Groups and geometry

Final exam

Exercise 1

Let X be a Riemannian symmetric space.
1. For x € X, let ¢, € End(T,X) be the self-adjoint operator such that :
Yu,ve T, X (@y(u),v), =Ric,(u,v)
Show that for f € Isom(X), we have d, f oy = @0 dyf.

Solution: It follows from the invariance formula for the Ricci curvature Ricy(y)(dyf (1), dyf (v)) =
Ric,(u,v).

2. Let 0 € X. If X is irreducible, prove that there is A € R such that ¢, = A1d.
Hint: consider the action of K = Stabg(0) on the eigenspaces of ¢,.

Solution: The group K acts on T,0X by g.u = d,g(u). It follows from the previous question that
this action commutes with ¢, so it preserves the eigenspaces of ¢,. Since ¢, is diagonalisable (it is
self-adjoint) and the action of K is irreducible, we find that ¢, has only one eigenspace, i.e. there is
A € R such that ¢, = A1d.

3. Prove that any irreducible symmetric space is an Einstein manifold.

Solution: From the previous question we find Ric,(u,v) = A(u,v), for all u,v € T,X. Using the
homogeneity of X, we also have Ric,(u,v) = A(u,v), for all x e X and u,v € T, X.

Exercise 2

Consider two smooth manifolds M and N.

1. Let f : M — N be a smooth map. Prove that kerdf is a vector sub-bundle of TM if and only if f has
constant rank.

Solution: If kerd f is a vector sub-bundle of codimension r of TM, then the rank of d, f is r for any
x € M, so f has constant rank.

If f has constant rank r, then for any x € M we can find coordinates (xl,...,x on M around x
and coordinates (y',...,7") on N around f(x) such that f(x!,...,x%) = (x!,...,x",0,...,0). So kerd f is
spanned by d,,1,...,d4, and it is a vector sub-bundle of TM of codimension .

“)

2. Under which additional condition(s) is Ind f a vector sub-bundle of TN ?

Solution: If Imdf is a vector sub-bundle of TN, then f must be surjective so that it defines a vector
subspace of every T, N for x € N. Also Imd, f should have the same dimension for every x € M, so f
has constant rank. If f is surjective and has constant rank, then f is a submersion and Imdf = TN
is a vector sub-bundle of TN.



Exercise 3
Let (M, g) be a Riemannian manifold, and let X be the total space of the unit tangent bundle T'M, i.e.
X={(x,v)|xeM, veT,M, g (v,v) =1}

Let 7t : X — M be the projection (given by nt(x,v) = x).

The tangent bundle of X

1. For (x,v) € X, let V|, ,) = kerd|, ;7 C T(y,)X. What is the dimension of V|, ., ? Prove that this defines
a vector sub-bundle V of TX.

Solution: The map 7 is a submersion, so dim V(, ;) = dim X —dim M = d — 1 where d = dim M. Ques-
tion 1. of exercise 1 shows that V is a vector sub-bundle of TX.

2. Let (x,v) € X and z € Ty,)X. Consider a path y(f) = (c(t), X(t)) € X such that y(0) = (x,v) and
7(0) = z. Show that the map

| TewnX — TM
Peni 1z s Bx(0)

is well defined (i.e. @(y,)(z) only depends on z and not on the path y) and defines a linear isomor-

phism from V() = kerd(, 7 to v+ C T,M.

Hint: using local coordinates, we can assume that M C R? is an open set and that X C R*? is a submani-
fold whose equation we will give. This leads to equations for the subspaces T, )X and V|, of R*?, and
an explicit formula for @y ).

Solution: As suggested, we assume that M C IR? is an open set, and write g; j the components of the
Riemannian metric g. So X is defined as:

X = {(x,v) eRYxR? 'gl-]-(x)vivj = 1}

Note that we use Einstein’s summation convention. Write f(x,v) = g; ]-(x)vivj = 1. Its differential is:

dix) f (v, w) = 9kgij(x)ykvivj + Zgij(x)viwj

In particular, if (x,v) € X then d(,,)f(0,v) = 2 # 0 so f is a submersion around (x,v), and the tangent
space Ty, X C R? x R? is equal to kerd, . f.

Tix0)X = {(y,w) eRY xR? | 8kgij(x)ykvivj + Zgij(x)viwj = 0}

Since the projection 7 is given by 7(x,v) = x, we have d(, ,)7t(y, w) =y and we find

[(O,w) eRY xR? |gi]~(x)viwj = 0}
{(o,w) e R xR? | g, (v, w) = o}
{(o,w) e RY xIRd|wevl}

Vixw)



Now let z = (0,w) € V(,,) and y(t) = (c(t), X(t)) a curve in X such that y(0) = (x,v) and y(0) = z.
Hence ¢(0) = 0 and X(0) = w. Now

D S k (3\ ¢ (0)X)
(7;X(0) = X50)+ TE(x)¢'(0)x (0)
= xk0)+0
:wk

This means that %X(O) = w, i.e. @(xy)(0,w) =w. This shows that ¢, ,)(z) does not depend on the
path y, and that it defines a linear isomorphism from V|, ,) to v-+.

. For (x,v) € X and w € T,M, we set

d

Ppw(w) = — o (cw(t), V(1))

where ¢, is the geodesic with initial velocity ¢,,(0) = w, and V is the parallel vector field along c,,
such that V(0) = v. Prove that the map ¥(y,) : .M — T, ,)X is linear and injective.

Solution: We use the same local setting M C IR? as in the previous question. Now we find V() (W) =

(¢,(0),V(0))) = (w, V(0)). Since V is parallel and V(0) = v, we find:

D
dt
=0- l“i];.(x)wzv]

k
Vk(0) = ( V(O)) ~TE (<) Vi(0)

Therefore ¢ ) (w) = (w, —I‘i’;(x)wivj). This shows that ¢, ;) is linear and injective.

. Let Hxy) = P(x0) (TxM) C T(x»)X. Prove that this defines a vector sub-bundle H of TX, and that
TX=HoV.

Solution: Locally, for M c R, we find that H(y,,) is spanned by the linearly independent vector
fields ©(y)(d1),...,P(x)(da), so it defines a vector sub-bundle of rank d of TX. The descriptions
of Hi,) and V(,,) in coordinates show that H(,,) N V(,,) = {0}. But we also have dimH,,) = d,
dim V() =d -1 and dim T(, ;)X = 2d — 1, hence dim T(y ) X = Hy,,) ® V| v)-

. Show that there is a unique Riemannian metric ¢ on X with the following three properties:

s V(x,v)€X Vzy,25 € V(x,v) Qx,v)(zllZZ) = gx((P(x,v)(Zl ), (P(x,v)(ZZ))

* V(x,v) eX le;wz € TxM g(x,v) (ll)(x,v)(wl ): lp(x,v)(WZ)) = gx(wllu/Z)
* Y(x,v)eX V(zy,zy) € V(x,v) X H(x,v) zg“(x,v)(leZH) =0

Solution: It follows from the decomposition TX = H®V and the fact that ¢ and ¢ are isomorphisms.
The (useless) local formula is

T (1,w1), (92 w2) = (009195 + 55(0) (] + T (0] o ) (wh + T (oot



6. Let Z € X(X) be the geodesic spray (i.e. the vector field whose flow ¢z is the geodesic flow
(p%(x,v) = (cy(t),¢,(t))). What is the decomposition of Z along TX = H® V ? Compute g(Z, Z).

Solution: Since ¢, is a parallel vector fiend along c, (because c, is a geodesic), we find that Z(x,v) =
%L:o (cy(t), €,(t)) = P(x,p)(v). This shows that Z(x,v) € H,,) and g(Z, Z) = 1.

The geodesic flow of H?

In question 7. to 14. we consider that (M, g) is the real hyperbolic space H?, and we work with the hyper-
boloid model HY ¢ R%!. Set (x,9) = x1 91 + - + X9 — X441 Vd+1 fOr X = (X1,...,%4,1) and v = (V1,...,Vas1),
thus H? = {x € R4*! |<x,x> =-1, x441 > 0}.

7. Describe X c R4*+! x R9+1,
Solution: For x € HY, we have TXIHd =x1= {x € RA+! |<x,v> = 0}, SO

X = {(x,v) e R x R4 |(x,x) =—1,x7,1 >0,{(x,v)=0,(v,v) = 1}
8. For (x,v) € X, describe T(, ;)X C R x RI+1,

Solution: We have that X is an open subset of F~!({0}) where

RI+ x R R3
F.{ (x,) - ((x,x), (x,v), (v, )

The map F is smooth, and its differential is

AP w) = (245, 9),(,0) +(x,w), 2(v, w))
If (x,v) € X then

d(xv)F(x,0)=(=2,0,0)
d(x,v»F(0,7) =(0,0,2)
dx,v)F(v,—x) =(0,2,0)

This shows that F is a submersion at (x,v), so T(,,,)X = kerd(,,)F, i.e.

T X = {(w) e R xR [(x,9) = (v, w) = (y,v) + (x,w) = 0]

9. Let (x,v) € X. Describe V, ,), and give an explicit formula for ¢, ;).

Solution: Since d( ,y7(y, w) = y, we find

I(O,w) e R x R |(x,w) ={(v,w) = O}

{(O,w) e R x R+ |w extn vL}

V(x,v) = ker d(x}v)TZ

{(o,w) eR" xR we T H, we vl}



10.

11.

12.

Let z = (0,w) € V|4,) and consider a path y(t) = (c(t), X(t)) € X such y(0) = (x,v) and y(0) = (0, w).
Now DtX( ) is the orthogonal projection of X(0) on T. IH?, but X(0) = w € T,H? so th(O) =w, and
(P(x,v)(z) =w.

Let (x,v) € X. Describe H|y ,), and give an explicit formula for 1y ..
Hint: first compute Py, (w) for w € v+, then compute Py ,)(v).

Solution: First start with w € v* such that ||w|| = 1. Then we know that ¢, (t) = coshtx + sinh tw.
The formula V(t) = v is a vector field along c,, which is parallel (because V(t) = 0 implies that the
projection %V(O) is also zero). This leads to the formula

lzb(x,v)(w) = (w, 0)

The definition of ¢, ,) leads to Py ,)(v) = (¢,(0),¢,(0)) = (v, x).
An arbitrary vector w € T,M decomposes as w = (w,v)v + (w — (w,v)v) € Rv @ vt, so the general
formula is:

¢(x,v)(w) = (wr (w,v)x)
By definition we have Hy . = r,b(x,w(Tled), so Hiy ) = (x* Nvt) x {0} @ R.(v, x).

Let (x,v) € X and t € R. Give an explicit formula for (p%(x,v) and d(x,v)(ptz.

Solution: Recall the formula for unit speed geodesics in H%:
¢,(t) = coshtx +sinhtv

This leads to

(ptZ(x’ v) = (Cv(t)f Cv(t))

= (coshtx + sinh tv,sinh tx + cosh tv)

It is the restriction to X ¢ R**! x R¥*! of a linear map, so its differential is

d(x,v)(pg(y, w) = (cosh ty + sinh tw,sinh ty + cosh tw)

Let (x,v) € X. We set:

Ef ) = {0 -9) e R X R (x,p) = (v,9) = 0}
Ely ={@9) e R* <R (x,p) = (v, 9) = 0]

Check that T, ,) X = E(sx’v) EBE(L;’V) ®R.Z(x,v).

Solution: Decomposing (y, w) = 3 (y+w, p+w)+3 (y—w, w—y) we find that E(sx V)GBE(”X ) = (xtnvt)x(xtn
v+), so the description of T, ,)X in question 8. associated to the formula Z(x,v) = {(,,)(v) = (v, x)
gives the desired decomposition.



13.

14.

For (x,v) € X and t € R, show that d(, ,)¢% (E(erv)) = Efpfz(x,v) and d(y,)p% (E(”;w)) = E(L;Jtz(x,v)'

Solution: If (y,—v) € E(Sx,v)' then
d(x,,,)(pfg(y, —y) = (cosh ty —sinh ty,sinh ty — cosh ty)
= e_t(% —}2)

Since (y,x) = (y,v) = 0, we also have (y,c,(t)) = (v,¢,(t)), therefore (y,-p) € Efpf . The same
Z

(xv)
works for E*.

Forze E(Sx’v)

and t € R, prove that:

ot o) (o) 95 (2), i) 95 (2)) = €7 F)(2,2)

Solution: Write z = (y,~y). From questions 9. and 10. we see that (0,y) € V(, ) and (y,0) = ¢ ,,)(¥) €

H(x), 50 8(x0)(22) = 2(y,9). The previous questions shows that gyt (.1 (d(x,v)q)tz(z), d(x,v)(ptz(z))
2¢7"(y,v), hence the result.

Jacobi fields and the geodesic flow

We are back to an arbitrary Riemannian manifold (M, g) (except for question 18.).

15.

16.

Let (x,v) € X, and ] : I, — TM a Jacobi field along c,. Prove that the following propositions are
equivalent:

* & (v, 27(0)=0

s Viel, g (et 2I(1)=0
1) (¢y

© Viel, g,m(6(t)](t) = g(v,](0)
Solution: This is a consequence of the fact that g(c'v, % J ) is constant, which itself follows from

d ( D\ (. DD\ _
Eg(cv'ﬁj)_g(CU’EE])_R(LCWCV’CV)_0

For (x,v) € X, let E(,,) be the set of Jacobi fields ] along ¢, such that gx(v, %](O)) = 0. Show that
there is a unique linear isomorphism J(y ) : T(x+)X — E(x ) satisfying the following two properties:

* If we T,M and z = §p, ,)(w) then J(;,,)(2)(0) = w and 2], ,(2)(0) = 0.
s Ifze V(x,v) then ](x,v)(z)(o) =0and %](x,v)(z)(o) = (P(x,v)(z)-

Solution: This is a consequence of the facts that a Jacobi field is uniquely determined by J(0) and
%](0), and that ¢, ,) and 9, ;) are isomorphisms.



17. Let (x,v) € X. Consider z € T(, ;) X, and write ] = ], ,)(z). For t € R, we set ], = Jot (x,) (d(x,v)cp%(z)).
Show that for all s € I; (1), we have Ji(s) = J(t +5).

Solution: This is by far the most complicated question in this exam! First we need to understand the
relationship between Jacobi field and the tangent bundle of X more deeply, and this goes through
variations of geodesics. We have seen Jacobi fields are variation fields of geodesic variations. Be-
cause we are working with the unit tangent bundle T!M and not the whole TM, we need to make
sure that we can choose a variation by unit speed geodesics.

Fact 1: If ] is a Jacobi field along ¢, such that gx(v, %](0)) =0, and T € I,, then there is a geodesic
variation f : U — M, where U C R? is open and contains [0, T] x {0} such that f(t,0) = c,(t),
9(t,0) = J(t) for all t € [0, T] and H%(LS)H — 1 forall (t,5) € U.

Proof. We are looking for a smooth curve y : ]-¢,e[ — M and a vector field Z along y such that we
can define f(t,s) = expy(s)(tZ(s)).

First, note that since the domain of the exponential map is open, it will be defined on some appro-
priate open set U C IR? up to shrinking e.

The property f(t,0) = ¢,(t) simply means that y(0) = 0. Also ?9—];(0) =J(0) translates as y(0) = 0. We
will see that any curve y with these properties will work (e.g. y = ¢j(g))-

Now in order to make sure that f <(t,0) =J(t) for all ¢, we just need to show that (g 3’: (0,0) = dQI(O)

Slnce the Levi-Civita connectlon is torsion-free, this is the same as g 3]: (0,0) = t]( ), i.e Z(O)
21(0).

The condition that || of (t,s || =1 for all (¢,s) € U is also a condition on the vector field Z since

geodesic have constant speed, so it is equivalent to ||Z(s)]| = 1 for all s € |-¢, ¢[.

Set w = %](0), so we are looking for a vector field Z along y such that ||Z]|= 1 and %Z(O) =w.

If w = 0, then the parallel vector field along y such that Z(0) = v works.

If w=0,let V (resp. W) be the parallel vector field along y such that V(0) = v (resp. W(0) = 0). The

vector field Z(s) = cos(||w||s)V (s) + sin(wiis) W (s) works. O

flwll

We can now have an other description of the map J, ;) involving geodesic variations.

Fact 2: If ] = Jix)(2) for z€ TuM and f : U — M is a geodesic variation given by Fact 1, then
d
z= ds|5 0( (s,0), a—f(s,O))

Remark. We need a geodesic variation by unit speed geodesics in order to have (f(s,O), %(S,O)) € X for
all s.

Proof. Writey =J(0) and w = dt](O). By definition of the map J(4,,), the decomposition z = zy +zy €
V(x v) GBH(x v) satisfies P(x v)(ZV) w and ll)(x,v)(y) =zy-

Now consider z' = ds| ( 0)) Our goal is to show that z' = z.
Since this is a local cons1derat10n we can assume that M C R? is an open set and write
— (d 0?
( f (0,0), f

oo, 2200000

. k . . , .
Now in coordinates we have J(0)* = (%](O)) —I‘i';v’](O)], ie. J(O)k = wk—I‘i]}v’yJ. Using the coordinate
formula for ¥, ,) found in question 3., we get

Z—(%]( )) l/}(xv)(y)+(0’w):ZH+(01w)



18.

In question 2. we saw that (0,w) € V|, ) and @, ,)(0,w) = w, hence (0,w) = zy and Z = zg+zy =z. [

Now to answer the question, we consider a geodesic variation f : U — M given by Fact 1. Because it

is a variation by unit speed geodesics, we have that (ptZ (f(O,s), %(0,5)) = (f(t,s), %(t,s)) whenever
defined. Now according to Fact 2, differentiation at s = 0 shows that J; is the variation field of
f(-+1t,-), hence the formula.

For (M, g) = H?, give an explicit formula for J(x,v), then describe ] . (Es ) and ) (E(”x V)).

(x,v)

Solution: Let z € T{y,,)X. We start by decomposing z = A(v,x) + (v, w) where A € Rand y, w € x* Nv+.
Note that ;) (v, x)(0) = J(x,,)(Z2(x,7))(0) = v and %](x’,,)(v,x)(O) = 0,50 Jxp)(v,x)(t) =v for all t € R.
(v, w) = (0,w) +(9,0) € V(1) ® H(y) and the computations of ¢, ,) and . yield

Jix,0)(»,w)(t) = cosh tw + sinh ty

In particular, for (y,—v) € E(Sx’v) we get J(y,,)(¥,—v)(t) = —e~'y and for (y,—y) € E(l;'v) we get J(,,,) (¥, 9)(t) =
e'y. This shows that Jacobi fields | € ](x,,,)(E(Sx’v)) (resp. ] € ](x,v)(E(l;’v))) are characterized by
J(0) = — 7] (0) € v+ (resp. J(0) = ](0) € v).



