Groups and geometry

Mid-term exam

Exercise 1

Let g be a real Lie algebra.

1. Prove that if dimg = 2 and g is not abelian, then there is a basis (X, Y) of g satisfying [X, Y] =Y.

Solution: If (A, B) is a basis of g, then every Lie bracket is a multiple of [A, B], so g is 1-dimensional.
Let Y € [g,g] \ {0}, and consider Z € g not proportional to Y. Then [Z,Y] = AY for some A # 0
(otherwise g would be abelian), and the basis (X, Y) with X = 1Z does the job.

2. Prove that if dimg < 3 and g is not solvable, then g is isomorphic to sl(2,R).
Hint: you can use the solvable radical of g to show that g is either solvable or semi-simple.

Solution: Warning: this statement is completely false. The answer should be that g is isomorphic
to sl(2,R) or so0(3,R). If dimg = 1 then g is abelian, therefore solvable. If dimg = 2, then either g is
abelian or there is a basis (X, Y) of g such that [X,Y] =Y. In both cases, g is solvable (in the second
case, [g,g] is abelian).

If dimg = 3, consider its solvable radical R C g. If g is not solvable, then R # g. Therefore g/R
has dimension 1, 2 or 3. If it has dimension 1 or 2, then it solvable by the previous discussion.
Since there is a short exact sequence 0 - R — g — g/R — 0, we find that g is solvable, hence the
contradiction.

We now see that if dimg < 3 and g is not solvable, then dimg = 3 and g is semi-simple. We can either
use the classification of semi-simple Lie algebras, or use the Killing form of g to show that it must
be isomorphic to sl(2,R) or so(3,R).

Since g is semi-simple, its Killing form B is non degenerate, so its signature can be (3,0),(2,1),(1,2)
or (0,3). If the signature is (0, 3) or (3,0), then the subalgebra so(B) C gl(g) is isomorphic to so(3,R),
thus the adjoint representation ad : g — gl(g) can be seen as a Lie algebra morphism into so(3,R).
This morphism is injective (because g is semi-simple), and dimg = 3 = dimso(3,R), so it is an iso-
morphism from g to so(3,R).

If the signature is (2,1) or (1,2), then so(B) is isomorphic to so0(2,1) = sl(2,R), and we conclude like
in the previous case.

3. Prove that if g is nilpotent, but not abelian, then dimg > 3.
Solution: It suffices to show that g such as in question 1. is not nilpotent. This is true because

Cy(g) =Ci(g) 2 0.

4. Prove that for any t € R, there is a 3-dimensional Lie algebra g, which has a basis (X, Y, Z) satisfying:

[X,Y]=2Z; [Y,Z]=tZ; [Z,X]=0.

Solution: These formulae define an antisymmetric bilinear map on a 3-dimensional vector space.
We have to show that it satisfies the Jacobi identity. Since the map (u,v,w) — [u, [v,w]] + [v, [w, u]] +
[w,[u,v]] is trilinear and antisymmetric, and the dimension is 3, it is enough to show the Jacobi
identity on a given basis, i.e. to show that [X,[Y,Z]]+[Y,[Z, X]]+[Z,[X, Y]] = 0. This is true because
all three terms are 0.



5. Prove that for any t # 0, the Lie algebra g; is isomorphic to g;. Are the Lie algebras g; and gy
isomorphic to each other?

Solution: Changing the basis to (tX, %Y,Z) shows that g; is isomorphic to g; for ¢ # 0. The result of
the next question implies that g; is not isomorphic to go.
6. Prove that g, is solvable. For which values of ¢ is it nilpotent?
Solution: We have that C;(g;) = D;(g;) = R.Z. Therefore D,(g;) = {0}, and g; is solvable.
If t =0, then C,(g;) = {0}, and gy is nilpotent. If ¢t # 0, then C,(g;) = C;(g;), and g; is not nilpotent.

7. Prove that if dimg = 3 and g is nilpotent, then g is either abelian or isomorphic to g, for some t € R.
Hint: you can start by proving that [g,q] is abelian.

Solution: If g is nilpotent but not abelian, then [g, g] # {0} is nilpotent and [g,g] # g, so it has dimen-
sion 1 or 2. In both cases, since [g, g] is nilpotent, it must be abelian because of question 3.

If dim[g, g] = 2, then choose a basis (X, Y, Z) of g such that (Y, Z) is a basis of [g,g]. Since [Y,Z] =0,
we get that [g, g] is spanned by [X, Y] and [X, Z]. It follows that C,(g) = C;(g), and g is not nilpotent,
which is a contradiction.

We now know that dim[g,g] = 1. Since g is nilpotent, we have that C,(g) # C;(g), hence C,(g) = {0},
i.e. [g,9] C z(g). If [g,9] = R.Z, there are X,Y € g such that [X,Y] = Z, and (X,Y,Z) is a basis of g
satisfying [X,Y]=Z and [X,Z] =[Y,Z] = 0. Therefore g is isomorphic to gy.

Exercise 2

Let G be the Lie group SL(2,R) and V the vector space M,(R). Denote by p: G x G — GL(V) the map
defined by p(g1,&)v = g1vg, ' forallg;,go € Gandve V.

1. Prove that p is a Lie group representation. What is its kernel?

Solution: It is a morphism built from algebraic operations, therefore smooth. If p(g;,g>) = Id, then
81128, ! = 1, shows that g, = g,, and g; must commute with every matrix, therefore g; = +1,. It
follows that kerp = {(1,,15,);(=1,,-15)}.

2. Prove that the subgroup O(det) C GL(V') consisting of maps f : V — V such that det(f(v)) = det(v)
for all v € V is isomorphic to O(2, 2).

Solution: From the expression det (zl Z) =ad — bc, we see that the map
|4 — R*
:{ [a b —d b-
TG et et

satisfies det (go’l (%1, xz,x3,x4)) = x% +x§ —x§ —xi. If follows that conjugation by ¢ is an isomorphism

between O(det) and O(2, 2).

3. Prove that the Lie algebras s[(2,R) ® sl(2,R) and 0(2,2) are isomorphic to each other.

Solution: Let @ : O(det) — O(2,2) be the isomorphism considered above (i.e. ®(f) =@ o fogp™).
Then ® o p : SL(2,R) x SL(2,R) — O(2,2) is a Lie group morphism with discrete kernel (ker® o p =
kerp). It follows that d1, 1,)(P o p) : sl(2,R) ®sl(2,R) is an injective Lie algebra morphism. But
dimo(2,2) = 6 = 2dims[(2,R), so it is an isomorphism.



4. What is the Lie group isomorphism that we obtained?

Solution: We get an isomorphism from (SL(2,R) x SL(2,IR))/ker p to the image H C O(2,2) of ® o p.
Since SL(2,RR) is connected, we have H C O(2,2),. Now @ o p is a local diffeomorphism, so H is open
in O(2,2), and closed because O(2,2), is connected, i.e. H = O(2,2),. The Lie group isomorphism
we obtained is therefore:

(SL(2,R) x SL(2, R))/{(1,,15)} = O(2,2).

Exercice 3

Endow M,,(R) with the inner product (X,Y) = Tr(tXY). Consider the subgroup O(n,R) ¢ GL(n,R), and
the connection V on the tangent bundle TO(n,R) defined as:

Vyio(v) = PT,O(nR) (dyo(v))
where pr o) : Mu(R) = T,O(n,R) is the orthogonal projection.

1. Recall why this formula defines a connection on TO(n, R).

Solution: The linearity comes from the linearity of differentiation and projection. The smoothness
comes from the smoothness of x = pr o(,,r) € End (M,,(R)). For f € C*(O(n,R)) and o € X(O(n,R)),
we find:

Vi(fo) (@) = promr) (dx(fo)())
= PT.0(mR)( def (v)o(x)+ f(x
=d.f(v)pr,0omR) (0(X) +dxf )PTOnR)(de(V))

| —
=0(x)

=def(v)o(x)+ f(x)Vio(v)

2. Given two left-invariant vector fields X,Y on O(n,R), compute Vy?.

Solution: Let X, Y € so(n,R) and consider the associated left-invariant vector fields X, Y € X(O(n,R)).
The explicit formula at x € O(n, R) is

X(x) =dy, Ly(X) = xX € T,O(n,R) = xs0(n, R).

So X(x) =xX and Y(x) =xY,and 4, Y (v) = vY.

VxY(x) = proomm) (4: Y (X(x)))
= Prso(n) (42 Y (xX))
= Pxso(n,R) (xXY)

Since x € O(n,R), the left-multiplication L, : M,,(R) - M, (R) is an isometry for the inner product
that we chose, so:

Pxso(n,R) (xXY) = XPso(n,R) (XY).



Now the orthogonal complement of s0(n,R) is the space of symmetric matrices, i.e. pgonr)(Z) = %

for any Z € M,,(R). But for X, Y € so(n,R), we have XY —/(XY) = XY — Y X. Finally:

VY (x) = GIXZYX l[X, Y](x) =

3 5 (X, Y](x).

. Compute the curvature and the torsion of V.

_ %vY[Y,Z] _ %vy[x,z] ~VeriZ

- | XV Z- WKz |- 5 X V1.2
- | KT ZI+ Wz X0 |- 5% 712
- ZX V- 3X, V], 7]

= JZ XV

Since the curvature is tensorial, this expression is enough to compute the curvature. Given x €
O(n,R) and u,v,w € T,O(n,R), the curvature is

1
Ry(u,v)w = Zx[x_lw, [x'u,x"'v]] € T,O(n,R).

Now consider left-invariant vector fields X,Y € X(O(n,R)).

VxY - VX = %[X,Y] -~ %[ L X]
=[X,Y]
= [X,?]

This shows that the torsion T satisfies T(X,Y) =0, hence T = 0.



