Groups and geometry

Final exam

Exercise 1

Let X be a Riemannian symmetric space.

1. For $x \in \mathbb{X}$, let $\varphi_x \in \text{End}(T_x \mathbb{X})$ be the self-adjoint operator such that :

 $\forall u, v \in T_x \mathbb{X} \quad \langle \varphi_x(u), v \rangle_x = \operatorname{Ric}_x(u, v)$

Show that for $f \in \text{Isom}(\mathbb{X})$, we have $d_x f \circ \varphi_x = \varphi_{f(x)} \circ d_x f$.

Solution: It follows from the invariance formula for the Ricci curvature $\operatorname{Ric}_{f(x)}(d_x f(u), d_x f(v)) = \operatorname{Ric}_x(u, v)$.

2. Let $o \in X$. If X is irreducible, prove that there is $\lambda \in \mathbb{R}$ such that $\varphi_o = \lambda$ Id. *Hint: consider the action of* $K = \text{Stab}_G(o)$ *on the eigenspaces of* φ_o .

Solution: The group *K* acts on $T_x o \mathbb{X}$ by $g.u = d_o g(u)$. It follows from the previous question that this action commutes with φ_o , so it preserves the eigenspaces of φ_o . Since φ_o is diagonalisable (it is self-adjoint) and the action of *K* is irreducible, we find that φ_o has only one eigenspace, i.e. there is $\lambda \in \mathbb{R}$ such that $\varphi_o = \lambda \operatorname{Id}$.

3. Prove that any irreducible symmetric space is an Einstein manifold.

Solution: From the previous question we find $\operatorname{Ric}_o(u, v) = \lambda \langle u, v \rangle_o$ for all $u, v \in T_o X$. Using the homogeneity of X, we also have $\operatorname{Ric}_x(u, v) = \lambda \langle u, v \rangle_x$ for all $x \in X$ and $u, v \in T_x X$.

Exercise 2

Consider two smooth manifolds M and N.

1. Let $f: M \to N$ be a smooth map. Prove that ker df is a vector sub-bundle of TM if and only if f has constant rank.

Solution: If ker df is a vector sub-bundle of codimension r of TM, then the rank of $d_x f$ is r for any $x \in M$, so f has constant rank.

If *f* has constant rank *r*, then for any $x \in M$ we can find coordinates $(x^1, ..., x^d)$ on *M* around *x* and coordinates $(y^1, ..., y^n)$ on *N* around f(x) such that $f(x^1, ..., x^d) = (x^1, ..., x^r, 0, ..., 0)$. So ker *df* is spanned by $\partial_{r+1}, ..., \partial_d$, and it is a vector sub-bundle of *TM* of codimension *r*.

2. Under which additional condition(s) is Im df a vector sub-bundle of TN?

Solution: If Im df is a vector sub-bundle of TN, then f must be surjective so that it defines a vector subspace of every T_xN for $x \in N$. Also $\text{Im} d_x f$ should have the same dimension for every $x \in M$, so f has constant rank. If f is surjective and has constant rank, then f is a submersion and Im df = TN is a vector sub-bundle of TN.

Exercise 3

Let (M, g) be a Riemannian manifold, and let X be the total space of the unit tangent bundle T^1M , i.e.

$$X = \{(x, v) \mid x \in M, v \in T_x M, g_x(v, v) = 1\}$$

Let $\pi : X \to M$ be the projection (given by $\pi(x, v) = x$).

The tangent bundle of X

1. For $(x, v) \in X$, let $V_{(x,v)} = \ker d_{(x,v)}\pi \subset T_{(x,v)}X$. What is the dimension of $V_{(x,v)}$? Prove that this defines a vector sub-bundle *V* of *TX*.

Solution: The map π is a submersion, so dim $V_{(x,v)} = \dim X - \dim M = d - 1$ where $d = \dim M$. Question 1. of exercise 1 shows that *V* is a vector sub-bundle of *TX*.

2. Let $(x, v) \in X$ and $z \in T_{(x,v)}X$. Consider a path $\gamma(t) = (c(t), X(t)) \in X$ such that $\gamma(0) = (x, v)$ and $\dot{\gamma}(0) = z$. Show that the map

$$\varphi_{(x,v)} : \begin{cases} T_{(x,v)}X \to T_xM \\ z \mapsto \frac{D}{dt}X(0) \end{cases}$$

is well defined (i.e. $\varphi_{(x,v)}(z)$ only depends on z and not on the path γ) and defines a linear isomorphism from $V_{(x,v)} = \ker d_{(x,v)}\pi$ to $v^{\perp} \subset T_x M$.

Hint: using local coordinates, we can assume that $M \subset \mathbb{R}^d$ is an open set and that $X \subset \mathbb{R}^{2d}$ is a submanifold whose equation we will give. This leads to equations for the subspaces $T_{(x,v)}X$ and $V_{(x,v)}$ of \mathbb{R}^{2d} , and an explicit formula for $\varphi_{(x,v)}$.

Solution: As suggested, we assume that $M \subset \mathbb{R}^d$ is an open set, and write g_{ij} the components of the Riemannian metric g. So X is defined as:

$$X = \left\{ (x, v) \in \mathbb{R}^d \times \mathbb{R}^d \, \middle| \, g_{ij}(x) v^i v^j = 1 \right\}$$

Note that we use Einstein's summation convention. Write $f(x, v) = g_{ij}(x)v^iv^j = 1$. Its differential is:

$$d_{(x,v)}f(y,w) = \partial_k g_{ij}(x)y^k v^j v^j + 2g_{ij}(x)v^i w^j$$

In particular, if $(x, v) \in X$ then $d_{(x,v)}f(0, v) = 2 \neq 0$ so f is a submersion around (x, v), and the tangent space $T_{(x,v)}X \subset \mathbb{R}^d \times \mathbb{R}^d$ is equal to ker $d_{(x,v)}f$.

$$T_{(x,v)}X = \left\{ (y,w) \in \mathbb{R}^d \times \mathbb{R}^d \mid \partial_k g_{ij}(x)y^k v^i v^j + 2g_{ij}(x)v^i w^j = 0 \right\}$$

Since the projection π is given by $\pi(x, v) = x$, we have $d_{(x,v)}\pi(y, w) = y$ and we find

$$V_{(x,v)} = \left\{ (0,w) \in \mathbb{R}^d \times \mathbb{R}^d \mid g_{ij}(x)v^i w^j = 0 \right\}$$
$$= \left\{ (0,w) \in \mathbb{R}^d \times \mathbb{R}^d \mid g_x(v,w) = 0 \right\}$$
$$= \left\{ (0,w) \in \mathbb{R}^d \times \mathbb{R}^d \mid w \in v^\perp \right\}$$

Now let $z = (0, w) \in V_{(x,v)}$ and $\gamma(t) = (c(t), X(t))$ a curve in X such that $\gamma(0) = (x, v)$ and $\dot{\gamma}(0) = z$. Hence $\dot{c}(0) = 0$ and $\dot{X}(0) = w$. Now

$$\left(\frac{D}{dt}X(0)\right)^k = \dot{X}^k(0) + \Gamma^k_{ij}(x)\dot{c}^i(0)X^j(0)$$
$$= \dot{X}^k(0) + 0$$
$$= w^k$$

This means that $\frac{D}{dt}X(0) = w$, i.e. $\varphi_{(x,v)}(0,w) = w$. This shows that $\varphi_{(x,v)}(z)$ does not depend on the path γ , and that it defines a linear isomorphism from $V_{(x,v)}$ to v^{\perp} .

3. For $(x, v) \in X$ and $w \in T_x M$, we set

$$\psi_{(x,v)}(w) = \left. \frac{d}{dt} \right|_{t=0} (c_w(t), V(t))$$

where c_w is the geodesic with initial velocity $\dot{c}_w(0) = w$, and *V* is the parallel vector field along c_w such that V(0) = v. Prove that the map $\psi_{(x,v)} : T_x M \to T_{(x,v)} X$ is linear and injective.

Solution: We use the same local setting $M \subset \mathbb{R}^d$ as in the previous question. Now we find $\psi_{(x,v)}(w) = (\dot{c}_w(0), \dot{V}(0)) = (w, \dot{V}(0))$. Since *V* is parallel and V(0) = v, we find:

$$\dot{V}^k(0) = \left(\frac{D}{dt}V(0)\right)^k - \Gamma^k_{ij}(x)w^iV^j(0)$$
$$= 0 - \Gamma^k_{ij}(x)w^iv^j$$

Therefore $\psi_{(x,v)}(w) = (w, -\Gamma_{ii}^k(x)w^iv^j)$. This shows that $\psi_{(x,v)}$ is linear and injective.

4. Let $H_{(x,v)} = \psi_{(x,v)}(T_x M) \subset T_{(x,v)}X$. Prove that this defines a vector sub-bundle *H* of *TX*, and that $TX = H \oplus V$.

Solution: Locally, for $M \subset \mathbb{R}^d$, we find that $H_{(x,v)}$ is spanned by the linearly independent vector fields $\psi_{(x,v)}(\partial_1), \ldots, \psi_{(x,v)}(\partial_d)$, so it defines a vector sub-bundle of rank d of TX. The descriptions of $H_{(x,v)}$ and $V_{(x,v)}$ in coordinates show that $H_{(x,v)} \cap V_{(x,v)} = \{0\}$. But we also have dim $H_{(x,v)} = d$, dim $V_{(x,v)} = d - 1$ and dim $T_{(x,v)}X = 2d - 1$, hence dim $T_{(x,v)}X = H_{(x,v)} \oplus V_{(x,v)}$.

- 5. Show that there is a unique Riemannian metric \tilde{g} on X with the following three properties:
 - $\forall (x,v) \in X \ \forall z_1, z_2 \in V_{(x,v)} \quad \widetilde{g}_{(x,v)}(z_1, z_2) = g_x \Big(\varphi_{(x,v)}(z_1), \varphi_{(x,v)}(z_2) \Big)$
 - $\forall (x,v) \in X \ \forall w_1, w_2 \in T_x M \quad \widetilde{g}_{(x,v)} \left(\psi_{(x,v)}(w_1), \psi_{(x,v)}(w_2) \right) = g_x(w_1, w_2)$
 - $\forall (x,v) \in X \ \forall (z_V, z_H) \in V_{(x,v)} \times H_{(x,v)} \quad \widetilde{g}_{(x,v)}(z_V, z_H) = 0$

Solution: It follows from the decomposition $TX = H \oplus V$ and the fact that φ and ψ are isomorphisms. The (useless) local formula is

$$\widetilde{g}_{(x,v)}((y_1,w_1),(y_2,w_2)) = g_{ij}(x)y_1^i y_2^j + g_{ij}(x) \left(w_1^i + \Gamma_{jk}^i(x)y_1^j v^k\right) \left(w_2^i + \Gamma_{jk}^i(x)y_2^j v^k\right)$$

6. Let $\mathcal{Z} \in \mathcal{X}(X)$ be the geodesic spray (i.e. the vector field whose flow $\varphi_{\mathcal{Z}}$ is the geodesic flow $\varphi_{\mathcal{Z}}^t(x,v) = (c_v(t), \dot{c}_v(t))$). What is the decomposition of \mathcal{Z} along $TX = H \oplus V$? Compute $\tilde{g}(\mathcal{Z}, \mathcal{Z})$.

Solution: Since \dot{c}_v is a parallel vector fiend along c_v (because c_v is a geodesic), we find that $\mathcal{Z}(x,v) = \frac{d}{dt}\Big|_{t=0} (c_v(t), \dot{c}_v(t)) = \psi_{(x,v)}(v)$. This shows that $\mathcal{Z}(x,v) \in H_{(x,v)}$ and $\tilde{g}(\mathcal{Z}, \mathcal{Z}) = 1$.

The geodesic flow of \mathbb{H}^d

In question 7. to 14. we consider that (M, g) is the real hyperbolic space \mathbb{H}^d , and we work with the hyperboloid model $\mathbb{H}^d \subset \mathbb{R}^{d,1}$. Set $\langle x, y \rangle = x_1 y_1 + \dots + x_d y_d - x_{d+1} y_{d+1}$ for $x = (x_1, \dots, x_{d+1})$ and $y = (y_1, \dots, y_{d+1})$, thus $\mathbb{H}^d = \{x \in \mathbb{R}^{d+1} \mid \langle x, x \rangle = -1, x_{d+1} > 0\}$.

7. Describe $X \subset \mathbb{R}^{d+1} \times \mathbb{R}^{d+1}$.

Solution: For $x \in \mathbb{H}^d$, we have $T_x \mathbb{H}^d = x^{\perp} = \{x \in \mathbb{R}^{d+1} | \langle x, v \rangle = 0\}$, so

$$X = \left\{ (x, v) \in \mathbb{R}^{d+1} \times \mathbb{R}^{d+1} \left| \langle x, x \rangle = -1, x_{d+1} > 0, \langle x, v \rangle = 0, \langle v, v \rangle = 1 \right\}$$

8. For $(x, v) \in X$, describe $T_{(x,v)}X \subset \mathbb{R}^{d+1} \times \mathbb{R}^{d+1}$.

Solution: We have that *X* is an open subset of $F^{-1}(\{0\})$ where

$$F: \left\{ \begin{array}{rcl} \mathbb{R}^{d+1} \times \mathbb{R}^{d+1} & \to & \mathbb{R}^3 \\ (x,v) & \mapsto & (\langle x,x \rangle, \langle x,v \rangle, \langle v,v \rangle) \end{array} \right.$$

The map F is smooth, and its differential is

$$d_{(x,v)}F(y,w) = (2\langle x, y \rangle, \langle y, v \rangle + \langle x, w \rangle, 2\langle v, w \rangle)$$

If $(x, v) \in X$ then

$$d_{(x,v)}F(x,0) = (-2,0,0)$$

$$d_{(x,v)}F(0,v) = (0,0,2)$$

$$d_{(x,v)}F(v,-x) = (0,2,0)$$

This shows that *F* is a submersion at (x, v), so $T_{(x,v)}X = \ker d_{(x,v)}F$, i.e.

$$T_{(x,v)}X = \left\{ (y,w) \in \mathbb{R}^{d+1} \times \mathbb{R}^{d+1} \, \middle| \, \langle x,y \rangle = \langle v,w \rangle = \langle y,v \rangle + \langle x,w \rangle = 0 \right\}$$

9. Let $(x, v) \in X$. Describe $V_{(x,v)}$, and give an explicit formula for $\varphi_{(x,v)}$.

Solution: Since $d_{(x,v)}\pi(y,w) = y$, we find

$$V_{(x,v)} = \ker d_{(x,v)}\pi = \left\{ (0,w) \in \mathbb{R}^{d+1} \times \mathbb{R}^{d+1} \left| \langle x,w \rangle = \langle v,w \rangle = 0 \right\} \\ = \left\{ (0,w) \in \mathbb{R}^{d+1} \times \mathbb{R}^{d+1} \left| w \in x^{\perp} \cap v^{\perp} \right\} \\ = \left\{ (0,w) \in \mathbb{R}^{d+1} \times \mathbb{R}^{d+1} \left| w \in T_x \mathbb{H}^d, w \in v^{\perp} \right\} \right\}$$

Let $z = (0, w) \in V_{(x,v)}$ and consider a path $\gamma(t) = (c(t), X(t)) \in X$ such $\gamma(0) = (x, v)$ and $\dot{\gamma}(0) = (0, w)$. Now $\frac{D}{dt}X(0)$ is the orthogonal projection of $\dot{X}(0)$ on $T_x\mathbb{H}^d$, but $\dot{X}(0) = w \in T_x\mathbb{H}^d$ so $\frac{D}{dt}X(0) = w$, and $\varphi_{(x,v)}(z) = w$.

10. Let $(x, v) \in X$. Describe $H_{(x,v)}$, and give an explicit formula for $\psi_{(x,v)}$. *Hint: first compute* $\psi_{(x,v)}(w)$ *for* $w \in v^{\perp}$ *, then compute* $\psi_{(x,v)}(v)$.

Solution: First start with $w \in v^{\perp}$ such that ||w|| = 1. Then we know that $c_w(t) = \cosh tx + \sinh tw$. The formula V(t) = v is a vector field along c_w which is parallel (because $\dot{V}(t) = 0$ implies that the projection $\frac{D}{dt}V(0)$ is also zero). This leads to the formula

$$\psi_{(x,v)}(w) = (w,0)$$

The definition of $\psi_{(x,v)}$ leads to $\psi_{(x,v)}(v) = (\dot{c}_v(0), \ddot{c}_v(0)) = (v, x)$. An arbitrary vector $w \in T_x M$ decomposes as $w = \langle w, v \rangle v + (w - \langle w, v \rangle v) \in \mathbb{R} . v \oplus v^{\perp}$, so the general formula is:

$$\psi_{(x,v)}(w) = (w, \langle w, v \rangle x)$$

By definition we have $H_{(x,v)} = \psi_{(x,v)}(T_x \mathbb{H}^d)$, so $H_{(x,v)} = (x^{\perp} \cap v^{\perp}) \times \{0\} \oplus \mathbb{R}.(v,x).$

11. Let $(x, v) \in X$ and $t \in \mathbb{R}$. Give an explicit formula for $\varphi_{\mathcal{Z}}^t(x, v)$ and $d_{(x,v)}\varphi_{\mathcal{Z}}^t$.

Solution: Recall the formula for unit speed geodesics in \mathbb{H}^d :

$$c_v(t) = \cosh tx + \sinh tv$$

This leads to

$$\varphi_{\mathcal{Z}}^{t}(x,v) = (c_{v}(t), \dot{c}_{v}(t))$$
$$= (\cosh tx + \sinh tv, \sinh tx + \cosh tv)$$

It is the restriction to $X \subset \mathbb{R}^{d+1} \times \mathbb{R}^{d+1}$ of a linear map, so its differential is

 $d_{(x,v)}\varphi_{\mathcal{Z}}^{t}(y,w) = (\cosh ty + \sinh tw, \sinh ty + \cosh tw)$

12. Let $(x, v) \in X$. We set:

$$E_{(x,v)}^{s} = \left\{ (y, -y) \in \mathbb{R}^{d+1} \times \mathbb{R}^{d+1} \left| \langle x, y \rangle = \langle v, y \rangle = 0 \right\} \\ E_{(x,v)}^{u} = \left\{ (y, y) \in \mathbb{R}^{d+1} \times \mathbb{R}^{d+1} \left| \langle x, y \rangle = \langle v, y \rangle = 0 \right\} \right\}$$

Check that $T_{x,v}X = E^s_{(x,v)} \oplus E^u_{(x,v)} \oplus \mathbb{R}.\mathcal{Z}(x,v).$

Solution: Decomposing $(y, w) = \frac{1}{2}(y+w, y+w) + \frac{1}{2}(y-w, w-y)$ we find that $E_{(x,v)}^s \oplus E_{(x,v)}^u = (x^{\perp} \cap v^{\perp}) \times (x^{\perp} \cap v^{\perp})$, so the description of $T_{(x,v)}X$ in question 8. associated to the formula $\mathcal{Z}(x,v) = \psi_{(x,v)}(v) = (v,x)$ gives the desired decomposition.

13. For $(x,v) \in X$ and $t \in \mathbb{R}$, show that $d_{(x,v)}\varphi_{\mathcal{Z}}^t(E_{(x,v)}^s) = E_{\varphi_{\mathcal{Z}}^t(x,v)}^s$ and $d_{(x,v)}\varphi_{\mathcal{Z}}^t(E_{(x,v)}^u) = E_{\varphi_{\mathcal{Z}}^t(x,v)}^u$.

Solution: If $(y, -y) \in E^s_{(x,v)}$, then

$$d_{(x,v)}\varphi_{\mathcal{Z}}^{t}(y,-y) = (\cosh ty - \sinh ty, \sinh ty - \cosh ty)$$
$$= e^{-t}(y,-y)$$

Since $\langle y, x \rangle = \langle y, v \rangle = 0$, we also have $\langle y, c_v(t) \rangle = \langle y, \dot{c}_v(t) \rangle$, therefore $(y, -y) \in E^s_{\varphi_z^t(x,v)}$. The same works for E^u .

14. For $z \in E^s_{(x,v)}$ and $t \in \mathbb{R}$, prove that:

$$\widetilde{g}_{\varphi_{\mathcal{Z}}^{t}(x,\nu)}\left(d_{(x,\nu)}\varphi_{\mathcal{Z}}^{t}(z),d_{(x,\nu)}\varphi_{\mathcal{Z}}^{t}(z)\right) = e^{-t}\widetilde{g}_{(x,\nu)}(z,z)$$

Solution: Write z = (y, -y). From questions 9. and 10. we see that $(0, y) \in V_{(x,v)}$ and $(y, 0) = \psi_{(x,v)}(y) \in H_{(x,v)}$, so $\tilde{g}_{(x,v)}(z, z) = 2 \langle y, y \rangle$. The previous questions shows that $\tilde{g}_{\varphi_{\mathcal{Z}}^t}(x, v) \left(d_{(x,v)} \varphi_{\mathcal{Z}}^t(z), d_{(x,v)} \varphi_{\mathcal{Z}}^t(z) \right) = 2e^{-t} \langle y, y \rangle$, hence the result.

Jacobi fields and the geodesic flow

We are back to an arbitrary Riemannian manifold (M, g) (except for question 18.).

- 15. Let $(x, v) \in X$, and $J : I_v \to TM$ a Jacobi field along c_v . Prove that the following propositions are equivalent:
 - $g_x\left(v, \frac{D}{dt}J(0)\right) = 0$

•
$$\forall t \in I_v \ g_{c_v(t)}(\dot{c}_v(t), \frac{D}{dt}J(t)) = 0$$

• $\forall t \in I_v \ g_{c_v(t)}(\dot{c}_v(t), J(t)) = g_x(v, J(0))$

Solution: This is a consequence of the fact that $g(\dot{c}_v, \frac{D}{dt}J)$ is constant, which itself follows from

$$\frac{d}{dt}g\left(\dot{c}_{v},\frac{D}{dt}J\right) = g\left(\dot{c}_{v},\frac{D}{dt}\frac{D}{dt}J\right) = R(J,\dot{c}_{v},\dot{c}_{v},\dot{c}_{v}) = 0$$

- 16. For $(x, v) \in X$, let $E_{(x,v)}$ be the set of Jacobi fields J along c_v such that $g_x(v, \frac{D}{dt}J(0)) = 0$. Show that there is a unique linear isomorphism $J_{(x,v)}: T_{(x,v)}X \to E_{(x,v)}$ satisfying the following two properties:
 - If $w \in T_x M$ and $z = \psi_{(x,v)}(w)$ then $J_{(x,v)}(z)(0) = w$ and $\frac{D}{dt}J_{(x,v)}(z)(0) = 0$.
 - If $z \in V_{(x,v)}$ then $J_{(x,v)}(z)(0) = 0$ and $\frac{D}{dt}J_{(x,v)}(z)(0) = \varphi_{(x,v)}(z)$.

Solution: This is a consequence of the facts that a Jacobi field is uniquely determined by J(0) and $\frac{D}{dt}J(0)$, and that $\varphi_{(x,v)}$ and $\psi_{(x,v)}$ are isomorphisms.

17. Let $(x, v) \in X$. Consider $z \in T_{(x,v)}X$, and write $J = J_{(x,v)}(z)$. For $t \in \mathbb{R}$, we set $J_t = J_{\varphi_{\mathcal{Z}}^t(x,v)}(d_{(x,v)}\varphi_{\mathcal{Z}}^t(z))$. Show that for all $s \in I_{c_v(t)}$, we have $J_t(s) = J(t+s)$.

Solution: This is by far the most complicated question in this exam! First we need to understand the relationship between Jacobi field and the tangent bundle of X more deeply, and this goes through variations of geodesics. We have seen Jacobi fields are variation fields of geodesic variations. Because we are working with the unit tangent bundle T^1M and not the whole TM, we need to make sure that we can choose a variation by unit speed geodesics.

Fact 1: If *J* is a Jacobi field along c_v such that $g_x(v, \frac{D}{dt}J(0)) = 0$, and $T \in I_v$, then there is a geodesic variation $f : U \to M$, where $U \subset \mathbb{R}^2$ is open and contains $[0,T] \times \{0\}$ such that $f(t,0) = c_v(t)$, $\frac{\partial f}{\partial s}(t,0) = J(t)$ for all $t \in [0,T]$ and $\left\|\frac{\partial f}{\partial t}(t,s)\right\| = 1$ for all $(t,s) \in U$.

Proof. We are looking for a smooth curve $\gamma :]-\varepsilon, \varepsilon[\to M \text{ and a vector field } Z \text{ along } \gamma \text{ such that we can define } f(t,s) = \exp_{\gamma(s)}(tZ(s)).$

First, note that since the domain of the exponential map is open, it will be defined on some appropriate open set $U \subset \mathbb{R}^2$ up to shrinking ε .

The property $f(t, 0) = c_v(t)$ simply means that $\gamma(0) = 0$. Also $\frac{\partial f}{\partial s}(0) = J(0)$ translates as $\dot{\gamma}(0) = 0$. We will see that any curve γ with these properties will work (e.g. $\gamma = c_{J(0)}$).

Now in order to make sure that $\frac{\partial f}{\partial s}(t,0) = J(t)$ for all t, we just need to show that $\frac{D}{\partial t} \frac{\partial f}{\partial s}(0,0) = \frac{D}{dt}J(0)$. Since the Levi-Civita connection is torsion-free, this is the same as $\frac{D}{\partial s} \frac{\partial f}{\partial t}(0,0) = \frac{D}{dt}J(0)$, i.e. $\frac{D}{ds}Z(0) = \frac{D}{dt}J(0)$.

The condition that $\left\|\frac{\partial f}{\partial t}(t,s)\right\| = 1$ for all $(t,s) \in U$ is also a condition on the vector field Z since geodesic have constant speed, so it is equivalent to $\|Z(s)\| = 1$ for all $s \in [-\varepsilon, \varepsilon[$.

Set $w = \frac{D}{dt}J(0)$, so we are looking for a vector field Z along γ such that $||Z|| \equiv 1$ and $\frac{D}{ds}Z(0) = w$.

If w = 0, then the parallel vector field along γ such that Z(0) = v works. If $w \neq 0$, let *V* (resp. *W*) be the parallel vector field along γ such that V(0) = v (resp. W(0) = 0). The vector field $Z(s) = \cos(||w||s)V(s) + \frac{\sin(||w||s)}{||w||}W(s)$ works.

We can now have an other description of the map $J_{(x,v)}$ involving geodesic variations.

Fact 2: If $J = J_{(x,v)}(z)$ for $z \in T_x M$ and $f : U \to M$ is a geodesic variation given by Fact 1, then $z = \frac{d}{ds}\Big|_{s=0} (f(s,0), \frac{\partial f}{\partial t}(s,0)).$

Remark. We need a geodesic variation by unit speed geodesics in order to have $(f(s, 0), \frac{\partial f}{\partial t}(s, 0)) \in X$ for all s.

Proof. Write y = J(0) and $w = \frac{D}{dt}J(0)$. By definition of the map $J_{(x,v)}$, the decomposition $z = z_V + z_H \in V_{(x,v)} \oplus H_{(x,v)}$ satisfies $\varphi_{(x,v)}(z_V) = w$ and $\psi_{(x,v)}(y) = z_H$.

Now consider $\widetilde{z} = \frac{d}{ds}\Big|_{s=0} \left(f(s,0), \frac{\partial f}{\partial t}(s,0) \right)$ Our goal is to show that $\widetilde{z} = z$.

Since this is a local consideration, we can assume that $M \subset \mathbb{R}^d$ is an open set and write

$$\widetilde{z} = \left(\frac{\partial f}{\partial s}(0,0), \frac{\partial^2 f}{\partial s \partial t}(0,0)\right) = (J(0), \dot{J}(0))$$

Now in coordinates we have $\dot{J}(0)^k = \left(\frac{D}{dt}J(0)\right)^k - \Gamma_{ij}^k v^i J(0)^j$, i.e. $\dot{J}(0)^k = w^k - \Gamma_{ij}^k v^i y^j$. Using the coordinate formula for $\psi_{(x,v)}$ found in question 3., we get

$$\widetilde{z} = (y, \dot{f}(0)) = \psi_{(x,v)}(y) + (0, w) = z_H + (0, w)$$

In question 2. we saw that $(0, w) \in V_{(x,v)}$ and $\varphi_{(x,v)}(0, w) = w$, hence $(0, w) = z_V$ and $\tilde{z} = z_H + z_V = z$. \Box

Now to answer the question, we consider a geodesic variation $f: U \to M$ given by Fact 1. Because it is a variation by unit speed geodesics, we have that $\varphi_{\mathcal{Z}}^t(f(0,s), \frac{\partial f}{\partial t}(0,s)) = (f(t,s), \frac{\partial f}{\partial t}(t,s))$ whenever defined. Now according to Fact 2, differentiation at s = 0 shows that J_t is the variation field of $f(\cdot + t, \cdot)$, hence the formula.

18. For $(M, g) = \mathbb{H}^d$, give an explicit formula for $J_{(x,v)}$, then describe $J_{(x,v)}(E^s_{(x,v)})$ and $J_{(x,v)}(E^u_{(x,v)})$.

Solution: Let $z \in T_{(x,v)}X$. We start by decomposing $z = \lambda(v, x) + (y, w)$ where $\lambda \in \mathbb{R}$ and $y, w \in x^{\perp} \cap v^{\perp}$. Note that $J_{(x,v)}(v, x)(0) = J_{(x,v)}(\mathcal{Z}(x,v))(0) = v$ and $\frac{D}{dt}J_{(x,v)}(v, x)(0) = 0$, so $J_{(x,v)}(v, x)(t) = v$ for all $t \in \mathbb{R}$. $(y, w) = (0, w) + (y, 0) \in V_{(x,v)} \oplus H_{(x,v)}$ and the computations of $\varphi_{(x,v)}$ and $\psi_{(x,v)}$ yield

 $J_{(x,v)}(y,w)(t) = \cosh tw + \sinh ty$

In particular, for $(y, -y) \in E_{(x,v)}^s$ we get $J_{(x,v)}(y, -y)(t) = -e^{-t}y$ and for $(y, -y) \in E_{(x,v)}^u$ we get $J_{(x,v)}(y, y)(t) = e^t y$. This shows that Jacobi fields $J \in J_{(x,v)}(E_{(x,v)}^s)$ (resp. $J \in J_{(x,v)}(E_{(x,v)}^u)$) are characterized by $J(0) = -\frac{D}{dt}J(0) \in v^{\perp}$ (resp. $J(0) = \frac{D}{dt}J(0) \in v^{\perp}$).