Groups and geometry

Final exam

Exercise 1

Let \mathbb{X} be a Riemannian symmetric space.

1. For $x \in \mathbb{X}$, let $\varphi_{x} \in \operatorname{End}\left(T_{x} \mathbb{X}\right)$ be the self-adjoint operator such that :

$$
\forall u, v \in T_{x} \mathbb{X} \quad\left\langle\varphi_{x}(u), v\right\rangle_{x}=\operatorname{Ric}_{x}(u, v)
$$

Show that for $f \in \operatorname{Isom}(\mathbb{X})$, we have $d_{x} f \circ \varphi_{x}=\varphi_{f(x)} \circ d_{x} f$.

Solution: It follows from the invariance formula for the Ricci curvature $\operatorname{Ric}_{f(x)}\left(d_{x} f(u), d_{x} f(v)\right)=$ $\operatorname{Ric}_{x}(u, v)$.
2. Let $o \in \mathbb{X}$. If \mathbb{X} is irreducible, prove that there is $\lambda \in \mathbb{R}$ such that $\varphi_{o}=\lambda$ Id.

Hint: consider the action of $K=\operatorname{Stab}_{G}(o)$ on the eigenspaces of φ_{o}.

Solution: The group K acts on $T_{x} o \mathbb{X}$ by $g . u=d_{o} g(u)$. It follows from the previous question that this action commutes with φ_{o}, so it preserves the eigenspaces of φ_{0}. Since φ_{o} is diagonalisable (it is self-adjoint) and the action of K is irreducible, we find that φ_{o} has only one eigenspace, i.e. there is $\lambda \in \mathbb{R}$ such that $\varphi_{o}=\lambda$ Id .
3. Prove that any irreducible symmetric space is an Einstein manifold.

Solution: From the previous question we find $\operatorname{Ric}_{o}(u, v)=\lambda\langle u, v\rangle_{o}$ for all $u, v \in T_{o} \mathbb{X}$. Using the homogeneity of \mathbb{X}, we also have $\operatorname{Ric}_{x}(u, v)=\lambda\langle u, v\rangle_{x}$ for all $x \in \mathbb{X}$ and $u, v \in T_{x} \mathbb{X}$.

Exercise 2

Consider two smooth manifolds M and N.

1. Let $f: M \rightarrow N$ be a smooth map. Prove that ker $d f$ is a vector sub-bundle of $T M$ if and only if f has constant rank.

Solution: If ker $d f$ is a vector sub-bundle of codimension r of $T M$, then the rank of $d_{x} f$ is r for any $x \in M$, so f has constant rank.
If f has constant rank r, then for any $x \in M$ we can find coordinates $\left(x^{1}, \ldots, x^{d}\right)$ on M around x and coordinates $\left(y^{1}, \ldots, y^{n}\right)$ on N around $f(x)$ such that $f\left(x^{1}, \ldots, x^{d}\right)=\left(x^{1}, \ldots, x^{r}, 0, \ldots, 0\right)$. So ker $d f$ is spanned by $\partial_{r+1}, \ldots, \partial_{d}$, and it is a vector sub-bundle of $T M$ of codimension r.
2. Under which additional condition(s) is $\operatorname{Im} d f$ a vector sub-bundle of $T N$?

Solution: If Im $d f$ is a vector sub-bundle of $T N$, then f must be surjective so that it defines a vector subspace of every $T_{x} N$ for $x \in N$. Also $\operatorname{Im} d_{x} f$ should have the same dimension for every $x \in M$, so f has constant rank. If f is surjective and has constant rank, then f is a submersion and $\operatorname{Im} d f=T N$ is a vector sub-bundle of $T N$.

Exercise 3

Let (M, g) be a Riemannian manifold, and let X be the total space of the unit tangent bundle $T^{1} M$, i.e.

$$
X=\left\{(x, v) \mid x \in M, v \in T_{x} M, g_{x}(v, v)=1\right\}
$$

Let $\pi: X \rightarrow M$ be the projection (given by $\pi(x, v)=x$).

The tangent bundle of X

1. For $(x, v) \in X$, let $V_{(x, v)}=\operatorname{ker} d_{(x, v)} \pi \subset T_{(x, v)} X$. What is the dimension of $V_{(x, v)}$? Prove that this defines a vector sub-bundle V of $T X$.

Solution: The map π is a submersion, so $\operatorname{dim} V_{(x, v)}=\operatorname{dim} X-\operatorname{dim} M=d-1$ where $d=\operatorname{dim} M$. Question 1 . of exercise 1 shows that V is a vector sub-bundle of $T X$.
2. Let $(x, v) \in X$ and $z \in T_{(x, v)} X$. Consider a path $\gamma(t)=(c(t), X(t)) \in X$ such that $\gamma(0)=(x, v)$ and $\dot{\gamma}(0)=z$. Show that the map

$$
\varphi_{(x, v)}:\left\{\begin{array}{ccc}
T_{(x, v)} X & \rightarrow & T_{x} M \\
z & \mapsto & \frac{D}{d t} X(0)
\end{array}\right.
$$

is well defined (i.e. $\varphi_{(x, v)}(z)$ only depends on z and not on the path γ) and defines a linear isomorphism from $V_{(x, v)}=\operatorname{ker} d_{(x, v)} \pi$ to $v^{\perp} \subset T_{x} M$.

Hint: using local coordinates, we can assume that $M \subset \mathbb{R}^{d}$ is an open set and that $X \subset \mathbb{R}^{2 d}$ is a submanifold whose equation we will give. This leads to equations for the subspaces $T_{(x, v)} X$ and $V_{(x, v)}$ of $\mathbb{R}^{2 d}$, and an explicit formula for $\varphi_{(x, v)}$.

Solution: As suggested, we assume that $M \subset \mathbb{R}^{d}$ is an open set, and write $g_{i j}$ the components of the Riemannian metric g. So X is defined as:

$$
X=\left\{(x, v) \in \mathbb{R}^{d} \times \mathbb{R}^{d} \mid g_{i j}(x) v^{i} v^{j}=1\right\}
$$

Note that we use Einstein's summation convention. Write $f(x, v)=g_{i j}(x) v^{i} v^{j}=1$. Its differential is:

$$
d_{(x, v)} f(y, w)=\partial_{k} g_{i j}(x) y^{k} v^{i} v^{j}+2 g_{i j}(x) v^{i} w^{j}
$$

In particular, if $(x, v) \in X$ then $d_{(x, v)} f(0, v)=2 \neq 0$ so f is a submersion around (x, v), and the tangent space $T_{(x, v)} X \subset \mathbb{R}^{d} \times \mathbb{R}^{d}$ is equal to $\operatorname{ker} d_{(x, v)} f$.

$$
T_{(x, v)} X=\left\{(y, w) \in \mathbb{R}^{d} \times \mathbb{R}^{d} \mid \partial_{k} g_{i j}(x) y^{k} v^{i} v^{j}+2 g_{i j}(x) v^{i} w^{j}=0\right\}
$$

Since the projection π is given by $\pi(x, v)=x$, we have $d_{(x, v)} \pi(y, w)=y$ and we find

$$
\begin{aligned}
V_{(x, v)} & =\left\{(0, w) \in \mathbb{R}^{d} \times \mathbb{R}^{d} \mid g_{i j}(x) v^{i} w^{j}=0\right\} \\
& =\left\{(0, w) \in \mathbb{R}^{d} \times \mathbb{R}^{d} \mid g_{x}(v, w)=0\right\} \\
& =\left\{(0, w) \in \mathbb{R}^{d} \times \mathbb{R}^{d} \mid w \in v^{\perp}\right\}
\end{aligned}
$$

Now let $z=(0, w) \in V_{(x, v)}$ and $\gamma(t)=(c(t), X(t))$ a curve in X such that $\gamma(0)=(x, v)$ and $\dot{\gamma}(0)=z$. Hence $\dot{c}(0)=0$ and $\dot{X}(0)=w$. Now

$$
\begin{aligned}
\left(\frac{D}{d t} X(0)\right)^{k} & =\dot{X}^{k}(0)+\Gamma_{i j}^{k}(x) \dot{c}^{i}(0) X^{j}(0) \\
& =\dot{X}^{k}(0)+0 \\
& =w^{k}
\end{aligned}
$$

This means that $\frac{D}{d t} X(0)=w$, i.e. $\varphi_{(x, v)}(0, w)=w$. This shows that $\varphi_{(x, v)}(z)$ does not depend on the path γ, and that it defines a linear isomorphism from $V_{(x, v)}$ to v^{\perp}.
3. For $(x, v) \in X$ and $w \in T_{x} M$, we set

$$
\psi_{(x, v)}(w)=\left.\frac{d}{d t}\right|_{t=0}\left(c_{w}(t), V(t)\right)
$$

where c_{w} is the geodesic with initial velocity $\dot{c}_{w}(0)=w$, and V is the parallel vector field along c_{w} such that $V(0)=v$. Prove that the map $\psi_{(x, v)}: T_{x} M \rightarrow T_{(x, v)} X$ is linear and injective.

Solution: We use the same local setting $M \subset \mathbb{R}^{d}$ as in the previous question. Now we find $\psi_{(x, v)}(w)=$ $\left.\left(\dot{c}_{w}(0), \dot{V}(0)\right)\right)=(w, \dot{V}(0))$. Since V is parallel and $V(0)=v$, we find:

$$
\begin{aligned}
\dot{V}^{k}(0) & =\left(\frac{D}{d t} V(0)\right)^{k}-\Gamma_{i j}^{k}(x) w^{i} V^{j}(0) \\
& =0-\Gamma_{i j}^{k}(x) w^{i} v^{j}
\end{aligned}
$$

Therefore $\psi_{(x, v)}(w)=\left(w,-\Gamma_{i j}^{k}(x) w^{i} v^{j}\right)$. This shows that $\psi_{(x, v)}$ is linear and injective.
4. Let $H_{(x, v)}=\psi_{(x, v)}\left(T_{x} M\right) \subset T_{(x, v)} X$. Prove that this defines a vector sub-bundle H of $T X$, and that $T X=H \oplus V$.

Solution: Locally, for $M \subset \mathbb{R}^{d}$, we find that $H_{(x, v)}$ is spanned by the linearly independent vector fields $\psi_{(x, v)}\left(\partial_{1}\right), \ldots, \psi_{(x, v)}\left(\partial_{d}\right)$, so it defines a vector sub-bundle of rank d of $T X$. The descriptions of $H_{(x, v)}$ and $V_{(x, v)}$ in coordinates show that $H_{(x, v)} \cap V_{(x, v)}=\{0\}$. But we also have $\operatorname{dim} H_{(x, v)}=d$, $\operatorname{dim} V_{(x, v)}=d-1$ and $\operatorname{dim} T_{(x, v)} X=2 d-1$, hence $\operatorname{dim} T_{(x, v)} X=H_{(x, v)} \oplus V_{(x, v)}$.
5. Show that there is a unique Riemannian metric \widetilde{g} on X with the following three properties:

- $\forall(x, v) \in X \forall z_{1}, z_{2} \in V_{(x, v)} \quad \widetilde{g}_{(x, v)}\left(z_{1}, z_{2}\right)=g_{x}\left(\varphi_{(x, v)}\left(z_{1}\right), \varphi_{(x, v)}\left(z_{2}\right)\right)$
- $\forall(x, v) \in X \forall w_{1}, w_{2} \in T_{x} M \quad \tilde{g}_{(x, v)}\left(\psi_{(x, v)}\left(w_{1}\right), \psi_{(x, v)}\left(w_{2}\right)\right)=g_{x}\left(w_{1}, w_{2}\right)$
- $\forall(x, v) \in X \forall\left(z_{V}, z_{H}\right) \in V_{(x, v)} \times H_{(x, v)} \quad \widetilde{g}_{(x, v)}\left(z_{V}, z_{H}\right)=0$

Solution: It follows from the decomposition $T X=H \oplus V$ and the fact that φ and ψ are isomorphisms. The (useless) local formula is

$$
\widetilde{g}_{(x, v)}\left(\left(y_{1}, w_{1}\right),\left(y_{2}, w_{2}\right)\right)=g_{i j}(x) y_{1}^{i} y_{2}^{j}+g_{i j}(x)\left(w_{1}^{i}+\Gamma_{j k}^{i}(x) y_{1}^{j} v^{k}\right)\left(w_{2}^{i}+\Gamma_{j k}^{i}(x) y_{2}^{j} v^{k}\right)
$$

6. Let $\mathcal{Z} \in \mathcal{X}(X)$ be the geodesic spray (i.e. the vector field whose flow $\varphi_{\mathcal{Z}}$ is the geodesic flow $\left.\varphi_{\mathcal{Z}}^{t}(x, v)=\left(c_{v}(t), \dot{c}_{v}(t)\right)\right)$. What is the decomposition of \mathcal{Z} along $T X=H \oplus V$? Compute $\widetilde{g}(\mathcal{Z}, \mathcal{Z})$.

Solution: Since \dot{c}_{v} is a parallel vector fiend along c_{v} (because c_{v} is a geodesic), we find that $\mathcal{Z}(x, v)=$ $\left.\frac{d}{d t}\right|_{t=0}\left(c_{v}(t), \dot{c}_{v}(t)\right)=\psi_{(x, v)}(v)$. This shows that $\mathcal{Z}(x, v) \in H_{(x, v)}$ and $\widetilde{g}(\mathcal{Z}, \mathcal{Z})=1$.

The geodesic flow of \mathbb{H}^{d}

In question 7. to 14 . we consider that (M, g) is the real hyperbolic space \mathbb{H}^{d}, and we work with the hyperboloid model $\mathbb{H}^{d} \subset \mathbb{R}^{d, 1}$. Set $\langle x, y\rangle=x_{1} y_{1}+\cdots+x_{d} y_{d}-x_{d+1} y_{d+1}$ for $x=\left(x_{1}, \ldots, x_{d+1}\right)$ and $y=\left(y_{1}, \ldots, y_{d+1}\right)$, thus $\mathbb{H}^{d}=\left\{x \in \mathbb{R}^{d+1} \mid\langle x, x\rangle=-1, x_{d+1}>0\right\}$.
7. Describe $X \subset \mathbb{R}^{d+1} \times \mathbb{R}^{d+1}$.

Solution: For $x \in \mathbb{H}^{d}$, we have $T_{x} \mathbb{H}^{d}=x^{\perp}=\left\{x \in \mathbb{R}^{d+1} \mid\langle x, v\rangle=0\right\}$, so

$$
X=\left\{(x, v) \in \mathbb{R}^{d+1} \times \mathbb{R}^{d+1} \mid\langle x, x\rangle=-1, x_{d+1}>0,\langle x, v\rangle=0,\langle v, v\rangle=1\right\}
$$

8. For $(x, v) \in X$, describe $T_{(x, v)} X \subset \mathbb{R}^{d+1} \times \mathbb{R}^{d+1}$.

Solution: We have that X is an open subset of $F^{-1}(\{0\})$ where

$$
F:\left\{\begin{array}{ccc}
\mathbb{R}^{d+1} \times \mathbb{R}^{d+1} & \rightarrow & \mathbb{R}^{3} \\
(x, v) & \mapsto & (\langle x, x\rangle,\langle x, v\rangle,\langle v, v\rangle)
\end{array}\right.
$$

The map F is smooth, and its differential is

$$
d_{(x, v)} F(y, w)=(2\langle x, y\rangle,\langle y, v\rangle+\langle x, w\rangle, 2\langle v, w\rangle)
$$

If $(x, v) \in X$ then

$$
\begin{aligned}
d_{(x, v)} F(x, 0) & =(-2,0,0) \\
d_{(x, v)} F(0, v) & =(0,0,2) \\
d_{(x, v)} F(v,-x) & =(0,2,0)
\end{aligned}
$$

This shows that F is a submersion at (x, v), so $T_{(x, v)} X=\operatorname{ker} d_{(x, v)} F$, i.e.

$$
T_{(x, v)} X=\left\{(y, w) \in \mathbb{R}^{d+1} \times \mathbb{R}^{d+1} \mid\langle x, y\rangle=\langle v, w\rangle=\langle y, v\rangle+\langle x, w\rangle=0\right\}
$$

9. Let $(x, v) \in X$. Describe $V_{(x, v)}$, and give an explicit formula for $\varphi_{(x, v)}$.

Solution: Since $d_{(x, v)} \pi(y, w)=y$, we find

$$
\begin{aligned}
V_{(x, v)}=\operatorname{ker} d_{(x, v)} \pi & =\left\{(0, w) \in \mathbb{R}^{d+1} \times \mathbb{R}^{d+1} \mid\langle x, w\rangle=\langle v, w\rangle=0\right\} \\
& =\left\{(0, w) \in \mathbb{R}^{d+1} \times \mathbb{R}^{d+1} \mid w \in x^{\perp} \cap v^{\perp}\right\} \\
& =\left\{(0, w) \in \mathbb{R}^{d+1} \times \mathbb{R}^{d+1} \mid w \in T_{x} \mathbb{H}^{d}, w \in v^{\perp}\right\}
\end{aligned}
$$

Let $z=(0, w) \in V_{(x, v)}$ and consider a path $\gamma(t)=(c(t), X(t)) \in X \operatorname{such} \gamma(0)=(x, v)$ and $\dot{\gamma}(0)=(0, w)$. Now $\frac{D}{d t} X(0)$ is the orthogonal projection of $\dot{X}(0)$ on $T_{x} \mathbb{H}^{d}$, but $\dot{X}(0)=w \in T_{x} \mathbb{H}^{d}$ so $\frac{D}{d t} X(0)=w$, and $\varphi_{(x, v)}(z)=w$.
10. Let $(x, v) \in X$. Describe $H_{(x, v)}$, and give an explicit formula for $\psi_{(x, v)}$. Hint: first compute $\psi_{(x, v)}(w)$ for $w \in v^{\perp}$, then compute $\psi_{(x, v)}(v)$.

Solution: First start with $w \in v^{\perp}$ such that $\|w\|=1$. Then we know that $c_{w}(t)=\cosh t x+\sinh t w$. The formula $V(t)=v$ is a vector field along c_{w} which is parallel (because $\dot{V}(t)=0$ implies that the projection $\frac{D}{d t} V(0)$ is also zero). This leads to the formula

$$
\psi_{(x, v)}(w)=(w, 0)
$$

The definition of $\psi_{(x, v)}$ leads to $\psi_{(x, v)}(v)=\left(\dot{c}_{v}(0), \ddot{c}_{v}(0)\right)=(v, x)$.
An arbitrary vector $w \in T_{x} M$ decomposes as $w=\langle w, v\rangle v+(w-\langle w, v\rangle v) \in \mathbb{R} . v \oplus v^{\perp}$, so the general formula is:

$$
\psi_{(x, v)}(w)=(w,\langle w, v\rangle x)
$$

By definition we have $H_{(x, v)}=\psi_{(x, v)}\left(T_{x} \mathbb{H}^{d}\right)$, so $H_{(x, v)}=\left(x^{\perp} \cap v^{\perp}\right) \times\{0\} \oplus \mathbb{R} .(v, x)$.
11. Let $(x, v) \in X$ and $t \in \mathbb{R}$. Give an explicit formula for $\varphi_{\mathcal{Z}}^{t}(x, v)$ and $d_{(x, v)} \varphi_{\mathcal{Z}}^{t}$.

Solution: Recall the formula for unit speed geodesics in \mathbb{H}^{d} :

$$
c_{v}(t)=\cosh t x+\sinh t v
$$

This leads to

$$
\begin{aligned}
\varphi_{\mathcal{Z}}^{t}(x, v) & =\left(c_{v}(t), \dot{c}_{v}(t)\right) \\
& =(\cosh t x+\sinh t v, \sinh t x+\cosh t v)
\end{aligned}
$$

It is the restriction to $X \subset \mathbb{R}^{d+1} \times \mathbb{R}^{d+1}$ of a linear map, so its differential is

$$
d_{(x, v)} \varphi_{\mathcal{Z}}^{t}(y, w)=(\cosh t y+\sinh t w, \sinh t y+\cosh t w)
$$

12. Let $(x, v) \in X$. We set:

$$
\begin{aligned}
& E_{(x, v)}^{s}=\left\{(y,-y) \in \mathbb{R}^{d+1} \times \mathbb{R}^{d+1} \mid\langle x, y\rangle=\langle v, y\rangle=0\right\} \\
& E_{(x, v)}^{u}=\left\{(y, y) \in \mathbb{R}^{d+1} \times \mathbb{R}^{d+1} \mid\langle x, y\rangle=\langle v, y\rangle=0\right\}
\end{aligned}
$$

Check that $T_{x, v)} X=E_{(x, v)}^{s} \oplus E_{(x, v)}^{u} \oplus \mathbb{R} \cdot \mathcal{Z}(x, v)$.
Solution: Decomposing $(y, w)=\frac{1}{2}(y+w, y+w)+\frac{1}{2}(y-w, w-y)$ we find that $E_{(x, v)}^{s} \oplus E_{(x, v)}^{u}=\left(x^{\perp} \cap v^{\perp}\right) \times\left(x^{\perp} \cap\right.$ $\left.v^{\perp}\right)$, so the description of $T_{(x, v)} X$ in question 8. associated to the formula $\mathcal{Z}(x, v)=\psi_{(x, v)}(v)=(v, x)$ gives the desired decomposition.
13. For $(x, v) \in X$ and $t \in \mathbb{R}$, show that $d_{(x, v)} \varphi_{\mathcal{Z}}^{t}\left(E_{(x, v)}^{s}\right)=E_{\varphi_{\mathcal{Z}}^{t}(x, v)}^{s}$ and $d_{(x, v)} \varphi_{\mathcal{Z}}^{t}\left(E_{(x, v)}^{u}\right)=E_{\varphi_{\mathcal{Z}}^{t}(x, v)}^{u}$.

Solution: If $(y,-y) \in E_{(x, v)}^{s}$, then

$$
\begin{aligned}
d_{(x, v)} \varphi_{\mathcal{Z}}^{t}(y,-y) & =(\cosh t y-\sinh t y, \sinh t y-\cosh t y) \\
& =e^{-t}(y,-y)
\end{aligned}
$$

Since $\langle y, x\rangle=\langle y, v\rangle=0$, we also have $\left\langle y, c_{v}(t)\right\rangle=\left\langle y, \dot{c}_{v}(t)\right\rangle$, therefore $(y,-y) \in E_{\varphi_{\mathcal{Z}}^{t}(x, v)^{s}}^{s}$. The same works for E^{u}.
14. For $z \in E_{(x, v)}^{s}$ and $t \in \mathbb{R}$, prove that:

$$
\widetilde{g}_{\varphi_{\mathcal{Z}}^{t}(x, v)}\left(d_{(x, v)} \varphi_{\mathcal{Z}}^{t}(z), d_{(x, v)} \varphi_{\mathcal{Z}}^{t}(z)\right)=e^{-t \widetilde{g}_{(x, v)}(z, z)}
$$

Solution: Write $z=(y,-y)$. From questions 9. and 10. we see that $(0, y) \in V_{(x, v)}$ and $(y, 0)=\psi_{(x, v)}(y) \in$ $H_{(x, v)}$, so $\widetilde{g}_{(x, v)}(z, z)=2\langle y, y\rangle$. The previous questions shows that $\widetilde{g}_{\varphi_{\mathcal{Z}}^{t}(x, v)}\left(d_{(x, v)} \varphi_{\mathcal{Z}}^{t}(z), d_{(x, v)} \varphi_{\mathcal{Z}}^{t}(z)\right)=$ $2 e^{-t}\langle y, y\rangle$, hence the result.

Jacobi fields and the geodesic flow

We are back to an arbitrary Riemannian manifold (M, g) (except for question 18.).
15. Let $(x, v) \in X$, and $J: I_{v} \rightarrow T M$ a Jacobi field along c_{v}. Prove that the following propositions are equivalent:

- $g_{x}\left(v, \frac{D}{d t} J(0)\right)=0$
- $\forall t \in I_{v} \quad g_{c_{v}(t)}\left(\dot{c}_{v}(t), \frac{D}{d t} J(t)\right)=0$
- $\forall t \in I_{v} \quad g_{c_{v}(t)}\left(\dot{c}_{v}(t), J(t)\right)=g_{x}(v, J(0))$

Solution: This is a consequence of the fact that $g\left(\dot{c}_{v}, \frac{D}{d t} J\right)$ is constant, which itself follows from

$$
\frac{d}{d t} g\left(\dot{c}_{v}, \frac{D}{d t} J\right)=g\left(\dot{c}_{v}, \frac{D}{d t} \frac{D}{d t} J\right)=R\left(J, \dot{c}_{v}, \dot{c}_{v}, \dot{c}_{v}\right)=0
$$

16. For $(x, v) \in X$, let $E_{(x, v)}$ be the set of Jacobi fields J along c_{v} such that $g_{x}\left(v, \frac{D}{d t} J(0)\right)=0$. Show that there is a unique linear isomorphism $J_{(x, v)}: T_{(x, v)} X \rightarrow E_{(x, v)}$ satisfying the following two properties:

- If $w \in T_{x} M$ and $z=\psi_{(x, v)}(w)$ then $J_{(x, v)}(z)(0)=w$ and $\frac{D}{d t} J_{(x, v)}(z)(0)=0$.
- If $z \in V_{(x, v)}$ then $J_{(x, v)}(z)(0)=0$ and $\frac{D}{d t} J_{(x, v)}(z)(0)=\varphi_{(x, v)}(z)$.

Solution: This is a consequence of the facts that a Jacobi field is uniquely determined by $J(0)$ and $\frac{D}{d t} J(0)$, and that $\varphi_{(x, v)}$ and $\psi_{(x, v)}$ are isomorphisms.
17. Let $(x, v) \in X$. Consider $z \in T_{(x, v)} X$, and write $J=J_{(x, v)}(z)$. For $t \in \mathbb{R}$, we set $J_{t}=J_{\varphi_{\mathcal{Z}}^{t}(x, v)}\left(d_{(x, v)} \varphi_{\mathcal{Z}}^{t}(z)\right)$. Show that for all $s \in I_{\dot{c}_{v}(t)}$, we have $J_{t}(s)=J(t+s)$.

Solution: This is by far the most complicated question in this exam! First we need to understand the relationship between Jacobi field and the tangent bundle of X more deeply, and this goes through variations of geodesics. We have seen Jacobi fields are variation fields of geodesic variations. Because we are working with the unit tangent bundle $T^{1} M$ and not the whole $T M$, we need to make sure that we can choose a variation by unit speed geodesics.

Fact 1: If J is a Jacobi field along c_{v} such that $g_{x}\left(v, \frac{D}{d t} J(0)\right)=0$, and $T \in I_{v}$, then there is a geodesic variation $f: U \rightarrow M$, where $U \subset \mathbb{R}^{2}$ is open and contains $[0, T] \times\{0\}$ such that $f(t, 0)=c_{v}(t)$, $\frac{\partial f}{\partial s}(t, 0)=J(t)$ for all $t \in[0, T]$ and $\left\|\frac{\partial f}{\partial t}(t, s)\right\|=1$ for all $(t, s) \in U$.

Proof. We are looking for a smooth curve $\gamma:]-\varepsilon, \varepsilon[\rightarrow M$ and a vector field Z along γ such that we can define $f(t, s)=\exp _{\gamma(s)}(t Z(s))$.
First, note that since the domain of the exponential map is open, it will be defined on some appropriate open set $U \subset \mathbb{R}^{2}$ up to shrinking ε.
The property $f(t, 0)=c_{v}(t)$ simply means that $\gamma(0)=0$. Also $\frac{\partial f}{\partial s}(0)=J(0)$ translates as $\dot{\gamma}(0)=0$. We will see that any curve γ with these properties will work (e.g. $\left.\gamma=c_{J(0)}\right)$.
Now in order to make sure that $\frac{\partial f}{\partial s}(t, 0)=J(t)$ for all t, we just need to show that $\frac{D}{\partial t} \frac{\partial f}{\partial s}(0,0)=\frac{D}{d t} J(0)$. Since the Levi-Civita connection is torsion-free, this is the same as $\frac{D}{\partial s} \frac{\partial f}{\partial t}(0,0)=\frac{D}{d t} J(0)$, i.e. $\frac{D}{d s} Z(0)=$ $\frac{D}{d t} J(0)$.
The condition that $\left\|\frac{\partial f}{\partial t}(t, s)\right\|=1$ for all $(t, s) \in U$ is also a condition on the vector field Z since geodesic have constant speed, so it is equivalent to $\|Z(s)\|=1$ for all $s \in]-\varepsilon, \varepsilon[$.
Set $w=\frac{D}{d t} J(0)$, so we are looking for a vector field Z along γ such that $\|Z\| \equiv 1$ and $\frac{D}{d s} Z(0)=w$.
If $w=0$, then the parallel vector field along γ such that $Z(0)=v$ works.
If $w \neq 0$, let V (resp. W) be the parallel vector field along γ such that $V(0)=v$ (resp. $W(0)=0)$. The vector field $Z(s)=\cos (\|w\| s) V(s)+\frac{\sin (\|w\| s)}{\|w\|} W(s)$ works.

We can now have an other description of the map $J_{(x, v)}$ involving geodesic variations.
Fact 2: If $J=J_{(x, v)}(z)$ for $z \in T_{x} M$ and $f: U \rightarrow M$ is a geodesic variation given by Fact 1 , then $z=\left.\frac{d}{d s}\right|_{s=0}\left(f(s, 0), \frac{\partial f}{\partial t}(s, 0)\right)$.
Remark. We need a geodesic variation by unit speed geodesics in order to have $\left(f(s, 0), \frac{\partial f}{\partial t}(s, 0)\right) \in X$ for all s.

Proof. Write $y=J(0)$ and $w=\frac{D}{d t} J(0)$. By definition of the map $J_{(x, v)}$, the decomposition $z=z_{V}+z_{H} \in$ $V_{(x, v)} \oplus H_{(x, v)}$ satisfies $\varphi_{(x, v)}\left(z_{V}\right)=w$ and $\psi_{(x, v)}(y)=z_{H}$.
Now consider $\widetilde{z}=\left.\frac{d}{d s}\right|_{s=0}\left(f(s, 0), \frac{\partial f}{\partial t}(s, 0)\right)$ Our goal is to show that $\widetilde{z}=z$.
Since this is a local consideration, we can assume that $M \subset \mathbb{R}^{d}$ is an open set and write

$$
\widetilde{z}=\left(\frac{\partial f}{\partial s}(0,0), \frac{\partial^{2} f}{\partial s \partial t}(0,0)\right)=(J(0), \dot{J}(0))
$$

Now in coordinates we have $\dot{J}(0)^{k}=\left(\frac{D}{d t} J(0)\right)^{k}-\Gamma_{i j}^{k} v^{i} J(0)^{j}$, i.e. $\dot{J}(0)^{k}=w^{k}-\Gamma_{i j}^{k} v^{i} y^{j}$. Using the coordinate formula for $\psi_{(x, v)}$ found in question 3., we get

$$
\widetilde{z}=(y, \dot{J}(0))=\psi_{(x, v)}(y)+(0, w)=z_{H}+(0, w)
$$

In question 2. we saw that $(0, w) \in V_{(x, v)}$ and $\varphi_{(x, v)}(0, w)=w$, hence $(0, w)=z_{V}$ and $\widetilde{z}=z_{H}+z_{V}=z$.

Now to answer the question, we consider a geodesic variation $f: U \rightarrow M$ given by Fact 1 . Because it is a variation by unit speed geodesics, we have that $\varphi_{\mathcal{Z}}^{t}\left(f(0, s), \frac{\partial f}{\partial t}(0, s)\right)=\left(f(t, s), \frac{\partial f}{\partial t}(t, s)\right)$ whenever defined. Now according to Fact 2, differentiation at $s=0$ shows that J_{t} is the variation field of $f(\cdot+t, \cdot)$, hence the formula.
18. For $(M, g)=\mathbb{H}^{d}$, give an explicit formula for $J_{(x, v)}$, then describe $J_{(x, v)}\left(E_{(x, v)}^{s}\right)$ and $J_{(x, v)}\left(E_{(x, v)}^{u}\right)$.

Solution: Let $z \in T_{(x, v)} X$. We start by decomposing $z=\lambda(v, x)+(y, w)$ where $\lambda \in \mathbb{R}$ and $y, w \in x^{\perp} \cap v^{\perp}$. Note that $J_{(x, v)}(v, x)(0)=J_{(x, v)}(\mathcal{Z}(x, v))(0)=v$ and $\frac{D}{d t} J_{(x, v)}(v, x)(0)=0$, so $J_{(x, v)}(v, x)(t)=v$ for all $t \in \mathbb{R}$. $(y, w)=(0, w)+(y, 0) \in V_{(x, v)} \oplus H_{(x, v)}$ and the computations of $\varphi_{(x, v)}$ and $\psi_{(x, v)}$ yield

$$
J_{(x, v)}(y, w)(t)=\cosh t w+\sinh t y
$$

In particular, for $(y,-y) \in E_{(x, v)}^{s}$ we get $J_{(x, v)}(y,-y)(t)=-e^{-t} y$ and for $(y,-y) \in E_{(x, v)}^{u}$ we get $J_{(x, v)}(y, y)(t)=$ $e^{t} y$. This shows that Jacobi fields $J \in J_{(x, v)}\left(E_{(x, v)}^{s}\right)$ (resp. $J \in J_{(x, v)}\left(E_{(x, v)}^{u}\right)$) are characterized by $J(0)=-\frac{D}{d t} J(0) \in v^{\perp}\left(\right.$ resp. $\left.J(0)=\frac{D}{d t} J(0) \in v^{\perp}\right)$.

