Groups and geometry

Mid-term exam

Exercise 1

Let g be a real Lie algebra.

1. Prove that if dim $\mathfrak{g} = 2$ and \mathfrak{g} is not abelian, then there is a basis (X, Y) of \mathfrak{g} satisfying [X, Y] = Y.

Solution: If (A, B) is a basis of \mathfrak{g} , then every Lie bracket is a multiple of [A, B], so \mathfrak{g} is 1-dimensional. Let $Y \in [\mathfrak{g}, \mathfrak{g}] \setminus \{0\}$, and consider $Z \in \mathfrak{g}$ not proportional to Y. Then $[Z, Y] = \lambda Y$ for some $\lambda \neq 0$ (otherwise \mathfrak{g} would be abelian), and the basis (X, Y) with $X = \frac{1}{\lambda}Z$ does the job.

2. Prove that if dim $\mathfrak{g} \leq 3$ and \mathfrak{g} is not solvable, then \mathfrak{g} is isomorphic to $\mathfrak{sl}(2,\mathbb{R})$.

Hint: you can use the solvable radical of \mathfrak{g} *to show that* \mathfrak{g} *is either solvable or semi-simple.*

Solution: Warning: this statement is completely false. The answer should be that \mathfrak{g} is isomorphic to $\mathfrak{sl}(2,\mathbb{R})$ or $\mathfrak{so}(3,\mathbb{R})$. If dim $\mathfrak{g} = 1$ then \mathfrak{g} is abelian, therefore solvable. If dim $\mathfrak{g} = 2$, then either \mathfrak{g} is abelian or there is a basis (X, Y) of \mathfrak{g} such that [X, Y] = Y. In both cases, \mathfrak{g} is solvable (in the second case, $[\mathfrak{g}, \mathfrak{g}]$ is abelian).

If dim $\mathfrak{g} = 3$, consider its solvable radical $R \subset \mathfrak{g}$. If \mathfrak{g} is not solvable, then $R \neq \mathfrak{g}$. Therefore \mathfrak{g}/R has dimension 1, 2 or 3. If it has dimension 1 or 2, then it solvable by the previous discussion. Since there is a short exact sequence $0 \rightarrow R \rightarrow \mathfrak{g} \rightarrow \mathfrak{g}/R \rightarrow 0$, we find that \mathfrak{g} is solvable, hence the contradiction.

We now see that if dim $g \le 3$ and g is not solvable, then dim g = 3 and g is semi-simple. We can either use the classification of semi-simple Lie algebras, or use the Killing form of g to show that it must be isomorphic to $\mathfrak{sl}(2,\mathbb{R})$ or $\mathfrak{so}(3,\mathbb{R})$.

Since g is semi-simple, its Killing form B is non degenerate, so its signature can be (3,0), (2,1), (1,2) or (0,3). If the signature is (0,3) or (3,0), then the subalgebra $\mathfrak{so}(B) \subset \mathfrak{gl}(\mathfrak{g})$ is isomorphic to $\mathfrak{so}(3,\mathbb{R})$, thus the adjoint representation ad : $\mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$ can be seen as a Lie algebra morphism into $\mathfrak{so}(3,\mathbb{R})$. This morphism is injective (because g is semi-simple), and dim $\mathfrak{g} = 3 = \dim \mathfrak{so}(3,\mathbb{R})$, so it is an isomorphism from g to $\mathfrak{so}(3,\mathbb{R})$.

If the signature is (2,1) or (1,2), then $\mathfrak{so}(B)$ is isomorphic to $\mathfrak{so}(2,1) \approx \mathfrak{sl}(2,\mathbb{R})$, and we conclude like in the previous case.

3. Prove that if \mathfrak{g} is nilpotent, but not abelian, then dim $\mathfrak{g} \geq 3$.

Solution: It suffices to show that \mathfrak{g} such as in question 1. is not nilpotent. This is true because $C_2(\mathfrak{g}) = C_1(\mathfrak{g}) \neq \emptyset$.

4. Prove that for any $t \in \mathbb{R}$, there is a 3-dimensional Lie algebra \mathfrak{g}_t which has a basis (*X*, *Y*, *Z*) satisfying:

$$[X, Y] = Z$$
; $[Y, Z] = tZ$; $[Z, X] = 0$.

Solution: These formulae define an antisymmetric bilinear map on a 3-dimensional vector space. We have to show that it satisfies the Jacobi identity. Since the map $(u, v, w) \mapsto [u, [v, w]] + [v, [w, u]] + [w, [u, v]]$ is trilinear and antisymmetric, and the dimension is 3, it is enough to show the Jacobi identity on a given basis, i.e. to show that [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0. This is true because all three terms are 0.

5. Prove that for any $t \neq 0$, the Lie algebra \mathfrak{g}_t is isomorphic to \mathfrak{g}_1 . Are the Lie algebras \mathfrak{g}_1 and \mathfrak{g}_0 isomorphic to each other?

Solution: Changing the basis to $(tX, \frac{1}{t}Y, Z)$ shows that \mathfrak{g}_t is isomorphic to \mathfrak{g}_1 for $t \neq 0$. The result of the next question implies that \mathfrak{g}_1 is not isomorphic to \mathfrak{g}_0 .

6. Prove that g_t is solvable. For which values of *t* is it nilpotent?

Solution: We have that $C_1(\mathfrak{g}_t) = D_1(\mathfrak{g}_t) = \mathbb{R}.Z$. Therefore $D_2(\mathfrak{g}_t) = \{0\}$, and \mathfrak{g}_t is solvable.

If t = 0, then $C_2(\mathfrak{g}_t) = \{0\}$, and \mathfrak{g}_0 is nilpotent. If $t \neq 0$, then $C_2(\mathfrak{g}_t) = C_1(\mathfrak{g}_t)$, and \mathfrak{g}_t is not nilpotent.

7. Prove that if dim g = 3 and g is nilpotent, then g is either abelian or isomorphic to g_t for some $t \in \mathbb{R}$.

Hint: you can start by proving that [g, g] *is abelian.*

Solution: If \mathfrak{g} is nilpotent but not abelian, then $[\mathfrak{g},\mathfrak{g}] \neq \{0\}$ is nilpotent and $[\mathfrak{g},\mathfrak{g}] \neq \mathfrak{g}$, so it has dimension 1 or 2. In both cases, since $[\mathfrak{g},\mathfrak{g}]$ is nilpotent, it must be abelian because of question 3.

If dim[$\mathfrak{g},\mathfrak{g}$] = 2, then choose a basis (X, Y, Z) of \mathfrak{g} such that (Y, Z) is a basis of [$\mathfrak{g},\mathfrak{g}$]. Since [Y, Z] = 0, we get that [$\mathfrak{g},\mathfrak{g}$] is spanned by [X, Y] and [X, Z]. It follows that $C_2(\mathfrak{g}) = C_1(\mathfrak{g})$, and \mathfrak{g} is not nilpotent, which is a contradiction.

We now know that dim[$\mathfrak{g},\mathfrak{g}$] = 1. Since \mathfrak{g} is nilpotent, we have that $C_2(\mathfrak{g}) \neq C_1(\mathfrak{g})$, hence $C_2(\mathfrak{g}) = \{0\}$, i.e. $[\mathfrak{g},\mathfrak{g}] \subset \mathfrak{z}(\mathfrak{g})$. If $[\mathfrak{g},\mathfrak{g}] = \mathbb{R}.Z$, there are $X, Y \in \mathfrak{g}$ such that [X, Y] = Z, and (X, Y, Z) is a basis of \mathfrak{g} satisfying [X, Y] = Z and [X, Z] = [Y, Z] = 0. Therefore \mathfrak{g} is isomorphic to \mathfrak{g}_0 .

Exercise 2

Let *G* be the Lie group $SL(2,\mathbb{R})$ and *V* the vector space $\mathcal{M}_2(\mathbb{R})$. Denote by $\rho : G \times G \to GL(V)$ the map defined by $\rho(g_1, g_2)v = g_1vg_2^{-1}$ for all $g_1, g_2 \in G$ and $v \in V$.

1. Prove that ρ is a Lie group representation. What is its kernel?

Solution: It is a morphism built from algebraic operations, therefore smooth. If $\rho(g_1, g_2) = \text{Id}$, then $g_1 1_2 g_2^{-1} = 1_2$ shows that $g_1 = g_2$, and g_1 must commute with every matrix, therefore $g_1 = \pm 1_2$. It follows that ker $\rho = \{(1_2, 1_2); (-1_2, -1_2)\}$.

2. Prove that the subgroup $O(\det) \subset GL(V)$ consisting of maps $f : V \to V$ such that $\det(f(v)) = \det(v)$ for all $v \in V$ is isomorphic to O(2, 2).

Solution: From the expression $det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$, we see that the map

$$\varphi: \left\{ \begin{array}{ccc} V & \to & \mathbb{R}^4 \\ \begin{pmatrix} a & b \\ c & d \end{pmatrix} & \mapsto & \left(\frac{a+d}{2}, \frac{b+c}{2}, \frac{a-d}{2}, \frac{b-c}{2}\right) \end{array} \right.$$

satisfies det $(\varphi^{-1}(x_1, x_2, x_3, x_4)) = x_1^2 + x_2^2 - x_3^2 - x_4^2$. If follows that conjugation by φ is an isomorphism between O(det) and O(2, 2).

3. Prove that the Lie algebras $\mathfrak{sl}(2,\mathbb{R}) \oplus \mathfrak{sl}(2,\mathbb{R})$ and $\mathfrak{o}(2,2)$ are isomorphic to each other.

Solution: Let $\Phi : O(\det) \to O(2,2)$ be the isomorphism considered above (i.e. $\Phi(f) = \varphi \circ f \circ \varphi^{-1}$). Then $\Phi \circ \rho : SL(2,\mathbb{R}) \times SL(2,\mathbb{R}) \to O(2,2)$ is a Lie group morphism with discrete kernel (ker $\Phi \circ \rho = \ker \rho$). It follows that $d_{(1_2,1_2)}(\Phi \circ \rho) : \mathfrak{sl}(2,\mathbb{R}) \oplus \mathfrak{sl}(2,R)$ is an injective Lie algebra morphism. But $\dim \mathfrak{g}(2,2) = 6 = 2 \dim \mathfrak{sl}(2,\mathbb{R})$, so it is an isomorphism. 4. What is the Lie group isomorphism that we obtained?

Solution: We get an isomorphism from $(SL(2, \mathbb{R}) \times SL(2, \mathbb{R}))/\ker \rho$ to the image $H \subset O(2, 2)$ of $\Phi \circ \rho$. Since $SL(2, \mathbb{R})$ is connected, we have $H \subset O(2, 2)_{\circ}$. Now $\Phi \circ \rho$ is a local diffeomorphism, so H is open in $O(2, 2)_{\circ}$ and closed because $O(2, 2)_{\circ}$ is connected, i.e. $H = O(2, 2)_{\circ}$. The Lie group isomorphism we obtained is therefore:

$$(SL(2,\mathbb{R}) \times SL(2,\mathbb{R})) / \{ \pm (1_2, 1_2) \} \simeq O(2, 2)_{\circ}.$$

Exercice 3

Endow $\mathcal{M}_n(\mathbb{R})$ with the inner product $\langle X, Y \rangle = \text{Tr}({}^t XY)$. Consider the subgroup $O(n, \mathbb{R}) \subset GL(n, \mathbb{R})$, and the connection ∇ on the tangent bundle $TO(n, \mathbb{R})$ defined as:

$$\nabla_x \sigma(v) = p_{T_x O(n,\mathbb{R})} \left(d_x \sigma(v) \right)$$

where $p_{T_xO(n,\mathbb{R})} : \mathcal{M}_n(\mathbb{R}) \to T_xO(n,\mathbb{R})$ is the orthogonal projection.

1. Recall why this formula defines a connection on $TO(n, \mathbb{R})$.

Solution: The linearity comes from the linearity of differentiation and projection. The smoothness comes from the smoothness of $x \mapsto p_{T_xO(n,\mathbb{R})} \in \text{End}(\mathcal{M}_n(\mathbb{R}))$. For $f \in \mathcal{C}^{\infty}(O(n,\mathbb{R}))$ and $\sigma \in \mathcal{X}(O(n,\mathbb{R}))$, we find:

$$\nabla_{x}(f\sigma)(v) = p_{T_{x}O(n,\mathbb{R})} (d_{x}(f\sigma)(v))$$

$$= p_{T_{x}O(n,\mathbb{R})} (d_{x}f(v)\sigma(x) + f(x)d_{x}\sigma(v))$$

$$= d_{x}f(v) \underbrace{p_{T_{x}O(n,\mathbb{R})}(\sigma(x))}_{=\sigma(x)} + d_{x}f(v)p_{T_{x}O(n,\mathbb{R})} (d_{x}\sigma(v))$$

$$= d_{x}f(v)\sigma(x) + f(x)\nabla_{x}\sigma(v).$$

2. Given two left-invariant vector fields \overline{X} , \overline{Y} on $O(n, \mathbb{R})$, compute $\nabla_{\overline{X}}\overline{Y}$.

Solution: Let $X, Y \in \mathfrak{so}(n, \mathbb{R})$ and consider the associated left-invariant vector fields $\overline{X}, \overline{Y} \in \mathcal{X}(O(n, \mathbb{R}))$. The explicit formula at $x \in O(n, \mathbb{R})$ is

$$\overline{X}(x) = d_{1,r}L_x(X) = xX \in T_xO(n,\mathbb{R}) = x\mathfrak{so}(n,\mathbb{R}).$$

So $\overline{X}(x) = xX$ and $\overline{Y}(x) = xY$, and $d_x\overline{Y}(v) = vY$.

$$\nabla_{\overline{X}}\overline{Y}(x) = p_{T_x O(n,\mathbb{R})} \left(d_x \overline{Y}(\overline{X}(x)) \right)$$
$$= p_{x \mathfrak{so}(n,\mathbb{R})} \left(d_x \overline{Y}(xX) \right)$$
$$= p_{x \mathfrak{so}(n,\mathbb{R})} \left(xXY \right)$$

Since $x \in O(n, \mathbb{R})$, the left-multiplication $L_x : \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$ is an isometry for the inner product that we chose, so:

$$p_{x\mathfrak{so}(n,\mathbb{R})}(xXY) = xp_{\mathfrak{so}(n,\mathbb{R})}(XY).$$

Now the orthogonal complement of $\mathfrak{so}(n,\mathbb{R})$ is the space of symmetric matrices, i.e. $p_{\mathfrak{so}(n,\mathbb{R})}(Z) = \frac{Z^{-t}Z}{2}$ for any $Z \in \mathcal{M}_n(\mathbb{R})$. But for $X, Y \in \mathfrak{so}(n,\mathbb{R})$, we have $XY - {}^t(XY) = XY - YX$. Finally:

$$\nabla_{\overline{X}}\overline{Y}(x) = x \frac{XY - YX}{2} = \frac{1}{2} \overline{[X,Y]}(x) = \frac{1}{2} [\overline{X},\overline{Y}](x).$$

3. Compute the curvature and the torsion of ∇ .

Solution: Consider left-invariant vector fields $\overline{X}, \overline{Y}, \overline{Z}$.

$$\begin{split} R(\overline{X},\overline{Y})\overline{Z} &= \nabla_{\overline{X}}\nabla_{\overline{Y}}\overline{Z} - \nabla_{\overline{Y}}\nabla_{\overline{X}}\overline{Z} - \nabla_{[\overline{X},\overline{Y}]}\overline{Z} \\ &= \frac{1}{2}\nabla_{\overline{X}}\overline{[Y,Z]} - \frac{1}{2}\nabla_{\overline{Y}}\overline{[X,Z]} - \nabla_{\overline{[X,Y]}}\overline{Z} \\ &= \frac{1}{4}\left(\overline{[X,[Y,Z]]} - \overline{[Y,[X,Z]]}\right) - \frac{1}{2}\overline{[[X,Y],Z]} \\ &= \frac{1}{4}\left(\overline{[X,[Y,Z]]} + \overline{[Y,[Z,X]]}\right) - \frac{1}{2}\overline{[[X,Y],Z]} \\ &= -\frac{1}{4}\overline{[Z,[X,Y]]} - \frac{1}{2}\overline{[[X,Y],Z]} \\ &= -\frac{1}{4}\overline{[Z,[X,Y]]}. \end{split}$$

Since the curvature is tensorial, this expression is enough to compute the curvature. Given $x \in O(n, \mathbb{R})$ and $u, v, w \in T_xO(n, \mathbb{R})$, the curvature is

$$R_{x}(u,v)w = \frac{1}{4}x[x^{-1}w, [x^{-1}u, x^{-1}v]] \in T_{x}O(n,\mathbb{R}).$$

Now consider left-invariant vector fields $\overline{X}, \overline{Y} \in \mathcal{X}(O(n, \mathbb{R}))$.

$$\nabla_{\overline{X}}\overline{Y} - \nabla_{\overline{Y}}\overline{X} = \frac{1}{2}\overline{[X,Y]} - \frac{1}{2}\overline{[Y,X]}$$
$$= \overline{[X,Y]}$$
$$= [\overline{X},\overline{Y}].$$

This shows that the torsion *T* satisfies $T(\overline{X}, \overline{Y}) = 0$, hence T = 0.