École universitaire Paris-Saclay Année universitaire 2024/2025 Licence de mathématiques (L3) MEU 302 Algèbre

Feuille d'exercices n°1: Matrices, bases et applications linéaires

Applications linéaires

Exercice I

Existe-t-il une application linéaire entre K-espaces vectoriels, avec $K=\mathbf{R}$, telle que

- (a) l'image d'une droite vectorielle soit une demi-droite (ouverte/fermée)?
- (b) l'image d'un plan vectoriel soit un plan vectoriel privé de l'origine?
- (c) l'image d'un plan vectoriel privé de l'origine soit une droite vectorielle?
- (d) (*) que pouvez-vous dire de (b) et (c) pour K un corps quelconque?

Exercice II

Pour les familles de vecteurs $\mathcal{F}=(e_1,e_2,\ldots e_n)$ et $\mathcal{F}'=(e_1',e_2',\ldots,e_n')$ suivantes, existe-t-il une application linéaire permettant de passer de \mathcal{F} à \mathcal{F}' ? Si oui est-elle unique?

- (a) Les vecteurs de \mathbf{R}^2 : $e_1 = (1,0)$, $e_2 = (3,2)$, $e_3 = (1,-2)$ et les vecteurs de \mathbf{R}^2 : $e_1' = (0,1)$, $e_2' = (0,-2)$, $e_3' = (-2,4)$ (dessiner les vecteurs dans ce cas);
- (b) Les vecteurs de \mathbb{C}^3 : $e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1)$ et les vecteurs de \mathbb{C}^3 : $e'_1 = (0,0,0), e'_2 = (0,0,1), e'_3 = (1,0,0)$;
- (c) Les vecteurs de \mathbf{R}^3 : $e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1), e_4 = (1,1,1)$ et les vecteurs de $\mathbf{R}_3[X]$: $e_1' = X^3, e_2' = X^2, e_3' = X, e_4' = 1$;
- (d) Les vecteurs de $\mathbf{R}_4[X]: e_1 = 1 + X^4, e_2 = X^2$ et les vecteurs de \mathbf{R}^2 $e_1' = (2, -1), e_2' = (3, 0);$
- (e) Les vecteurs de $\mathbf{R}_3[X]$: $e_1 = 2X + 1$, $e_2 = X^3 + X^2 + X$, $e_2 = 2X^3 + 2X^2 + 1$ et les vecteurs de $\mathbf{R}_2[X]$: $e_1' = 1 + X$, $e_2' = 2 + 2X$, $e_3' = 3 + 3X$;
- (f) Les vecteurs de $\mathbf{C}_4[X]$, $e_1=(1,1,1,0)$, $e_2=(0,i,i,i)$, $e_3=(-1,1,1,2)$ et les matrices de $M_2(\mathbf{C})$ $e_1'=\begin{pmatrix} 1 & -2 \\ 0 & 3 \end{pmatrix}$, $e_2'=\begin{pmatrix} 0 & 2 \\ 2 & 4 \end{pmatrix}$, $e_3'=\begin{pmatrix} -1 & 0 \\ i & 1 \end{pmatrix}$.

Exercice III

Si A est la matrice associée à une application linéaire f dans des bases quelconques, montrer que le rang de f est la dimension de l'espace engendré par les colonnes de A.

Exercice IV

Soit $f: \mathbf{R}^2 \to \mathbf{R}^2$ l'application définie par $f(e_1) = e'_1$ et $f(e_2) = e'_2$. Dans chacun des cas suivants, déterminer graphiquement l'image des vecteurs v_i , donner la matrice de f dans la base canonique, puis l'expression de f(x,y) pour tout $(x,y) \in \mathbf{R}^2$. Identifier la transformation du plan définie par f.

- (a) pour $e_1 = (1,0)$, $e_2 = (0,1)$, $e'_1 = (1,1)$, $e'_2 = (-1,1)$ et $v_1 = (2,0)$, $v_2 = (2,1)$;
- (b) pour $e_1 = (1,1)$, $e_2 = (0,1)$, $e_1' = (4,1)$, $e_2' = (3,1)$ et $v_1 = (1,0)$, $v_2 = (2,-1)$;
- (c) pour $e_1 = (3,3)$, $e_2 = (0,-3)$, $e'_1 = (1,2)$, $e'_2 = (-2,-4)$ et $v_1 = (1,2)$, $v_2 = (2,1)$.

Exercice V

On considère les applications linéaires $f_i: \mathbf{R}^2 \to \mathbf{R}^2$ définies pour tout $(x,y) \in \mathbf{R}^2$ par $f_1(x,y) = (y,x)$, $f_2(x,y) = \left(\frac{2x+y}{4},\frac{2x+y}{2}\right)$ et $f_3(x,y) = \left(\frac{x-\sqrt{3}y}{2},\frac{\sqrt{3}x+y}{2}\right)$.

- (1) Représenter l'image de la base canonique pour chacune de ces applications. Préciser leur nature.
- (2) Donner les matrices associées à ces applications. Ces matrices sont-elles équivalentes?

Exercice VI

Quelles sont les classes d'équivalences des matrices de $M_{n,1}(\mathbf{R})$?

Exercice VII

Parmi les matrices suivantes, lesquelles sont équivalentes?

Bases et espaces vectoriels

Exercice VIII

Les familles de fonctions suivantes sont-elles libres?

- (a) $\{\mathbf{R} \to \mathbf{R}, x \mapsto \exp(kx)\}_{k=\{1,\dots n\}}$ pour $n \in \mathbf{N}^*$;
- (b) $\{\mathbf{R} \to \mathbf{R}, x \mapsto x^k\}_{k=\{0,\dots n\}}$ pour $n \in \mathbf{N}^*$;

Exercice IX

On considère l'ensemble $M_2(\mathbf{C})$ des matrices 2×2 à coefficients dans \mathbf{C} .

- (1) Rappelez pourquoi $M_2(\mathbf{C})$ est un \mathbf{C} -espace vectoriel. Quelle est sa dimension?
- (2) Montrer que $M_2(\mathbf{C})$ est un \mathbf{R} -espace vectoriel. Quelle est sa dimension?
- (3) Réciproquement, est-ce que $M_2(\mathbf{R})$ est un C-espace vectoriel?

Exercice X

- (1) Pour $x,y,z\in\mathbf{R}$ calculer le déterminant $\begin{vmatrix} 1 & 2 & x \\ 2 & 3 & y \\ 3 & 4 & z \end{vmatrix}$
- (2) En déduire une équation cartésienne du sous-espace vectoriel H de \mathbb{R}^3 engendré par les vecteurs de coordonnées (1,2,3) et (2,3,4).
- (3) Montrer que H est le noyau d'une forme linéaire $f \in L(\mathbf{R}^3, \mathbf{R})$ et donner sa matrice dans les bases canoniques de \mathbf{R}^3 et \mathbf{R} .

Exercice XI (*)

Soit $\{v_1, v_2, \dots v_{n-1}\}$ une famille libre de vecteurs d'un espace vectoriel E de dimension n. Montrer qu'un vecteur u de E appartient au sous-espace vectoriel engendré par ces vecteurs si et seulement si $\det(v_1, v_2, \dots v_{n-1}, u) = 0$.

Exercice XII

Soit E un espace vectoriel de dimension n. On désigne par $E^*=L(E,\mathbf{R})$ l'ensemble des formes linéaires sur E. Remarquer que E^* est un espace vectoriel, préciser sa dimension et donner une base.

Exercice XIII (*)

Montrer qu'un sous-espace vectoriel est un hyperplan si et seulement si il est le noyau d'une forme linéaire non nulle.

Algèbre

Exercice XIV

Montrer que la relation "A est équivalente à B" est une relation d'équivalence sur l'ensemble des matrices $M_{n,p}(\mathbf{R})$

Exercice XV

- (1) Montrer qu'une matrice de $M_n(\mathbf{R})$ est une matrice de passage si et seulement si elle est inversible.
- (2) Montrer que $GL_n(\mathbf{R})$ est un groupe multiplicatif. Est-il commutatif?

Exercice XVI (\star)

L'ensemble $M_{n,p}(\mathbf{R})$ est-il un groupe multiplicatif?

Exercice XVII (*)

(1) Montrer que la famille de quatre matrices de $M_2(\mathbf{C})$ suivante est libre :

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, I = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, K = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}.$$

- (2) Montrer que le sous-espace vectoriel engendré par cette famille forme une algèbre.
- (3) Montrer qu'il forme un corps.

Exercice XVIII

Soit K un corps. Soit $P \in K[X]$. Soit $\lambda \in K$. Montrer que $P(\lambda) = 0$ si et seulement si $(X - \lambda)$ divise le polynôme P.