image permettent de conclure.

Exemple 12.10 (Transformation de Gauss).
Soit T : (0, 1]→ [0, 1) la transformation de Gauss. Comme nous l’avons vu, cette transformation

est Gibbs-Markov, la partition associée étant α = {an : n ≥ 1} avec an =
[

1
n+1

, 1
n

)
, et la mesure de

probabilité invariante étant µ = 1
ln(2)

1
1+x

dx. Remarquons en particulier que

µ(an) =
1

ln(2)
ln

(
(n+ 1)2

n(n+ 2)

)
∼n→+∞

1

ln(2)

1

n2
.

Soient x un réel tiré uniformément dans [0, 1] et [0 : b1, b2, . . .] son développement en fraction
continue. Soit Tn(x) := inf{k ≥ 1 : bk(x) = n} l’indice de la première apparition de n dans le
développement en fraction continue de x. D’après la Remarque 1.6, Tn ≡ ϕan + 1 sur {Tn ≥ 2}.
Ce dernier évènement est de mesure presque totale quand n est grand. Comme Leb� µ, d’après le
second point de la Proposition 12.7, n−2Tn converge en loi vers une variable aléatoire exponentielle
de paramètre 1

ln(2)
.

Les deux points de la Proposition 12.7 permettent aussi d’obtenir la convergence des moments de
ϕan . Soit ν � µ une mesure de probabilité telle que dν

dµ
est bornée. D’après le premier point, pour

tout p ∈ R+, la loi de (µ(an)ϕan)p sous ν est dominée par une loi intégrable. D’après le second point,
cette même suite de variables aléatoires converge vers Xp, où X est exponentielle de paramètre 1.
Par conséquent, on obtient

62. Une petite erreur, facile à contrôler, est due au fait que bµ(a)−1(t′ − t)c 6= bµ(a)−1t′c − bµ(a)−1tc en général ;
c’est pourquoi nous avons utilisons le signe ' à la ligne suivante.
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Corollaire 12.11.
Soit (A,α, d, µ, T ) un système dynamique Gibbs-Markov ergodique. Soit ν � µ une mesure de

probabilité telle que dν
dµ
∈ L∞(A, µ). Soit (an)n≥0 une suite d’éléments de α telle que limn→+∞ µ(an) =

0. Alors, pour tout p ∈ R+, ∫
A

ϕpan dν ∼n→+∞
Γ(1 + p)

µ(an)p
.

12.2 Systèmes à transitions rares

La théorie des temps d’atteinte d’évènements rares a une application importante : le contrôle
de la décroissance des décorrélations dans des systèmes admettant une partition en parties presque
invariantes, c’est-à-dire l’étude d’états dynamiques métastables.

12.2.1 Transitions entre deux ou plusieurs sous-systèmes

Soit (A, µ, T ) un système dynamique préservant la mesure de probabilité et suffisamment chao-
tique. Supposons que l’on puisse partitionner A en deux parties A = B t C telles que :
• D’une part, B et C ne sont pas trop petits : µ(B), µ(C) ' 1 ;
• D’autre part, les transitions de B vers C ou de C vers B sont rares :

µ(B ∩ T−1C) = µ(C ∩ T−1B)� 1.

B C

B

C

Figure 31 – En bleu : le graphe d’une transformation uniformément dilatante de l’intervalle telle
que l’espace des phases ait une partition en deux ensembles B, C communiquant peu entre eux. Cet
exemple s’adapte afin d’obtenir une famille (Tε)ε>0 de telles transformations.

Posons ε := µ(B∩T−1C). Si l’on tire un point au hasard dans B selon µ(· | B), alors la probabilité
que son orbite passe de B à C à un instant n est d’au plus εµ(B)−1 � 1. Le temps d’atteinte de C
est donc de l’ordre de ε−1µ(B)� 1, et suit une loi approximativement exponentielle. On dit que les
états B et C sont métastables.

Dans le cadre de temps d’atteinte d’ensembles de petite mesure, on se donnait une famille (Aε)ε>0

d’évènements. Dans la limite ε → 0, après une renormalisation adéquate, les temps de retours
successifs en Aε avaient pour processus limite un processus de Poisson.
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Dans cette Sous-section, nous allons remplacer une seule transformation T par une famille de
transformations (Tε)ε>0 vérifiant les hypothèses précédentes 63. On va s’intéresser à la partie de l’es-
pace des phases dans laquelle est la trajectoire d’un point, et renormaliser en temps. Plus précisément,
soit g : A→ {B,C} définie par

g(x) :=

{
B si x ∈ B
C si x ∈ C .

Posons enfinX(ε)
t := g◦T bε

−1tc
ε à valeurs dans {B,C}. Alors, asymptotiquement, le processus (X

(ε)
t )t≥0

est sans mémoire, donc est un processus de Markov à deux états et à temps continu. Les transitions
de B vers C se font à taux µ(B)−1 et les transitions de C vers B à taux µ(C)−1. Ce processus limite
passe bien une proportion du temps µ(B) en B et une proportion du temps µ(C) en C, ce qui est
cohérent avec le théorème ergodique 64.

De telles familles de systèmes (Tε)ε>0 sur l’intervalle ont été étudiées par C. Gonzalez Tokman,
B.R. Hunt et P. Wright [107] d’une part, et D. Dolgopyat, P. Wright [84] d’autre part. Les premiers
auteurs s’intéressent aux mesures invariantes des systèmes (Tε)ε>0, qui à la limite sont combinaison
convexes de mesures invariantes sur B et C séparément, et utilisent des méthodes de cônes réminis-
centes de la Sous-sous-section 12.1.3. Les seconds montrent la convergence du processus (Xt)t≥0 défini
précédemment vers un processus de Markov. Mentionnons aussi l’approche spectrale de G. Keller et
C. Liverani [142].

Les résultats précédents s’adaptent à une partition A = A1 ∪ . . . ∪ An de A de n ensembles de
mesures comparables et communiquant peu entre eux. Dans ce cas, on peut définir une famille de
matrices stochastiques par

PAi,Aj :=
µ(Ai ∩ T−1Aj)

µ(Ai)
=: (Id−εR)ij.

Le processus limite, sous une hypothèse d’irréductibilité, est un processus de Markov sur {A1, . . . , An}
engendré par −R. Heuristiquement, on s’attend à ce que les n valeurs propres de plus grand module
de l’opérateur de transfert Lε de Tε soient approximativement données par le spectre de P = Id−εR.

Remarque 12.12 (Décomposition en modes dynamiques).
Dans le sens inverse, si l’on trouve n valeurs propres proches de 1 de l’opérateur de transfert d’un

système dynamique mesuré, on peut supposer que ce système a une décomposition en n composantes
de mesures comparables et communiquant peu entre elles. Ces n composantes peuvent être retrouvées
à l’aide des fonctions propres associées : ce sont les régions sur lesquelles ces fonctions sont à peu
près constantes, ou au moins de signe constant.

Cette heuristique justifie la stratégie numérique de décomposition en modes dynamiques. Nous
renvoyons le lecteur à l’article de revue [56] pour une présentation générale de ces méthodes, à [100,
101, 230] pour une application à la détection de structures cohérentes dans les courants océaniques,
et à [24, 25] pour une comparaison entre les valeurs propres déterminées numériquement par ces
méthodes et les résonances de Ruelle.

12.2.2 Inégalités de Cheeger

Le lien entre trou spectral et décomposition de l’espace des phases en composantes communi-
quant peu est un phénomène plus général que celui des systèmes dynamiques hyperboliques. C’est
notamment le sujet des inégalités de Cheeger, qui admettent de nombreuses variantes.

63. En particulier, la partition A = B tC et la mesure invariante µ ne dépendent pas de ε. C’est une hypothèse très
forte, mais qui sera satisfaite en Section 13.
64. Heureusement !
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Par exemple, soit (Mn)n≥0 une chaîne de Markov irréductible réversible sur un espace d’états fini
A de cardinal d. Soit µ son unique mesure de probabilité stationnaire, et supposons queM0 est choisi
selon µ. Pour B ⊂ A, soient

k∗(B) :=
P(M0 ∈ B et M1 ∈ Bc)

P(M0 ∈ B)
(12.5)

et
k∗ := min

B⊂A
0<P(B)≤1/2

k(B). (12.6)

Le coefficient k∗(B) est petit si B est de mesure proche de 1/2, et si la probabilité de passer de
B à Bc est faible. Par conséquent, k∗ est petit si l’on peut décomposer A en deux grandes parties
communiquant peu entre elles. De plus, k∗ > 0 car la chaîne de Markov est irréductible.

Soit P le noyau de transition de la chaîne de Markov. Comme la chaîne de Markov est réversible,
l’action P y L2(A, µ) est auto-adjointe. Soient λd−1 ≤ . . . ≤ λ0 = 1 ses valeurs propres. Alors :

Théorème 12.13. [151, Theorem 3.5]
Pour une chaîne de Markov réversible,

1− 2k∗ ≤ λ1 ≤ 1− (k∗)2

2
. (12.7)

Remarquons que le Théorème 12.13 ne contrôle pas exactement le trou spectral ; il faudrait pour
cela contrôler aussi λd−1, qui peut être très proche de −1. La borne inférieure sur λ1 repose sur des
heuristiques proches de celles exposées dans la Sous-sous-section 12.2.1 ; la possibilité de travailler
avec un opérateur auto-adjoint simplifie grandement les arguments. La borne supérieure sur λ1 est
plus difficile à obtenir.

Ce théorème a des versions sur les graphes. Ceci dit, les premiers énoncés, que nous allons briè-
vement présenter, portaient sur le spectre du laplacien sur des variétés riemanniennes. Soit M une
variété riemannienne compacte connexe de dimension n. Pour toute partie B ⊂M dont le bord ∂B
est une sous-variété de dimension n− 1, on pose

k∗(B) :=
|∂B|

Vol(B)
(12.8)

et
k∗ := inf

B⊂M
0<Vol(B)≤Vol(M)/2

k(B). (12.9)

Notons λ1 la plus grande valeur propre non nulle de ∆ y C∞(M).

Théorème 12.14. [45,51]
SoitM une variété riemannienne compacte connexe de dimension n. Soit a ≥ 0 tel que la courbure

de Ricci de M soit d’au moins −(n− 1)a2. Alors :

−2[a(n− 1)k∗ + 5(k∗)2] ≤ λ1 ≤ −
(k∗)2

2
. (12.10)

Pour le problème du laplacien sur un graphe pondéré, des généralisations de ces inégalités per-
mettent de contrôler les valeurs propres suivantes à l’aide de coefficients de Cheeger généralisés
(d’une façon intuitive : on découpe l’ensemble A des sommets du graphe en k parties pas trop pe-
tites, et ayant une frontière petite) [156]. L’analogue de la décomposition en modes dynamiques de
la Remarque 12.12 est donné par des algorithmes de partitionnement spectral [231].
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Ceci étant, le but de cette partie n’est pas seulement d’établir une analogie entre les opérateurs
de transfert et le laplacien. Dans le cas du flot géodésique en courbure négative constante, le lien
entre ces objets est beaucoup plus étroit.

Soit M une surface riemannienne compacte connexe de courbure négative constante. On dispose
alors :
• De l’action de ∆ y L2(M,Vol). Le spectre de cet opérateur auto-adjoint non borné est

0 = −λ0 ≥ −λ1 ≥ . . .
• Si X est le générateur du flot sur T 1M , de l’action de X sur des espaces de Sobolev anisotropes

de régularité suffisamment élevée.
Pour tout k ≥ 0, soit rk tel que λk = 1

4
+ r2

k. Alors, pour tout m ≥ 0, on sait que −1
2
± irk − m

est une résonance de Ruelle de X, et que toutes les résonances de Ruelle sont de cette forme 65. On
se réfèrera à ce propos, par exemple, aux articles de F. Faure et M. Tsujii [91, 92, 114], ainsi qu’à la
présentation et aux travaux référencés dans [86].

En particulier, si λk � 1, alors 1−
√

1−4λk
2

' λk est une résonance de Ruelle, et toutes les résonances
de Ruelle de partie réelle supérieure à −1/2 sont de cette forme. Tout contrôle sur λk apporté par des
inégalités de Cheeger se traduit alors en contrôle sur le trou spectral de X, et donc en décroissance
des corrélations pour le flot géodésique sur T 1M .

13 Calcul asymptotique des probabilités d’atteinte
Il est temps d’énoncer les principaux théorèmes de [226] et d’en décrire la stratégie de démons-

tration.

13.1 Argument principal, cas mélangeant

Revenons au calcul des probabilités d’atteinte dans des Zd-extensions de systèmes Gibbs-Markov.
Soit I un ensemble fini et (σt)t≥0 une famille d’injections de I dans Zd telle que limt→+∞ |σt(i) −
σt(j)| = +∞ pour tous i 6= j. Sous cette condition, limt→+∞ Pt = Id.

Dans la Sous-section 11.4, nous avions supposé que la famille (σt)t≥0 avait une forme limite
(Hypothèse 11.6). Cependant, pour appliquer les stratégies attenantes aux systèmes à transitions
rares de la Sous-section 12.2, il est beaucoup plus aisé de supposer connu le comportement des
probabilités de transitions... Précisément les quantités que nous souhaitons calculer !

Nous allons supposer dans un premier temps que de telles probabilités de transitions existent, en
déduire l’opérateur potentiel discrétisé, puis utiliser un argument de compacité pour inverser cette
relation.

Hypothèse 13.1.
Il existe une matrice R irréductible 66 et une fonction a tendant vers 0 en +∞ telles que

Pt =t+∞ Id−a(t)R + o (a(t)) .

Pour tout t, les sommes de chaque ligne et de chaque colonne de Pt sont égales à 1. Soit R une
matrice satisfaisant les conditions de l’Hypothèse 13.1. Alors les sommes de chaque ligne et de chaque

65. Sauf éventuellement sur −1− 1
2N, ce qui n’a pas d’importance pour la suite.

66. C’est-à-dire qu’elle satisfait une définition de l’irréductibilité semblable à celle des matrices stochastiques, ou
encore que Id−εR est une matrice stochastique irréductible pour tout ε > 0 suffisamment petit.
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colonne de R sont nulles, donc R y C1 est nulle et R préserve CI
0. De plus, l’irréductibilité implique

qu’il existe un trou spectral, au sens où

ρR := min
λ∈Sp(RyCI0)

<(λ) > 0.

Remarquons que la transformation Tt : [I] → [I] est une perturbation de la transformation⊕
j∈I T[0] qui agit comme T[0] sur chaque [j]. Les transitions d’une partie [i] à une partie [j] 6= [i] sont

des évènements rares. Nous pouvons adapter les outils introduits en Sous-sous-section 12.1.3. Nous
aurons cependant à faire face à deux difficultés supplémentaires :
• D’une part, il y a Card(I) ensembles deux à deux disjoints et presque invariants dans [I].

Si l’on fixe un de ces ensembles, disons [i], il y a Card(I) − 1 évènements rares possibles,
correspondant aux transitions vers un des [j] 6= [i].
• D’une part, nous sommes dans le cadre de systèmes à transitions rares, comme en Sous-

section 12.2. Il ne suffit pas savoir quand l’un de ces évènements rares advient – c’est-à-dire
quand une orbite sous Tt passe d’un site à un autre – mais il faut aussi contrôler ce qu’il se
passe après ces transitions.

Notre raisonnement fera intervenir quelques ingrédients supplémentaires. Tout d’abord, nous de-
vons adapter la Définition 12.8 des cônes de fonctions lipschitziennes à notre problème.

Définition 13.2 (Cônes de fonctions lipschitziennes, II).
Soit (A, µ, T ) une transformation Gibbs-Markov et I un ensemble fini. Pour tous K, ε ≥ 0, on

définit un cône de fonctions lipschitziennes sur A× I par :

CK(ε) :=
{
f ∈ BI : f ≥ 0, ‖(Id−Π∗Π∗)f‖BI ≤ Kε ‖f‖L1(A,µ)

}
.

Autrement dit, une fonction f : [I] → R+ appartient à CK(ε) si, sur chaque [j], elle est proche (en
norme lipschitzienne) de sa moyenne sur [j].

Ces cônes définissent une norme sur BI :

‖f‖K,ε := inf
f+,f−∈CK(ε)
f=f+−f−

max
{
‖f+‖L1([I],µI) , ‖f−‖L1([I],µI)

}
.

Si f ∈ Π∗(CI) est constante sur chaque [j], alors sa norme ‖f‖K,ε ne dépend ni de K ni de ε.

Remarque 13.3 (Systèmes lents-rapides).
De telles familles paramétrées de cônes apparaissent dans certains travaux sur les systèmes à

transitions rares [107], mais aussi dans d’autres domaines proches. La famille d’opérateurs (Lnt )n≥0

a deux échelles de temps caractéristiques. À l’échelle Θ(1), le fait que (A, µ, T[0]) est supposée mélan-
geante fait que Lnt homogénéise chaque [i], mais il y a peu de communication entre différents sites.
Les transitions entre différents sites se font à l’échelle de temps Θ(a(t)−1). Ces deux échelles sont
découplées à la limite t→ +∞.

Les systèmes lents-rapides exhibent le même découplage entre deux échelles de temps. Par exemple,
soit (Ft)t≥0 une famille de transformations de Ω× S1 telle que

Ft(x, θ) = (ft(x, θ), θ + a(t)g(x, θ)),

où x 7→ fε(x, θ) est une famille uniformément hyperbolique de transformations de Ω. Alors la première
variable x évolue à l’échelle de temps Θ(1), tandis que la deuxième variable θ évolue à l’échelle de
temps Θ(a(t)−1). À la limite, ces deux échelles de temps sont découplées, et l’évolution de θ est
moyennée en x.
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Dans le contexte des systèmes lents-rapides, de telles familles de cônes (ou de paires standards)
ont été utilisées. L’article [69] présente ces techniques dans un cadre simplifié (où ft y Ω sont une
famille de transformations dilatantes du cercle), tandis que les travaux [52, 70, 80] étudient divers
systèmes partiellement hyperboliques ou billards de Sinaï. Ce sont ces travaux qui ont en premier
inspiré l’auteur à utiliser la famille de cônes introduite à la Définition 13.2 dans le contexte de ce
mémoire.

On dispose alors d’un analogue de la convergence en loi dans la Proposition 12.7 :

Proposition 13.4. [226, Corollaire 2.14]
Soit ([Zd], µ̃, T̃ ) une Zd-extension markovienne, ergodique et conservative d’une transformation

Gibbs-Markov (A, µ, T ). Supposons que (A, µ, T[0]) est mélangeante, ainsi que l’Hypothèse 13.1.
Soient K, Tmax > 0. Soit (ft)t≥0 une famille de fonctions dans BI . Supposons que

C := lim sup
t→+∞

‖ft‖K,a(t) < +∞.

Alors
lim
t→+∞

sup
s∈[0,Tmax]

∥∥∥Π∗Lbs/a(t)c
ε ft − e−sR

T

Π∗ft

∥∥∥
`1(I)

= 0,

et la convergence est uniforme à K et C fixés.

L’analogue de la tension exponentielle dans la Proposition 12.7 est :

Proposition 13.5. [226, Proposition 2.15]
Soit ([Zd], µ̃, T̃ ) une Zd-extension markovienne, ergodique et conservative d’une transformation

Gibbs-Markov (A, µ, T ). Supposons que (A, µ, T[0]) est mélangeante, ainsi que l’Hypothèse 13.1.
Soient ρ ∈ (0, ρR) et K > 0. Il existe une constante C telle que, pour tout t suffisamment grand,

pour tout n ≥ 0,
‖Lnt ‖(BI,0,‖·‖K,a(t))

≤ Ce−ρa(t)n.

La démonstration de la Proposition 13.5 repose sur la Proposition 13.4, ainsi que sur la transposi-
tion d’un argument de couplage classique pour montrer la décroissance exponentielle des corrélations
pour des chaînes de Markov [227]. Les cônes de fonctions sont utilisés d’une façon similaire à ce que
nous avons présenté dans la démonstration de la Proposition 12.7.

Ces deux propositions permettent de calculer le comportement asymptotique de l’opérateur po-
tentiel discrétisé. Soit (ft)t≥0 une famille de fonctions dans BI,0 telle que lim supt→+∞ ‖ft‖K,a(t) < +∞.
Alors

+∞∑
n=0

Lnt (ft) =

∫ +∞

0

Lbsct ft ds

=
1

a(t)

∫ +∞

0

Lbs/a(t)c
t ft ds

' 1

a(t)

∫ +∞

0

Π∗e−sR
T

Π∗(ft) ds

=
1

a(t)
Π∗RT,−1Π∗(ft) + o

(
1

a(t)

)
.

Par conséquent, pour tout f ∈ CI
0,

Qt(f) =
1

a(t)
Π∗Π

∗RT,−1Π∗Π
∗(f) + o

(
1

a(t)

)
=

1

a(t)
RT,−1(f) + o

(
1

a(t)

)
.
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Ce type de développement asymptotique se retrouve aussi dans [84]. Bien que les résultats que nous
présentons ici soient plus faibles, l’image spectrale est, au moins heuristiquement, donnée par la
Figure 32.

1

Λ−1

0

Sp(L[0] y B)

0

ρR
Sp(R y CI)

1

Λ−1

0

Sp(Lt y BI)

Figure 32 – Image conjecturale du lien entre les spectres de L[0], R et Lt quand |I| = 5. Le spectre de
Lt est une perturbation de magnitude a(t) de 5 copies de Sp(L[0] y B), et le spectre de R se retrouve
– à symétrie centrale près – en zoomant dans une fenêtre de taille ' a(t) autour de 1 ∈ Sp(Lt y BI).

Ces arguments nous mènent au théorème principal de l’article [226], ou du moins à une version
légèrement moins générale d’icelui, car nous supposons ici que (A, µ, T[0]) est mélangeante.

Théorème 13.6. [226, Theorem 1.15]
Soit ([Zd], µ̃, T̃ ) une Zd-extension markovienne, ergodique et conservative d’une transformation

Gibbs-Markov (A, µ, T ). Supposons que (A, µ, T[0]) est mélangeante.
Soit I un ensemble fini et (σt)t≥0 une famille d’injection de I dans Zd. Notons Pt la matrice

des probabilités de transition du système induit sur [Σt] = [σt(I)], et Qt = Π∗(Id−Lt)−1Π∗ y CI
0

l’opérateur potentiel discrétisé. Il y a équivalence entre :
• Il existe une matrice R irréductible et une fonction a tendant vers 0 en +∞ telles que Pt =t→+∞

Id−a(t)R + o(a(t)).
• Il existe un opérateur S y CI

0 irréductible 67 et une fonction a tendant vers 0 en +∞ telles
que Qt =t→+∞ a(t)−1S + o(a(t)−1).

Sous l’une de ces conditions, on peut choisir les fonctions a égales et S y CI
0 = RT,−1 y CI

0.

Esquisse de démonstration du Théorème 13.6.
Le cas direct découle des calculs précédent. La seule chose à vérifier est l’irréductibilité de S =

RT,−1, qui ne pose pas de problème particulier.

67. En un sens que nous ne détaillerons pas ici. Nous renvoyons à [226, Definition 1.13]. Le critère précis peut
paraître étrange, mais est très pratique à la fois dans les démonstrations et dans les applications.
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Cependant, le sens réciproque nous intéresse plus : c’est celui-ci qui nous permet d’estimer les
probabilités de transition. Supposons donc que Qt = a(t)−1S + o(a(t)−1) pour un certain opérateur
irréductible S.

On utilise un argument de compacité. Il suffit de montrer que a(t)−1(Id−Pt) reste dans un
compact de matrices irréductibles. Une fois que l’on a montré cela, on considère une sous-suite
(tn)n≥0 telle que a(tn)−1(Id−Ptn) converge vers une matrice irréductible R. Alors, d’après le sens
direct, S y CI

0 = RT,−1 y CI
0, ce qui caractérise R. La famille a(t)−1(Id−Pt) a donc une unique

matrice limite, donc converge.
Il reste à montrer cette condition de compacité. Dans un premier temps, nous montrons le théo-

rème pour |I| = 2, c’est-à-dire quand I = {i, j}. En effet, dans ce cas, Pt est une matrice 2 × 2,
stochastique, et qui préserve la mesure de comptage : elle n’a qu’un seul paramètre libre. Sans perte
de généralité, a(t) est la probabilité qu’une excursion de [σt(i)] dans [Zd] atteigne [σt(j)] avant de
revenir en [σt(i)], de telle sorte que

Pt =

(
1− a(t) a(t)
a(t) 1− a(t)

)
.

Le sens direct du théorème suffit alors.
Dans le cas général, on peut induire le système ([I], µt, Tt) sur chaque sous-ensemble [{i, j}] de

cardinal 2 de I. L’irréductibilité de S implique alors que Q{i,j},t = a(t)−1S{i,j} + o(a(t)−1) pour une
matrice S{i,j} irréductible 2 × 2. Le cas |I| = 2 permet alors de conclure que les orbites partant de
[i] dans [I] ont une probabilité de l’ordre de a(t) de passer par [j] avant de revenir en [i]. La matrice
a(t)−1(Id−Pt) reste donc dans un compact, ce qui termine la démonstration.

13.2 Périodicité et structure des extensions ergodiques

La différence entre le Théorème 13.6 et [226, Theorem 1.15] est l’hypothèse additionnelle que le
système (A, µ, T[0]) est mélangeant. Dans l’article [226], cette hypothèse est retirée grâce à une jolie
curiosité. Si (A, µ, T[0]) n’est pas mélangeante, par la Proposition 3.11, elle a une décomposition en
composantes périodiques. L’objectif suivant est de comprendre ce qu’une telle décomposition nous
dit sur l’extension ([Zd], µ̃, T̃ ).

Deux cas de figure peuvent survenir, que nous appellerons respectivement monochromatique et
bichromatique, le premier étant a priori le plus fréquent. La connexité de Rd \ {0} intervient dans
cette analyse, ce qui explique les comportements différents qui peuvent advenir en dimension 1 et 2.

Proposition 13.7. [226, Proposition 3.3]
Soit ([Zd], µ̃, T̃ ) une Zd-extension markovienne, ergodique et conservative d’une transformation

Gibbs-Markov (A, µ, T ). Soit M la période de (A, µ, T[0]), et A =
⊔
k∈Z/MZAk sa décomposition en

composantes périodiques.
Alors il existe R > 0 ayant les propriétés suivantes. Soit Σ ⊂ Zd non vide. Supposons que

minp 6=q∈Σ ‖p− q‖ ≥ R. Ou bien :
• d ∈ {1, 2}, et l’extension est monochromatique. Alors il existe ` ∈ Z/MZ tel que, presque
sûrement, les transitions entre différents sites de [Σ] se font uniquement de A`−1 × Σ vers
A` × Σ. Autrement dit, toutes les transitions se font sur la même période.
• d = 1, et l’extension est bichromatique 68. Écrivons alors Σ = {. . . , σ−1, σ0, σ1, . . .} = {σn :
n ∈ I}. Il existe `−, `+ ∈ Z/MZ telle que, presque sûrement, les transitions entre différents
sites de [Σ] se font uniquement de A`+−1 × {σn} vers A`− × {σn+1}, ou de A`−−1 × {σn}

68. Nous renvoyons à [226, Sub-section 3.1] pour une définition.
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vers A`+ × {σn−1}. Autrement dit, les transitions montantes ou descendantes se font sur des
périodes différentes.

Exemple 13.8 (Une extension monochromatique).
Soit (A, µ, T ) la transformation Gibbs-Markov donnée par :
• A = T1 × Z/5Z,
• µ est proportionnelle à la mesure de Lebesgue sur A,
• T (x, k) = (3x, k + 1).

Soit

F (x, k) =


−1 si x ∈ [0, 1/3) et k = 0
+1 si x ∈ [2/3, 1) et k = 0
0 sinon

Cette extension est monochromatique, avec M = 5, Ak = T1 × {k} et ` = 1.

A1

A2
A3

A4
A0

Figure 33 – À gauche : la décomposition en composantes périodiques {A0, A1, . . . , A4} de la transfor-
mation (A, µ, T[0]) de l’Exemple 13.8, ainsi que les transitions autorisées par T entre ces composantes.
À droite : la Z-extension de T par F et ses transitions autorisées. Les cinq nuances de bleu sont asso-
ciées aux cinq éléments de la partition {A0×Z, A1×Z, . . . , A4×Z} de [Z]. Les transitions autorisées
mènent toutes ou bien à une nuance un degré plus foncée, ou bien de la nuance la plus foncée à la
nuance la plus claire.

Exemple 13.9 (Une extension bichromatique).
Soit (A, µ, T ) la transformation Gibbs-Markov donnée par :
• A = T1 × Z/5Z,
• µ est proportionnelle à la mesure de Lebesgue sur A,
•

T (x, k) =


(2x, 3) si x ∈ [0, 1/2) et k = 0
(2x, 1) si x ∈ [0, 1/2) et k = 2
(2x, k + 1) sinon

.

Soit

F (x, k) =


−1 si x ∈ [0, 1/2) et k = 0
+1 si x ∈ [1/2, 1) et k = 2
0 sinon

.

Cette extension est bichromatique, avec M = 5, Ak = T1 × {k}, `+ = 1 et `− = 3.

Question 13.10 (Structure des extensions bichromatiques).
Les Z2-extensions sont toutes monochromatiques. Nous avons de plus montré dans [226, Propo-

sition 3.2] que, si F : A→ Z est non essentiellement bornée, alors la Z-extension associée est aussi
monochromatique. Un résultat plus fort semble plausible : si une Z-extension est bichromatique, alors
il existe un cobord borné u ◦ T − u tel que F + u ◦ T − u est à valeurs dans {−1, 0, 1}. L’intuition
derrière cette question est que, si cette dernière condition n’est pas vérifiée, alors une trajectoire de
σn−1 vers σn > σn−1 peut sauter au-dessus de σn avant d’y revenir, ce qui brise la distinction entre
trajectoires montantes et trajectoires descendantes.
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A1

A2
A3

A4
A0

Figure 34 – À gauche : la décomposition en composantes périodiques {A0, A1, . . . , A4} de la transfor-
mation (A, µ, T[0]) de l’Exemple 13.9, ainsi que les transitions autorisées par T entre ces composantes.
À droite : la Z-extension de T par F et ses transitions autorisées. Les cinq nuances de bleu sont as-
sociées aux cinq éléments de la partition

{⊔
n∈ZAk−2n × {n} : k ∈ Z/5Z

}
de [Z]. Les transitions

autorisées mènent toutes ou bien à une nuance un degré plus foncée, ou bien de la nuance la plus
foncée à la nuance la plus claire.

Grâce à la Proposition 13.7, même si (A, µ, T[0]) n’est pas mélangeante, nous disposons d’une
description précise des composantes périodiques des systèmes induits ([I], µI , Tt). Cela permet de
retrouver le théorème 13.6 dans ce cadre, d’où :

Proposition 13.11.
Dans le Théorème 13.6, on peut enlever l’hypothèse que (A, µ, T[0]) est mélangeante.

13.3 Quelques exemples

Tout est en place. La méthode de Nagaev–Guivarc’h, à travers la Proposition 11.7, permet de cal-
culer la limite de l’opérateur potentiel discrétisé. Ensuite, le Théorème 13.6, éventuellement renforcé
par la Proposition 13.11, permet d’en déduire un développement asymptotique des probabilités d’at-
teinte. Il ne reste qu’à en récolter les fruits. Nous résumons ici quelques exemples, sans les démontrer ;
si leur preuve peut être laborieuse, elle ne fait pas intervenir de nouvelle idée importante.

Ci-suivent des énoncés généraux dans le cadre d’extensions de variance finie en dimension 1 et 2,
et deux cas particuliers d’extensions de dimension 1 à queues lourdes.

Proposition 13.12. [226, Proposition 6.1]
Soit ([Z], µ̃, T̃ ) une Z-extension markovienne, ergodique et conservative d’une transformation

Gibbs-Markov (A, µ, T ) de saut F . Supposons que F est centrée et de carré intégrable. On pose
Var := σ2

GK(A, µ, T ;F ).
Soient I = {1, . . . ,Card(I)} et σ : I ↪→ R une application injective croissante. Pour tout t ≥ 0,

donnons-nous σt : I ↪→ Z telle que σt(i) = tσ(i) + o(t) pour tout i ∈ I. Soit Pt la matrice des
probabilités de transition du système induit sur [Σt] := [σt(I)]. Alors :

Pt =t→+∞ Id−Var

t
R + o(t−1),

où R est la matrice tridiagonale, symétrique et irréductible définie par :
Ri,i+1 = − 1

2(σ(i+1)−σ(i))
∀ 1 ≤ i < Card(I),

Ri,i−1 = − 1
2(σ(i)−σ(i−1))

∀ 1 < i ≤ Card(I),

Rij = 0 si |i− j| ≥ 2,
Rii =

∑
j∈I
j 6=i
|Rij| ∀ i ∈ I.

(13.1)

Sous les hypothèses de la Proposition 13.12, et si l’on pose ∆j
i := |σ(j)− σ(i)|, alors les matrices
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de transition (Pt)t≥0 sont donc données par :

1− Var
2t∆2

1

Var
2t∆2

1
0 . . . 0 0

Var
2t∆2

1
1− Var

2t∆2
1
− Var

2t∆3
2

Var
2t∆3

2
. . . 0 0

0 Var
2t∆3

2
1− Var

2t∆3
2
− Var

2t∆4
3

. . . 0 0
... . . . . . . . . . ...

...
0 0 0 . . . 1− Var

2t∆
|I|−1
|I|−2

− Var

2t∆
|I|
|I|−1

Var

2t∆
|I|
|I|−1

0 0 0 . . . Var

2t∆
|I|
|I|−1

1− Var

2t∆
|I|
|I|−1


+ o(t−1).

Cet énoncé se démontre facilement dans le cadre de la marche aléatoire simple sur Z, à l’aide d’un
argument de martingale. Cela permet d’ailleurs de conjecturer la matrice R et de vérifier directement
que RS = Id sur CI

0, où S a été calculée à l’Exemple 11.8, plutôt que d’inverser une matrice.
Passons maintenant aux Z2-extensions.

Proposition 13.13. [226, Proposition 0.2]
Soit ([Z2], µ̃, T̃ ) une Z2-extension markovienne, ergodique et conservative d’une transformation

Gibbs-Markov (A, µ, T ) de saut F . Supposons que F est centrée et de carré intégrable. Soit Cov
l’opérateur de covariance asymptotique de F , défini par l’Équation (3.18).

Soient I un ensemble fini et σ : I ↪→ R2 une application injective. Pour tout t ≥ 0, donnons-nous
σt : I ↪→ Z telle que σt(i) = tσ(i) + o(t) pour tout i ∈ I. Soit Pt la matrice des probabilités de
transition du système induit sur [Σt] := [σt(I)]. Alors :

Pt =t→+∞ Id−
π
√

det(Cov)

ln(t)
R + o(ln(t)−1),

où R est la matrice symétrique et irréductible définie par :{
Rij = − 1

|I| si i 6= j ∈ I,
Rii = |I|−1

|I| ∀i ∈ I.

Ce deuxième exemple a une particularité intéressante : tous les termes hors diagonale de la matrice
R sont égaux. Donnons-nous une partie finie Σ = {σ0, . . . , σn} ⊂ Z2 dont les distances entre éléments
distincts sont toutes élevées et du même ordre de grandeur. Alors, partant de [σ0] ⊂ [Σ], la probabilité
de revenir en [Σ] en [σi] est à peu près la même pour tous les i 6= 0 : la géométrie de Σ n’intervient
pas.

Nous terminons par deux calculs explicites pour des Z-extensions dont les sauts sont dans le bassin
d’attraction d’une loi de Lévy. Dans ce cas, nous disposons d’une formule explicite pour l’opérateur
potentiel discrétisé, mais l’auteur n’a pas trouvé de telle formule pour les probabilités de transition.
Cela n’empêche pas de calculer ces matrices dans des cas précis : il suffit d’inverser une matrice
explicite.

Les deux exemples qui suivent sont [226, Example 6.5] et [226, Example 6.6].

Exemple 13.14 (Lois de Lévy asymétriques).
Soit ([Z], µ̃, T̃ ) une Z-extension markovienne, ergodique et conservative d’une transformation

Gibbs-Markov (A, µ, T ) de saut F . Supposons que F est dans le bassin d’attraction d’une loi de
Lévy stable de paramètre α ∈ (1, 2) maximalement asymétrique : c− = 0 et, sans perte de généralité,
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c+ = 1. Prenons I = {A,B,C} et (σ(A), σ(B), σ(C)) = (−1, 0, 1). Soit σt = tσ + o(t). Alors, dans
la base (1A,1B,1C),

R =
π

| sin(απ)|

 1 −(2α−1 − 1) −(2− 2α−1)
−1 2α−1 −(2α−1 − 1)
0 −1 1

 , (13.2)

et Pt =t→+∞ Id− t
L(t)

R + o(tL(t−1)).

Le terme en bas à gauche de la matrice R est 0, ce qui signifie que les transitions de [σt(C)] ' t
à [σt(A)] ' −t qui évitent [0] sont rares (de probabilité o(tL(t)−1)). Les transitions de [σt(A)] ' −t
à [σt(C)] ' t qui évitent [0] sont beaucoup plus fréquentes : le processus peut faire un grand saut
au-dessus de [σt(B)] et [σt(C)], puis redescendre par de petits sauts jusqu’à [σt(C)].

On remarque de plus que, si α est proche de 2, la matrice R est proche de celle donnée par la
Proposition 13.12. Les transitions se font alors essentiellement entre plus proches voisins. Si α est
proche de 1, les transitions se font circulairement : de [σt(A)] à [σt(C)] (un grand saut positif), puis
de [σt(C)] à [σt(B)] (à l’aide de petits sauts négatifs), puis de [σt(B)] à [σt(A)] (encore à l’aide de
petits sauts négatifs).

Exemple 13.15 (Lois de Lévy symétriques).
Soit ([Z], µ̃, T̃ ) une Z-extension markovienne, ergodique et conservative d’une transformation

Gibbs-Markov (A, µ, T ) de saut F . Supposons que F est dans le bassin d’attraction d’une loi de
Lévy stable de paramètre α ∈ (1, 2) symétrique. Sans perte de généralité, c− = c+ = 1. Prenons
I = {A,B,C} et (σ(A), σ(B), σ(C)) = (−1, 0, 1). Soit σt = tσ+o(t). Alors, dans la base (1A,1B,1C),

R =
22−απ

(4− 2α−1)| tan
(
απ
2

)
|

 2 −2α−1 −(2− 2α−1)
−2α−1 2α −2α−1

−(2− 2α−1) −2α−1 2

 , (13.3)

et Pt =t→+∞ Id− t
L(t)

R + o(tL(t)−1).

13.4 Observables d’intégrale nulle, III : Formule de Green–Kubo

Terminons cette présentation par un retour sur l’article [184]. Dans ce travail, nous avions obtenu
certains des résultats précédents, notamment les Propositions 13.12 et 13.13, dans le cas de deux sites
(c’est-à-dire |I| = 2) : ce sont [184, Corollaire 1.9] et [184, Proposition 1.6]. La stratégie utilisée
était très différente de celle présentée en Section 11.

Pour simplifier, on se place dans le cadre d’une Z-extension markovienne, ergodique et conservative
([Z], µ̃, T̃ ) d’une transformation Gibbs-Markov (A, µ, T ) de saut F , telle que F est de carré intégrable
et de moyenne nulle.

Le point de départ est le Corollaire 9.8, qui affirme que, pour une observable régulière, d’intégrale
nulle et à support borné f ,

σ2
GK

(
[Z], µ̃, T̃ ; f

)
= σ2

GK

(
[0], µ, T̃[0]; Σ[0](f)

)
. (13.4)

Soit p ∈ Z. Appliquons cette l’Équation (13.4) à fp := 1[p] − 1[0].
D’une part, le membre de gauche de l’Équation (13.4) est

2(g(p)− 1) où g(p) =
+∞∑
n=0

[
2µ
(
STnF = 0

)
− µ

(
STnF = p

)
− µ

(
STnF = −p

)]
.
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La fonction g est le noyau de Green symétrisé de la Z-extension. Par des calculs analogues à ceux
de la Sous-section 11.5,

g(p) ∼p→±∞
2|p|

σ2
GK(A, µ, T ;F )

et σ2
GK

(
[Z], µ̃, T̃ ; fp

)
∼p→±∞

4|p|
σ2

GK(A, µ, T ;F )
.

D’autre part, les fonctions Σ[0](fp) sont toutes d’intégrale nulle. De plus, la famille de fonctions
(L[0](Σ[0](fp)))p∈Z est bornée dans Lip∞(A, µ). Par conséquent, il existe une constante C telle que,
pour tout p, ∣∣∣∣∣

+∞∑
n=1

∫
A

Σ[0](fp) · Σ[0](fp) ◦ T n[0] dµ

∣∣∣∣∣ ≤ C,

et donc σ2
GK

(
[0], µ, T̃[0]; Σ[0](f)

)
=
∥∥Σ[0](fp)

∥∥2

L2(A,µ)
+O(1). Finalement,∫

A

Σ[0](fp)
2 dµ ∼p→±∞

4|p|
σ2

GK(A, µ, T ;F )
. (13.5)

Il reste à mieux comprendre la loi de Σ[0](fp). Soit Pp la probabilité d’atteinte de [p] partant de
[0]. Quand p est grand, le processus induit sur [{0, p}] se comporte essentiellement comme une chaîne
de Markov à deux états.

[0] [p]1− Pp
Pp

1− P−p
P−p

Figure 35 – Graphe associé à une chaîne de Markov à deux états.

Cette chaîne préservant la mesure de comptage, Pp = P−p.
Ainsi, Σ[0](fp)(x) = −1 si la trajectoire partant de x revient en [0] avant d’atteindre [p], soit avec

une probabilité 1−Pp proche de 1. Conditionnée par être positive, c’est-à-dire si la trajectoire passe
par [p] avant de revenir en [0], la fonction Σ[0](fp) + 1 est le temps d’atteinte d’un évènement de
probabilité Pp.

On se ramène ainsi au temps d’atteinte d’évènements de petite mesure. Une version légèrement
renforcée du Corollaire 12.11 donne le comportement asymptotique du moment d’ordre 2 de Σ[0](fp) :∫

A

Σ[0](fp)
2 dµ ∼p→±∞

2

Pp
.

Avec l’Équation (13.5), on retombe finalement sur la Proposition 13.12 :

Pp ∼p→±∞
σ2

GK(A, µ, T ;F )

2|p|
.

13.5 Pour aller plus loin : Autour de la théorie du potentiel

Pour terminer, nous proposons quatre pistes de recherche liées à l’article [226] dont nous venons
de présenter le contenu.
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13.5.1 Gaz de Lorentz

Un premier problème naturel est de s’affranchir du cadre des transformations Gibbs-Markov. En
particulier :

Question 13.16.
Les Propositions 13.12 et 13.13 restent-elles valables pour l’application collision d’un gaz de Lo-

rentz, respectivement sur un cylindre ou dans le plan ?

Deux stratégies semblent raisonnables. La première consiste à utiliser les tours de Young : on sait
répondre à ces questions dans le cadre des transformations Gibbs-Markov, et un billard de Sinaï est,
à une projection près, une tour au-dessus d’une transformation Gibbs-Markov.

Cependant, les Propositions 13.12 et 13.13 ne permettent de contrôler que les temps markoviens,
c’est-à-dire les temps d’atteinte d’un obstacle qui sont aussi les temps auxquels le processus revient
à la base de la tour de Young.

Une seconde stratégie consisterait à refaire l’ensemble du raisonnement. Cette approche est plus
ambitieuse. La partie reposant sur la méthode de Nagaev–Guivarc’h se transpose aisément en utilisant
les espaces de distributions anisotropes de Demers–Zhang [74]. De là, on serait tenté rester dans le
cadre de tels espaces. Il faudrait donc généraliser l’identité de balayage (Proposition 7.13) à des
espaces de distributions ; la méthode d’induction probabiliste suggérée en Sous-section 8.4 pourrait y
jouer un rôle. Ceci dit, la principale difficulté semble être de contrôler les propriétés de l’application
T[0] de premier retour en [0], qui joue un rôle central dans notre raisonnement.

13.5.2 Espérance du temps d’atteinte

Soit (Sn)n≥0 une marche aléatoire sur le groupe abélien fini G = (Z/r1Z) × . . . × (Z/rdZ), de
noyau de transition P . Soit ϕ̃0 le premier temps d’atteinte (positif ou nul) de 0. Alors E0(ϕ̃0) = 0,
et, pour p 6= 0,

Ep(ϕ̃0) = 1 +
∑
p′∈G

Ppp′Ep′(ϕ̃0).

Autrement dit, si l’on pose F (p) := Ep(ϕ̃0), alors F (0) = 0 et (Id−P )(F ) = 1 hors de 0. On peut
ainsi calculer F .

Le mouvement Brownien satisfait une propriété similaire. Soit (Bt)t≥0 le mouvement brownien
partant de p ∈ (a, b). Alors :

E (inf {t ≥ 0 : Bt ∈ {a, b}}) = (b− p)(p− a),

qui est bien solution de l’équation −∆
2

(F ) = 1 sur (a, b).
Cette technique se généralise. Si l’on pose F (p, z) := Ep(ezϕ̃0), alors F (0, z) = 1 et (Id−ezP )(F ) =

0 hors de 0. En dérivant cette relation en z = 0, on retrouve l’équation satisfaite par l’espérance du
temps d’atteinte.

Question 13.17.
On se donne une extension markovienne ergodique ([Zd], µ̃, T̃ ) d’une transformation Gibbs-Markov

(A, µ, T ). Soit Λ < Zd un réseau peu dense. Que peut-on dire du temps d’atteinte ϕ̃[Λ] de [Λ] dans
([Zd], µ̃, T̃ ) ou, de façon équivalente, du temps d’atteinte de [0] dans la Zd/Λ-extension quotient ? En
particulier, la fonction

F :

{
Zd/Λ → R+

p 7→
∫
A
ϕ̃[Λ](p, x) dµ(x)

,
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a-t-elle un profil limite quand Λ < Zd devient très peu dense 69 ?

L’un des intérêts de cette question est que la théorie des temps d’atteinte de petits ensembles,
en-dehors de la mesure de l’ensemble que l’on cherche à atteindre, fait en général intervenir des objets
définis globalement, tels que des valeurs propres principales d’opérateurs de transfert perturbés [142],
ou les queues du temps d’atteinte. La Question 13.17 porte sur le comportement local (l’espérance
sur chaque [p]) d’un temps d’atteinte 70.

13.5.3 Systèmes transients

La quasi-totalité de ce mémoire a porté sur des systèmes ergodiques conservatifs. Pour les Zd-
extensions de systèmes Gibbs-Markov, cela limite l’étude aux dimensions 1 et 2. Que peut-on dire
en dimension supérieure ?

Comme en Sous-sous-section 13.5.2, revenons aux marches aléatoires. Soit (Sn)n≥0 une marche
aléatoire dans Zd partant de 0. Posons, pour p ∈ Zd,

G(p) :=
+∞∑
n=0

P(Sn = p).

Le temps total passé en 0 suit une loi géométrique d’espérance G(0). Conditionné par être strictement
positif, par la propriété de Markov forte, le temps total passé en p suit aussi une loi géométrique
d’espérance G(0), tandis que la loi non conditionnée est d’espérance G(p). Il s’ensuit que

P (∃n ≥ 0 : Sn = p) =
G(p)

G(0)
. (13.6)

Sous des hypothèses raisonnables sur le noyau de transition de la marche aléatoire, le noyau de
Green G(p) peut être approché dans le régime p→∞, ce qui permet de calculer asymptotiquement
la probabilité que la marche aléatoire passe en p.

Soit ([Zd], µ̃, T̃ ) une extension markovienne ergodique d’un système Gibbs-Markov (A, µ, T ). Le
noyau de Green se calcule de la même façon que pour les marches aléatoires. De plus, les transfor-
mations Gibbs-Markov satisfont une forme faible de la propriété de Markov forte (Proposition 3.24).
On montre donc facilement que, dans ce cadre, il existe une constante C > 0 telle que, pour tout
p ∈ Zd,

µ
(
∃n ≥ 0 : STnF = p

)
≥ C

G(p)

G(0)
. (13.7)

Question 13.18.
Soit ([Zd], µ̃, T̃ ) une extension ergodique transiente d’un système Gibbs-Markov (A, µ, T ) de saut

F raisonnable (par exemple, centré et de carré intégrable). Existe-t-il une constante C > 0 telle que

P
(
∃n ≥ 0 : STnF = p

)
∼p→∞ CG(p) ? (13.8)

69. Nous renvoyons la lectrice à la Sous-section 5.4 pour de tels exemples d’énoncés asymptotiques.
70. À titre personnel, ce type de question est l’une des raisons pour lesquelles j’apprécie les structures de Zd-

extensions. D’une part, leur étude fait intervenir des techniques diverses : adaptation de raisonnements probabilistes,
métodes de perturbation d’opérateurs, méthodes de cônes... D’autre part, la possibilité d’opérer des renormalisations
spatiales réintroduit de la géométrie dans des questions dynamiques.
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Une telle propriété, plus forte que l’Inégalité (13.7), reposerait sur une forme de perte de mémoire.
Plus précisément, soit Ap :=

{
∃n ≥ 0 : STnF = p

}
et T[p] l’application de première atteinte en [p],

qui est bien définie sur Ap. Alors

G(p) = µ(Ap)

∫
Ap

+∞∑
n=0

1{STn F=0} dT[p],∗µ(· | Ap).

Si la suite de mesures T[p],∗µ(· | Ap) converge en un sens assez fort vers une mesure limite µ∞ quand
p tend vers l’infini, alors la question serait résolue avec C−1 =

∑+∞
n=0 µ∞

(
STnF = 0

)
. Mais cette

convergence signifie que la Zd extension partant de [0], conditionnée pour arriver en un [p] éloigné
de [0], ne se souvient plus de la direction dont elle vient.

Remarquons à ce sujet que l’Équation (13.6) s’adapte à des marches aléatoires sur des groupes
quelconques, et notamment sur le groupe libre F2. En revanche, l’analogue de la Question 13.18
pour des extensions de systèmes Gibbs-Markov par le groupe libre F2 est certainement fausse. Il faut
donc bien utiliser des propriétés spécifiques aux marches aléatoires sur Zd pour espérer répondre à
la Question 13.18.

Un tel énoncé serait un exemple rare de résultat de théorie ergodique portant sur des systèmes
transients.

La Question 13.18 se pose aussi pour le gaz de Lorentz tridimensionnel, qui est physiquement plus
réaliste que le modèle bidimensionnel. Il faut cependant faire attention à ce que le gaz de Lorentz
tridimensionnel est une Z3-extension d’un billard de Sinaï tridimensionnel, et les billards de Sinaï
tridimensionnels sont mal compris (voir à ce propos la discussion en Sous-sous-section 2.4.6). Si
l’on s’attend à ce que le billard de Sinaï tridimensionnel ait un comportement proche d’une marche
aléatoire sur Z3, même sa transience n’est pas démontrée.

Un autre système transient lié à ces sujets est celui de la marche aléatoire sur Z2 conditionnée
par ne pas passer en 0, qui a vu des développements récents [60, 196]. La définition d’un tel objet
pour des Z2-extensions, et la démonstration de ses propriétés, est aussi un enjeu de recherche.

13.5.4 Théorie du potentiel et distributions

Un projet plus vaste, mais moins précis, consiste à explorer dans le cadre de systèmes dynamiques
hyperboliques l’articulation entre la théorie du potentiel (voir par exemple la Sous-section 8.3) et les
espaces de distributions anisotropes (voir par exemple la Sous-sous-section 3.4.5).

Un lieu pour ce faire serait celui des compactifications d’espaces hyperboliques. Par exemple, soit
H2 le plan hyperbolique. On dispose de plusieurs notions de bord pour cet espace, qui sont autant
de façons de le compactifier. Par exemple :
• Le bord visuel est l’espace des rayons (ou demi-droites) géodésiques, où deux rayons sont

équivalents s’ils sont à distance bornée [87]. Cette construction est topologique et repose sur
les géodésiques de l’espaces. Le bord visuel de H2 est ainsi S1.
• Considérons le mouvement brownien (Bt)t≥0 sur H2. Son générateur est le laplacien, et l’espace

des fonctions harmoniques bornées sur H2 est naturellement isomorphe à L∞(S1,Leb) via
intégration contre des noyaux de Poisson. Le bord de Poisson du mouvement brownien sur H2

est donc l’espace mesuré (S1,Leb) sous-jacent, hélas dépouillé de sa structure topologique [130].
• Le bord de Martin du mouvement brownien s’appuie aussi sur un processus stochastique,

mais a l’avantage de fournir comme bord un honnête espace topologique, et non un espace
mesuré [7, 130,171].

Question 13.19.
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Peut-on définir une notion de bord, par exemple sur l’espace hyperbolique Hn, qui satisfait les
conditions suivantes :
• La construction est de nature analytique, et fait intervenir par exemple les fonction harmo-
niques pour un noyau donné ;
• La construction repose sur le flot géodésique, et non sur une marche aléatoire ou un mouvement
brownien ;
• La construction fournit une compactification topologique de Hn ?

Soit X le générateur du flot topologique. L’espace des fonctions harmoniques pour ce générateur
est l’espace des fonctions f : T1Hn → C telles que X(f) = 0, c’est-à-dire constantes le long des
géodésiques. Or l’espace des géodésiques est paramétré par les extrémités à l’infini, nécessairement
distinctes, des géodésiques, et est donc (Sn−1 × Sn−1) \Diag. Cet espace est trop gros.

L’analogue de l’action de ∆ y C∞b (Hn,C) sera donc plutôt l’action de X sur un espace de
distributions anisotropes. L’utilisation de tels espaces de distributions permettrait d’“effacer le passé”,
ce qui manquait dans l’argument précédent. L’enjeu serait alors de définir l’analogue de la frontière de
Martin dans des espaces de distributions anisotropes, et d’avoir une définition suffisamment maniable
pour pouvoir être appliquée au moins dans le cadre des espaces hyperboliques Hn.
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Conclusion
Comme je l’avais annoncé en introduction, ce mémoire est une synthèse de quatre travaux

[184,185,222,226]. Mais cette synthèse est une reconstruction a posteriori de ce projet de recherche,
dont la logique est étrangère à l’acte de recherche lui-même. Pour terminer, j’aimerais revenir chrono-
logiquement sur ce projet ; en bref, au lieu d’exposer cliniquement les résultats de ce projet, raconter
un cheminement intellectuel.

Le point de départ : un théorème limite distributionnel [222]
Le point de départ est un de mes travaux de thèse [222], qui portait sur les limites en loi des

sommes de Birkhoff d’observables d’intégrale nulle. Le Théorème 9.6 s’applique à des observables
qui répondent à trois critères : être d’intégrale nulle, être régulière, et être suffisamment intégrable.
Les deux premiers critères sont naturels et faciles à vérifier, mais le critère d’intégrabilité est plus
obscur : il demande que Σ[0](|f |) ∈ Lq(A, µ) pour un réel q > 2.

Un argument qualitatif permet de vérifier que c’est le cas si f ∈ L∞([Z], µ̃) et est à support borné,
mais on préfèrerait une condition suffisante plus générale portant sur la vitesse de décroissance de f
en l’infini.

Dans le cas des marches aléatoires, ce point est résolu dans les travaux de E. Csáki et A. Földes [64,
65], sur lesquels je me suis fortement appuyé pendant ma thèse. Des outils de théorie probabiliste
du potentiel permettent de calculer la probabilité qu’une excursion partant de 0 passe par p avant
de revenir en 0. On en déduit la loi du temps Np passé en p avant de revenir en 0, ce qui apporte un
contrôle suffisant sur

∥∥Σ[0](|f |)
∥∥
Lq :

∥∥Σ[0](|f |)
∥∥
Lq =

∥∥∥∥∥∥
∑
p∈Zd

f(p)Np

∥∥∥∥∥∥
Lq

≤
∑
p∈Zd
|f(p)| ‖Np‖Lq .

On retrouve là des idées rencontrées en Sous-section 13.4.

Redémontrer le théorème précédent, à une nuance près : [184]
L’étape suivante est la première partie de [184]. La problématique reste proche de mes travaux

de thèse : trouver des limites en loi de sommes de Birkhoff. En suivant une idée de Françoise Pène,
nous avons appliqué la méthode des moments à ce problème. Si cela conduit à des calculs très lourds
– mais pas dénués d’élégance combinatoire – nous avons pu aboutir au Théorème 6.7. La limite en loi
est la même que celle donnée par le Théorème 9.6, mais la variance asymptotique a une expression
plus facile à analyser. Le critère d’intégrabilité est donc plus explicite : on a bien une condition de
décroissance sur f , avec un exposant pratiquement optimal.

L’histoire aurait pu s’arrêter là : le problème consistant à obtenir un bon critère d’intégrabilité
pour les observables est essentiellement résolu 71. Mais l’idée d’obtenir des résultats de théorie du
potentiel a creusé son chemin. L’argument de E. Csáki et A. Földes présenté ci-dessus consiste à
partir d’informations sur la probabilité qu’une excursion partant de 0 atteigne p ∈ Zd, en déduire
des informations sur Np puis sur

∥∥Σ[0](|f |)
∥∥
Lq([0],µ)

. On peut le parcourir en sens inverse. Les deux
théorèmes distributionnels ont pour conséquence le Corollaire 9.8 : la formule de Green–Kubo est
invariante par ce procédé d’induction. Le raisonnement de la Sous-section 13.4 s’ensuit. On peut
estimer

∥∥Σ[0](1p − 10)
∥∥
L2([0],µ)

, et de là la probabilité d’atteindre [p] avant de revenir en [0].
Remarquons au passage que deux nouvelles briques ont fait leur apparition : les perturbations

d’opérateurs, et la théorie des temps d’atteinte d’évènements de petite mesure.

71. Bien que l’on puisse toujours se demander si ce critère peut être affaibli.
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Après [184]
L’article [184] a joué un rôle pivot dans ce projet. Certains résultats que nous sommes parvenus

à démontrer étaient aussi fascinants qu’insatisfaisants. Du point de vue du calcul des probabilités
d’atteinte, la stratégie employée est astucieuse, mais hautement inefficace.

D’une part, elle repose sur des constructions lourdes. Il faut d’abord démonstrer des théorèmes
limites distributionnnels de deux façons différentes, la première reposant sur un argument de couplage
particulièrement fort et technique et de longues réductions ( [221,222], technique présentée en Sous-
section 9.3), la seconde sur la méthode des moments, particulièrement calculatoire ( [184], technique
présentée en Sous-section 6.4). C’est bien la conjonction de ces deux théorèmes limites qui permet
d’obtenir l’égalité des formules de Green–Kubo (Corollaire 9.8). Cette longueur et cette technicité
sont autant d’obstacles à de potentielles généralisations.

D’autre part, cette stratégie apporte des résultats relativement faibles. Si l’on peut calculer les
probabilités de transition entre deux sites, elle échoue à partir de trois sites. En effet, le raisonnement
passe par la formule de Green–Kubo, qui est une forme quadratique. Elle ne contient donc que
l’information du symétrisé de l’opérateur potentiel discrétisé, et donc du symétrisé de la matrice
des probabilités de transition. On a perdu une partie de l’information. Ainsi, l’Exemple 13.14, où
apparaissent des matrices non symétriques, ne peut pas être obtenu par cette méthode.

Un autre point qui a soulevé notre intérêt est la propriété d’invariance par induction de la formule
de Green–Kubo. Cette propriété était plus ou moins connue dans certains cas en mesure finie, mais le
fait de retomber dessus par surprise 72 et de pouvoir l’exploiter comme nous l’avons fait pour estimer
des probabilités d’atteinte lui a donné un nouveau relief.

Le Corollaire 9.8 est une égalité entre deux versions de la formule de Green–Kubo, donc entre
deux expressions algébriques relativement simples. S’il est possible de le démontrer grâce à des
théorèmes probabilistes, il eût été esthétiquement plus satisfaisant de disposer d’un argument plus
élémentaire, reposant par exemple sur des découpages et recombinaisons d’intégrales. Nous nous
apercevons cependant assez vite que les arguments formels ont leurs limites, et que les questions de
sommabilité sont cruciales : l’Exemple 9.11 a tôt fait de punir le mathématicien trop téméraire 73.

Vers la théorie du potentiel : [185]
Si je souhaite alors une approche plus propre de l’estimation des probabilités d’atteintes dans des

Zd-extensions, la solution évidente consiste à adapter directement les arguments de théorie probabi-
liste du potentiel. Afin de montrer l’avantage de cette méthode, il est important de travailler avec au
moins 3 sites différents. C’est à ce moment que je mène les calculs explicites de la Sous-section 10.1
sur les marches aléatoires, qui me permettent de distinguer les trois étapes de ce calcul et de repérer
l’importance de l’identité de balayage.

L’adaptation aux systèmes dynamiques rencontrera un obstacle supplémentaire. Si l’on peut en-
coder une marche aléatoire par un système dynamique, la marche aléatoire a une donnée supplémen-
taire : une filtration. En l’absence de celle-ci, une traduction directe de l’identité de balayage conduit
à la version pour l’opérateur de Koopman, et à l’obstruction découlant du théorème de Livšic (Sous-
section 8.2). Il me faudra plusieurs mois pour penser à introduire l’opérateur de transfert et l’identité
de balayage associée, alors que ce type de traduction est pourtant classique en théorie ergodique.

L’opérateur (Id−L)−1 apparaît aussi dans la formule de Green–Kubo, et les propriétés de la

72. Nous nous en sommes aperçu lors d’une soirée de conférence à l’aber Wrac’h en 2016. L’expression initiale de la
variance asymptotique dans le Théorème 6.7 était assez différente, donc cette propriété de la formule de Green–Kubo
n’était pas apparente de prime abord.
73. Le châtiment consistant en des journées à chercher une erreur subtile – typiquement, un mauvais choix de jauge

– dans un lourd calcul. Voir à ce sujet la note correspondante dans l’Exemple 9.11.
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formule de Green–Kubo sont étroitement liées à la théorie du potentiel 74. Il n’est donc pas très
surprenant, mais tout de même heureux, que l’identité de balayage se soit avérée utile pour rendre
rigoureux les arguments formels justifiant l’invariance par induction de la formule de Green–Kubo.

À ce point, tout est en place pour l’article [185]. Celui-ci se concentrera sur l’identité de balayage,
et aura deux objectifs : justifier l’invariance par induction de la formule de Green–Kubo, et préparer
le terrain pour un travail ultérieur sur les probabilités de transition dans les Zd-extensions. Nous
l’enrichissons de quelques trouvailles rencontrées au passage 75.

Conclure, enfin : [226]
La suite et fin de ce projet est l’article [226]. Celui-ci a eu une longue genèse. J’ai commencé à

y réfléchir à partir de 2017, puis les différentes idées se sont lentement cristallisées : j’en esquisse la
stratégie au cours de l’année 2018, mais sa rédaction a principalement eu lieu en 2020 et 2021. Entre
temps, afin de varier les plaisirs, je travaille sur des projets plus courts ( [224,225] notamment 76).

Même avec une stratégie claire, on peut recontrer des problèmes techniques plus ou moins gênants.
Par exemple, le fait de travailler avec plusieurs sites introduit des matrices de transition, et donc des
problèmes de commutativité ; la gestion de cette non-commutativité a été un point d’achoppement,
et reste un des passages les plus techniques 77 de [226].

Le temps que je me suis donné pour réfléchir à cet article m’a cependant permis d’aplanir les plus
sérieux de ces problèmes. La structure des extensions ergodiques (Sous-section 13.2), qui trivialise
la réduction au cas où le système (A, µ, T[0]) mélangeant, en est un exemple. Mais le cas le plus
marquant pour moi est celui de la compacité pour la famille a(t)−1(Id−Pt), un des points clef de la
Sous-section 13.1. Mon idée initiale reposait initialement sur un argument de décomposition multi-
échelles des composantes métastables [99]. Un tel argument était affreusement technique, même dans
ses versions préliminaires. J’ai pu cependant le simplifier au fur et à mesure, jusqu’à arriver à une
série de 5 (in)égalités simples, que l’on retrouve à la fin de la démonstration de [226, Lemma 4.4].

Ce dernier exemple est à l’image du chemin suivi par ces recherches. Ce projet a été semé de
questions et d’écueils, dont les plus importants ont parfois disparu dans la synthèse qui en est offerte
aux lecteurs.

74. Comme l’a montré [184], on peut utiliser les deux pour retrouver des probabilités d’atteinte.
75. En vrac : le cas des équations de Poisson tordues (même s’il n’est alors pas dit qu’elles seront utiles), le lien avec

la récurrence des chaînes de Markov duales, la possibilité d’induire sur un ensemble de mesure infinie, ou encore les
invariants de degré supérieur.
76. L’article [224] doit beaucoup à ma familiarité avec les Zd-extensions, et donc au projet de recherche que je

présente dans ce mémoire.
77. Ce que je résumerai en trois mots : Baker–Campbell–Hausdorff.
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