Groups and geometry
 Mid-term exam

Exercise 1

Let \mathfrak{g} be a real Lie algebra.

1. Prove that if $\operatorname{dim} \mathfrak{g}=2$ and \mathfrak{g} is not abelian, then there is a basis (X, Y) of \mathfrak{g} satisfying $[X, Y]=Y$.

Solution: If (A, B) is a basis of \mathfrak{g}, then every Lie bracket is a multiple of $[A, B]$, so \mathfrak{g} is 1 -dimensional. Let $Y \in[\mathfrak{g}, \mathfrak{g}] \backslash\{0\}$, and consider $Z \in \mathfrak{g}$ not proportional to Y. Then $[Z, Y]=\lambda Y$ for some $\lambda \neq 0$ (otherwise \mathfrak{g} would be abelian), and the basis (X, Y) with $X=\frac{1}{\lambda} Z$ does the job.
2. Prove that if $\operatorname{dimg} \leq 3$ and \mathfrak{g} is not solvable, then \mathfrak{g} is isomorphic to $\mathfrak{s l}(2, \mathbb{R})$.

Hint: you can use the solvable radical of \mathfrak{g} to show that \mathfrak{g} is either solvable or semi-simple.
Solution: Warning: this statement is completely false. The answer should be that \mathfrak{g} is isomorphic to $\mathfrak{s l}(2, \mathbb{R})$ or $\mathfrak{s o}(3, \mathbb{R})$. If $\operatorname{dim} \mathfrak{g}=1$ then \mathfrak{g} is abelian, therefore solvable. If $\operatorname{dim} \mathfrak{g}=2$, then either \mathfrak{g} is abelian or there is a basis (X, Y) of \mathfrak{g} such that $[X, Y]=Y$. In both cases, \mathfrak{g} is solvable (in the second case, $[\mathfrak{g}, \mathfrak{g}]$ is abelian).
If $\operatorname{dim} \mathfrak{g}=3$, consider its solvable radical $R \subset \mathfrak{g}$. If \mathfrak{g} is not solvable, then $R \neq \mathfrak{g}$. Therefore \mathfrak{g} / R has dimension 1,2 or 3 . If it has dimension 1 or 2 , then it solvable by the previous discussion. Since there is a short exact sequence $0 \rightarrow R \rightarrow \mathfrak{g} \rightarrow \mathfrak{g} / R \rightarrow 0$, we find that \mathfrak{g} is solvable, hence the contradiction.
We now see that if $\operatorname{dim} \mathfrak{g} \leq 3$ and \mathfrak{g} is not solvable, then $\operatorname{dim} \mathfrak{g}=3$ and \mathfrak{g} is semi-simple. We can either use the classification of semi-simple Lie algebras, or use the Killing form of \mathfrak{g} to show that it must be isomorphic to $\mathfrak{s l}(2, \mathbb{R})$ or $\mathfrak{s o}(3, \mathbb{R})$.
Since \mathfrak{g} is semi-simple, its Killing form B is non degenerate, so its signature can be $(3,0),(2,1),(1,2)$ or $(0,3)$. If the signature is $(0,3)$ or $(3,0)$, then the subalgebra $\mathfrak{s o l}(B) \subset \mathfrak{g l}(\mathfrak{g})$ is isomorphic to $\mathfrak{s o}(3, \mathbb{R})$, thus the adjoint representation ad $: \mathfrak{g} \rightarrow \mathfrak{g l}(\mathfrak{g})$ can be seen as a Lie algebra morphism into $\mathfrak{s o}(3, \mathbb{R})$. This morphism is injective (because \mathfrak{g} is semi-simple), and $\operatorname{dim} \mathfrak{g}=3=\operatorname{dim} \mathfrak{s o}(3, \mathbb{R})$, so it is an isomorphism from \mathfrak{g} to $\mathfrak{s o l}(3, \mathbb{R})$.
If the signature is $(2,1)$ or $(1,2)$, then $\mathfrak{s o l}(B)$ is isomorphic to $\mathfrak{s o}(2,1) \approx \mathfrak{s l}(2, \mathbb{R})$, and we conclude like in the previous case.
3. Prove that if \mathfrak{g} is nilpotent, but not abelian, then $\operatorname{dimg} \geq 3$.

Solution: It suffices to show that \mathfrak{g} such as in question 1. is not nilpotent. This is true because $C_{2}(\mathfrak{g})=C_{1}(\mathfrak{g}) \neq \emptyset$.
4. Prove that for any $t \in \mathbb{R}$, there is a 3-dimensional Lie algebra \mathfrak{g}_{t} which has a basis (X, Y, Z) satisfying:

$$
[X, Y]=Z ; \quad[Y, Z]=t Z ; \quad[Z, X]=0
$$

Solution: These formulae define an antisymmetric bilinear map on a 3-dimensional vector space. We have to show that it satisfies the Jacobi identity. Since the map $(u, v, w) \mapsto[u,[v, w]]+[v,[w, u]]+$ $[w,[u, v]]$ is trilinear and antisymmetric, and the dimension is 3 , it is enough to show the Jacobi identity on given basis, i.e. to show that $[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0$. This is true because all three terms are 0 .
5. Prove that for any $t \neq 0$, the Lie algebra \mathfrak{g}_{t} is isomorphic to \mathfrak{g}_{1}. Are the Lie algebras \mathfrak{g}_{1} and \mathfrak{g}_{0} isomorphic to each other?
Solution: Changing the basis to $\left(t X, \frac{1}{t} Y, Z\right)$ shows that \mathfrak{g}_{t} is isomorphic to \mathfrak{g}_{1} for $t \neq 0$. The result of the next question implies that \mathfrak{g}_{1} is not isomorphic to \mathfrak{g}_{0}.
6. Prove that \mathfrak{g}_{t} is solvable. For which values of t is it nilpotent?

Solution: We have that $C_{1}\left(\mathfrak{g}_{t}\right)=D_{1}\left(\mathfrak{g}_{t}\right)=\mathbb{R} . Z$. Therefore $D_{2}\left(\mathfrak{g}_{t}\right)=\{0\}$, and \mathfrak{g}_{t} is solvable.
If $t=0$, then $C_{2}\left(\mathfrak{g}_{t}\right)=\{0\}$, and \mathfrak{g}_{0} is nilpotent. If $t \neq 0$, then $C_{2}\left(\mathfrak{g}_{t}\right)=C_{1}\left(\mathfrak{g}_{t}\right)$, and \mathfrak{g}_{t} is not nilpotent.
7. Prove that if $\operatorname{dimg}=3$ and \mathfrak{g} is nilpotent, then \mathfrak{g} is either abelian or isomorphic to \mathfrak{g}_{t} for some $t \in \mathbb{R}$. Hint: you can start by proving that $[\mathfrak{g}, \mathfrak{g}]$ is abelian.
Solution: If \mathfrak{g} is nilpotent but not abelian, then $[\mathfrak{g}, \mathfrak{g}] \neq\{0\}$ is nilpotent and $[\mathfrak{g}, \mathfrak{g}] \neq \mathfrak{g}$, so it has dimension 1 or 2 . In both cases, since $[\mathfrak{g}, \mathfrak{g}]$ is nilpotent, it must be abelian because of question 3.
If $\operatorname{dim}[\mathfrak{g}, \mathfrak{g}]=2$, then choose a basis (X, Y, Z) of \mathfrak{g} such that (Y, Z) is a basis of $[\mathfrak{g}, \mathfrak{g}]$. Since $[Y, Z]=0$, we get that $[\mathfrak{g}, \mathfrak{g}]$ is spanned by $[X, Y]$ and $[X, Z]$. It follows that $C_{2}(\mathfrak{g})=C_{1}(\mathfrak{g})$, and \mathfrak{g} is not nilpotent, which is a contradiction.
We now know that $\operatorname{dim}[\mathfrak{g}, \mathfrak{g}]=1$. Since \mathfrak{g} is nilpotent, we have that $C_{2}(\mathfrak{g}) \neq C_{1}(\mathfrak{g})$, hence $C_{2}(\mathfrak{g})=\{0\}$, i.e. $[\mathfrak{g}, \mathfrak{g}] \subset \mathcal{Z}(\mathfrak{g})$. If $[\mathfrak{g}, \mathfrak{g}]=\mathbb{R} . Z$, there are $X, Y \in \mathfrak{g}$ such that $[X, Y]=Z$, and (X, Y, Z) is a basis of \mathfrak{g} satisfying $[X, Y]=Z$ and $[X, Z]=[Y, Z]=0$. Therefore \mathfrak{g} is isomorphic to \mathfrak{g}_{0}.

Exercise 2

Let G be the Lie group $\operatorname{SL}(2, \mathbb{R})$ and V the vector space $\mathcal{M}_{2}(\mathbb{R})$. Denote by $\rho: G \times G \rightarrow \operatorname{GL}(V)$ the map defined by $\rho\left(g_{1}, g_{2}\right) v=g_{1} v g_{2}^{-1}$ for all $g_{1}, g_{2} \in G$ and $v \in V$.

1. Prove that ρ is a Lie group representation. What is its kernel?

Solution: It is a morphism built from algebraic operations, therefore smooth. If $\rho\left(g_{1}, g_{2}\right)=\mathrm{Id}$, then $g_{1} 1_{2} g_{2}^{-1}=1_{2}$ shows that $g_{1}=g_{2}$, and g_{1} must commute with every matrix, therefore $g_{1}= \pm 1_{2}$. It follows that $\operatorname{ker} \rho=\left\{\left(1_{2}, 1_{2}\right) ;\left(-1_{2},-1_{2}\right)\right\}$.
2. Prove that the subgroup $\mathrm{O}(\operatorname{det}) \subset \mathrm{GL}(V)$ consisting of maps $f: V \rightarrow V$ such that $\operatorname{det}(f(v))=\operatorname{det}(v)$ for all $v \in V$ is isomorphic to $\mathrm{O}(2,2)$.
Solution: From the expression $\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a d-b c$, we see that the map

$$
\varphi:\left\{\begin{array}{ccc}
V & \rightarrow & \mathbb{R}^{4} \\
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) & \mapsto & \left(\frac{a+d}{2}, \frac{b+c}{2}, \frac{a-d}{2}, \frac{b-c}{2}\right)
\end{array}\right.
$$

satisfies $\operatorname{det}\left(\varphi^{-1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)=x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-x_{4}^{2}$. If follows that conjugation by φ is an isomorphism between $\mathrm{O}(\operatorname{det})$ and $\mathrm{O}(2,2)$.
3. Prove that the Lie algebras $\mathfrak{s l}(2, \mathbb{R}) \oplus \mathfrak{s l}(2, \mathbb{R})$ and $\mathfrak{o}(2,2)$ are isomorphic to each other.

Solution: Let $\Phi: \mathrm{O}(\operatorname{det}) \rightarrow \mathrm{O}(2,2)$ be the isomorphism considered above (i.e. $\Phi(f)=\varphi \circ f \circ \varphi^{-1}$). Then $\Phi \circ \rho: \operatorname{SL}(2, \mathbb{R}) \times \operatorname{SL}(2, \mathbb{R}) \rightarrow \mathrm{O}(2,2)$ is a Lie group morphism with discrete kernel $(\operatorname{ker} \Phi \circ \rho=$ $\operatorname{ker} \rho)$. It follows that $d_{\left(1_{2}, 1_{2}\right)}(\Phi \circ \rho): \mathfrak{s l}(2, \mathbb{R}) \oplus \mathfrak{s l}(2, R)$ is an injective Lie algebra morphism. But $\operatorname{dim} \mathfrak{o}(2,2)=6=2 \operatorname{dim} \mathfrak{s l}(2, \mathbb{R})$, so it is an isomorphism.

4．What is the Lie group isomorphism that we obtained？
Solution：We get an isomorphism from $(\operatorname{SL}(2, \mathbb{R}) \times \operatorname{SL}(2, \mathbb{R})) / \operatorname{ker} \rho$ to the image $H \subset \mathrm{O}(2,2)$ of $\Phi \circ \rho$ ． Since $\operatorname{SL}(2, \mathbb{R})$ is connected，we have $H \subset O(2,2)_{\circ}$ ．Now $\Phi \circ \rho$ is a local diffeomorphism，so H is open in $\mathrm{O}(2,2)_{\text {。 }}$ and closed because $\mathrm{O}(2,2)_{\text {。 }}$ is connected，i．e．$H=\mathrm{O}(2,2)_{\text {。 }}$ ．The Lie group isomorphism we obtained is therefore：

$$
(\operatorname{SL}(2, \mathbb{R}) \times \operatorname{SL}(2, \mathbb{R})) /\left\{ \pm\left(1_{2}, 1_{2}\right)\right\} \simeq \mathrm{O}(2,2)_{\circ}
$$

Exercice 3

Endow $\mathcal{M}_{n}(\mathbb{R})$ with the inner product $\langle X, Y\rangle=\operatorname{Tr}\left({ }^{t} X Y\right)$ ．Consider the subgroup $\mathrm{O}(n, \mathbb{R}) \subset \mathrm{GL}(n, \mathbb{R})$ ，and the connection ∇ on the tangent bundle $T O(n, \mathbb{R})$ defined as：

$$
\nabla_{x} \sigma(v)=p_{T_{x} \mathrm{O}(n, \mathbb{R})}\left(d_{x} \sigma(v)\right)
$$

where $p_{T_{x} \mathrm{O}(n, \mathbb{R})}: \mathcal{M}_{n}(\mathbb{R}) \rightarrow T_{x} \mathrm{O}(n, \mathbb{R})$ is the orthogonal projection．
1．Recall why this formula defines a connection on $T O(n, \mathbb{R})$ ．
Solution：The linearity comes from the linearity of differentiation and projection．The smoothness comes from the smoothness of $x \mapsto p_{T_{x} \mathrm{O}(n, \mathbb{R})} \in \operatorname{End}\left(\mathcal{M}_{n}(\mathbb{R})\right)$ ．For $f \in \mathcal{C}^{\infty}(\mathrm{O}(n, \mathbb{R}))$ and $\sigma \in \mathcal{X}(\mathrm{O}(n, \mathbb{R}))$ ， we find：

$$
\begin{aligned}
\nabla_{x}(f \sigma)(v) & =p_{T_{x} \mathrm{O}(n, \mathbb{R})}\left(d_{x}(f \sigma)(v)\right) \\
& =p_{T_{x} \mathrm{O}(n, \mathbb{R})}\left(d_{x} f(v) \sigma(x)+f(x) d_{x} \sigma(v)\right) \\
& =d_{x} f(v) \underbrace{p_{T_{x} \mathrm{O}(n, \mathbb{R})}(\sigma(x))}_{=\sigma(x)}+d_{x} f(v) p_{T_{x} \mathrm{O}(n, \mathbb{R})}\left(d_{x} \sigma(v)\right) \\
& =d_{x} f(v) \sigma(x)+f(x) \nabla_{x} \sigma(v) .
\end{aligned}
$$

2．Given two left－invariant vector fields \bar{X}, \bar{Y} on $\mathrm{O}(n, \mathbb{R})$ ，compute $\nabla_{\bar{X}} \bar{Y}$ ．
Solution：Let $X, Y \in \mathfrak{s o}(n, \mathbb{R})$ and consider the associated left－invariant vector fields $\bar{X}, \bar{Y} \in \mathcal{X}(\mathrm{O}(n, \mathbb{R}))$ ． The explicit formula at $x \in \mathrm{O}(n, \mathbb{R})$ is

$$
\bar{X}(x)=d_{1_{n}} L_{x}(X)=x X \in T_{x} \mathrm{O}(n, \mathbb{R})=x \mathfrak{s o}(n, \mathbb{R})
$$

So $\bar{X}(x)=x X$ and $\bar{Y}(x)=x Y$ ，and $d_{x} \bar{Y}(v)=v Y$ ．

$$
\begin{aligned}
\nabla_{\bar{X}} \bar{Y}(x) & =p_{T_{x} \mathrm{O}(n, \mathbb{R})}\left(d_{x} \bar{Y}(\bar{X}(x))\right) \\
& =p_{x \mathfrak{s o l}(n, \mathbb{R})}\left(d_{x} \bar{Y}(x X)\right) \\
& =p_{x \mathfrak{s o l}(n, \mathbb{R})}(x X Y)
\end{aligned}
$$

Since $x \in \mathrm{O}(n, \mathbb{R})$ ，the left－multiplication $L_{x}: \mathcal{M}_{n}(\mathbb{R}) \rightarrow \mathcal{M}_{n}(\mathbb{R})$ is an isometry for the inner product that we chose，so：

$$
p_{x \mathfrak{s o}(n, \mathbb{R})}(x X Y)=x p_{\mathfrak{s v}(n, \mathbb{R})}(X Y)
$$

Now the orthogonal complement of $\mathfrak{s o}(n, \mathbb{R})$ is the space of symmetric matrices, i.e. $p_{\mathfrak{s o}(n, \mathbb{R})}(Z)=\frac{Z-{ }^{t} Z}{2}$ for any $Z \in \mathcal{M}_{n}(\mathbb{R})$. But for $X, Y \in \mathfrak{s o}(n, \mathbb{R})$, we have $X Y-{ }^{t}(X Y)=X Y-Y X$. Finally:

$$
\nabla_{\bar{X}} \bar{Y}(x)=x \frac{X Y-Y X}{2}=\frac{1}{2} \overline{[X, Y]}(x)=\frac{1}{2}[\bar{X}, \bar{Y}](x) .
$$

3. Compute the curvature and the torsion of ∇.

Solution: Consider left-invariant vector fields $\bar{X}, \bar{Y}, \bar{Z}$.

$$
\begin{aligned}
R(\bar{X}, \bar{Y}) \bar{Z} & =\nabla_{\bar{X}} \nabla_{\bar{Y}} \bar{Z}-\nabla_{\bar{Y}} \nabla_{\bar{X}} \bar{Z}-\nabla_{[\bar{X}, \bar{Y}]} \bar{Z} \\
& =\frac{1}{2} \nabla_{\bar{X}} \overline{[Y, Z]}-\frac{1}{2} \nabla_{\bar{Y}} \overline{[X, Z]}-\nabla_{\overline{[X, Y]}} \bar{Z} \\
& =\frac{1}{4}(\overline{[X,[Y, Z]]}-\overline{[Y,[X, Z]]})-\frac{1}{2} \overline{[[X, Y], Z]} \\
& =\frac{1}{4}(\overline{[X,[Y, Z]]}+\overline{[Y,[Z, X]]})-\frac{1}{2} \overline{[[X, Y], Z]} \\
& =-\frac{1}{4} \overline{[Z,[X, Y]]}-\frac{1}{2} \overline{[[X, Y], Z]} \\
& =\frac{1}{4} \frac{\overline{[Z,[X, Y]]} .}{}
\end{aligned}
$$

Since the curvature is tensorial, this expression is enough to compute the curvature. Given $x \in$ $\mathrm{O}(n, \mathbb{R})$ and $u, v, w \in T_{x} \mathrm{O}(n, \mathbb{R})$, the curvature is

$$
R_{x}(u, v) w=\frac{1}{4} x\left[x^{-1} w,\left[x^{-1} u, x^{-1} v\right]\right] \in T_{x} \mathrm{O}(n, \mathbb{R}) .
$$

Now consider left-invariant vector fields $\bar{X}, \bar{Y} \in \mathcal{X}(O(n, \mathbb{R}))$.

$$
\begin{aligned}
\nabla_{\bar{X}} \bar{Y}-\nabla_{\bar{Y}} \bar{X} & =\frac{1}{2} \overline{[X, Y]}-\frac{1}{2} \overline{[Y, X]} \\
& =\overline{[X, Y]} \\
& =[\bar{X}, \bar{Y}] .
\end{aligned}
$$

This shows that the torsion T satisfies $T(\bar{X}, \bar{Y})=0$, hence $T=0$.

