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Introduction

Anosov representations of hyperbolic groups into semisimple Lie groups are often described as gen-
eralisations of convex cocompact subgroups of rank one Lie groups. One of the powerful tools in the
study of these rank one subgroups is the geodesic flow. The goal of these notes is to discuss pos-
sible replacements for the geodesic flow in the study of Anosov representations that share similar
dynamical properties.

Definition (Hyperbolic set)

Consider a smooth complete flow ït : M→ M without fixed points. A subset K ⊂ M is called
hyperbolic if it is ït-invariant, compact, and there is a continuous splitting into dït-invariant
vector subbundles

TM|K = Es ⊕ E0 ⊕ Eu

with the following properties:

• The bundle E0 is one-dimensional and spanned by the vector field generating ït .

• There exists constants C,a > 0 such that

∀x ∈ K ∀v ∈ Es|x ∀t ≥ 0
∥∥∥dït

∣∣∣
x

v
∥∥∥
ït(x)
≤ Ce−at ∥v∥x ,

∀x ∈ K ∀v ∈ Eu|x ∀t ≥ 0
∥∥∥dït

∣∣∣
x

v
∥∥∥
ït(x)
≥ 1

C
eat ∥v∥x .

The assumed compactness of a hyperbolic set guarantees that the contraction/dilation require-
ments do not depend on the choice of a Riemannian metric to define norms (up to changing the
constant C). A flow is called Anosov if the whole manifold M is a hyperbolic set.

Definition (Periodic and non wandering points)

Consider a continuous flow ït : M→M.
Its set of periodic points is Per(ït) =

{
x ∈M

∣∣∣∃T > 0 ïT(x) = x
}
.

Its non wandering set is NW(ït) = {x ∈M
∣∣∣∃xk → x, tk →∞ ïtk (xk)→ x}.
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Definition (Axiom A flow)

A smooth complete flow ït : M→M without fixed points satisfies Smale’s axiom A if NW(ït) is
a hyperbolic set and NW(ït) = Per(ït).

To illustrate the rank one case, consider a discrete torsion free subgroup È < Isom(�d ) (the
reader is encouraged to think of �d as the real hyperbolic space for simplicity, but this discussion
is also valid for the complex and quarternionic hyperbolic spaces, as well as the Cayley hyperbolic
plane). One can then consider the hyperbolic manifold NÈ = È \�d , and its unit tangent bundle
MÈ = T1NÈ = È \T1

�
d . It comes equipped with the geodesic flow

ït
È : MÈ →MÈ .

Fact

The geodesic flow ït
È

: MÈ →MÈ satisfies Smale’s axiom A if and only if È is convex cocompact.

To understand this correspondence between a dynamical notion (Smale’s axiom A) and a geo-
metric notion (convex cocompactness), we can relate the non wandering set of the geodesic flow ït

È

to the limit set ËÈ ⊂ �∞�
d through the description

NW(ït
È ) = È \

{
(x,v) ∈ T1

�
d
∣∣∣∣ lim

t→±∞
ït(x,v) ∈ËÈ

}
.

An Anosov representation â ∈ Hom(È ,G) of a hyperbolic group È into a semi-simple Lie group G is
defined with respect to a pair of opposite flag manifolds F + and F −, and comes with a replacement
for the limit set in the form of limit maps

à+ : �∞È →F + and à− : �∞È →F − .

Just as the geodesic flow of �d is related to the boundary �∞�
d through the orbit projection

T1
�

d →
(
�∞�

d
)(2)

.

Sambarino [Sam14, Sam24] showed that the restriction of the geodesic flow to its non wandering
set can be generalised to Anosov representations by studying Gromov flow of È , essentially flows
with orbit space �∞È

(2). This strategy produces Hölder flows on compact metric spaces with hyper-
bolic dynamical properties (called refraction flows). The main idea in the work presented in these
notes is to stay in the context of smooth dynamics and replace the geodesic flow with a flow on a
homogeneous space for G whose orbit space is the transverse flag space

F ⋔ ⊂ F + ×F −

consisting of transverse pairs (i.e. the only open G-orbit in F + ×F −). Let us first focus on projective
Anosov representations, i.e. the case where G = SL(V) for some finite dimensional real vector space
V, F + = �(V) and F − = �(V∗). In this case, the transverse flag space is

�(V)
⋔
×�(V∗)

def
=

{(
[v], [Ó]

)
∈ �(V)×�(V∗)

∣∣∣∣Ó(v) , 0
}
.
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When studying projective Anosov representations, we will replace the unit tangle bundle T1
�

d with
the SL(V)-homogeneous space

�
def
= {[v : Ó] ∈ �(V⊕ V∗) |Ó(v) > 0} ,

and the geodesic flow with the flow ït
�

: �→ � defined by

∀[v : Ó] ∈ � ∀t ∈� ït
�

(
[v : Ó]

)
= [etv : e−tÓ] .

Remark

There are several ways of defining this flow: ït
�

(
[v : Ó]

)
=

[
etv : e−tÓ

]
=

[
e2tv : Ó

]
=

[
v : e−2tÓ

]
.

It is however not direct that one can use this space to produce a quotient flow by a discrete group:
the action of SL(V) on � is not proper, meaning that the quotient â(È )\�will fail to be a manifold. This
leads us to start our dynamical study with the action of a projective Anosov representation on �, with
the goal of finding a domain of proper discontinuity.

Theorem A
(
[DMS25a, Theorem A]

)
Let È be a torsion free hyperbolic group, and â ∈ Hom(È ,SL(V)) a projective Anosov repre-
sentation. There exist an open set M

∧

â ⊂ � and a closed subset K
∧

â ⊂ M
∧

â with the following
properties:

1. M
∧

â and K
∧

â are invariant under È and the flow ït
�

.

2. The action of È on M
∧

â is free and properly discontinuous, and the action on K
∧

â is cocom-
pact.

3. The flow induced by ït
�

on Mâ
def
= È \M

∧

â satisfies Smale’s axiom A, and its non wandering

set is Kâ
def
= È \K

∧

â.

When studying Anosov representations into an arbitrary semi-simple Lie group G and pair of
opposite flag manifolds F ±, it is common to use representation theory to reduce the study to the
projective Anosov case. We will see that this trick will not suffice in the general setting, and that
replacing linear algebraic reasoning with differential geometry will allow for this generalisation.

Here is a basic plan for the five lectures:

1. Proximality and proper discontinuity (construct the manifold Mâ in Theorem A).

2. The refraction flow (construct the restriction of the flow to its non wandering set).

3. Axiom A dynamics and consequences (establish the third point in Theorem A and study further
dynamical properties).

4. Lie theory (a generalisation of Theorem A to a general semi-simple Lie group).

5. Geometric aspects (including non Riemannian geodesic flows).
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Part 1. Proximality and proper discontinuity

The goal of this first lecture is to construct the open subset M
∧

â of Theorem A and prove the proper

discontinuity of the action of È on M
∧

â. We will focus on two key notions: proximality and convergence
dynamics.

Notations for Grassmannian manifolds

Throughout this document we will use the notation Grk(V) for the Grassmannian manifold of k-
dimensional vector subspaces of a real vector space V. We will consider the projective space �(V)
as Gr1(V), and use the notation [v] ∈ �(V) for the line spanned by v for any v ∈ V \ {0} (the use of the
notation [v] implicitly adds the assumption that v , 0).

We will repeatedly use the identification between the projective space �(V∗) of the dual space
V∗ = Hom

�
(V,�) and the Grassmannian manifold Grd−1(V), where d = dim V, through the natural

identification sending the line [Ó] ∈ �(V∗) in V∗ to the hyperplane kerÓ ∈ Grd−1(V) in V. To make this
identification GL(V)-equivariant, the action of GL(V) on V∗ is given by g ·Ó = Ó ◦ g−1.

A line � ∈ �(V) and a hyperplane H ∈ �(V∗) are called transverse if V = �⊕H, and use the notation
� ⋔ H to indicate this property. It is equivalent to � < �(H), where �(H) ⊂ �(V) is the set of lines
included in H. If � = [v] and H = [Ó], transversality is also characterised by Ó(v) , 0. The set of
transverse pairs will be denoted by

�(V)
⋔
×�(V∗)

def
=

{(
[v], [Ó]

)
∈ �(V)×�(V∗)

∣∣∣∣Ó(v) , 0
}
.

We will often need to understand convergence in �(V) in terms of decomposition of vectors in
varying direct sums.

Lemma 1.1

Let (�k ,Hk) ∈ �(V)×�(V∗) be a sequence converging to (�,H) ∈ �(V)×�(V∗) such that � ⋔ H, and
fix a norm ∥−∥V on V. Consider sequences vk ∈ �k \ {0} and wk ∈ Hk .

(1) lim
k→+∞

[vk + wk] = �⇐⇒ lim
k→+∞

∥wk∥V
∥vk∥V

= 0.

(2) lim
k→+∞

∥vk∥V = +∞ =⇒ lim
k→+∞

∥vk + wk∥V = +∞.

Proof. Since the statements do not depend on the choice of the norm ∥−∥V, we may assume that
it is induced from an inner product ⟨− , −⟩ such that H = �⊥. Note that in all statements, using
a standard contradiction argument it is enough to prove that the desired limit is obtained after
passing to a subsequence. Also, both statements are equivalent when there is a subsequence for
which wk is indentically 0, so we may always choose a subsequence such that wk , 0 and such that
the limits v = limk→+∞

vk
∥vk∥V

and w = limk→+∞
wk
∥wk∥V

exist. Note that v ∈ � and w ∈ H.

1. If limk→+∞
∥wk∥V
∥vk∥V

= 0, then [vk + wk] =

[
vk + wk

∥vk∥V

]
=

[ vk

∥vk∥V
+
∥wk∥V
∥vk∥V

wk

∥wk∥V︸         ︷︷         ︸
→0

]
→ [v] = �.

Now assume that limk→+∞[vk + wk] = �. If by contradiction ∥wk∥V
∥vk∥V

does not go to 0, consider a
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subsequence such that this ratio has a limit r ∈ (0 ,+∞]. We then find

[vk + wk] =

[
vk + wk

∥wk∥V

]
=

[
∥vk∥V
∥wk∥V

vk

∥vk∥V
+

wk

∥wk∥V

]
→

[
v
r

+ w

]
,

which is not equal to � since w , 0, a contradiction.

2. The result is straightforward if wk is bounded, so we may assume that wk →∞. Since ⟨v , w⟩ =
0, we find

∥vk + wk∥2V = ∥vk∥2V + ∥wk∥2V + 2⟨vk , wk⟩
= ∥vk∥2V + ∥wk∥2V + o(∥vk∥V ∥wk∥V)→ +∞.

This proves that the sequence ∥vk + wk∥V has no bounded subsequence, hence ∥vk + wk∥V →
+∞.

Topological shortcuts

There are some simple tricks that we will use repeatedly in order to prove convergences in compact
metric spaces. Let us start with the most simple (and most standard).

Lemma 1.2

Let (xk) be a sequences in a compact metrisable space X, and X. The following are equivalent:

(1) lim
k→+∞

xk = x,

(2) For any converging subsequence xkn
→ x′ ∈ X we must have x′ = x.

The next result is for sequences of functions. We will say that a sequence of functions fk conver-
gences locally uniformly to a function f if it converges uniformly on all compact subsets.

Lemma 1.3

Let fk : X→ Y be a sequence of functions between two metrisable spaces, and assume that Y
is compact. For a continuous function f : X→ Y, the following are equivalent:

(1) The sequence (fk) converges locally uniformly to f .

(2) For any converging sequence xk → x ∈ X, we have fk(xk)→ f (x).

Proof. The non immediate implication is (2)⇒(1). Assume that (2) is satisfied. The first step is to
notice that this condition is also valid for subsequences: if xn→ x and (kn) is an increasing sequence
of natural numbers then fkn

(xn)→ f (x). For this purpose consider the sequence (x′k) defined by x′k =
xkn

for n such that kn ≤ k < kn+1, so that x′k → x and fkn
(xn) = fkn

(x′kn
) is a subsequence of fk(x′k).

Now consider a distance dY defining the topology of Y, a compact subset K ⊂ X and assume by
contradiction that (fk) does not converge uniformly to f on K. This means there exist some ê > 0, an
increasing sequence (kn) of natural numbers and a sequence xn ∈ K such that dY(fkn

(xn), f (xn)) ≥ ê

for all n ∈�. Extracting so that xn→ x ∈ K, we find a contradiction thanks to the continuity of f .
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Combining these two results, we get the stronger result that will often be used to prove locally
uniform convergences.

Lemma 1.4 (Criterion for locally uniform convergence)

Let fk : X→ Y be a sequence of functions between two metrisable spaces, and assume that Y
is compact. For a continuous function f : X→ Y, the following are equivalent:

(1) The sequence (fk) converges locally uniformly to f .

(2) For any converging sequence xk → x ∈ X such that fk(xk) converges to some y ∈ Y, we
must have y = f (x).

Note that the limit function f must be required to be continuous.

1.1 Proximality

Notation

Let g ∈ GL(V) for some vector space V of dimension d ∈�. We denote by

Ý1(g) ≥ · · · ≥ Ýd (g)

the logarithms of the moduli of the complex eigenvalues of g.

We will treat proximality from three point of views: algebra (conditions of eigenvalues), differen-
tial geometry (existence of a contracting fixed point) and topological dynamics (source-sink attrac-
tion).

Proposition 1.5 (Definition of proximality)

For any g ∈ GL(V), the following are equivalent:

(1) Ý1(g) > Ý2(g).

(2) The action of g on �(V) has an attracting fixed point (i.e. a fixed point � ∈ �(V) such that
Ý1(dg|�) < 0).

(3) There exists a line �+ ∈ �(V) and a hyperplane H− ∈ �(V∗) such that �+ < �(H−) and
lim

k→+∞
gk = �+ for all � ∈ �(V) \�(H).

An element g ∈ GL(V) satisfying these conditions is called proximal. If g is proximal, it has a
unique pair (�+(g),H−(g)) ∈ �(V) ×�(V∗) satisfying 3. and �+(g) ∈ �(V) is the only attractive
fixed point of g.

Proof. Let us first assume that Ý1(g) > Ý2(g), and let �+ ∈ �(V) be the eigendirection for the eigen-
value of maximal modulus. The transpose g⊤ ∈ GL(V∗) (i.e. the map g⊤ : Ó 7→ Ó ◦ g) satisfies
Ý1(g⊤) − Ý2(g⊤) = Ý1(g) − Ý2(g), so we can also consider the eigendirection H− ∈ �(V∗) of g⊤ for
its eigenvalue of maximal modulus. Then �+ and H− are transverse, and a are fixed points of the
action of g on �(V) and �(V∗) respectively. In order to understand the derivative of g at its fixed

6



point �+, decompose g in a basis adapted to the decomposition V = �+ ⊕H− as

g ∼
(

t 0
0 g̃

)
,

where Log|t| = Ý1(g) and g̃ ∈ GL(H−). The differential dg|�+ ∈ End(T�+�(V)) ≃ End(H−) of the action
of g on �(V) is represented by the matrix t−1g̃. Since Ý1(g̃) = Ý2(g), we have

Ý1(dg|�) = Ý2(g)−Ý1(g) < 0 ,

and �+ ∈ �(V) is an attracting fixed point of g. Since Ý1

(
g|H−

)
= Ý2(g) < Ý1(g), we can consider a

norm ∥−∥ on V and some number c ∈ (0 ,Ý1(g)) with the property that

∀v ∈ H− ∥gv∥ ≤ ec ∥v∥ .

Now let � ∈ �(V) \�(H−) and consider some vector v ∈ � \ {0} decomposed into

v = v+ + v− ∈ �+ ⊕H− .

Now � < �(H−) means that v+ , 0, and we find

gk · � = gk · [v] =
[
±ekÝ1(g)v+ + gkv−

]
=

[
v+ ∓ e−kÝ1(g)gkv−

]
,

which by virtue of ∥∥∥e−kÝ1(g)gkv−
∥∥∥ ≤ ek(c−Ý1(g)) ∥v−∥ → 0

implies that gk · �→ [v+] = �+ as k→ +∞.
We have proved that 1.⇒2. and 1.⇒3. Let us now prove that 2.⇒1. If g has an attracting fixed
point � ∈ �(V), then by definition � is an eigendirection of g. Consider any decomposition V = �⊕H
and the associate matrix decomposition

g ∼
(

t ∗
0 g̃

)
.

We now have that Ý1(dg|�) = Ý1(g̃)−Log|t| < 0, and every eigenvalue of g is either t or an eigenvalue
of g̃, thus proving that Log|t| = Ý1(g) and Ý1(g̃) = Ý2(g), and achieving the proof of Ý1(g)−Ý2(g) > 0
as well as the fact that � is the eigendirection for the eigenvalue of maximal modulus (hence the
uniqueness of the attracting fixed point).
We now turn to 3.⇒1. Both �+ and H− must be preserved by g, in particular �+ is an eigendirection
of g for some eigenvalue t ∈�. The dynamical condition implies that Ý1(g|H−) < Log|t|, thus Log|t| =
Ý1(g) and Ý1(g|H−) = Ý2(g), showing that Ý1(g) > Ý2(g) and also that �+ is the eigendirection of g
for its eigenvalue of maximal modulus. Since the only hyperplane transverse to �+ and invariant
by g is the eigendirection in V∗ of g⊤, we also find the uniqueness of H−.

Note that if g ∈ GL(V) is proximal, then so if g⊤ ∈ GL(V∗), and H−(g) is the attracting fixed point of
g⊤. The convergence in condition (3) is always locally uniform.
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Proposition 1.6 (Proximality and source-sink dynamics)

Let g ∈ GL(V) be a proximal element. For any open neighbourhoods U+ ⊂ �(V) of �+(g) and
U− ⊂ �(V) of �(H−(g)), there is some k0 ∈�such that

∀k ≥ k0 gk
(
�(V) \U−

)
⊂ U+ .

Proof. If g ∈ GL(V) is proximal, then Ý1

(
g|H−(g)

)
= Ý2(g) < Ý1(g), so we can consider a norm ∥·∥ on V

and some number c ∈ (0 ,Ý1(g)) with the property that

∀v ∈ H−(g) ∥gv∥ ≤ ec ∥v∥ .

For any t ≥ 0, consider the following open subsets

U+
t =

{
[v+ + v−] ∈ �(V)

∣∣∣v+ ∈ �+(g) , v− ∈ H−(g)& ∥v+∥ > et ∥v−∥
}
,

U−t =
{
[v+ + v−] ∈ �(V)

∣∣∣v+ ∈ �+(g) , v− ∈ H−(g)& ∥v+∥ < e−t ∥v−∥
}
.

For t large enough, we have U+
t ⊂ U+ and U−t ⊂ U−, so it is enough to prove the result with the open

sets U+
t and U−t . Now consider [v] < U−t , that is v = v+ + v− with ∥v+∥ ≥ e−t ∥v−∥ (in particular v+ , 0).

For k ≥ 0, we have ∥∥∥gkv−
∥∥∥∥∥∥gkv+

∥∥∥ ≤ ekc ∥v−∥
ekÝ1(g) ∥v+∥

≤ et−k(Ý1(g)−c) .

It follows that gk
(
�(V) \U−t

)
⊂ U+

t whenever k ≥ 2t
Ý1(g)−c .

1.2 Hyperbolic groups

Instead of diving deep into definitions of hyperbolic groups, let us focus on the properties that we
will use. At the forefront stands the action on the Gromov boundary �∞È , generalising the limit set
of a convex cocompact subgroup of Isom(�d ). It arises as the boundary in an equivariant compacti-
fication È = È ⊔�∞È , meaning that È is a compact metrisable space in which È is discrete, open and
dense, and on which left multiplication extends to a continuous action of È . This action has simple
topological dynamics.
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Proposition 1.7 (Convergence action of a hyperbolic group on its compactification)

Let È be a hyperbolic group.

1. If Õ ∈ È has infinite order, then the limits

Õ+ = lim
k→+∞

Õk and Õ− = lim
k→−∞

Õk

exist, are distinct elements of �∞È and are the only fixed points of Õ on È ⊔ �∞È . More-
over, the set of pairs (Õ+,Õ−) for Õ ∈ È of infinite order is dense in �∞È

(2).

2. If a sequence Õk ∈ È satisfies Õk → Õ+ ∈ �∞È and Õ−1
k → Õ− ∈ �∞È , then Õk · x→ Õ+ for all

x ∈ È \ {Õ−}, and the convergence is locally uniform.

We will keep geometric group theoretic requirements at a minimum, and simply state a few prop-
erties of sequences in a hyperbolic group. We will regularly be working with sequences Õk ∈ È such
that the limits limÕk ∈ �∞È and limÕ−1

k ∈ �∞È exist and are distinct. The main reason is that this is
setting to have some compatibility between the two statements of Proposition 1.7.

Proposition 1.8 (Sequences with distinct boundary limits)

Let È be a hyperbolic group, and Õk ∈ È a sequence such that Õ+ = limk→∞Õk ∈ �∞È and
Õ− = limk→∞Õ−1

k ∈ �∞È exist. If Õ+ , Õ−, then

1. Õk has infinite order for k large enough,

2. lim
k→+∞

Õ+
k = Õ+ and lim

k→+∞
Õ−k = Õ−.

If we are in the case where the limits Õ± are identical, we can use a simple trick to make them
different by using the convergence property of the action on È ⊔�∞È .

Lemma 1.9

Let È be a hyperbolic group. If Õk ∈ È is a sequence such that the limits Õ+ = limk→∞Õk ∈ �∞È
and Õ− = limk→∞Õ−1

k ∈ �∞È exist, then for any f ∈ È we have

lim
k→+∞

fÕk = f · Õ+ and lim
k→+∞

(
fÕk

)−1
= Õ− .

Combining Lemma 1.9 and the compactness of È ⊔�∞È , we get the following useful fact:

Proposition 1.10 (Limits of sequences in a hyperbolic group)

Let È be a hyperbolic group, and ÖN ∈ È an unbounded sequence. There exist an increasing
sequence Nk ∈ �, an element f ∈ È and distinct points Õ+,Õ− ∈ �∞È such that the sequence
Õk = fÖNk

satisfies limÕk = Õ+ and limÕ−1
k = Õ−.
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1.3 Limit maps and convergence dynamics

Let us postpone the definition of projective Anosov representations, which form an open set of
Hom(È ,SL(V)) for any hyperbolic group È , and focus on the main tool in the study of Anosov rep-
resentations: limit maps.

Definition (Transverse limit maps)

Let È be a hyperbolic group, and â ∈ Hom(È ,SL(V)). A pair of transverse projective limit maps
is a pair (à,à∗) of continuous È -equivariant maps à : �∞È → �(V) and à∗ : �∞È → �(V∗) such
that à(Ù+) ⋔ à∗(Ù−) for every (Ù+,Ù−) ∈ �∞È (2).

There are many equivalent characterisations of (projective) Anosov representations that are
stated in terms of the existence of a pair of transverse (projective) limit maps with additional dy-
namical properties.

Definition (Dynamics preserving limit maps)

Let È be a hyperbolic group, and â ∈ Hom(È ,SL(V)).

• A pair of transverse projective limit maps (à,à∗) is called dynamics preserving if for any
infinite order element Õ ∈ È , â(Õ) is proximal, à(Õ+) = �+(â(Õ)) and à∗(Õ−) = H−(â(Õ)).

• A pair of transverse projective limit maps (à,à∗) is called uniformly dynamics preserving
if for any unbounded sequence Õk ∈ È with boundary limit points Õ+ = limk→+∞Õk ∈ �∞È
and Õ− = limk→+∞Õ−1

k ∈ �∞È , the actions on �(V) and �(V∗) obey the following dynamics:

(1) ∀� ∈ �(V) � ⋔ à∗(Õ−) =⇒ lim
k→+∞

â(Õk) · � = à(Õ+) ,

(2) ∀H ∈ �(V∗) à(Õ−) ⋔ H =⇒ lim
k→+∞

â(Õk) ·H = à∗(Õ+) ,

and the convergences are locally uniform.

Each one of the convergences in this last definition implies the other, and local uniformity is
automatic (this is not so straightforward, but will be an easy consequence of the proof of Theorem
1.12 stated below). Keeping the same notations, a uniformly dynamics preserving pair of transverse
limit maps also satisfies the following locally uniform convergences:

(3) ∀� ∈ �(V) � ⋔ à∗(Õ+) =⇒ lim
k→+∞

â(Õ−1
k ) · � = à(Õ−) ,

(4) ∀H ∈ �(V∗) à(Õ+) ⋔ H =⇒ lim
k→+∞

â(Õ−1
k ) ·H = à∗(Õ−) .

Also, thanks to Lemma 1.9 it is enough to have the property for sequences satisfying Õ+ , Õ−.
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Proposition 1.11 (Properties of dynamics preserving transverse limit maps)

Let È be a hyperbolic group, â ∈ Hom(È ,SL(V)) a representation and (à,à∗) a pair of transverse
projective limit maps.

1. If (à,à∗) is uniformly dynamics preserving, then it is dynamics preserving.

2. There is at most one pair of dynamics preserving transverse projective limit maps.

3. If (à,à∗) is dynamics preserving, then à(Ù) ⊂ à∗(Ù) for all Ù ∈ �∞È .

4. If à(Ù) ⊂ à∗(Ù) for all Ù ∈ �∞È , then the maps à and à∗ are injective.

Proof.

(1) Apply the definition of uniformly dynamics preserving maps to the sequence Õk .

(2) It follows from continuity of limit maps and density of attracting fixed points of infinite order
elements in �∞È .

(3) It comes from the fact that when g ∈ SL(V) is proximal as well as g−1, then �(g) ⊂ H−(g−1)
(and the same density argument).

(4) Consider Ù1,Ù2 ∈ �∞È such that à(Ù1) = à(Ù2). If Ù1 , Ù2, the transversality of the limit maps
yields à(Ù1) ⋔ à∗(Ù2), yet à(Ù1) = à(Ù2) ⊂ à∗(Ù2), establishing a contradiction. The same proof
applies to à∗.

Theorem 1.12
(
Kapovich-Leeb-Porti [KLP17]

)
Let È be a hyperbolic group. A representation â ∈ Hom(È ,SL(V)) is projective Anosov if and
only if it admits a uniformly dynamics preserving pair of transverse limit maps.

A proof of Theorem 1.12 will be given in Part 2.

Remark

A representation possessing a uniformly dynamics preserving pair of transverse limit maps is
called an asymptotic embedding in [KLP17].

If we want to use the definition of proximality involving eigenvalues, then uniformity should es-
sentially mean that Ý1(â(Õ))− Ý2(â(Õ)) should go to +∞ as Õ escapes to infinity. This cannot be true
along any sequence though, unless È is virtually cyclic. Indeed, consider an infinite order element
Ö ∈ È and another element Ô ∈ È such that Ô ·Ö− , Ö−. Setting Õk = ÖkÔÖ−k , we find that Õk → Ö+ (hence
Õk →∞ in È ) and for any representation â ∈ Hom(È ,SL(V)) we find Ýi (â(Õk)) = Ýi (â(Ô)) for any k ∈�
and i ∈ {1, . . . ,d}. The way around this is to only consider sequences with distinct limit points in �∞È
(in the example above, we have both Õk → Ö+ and Õ−1

k → Ö+).
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Definition (Uniformly proximal)

Let È be a hyperbolic group. A representation â ∈ Hom(È ,SL(V)) is called uniformly proximal
if for any unbounded sequence Õk ∈ È with boundary limit points Õ+ = limk→+∞Õk ∈ �∞È and
Õ− = limk→+∞Õ−1

k ∈ �∞È , we have that

Õ+ , Õ− =⇒ lim
k→+∞

Ý1(â(Õk))−Ý2(â(Õk)) = +∞ .

Proposition 1.13

Projective Anosov representations are uniformly proximal.

Proof. Since we have seen in 1.11 that the limit maps (à,à∗) of a projective asymptotic embedding
â ∈ Hom(È ,SL(V)) are dynamics preserving, we only need to show that â is uniformly proximal. For
this purpose, consider an unbounded sequence Õk ∈ È with boundary limits Õ+ = limk→+∞Õk and
Õ− = limk→+∞Õ−1

k , and assume that Õ+ , Õ−. By a standard contradiction argument, it is enough to
show that there is a subsequence for which the limit limk→+∞Ý1(â(Õk))−Ý2(â(Õk)) = +∞ occurs.
Let ∥−∥V be a norm on V, and for every k ∈ � consider some unit vectors v+

k ∈ à(Õ+
k ) and v−k ∈

à∗(Õ−k ), such that
∥∥∥â(Õk)v−k

∥∥∥
V
≥ eÝ2(â(Õk)) (this is possible because eÝ2(â(Õk)) is the spectral radius of

the restriction of â(Õk) to its invariant subspace à∗(Õ−k )). Now let vk = v+
k + v−k , and notice that since

[v+
k ]→ à(Õ+), the sequence [vk] lies in a compact subset of �(V) \�(à∗(Õ−)). Since the limit maps

are uniformly dynamics preserving, we find that

lim
k→+∞

â(Õk) · [vk] = à(Õ+) .

Now considering the decomposition â(Õk)vk = ±eÝ1(â(Õk))v+
k + â(Õk)v−k ∈ à(Õ+

k ) ⊕ à∗(Õ−k ), the conver-
gence â(Õk) · [vk]→ à(Õ+) means that

lim
k→+∞

∥∥∥â(Õk))v−k
∥∥∥

V∥∥∥eÝ1(â(Õk))v+
k

∥∥∥
V

= 0 .

We get by the requirement on v−k that Ý1(â(Õk))−Ý2(â(Õk))→ +∞.

Corollary 1.14

Let È be a hyperbolic group, and â ∈ Hom(È ,SL(V)) a projective Anosov representation. For
any unbounded sequence Õk ∈ È with boundary limit points Õ+ = limk→+∞Õk ∈ �∞È and Õ− =
limk→+∞Õ−1

k ∈ �∞È , we have that

Õ+ , Õ− =⇒ lim
k→+∞

Ý1(Õk) = +∞ .

Proof. From Ý1 + · · · + Ýd = 0, one finds Ý1 − Ý2 = Ý1 + (Ý1 + Ý3 + · · · + Ýd ) ≤ dÝ1, so Ý1(â(Õk)) ≥
(Ý1(â(Õk))−Ý2(â(Õk)))/d .
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Theorem 1.15
(
[GGKW17]

)
Let È be a hyperbolic group. A representation â ∈ Hom(È ,SL(V)) is projective Anosov if and only
if it admits a pair of transverse and dynamics preserving limit maps and is uniformly proximal.

The statement in [GGKW17] may appear different at a first glance, as it involves the stable word
length | − |∞ rather that distinct limit points in �∞È , but it is rather simple to prove that the condi-
tions are equivalent. It is also possible to characterise Anosov representations without invoking limit
maps, asking for a quantitative version of uniform proximality.

Theorem 1.16
(
Kassel-Potrie [KP22]

)
Let È be a hyperbolic group. A representation â ∈ Hom(È ,SL(V)) is projective Anosov if and
only if there is a constant c > 0 such that

∀Õ ∈ È Ý1(â(Õ))−Ý2(â(Õ)) ≥ c|Õ|∞ .

The fact that an Anosov representation satisfies this condition is rather straightforward, the
difficult part is the converse, and goes through another equivalent characterisation (that does not
need limit maps) due to Bochi-Potrie-Sambarino [BPS19] and Kapovich-Leeb-Porti [KLP17].

1.4 Action on the flow space

We finally come back to our flow space

�= {[v : Ó] ∈ �(V⊕ V∗) |Ó(v) > 0}

equipped with the homogeneous flow

ït
�

(
[v : Ó]

)
= [etv : e−tÓ] .

Note that the action of SL(V) on �(V⊕ V∗) is given by g · [v : Ó] = [g · v : Ó ◦ g−1].

Definition (Proper discontinuity domain)

For a projective Anosov representation â ∈ Hom(È ,SL(V)), we introduce the following subset:

M
∧

â
def
=

{
[v : Ó] ∈ �

∣∣∣∀Ù ∈ �∞È , [v] ⋔ à∗(Ù) or à(Ù) ⋔ [Ó]
}
.

Theorem 1.17
(
[DMS25a, Theorem A.(1)]

)
Let â ∈ Hom(È ,SL(V)) be a projective Anosov representation.

1. The subset M
∧

â ⊂ � is open, non empty, invariant under â(È ) and the flow ït
�

.

2. The action of È on M
∧

â is properly discontinuous.

3. If È is torsion-free, then the action of È on M
∧

â is free.
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Proof of Theorem 1.17 (1). The invariance under È follows from the equivariance of the limit maps,
and invariance under the flow ït

�
follows directly from the definition. Fix norms on V and V∗, and

consider the function

Ú :

 �(V)×�(V∗) → �≥0

([v], [Ó]) 7→ |Ó(v)|
∥v∥∥Ó∥

Using the continuity of Ú and the compactness of �∞È , rewriting

M
∧

â =
{
[v : Ó] ∈ �

∣∣∣∣∀Ù ∈ �∞È , Ú([v],à∗(Ù)
)

+Ú
(
à(Ù), [Ó]

)
, 0

}
shows that M

∧

â is open. For non-emptyness we may assume that È is infinite (otherwise �∞È = ∅
and M

∧

â = �), and consider the set

K
∧

â
def
=

{
[v : Ó] ∈ �

∣∣∣∃Ù+ , Ù− ∈ �∞È [v] = à(Ù+), [Ó] = à∗(Ù−)
}
.

It is non empty (since we assume �∞È to be non empty, and it cannot consist in a single point), and
contained in M

∧

â. Indeed, consider [v : Ó] ∈ K
∧

â, Ù+ , Ù− ∈ �∞È such that [v] = à(Ù+) and [Ó] = à∗(Ù−),
and Ù ∈ �∞È . Let us consider the following possibilities:

• If Ù , Ù+, then [v] ⋔ à∗(Ù) by transversality of the limit maps.

• If Ù = Ù+, then Ù , Ù− and à(Ù) ⋔ [Ó] by transversality of the limit maps.

This proves the inclusion K
∧

â ⊂M
∧

â, hence the non vacuity of M
∧

â.

Before we prove the proper discontinuity, we need to study the dynamics of a projective Anosov
representation â : È → SL(V) acting on V. With this in mind, it is important to notice that contraction
for the action on the projective space translates to expansion for the linear action, as a contracting
fixed point in �(V) is the eigendirection for the largest eigenvalue.

Proposition 1.18 ([DMS25a, Lemma 3.2])

Let â ∈ Hom(È ,SL(V)) be a projective Anosov representation, and let Õk ∈ È be a sequence
admitting limits Õ+ = limÕk ∈ �∞È and Õ− = limÕ−1

k ∈ �∞È . For any sequence vk → v ∈ V \ {0}
such that [v] ⋔ à∗(Õ−), one has â(Õk)vk →∞ as k→∞.

Proof. Let us start by assuming that Õ+ , Õ−. Let Õ±k ∈ �∞È be the attracting and repelling points of
Õk , and can consider the decomposition

vk = v+
k + v−k ∈ à(Õ+

k )⊕ à∗(Õ−k ).

Since Õ± = limk→+∞Õ±k (Proposition 1.8), we also have v+
k → v+ and v−k → v− where

v = v+ + v− ∈ à(Õ+)⊕ à∗(Õ−) .

The assumption that [v] ⋔ à∗(Õ−) means that v+ , 0, hence â(Õk)v+
k = ±eÝ1(Õk)v+

k →∞ by Corollary
1.14, and â(Õk)vk →∞ by Lemma 1.1.
Now assume that Õ+ , Õ−, and consider some element f ∈ È such that f ·Õ− , Õ−a. Set Ök = Õkf−1, so
that Ök → Õ+ and Ö−1

k → f ·Õ− , Õ+ (Lemma 1.9). Applying the first case to the sequence wk = â(f )vk
that satisfies wk → â(f )v and

[â(f )v] = â(f ) · [v] ⋔ â(f ) · à∗(Õ−) = à∗(f · Õ−) ,
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we find that â(Ök)wk →∞, which is the desired property since

â(Ök)wk = â(Õkf−1)â(f )vk = â(Õk)vk .

aIn general, given Ù ∈ �∞È , the existence of f ∈ È such that f · Ù , Ù is only guaranteed if È is non elementary, i.e. not
virtually isomorphic to �. But in the elementary case, �∞È consist of two points �∞È = {Ù+,Ù−}, and any sequence with
Õk → Ù+ satisfies Õ−1

k → Ù−, so the case Õ+ = Õ− never occurs for elementary hyperbolic groups.

Proof of Theorem 1.17 (2). Contradicting proper discontinuity amounts to assuming the existence
of:

• Elements [v : Ó], [w : Ô] ∈M
∧

â

• A sequence of elements [vk : Ók] ∈M
∧

È such that [vk : Ók]→ [v : Ó] ∈M
∧

â,

• A sequence of elements Õk ∈ È such that Õk →∞ and â(Õk) · [vk : Ók]→ [w : Ô].

The convergence [vk : Ók]→ [v : Ó] means that there is a sequence Ýk ∈ � \ {0} such that Ýkvk → v
and ÝkÓk → Ó. Replacing vk by Ýkvk and Ók by ÝkÓk , we arrange that vk → v and Ók → Ó. Up to a
extracting a subsequence, we may assume that the limits Õ+ = limÕk ∈ �∞È and Õ− = limÕ−1

k ∈ �∞È
exist.
By virtue of [v : Ó] ∈M

∧

â, either [v] ⋔ à∗(Õ−) or [Ó] ⋔ à(Õ−). The first condition [v] ⋔ à∗(Õ−) implies via
Proposition 1.18 that â(Õk)vk → ∞, which is absurd because of the assumption â(Õk) · [vk : Ók]→
[w : Ô] ∈M

∧

â. Indeed, the latter means that there is a sequence Þk ∈� \ {0} such that Þkâ(Õk)vk → w
and ÞkÓk ◦ â(Õ−1

k )→ Ô, and â(Õk)vk →∞ implies Þk → 0. Now

0 < Ô(w) = lim
k→∞

(
ÞkÓk ◦ â(Õ−1

k )
)(
Þkâ(Õk)vk

)
= lim

k→∞
Þ2

k Ók(vk)︸︷︷︸
→Ó(v)

= 0 ,

a contradiction. For the other condition [Ó] ⋔ à(Õ−), repeating the same argument for the dual
representation leads to the analogous absurdity, and therefore the È -action on M

∧

â is properly dis-
continuous.

Proof of Theorem 1.17 (3). Since È acts properly discontinuously on M
∧

â, stabilisers of points are
finite. Assuming that È is torsion free, this means that stabilisers are trivial, i.e. the action is
free.

Part 2. The refraction flow

Consider a hyperbolic group È and a projective Anosov representation â ∈ Hom(È ,SL(V)) with dynam-
ics preserving transverse limit maps (à,à∗). Recall the closed subset K

∧

â ⊂ � introduced in the proof
of Theorem 1.17:
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Definition (Lifted basic set)

Let È be a hyperbolic group, and â ∈ Hom(È ,SL(V)) a projective Anosov representation. The
lifted basic set is the subset

K
∧

â
def
=

{
[v : Ó] ∈ �

∣∣∣∃(Ù+,Ù−) ∈ �∞È (2) [v] = à(Ù+), [Ó] = à∗(Ù−)
}
.

Note that by construction, the lifted basic set K
∧

â is invariant under the flow ït
�

: �→ �. It can be
described in terms of Hopf coordinates on �. For this, fix a norm ∥−∥V on V and consider the map

H :

 � → �(V)
⋔
×�(V∗)×�

[v : Ó] 7→
(
[v], [Ó],Log ∥v∥V√

Ó(v)

)
It is a diffeomorphism mapping K

∧

â onto Ë⋔â ×� where Ë⋔â ⊂ �(V)
⋔
×�(V∗) is the transverse limit set

Ë⋔â
def
=

{(
à(Ù+),à∗(Ù−)

) ∣∣∣∣ (Ù+,Ù−) ∈ �∞È (2)
}
.

This description allows us to notice that K
∧

â is closed in �.

Theorem 2.1
(
Sambarino

)
The action of È on K

∧

â is properly discontinuous and cocompact.

Remark

We already proved that K
∧

â ⊂ M
∧

â, so the proper discontinuity is a consequence of Theorem
1.17. However, the proof of cocompactness will give another proof of the proper discontinuity
of the action on K

∧

â.

2.1 Flows and discrete groups

2.1.1 È -flows

When we are only interested in qualitative properties of a flow ït : X→ X (meaning its topological
dynamics), it would be natural to want to work with the quotient space X/� of orbits of the flow ït .
This is usually a very bad setting as any interesting dynamical property will forbid this quotient space
to be Hausdorff. For example, topological transitivity (i.e. the existence of a dense orbit) means that
the quotient has a dense point.

The way around this is lifting to a flow ï
∧t on a cover X

∧
of X where the flow has trivial dynamics, so

that X
∧
/� is well behaved. We will only consider Galois coverings, i.e. X = È \X

∧
where È is a countable

group acting properly discontinuouly and freely by homeomorphisms on X
∧

. The flow ït : X→ X then
lifts to ï

∧t : X
∧
→ X

∧
that commutes with the action of È .
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Definition (È -flow)

Consider a discrete group È . A È -flow is the data of a continuous flow ït : X→ X on a compact
metrisable space, such that X = È \X

∧
where È acts properly discontinuously on X

∧
, and ït lifts

to a flow ï
∧t : X

∧
→ X

∧
that commutes with È and that defines a free and proper action of � on X

∧
.

The orbit space of a È -flow is the quotient X
∧
/� under the flow ï

∧t .

Remark

When introducing a È -flow, we will only write ït : X→ X and implicitly fix the covering X
∧
→ X

as well as the lifted flow ï
∧t : X

∧
→ X

∧
.

2.1.2 Gromov geodesic flows

Consider a hyperbolic group È , and a È -flow ït : X→ X. Since È acts properly discontinuously and
cocompactly on X

∧
, endowed with the right distance X

∧
is hyperbolic with boundary �∞X ≃ �∞È . Con-

cretely, given sequences x
∧

k ∈ X
∧

and Õk ∈ È such that Õ−1
k · x

∧
k lies in a compact subset of X

∧
, then x

∧
k

converges to a point Ù ∈ �∞È if and only if Õk converges to Ù.

Definition (Gromov flows)

Let È be a hyperbolic group.

• A Gromov flow for È is a È -flow ït : X→ X such that the map X
∧
/� → �∞È

(2)

x
∧

mod� 7→
(

lim
t→+∞

ï
∧t(x

∧
) , lim

t→−∞
ï
∧t(x

∧
)
)

is well defined and is a homeomorphism.

• A coarse Gromov flow for È is a È -flow ït : X→ X such that the map X
∧
/� → �∞È

(2)

x
∧

mod� 7→
(

lim
t→+∞

ï
∧t(x

∧
) , lim

t→−∞
ï
∧t(x

∧
)
)

is well defined and is continuous, surjective and proper.

Notation

∀x
∧
∈ X

∧
x
∧+ def

= lim
t→+∞

ï
∧t(x

∧
) and x

∧− def
= lim

t→−∞
ï
∧t(x

∧
) .

The typical non example is the horocyclic flow of a closed surface Î of genus g ≥ 2. It is a È -flow
where È = á1Î, but not a coarse Gromov flow (flow lines in the È -cover have the same endpoint for
t→±∞). Coarse Gromov flows are essentially È -flows for which the orbits of ï

∧t are quasi-geodesics.
One way of constructing (coarse) Gromov flows is to consider geometric actions of È on negatively
curved spaces. Consider a geodesic metric space (Y,dY) endowed with an isometric action of È

that we assume to be faithful, properly discontinuous and cocompact. Then È also acts properly
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discontinuously on the space of geodesics

G (Y)
def
=

{
g : �→ Y

∣∣∣∀t, t′ ∈� dY(g(t),g(t′)) = |t − t′ |
}
,

and commutes with the geodesic flow

è
∧t

:

{
G (Y) → G (Y)

g 7→ g(t +−)

allowing us to consider the quotient flow

èt : È \G (Y)→ È \G (Y) .

Fact

• If (Y,dY) is Ö-hyperbolic for some Ö > 0, then èt : È \G (Y)→ È \G (Y) is a coarse Gromov
flow.

• If (Y,dY) is CAT(−Ü) for some Ü > 0, then èt : È \G (Y)→ È \G (Y) is a Gromov flow.

In particular, for a convex cocompact subgroup È < Isom(�d ), the restriction of the geodesic flow
ït
È

: MÈ →MÈ (where MÈ = È \T1
�

d ) to its non wandering set is a Gromov geodesic flow.
A systematic construction of a coarse Gromov flow is to consider the Cayley graph with respect

to a finite generating subset S ⊂ È , i.e. for any Õ ∈ È \ {1È } there are s1, . . . ,sk ∈ S ∪ S−1 such that
Õ = s1 · · ·sk . The smallest k ∈�such that Õ can be decomposed in this way is called the word length
of Õ, denoted by |Õ|S (by convention we assume that 1È < S and set |1È | = 0).

The Cayley graph of È with respect to S is the graph whose vertices are elements of È and two
verticles Õ1,Õ2 are joined by an edge if and only if Õ−1

1 Õ2 ∈ S∪S−1. When we refer to the Cayley graph
CayÈ ,S, we will always consider it as a topological graph, and endow it with the length distance dS
such that every edge hast length 1. Note that for vertices Õ1,Õ2 ∈ CayÈ ,S, we have dS(Õ1,Õ2) =∣∣∣Õ−1

1 Õ2

∣∣∣
S

. The left action of È on vertices extends to an isometric action on CayÈ ,S which is free,
properly discontinuous and cocompact.

The fact that the geodesic flow of a Cayley graph provides a coarse Gromov flow, mainly that the
limits g

∧
(±∞) ∈ �∞È exist, follows from the very definition of �∞È (for a more precise statement on

the properness of the map to �∞È
(2), see [CK02, Lemma 7.1]).

As it is still unknown whether all hyperbolic groups admit a geometric action on a CAT(−Ü) space
for some Ü > 0, construction a Gromov flow is harder. It is however possible: Gromov proposed a
construction starting with the geodesic flow of a Cayley graph (or any hyperbolic space on which È

acts geometrically) and collapsing geodesics with the same endpoints to a single line.

Theorem 2.2
(
[Gro87]

)
Every hyperbolic group has a Gromov flow.

2.2 Suspension bundles and flows

2.2.1 Geometric structures as sections of suspension bundles

A (G,�)-structure is only defined on a manifold X whose dimension is that of �. If the dimension of
X is smaller (or if X fails to be a manifold), we could adapt the definition by dropping the requirement
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that the maps fi in a (G,�)-atlas are local homeomorphisms. One could define a (G,�)-embedding
structure by asking for the maps fi to be topological embeddings, or even drop any requirement.
In this case, the holonomy homomorphism and developing map may fail to be defined. For this
reason, the generalisation of a (G,�)-structure to a smaller dimensional space X goes through a
different description using sections of suspension bundles, which are a different way of considering
a holonomy homomorphism and a developing map.

Definition (Suspension bundle)

Consider a metrisable space X = È \X
∧

where È acts properly discontinuously on X
∧

, a manifold
F and â ∈ Hom(È ,Diff(F)). The suspension bundle of â is the bundle X ×â F = È \(X

∧
× F) where È

acts diagonally on X
∧
× F, i.e.

∀Õ ∈ È ∀(x
∧
, f ) ∈ X

∧
× F Õ · (x

∧
, f ) = (Õ · x

∧
,â(Õ) · f ) .

The projection áâ : X×â F→ X sends È · (x
∧
, f ) ∈ X×â F to È · x

∧
∈ X.

The projection áâ : X ×â F→ X is characterised by commutativity of the diagram (where proj1 :

X
∧
× F→ X

∧
stands for the projection on the first factor):

X
∧
× F

X
∧

X×â F

X

proj1 È -quotient

È -quotient áâ

Notation

For x ∈ X, we will write {x} ×â F
def
= á−1

â ({x}) ⊂ X×â F for the fibre over x.

Example (Mapping torus)

Consider X = �
1, X

∧
= � and È = �. Any è ∈ Diff(F) induces âè ∈ Hom(�,Diff(F)) defined by

âè(n) = è−n, and the total space of the suspension bundle �
1×âèX is called the mapping torus

of è.

If a map ã
∧

: X
∧
→ F is â-equivariant, i.e.

∀Õ ∈ È ∀x
∧
∈ X

∧
ã
∧

(Õ · x
∧

) = â(Õ) · ã
∧

(x
∧

) ,

then the map

ã :

{
X → X×â F

È · x
∧
7→ È · (x

∧
,ã
∧

(x
∧

))

is a section of the suspension bundle áâ : X×â F→ X. All sections are obtained in this way.
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Remark (Tangent spaces to fibres)

Even if X is not a manifold, the fibres of X×â F inherit a manifold structure diffeomorphic to F,
so we can talk about the vertical space X×â TF at z ∈ X×â F, i.e. the tangent space

{x} ×â TzF
def
= Tz

(
{x} ×â F

)
of the fibre {x} ×â F over x = áâ(z). They form a continuous vector bundle X×â TF→ X×â F.

2.2.2 The suspended flow and its vertical derivative

Now consider a È -flow ït : X→ X and a group homomorphism â : È → Diff(F) for some manifold F.
The flow ït : X → X has a natural lift ït

â : X ×â F → X ×â F. In the smooth case, it corresponds to
parallel transport along flow lines of ït for a natural flat connection on X×â F, but it can be defined
in the continuous setting.

Definition (Suspended flow)

The suspended flow is defined by Ð t
â :

{
X×â F → X×â F
È · (x

∧
, f ) 7→ È · (ï

∧t(x
∧

), f )

Notation

We will be lead to consider representations â ∈ Hom(È ,G) for a Lie group G and actions of G on
various manifolds F. When there is a possible confusion, we will denote by Ð t

â,F the suspended
flow on X×â F.

Now consider a flow-equivariant section ã : X→ X×â F, i.e. a section satisfying the equivariance
condition

∀t ∈� ã ◦ït = Ð t
â ◦ ã .

One can define the vector bundle X×âTãF→ X whose fibre over x ∈ X is the vertical space {x}×âTã(x)F,
i.e. the tangent space at ã(x) to the fibre {x} ×â F, that is

∀x ∈ X X×â TãF
∣∣∣
m

= {x} ×â Tã(x)F = Tã(x)

(
{x} ×â F

)
.

Definition (Vertical flow)

The vertical flow of a flow-equivariant section ã : X→ X×â F is the linear lift

dV
ãÐ

t
â : X×â TãF→ X×â TãF

of ït mapping the fibre {x} ×â Tã(x)F over x ∈ X to the fibre {ït(x)} ×â Tã(ït(x))X over ït(x) as the
differential of the restriction of Ð t

â to the fibre {x} ×â F.

We can also give a direct definition of dV
ãÐ

t
â by considering lifts to trivial bundles over X

∧
. Lifting

ã : X→ X×â F to a â-equivariant map ã
∧

: X
∧
→ F, we can also see X×â TãF as X×â TãF = È \ã

∧ ∗TF where
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the diagonal action of È on
ã
∧ ∗TF =

{
(x
∧
,v) ∈ X

∧
× TF

∣∣∣∣v ∈ Tã
∧

(x
∧

)F
}

is defined by the formula

Õ · (x
∧
,v) =

(
Õ · x

∧
, dâ(Õ)

∣∣∣
ã
∧

(x
∧

)
v
)

thanks to the â-equivariance of ã
∧

. The flow dV
ãÐ

t
â sends È · (x

∧
,v) to È · (ï

∧t(x
∧

),v), i.e. is defined by
commutativity of the diagram

ã
∧ ∗TF ã

∧ ∗TF

X×â TãF X×â TãF

X X

ï
∧t× id

È -quotient È -quotient
dV
ãÐ

t
â

ït

This is the construction used by Guichard and Wienhard in [GW12]. In the smooth case (i.e. X is a
smooth manifold and the flow ït : X→ X is smooth), we can also interpret Ð t

â as a parallel transport
itself, by considering any linear connection ∇ on the vertical bundle X×â TF→ X×âF of X×âF, so that

dV
ãÐ

t
â is the parallel transport for ã∗∇ on X×â TãF = ã∗

(
X×â TF

)
(it does not depend on the choice of

∇ because of the flow-equivariance of ã). This was Labourie’s approach in [Lab06].

2.3 Contracting linear flows

Let p : E→ X be a continuous vector bundle over a compact metric space X equipped with a contin-
uous flow ït : X→ X. A linear lift of ït to E is a flow Ð t : E→ E such that p ◦Ð t = ït ◦ p and each
restriction Ð t

∣∣∣
x

: E|x → E|ït(x) is linear.

Definition (Contracting and dilating linear flows)

A linear lift Ð t : E → E of a flow ït : X → X is called contracting if for some (hence any)
continuous Euclidean metric ∥·∥ on E, there are constants C,a > 0 such that

∀x ∈ X ∀v ∈ E|x ∀t ≥ 0
∥∥∥Ð t

∣∣∣
x

v
∥∥∥
ït(x)
≤ Ce−at ∥v∥x .

We say that Ð t is dilating if Ð−t is contracting.

2.3.1 Contraction and dominated splittings

Since X is compact, changing the Euclidean metric will only affect the constant C, making this choice
irrelevant in the definition. It will be practical to consider metrics for which this constant is 1, often
called adapted metrics. This is always possible as long as we are ready to lower the constant a.
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Lemma 2.3 (Characterisations of contraction of a linear flow)

Let X be a compact metric space, p : E→ X a continuous vector bundle and Ð t : E→ E a linear
lift of a continuous flow ït : X→ X. The following are equivalent:

1. Ð t is contracting.

2. There exist a continuous Euclidean metric ∥·∥ on E and a constant b > 0 such that

∀x ∈ X ∀v ∈ E|x ∀t ≥ 0
∥∥∥Ð t

∣∣∣
x

v
∥∥∥
ït(x)
≤ e−bt ∥v∥x .

3. Ð t |x z→ 0 as t→ +∞ for any x ∈ X and z ∈ E|x .

Remark

By Ð t |x z→ 0, we mean that
∥∥∥Ð t |x z

∥∥∥
ït(x)
→ 0 for some (hence any) continuous norm on E. This

does no mean convergence to a point in E, but that it gets close to the zero section.

Proof. Let us start with 1.⇒2. Let ∥·∥◦ be any Euclidean metric on E, and consider the constants
C,a > 0 with respect to ∥·∥◦. Consider t0 > 0 such that Ce−at0/2 ≤ 1, and set

∥v∥x =
∫ t0

0
e

as
2 ∥Ðs |x v∥◦ïs(x) ds .

For any t ≥ 0, a simple change of variables yields∥∥∥Ð t
∣∣∣
x

v
∥∥∥
ït(x)

=
∫ t0

0
e

as
2
∥∥∥Ð t+s

∣∣∣
x

v
∥∥∥◦
ït+s(x)

ds

= e−
at
2

∫ t+t0

t
e

as
2 ∥Ðs |x v∥◦ïs(x) ds .

We then find, first by rearranging integration domains then with a change of variables:

e
at
2
∥∥∥Ð t

∣∣∣
x

v
∥∥∥
ït(x)
− ∥v∥x =

∫ t+t0

t
e

as
2 ∥Ðs |x v∥◦ïs(x) ds −

∫ t0

0
e

as
2 ∥Ðs |x v∥◦ïs(x) ds

=
∫ t+t0

t0

e
as
2 ∥Ðs |x v∥◦ïs(x) ds −

∫ t

0
e

as
2 ∥Ðs |x v∥◦ïs(x) ds

=
∫ t

0
e

as
2

(
e

at0
2

∥∥∥Ð t0+s
∣∣∣
x

v
∥∥∥◦
ït0+s(x)

− ∥Ðs |x v∥◦ïs(x)

)
ds

Finally the contraction yields

e
at
2
∥∥∥Ð t

∣∣∣
x

v
∥∥∥
ït(x)
− ∥v∥x ≤

∫ t

0
e

as
2

e
at0

2 Ce−at0︸       ︷︷       ︸
≤1

−1

∥Ðs |x v∥◦ïs(x) ds ≤ 0 .

2.⇒3. is immediate, let us prove 3.⇒1. Let ∥−∥ be a Euclidean metric on E, and use the same
notation for the operator norm between fibres. For a fixed x ∈ X, choosing an orthonormal basis
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(e1, . . . ,ed ) of the fibre E|x one finds

∥∥∥Ð t |x
∥∥∥ ≤ d¼

i=1

∥∥∥Ð t(ei )
∥∥∥

and deduces that
∥∥∥Ð t |x

∥∥∥ → 0 and t → +∞. In particular, there is some tx ≥ 1 such that∥∥∥Ð tx |x
∥∥∥ < 1/e. Consider a neighbourhood Ux ⊂ X of x such that

∥∥∥Ð tx |x′
∥∥∥ < 1/e for all x′ ∈ Ux . The

compactness of X allows us to consider a finite set x1, . . . ,xk ∈ X such that X = Ux1
∪ · · · ∪Uxk

. Set
T = max(tx1

, . . . , txk
) and

C = max
{∥∥∥Ð t |x

∥∥∥∣∣∣x ∈ X , t ∈ [0 ,T]
}
.

For x ∈ X, consider the sequence (i j )j≥0 constructed inductively so that m ∈ Uxi0
and for all j ≥ 0,

setting äj = txi0
+ · · ·+ txj

, we get the following:

ïäj (x) ∈ Uxij+1
.

Let t ≥ T, and let j ≥ 0 be defined by äj ≤ t < äj+1. Setting s = äj+1 − t ∈ [0 ,T), we find∥∥∥Ð t |x
∥∥∥ ≤ ∥∥∥Ð txi0

∣∣∣
x

∥∥∥︸    ︷︷    ︸
≤ 1

e

· · ·
∥∥∥∥∥Ð txij

∣∣∣∣
ï
äxj−1 (x)

∥∥∥∥∥︸            ︷︷            ︸
≤ 1

e

∥∥∥Ðs |ïäxj (x)

∥∥∥︸        ︷︷        ︸
≤C

≤ Ce−(j+1) .

Using the fact that t < äj+1 ≤ (j + 1)T, we find
∥∥∥Ð t |x

∥∥∥ ≤ Ce−t/T.

Remark

A metric such as in point 2. is called an adapted metric. We can make the constant b as close
to a as we want.

Definition (Dominated splitting)

Let X be a compact metric space, p : E→ X a continuous vector bundle and Ð t : E→ E a linear
lift of a continuous flow ït : X→ X. Let E1,E2 be two Ð t-invariant vector subbundles of E. We
say that E1 dominates E2 if for some (hence any) continuous Euclidean metric ∥−∥ on E, there
are constants a,C > 0 such that for all x ∈ X and non zero vectors vi ∈ Ei |x , i = 1,2, we have

∀t ≥ 0

∥∥∥Ð t(v1)
∥∥∥
ït(x)

∥Ð t(v2)∥ït(x)
≥ Ceat ∥v1∥x

∥v2∥x
.

Domination can also be interpreted as contraction on the homomorphism bundle. If E1,E2 are Ð t-
invariant vector subbundles of E, then Hom(E1,E2) also carries a linear lift of ït defined by fibrewise

conjugation by Ð t , i.e. Ð t
End(Ô) = Ð t |E1

◦ Ô ◦
(
Ð t |E2

)−1
.
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Lemma 2.4 (Characterisations of dominated splittings)

Let X be a compact metric space, p : E→ X a continuous vector bundle and Ð t : E→ E a linear
lift of a continuous flow ït : X→ X. Let E1,E2 be two Ð t-invariant vector subbundles of E. The
following are equivalent:

1. E1 dominates E2.

2. Hom(E1,E2) is contracted.

3. Hom(E2,E1) is dilated.

Proof. In this whole proof, we fix a Euclidean norm ∥−∥ on E, and consider the associated operator
norms on homomorphism bundles.
First assume that E1 dominates E2. Let x ∈ X and Ô ∈ Hom(E1|x ,E2|x). For t ≥ 0, choose some
w1 ∈ E1|ït(x) \ {0} such that

∥∥∥Ð t(Ô)(w1)
∥∥∥ =

∥∥∥Ð t(Ô)
∥∥∥∥w1∥ and set v1 = Ð−t(w1).

∥∥∥∥Ð t
Hom(E1,E2)(Ô)

∥∥∥∥ =

∥∥∥Ð t(Ô)(w1))
∥∥∥

∥w1∥

=

∥∥∥Ð t(Ô(v1))
∥∥∥

∥Ð t(v1)∥

≤ 1
C

e−at

∥∥∥Ô(v1)
∥∥∥

∥v1∥

≤ 1
C

e−at
∥∥∥Ô∥∥∥ ,

thus showing that Hom(E1,E2) is contracted. Now assume that Hom(E1,E2) is contracted. Consider
x ∈ X, some non zero vectors v1 ∈ E1|x , v2 ∈ E2|x , and choose Ô ∈ Hom(E1|x ,E2|x) such that Ô(v1) = v2

and
∥∥∥Ô∥∥∥ = ∥v2∥

∥v1∥
. Then Ð t

Hom(E1,E2)(Ô) maps Ð t(v1) to Ð t(v2), and we find∥∥∥Ð t(v2)
∥∥∥

∥Ð t(v1)∥
≤

∥∥∥∥Ð t
Hom(E1,E2)(Ô)

∥∥∥∥ ≤ Ce−at
∥∥∥Ô∥∥∥ = Ce−at ∥v2∥

∥v1∥
,

thus establishing domination of E1 over E2. Similar proofs show that this domination is equivalent
to dilation of Hom(E2,E1).

2.3.2 Topological dynamics on projective bundles and dominated splittings

Let È be a countable group, ït : X→ X a È -flow and â ∈ Hom(È ,SL(V)). A section

ã : X→ X×â�(V)
⋔
×�(V∗)

can be seen as a pair of sections

ã+ : X→ X×â�(V) , ã− : X→ X×â�(V∗)

satisfying a fibrewise transversality condition. This transversality refers to the flat vector bundle
X ×â V. Indeed, the sections ã± determine vector subbundles Î+ and Î− of V, and transversality
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means that
X×â V = Î+ ⊕Î− .

Proposition 2.5 (Dilation and contraction of vertical derivatives over projective bundles)

Consider a È -flow ït : X → X, a representation â ∈ Hom(È ,SL(V)) and a continuous section

ã = (ã+,ã−) : X→ X×â�(V)
⋔
×�(V∗). The following are equivalent:

1. The vertical derivative dV
ã+
Ð t
â,�(V) : X×â Tã+

�(V)→ X×â Tã+
�(V) is dilating.

2. The vertical derivative dV
ã−
Ð t
â,�(V∗) : X×â Tã−�(V∗)→ X×â Tã−�(V∗) is contracting.

3. The bundle Î− dominates Î+.

Proof. Thanks to Lemma 2.4, the proof will be achieved if we can find bundle automorphisms
Hom(Î+,Î−) → X ×â Tã+

�(V) and Hom(Î−,Î+) → X ×â Tã−�(V∗) conjugating the linear lifts of ït .
This will be done by understanding tangent spaces to Grassmannians. Consider a direct sum de-
composition V = W1 ⊕W2, and let k = dim W1. We have an explicit isomorphism{

Hom(W1,W2) → TW1
Grk(V)

Ô 7→ d
dt

∣∣∣
t=0

im(idW1
+ tÔ)

Where im(idW1
+ tÔ) = {w + tÔ(w)

∣∣∣w ∈W1} ∈ Grk(V). Applying these isomorphisms on each fibre to
the splitting {x} ×â V = Î+|x ⊕Î−|x and to the Grassmannians Gr1(V) = �(V) and Grd−1(V) = �(V∗)
yields the desired bundle isomorphisms.

Proposition 2.6 (Dominated splittings and topological dynamics)

Consider a È -flow ït : X → X, a representation â ∈ Hom(È ,SL(V)) and a continuous section

ã = (ã+,ã−) : X→ X×â�(V)
⋔
×�(V∗). The following are equivalent:

1. The bundle Î− dominates Î+.

2. For any neighbourhoods U+ ⊂ X ×â �(V) of �(Î+) and U− ⊂ X ×â �(V) of �(Î−), there is
some t0 ≥ 0 such that

∀t ≥ t0 Ð−t
â,�(V)

(
X×â�(V) \U−

)
⊂ U+ .

3. For any � ∈ X×â�(V) \�(Î−), we have lim
t→−∞

dist
(
�,�(Î+)

)
= 0.

Proof. Let us start with 1.⇒2. Assume that Î+ dominates Î−, consider a Euclidean metric ∥−∥ on
X×â V, and for s > 0 consider the open subsets

U+
s =

{
[v+ + v−] ∈ X×â�(V)

∣∣∣v+ ∈ Î+ , v− ∈ Î−& ∥v+∥ > es ∥v−∥
}
,

U−s =
{
[v+ + v−] ∈ X×â�(V)

∣∣∣v+ ∈ Î+ , v− ∈ Î−& ∥v+∥ < e−s ∥v−∥
}
.

For any neighbourhoods U± of �(Î±), compactness of X gives us some s > 0 such that U+
s ⊂ U+

and U−s ⊂ U−. Using the same notations C,a > 0 as in the definition of a dominated splitting, we
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find that ï−t
â

(
X×â�(V) \U−s

)
⊂ U+

s as soon as t > 2s+LogC
a , thus proving 2.

The implication 2.⇒3. is straightforward, so let us now prove that 3.⇒1. For any transverse � ∈
�(V) and H ∈ �(V∗), we can consider the map

expu
(�,H) :

{
T��(V) ≃ Hom(�,H) → �(V)

f 7→ im(id� + f )

That is expu
(�,H)(f ) = [v + f (v)] for v ∈ �. It establishes a diffeomorphism from T��(V) to �(V) \�(H). It

extends to vector bundles
expu

ã : X×â Tã+
�(V)→ X×â�(V) ,

and conjugates the suspension flow with its vertical derivative

expu
ã ◦dV

ã+
Ð t
â,�(V) = Ð t

â,�(V) ◦ expu
ã .

Now let Ø ∈ X ×â Tã+
�(V). By assumption, we have that Ð t

â,�(V)(expu
ã (Ø)) accumulates on Î+ as t →

−∞, hence dV
ãÐ

t
â,�(V)(Ø)→ 0 as t→−∞, and by Lemma 2.3 this implies dilation, thus domination of

Î+ over Î− by Proposition 2.5.

2.4 Projective Anosov representations

2.4.1 The flow definition

In this section we introduce a slight variation on Labourie’s original definition of an Anosov represen-
tation, using any coarse Gromov flow instead of the geodesic flow of a negatively curved manifold
or a Gromov flow. We will see generalisations to other Lie groups in the next section. The definition
will make use of the space

�(V)
⋔
×�(V∗)

def
=

{(
[v], [Ó]

)
∈ �(V)×�(V∗)

∣∣∣∣Ó(v) , 0
}
.

A projective Anosov representation is essentially a
(
SL(V),�(V)

⋔
×�(V∗)

)
-embedding structure on the

non Hausdorff space È \�∞È (2). Because of topological considerations, it is better to work with È -
equivariant maps on �∞È

(2). Consider a coarse Gromov flow ït : X → X, a representation â ∈
Hom(È ,SL(V)) and let (à,à∗) be a pair of limit maps for â, i.e. à : �∞È → �(V) and à∗ : �∞È → �(V∗) are
continuous â-equivariant maps. Such a pair induces flow-equivariant sections

à+ :

 X → X×â�(V)

È · x
∧
7→ È ·

(
x
∧
,à

(
x
∧+

)) and à∗− :

 X → X×â�(V∗)

È · x
∧
7→ È ·

(
x
∧
,à∗

(
x
∧−))

If moreover the pair (à,à∗) is transverse, i.e.

∀(Ù+,Ù−) ∈ �∞È (2) à(Ù+) ⋔ à∗(Ù−) ,

they induce a flow-equivariant section

(à+,à
∗
−) :

 X → X×â�(V)
⋔
×�(V∗)

È · x
∧
7→ È ·

(
x
∧
,à

(
x
∧+

)
,à∗

(
x
∧−))

Anosov representations are defined by contraction/dilation of vertical derivatives of these sections.
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Definition (Projective Anosov limit maps)

Let È be a Gromov hyperbolic group, ït : X→ X a coarse Gromov flow, and â ∈ Hom(È ,SL(V)).
A pair of transverse projective limit maps (à,à∗) is called a pair of projective Anosov limit maps
if it satisfies the following properties:

• The vertical flow dV
à+
Ð t
â,�(V) : X×â Tà+

�(V)→ X×â Tà+
�(V) is dilating.

• The vertical flow dV
à∗−
Ð t
â,�(V∗) : X×â Tà∗−�(V∗)→ X×â Tà∗−�(V∗) is contracting.

Note that thanks to Proposition 2.5, each of these two conditions implies the other.

Definition (Projective Anosov representation)

Let È be a hyperbolic group. A homomorphism â : È → SL(V) is called projective Anosov if it
admits a pair of projective Anosov limit maps for some coarse Gromov flow.

Proposition 2.7 (Contraction of Î+)

If â ∈ Hom(È ,SL(V)) is projective Anosov, then the bundle Î+ is contracted.

Proof. Since the bundle Hom(Î−,Î+) is contracted, so is its determinant bundle

det
(

Hom(Î−,Î+)
)
≃ det(Î−)⊗Î⊗(d−1)

+ ,

but the fact that det(X×â V) is trivialisable (because â(È ) < SL(V)) gives us an isomorphism

det(Î−) ≃ Î+ .

It follows that Î⊗d
+ is contracted, and so is Î+.

This proof is taken from [BCLS15, Lemma 2.4].

2.4.2 Proof of Theorem 1.12

In this section we prove the equivalence between Anosov representations and asymptotic embed-
dings in the sense of [KLP17]. The explanation is that any pair of transverse limit maps give sections
of bundles X ×â �(V) and X ×â �(V∗) for any coarse Gromov flow ït : X → X. The limit maps being
uniformly dynamics preserving is then equivalent to the source-sink dynamics of the flow Ð t

â,�(V)
described in Proposition 2.6.

27



Proposition 2.8 (Uniformly dynamics preserving transverse limit maps and topological

dynamics of suspension bundles)

Let È be a hyperbolic group, ït : X→ X a coarse Gromov flow, â ∈ Hom(È ,SL(V)) a representa-
tion and (à,à∗) a pair of transverse limit maps. The following are equivalent:

1. The pair (à,à∗) is uniformly dynamics preserving.

2. For any neighbourhoods U+ ⊂ X×â �(V) of à+(X) and U− ⊂ X×â �(V) of �(à∗−(X)), there is
some t0 ≥ 0 such that

∀t ≥ t0 Ð−t
â,�(V)

(
X×â�(V) \U−

)
⊂ U+ .

Theorem 1.12 follows directly from propositions 2.5, 2.6 and 2.8. An immediate corollary is that
the definition of an Anosov representation does not depend on the choice of a coarse Gromov flow.
A detailed scanning of the proofs will show that the convergences involved in the definition of uni-
formly dynamics preserving transverse limit maps do not have to be required to be locally uniform,
and that one of the two convergences is sufficient.

Proof of 1.⇒2. in Proposition 2.8. Consider some point � ∈ X ×â �(V) \�(Î−), so that according to
Proposition 2.5 all we need to show is that

lim
t→−∞

dist
(
Ð t
â,�(V)(�),�(Î+)

)
= 0 .

By compactness of X ×â �(V), it is sufficient to show that for any sequence tk → −∞ such that

limÐ
tk
â,�(V)(�) exists, we have limÐ

tk
â,�(V)(�) ∈ �(Î+). Let us fix such a sequence, write x = áâ(�) ∈ X,

x′ = limk→+∞ïtk (x) and �′ = limk→+∞Ð
tk
â,�(V)(�), so that our goal is to prove that �′ = à+(x′).

Let D ⊂ X
∧

be a compact subset meeting every orbit, and write � = È · (x
∧
, �0) where x

∧
∈ D and

�0 ⋔ à∗(x
∧−). Let Õk ∈ È be such that Õk · ï

∧tk (x
∧

) ∈ D . This implies that Õ−1
k → x

∧− ∈ �∞È . Up to
replacing (tk) with a subsequence, we may assume that Õk · ï

∧tk (x
∧

) has a limit x
∧′ ∈ D (which is a

lift of x′ ∈ X), and that (Õk) has a limit Õ+ ∈ �∞È . Since �0 ⋔ à∗(x
∧−) = à∗(Õ−) and the limit maps are

uniformly dynamics preserving, we find that â(Õk) · �0→ à(Õ+), therefore

Ð
tk
â,�(V)(�) = È ·

(
ï
∧tk (x

∧
), �0

)
= È ·

(
Õk ·ï

∧tk (x
∧

)︸     ︷︷     ︸
→x

∧′

,â(Õk) · �0︸    ︷︷    ︸
→à(Õ+)

)
−→ È ·

(
x
∧′ ,à(Õ+)

)
.

We now notice that for all k, limt→+∞ï
∧t(Õk ·ï

∧tk (x
∧

)) = Õk ·x
∧+, thus limt→+∞ï

∧t(x
∧′) = à(Õ+). This finishes

the proof that �′ = à+(x′).

Proof of 2.⇒1. in Proposition 2.8. Consider a sequence Õk → Õ+ and Õ−1
k → Õ−, and assume that

Õ+ , Õ− (thanks to Lemma 1.9, it is sufficient to treat this case). Consider the compact subset

K =
{
(Õ+

k ,Õ
−
k )

∣∣∣k ∈�}
∪ {(Õ+,Õ−)} ⊂ �∞È

(2) ,

and letD ⊂ X
∧

be a compact subset that surjects onto the pre-image ofK in X
∧
/� (the existence of

D comes from the properness of the map X
∧
/�→ �∞È

(2)). Then for all k we can choose x
∧

k ∈D such
that x

∧±
k = Õ±k , as well as some tk ∈� such that Õk ·ï

∧tk (x
∧

k) ∈D . Note that we must have tk →−∞.
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In order to prove local uniform convergence of â(Õk) to à(Õ+) on �(V)\�(à∗(Õ−)), by simple topolog-
ical arguments involving compactness (Lemma 1.4), we only have to prove that for a converging
sequence �k → � ∈ �(V)\�(à∗(Õ−)), such that the limit �∞ = limâ(Õk) ·�k ∈ �(V) exists, we must have
�∞ = à(Õ+). Upon extraction of a subsequence, we may assume that Õk ·ï

∧tk (x
∧

k) has a limit x
∧
∞ ∈D .

Set Øk = È · (x
∧

k , �k) ∈ X×â�(V) \�(Î−). Then

lim
k→+∞

dist
(
Ð

tk
â,�(V)(Øk),�(Î+)

)
= 0 .

But we can compute

Ð
tk
â,�(V)(Øk) = È ·

(
ï
∧tk (x

∧
k), �k

)
= È ·

(
Õk ·ï

∧tk (x
∧

k)︸       ︷︷       ︸
→x

∧
∞

,â(Õk) · �k︸    ︷︷    ︸
→�∞

)
,

thus proving that �∞ = à(x
∧+
∞). But limt→+∞ï

∧t(Õk ·ï
∧tk (x

∧
k)) = Õk · x

∧+
k = Õk · Õ+

k = Õ+
k , therefore x

∧+
∞ = Õ+

and �∞ = à(Õ+). This finishes the proof for the dynamics on �(V). The corresponding dynamics
on �(V∗) follow from applying this result to the dual representation â∗ ∈ Hom(È ,SL(V∗)), which is
possible because the dynamical conditions on the suspension bundles X×â�(V) and X×â�(V∗) are
equivalent by combining propositions 2.5 and 2.6.

2.5 Proving cocompactness

This section is devoted to the proof of Theorem 2.1, and we will follow the proof of [BCLS15, Propo-
sition 4.2]. For this purpose, let us fix a distance d∞ on �∞È defining the Gromov topology, and an
adapted metric ∥·∥ on Î+ provided by Lemma 2.3 for the contracting flow (Proposition 2.7)

Ð t
â,V : Î+→ Î+ ,

i.e. there exists a constant b > 0 such that

∀x ∈ X ∀z ∈ Î+|x ∀t ≥ 0
∥∥∥∥Ð t

â,V

∣∣∣∣
x

z
∥∥∥∥
ït(x)
≥ ebt ∥z∥x . (1)

Note that applying this to reverse time, we also have

∀x ∈ X ∀z ∈ Î+|x ∀t ≤ 0
∥∥∥∥Ð t

â,V

∣∣∣∣
x

z
∥∥∥∥
ït(x)
≤ ebt ∥z∥x .

Definition (The map F
∧

: X
∧
→ K

∧

â)

Let x
∧
∈ X

∧
, choose v ∈ V such that [v] = à(x

∧+) and
∥∥∥È · (x∧,v)

∥∥∥
x

= 1, and Ó ∈ V∗ such that [Ó] =
à∗(x

∧−) and Ó(v) = 1. We then define

F
∧

(x
∧

)
def
= [v : Ó] .

Proof that F
∧

: X
∧
→ K

∧

â is well defined. Since Î+ is a line bundle, the only possibility for a replace-
ment v′ ∈ à(x

∧+) with
∥∥∥È · (x∧,v′)∥∥∥

x
= 1 for v is v′ = −v. This forces the choice of Ó′ ∈ V∗ with [Ó′] = à∗(x

∧−)
with Ó′(v′) = 1 to be Ó′ = −Ó, so finally

[v′ : Ó′] = [−v : −Ó] = [v : Ó] .
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Lemma 2.9

The restriction of the map F
∧

: X
∧
→ K

∧

â to every flow line of ï
∧t is a bijection onto a flow line of

ït
�

.

Proof. Applying the definition of F
∧

to ï
∧t(x

∧
), let us write the corresponding elements vt ∈ V, Ót ∈ V∗.

Since [vt] = [v] for any t ∈ � and we can freely change between vt and −vt , we can assume that
vt = es(t)v for some s(t) ∈� (with s(0) = 0). We then have Ót = e−s(t)Ó by virtue of Ót(vt) = 1, hence

F
∧

(ï
∧t(x

∧
)) = [vt : Ót] =

[
es(t)v : e−s(t)Ó

]
= ï

s(t)
�

(
F
∧

(x
∧

)
)
.

Now set z = È · (x
∧
,v) ∈ Î+|x and zt = È · (ï

∧t(x
∧

),vt) ∈ Î+|ït(x), so that we have∥∥∥∥Ð t
â,V

∣∣∣∣
x

z
∥∥∥∥
ït(x)

=
∥∥∥È · (ï∧t(x),v)

∥∥∥
ït(x)

= e−s(t)
∥∥∥È · (ï∧t(x),vt)

∥∥∥
ït(x)

= e−s(t) ∥zt∥ït(x)

= e−s(t) .

Having chosen an adapted norm, we find from (1) that s(t) ≥ bt > 0 for t > 0, thus F
∧

(ï
∧t(x

∧
)) , F

∧
(x
∧

).
Replacing x

∧
with a different point on the same flow line, we prove that the restriction of F

∧
to a flow

line is injective.
The contraction of the flow on Î+ also implies that s(t) ≤ bt for t ≤ 0, so s(t)→±∞ as t→±∞ and
the restriction of F

∧
to a flow line surjects onto the corresponding flow line of ït

�
.

Lemma 2.10

The map F
∧

: X
∧
→ K

∧

â is continuous, surjective and È -equivariant.

Proof. Continuity can be proved by choosing local continuous sections of the tautological bun-
dles over �(V) and �(V∗) in order to define v and Ó as continuous functions of à(x

∧+) and à∗(x
∧−)

respectively. Surjectivity comes from the surjectivity of the map X
∧
/� → �∞È

(2) and the surjec-
tivity in restriction to flow lines from Lemma 2.9. Finally, the È -equivariance is a straightforward
consequence of equivariance of the limit maps.

Lemma 2.11

Let C ⊂ � be a compact subset and Ö > 0. The set

ZC,Ö
def
=

{
x
∧
∈ X

∧∣∣∣∣d∞(
x
∧+,x

∧−) ≥ Ö & F
∧

(x
∧

) ∈ C
}

is compact.

Proof. By properness of the map X
∧
/� → �∞È

(2), consider a compact subset KÖ ⊂ X
∧

such that for

any x
∧
∈ X

∧
with d∞

(
x
∧+,x

∧−) ≥ Ö, there is some ä(x
∧

) ∈ � with ï
∧ä(x

∧
)(x
∧

) ∈ KÖ. Now let x
∧
∈ ZC,Ö, and using
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notations from the definition of F
∧

as well as from the proof of Lemma 2.9 write

F
∧

(x
∧

) = [v : Ó] and F
∧

(ï
∧ä(x

∧
)(x
∧

)) =

[
e

s
(
ä(x

∧
)
)
v : e

−s
(
ä(x

∧
)
)
Ó

]
.

Since F
∧

is continuous, both of these elements belong to the compact subset C ∪ F
∧

(KÖ) of �. Fixing
a norm ∥·∥V on V, this compactness provides a constant c > 1 such that

∀(w,Ô) ∈ V⊕ V∗ [w : Ô] ∈ C ∪ F
∧

(KÖ) & Ô(w) = 1 =⇒ e−c ≤ ∥w∥V ≤ ec .

Applying this to our situation, we find

∀x
∧
∈ ZC,Ö e−c ≤ ∥v∥V ≤ ec and e−c ≤

∥∥∥∥∥∥e
s
(
ä(x

∧
)
)
v

∥∥∥∥∥∥
V

≤ ec ,

thus −2c ≤ s
(
ä(x

∧
)
)
≤ 2c, and we find from the contraction (1) and the expression s(t) =

−Log
∥∥∥∥Ð t

â,V

∣∣∣∣
x

z
∥∥∥∥ that |ä(x

∧
)| ≤ 2c/b. It follows that ZC,Ö ⊂

⋃
|t|≤2c/b ï

∧t(KÖ) is compact.

Corollary 2.12

The map F
∧

: X
∧
→ K

∧

â is proper.

Proof. Denote by á : �→ �(V)
⋔
×�(V∗) the canonical projection, and consider the continuous map

f :

 �(V)×�(V∗) → (0,+∞)(
[v] , [Ó]

)
7→ |Ó(v)|

∥v∥V∥Ó∥V∗

Let C ⊂ K
∧

â be a compact subset, and fix some ê > 0 such that f ◦ á ≥ ê on C. We now consider a
distance d∞ on �∞È , and the set

C∞ =
{
(Ù+,Ù−) ∈ �∞È (2)

∣∣∣∣ (à(Ù+),à∗(Ù−)
)
∈ á(C)

}
.

Since f ◦ (à,à∗) ≥ ê on C∞ and f (à(Ù),à∗(Ù)) = 0 for all Ù ∈ �∞È (Proposition 1.11), there is some Ö > 0
such that d∞(Ù+,Ù−) ≥ Ö for all (Ù+,Ù−) ∈ C∞. It follows that

F
∧−1

(C) =
{
x
∧
∈ X

∧∣∣∣∣d∞(x
∧+,x

∧−) ≥ Ö & F
∧

(x
∧

) ∈ C
}

which is compact according to 2.11, thus proving that F
∧

is proper.
Proof of Theorem 2.1. It follows directly from the existence of a continuous proper surjective
equivariant map F

∧
: X
∧
→ K

∧

â and the same properties for the action of È on X
∧

.

Remark

The proof is adapted from [BCLS15], where the authors start with a Gromov flow ït : X→ X.
In this case the map F

∧
is a homeomorphism.
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2.6 Tautological qualities of the refraction flow

Definition (Refraction flow)

Let È be a hyperbolic group, and â ∈ Hom(È ,SL(V)) a projective Anosov representation. The
refraction flow of â is the quotient flow ït

â : Kâ→ Kâ induced by the restriction of ït
�

to K
∧

â.

While the definition of an Anosov representation uses an arbitrary choice of a coarse Gromov
flow, it produces a canonical flow in the form of the refraction flow ït

â : Kâ→ Kâ on Kâ = È \K
∧

â.

Proposition 2.13

The refraction flow ït
â : Kâ → Kâ is a Gromov flow for È . More precisely, for [v : Ó] ∈ K

∧

â and

(Ù+,Ù−) ∈ �∞È (2) such that [v] = à(Ù+) and [Ó] = à∗(Ù−), we have limt→+∞ït
�

([v : Ó]) = Ù+ and
limt→−∞ït

�
([v : Ó]) = Ù−.

Proof. Note that the second statement implies the first. Consider a coarse Gromov flow ït : X→ X

for È and the map F
∧

: X
∧
→ K

∧

â from the proof of Theorem 2.1. Let p
∧
∈ K

∧

â, and choose some x
∧
∈ X

∧

such that F
∧

(x
∧

) = p
∧

. By Lemma 2.9, there is an increasing homeomorphism h : �→� such that

∀t ∈� ït
�

(p
∧

) = F
∧(
ï
∧h(t)(x

∧
)
)
.

Now for sequences tk ∈� and Õk ∈ È , and a compact subset C ⊂ K
∧

â, we have

â(Õ−1
k ) ·ïtk

�
(p
∧

) ∈ C ⇐⇒ Õ−1
k ·ï

∧h(tk)(x
∧

) ∈ F
∧−1

(C) .

Since F
∧

is proper, it follows that for any Ù ∈ �∞È we have

Õk → Ù ⇐⇒ ï
tk
�

(p
∧

)→ Ù ⇐⇒ ï
∧h(tk)(x

∧
)→ Ù .

Writing p
∧

= [v : Ó], we have by definition of F
∧

that

[v] = à
(
x
∧+

)
and [Ó] = à∗

(
x
∧−) .

The fact that limt→±∞ h(t) = ±∞ concludes the proof.

The sections of the bundles Kâ×â�(V) and Kâ×â�(V∗) induced by the limit maps are tautological
sections defined by

à+ :

{
Kâ → Kâ ×â�(V)

È · [v : Ó] 7→ È ·
(
[v : Ó], [v]

) and à− :

{
Kâ → Kâ ×â�(V∗)

È · [v : Ó] 7→ È ·
(
[v : Ó], [Ó]

)
The trivial vector bundle K

∧

â × V has a natural decomposition into tautological subbundles Î
∧

+ → K
∧

â

and Î
∧

−→ K
∧

â defined as

Î
∧

+

∣∣∣∣
[v:Ó]

= � · v and Î
∧

−

∣∣∣∣
[v:Ó]

= kerÓ .

By È -equivariance they descend to a splitting Kâ ×â V = Î+ ⊕Î−, which is the splitting given by the
sections à±.
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Part 3. Axiom A dynamics and consequences

So far, starting with a projective Anosov representation â ∈ Hom(È ,SL(V)) of a hyperbolic group È ,
we have seen how to use the limit maps à : �∞È → �(V), à∗ : �∞È → �(V∗) to construct a È -invariant
open set

M
∧

â =
{
[v : Ó] ∈ �

∣∣∣∀Ù ∈ �∞È [v] ⋔ à∗(Ù) or à(Ù) ⋔ [Ó]
}

as well as an invariant closed subset

K
∧

â =
{
[v : Ó] ∈ �

∣∣∣∃(Ù+,Ù−) ∈ �∞È (2) [v] = à(Ù+) and [Ó] = à∗(Ù−)
}
.

Theorem 3.1

The quotient flow ït
â : Mâ→Mâ satisfies Smale’s Axiom A.

3.1 Topological dynamics

Our goal in this section is the following result.

Proposition 3.2 ([DMS25a, Theorem 2])

The non wandering set of the quotient flow ït
â : Xâ→ Xâ is NW(ït

â) = Kâ, and it is equal to the
closure of periodic points. Moreover, the restriction of ït

â to Kâ is topologically transitive.

3.1.1 Basic notions of topological dynamics

Topological dynamics of a flow ït : X → X are concerned with notions of recurrence, i.e. points
whose orbits will come back near to itself. This can manifest itself in different behaviours. The
simplest example is that of a periodic point, i.e. an element of the set

Per(ït) =
{
x ∈ X

∣∣∣∃T > 0 ïT(x) = x
}
.

A radically different type of recurrence would be a dense orbit.

Definition (Topological transitivity)

A flow ït : X→ X is called topologically transitive if it has a dense orbit, i.e. there exists x◦ ∈ X
such that

{ït(x◦)
∣∣∣ t ∈�} = X .

Chaotic dynamics are characterized by the coexistence of very different properties of orbits,
typically topological transitivity associated to the density of Per(ït) in X. The most general notion
of recurrence that we will work with is that of a non wandering point.

Definition (Non wandering set)

The non wandering set is

NW(ït) =
{
x ∈ X

∣∣∣∃xk → x, tk →∞ ïtk (xk)→ x
}
.
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Note that Per(ït) ⊂ NW(ït) and that NW(ït) is closed. In particular, we have the inclusion

Per(ït) ⊂ NW(ït) .

These dynamical notions are purely qualitative, as they only depend on the orbits of the flow and
not on their parametrisations. We will however differentiate ït and ï−t by only considering oriented
orbits, i.e. orbits of �+.

Definition (Topological equivalence)

Two flows ït
1 : X1 → X1 and ït

2 : X2 → X2 are called topologically equivalent if there is a
homeomorphism f : X1→ X2 that maps oriented orbits of ït

1 onto oriented orbits of ït
2.

Periodic and non wandering points are topological notions in the sense that if ït
1 : X1 → X1 and

ït
2 : X2→ X2 are topologically equivalent through a homeomorphism f : X1→ X2, then

Per(ït
2) = f

(
Per(ït

1)
)

and NW(ït
2) = f

(
NW(ït

1)
)
.

Assuming that ït
1 and ït

2 are fixed point free, there are continuous functions Üi : Xi ×�→ � for
i = 1,2, positive on Xi × (0,+∞), such that

∀x1 ∈ X1 ∀t ∈� f
(
ït

1(x1)
)

= ï
Ü1(x1,t)
2

(
f (x1)

)
,

∀x2 ∈ X2 ∀t ∈� f−1
(
ït

2(x2)
)

= ï
Ü2(x2,t)
1

(
f−1(x2)

)
.

These functions, called reparametrisation cocycles, satisfy the cocycle relation

∀i = 1,2 ∀xi ∈ Xi ∀t, t′ ∈� Üi (xi , t + t′) = Üi (ï
t
i (xi ), t

′) +Üi (xi , t) . (2)

A consequence of the cocycle relation is the following estimate when X1 (hence X2) is compact:
there are constants c1,c2,C > 0 such that

∀i = 1,2 ∀xi ∈ Xi ∀t ≥ 0 c1t −C ≤ Üi (xi , t) ≤ c2t + C . (3)

3.1.2 Topological dynamics of the quotient flow

Lemma 3.3 ([DMS25a, Lemma 3.5])

Let [v : Ó] ∈ M
∧

â and Õ ∈ È \ {id} be such that â(Õ) · [v : Ó] = [eTv : e−TÓ] for some T ≥ 0. Then
[v] = à(Õ+), [Ó] = à∗(Õ−) and T = Ý1(â(Õ)).

Proof. Consider Ô ∈ V∗ \ {0} such that [Ô] = à∗(Õ+), so that Ô ◦ â(Õ−1) = ±e−Ýd (â(Õ))Ô. We find

Ô(v) =
(
Ô ◦ â(Õ−1)

)(
â(Õ)v

)
= ±e−Ýd (â(Õ))+TÔ(v).

If [v] ⋔ à∗(Õ+), i.e. Ô(v) , 0, this would mean that T = Ýd (â(Õ)) < 0, a contradiction with T ≥ 0. As
[v : Ó] ∈M

∧

â, we must have à(Õ+) ⋔ [Ó].
Now consider w ∈ V \ {0} such that [w] = à(Õ+), so that â(Õ)w = ±eÝ1(â(Õ))w. We find

Ó(w) =
(
Ó ◦ â(Õ−1)

)(
â(Õ)w

)
= ±eÝ1(â(Õ))−TÓ(w).
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As Ó(w) , 0, it means that T = Ý1(â(Õ)), hence [v] = à(Õ+) and [Ó] = à∗(Õ−).

Corollary 3.4 ([DMS25a, Lemma 3.11])

Let x ∈ Mâ and consider a lift [v : Ó] ∈ M
∧

â. Then x ∈ Per(ït
â) if and only if there is Õ ∈ È \ {1È }

such that [v] = à(Õ+) and [Ó] = à∗(Õ−). In this case, if Õ is primitive, then the period of x is Ý1(Õ).

Proof. The equality æT
â (x) = x means that there is Õ ∈ È such that [eTv : e−TÓ] = â(Õ) · [v : Ó], so the

result follows from Lemma 3.3.
The relationship between the topological dynamics of the quotient flow and the limit maps is

contained in the following lemma.

Lemma 3.5 ([DMS25a, Lemma 3.10])

Consider sequences xk ∈ Mâ and tk → +∞ and points x,y ∈ Mâ such that xk → x ∈ Mâ and

ï
tk
â (xk)→ y ∈Mâ. Let [v : Ó] ∈M

∧

â (resp. [w : Ô] ∈M
∧

â) be a lift of x (resp. of y). Then [v] ∈ à(�∞È )
and [Ô] ∈ à∗(�∞È ).

Proof. Consider lifts [vk : Ók] ∈ M
∧

â of xk such that vk → v, Ók(vk) = 1 and [vk : Ók]→ [v : Ó] in M
∧

â.
There is a sequence Õk ∈ È such that â(Õk) · [etk vk : e−tkÓk] → [w : Ô], and up to a subsequence,
assume that the limits Õ+ = limÕk ∈ �∞È and Õ− = limÕ−1

k ∈ �∞È exist. Define

wk
def
= etkâ(Õk)vk and Ôk

def
= e−tkâ(Õk) ·Ók .

Since [wk : Ôk]→ [w : Ô] and Ôk(wk) = Ók(vk) = 1, the sequences wk and Ôk must stay in compact
subsets of V \ {0} and V∗ \ {0} respectively. Indeed, by definition there is a sequences Ýk ∈ �× such
that Ýkwk → w and ÝkÔk → Ô, and Ý2

k = (ÝkÔk)(Ýkwk)→ Ô(w) , 0.
Consequently, â(Õk)vk = e−tk wk → 0 and [v] cannot be transverse to à∗(Õ−) (otherwise Proposition
1.18 would imply that â(Õk)vk →∞). Since [v : Ó] ∈ M

∧

â, we must have [Ó] ⋔ à(Õ−), therefore â(Õk) ·
[Ók]→ à∗(Õ+) (because the limit maps are uniformly dynamics preserving). This means that

[Ô] = à∗(Õ+) ∈ à∗(�∞È ) .

From [w : Ô] ∈ � and [Ô] = à∗(Õ+), we now find that [w] ⋔ à∗(Õ+), so â(Õ−1
k ) · [wk]→ à(Õ−), hence

[v] = lim
k→+∞

[vk] = lim
k→+∞

â(Õ−1
k ) · [wk] = à(Õ−) ∈ à(�∞È ) .

Proof of Proposition 3.2. We find directly from Corollary 3.4, denoting by È∞ ⊂ È the set of infinite
order elements, that

Per(ït
â) = È \

{
[v : Ó] ∈ �

∣∣∣∃Õ ∈ È∞ [v] = à(Õ+) and [Ó] = à∗(Õ−)
}
.

Since the set of poles of È , i.e. pairs (Õ+,Õ−) for Õ ∈ È∞, is dense in �∞È
(2) [Gro87, Corollary 8.2.G],

we find
Per(ït

â) = Kâ .

Now if x ∈ NW(ït), then by definition there exist sequences xk ∈ Mâ and tk → +∞ such that
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ï
tk
â (xk)→ x, and Lemma 3.5 implies that x ∈ Kâ. It follows that

NW(ït
â) ⊂ Kâ = Per(ït

â) .

Since any continuous flow ït satisfies Per(ït) ⊂ NW(ït), we finally get

NW(ït
â) = Kâ = Per(ït

â) .

For the topological transitivity, we start by considering (Ù+,Ù−) ∈ �∞È (2) whose È -orbit is dense in
�∞È

(2) [Gro87, 8.2.I]. Let x ∈ Kâ be an element admitting a lift [v : Ó] ∈ K
∧

â with [v] = à(Ù+) and

[Ó] = à∗(Ù−). Let y ∈ Kâ and consider a lift [w : Ô] ∈ K
∧

â.

Let U ⊂ Kâ be an open subset containing y, and U
∧
⊂ K

∧

â its preimage. As the projection p : �→

�(V)
⋔
×�(V∗) is an open map, there is Õ ∈ È such that â(Õ) · ([v], [Ó]) ∈ p(U

∧
), i.e. there is t ∈ � such

that â(Õ) · [etv : e−tÓ] ∈ U
∧

, hence ït
â(x) ∈ U. This proves the density of the orbit of x.

3.2 Hyperbolicity

We now turn to the hyperbolicity of the quotient flow.

Proposition 3.6

The subset Kâ ⊂Mâ is a hyperbolic set for the flow ït
â.

Before we prove this, let us describe a bit of the geometry of the homogeneous space

�= {[v : Ó] ∈ �(V⊕ V∗) |Ó(v) > 0} .

In order to describe the geometry of �, it is practical to work with the affine quadric hypersurface

�1
def
= {(v,Ó) ∈ V⊕ V∗ |Ó(v) = 1}

which is an SL(V)-equivariant double cover of � through the restriction of the projection á : (V⊕ V∗)\
{(0,0)} → �(V⊕ V∗). The description of the tangent space

T(v,Ó)�1 = {(w,Ô) ∈ V⊕ V∗
∣∣∣Ó(w) + Ô(v) = 0}

shows that there is a natural splitting T�1 = Eu ⊕ E0 ⊕ Es where

Eu
(v,Ó) = kerÓ× {0},

Es
(v,Ó) = {0} × ker Ûv,

E0
(v,Ó) = � · (v,−Ó),

∀(v,Ó) ∈ �1.

These distributions project to an SL(V)-equivariant splitting of the tangent bundle T� :

T�= Eu ⊕ E0 ⊕ Es (4)

where Ei
[v:Ó] = dá|(v,Ó)(E

i
(v,Ó)) for i ∈ {u,0,s} and (v,Ó) ∈ �1. This decomposition is invariant under the

differential of the flow ït
�

, and it is related to this flow by the formula E0
[v:Ó] = � · d

dt

∣∣∣
t=0

ït
�

([v : Ó]).
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The SL(V)-equivariant of the decomposition (4) means that it descends to a decomposition

TMâ = Eu ⊕ E0 ⊕ Es

enjoying the same relationship with ït
â as ït

�
with (4).

Lemma 3.7

The restrictions of the differential of dït
â to Eu|Kâ

and Es|Kâ
are respectively conjugate to the

vertical flows dV
à+Ð

t
â,�(V) : Kâ ×â Tà+

�(V)→ Kâ ×â Tà+
�(V) and dV

à∗−
Ð t
â,�(V∗) : Kâ ×â Tà∗−�(V∗)→ Kâ ×â

Tà∗−�(V∗).

Proof. Recall that the bundles Kâ ×â Tà+
�(V) and Kâ ×â Tà∗−�(V∗) can be seen as the quotients

Kâ ×â Tà+
�(V) = È \

(
à
∧

+

)∗
T�(V) and Kâ ×â Tà∗−�(V∗) = È \

(
à
∧∗
−
)∗

T�(V∗)

where à
∧

+ : K
∧

â→ �(V) and à
∧∗
− : K

∧

â→ �(V∗) are the tautological maps

à
∧

+ :

{
K
∧

â → �(V)
[v : Ó] 7→ [v]

and à
∧∗
− :

{
K
∧

â → �(V∗)
[v : Ó] 7→ [Ó]

Consider the projections

p+ :

{
� → �(V)

[v : Ó] 7→ [v]
and p− :

{
� → �(V∗)

[v : Ó] 7→ [Ó]

The SL(V)-equivariance of these maps induce È -equivariant isomorphisms Eu|
K
∧

â

→
(
à
∧

+

)∗
T�(V)

(x
∧
,w) 7→ (x

∧
, dp+|x

∧ w)
and

 Es|
K
∧

â

→
(
à
∧∗
−
)∗

T�(V∗)

(x
∧
,w) 7→ (x

∧
, dp−|x

∧ w)

that descend to isomorphisms Eu|Kâ
→ Kâ×âTà+

�(V) and Es|Kâ
→ Kâ×âTà∗−�(V∗). The flow-invariance

p± ◦ït
�

= p± shows that these isomorphisms conjugate the flows.

3.3 The geometry of the stable and unstable foliations

3.3.1 Global product structure

For [v : Ó] ∈ �, the distributions Es and Eu in the splitting

T�= Eu ⊕ E0 ⊕ Es

are tangent to foliations Ws and Wu of � whose leaves are

Wu([v : Ó]) = {[w : Ó] |w ∈ V, Ó(w) = Ó(v)} ,
Ws([v : Ó]) = {[v : Ô]

∣∣∣Ô ∈ V∗, Ô(v) = Ó(v)} .
(5)
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We will also consider the central unstable distribution Ecu = Eu⊕E0 and the central stable distribution
Ecs = Es ⊕ E0 as well as the associated foliations Wcu, Wcs of � whose leaves are

Wcu([v : Ó]) = {[w : Ó] |w ∈ V, Ó(w) > 0} ,
Wcs([v : Ó]) = {[v : Ô]

∣∣∣Ô ∈ V∗, Ô(v) > 0} .
(6)

Note that for [v : Ó], [w : Ô] ∈ �such that Ó(w) > 0 (resp. Ô(v) > 0), the intersection Wcu([v : Ó])∩Ws([w :
Ô]) (resp. Wcs([v : Ó])∩Wu([w : Ô])) consists of exactly one point:

Wcu([v : Ó])∩Ws([w : Ô]) =

{[
w :

1
Ó(w)

Ó

]}
,

Wcs([v : Ó])∩Wu([w : Ô]) =

{[
1

Ô(v)
v : Ô

]}
.

(7)

3.3.2 Local product structure

The foliations Wu, Ws, Wcu and Wcs project to foliations of Mâ denoted by the same names, respec-
tively. However, the leaves of these foliations are only immersed submanifolds, so we need to be
somewhat careful when discussing local properties of the leaves. From now on, we fix a complete
Riemannian metric on Mâ, and denote by d the Riemannian distance.

Definition 3.8 (Local (central) (un)stable manifolds)

For x ∈Mâ and ê > 0, we consider

Ws
ê(x)

def
=

{
x′ ∈Mâ

∣∣∣∣∀t ≥ 0 d(ït
â(x),ït

â(x′)) ≤ ê and lim
t→+∞

d(ït
â(x),ït

â(x′)) = 0
}
,

Wu
ê (x)

def
=

{
x′ ∈Mâ

∣∣∣∣∀t ≤ 0 d(ït
â(x),ït

â(x′)) ≤ ê and lim
t→−∞

d(ït
â(x),ït

â(x′)) = 0
}
,

Wcs
ê (x)

def
=

⋃
|t|<ê

Ws
ê

(
ït
â(x)

)
,

Wcu
ê (x)

def
=

⋃
|t|<ê

Wu
ê

(
ït
â(x)

)
.

The following result applies to any Axiom A flow as a consequence of the Stable Manifold The-
orem (see [Sma67, §II.7 Thm 7.3] and [KH95, Thm 6.4.9] for the discrete time case and [Dya18,
Thm. 5] for a detailed treatment of the flow case) and compactness of Kâ, but in our case it can be
recovered from the explicit formulas (5), (6) and (7).
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Lemma 3.9 (Local product structure and exponential decay)

There exist ê,Ö,C,a > 0 such that the following properties are satisfied at every x ∈ Kâ:

(1) For every i ∈ {s,u,cs,cu}, Wi
ê(x) is an embedded submanifold of Mâ with tangent space

Tx′Wi
ê(x) = Ei

x′ at every point x′ ∈Wi
ê(x).

(2) For any x′ ∈ B(x,Ö), the intersections Ws
ê(x)∩Wcu

ê (x′) and Wu
ê (x)∩Wcs

ê (x′) each consist of
a single point. These points lie in Kâ if, and only if, x′ ∈ Kâ.

(3) ∀x′ ∈Ws
ê(x) ∀t ≥ 0 d(ït

â(x),ït
â(x′)) ≤ Ce−atd(x,x′).

(4) ∀x′ ∈Wu
ê (x) ∀t ≤ 0 d(ït

â(x),ït
â(x′)) ≤ Ceatd(x,x′).

Points (2), (3) and (4) were already established by Sambarino without the need of smoothness.

3.4 Consequences of having an Axiom A flow

Axiom A flows share many properties of geodesic flows of convex cocompact hyperbolic manifolds.
For example, the axiom A property (added to some "non triviality") implies that the flow ït

â has posi-
tive entropy, and that periodic orbits equidistribute.

3.4.1 Equidistribution of periodic orbits

For a periodic orbit c ⊂ Kâ, let �(c) denote its period, and Ýc the Lebesgue measure of length �(c)
supported on c. Given U ∈ C0(Kâ), we consider

�U(c) =
∫

c
UdÝc .

Theorem 3.10
(
[PP90, Theorem 9.4]

)
For any positive Hölder function U ∈ CÓ(Kâ), the weak-* limit

mU
def
= lim

T→+∞

´
�(c)≤T e�U(c) Ýc

�(c)´
�(c)≤T e�U(c)

exists. Furthermore, its support is Kâ, it gives positive measure to any non empty open subset
of Kâ, and it is ït

â-invariant and ergodic.

Two important cases: U = 0 gives the maximal entropy measure, and choosing the unstable
Jacobian U = d

dt

∣∣∣
t=0

Logdetdït
â|Eu we get the SRB measure.

The thermodynamical formalism also allows to prove that these Gibbs measure are mixing. For
a potential U ∈ CÓ(Kâ,�) and observables F,G ∈ L2(mU), the correlation function is defined by

ct(F,G; U) =

∣∣∣∣∣∣∣
∫

z∈Kâ

F(z) ·G(ït
â(z)) dmU(z)−

∫
z∈Kâ

F(z) dmU(z)
∫

z∈Kâ

G(z) dmU(z)

∣∣∣∣∣∣∣ . (8)
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Theorem 3.11

For any potential U ∈ CÓ(Kâ) and observables F,G ∈ L2(mU), we have that lim
t→∞

ct(F,G; U) = 0.

3.4.2 Exponential mixing

General Axiom A flows can have arbitrarily slow mixing rates (i.e. the rate of decay of the correlation
functions ct(F,G; U)), but large classes (such as geodesic flows of convex cocompact groups in rank
one) mix exponentially fast.

Definition

The flow ït
â is exponentially mixing with respect to mU for all Hölder observables if there exists

cÓ(U),CÓ(U) > 0 such that

∀ t ∈� ct(F,G; U) ≤ CÓ(U)e−cÓ(U)|t|∥F∥Ó∥G∥Ó .

Theorem 3.12
(
[DMS25a, Theorem C]

)
If â is irreducible, then for any Hölder potential U ∈ CÓ(Kâ) the flow ït

â is exponentially mixing
with respect to mU for all Hölder observables.

The proof relies on a result of Stoyanov establishing exponential mixing for Axiom A flows under
geometric assumptions on the stable and unstable laminations. As most results on exponential
mixing of hyperbolic dynamical systems, Stoyanov’s work is built open the Dolgopyat method, which
is itself built on estimates on the time separation function called non integrability conditions.

For Zariski dense representations and the maximal entropy measure, exponential mixing for
Hölder observables was also established by Chow and Sarkar [CS24].

Definition (Time separation and projection)

Let x,y ∈ Kâ with d(x,y) < Ö (where ê > Ö > 0 are given by Lemma 3.9). Define áy(x) ∈ Kâ by

áy(x) ∈Ws
ê(x)∩Wcu

ê (y) and É(x,y) ∈ (−ê,ê) by ï
É(x,y)
â (áy(x)) ∈Wu

ê (y).

The time separation function can be understood by following a simple process (see Figure 1):
any two nearby points x,y ∈ Kâ can be joined by a path that consists in the concatenation of

1. a path in Ws
ê(x),

2. flowing out for some time É(x,y),

3. a path in Wu
ê (y).

The time separation function is the time spent flowing out in the second step. It can be computed
explicitly by consider local inverses of the projection á : M

∧

â→ Mâ. Choosing nearby lifts [v : Ó], [w :

Ô] ∈ K
∧

â of x,y, we find:

áy(x) = á

([
v :

1
Ô(v)

Ô

])
, É(x,y) = − logÔ(v). (9)
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x
y

Ws
ê(x)Wu

ê (y)

áy(x)

ï
É(x,y)
â (áy(x))

Figure 1: The time separation function and the dynamical projection.

Lower bounds on the time separation function around the diagonal are called non integrability
conditions, as they quantify the fact that the distribution Es ⊕ Eu is not integrable. In our case, the
distribution Es ⊕ Eu is a contact structure, so any reasonable non-integrability condition should be
satisfied. However in the work of Stoyanov [Sto11] the precise non-integrability condition one needs
involves the fractal geometry of Kâ.

Definition (Strong Local Non-Integrability Condition (SLNIC))

There exists d0 ∈ (0,1) and ê0 such that, for any ê ∈ (0,ê0), z ∈ Kâ and any unit vector w ∈ Eu|z ,
there exist y ∈ Kâ ∩Ws

ê(z), Ü > 0 and ê′ ∈ (0,ê) such that:

|É(expu
x (ß),áy(x))| ≥ Ü∥ß∥

for any x ∈ Kâ ∩ Wu
ê′ (z) and ß ∈ Eu|x with expu

x (ß) ∈ Kâ, ∥ß∥ ≤ ê′ and
∥∥∥∥ ßz
∥ßz∥
−w

∥∥∥∥ ≤ d0 where

ßz ∈ Eu|z is the parallel transport of ß along the geodesic in Wu(z) from x to z with respect to
the metric obtained by restriction of the auxiliary Riemannian metric on Mâ.

Definition 3.13 (Bowen’s dynamical balls)

Let x ∈ Kâ,T > 0 and Ö > 0 and define

Bu
T(x,Ö) =

{
y ∈Wu

ê0
(x)

∣∣∣d(ït
â(x),ït

â(y)) ≤ Ö,∀0 ≤ t ≤ T
}
.

Definition (Uniformly regular distortion along unstable manifolds)

The flow ït
â has uniformly regular distortion along unstable manifolds over the basic set Kâ if

for some constant ê∗ > 0 and every Ö ∈ (0,ê∗), there exists RÖ > 0 such that

diam
(
Kâ ∩ Bu

T(x,ê)
)
≤ êRÖ ·diam

(
Kâ ∩ Bu

T(x,Ö)
)

for every x ∈ Kâ, ê ∈ (0,ê∗) and T > 0.
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Stoyanov proves exponential mixing when the following three hypotheses are simultaneously
satisfied:

• Strong local non uniform integrability,

• Uniformly regular distortion along stable manifolds,

• Lipschitz regularity of holonomy of the stable lamination.

This last condition is automatic in our setting because of the smoothness of the distributions
Es/u. The proof in [DMS25a] consists in verifying the first two hypotheses. Strong local non uniform
integrability uses the irreducibility of the representation (more precisely, the assumption that à(�∞È )
cannot be included in the projectivization of a proper vector subspace of V). The proof of uniformly
regular distortion along stable manifolds follows ideas from [Sto13].

3.4.3 Counting problems

Given a projective Anosov representation â ∈ Hom(È ,SL(V)), define the orbit counting function

Nâ(t) = Card
{
[Õ] ∈ [È ]prim

∣∣∣Ý1(â(Õ)) ≤ t
}
.

Theorem 3.14
(
[DMS25a, Theorem E]

)
Suppose È < SL(V) is an irreducible projective Anosov subgroup, and denote by hâ > 0 the
topological entropy of the flow ït

â on Kâ. Then there exists 0 < c < hâ such that

Nâ(t) =
ehât

hât

(
1 + O

(
e−ct

))
.

The leading term Nâ(t) ∼ ehât

hât was obtained by Sambarino [Sam14]. The bridge between orbital
counting and mixing rates is the Zeta function

Øâ(s) =
½

[Õ]∈[È ]prim

(
1− e−sÝ1(â(Õ))

)−1
.

Here [È ]prim denotes the set of conjugacy classes of primitive elements in È (i.e. elements that are
not positive powers of other elements). This product defines a holomorphic function on the half
planeℜ(s) > hâ.

Theorem 3.15
(
[DMS25a, Theorem D]

)
For any projective Anosov representation, the function Øâ admits a meromorphic extension to
�. If â is irreducible, then there is some ê > 0 such that Øâ has no zero or pole in the vertical
strip hâ − ê <ℜ(s) ≤ hâ with the exception of a simple pole at s = hâ.

The meromorphic extension to � is due to Dyatlov-Guillarmou [DG16, DG18] for all Axiom A flows,
solving a conjecture of Smale. Since our flow is real analytic and has real analytic stable and un-
stable distributions, the result also follows from earlier work of Fried [Fri95], building upon ideas of
Rugh [Rug92, Rug96].

42



The zero and pole free vertical strip follows from the spectral estimates on Ruelle transfer op-
erators achieved by Stoyanov [Sto11], combined with the work Pollicott-Sharp [PS98] (see also
Dolgopyat-Pollicott [DP98]).

Part 4. Lie theory

We now leave the setting of projective Anosov representations and move to a general non compact
semi-simple Lie group G (with finite centre and finitely many connected components), and denote
bu g its Lie algebra. The Killing form Bg on g is a non-degenerate indefinite symmetric bilinear form
giving a canonical duality g ≃ g∗ intertwining the adjoint and coadjoint G-actions. Via the latter
actions, G acts on the Grassmannians Grd (g), Grd (g∗) for all 0 ≤ d ≤ dimg.

4.1 Flag manifolds and transverse flag spaces

This section is a summary of [DMS25b, Section 3].

4.1.1 Parabolic subgroups and flag manifolds

An element X ∈ g is called hyperbolic if adX : g→ g is diagonalizable over �. We write ghyp ⊂ g for the
subset of hyperbolic elements. For X ∈ ghyp, we consider the subsets

pX
def
=

⊕
Ý≥0

ker(adX−Ýid) ⊂ g and PX
def
= StabG(pX) = {g ∈ G |Ad(g)pX = pX} .

Then pX is a Lie subalgebra of g, and PX is a closed Lie subgroup of G with Lie algebra pX (this last
fact is rather standard but not easy, see e.g. [Vog97, Ch. 7],[Kna02, VII.7], [War72, Ch. 1.2]).

Example (Running example)

In the case of g = sl(d ,�), �= � or �, an element X ∈ sl(d ,�) is hyperbolic if and only if it is
diagonalizable with real eigenvalues. For some integer r ∈�, consider vectors d = (d1, ...,dr) ∈
�

r and x = (x1, . . . ,xr) ∈�r such that

d1 + · · ·+ dr = d , d1x1 + · · ·+ dr xr = 0, and x1 > · · · > xr ,

and the diagonal matrix

X =


x11d1

. . .
xr1dr

 ∈ sl(d ,�) .

Then PX consists of upper block-wise triangular matrices:

PX =



∗ ∗

. . .
0 ∗


 .
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Definition (Parabolic subgroups and subalgebras)

A parabolic subgroup of G is a subgroup P < G for which there is X ∈ ghyp with P = PX.
A parabolic subalgebra of g is a subalgebra p ⊂ g for which there is X ∈ ghyp with p = pX.

Flag manifolds are the homogeneous spaces corresponding to parabolic subgroups.

Definition (Flag manifolds)

A flag manifold is a G-homogeneous space F whose point stabilizers are parabolic subgroups.

The geometric approach to flag manifolds usually consists in interpreting them as orbits in the
visual boundary of the Riemannian symmetric space of G (see e.g. [Ebe96, 2.17]), but we will use
a different description by embedding them in Grassmannian manifolds of the Lie algebra g. For
X ∈ ghyp, we consider

FX
def
= G · pX ⊂ GrdimpX

(g).

By the definition of PX, there is an isomorphism FX ≃ G/PX as analytic G-manifolds. Since flag
manifolds are compact [Kna02, VII, Prop. 7.83 (f)], FX ⊂ GdimpX

(g) is closed.

Definition (Standard flag manifolds)

A standard flag manifold is a subset F ⊂ Gd (g) (for some 0 ≤ d ≤ dimg) for which there is
X ∈ ghyp with F = FX.

Any flag manifold F is uniquely G-equivariantly diffeomorphic to a standard flag manifold, simply
defined as {stab(x) |x ∈ F } where stab(x) denotes the Lie algebra of the stabilizer of x ∈ F .

Example (Running example)

The space Fd of flags of type d is defined as

Fd(�d ) =

V• ∈
r½

i=0

Grd1+···+di
(�d )

∣∣∣∣∣∣∣ {0} = V0 ⊂ V1 ⊂ · · · ⊂ Vr−1 ⊂ Vr = �
d

 .

Considering a real diagonal matrix X = Diag
(
x11d1

, . . . ,xr1dr

)
∈ sl(d ,�) with x1 > · · · > xr , the

map {
Fd(�d ) → FX

V• 7→ {Y ∈ sl(d ,�) |Y · Vi ⊂ Vi ∀i}

is an SL(d ,�)-equivariant diffeomorphism.

To get a similar classification for an arbitrary semi-simple Lie group G, one considers a Cartan
subspace a ⊂ g, i.e. a vector subspace consisting of commuting hyperbolic elements of maximal
dimension. One can then write the restricted root space decomposition

g = a⊕m⊕Ó∈Î gÓ .

Now choose a closed Weyl chamber a+ ⊂ a and the corresponding simple system É ⊂ Î, then any
subset Ê ⊂ É defines a standard parabolic subgroup PÊ = PX where X ∈ a+ is any element such that
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{Ó ∈ É |Ó(X) , 0} = Ê. This parabolic subgroup does not depend on the choice of such an X, neither
does the standard flag manifold FÊ = FX.

4.1.2 Levi subgroups and transverse flag spaces

From an element X ∈ ghyp we can also define the subsets

lX
def
= ker(adX) ⊂ g and LX

def
= StabG(X) = {g ∈ G |Ad(g)X = X} < G .

Then lX is a Lie subalgebra of g, and LX is a closed Lie subgroup of G with Lie algebra lX.

Definition (Levi subgroups)

A Levi subgroup of G is a subgroup L < G for which there is X ∈ ghyp with L = LX.

While flag manifolds will play a central role in our arguments, the most important objects will be
the open G-orbits formed by the transverse pairs in products of opposite flag manifolds. Such pairs
are related to Levi subgroups by the relation

LX = PX ∩ P−X .

Definition (Transversality in flag manifolds)

Consider two flag manifolds F + and F −. A pair (x+,x−) ∈ F + × F − is transverse if there is
X ∈ ghyp such that StabG(x+) = PX and StabG(x−) = P−X.
The flag manifolds F +,F − are opposite if F ⋔ , ∅. In this case, we call F ⋔ a transverse flag
space.

Notation

We write x+ ⋔ x− to signify that the pair (x+,x−) ∈ F + ×F − is transverse and denote the set of

all transverse pairs in F +×F − by F + ⋔×F − (or F ⋔ for short, when the factors F +, F − are clear
from the context).
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Example (Running example)

Considering a real diagonal matrix X = Diag
(
x11d1

, . . . ,xr1dr

)
∈ sl(d ,�) with x1 > · · · > xr , the

Levi subgroup LX consists of block-wise diagonal matrices:

LX =



∗ 0

. . .
0 ∗


 .

Just as we saw how to identify FX with the flag manifold Fd(�d ), we can identify F−X to FÛ(d)(�d )
where Û(d) = (dr , . . . ,d1), and the transverse flag space

Fd(�d ) ⋔×FÛ(d)(�
d ) =

{(
V•,W•

) ∣∣∣∣Vi ⊕Wr−i = �
d ∀i

}
can be identified with the space of gradings of type d

F ⋔d (�d )
def
=

E• ∈
r½

i=1

Grdi
(�d )

∣∣∣∣∣∣∣E1 ⊕ · · · ⊕ Er = �
d


through the map  Fd(�d ) ⋔×FÛ(d)(�d ) → F ⋔

d
(�d )(

V•,W•
)

7→ (Vi ∩Wr+1−i )1≤i≤r

whose inverse maps E• ∈ F ⋔d (�d ) to the pair (V•,W•) where Vi = E1 ⊕ · · · ⊕ Ei and Wi = Er ⊕ · · · ⊕
Er+1−i .

4.1.3 Anosov representations

Fix a semi-simple Lie group G and a pair of opposite flag manifolds F ±.

Definition (Transverse limit maps)

Let È be a hyperbolic group, and â ∈ Hom(È ,G). A pair of transverse limit maps into F ± is a
pair (à+,à−) of continuous È -equivariant maps à+ : �∞È → F + and à− : �∞È → F − such that
à+(Ù+) ⋔ à((Ù−) for every (Ù+,Ù−) ∈ �∞È (2).

Definition (Anosov limit maps)

Let È be a Gromov hyperbolic group, ït : X→ X a coarse Gromov flow, and â ∈ Hom(È ,G). A
pair of transverse limit maps (à+,à−) in F ± is called a pair of Anosov limit maps if it satisfies
the following properties:

• The vertical flow dV
à+

+
Ð t
â,F + : X×â Tà+

+
F +→ X×â Tà+

+
F + is dilating.

• The vertical flow dV
à−−
Ð t
â,F − : X×â Tà−−F

−→ X×â Tà−−F
− is contracting.
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Definition (Anosov representation)

Let È be a hyperbolic group. A homomorphism â : È → SL(V) is called projective Anosov if it
admits a pair of projective Anosov limit maps for some coarse Gromov flow.

Definition (Dynamics preserving limit maps)

Let È be a hyperbolic group, and â ∈ Hom(È ,G).

• A pair of transverse projective limit maps (à+,à−) is called dynamics preserving if for any
infinite order element Õ ∈ È , â(Õ) is proximal, à+(Õ+) = f+(â(Õ)) and à−(Õ−) = f−(â(Õ)).

• A pair of transverse projective limit maps (à+,à−) is called uniformly dynamics preserving
if for any unbounded sequence Õk ∈ È with boundary limit points Õ+ = limk→+∞Õk ∈ �∞È
and Õ− = limk→+∞Õ−1

k ∈ �∞È , the actions on F + and F − obey the following dynamics:

(1) ∀x+ ∈ F +
x

+ ⋔ à−(Õ−) =⇒ lim
k→+∞

â(Õk) · x+ = à+(Õ+) ,

(2) ∀x− ∈ F − à+(Õ−) ⋔ x
− =⇒ lim

k→+∞
â(Õk) · x− = à−(Õ+) ,

and the convergences are locally uniform.

Theorem 4.1

A representation â ∈ Hom(È ,G) is F ±-Anosov if and only if it possesses a pair of uniformly
dynamics preserving transverse limit maps into F ±.

4.2 Constructing locally homogeneous axiom A flows

4.2.1 Flow spaces over transverse flag spaces

Following the ideas developed in the introduction, we wish to construct a flow ït : �→ � with orbit
space F ⋔. We also require the flow ït to have trivial dynamics, so that the dynamics of the quotient
flow by a discrete subgroup only reflect the properties of this subgroup. By trivial dynamics, we
usually mean that the resulting action of � on � is free and proper, i.e. that it defines an �-principal
bundle (that we also call an affine line bundle) �→F ⋔. We also require these affine line bundles to
be G-homogeneous, i.e. � is a homogeneous G-space, the flow ït

�
commutes with the action of G

and the projection �→F ⋔ is G-equivariant.
Fixing a base point in F ⋔ to identify F ⋔ ≃ G/L where L < G is a Levi subgroup, there is a bijec-

tive correspondence between G-homogeneous affine line bundles over G/L and non zero additive
characters b ∈ Hom(L,�). Starting with b ∈ Hom(L,�) \ {0}, we simply define

�b

def
= G/ kerb ,

where the �-action is defined by

ït
b

(
g kerb

) def
= getX kerb

for any X ∈ l with db|1G
X = 1.
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Reciprocally, if ït : �→ � is a G-homogeneous affine line bundle over F ⋔, consider a base point
x in the fibre over G/L, and for g ∈ L let b(g) ∈� be defined by

x · g = ïb(g)
x .

Example (Running example)

Considering a real diagonal matrix X = Diag
(
x11d1

, . . . ,xr1dr

)
∈ sl(d ,�) with x1 > · · · > xr ,

additive characters Ô ∈ Hom(LX,�) are in one-to-one correspondence with �
r−1, mapping

Ô = (Ô1 . . . Ôr−1) to the character
LX → �

g1 0
. . .

0 gr

 7→
r−1¼
i=1

Ôi Log|det gi |

In a general semi-simple Lie group G, there is a natural identification Hom(LÊ ,�) ≃ a∗
Ê

where
aÊ = {X ∈ a |∀Ó ∈ É \Ê Ó(X) = 0}.

4.2.2 Benoist’s limit cone

The last tool we will need is Benoist’s limit cone for a representation â ∈ Hom(È ,G). We first need to
consider the Jordan projection Ý : G → a+, defined through the Jordan decomposition g = geghgu
and Ý(g) ∈ a+ is the unique element conjugate to Xh where gh = eXh . For G = SLd (�), we can set

a+ =
{
(a1, . . . ,ad ) ∈�d

∣∣∣a1 + · · ·+ ad = 0 & a1 ≥ · · · ≥ ad

}
,

so that Ý(g) = (Ý1(g), . . . ,Ýd (g)).

Definition 4.2 (Benoist’s limit cone)

The limit cone Lâ is the smallest closed cone in a+ containing all elements Ý(â(Õ)) for Õ ∈ È .

Back to the general case, consider a restricted root space decomposition and a subset Ê ⊂ É

of simple restricted roots, we can embed Hom(LÊ ,�) ≃ a∗
Ê
↪→ a∗ by considering the decomposition

a = aÊ ⊕ aÉ\Ê . So for b ∈ Hom(LÊ ,�) and g ∈ G, it makes sense to talk about b(Ý(g)) ∈�.

Theorem 4.3
(
[DMS25b]

)
Let â ∈ Hom(È ,G) be Anosov with respect to the flag manifolds FÊ ,FÛÊ , and let b ∈ Hom(LÊ ,�).
If b > 0 on Lr ho \ {0}, then there is an open subset M

∧

â,b ⊂ �b invariant under â(È ) and ït
b

, on
which È acts properly discontinuously and such that the quotient flow

ït
â,b : Mâ,b→Mâ,b = È \M

∧

â,b

is an Axiom A flow.
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