
Groups and geometry
Mid-term exam

Exercise 1

Let g be a real Lie algebra.

1. Prove that if dimg = 2 and g is not abelian, then there is a basis (X,Y ) of g satisfying [X,Y ] = Y .

Solution: If (A,B) is a basis of g, then every Lie bracket is a multiple of [A,B], so g is 1-dimensional.
Let Y ∈ [g,g] \ {0}, and consider Z ∈ g not proportional to Y . Then [Z,Y ] = λY for some λ , 0
(otherwise g would be abelian), and the basis (X,Y ) with X = 1

λZ does the job.

2. Prove that if dimg ≤ 3 and g is not solvable, then g is isomorphic to sl(2,R).

Hint: you can use the solvable radical of g to show that g is either solvable or semi-simple.

Solution: Warning: this statement is completely false. The answer should be that g is isomorphic
to sl(2,R) or so(3,R). If dimg = 1 then g is abelian, therefore solvable. If dimg = 2, then either g is
abelian or there is a basis (X,Y ) of g such that [X,Y ] = Y . In both cases, g is solvable (in the second
case, [g,g] is abelian).

If dimg = 3, consider its solvable radical R ⊂ g. If g is not solvable, then R , g. Therefore g/R
has dimension 1, 2 or 3. If it has dimension 1 or 2, then it solvable by the previous discussion.
Since there is a short exact sequence 0→ R→ g→ g/R→ 0, we find that g is solvable, hence the
contradiction.

We now see that if dimg ≤ 3 and g is not solvable, then dimg = 3 and g is semi-simple. We can either
use the classification of semi-simple Lie algebras, or use the Killing form of g to show that it must
be isomorphic to sl(2,R) or so(3,R).

Since g is semi-simple, its Killing form B is non degenerate, so its signature can be (3,0), (2,1), (1,2)
or (0,3). If the signature is (0,3) or (3,0), then the subalgebra so(B) ⊂ gl(g) is isomorphic to so(3,R),
thus the adjoint representation ad : g→ gl(g) can be seen as a Lie algebra morphism into so(3,R).
This morphism is injective (because g is semi-simple), and dimg = 3 = dimso(3,R), so it is an iso-
morphism from g to so(3,R).

If the signature is (2,1) or (1,2), then so(B) is isomorphic to so(2,1) ≈ sl(2,R), and we conclude like
in the previous case.

3. Prove that if g is nilpotent, but not abelian, then dimg ≥ 3.

Solution: It suffices to show that g such as in question 1. is not nilpotent. This is true because
C2(g) = C1(g) , ∅.

4. Prove that for any t ∈ R, there is a 3-dimensional Lie algebra gt which has a basis (X,Y ,Z) satisfying:

[X,Y ] = Z ; [Y ,Z] = tZ ; [Z,X] = 0.

Solution: These formulae define an antisymmetric bilinear map on a 3-dimensional vector space.
We have to show that it satisfies the Jacobi identity. Since the map (u,v,w) 7→ [u, [v,w]] + [v, [w,u]] +
[w, [u,v]] is trilinear and antisymmetric, and the dimension is 3, it is enough to show the Jacobi
identity on a given basis, i.e. to show that [X, [Y ,Z]]+[Y , [Z,X]]+[Z, [X,Y ]] = 0. This is true because
all three terms are 0.



5. Prove that for any t , 0, the Lie algebra gt is isomorphic to g1. Are the Lie algebras g1 and g0
isomorphic to each other?

Solution: Changing the basis to (tX, 1
t Y ,Z) shows that gt is isomorphic to g1 for t , 0. The result of

the next question implies that g1 is not isomorphic to g0.

6. Prove that gt is solvable. For which values of t is it nilpotent?

Solution: We have that C1(gt) =D1(gt) = R.Z. Therefore D2(gt) = {0}, and gt is solvable.

If t = 0, then C2(gt) = {0}, and g0 is nilpotent. If t , 0, then C2(gt) = C1(gt), and gt is not nilpotent.

7. Prove that if dimg = 3 and g is nilpotent, then g is either abelian or isomorphic to gt for some t ∈ R.

Hint: you can start by proving that [g,g] is abelian.

Solution: If g is nilpotent but not abelian, then [g,g] , {0} is nilpotent and [g,g] , g, so it has dimen-
sion 1 or 2. In both cases, since [g,g] is nilpotent, it must be abelian because of question 3.

If dim[g,g] = 2, then choose a basis (X,Y ,Z) of g such that (Y ,Z) is a basis of [g,g]. Since [Y ,Z] = 0,
we get that [g,g] is spanned by [X,Y ] and [X,Z]. It follows that C2(g) = C1(g), and g is not nilpotent,
which is a contradiction.

We now know that dim[g,g] = 1. Since g is nilpotent, we have that C2(g) , C1(g), hence C2(g) = {0},
i.e. [g,g] ⊂ z(g). If [g,g] = R.Z, there are X,Y ∈ g such that [X,Y ] = Z, and (X,Y ,Z) is a basis of g
satisfying [X,Y ] = Z and [X,Z] = [Y ,Z] = 0. Therefore g is isomorphic to g0.

Exercise 2

Let G be the Lie group SL(2,R) and V the vector space M2(R). Denote by ρ : G ×G → GL(V ) the map
defined by ρ(g1, g2)v = g1vg

−1
2 for all g1, g2 ∈ G and v ∈ V .

1. Prove that ρ is a Lie group representation. What is its kernel?

Solution: It is a morphism built from algebraic operations, therefore smooth. If ρ(g1, g2) = Id, then
g112g

−1
2 = 12 shows that g1 = g2, and g1 must commute with every matrix, therefore g1 = ±12. It

follows that kerρ = {(12,12); (−12,−12)}.

2. Prove that the subgroup O(det) ⊂ GL(V ) consisting of maps f : V → V such that det(f (v)) = det(v)
for all v ∈ V is isomorphic to O(2,2).

Solution: From the expression det
(
a b
c d

)
= ad − bc, we see that the map

ϕ :


V → R4(
a b
c d

)
7→ (a+d2 , b+c

2 , a−d2 , b−c2 )

satisfies det
(
ϕ−1(x1,x2,x3,x4)

)
= x2

1 +x2
2−x

2
3−x

2
4. If follows that conjugation by ϕ is an isomorphism

between O(det) and O(2,2).

3. Prove that the Lie algebras sl(2,R)⊕ sl(2,R) and o(2,2) are isomorphic to each other.

Solution: Let Φ : O(det)→ O(2,2) be the isomorphism considered above (i.e. Φ(f ) = ϕ ◦ f ◦ϕ−1).
Then Φ ◦ ρ : SL(2,R) × SL(2,R)→ O(2,2) is a Lie group morphism with discrete kernel (kerΦ ◦ ρ =
kerρ). It follows that d(12,12)(Φ ◦ ρ) : sl(2,R) ⊕ sl(2,R) is an injective Lie algebra morphism. But
dimo(2,2) = 6 = 2dimsl(2,R), so it is an isomorphism.



4. What is the Lie group isomorphism that we obtained?

Solution: We get an isomorphism from (SL(2,R)× SL(2,R))/ kerρ to the image H ⊂ O(2,2) of Φ ◦ ρ.
Since SL(2,R) is connected, we have H ⊂O(2,2)◦. Now Φ ◦ρ is a local diffeomorphism, so H is open
in O(2,2)◦ and closed because O(2,2)◦ is connected, i.e. H = O(2,2)◦. The Lie group isomorphism
we obtained is therefore:

(SL(2,R)× SL(2,R))/{±(12,12)} 'O(2,2)◦.

Exercice 3

EndowMn(R) with the inner product 〈X ,Y 〉 = Tr
(
tXY

)
. Consider the subgroup O(n,R) ⊂ GL(n,R), and

the connection ∇ on the tangent bundle TO(n,R) defined as:

∇xσ (v) = pTxO(n,R) (dxσ (v))

where pTxO(n,R) :Mn(R)→ TxO(n,R) is the orthogonal projection.

1. Recall why this formula defines a connection on TO(n,R).

Solution: The linearity comes from the linearity of differentiation and projection. The smoothness
comes from the smoothness of x 7→ pTxO(n,R) ∈ End(Mn(R)). For f ∈ C∞(O(n,R)) and σ ∈ X (O(n,R)),
we find:

∇x(f σ )(v) = pTxO(n,R) (dx(f σ )(v))

= pTxO(n,R) (dxf (v)σ (x) + f (x)dxσ (v))

= dxf (v)pTxO(n,R) (σ (x))︸            ︷︷            ︸
=σ (x)

+dxf (v)pTxO(n,R) (dxσ (v))

= dxf (v)σ (x) + f (x)∇xσ (v).

2. Given two left-invariant vector fields X,Y on O(n,R), compute ∇XY .

Solution: LetX,Y ∈ so(n,R) and consider the associated left-invariant vector fieldsX,Y ∈ X (O(n,R)).
The explicit formula at x ∈O(n,R) is

X(x) = d1nLx(X) = xX ∈ TxO(n,R) = xso(n,R).

So X(x) = xX and Y (x) = xY , and dxY (v) = vY .

∇XY (x) = pTxO(n,R)

(
dxY (X(x))

)
= pxso(n,R)

(
dxY (xX)

)
= pxso(n,R) (xXY )

Since x ∈ O(n,R), the left-multiplication Lx :Mn(R)→Mn(R) is an isometry for the inner product
that we chose, so:

pxso(n,R) (xXY ) = xpso(n,R) (XY ) .



Now the orthogonal complement of so(n,R) is the space of symmetric matrices, i.e. pso(n,R)(Z) = Z−tZ
2

for any Z ∈Mn(R). But for X,Y ∈ so(n,R), we have XY − t(XY ) = XY −YX. Finally:

∇XY (x) = x
XY −YX

2
=

1
2

[X,Y ](x) =
1
2

[X,Y ](x).

3. Compute the curvature and the torsion of ∇.

Solution: Consider left-invariant vector fields X,Y ,Z.

R(X,Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

=
1
2
∇X[Y ,Z]− 1

2
∇Y [X,Z]−∇[X,Y ]Z

=
1
4

[X, [Y ,Z]]− [Y , [X,Z]]

− 1
2

[[X,Y ],Z]

=
1
4

[X, [Y ,Z]] + [Y , [Z,X]]

− 1
2

[[X,Y ],Z]

= −1
4

[Z, [X,Y ]]− 1
2

[[X,Y ],Z]

=
1
4

[Z, [X,Y ]].

Since the curvature is tensorial, this expression is enough to compute the curvature. Given x ∈
O(n,R) and u,v,w ∈ TxO(n,R), the curvature is

Rx(u,v)w =
1
4
x[x−1w, [x−1u,x−1v]] ∈ TxO(n,R).

Now consider left-invariant vector fields X,Y ∈ X (O(n,R)).

∇XY −∇YX =
1
2

[X,Y ]− 1
2

[Y ,X]

= [X,Y ]

= [X,Y ].

This shows that the torsion T satisfies T (X,Y ) = 0, hence T = 0.


