
Groups and geometry
Final exam

Exercise 1

Let X be a Riemannian symmetric space.

1. For x ∈X, let ϕx ∈ End(TxX) be the self-adjoint operator such that :

∀u,v ∈ TxX 〈ϕx(u) ,v〉x = Ricx(u,v)

Show that for f ∈ Isom(X), we have dxf ◦ϕx = ϕf (x) ◦ dxf .

Solution: It follows from the invariance formula for the Ricci curvature Ricf (x)(dxf (u),dxf (v)) =
Ricx(u,v).

2. Let o ∈X. If X is irreducible, prove that there is λ ∈R such that ϕo = λ Id.
Hint: consider the action of K = StabG(o) on the eigenspaces of ϕo.

Solution: The group K acts on TxoX by g.u = dog(u). It follows from the previous question that
this action commutes with ϕo, so it preserves the eigenspaces of ϕo. Since ϕo is diagonalisable (it is
self-adjoint) and the action of K is irreducible, we find that ϕo has only one eigenspace, i.e. there is
λ ∈R such that ϕo = λ Id.

3. Prove that any irreducible symmetric space is an Einstein manifold.

Solution: From the previous question we find Rico(u,v) = λ〈u ,v〉o for all u,v ∈ ToX. Using the
homogeneity of X, we also have Ricx(u,v) = λ〈u ,v〉x for all x ∈X and u,v ∈ TxX.

Exercise 2

Consider two smooth manifolds M and N .

1. Let f :M→N be a smooth map. Prove that kerdf is a vector sub-bundle of TM if and only if f has
constant rank.

Solution: If kerdf is a vector sub-bundle of codimension r of TM, then the rank of dxf is r for any
x ∈M, so f has constant rank.
If f has constant rank r, then for any x ∈ M we can find coordinates (x1, . . . ,xd) on M around x
and coordinates (y1, . . . , yn) on N around f (x) such that f (x1, . . . ,xd) = (x1, . . . ,xr ,0, . . . ,0). So kerdf is
spanned by ∂r+1, . . . ,∂d , and it is a vector sub-bundle of TM of codimension r.

2. Under which additional condition(s) is=df a vector sub-bundle of TN ?

Solution: If=df is a vector sub-bundle of TN , then f must be surjective so that it defines a vector
subspace of every TxN for x ∈N . Also=dxf should have the same dimension for every x ∈M, so f
has constant rank. If f is surjective and has constant rank, then f is a submersion and=df = TN
is a vector sub-bundle of TN .



Exercise 3

Let (M,g) be a Riemannian manifold, and let X be the total space of the unit tangent bundle T 1M, i.e.

X = {(x,v) |x ∈M, v ∈ TxM, gx(v,v) = 1}

Let π : X→M be the projection (given by π(x,v) = x).

The tangent bundle of X

1. For (x,v) ∈ X, let V(x,v) = kerd(x,v)π ⊂ T(x,v)X. What is the dimension of V(x,v) ? Prove that this defines
a vector sub-bundle V of TX.

Solution: The map π is a submersion, so dimV(x,v) = dimX −dimM = d −1 where d = dimM. Ques-
tion 1. of exercise 1 shows that V is a vector sub-bundle of TX.

2. Let (x,v) ∈ X and z ∈ T(x,v)X. Consider a path γ(t) = (c(t),X(t)) ∈ X such that γ(0) = (x,v) and
γ̇(0) = z. Show that the map

ϕ(x,v) :
{
T(x,v)X → TxM
z 7→ D

dtX(0)

is well defined (i.e. ϕ(x,v)(z) only depends on z and not on the path γ) and defines a linear isomor-
phism from V(x,v) = kerd(x,v)π to v⊥ ⊂ TxM.

Hint: using local coordinates, we can assume that M ⊂ R
d is an open set and that X ⊂ R

2d is a submani-
fold whose equation we will give. This leads to equations for the subspaces T(x,v)X and V(x,v) of R2d , and
an explicit formula for ϕ(x,v).

Solution: As suggested, we assume that M ⊂ R
d is an open set, and write gij the components of the

Riemannian metric g. So X is defined as:

X =
{
(x,v) ∈Rd ×Rd

∣∣∣gij(x)vivj = 1
}

Note that we use Einstein’s summation convention. Write f (x,v) = gij(x)vivj = 1. Its differential is:

d(x,v)f (y,w) = ∂kgij(x)ykvivj + 2gij(x)viwj

In particular, if (x,v) ∈ X then d(x,v)f (0,v) = 2 , 0 so f is a submersion around (x,v), and the tangent
space T(x,v)X ⊂R

d ×Rd is equal to kerd(x,v)f .

T(x,v)X =
{
(y,w) ∈Rd ×Rd

∣∣∣∂kgij(x)ykvivj + 2gij(x)viwj = 0
}

Since the projection π is given by π(x,v) = x, we have d(x,v)π(y,w) = y and we find

V(x,v) =
{
(0,w) ∈Rd ×Rd

∣∣∣gij(x)viwj = 0
}

=
{
(0,w) ∈Rd ×Rd

∣∣∣gx(v,w) = 0
}

=
{
(0,w) ∈Rd ×Rd

∣∣∣w ∈ v⊥}



Now let z = (0,w) ∈ V(x,v) and γ(t) = (c(t),X(t)) a curve in X such that γ(0) = (x,v) and γ̇(0) = z.
Hence ċ(0) = 0 and Ẋ(0) = w. Now(D

dt
X(0)

)k
= Ẋk(0) + Γ kij(x)ċi(0)Xj(0)

= Ẋk(0) + 0

= wk

This means that D
dtX(0) = w, i.e. ϕ(x,v)(0,w) = w. This shows that ϕ(x,v)(z) does not depend on the

path γ , and that it defines a linear isomorphism from V(x,v) to v⊥.

3. For (x,v) ∈ X and w ∈ TxM, we set

ψ(x,v)(w) =
d
dt

∣∣∣∣∣
t=0

(cw(t),V (t))

where cw is the geodesic with initial velocity ċw(0) = w, and V is the parallel vector field along cw
such that V (0) = v. Prove that the map ψ(x,v) : TxM→ T(x,v)X is linear and injective.

Solution: We use the same local settingM ⊂R
d as in the previous question. Now we find ψ(x,v)(w) =

(ċw(0), V̇ (0))) = (w,V̇ (0)). Since V is parallel and V (0) = v, we find:

V̇ k(0) =
(D
dt
V (0)

)k
− Γ kij(x)wiV j(0)

= 0− Γ kij(x)wivj

Therefore ψ(x,v)(w) = (w,−Γ kij(x)wivj ). This shows that ψ(x,v) is linear and injective.

4. Let H(x,v) = ψ(x,v) (TxM) ⊂ T(x,v)X. Prove that this defines a vector sub-bundle H of TX, and that
TX =H ⊕V .

Solution: Locally, for M ⊂ R
d , we find that H(x,v) is spanned by the linearly independent vector

fields ψ(x,v)(∂1), . . . ,ψ(x,v)(∂d), so it defines a vector sub-bundle of rank d of TX. The descriptions
of H(x,v) and V(x,v) in coordinates show that H(x,v) ∩ V(x,v) = {0}. But we also have dimH(x,v) = d,
dimV(x,v) = d − 1 and dimT(x,v)X = 2d − 1, hence dimT(x,v)X =H(x,v) ⊕V(x,v).

5. Show that there is a unique Riemannian metric g̃ on X with the following three properties:

• ∀(x,v) ∈ X ∀z1, z2 ∈ V(x,v) g̃(x,v)(z1, z2) = gx
(
ϕ(x,v)(z1),ϕ(x,v)(z2)

)
• ∀(x,v) ∈ X ∀w1,w2 ∈ TxM g̃(x,v)

(
ψ(x,v)(w1),ψ(x,v)(w2)

)
= gx(w1,w2)

• ∀(x,v) ∈ X ∀(zV , zH ) ∈ V(x,v) ×H(x,v) g̃(x,v)(zV , zH ) = 0

Solution: It follows from the decomposition TX =H⊕V and the fact thatϕ andψ are isomorphisms.
The (useless) local formula is

g̃(x,v)((y1,w1), (y2,w2)) = gij(x)yi1y
j
2 + gij(x)

(
wi1 + Γ ijk(x)yj1v

k
)(
wi2 + Γ ijk(x)yj2v

k
)



6. Let Z ∈ X (X) be the geodesic spray (i.e. the vector field whose flow ϕZ is the geodesic flow
ϕtZ(x,v) = (cv(t), ċv(t))). What is the decomposition of Z along TX =H ⊕V ? Compute g̃(Z,Z).

Solution: Since ċv is a parallel vector fiend along cv (because cv is a geodesic), we find that Z(x,v) =
d
dt

∣∣∣
t=0

(cv(t), ċv(t)) = ψ(x,v)(v). This shows that Z(x,v) ∈H(x,v) and g̃(Z,Z) = 1.

The geodesic flow of Hd

In question 7. to 14. we consider that (M,g) is the real hyperbolic space H
d , and we work with the hyper-

boloid model Hd ⊂ R
d,1. Set

〈
x ,y

〉
= x1y1 + · · ·+ xdyd − xd+1yd+1 for x = (x1, . . . ,xd+1) and y = (y1, . . . , yd+1),

thus Hd =
{
x ∈Rd+1

∣∣∣〈x ,x〉 = −1, xd+1 > 0
}
.

7. Describe X ⊂R
d+1 ×Rd+1.

Solution: For x ∈Hd , we have TxHd = x⊥ =
{
x ∈Rd+1

∣∣∣〈x ,v〉 = 0
}
, so

X =
{
(x,v) ∈Rd+1 ×Rd+1

∣∣∣〈x ,x〉 = −1,xd+1 > 0,〈x ,v〉 = 0,〈v ,v〉 = 1
}

8. For (x,v) ∈ X, describe T(x,v)X ⊂R
d+1 ×Rd+1.

Solution: We have that X is an open subset of F−1({0}) where

F :
{

R
d+1 ×Rd+1 → R

3

(x,v) 7→ (〈x ,x〉 ,〈x ,v〉 ,〈v ,v〉)

The map F is smooth, and its differential is

d(x,v)F(y,w) = (2
〈
x ,y

〉
,
〈
y ,v

〉
+ 〈x ,w〉 ,2〈v ,w〉)

If (x,v) ∈ X then

d(x,v)F(x,0) = (−2,0,0)

d(x,v)F(0,v) = (0,0,2)

d(x,v)F(v,−x) = (0,2,0)

This shows that F is a submersion at (x,v), so T(x,v)X = kerd(x,v)F, i.e.

T(x,v)X =
{
(y,w) ∈Rd+1 ×Rd+1

∣∣∣ 〈x ,y〉 = 〈v ,w〉 =
〈
y ,v

〉
+ 〈x ,w〉 = 0

}
9. Let (x,v) ∈ X. Describe V(x,v), and give an explicit formula for ϕ(x,v).

Solution: Since d(x,v)π(y,w) = y, we find

V(x,v) = kerd(x,v)π =
{
(0,w) ∈Rd+1 ×Rd+1

∣∣∣〈x ,w〉 = 〈v ,w〉 = 0
}

=
{
(0,w) ∈Rd+1 ×Rd+1

∣∣∣w ∈ x⊥ ∩ v⊥}
=

{
(0,w) ∈Rd+1 ×Rd+1

∣∣∣w ∈ TxHd ,w ∈ v⊥
}



Let z = (0,w) ∈ V(x,v) and consider a path γ(t) = (c(t),X(t)) ∈ X such γ(0) = (x,v) and γ̇(0) = (0,w).
Now D

dtX(0) is the orthogonal projection of Ẋ(0) on TxHd , but Ẋ(0) = w ∈ TxHd so D
dtX(0) = w, and

ϕ(x,v)(z) = w.

10. Let (x,v) ∈ X. Describe H(x,v), and give an explicit formula for ψ(x,v).
Hint: first compute ψ(x,v)(w) for w ∈ v⊥, then compute ψ(x,v)(v).

Solution: First start with w ∈ v⊥ such that ‖w‖ = 1. Then we know that cw(t) = cosh tx + sinh tw.
The formula V (t) = v is a vector field along cw which is parallel (because V̇ (t) = 0 implies that the
projection D

dtV (0) is also zero). This leads to the formula

ψ(x,v)(w) = (w,0)

The definition of ψ(x,v) leads to ψ(x,v)(v) = (ċv(0), c̈v(0)) = (v,x).
An arbitrary vector w ∈ TxM decomposes as w = 〈w,v〉v + (w − 〈w,v〉v) ∈ R.v ⊕ v⊥, so the general
formula is:

ψ(x,v)(w) = (w,〈w,v〉x)

By definition we have H(x,v) = ψ(x,v)(TxHd), so H(x,v) = (x⊥ ∩ v⊥)× {0} ⊕R.(v,x).

11. Let (x,v) ∈ X and t ∈R. Give an explicit formula for ϕtZ(x,v) and d(x,v)ϕ
t
Z .

Solution: Recall the formula for unit speed geodesics in H
d :

cv(t) = cosh tx+ sinh tv

This leads to

ϕtZ(x,v) = (cv(t), ċv(t))

= (cosh tx+ sinh tv,sinh tx+ cosh tv)

It is the restriction to X ⊂R
d+1 ×Rd+1 of a linear map, so its differential is

d(x,v)ϕ
t
Z(y,w) = (cosh ty + sinh tw,sinh ty + cosh tw)

12. Let (x,v) ∈ X. We set:

Es(x,v) =
{
(y,−y) ∈Rd+1 ×Rd+1

∣∣∣ 〈x ,y〉 =
〈
v ,y

〉
= 0

}
Eu(x,v) =

{
(y,y) ∈Rd+1 ×Rd+1

∣∣∣ 〈x ,y〉 =
〈
v ,y

〉
= 0

}
Check that Tx,v)X = Es(x,v) ⊕E

u
(x,v) ⊕R.Z(x,v).

Solution: Decomposing (y,w) = 1
2 (y+w,y+w)+ 1

2 (y−w,w−y) we find that Es(x,v)⊕E
u
(x,v) = (x⊥∩v⊥)×(x⊥∩

v⊥), so the description of T(x,v)X in question 8. associated to the formula Z(x,v) = ψ(x,v)(v) = (v,x)
gives the desired decomposition.



13. For (x,v) ∈ X and t ∈R, show that d(x,v)ϕ
t
Z
(
Es(x,v)

)
= Es

ϕtZ (x,v) and d(x,v)ϕ
t
Z
(
Eu(x,v)

)
= Eu

ϕtZ (x,v).

Solution: If (y,−y) ∈ Es(x,v), then

d(x,v)ϕ
t
Z(y,−y) = (cosh ty − sinh ty,sinh ty − cosh ty)

= e−t(y,−y)

Since
〈
y ,x

〉
=

〈
y ,v

〉
= 0, we also have

〈
y ,cv(t)

〉
=

〈
y , ċv(t)

〉
, therefore (y,−y) ∈ Es

ϕtZ (x,v). The same
works for Eu .

14. For z ∈ Es(x,v) and t ∈R, prove that:

g̃ϕtZ (x,v)

(
d(x,v)ϕ

t
Z(z),d(x,v)ϕ

t
Z(z)

)
= e−t g̃(x,v)(z,z)

Solution: Write z = (y,−y). From questions 9. and 10. we see that (0, y) ∈ V(x,v) and (y,0) = ψ(x,v)(y) ∈
H(x,v), so g̃(x,v)(z,z) = 2

〈
y ,y

〉
. The previous questions shows that g̃ϕtZ (x,v)

(
d(x,v)ϕ

t
Z(z),d(x,v)ϕ

t
Z(z)

)
=

2e−t
〈
y ,y

〉
, hence the result.

Jacobi fields and the geodesic flow

We are back to an arbitrary Riemannian manifold (M,g) (except for question 18.).

15. Let (x,v) ∈ X, and J : Iv → TM a Jacobi field along cv . Prove that the following propositions are
equivalent:

• gx
(
v, Ddt J(0)

)
= 0

• ∀t ∈ Iv gcv(t)

(
ċv(t), Ddt J(t)

)
= 0

• ∀t ∈ Iv gcv(t)(ċv(t), J(t)) = gx(v, J(0))

Solution: This is a consequence of the fact that g
(
ċv ,

D
dt J

)
is constant, which itself follows from

d
dt
g
(
ċv ,
D
dt
J
)

= g
(
ċv ,
D
dt
D
dt
J
)

= R(J, ċv , ċv , ċv) = 0

16. For (x,v) ∈ X, let E(x,v) be the set of Jacobi fields J along cv such that gx
(
v, Ddt J(0)

)
= 0. Show that

there is a unique linear isomorphism J(x,v) : T(x,v)X→ E(x,v) satisfying the following two properties:

• If w ∈ TxM and z = ψ(x,v)(w) then J(x,v)(z)(0) = w and D
dt J(x,v)(z)(0) = 0.

• If z ∈ V(x,v) then J(x,v)(z)(0) = 0 and D
dt J(x,v)(z)(0) = ϕ(x,v)(z).

Solution: This is a consequence of the facts that a Jacobi field is uniquely determined by J(0) and
D
dt J(0), and that ϕ(x,v) and ψ(x,v) are isomorphisms.



17. Let (x,v) ∈ X. Consider z ∈ T(x,v)X, and write J = J(x,v)(z). For t ∈ R, we set Jt = JϕtZ (x,v)

(
d(x,v)ϕ

t
Z(z)

)
.

Show that for all s ∈ Iċv(t), we have Jt(s) = J(t + s).

Solution: This is by far the most complicated question in this exam! First we need to understand the
relationship between Jacobi field and the tangent bundle of X more deeply, and this goes through
variations of geodesics. We have seen Jacobi fields are variation fields of geodesic variations. Be-
cause we are working with the unit tangent bundle T 1M and not the whole TM, we need to make
sure that we can choose a variation by unit speed geodesics.

Fact 1: If J is a Jacobi field along cv such that gx
(
v, Ddt J(0)

)
= 0, and T ∈ Iv , then there is a geodesic

variation f : U → M, where U ⊂ R
2 is open and contains [0 ,T ] × {0} such that f (t,0) = cv(t),

∂f
∂s (t,0) = J(t) for all t ∈ [0 ,T ] and

∥∥∥∥∂f∂t (t, s)
∥∥∥∥ = 1 for all (t, s) ∈U .

Proof. We are looking for a smooth curve γ : ]−ε ,ε[→M and a vector field Z along γ such that we
can define f (t, s) = expγ(s)(tZ(s)).
First, note that since the domain of the exponential map is open, it will be defined on some appro-
priate open set U ⊂R

2 up to shrinking ε.
The property f (t,0) = cv(t) simply means that γ(0) = 0. Also ∂f

∂s (0) = J(0) translates as γ̇(0) = 0. We
will see that any curve γ with these properties will work (e.g. γ = cJ(0)).

Now in order to make sure that ∂f
∂s (t,0) = J(t) for all t, we just need to show that D

∂t
∂f
∂s (0,0) = D

dt J(0).

Since the Levi-Civita connection is torsion-free, this is the same as D
∂s
∂f
∂t (0,0) = D

dt J(0), i.e. D
dsZ(0) =

D
dt J(0).

The condition that
∥∥∥∥∂f∂t (t, s)

∥∥∥∥ = 1 for all (t, s) ∈ U is also a condition on the vector field Z since

geodesic have constant speed, so it is equivalent to ‖Z(s)‖ = 1 for all s ∈ ]−ε ,ε[.
Set w = D

dt J(0), so we are looking for a vector field Z along γ such that ‖Z‖ ≡ 1 and D
dsZ(0) = w.

If w = 0, then the parallel vector field along γ such that Z(0) = v works.
If w , 0, let V (resp. W ) be the parallel vector field along γ such that V (0) = v (resp. W (0) = 0). The
vector field Z(s) = cos(‖w‖s)V (s) + sin(‖w‖s)

‖w‖ W (s) works.

We can now have an other description of the map J(x,v) involving geodesic variations.

Fact 2: If J = J(x,v)(z) for z ∈ TxM and f : U → M is a geodesic variation given by Fact 1, then

z = d
ds

∣∣∣
s=0

(
f (s,0), ∂f∂t (s,0)

)
.

Remark. We need a geodesic variation by unit speed geodesics in order to have
(
f (s,0), ∂f∂t (s,0)

)
∈ X for

all s.

Proof. Write y = J(0) and w = D
dt J(0). By definition of the map J(x,v), the decomposition z = zV + zH ∈

V(x,v) ⊕H(x,v) satisfies ϕ(x,v)(zV ) = w and ψ(x,v)(y) = zH .

Now consider z̃ = d
ds

∣∣∣
s=0

(
f (s,0), ∂f∂t (s,0)

)
Our goal is to show that z̃ = z.

Since this is a local consideration, we can assume that M ⊂R
d is an open set and write

z̃ =
(
∂f

∂s
(0,0),

∂2f

∂s∂t
(0,0)

)
= (J(0), J̇(0))

Now in coordinates we have J̇(0)k =
(
D
dt J(0)

)k
−Γ kijv

iJ(0)j , i.e. J̇(0)k = wk−Γ kijv
iyj . Using the coordinate

formula for ψ(x,v) found in question 3., we get

z̃ = (y, J̇(0)) = ψ(x,v)(y) + (0,w) = zH + (0,w)



In question 2. we saw that (0,w) ∈ V(x,v) and ϕ(x,v)(0,w) = w, hence (0,w) = zV and z̃ = zH+zV = z.

Now to answer the question, we consider a geodesic variation f :U →M given by Fact 1. Because it
is a variation by unit speed geodesics, we have that ϕtZ

(
f (0, s), ∂f∂t (0, s)

)
=

(
f (t, s), ∂f∂t (t, s)

)
whenever

defined. Now according to Fact 2, differentiation at s = 0 shows that Jt is the variation field of
f (·+ t, ·), hence the formula.

18. For (M,g) = H
d , give an explicit formula for J(x,v), then describe J(x,v)

(
Es(x,v)

)
and J(x,v)

(
Eu(x,v)

)
.

Solution: Let z ∈ T(x,v)X. We start by decomposing z = λ(v,x) + (y,w) where λ ∈R and y,w ∈ x⊥∩v⊥.
Note that J(x,v)(v,x)(0) = J(x,v)(Z(x,v))(0) = v and D

dt J(x,v)(v,x)(0) = 0, so J(x,v)(v,x)(t) = v for all t ∈R.
(y,w) = (0,w) + (y,0) ∈ V(x,v) ⊕H(x,v) and the computations of ϕ(x,v) and ψ(x,v) yield

J(x,v)(y,w)(t) = cosh tw+ sinh ty

In particular, for (y,−y) ∈ Es(x,v) we get J(x,v)(y,−y)(t) = −e−ty and for (y,−y) ∈ Eu(x,v) we get J(x,v)(y,y)(t) =

ety. This shows that Jacobi fields J ∈ J(x,v)

(
Es(x,v)

)
(resp. J ∈ J(x,v)

(
Eu(x,v)

)
) are characterized by

J(0) = −Ddt J(0) ∈ v⊥ (resp. J(0) = D
dt J(0) ∈ v⊥).


